1 /* 2 * NVMe over Fabrics RDMA target. 3 * Copyright (c) 2015-2016 HGST, a Western Digital Company. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 */ 14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 15 #include <linux/atomic.h> 16 #include <linux/ctype.h> 17 #include <linux/delay.h> 18 #include <linux/err.h> 19 #include <linux/init.h> 20 #include <linux/module.h> 21 #include <linux/nvme.h> 22 #include <linux/slab.h> 23 #include <linux/string.h> 24 #include <linux/wait.h> 25 #include <linux/inet.h> 26 #include <asm/unaligned.h> 27 28 #include <rdma/ib_verbs.h> 29 #include <rdma/rdma_cm.h> 30 #include <rdma/rw.h> 31 32 #include <linux/nvme-rdma.h> 33 #include "nvmet.h" 34 35 /* 36 * We allow up to a page of inline data to go with the SQE 37 */ 38 #define NVMET_RDMA_INLINE_DATA_SIZE PAGE_SIZE 39 40 struct nvmet_rdma_cmd { 41 struct ib_sge sge[2]; 42 struct ib_cqe cqe; 43 struct ib_recv_wr wr; 44 struct scatterlist inline_sg; 45 struct page *inline_page; 46 struct nvme_command *nvme_cmd; 47 struct nvmet_rdma_queue *queue; 48 }; 49 50 enum { 51 NVMET_RDMA_REQ_INLINE_DATA = (1 << 0), 52 NVMET_RDMA_REQ_INVALIDATE_RKEY = (1 << 1), 53 }; 54 55 struct nvmet_rdma_rsp { 56 struct ib_sge send_sge; 57 struct ib_cqe send_cqe; 58 struct ib_send_wr send_wr; 59 60 struct nvmet_rdma_cmd *cmd; 61 struct nvmet_rdma_queue *queue; 62 63 struct ib_cqe read_cqe; 64 struct rdma_rw_ctx rw; 65 66 struct nvmet_req req; 67 68 u8 n_rdma; 69 u32 flags; 70 u32 invalidate_rkey; 71 72 struct list_head wait_list; 73 struct list_head free_list; 74 }; 75 76 enum nvmet_rdma_queue_state { 77 NVMET_RDMA_Q_CONNECTING, 78 NVMET_RDMA_Q_LIVE, 79 NVMET_RDMA_Q_DISCONNECTING, 80 }; 81 82 struct nvmet_rdma_queue { 83 struct rdma_cm_id *cm_id; 84 struct nvmet_port *port; 85 struct ib_cq *cq; 86 atomic_t sq_wr_avail; 87 struct nvmet_rdma_device *dev; 88 spinlock_t state_lock; 89 enum nvmet_rdma_queue_state state; 90 struct nvmet_cq nvme_cq; 91 struct nvmet_sq nvme_sq; 92 93 struct nvmet_rdma_rsp *rsps; 94 struct list_head free_rsps; 95 spinlock_t rsps_lock; 96 struct nvmet_rdma_cmd *cmds; 97 98 struct work_struct release_work; 99 struct list_head rsp_wait_list; 100 struct list_head rsp_wr_wait_list; 101 spinlock_t rsp_wr_wait_lock; 102 103 int idx; 104 int host_qid; 105 int recv_queue_size; 106 int send_queue_size; 107 108 struct list_head queue_list; 109 }; 110 111 struct nvmet_rdma_device { 112 struct ib_device *device; 113 struct ib_pd *pd; 114 struct ib_srq *srq; 115 struct nvmet_rdma_cmd *srq_cmds; 116 size_t srq_size; 117 struct kref ref; 118 struct list_head entry; 119 }; 120 121 static bool nvmet_rdma_use_srq; 122 module_param_named(use_srq, nvmet_rdma_use_srq, bool, 0444); 123 MODULE_PARM_DESC(use_srq, "Use shared receive queue."); 124 125 static DEFINE_IDA(nvmet_rdma_queue_ida); 126 static LIST_HEAD(nvmet_rdma_queue_list); 127 static DEFINE_MUTEX(nvmet_rdma_queue_mutex); 128 129 static LIST_HEAD(device_list); 130 static DEFINE_MUTEX(device_list_mutex); 131 132 static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp); 133 static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc); 134 static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc); 135 static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc); 136 static void nvmet_rdma_qp_event(struct ib_event *event, void *priv); 137 static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue); 138 139 static struct nvmet_fabrics_ops nvmet_rdma_ops; 140 141 /* XXX: really should move to a generic header sooner or later.. */ 142 static inline u32 get_unaligned_le24(const u8 *p) 143 { 144 return (u32)p[0] | (u32)p[1] << 8 | (u32)p[2] << 16; 145 } 146 147 static inline bool nvmet_rdma_need_data_in(struct nvmet_rdma_rsp *rsp) 148 { 149 return nvme_is_write(rsp->req.cmd) && 150 rsp->req.data_len && 151 !(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA); 152 } 153 154 static inline bool nvmet_rdma_need_data_out(struct nvmet_rdma_rsp *rsp) 155 { 156 return !nvme_is_write(rsp->req.cmd) && 157 rsp->req.data_len && 158 !rsp->req.rsp->status && 159 !(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA); 160 } 161 162 static inline struct nvmet_rdma_rsp * 163 nvmet_rdma_get_rsp(struct nvmet_rdma_queue *queue) 164 { 165 struct nvmet_rdma_rsp *rsp; 166 unsigned long flags; 167 168 spin_lock_irqsave(&queue->rsps_lock, flags); 169 rsp = list_first_entry(&queue->free_rsps, 170 struct nvmet_rdma_rsp, free_list); 171 list_del(&rsp->free_list); 172 spin_unlock_irqrestore(&queue->rsps_lock, flags); 173 174 return rsp; 175 } 176 177 static inline void 178 nvmet_rdma_put_rsp(struct nvmet_rdma_rsp *rsp) 179 { 180 unsigned long flags; 181 182 spin_lock_irqsave(&rsp->queue->rsps_lock, flags); 183 list_add_tail(&rsp->free_list, &rsp->queue->free_rsps); 184 spin_unlock_irqrestore(&rsp->queue->rsps_lock, flags); 185 } 186 187 static void nvmet_rdma_free_sgl(struct scatterlist *sgl, unsigned int nents) 188 { 189 struct scatterlist *sg; 190 int count; 191 192 if (!sgl || !nents) 193 return; 194 195 for_each_sg(sgl, sg, nents, count) 196 __free_page(sg_page(sg)); 197 kfree(sgl); 198 } 199 200 static int nvmet_rdma_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, 201 u32 length) 202 { 203 struct scatterlist *sg; 204 struct page *page; 205 unsigned int nent; 206 int i = 0; 207 208 nent = DIV_ROUND_UP(length, PAGE_SIZE); 209 sg = kmalloc_array(nent, sizeof(struct scatterlist), GFP_KERNEL); 210 if (!sg) 211 goto out; 212 213 sg_init_table(sg, nent); 214 215 while (length) { 216 u32 page_len = min_t(u32, length, PAGE_SIZE); 217 218 page = alloc_page(GFP_KERNEL); 219 if (!page) 220 goto out_free_pages; 221 222 sg_set_page(&sg[i], page, page_len, 0); 223 length -= page_len; 224 i++; 225 } 226 *sgl = sg; 227 *nents = nent; 228 return 0; 229 230 out_free_pages: 231 while (i > 0) { 232 i--; 233 __free_page(sg_page(&sg[i])); 234 } 235 kfree(sg); 236 out: 237 return NVME_SC_INTERNAL; 238 } 239 240 static int nvmet_rdma_alloc_cmd(struct nvmet_rdma_device *ndev, 241 struct nvmet_rdma_cmd *c, bool admin) 242 { 243 /* NVMe command / RDMA RECV */ 244 c->nvme_cmd = kmalloc(sizeof(*c->nvme_cmd), GFP_KERNEL); 245 if (!c->nvme_cmd) 246 goto out; 247 248 c->sge[0].addr = ib_dma_map_single(ndev->device, c->nvme_cmd, 249 sizeof(*c->nvme_cmd), DMA_FROM_DEVICE); 250 if (ib_dma_mapping_error(ndev->device, c->sge[0].addr)) 251 goto out_free_cmd; 252 253 c->sge[0].length = sizeof(*c->nvme_cmd); 254 c->sge[0].lkey = ndev->pd->local_dma_lkey; 255 256 if (!admin) { 257 c->inline_page = alloc_pages(GFP_KERNEL, 258 get_order(NVMET_RDMA_INLINE_DATA_SIZE)); 259 if (!c->inline_page) 260 goto out_unmap_cmd; 261 c->sge[1].addr = ib_dma_map_page(ndev->device, 262 c->inline_page, 0, NVMET_RDMA_INLINE_DATA_SIZE, 263 DMA_FROM_DEVICE); 264 if (ib_dma_mapping_error(ndev->device, c->sge[1].addr)) 265 goto out_free_inline_page; 266 c->sge[1].length = NVMET_RDMA_INLINE_DATA_SIZE; 267 c->sge[1].lkey = ndev->pd->local_dma_lkey; 268 } 269 270 c->cqe.done = nvmet_rdma_recv_done; 271 272 c->wr.wr_cqe = &c->cqe; 273 c->wr.sg_list = c->sge; 274 c->wr.num_sge = admin ? 1 : 2; 275 276 return 0; 277 278 out_free_inline_page: 279 if (!admin) { 280 __free_pages(c->inline_page, 281 get_order(NVMET_RDMA_INLINE_DATA_SIZE)); 282 } 283 out_unmap_cmd: 284 ib_dma_unmap_single(ndev->device, c->sge[0].addr, 285 sizeof(*c->nvme_cmd), DMA_FROM_DEVICE); 286 out_free_cmd: 287 kfree(c->nvme_cmd); 288 289 out: 290 return -ENOMEM; 291 } 292 293 static void nvmet_rdma_free_cmd(struct nvmet_rdma_device *ndev, 294 struct nvmet_rdma_cmd *c, bool admin) 295 { 296 if (!admin) { 297 ib_dma_unmap_page(ndev->device, c->sge[1].addr, 298 NVMET_RDMA_INLINE_DATA_SIZE, DMA_FROM_DEVICE); 299 __free_pages(c->inline_page, 300 get_order(NVMET_RDMA_INLINE_DATA_SIZE)); 301 } 302 ib_dma_unmap_single(ndev->device, c->sge[0].addr, 303 sizeof(*c->nvme_cmd), DMA_FROM_DEVICE); 304 kfree(c->nvme_cmd); 305 } 306 307 static struct nvmet_rdma_cmd * 308 nvmet_rdma_alloc_cmds(struct nvmet_rdma_device *ndev, 309 int nr_cmds, bool admin) 310 { 311 struct nvmet_rdma_cmd *cmds; 312 int ret = -EINVAL, i; 313 314 cmds = kcalloc(nr_cmds, sizeof(struct nvmet_rdma_cmd), GFP_KERNEL); 315 if (!cmds) 316 goto out; 317 318 for (i = 0; i < nr_cmds; i++) { 319 ret = nvmet_rdma_alloc_cmd(ndev, cmds + i, admin); 320 if (ret) 321 goto out_free; 322 } 323 324 return cmds; 325 326 out_free: 327 while (--i >= 0) 328 nvmet_rdma_free_cmd(ndev, cmds + i, admin); 329 kfree(cmds); 330 out: 331 return ERR_PTR(ret); 332 } 333 334 static void nvmet_rdma_free_cmds(struct nvmet_rdma_device *ndev, 335 struct nvmet_rdma_cmd *cmds, int nr_cmds, bool admin) 336 { 337 int i; 338 339 for (i = 0; i < nr_cmds; i++) 340 nvmet_rdma_free_cmd(ndev, cmds + i, admin); 341 kfree(cmds); 342 } 343 344 static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device *ndev, 345 struct nvmet_rdma_rsp *r) 346 { 347 /* NVMe CQE / RDMA SEND */ 348 r->req.rsp = kmalloc(sizeof(*r->req.rsp), GFP_KERNEL); 349 if (!r->req.rsp) 350 goto out; 351 352 r->send_sge.addr = ib_dma_map_single(ndev->device, r->req.rsp, 353 sizeof(*r->req.rsp), DMA_TO_DEVICE); 354 if (ib_dma_mapping_error(ndev->device, r->send_sge.addr)) 355 goto out_free_rsp; 356 357 r->send_sge.length = sizeof(*r->req.rsp); 358 r->send_sge.lkey = ndev->pd->local_dma_lkey; 359 360 r->send_cqe.done = nvmet_rdma_send_done; 361 362 r->send_wr.wr_cqe = &r->send_cqe; 363 r->send_wr.sg_list = &r->send_sge; 364 r->send_wr.num_sge = 1; 365 r->send_wr.send_flags = IB_SEND_SIGNALED; 366 367 /* Data In / RDMA READ */ 368 r->read_cqe.done = nvmet_rdma_read_data_done; 369 return 0; 370 371 out_free_rsp: 372 kfree(r->req.rsp); 373 out: 374 return -ENOMEM; 375 } 376 377 static void nvmet_rdma_free_rsp(struct nvmet_rdma_device *ndev, 378 struct nvmet_rdma_rsp *r) 379 { 380 ib_dma_unmap_single(ndev->device, r->send_sge.addr, 381 sizeof(*r->req.rsp), DMA_TO_DEVICE); 382 kfree(r->req.rsp); 383 } 384 385 static int 386 nvmet_rdma_alloc_rsps(struct nvmet_rdma_queue *queue) 387 { 388 struct nvmet_rdma_device *ndev = queue->dev; 389 int nr_rsps = queue->recv_queue_size * 2; 390 int ret = -EINVAL, i; 391 392 queue->rsps = kcalloc(nr_rsps, sizeof(struct nvmet_rdma_rsp), 393 GFP_KERNEL); 394 if (!queue->rsps) 395 goto out; 396 397 for (i = 0; i < nr_rsps; i++) { 398 struct nvmet_rdma_rsp *rsp = &queue->rsps[i]; 399 400 ret = nvmet_rdma_alloc_rsp(ndev, rsp); 401 if (ret) 402 goto out_free; 403 404 list_add_tail(&rsp->free_list, &queue->free_rsps); 405 } 406 407 return 0; 408 409 out_free: 410 while (--i >= 0) { 411 struct nvmet_rdma_rsp *rsp = &queue->rsps[i]; 412 413 list_del(&rsp->free_list); 414 nvmet_rdma_free_rsp(ndev, rsp); 415 } 416 kfree(queue->rsps); 417 out: 418 return ret; 419 } 420 421 static void nvmet_rdma_free_rsps(struct nvmet_rdma_queue *queue) 422 { 423 struct nvmet_rdma_device *ndev = queue->dev; 424 int i, nr_rsps = queue->recv_queue_size * 2; 425 426 for (i = 0; i < nr_rsps; i++) { 427 struct nvmet_rdma_rsp *rsp = &queue->rsps[i]; 428 429 list_del(&rsp->free_list); 430 nvmet_rdma_free_rsp(ndev, rsp); 431 } 432 kfree(queue->rsps); 433 } 434 435 static int nvmet_rdma_post_recv(struct nvmet_rdma_device *ndev, 436 struct nvmet_rdma_cmd *cmd) 437 { 438 struct ib_recv_wr *bad_wr; 439 440 if (ndev->srq) 441 return ib_post_srq_recv(ndev->srq, &cmd->wr, &bad_wr); 442 return ib_post_recv(cmd->queue->cm_id->qp, &cmd->wr, &bad_wr); 443 } 444 445 static void nvmet_rdma_process_wr_wait_list(struct nvmet_rdma_queue *queue) 446 { 447 spin_lock(&queue->rsp_wr_wait_lock); 448 while (!list_empty(&queue->rsp_wr_wait_list)) { 449 struct nvmet_rdma_rsp *rsp; 450 bool ret; 451 452 rsp = list_entry(queue->rsp_wr_wait_list.next, 453 struct nvmet_rdma_rsp, wait_list); 454 list_del(&rsp->wait_list); 455 456 spin_unlock(&queue->rsp_wr_wait_lock); 457 ret = nvmet_rdma_execute_command(rsp); 458 spin_lock(&queue->rsp_wr_wait_lock); 459 460 if (!ret) { 461 list_add(&rsp->wait_list, &queue->rsp_wr_wait_list); 462 break; 463 } 464 } 465 spin_unlock(&queue->rsp_wr_wait_lock); 466 } 467 468 469 static void nvmet_rdma_release_rsp(struct nvmet_rdma_rsp *rsp) 470 { 471 struct nvmet_rdma_queue *queue = rsp->queue; 472 473 atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail); 474 475 if (rsp->n_rdma) { 476 rdma_rw_ctx_destroy(&rsp->rw, queue->cm_id->qp, 477 queue->cm_id->port_num, rsp->req.sg, 478 rsp->req.sg_cnt, nvmet_data_dir(&rsp->req)); 479 } 480 481 if (rsp->req.sg != &rsp->cmd->inline_sg) 482 nvmet_rdma_free_sgl(rsp->req.sg, rsp->req.sg_cnt); 483 484 if (unlikely(!list_empty_careful(&queue->rsp_wr_wait_list))) 485 nvmet_rdma_process_wr_wait_list(queue); 486 487 nvmet_rdma_put_rsp(rsp); 488 } 489 490 static void nvmet_rdma_error_comp(struct nvmet_rdma_queue *queue) 491 { 492 if (queue->nvme_sq.ctrl) { 493 nvmet_ctrl_fatal_error(queue->nvme_sq.ctrl); 494 } else { 495 /* 496 * we didn't setup the controller yet in case 497 * of admin connect error, just disconnect and 498 * cleanup the queue 499 */ 500 nvmet_rdma_queue_disconnect(queue); 501 } 502 } 503 504 static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc) 505 { 506 struct nvmet_rdma_rsp *rsp = 507 container_of(wc->wr_cqe, struct nvmet_rdma_rsp, send_cqe); 508 509 nvmet_rdma_release_rsp(rsp); 510 511 if (unlikely(wc->status != IB_WC_SUCCESS && 512 wc->status != IB_WC_WR_FLUSH_ERR)) { 513 pr_err("SEND for CQE 0x%p failed with status %s (%d).\n", 514 wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status); 515 nvmet_rdma_error_comp(rsp->queue); 516 } 517 } 518 519 static void nvmet_rdma_queue_response(struct nvmet_req *req) 520 { 521 struct nvmet_rdma_rsp *rsp = 522 container_of(req, struct nvmet_rdma_rsp, req); 523 struct rdma_cm_id *cm_id = rsp->queue->cm_id; 524 struct ib_send_wr *first_wr, *bad_wr; 525 526 if (rsp->flags & NVMET_RDMA_REQ_INVALIDATE_RKEY) { 527 rsp->send_wr.opcode = IB_WR_SEND_WITH_INV; 528 rsp->send_wr.ex.invalidate_rkey = rsp->invalidate_rkey; 529 } else { 530 rsp->send_wr.opcode = IB_WR_SEND; 531 } 532 533 if (nvmet_rdma_need_data_out(rsp)) 534 first_wr = rdma_rw_ctx_wrs(&rsp->rw, cm_id->qp, 535 cm_id->port_num, NULL, &rsp->send_wr); 536 else 537 first_wr = &rsp->send_wr; 538 539 nvmet_rdma_post_recv(rsp->queue->dev, rsp->cmd); 540 if (ib_post_send(cm_id->qp, first_wr, &bad_wr)) { 541 pr_err("sending cmd response failed\n"); 542 nvmet_rdma_release_rsp(rsp); 543 } 544 } 545 546 static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc) 547 { 548 struct nvmet_rdma_rsp *rsp = 549 container_of(wc->wr_cqe, struct nvmet_rdma_rsp, read_cqe); 550 struct nvmet_rdma_queue *queue = cq->cq_context; 551 552 WARN_ON(rsp->n_rdma <= 0); 553 atomic_add(rsp->n_rdma, &queue->sq_wr_avail); 554 rdma_rw_ctx_destroy(&rsp->rw, queue->cm_id->qp, 555 queue->cm_id->port_num, rsp->req.sg, 556 rsp->req.sg_cnt, nvmet_data_dir(&rsp->req)); 557 rsp->n_rdma = 0; 558 559 if (unlikely(wc->status != IB_WC_SUCCESS)) { 560 nvmet_rdma_release_rsp(rsp); 561 if (wc->status != IB_WC_WR_FLUSH_ERR) { 562 pr_info("RDMA READ for CQE 0x%p failed with status %s (%d).\n", 563 wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status); 564 nvmet_rdma_error_comp(queue); 565 } 566 return; 567 } 568 569 rsp->req.execute(&rsp->req); 570 } 571 572 static void nvmet_rdma_use_inline_sg(struct nvmet_rdma_rsp *rsp, u32 len, 573 u64 off) 574 { 575 sg_init_table(&rsp->cmd->inline_sg, 1); 576 sg_set_page(&rsp->cmd->inline_sg, rsp->cmd->inline_page, len, off); 577 rsp->req.sg = &rsp->cmd->inline_sg; 578 rsp->req.sg_cnt = 1; 579 } 580 581 static u16 nvmet_rdma_map_sgl_inline(struct nvmet_rdma_rsp *rsp) 582 { 583 struct nvme_sgl_desc *sgl = &rsp->req.cmd->common.dptr.sgl; 584 u64 off = le64_to_cpu(sgl->addr); 585 u32 len = le32_to_cpu(sgl->length); 586 587 if (!nvme_is_write(rsp->req.cmd)) 588 return NVME_SC_INVALID_FIELD | NVME_SC_DNR; 589 590 if (off + len > NVMET_RDMA_INLINE_DATA_SIZE) { 591 pr_err("invalid inline data offset!\n"); 592 return NVME_SC_SGL_INVALID_OFFSET | NVME_SC_DNR; 593 } 594 595 /* no data command? */ 596 if (!len) 597 return 0; 598 599 nvmet_rdma_use_inline_sg(rsp, len, off); 600 rsp->flags |= NVMET_RDMA_REQ_INLINE_DATA; 601 return 0; 602 } 603 604 static u16 nvmet_rdma_map_sgl_keyed(struct nvmet_rdma_rsp *rsp, 605 struct nvme_keyed_sgl_desc *sgl, bool invalidate) 606 { 607 struct rdma_cm_id *cm_id = rsp->queue->cm_id; 608 u64 addr = le64_to_cpu(sgl->addr); 609 u32 len = get_unaligned_le24(sgl->length); 610 u32 key = get_unaligned_le32(sgl->key); 611 int ret; 612 u16 status; 613 614 /* no data command? */ 615 if (!len) 616 return 0; 617 618 /* use the already allocated data buffer if possible */ 619 if (len <= NVMET_RDMA_INLINE_DATA_SIZE && rsp->queue->host_qid) { 620 nvmet_rdma_use_inline_sg(rsp, len, 0); 621 } else { 622 status = nvmet_rdma_alloc_sgl(&rsp->req.sg, &rsp->req.sg_cnt, 623 len); 624 if (status) 625 return status; 626 } 627 628 ret = rdma_rw_ctx_init(&rsp->rw, cm_id->qp, cm_id->port_num, 629 rsp->req.sg, rsp->req.sg_cnt, 0, addr, key, 630 nvmet_data_dir(&rsp->req)); 631 if (ret < 0) 632 return NVME_SC_INTERNAL; 633 rsp->n_rdma += ret; 634 635 if (invalidate) { 636 rsp->invalidate_rkey = key; 637 rsp->flags |= NVMET_RDMA_REQ_INVALIDATE_RKEY; 638 } 639 640 return 0; 641 } 642 643 static u16 nvmet_rdma_map_sgl(struct nvmet_rdma_rsp *rsp) 644 { 645 struct nvme_keyed_sgl_desc *sgl = &rsp->req.cmd->common.dptr.ksgl; 646 647 switch (sgl->type >> 4) { 648 case NVME_SGL_FMT_DATA_DESC: 649 switch (sgl->type & 0xf) { 650 case NVME_SGL_FMT_OFFSET: 651 return nvmet_rdma_map_sgl_inline(rsp); 652 default: 653 pr_err("invalid SGL subtype: %#x\n", sgl->type); 654 return NVME_SC_INVALID_FIELD | NVME_SC_DNR; 655 } 656 case NVME_KEY_SGL_FMT_DATA_DESC: 657 switch (sgl->type & 0xf) { 658 case NVME_SGL_FMT_ADDRESS | NVME_SGL_FMT_INVALIDATE: 659 return nvmet_rdma_map_sgl_keyed(rsp, sgl, true); 660 case NVME_SGL_FMT_ADDRESS: 661 return nvmet_rdma_map_sgl_keyed(rsp, sgl, false); 662 default: 663 pr_err("invalid SGL subtype: %#x\n", sgl->type); 664 return NVME_SC_INVALID_FIELD | NVME_SC_DNR; 665 } 666 default: 667 pr_err("invalid SGL type: %#x\n", sgl->type); 668 return NVME_SC_SGL_INVALID_TYPE | NVME_SC_DNR; 669 } 670 } 671 672 static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp) 673 { 674 struct nvmet_rdma_queue *queue = rsp->queue; 675 676 if (unlikely(atomic_sub_return(1 + rsp->n_rdma, 677 &queue->sq_wr_avail) < 0)) { 678 pr_debug("IB send queue full (needed %d): queue %u cntlid %u\n", 679 1 + rsp->n_rdma, queue->idx, 680 queue->nvme_sq.ctrl->cntlid); 681 atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail); 682 return false; 683 } 684 685 if (nvmet_rdma_need_data_in(rsp)) { 686 if (rdma_rw_ctx_post(&rsp->rw, queue->cm_id->qp, 687 queue->cm_id->port_num, &rsp->read_cqe, NULL)) 688 nvmet_req_complete(&rsp->req, NVME_SC_DATA_XFER_ERROR); 689 } else { 690 rsp->req.execute(&rsp->req); 691 } 692 693 return true; 694 } 695 696 static void nvmet_rdma_handle_command(struct nvmet_rdma_queue *queue, 697 struct nvmet_rdma_rsp *cmd) 698 { 699 u16 status; 700 701 cmd->queue = queue; 702 cmd->n_rdma = 0; 703 cmd->req.port = queue->port; 704 705 if (!nvmet_req_init(&cmd->req, &queue->nvme_cq, 706 &queue->nvme_sq, &nvmet_rdma_ops)) 707 return; 708 709 status = nvmet_rdma_map_sgl(cmd); 710 if (status) 711 goto out_err; 712 713 if (unlikely(!nvmet_rdma_execute_command(cmd))) { 714 spin_lock(&queue->rsp_wr_wait_lock); 715 list_add_tail(&cmd->wait_list, &queue->rsp_wr_wait_list); 716 spin_unlock(&queue->rsp_wr_wait_lock); 717 } 718 719 return; 720 721 out_err: 722 nvmet_req_complete(&cmd->req, status); 723 } 724 725 static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc) 726 { 727 struct nvmet_rdma_cmd *cmd = 728 container_of(wc->wr_cqe, struct nvmet_rdma_cmd, cqe); 729 struct nvmet_rdma_queue *queue = cq->cq_context; 730 struct nvmet_rdma_rsp *rsp; 731 732 if (unlikely(wc->status != IB_WC_SUCCESS)) { 733 if (wc->status != IB_WC_WR_FLUSH_ERR) { 734 pr_err("RECV for CQE 0x%p failed with status %s (%d)\n", 735 wc->wr_cqe, ib_wc_status_msg(wc->status), 736 wc->status); 737 nvmet_rdma_error_comp(queue); 738 } 739 return; 740 } 741 742 if (unlikely(wc->byte_len < sizeof(struct nvme_command))) { 743 pr_err("Ctrl Fatal Error: capsule size less than 64 bytes\n"); 744 nvmet_rdma_error_comp(queue); 745 return; 746 } 747 748 cmd->queue = queue; 749 rsp = nvmet_rdma_get_rsp(queue); 750 rsp->cmd = cmd; 751 rsp->flags = 0; 752 rsp->req.cmd = cmd->nvme_cmd; 753 754 if (unlikely(queue->state != NVMET_RDMA_Q_LIVE)) { 755 unsigned long flags; 756 757 spin_lock_irqsave(&queue->state_lock, flags); 758 if (queue->state == NVMET_RDMA_Q_CONNECTING) 759 list_add_tail(&rsp->wait_list, &queue->rsp_wait_list); 760 else 761 nvmet_rdma_put_rsp(rsp); 762 spin_unlock_irqrestore(&queue->state_lock, flags); 763 return; 764 } 765 766 nvmet_rdma_handle_command(queue, rsp); 767 } 768 769 static void nvmet_rdma_destroy_srq(struct nvmet_rdma_device *ndev) 770 { 771 if (!ndev->srq) 772 return; 773 774 nvmet_rdma_free_cmds(ndev, ndev->srq_cmds, ndev->srq_size, false); 775 ib_destroy_srq(ndev->srq); 776 } 777 778 static int nvmet_rdma_init_srq(struct nvmet_rdma_device *ndev) 779 { 780 struct ib_srq_init_attr srq_attr = { NULL, }; 781 struct ib_srq *srq; 782 size_t srq_size; 783 int ret, i; 784 785 srq_size = 4095; /* XXX: tune */ 786 787 srq_attr.attr.max_wr = srq_size; 788 srq_attr.attr.max_sge = 2; 789 srq_attr.attr.srq_limit = 0; 790 srq_attr.srq_type = IB_SRQT_BASIC; 791 srq = ib_create_srq(ndev->pd, &srq_attr); 792 if (IS_ERR(srq)) { 793 /* 794 * If SRQs aren't supported we just go ahead and use normal 795 * non-shared receive queues. 796 */ 797 pr_info("SRQ requested but not supported.\n"); 798 return 0; 799 } 800 801 ndev->srq_cmds = nvmet_rdma_alloc_cmds(ndev, srq_size, false); 802 if (IS_ERR(ndev->srq_cmds)) { 803 ret = PTR_ERR(ndev->srq_cmds); 804 goto out_destroy_srq; 805 } 806 807 ndev->srq = srq; 808 ndev->srq_size = srq_size; 809 810 for (i = 0; i < srq_size; i++) 811 nvmet_rdma_post_recv(ndev, &ndev->srq_cmds[i]); 812 813 return 0; 814 815 out_destroy_srq: 816 ib_destroy_srq(srq); 817 return ret; 818 } 819 820 static void nvmet_rdma_free_dev(struct kref *ref) 821 { 822 struct nvmet_rdma_device *ndev = 823 container_of(ref, struct nvmet_rdma_device, ref); 824 825 mutex_lock(&device_list_mutex); 826 list_del(&ndev->entry); 827 mutex_unlock(&device_list_mutex); 828 829 nvmet_rdma_destroy_srq(ndev); 830 ib_dealloc_pd(ndev->pd); 831 832 kfree(ndev); 833 } 834 835 static struct nvmet_rdma_device * 836 nvmet_rdma_find_get_device(struct rdma_cm_id *cm_id) 837 { 838 struct nvmet_rdma_device *ndev; 839 int ret; 840 841 mutex_lock(&device_list_mutex); 842 list_for_each_entry(ndev, &device_list, entry) { 843 if (ndev->device->node_guid == cm_id->device->node_guid && 844 kref_get_unless_zero(&ndev->ref)) 845 goto out_unlock; 846 } 847 848 ndev = kzalloc(sizeof(*ndev), GFP_KERNEL); 849 if (!ndev) 850 goto out_err; 851 852 ndev->device = cm_id->device; 853 kref_init(&ndev->ref); 854 855 ndev->pd = ib_alloc_pd(ndev->device); 856 if (IS_ERR(ndev->pd)) 857 goto out_free_dev; 858 859 if (nvmet_rdma_use_srq) { 860 ret = nvmet_rdma_init_srq(ndev); 861 if (ret) 862 goto out_free_pd; 863 } 864 865 list_add(&ndev->entry, &device_list); 866 out_unlock: 867 mutex_unlock(&device_list_mutex); 868 pr_debug("added %s.\n", ndev->device->name); 869 return ndev; 870 871 out_free_pd: 872 ib_dealloc_pd(ndev->pd); 873 out_free_dev: 874 kfree(ndev); 875 out_err: 876 mutex_unlock(&device_list_mutex); 877 return NULL; 878 } 879 880 static int nvmet_rdma_create_queue_ib(struct nvmet_rdma_queue *queue) 881 { 882 struct ib_qp_init_attr qp_attr; 883 struct nvmet_rdma_device *ndev = queue->dev; 884 int comp_vector, nr_cqe, ret, i; 885 886 /* 887 * Spread the io queues across completion vectors, 888 * but still keep all admin queues on vector 0. 889 */ 890 comp_vector = !queue->host_qid ? 0 : 891 queue->idx % ndev->device->num_comp_vectors; 892 893 /* 894 * Reserve CQ slots for RECV + RDMA_READ/RDMA_WRITE + RDMA_SEND. 895 */ 896 nr_cqe = queue->recv_queue_size + 2 * queue->send_queue_size; 897 898 queue->cq = ib_alloc_cq(ndev->device, queue, 899 nr_cqe + 1, comp_vector, 900 IB_POLL_WORKQUEUE); 901 if (IS_ERR(queue->cq)) { 902 ret = PTR_ERR(queue->cq); 903 pr_err("failed to create CQ cqe= %d ret= %d\n", 904 nr_cqe + 1, ret); 905 goto out; 906 } 907 908 memset(&qp_attr, 0, sizeof(qp_attr)); 909 qp_attr.qp_context = queue; 910 qp_attr.event_handler = nvmet_rdma_qp_event; 911 qp_attr.send_cq = queue->cq; 912 qp_attr.recv_cq = queue->cq; 913 qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR; 914 qp_attr.qp_type = IB_QPT_RC; 915 /* +1 for drain */ 916 qp_attr.cap.max_send_wr = queue->send_queue_size + 1; 917 qp_attr.cap.max_rdma_ctxs = queue->send_queue_size; 918 qp_attr.cap.max_send_sge = max(ndev->device->attrs.max_sge_rd, 919 ndev->device->attrs.max_sge); 920 921 if (ndev->srq) { 922 qp_attr.srq = ndev->srq; 923 } else { 924 /* +1 for drain */ 925 qp_attr.cap.max_recv_wr = 1 + queue->recv_queue_size; 926 qp_attr.cap.max_recv_sge = 2; 927 } 928 929 ret = rdma_create_qp(queue->cm_id, ndev->pd, &qp_attr); 930 if (ret) { 931 pr_err("failed to create_qp ret= %d\n", ret); 932 goto err_destroy_cq; 933 } 934 935 atomic_set(&queue->sq_wr_avail, qp_attr.cap.max_send_wr); 936 937 pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n", 938 __func__, queue->cq->cqe, qp_attr.cap.max_send_sge, 939 qp_attr.cap.max_send_wr, queue->cm_id); 940 941 if (!ndev->srq) { 942 for (i = 0; i < queue->recv_queue_size; i++) { 943 queue->cmds[i].queue = queue; 944 nvmet_rdma_post_recv(ndev, &queue->cmds[i]); 945 } 946 } 947 948 out: 949 return ret; 950 951 err_destroy_cq: 952 ib_free_cq(queue->cq); 953 goto out; 954 } 955 956 static void nvmet_rdma_destroy_queue_ib(struct nvmet_rdma_queue *queue) 957 { 958 rdma_destroy_qp(queue->cm_id); 959 ib_free_cq(queue->cq); 960 } 961 962 static void nvmet_rdma_free_queue(struct nvmet_rdma_queue *queue) 963 { 964 pr_info("freeing queue %d\n", queue->idx); 965 966 nvmet_sq_destroy(&queue->nvme_sq); 967 968 nvmet_rdma_destroy_queue_ib(queue); 969 if (!queue->dev->srq) { 970 nvmet_rdma_free_cmds(queue->dev, queue->cmds, 971 queue->recv_queue_size, 972 !queue->host_qid); 973 } 974 nvmet_rdma_free_rsps(queue); 975 ida_simple_remove(&nvmet_rdma_queue_ida, queue->idx); 976 kfree(queue); 977 } 978 979 static void nvmet_rdma_release_queue_work(struct work_struct *w) 980 { 981 struct nvmet_rdma_queue *queue = 982 container_of(w, struct nvmet_rdma_queue, release_work); 983 struct rdma_cm_id *cm_id = queue->cm_id; 984 struct nvmet_rdma_device *dev = queue->dev; 985 986 nvmet_rdma_free_queue(queue); 987 rdma_destroy_id(cm_id); 988 kref_put(&dev->ref, nvmet_rdma_free_dev); 989 } 990 991 static int 992 nvmet_rdma_parse_cm_connect_req(struct rdma_conn_param *conn, 993 struct nvmet_rdma_queue *queue) 994 { 995 struct nvme_rdma_cm_req *req; 996 997 req = (struct nvme_rdma_cm_req *)conn->private_data; 998 if (!req || conn->private_data_len == 0) 999 return NVME_RDMA_CM_INVALID_LEN; 1000 1001 if (le16_to_cpu(req->recfmt) != NVME_RDMA_CM_FMT_1_0) 1002 return NVME_RDMA_CM_INVALID_RECFMT; 1003 1004 queue->host_qid = le16_to_cpu(req->qid); 1005 1006 /* 1007 * req->hsqsize corresponds to our recv queue size 1008 * req->hrqsize corresponds to our send queue size 1009 */ 1010 queue->recv_queue_size = le16_to_cpu(req->hsqsize); 1011 queue->send_queue_size = le16_to_cpu(req->hrqsize); 1012 1013 if (!queue->host_qid && queue->recv_queue_size > NVMF_AQ_DEPTH) 1014 return NVME_RDMA_CM_INVALID_HSQSIZE; 1015 1016 /* XXX: Should we enforce some kind of max for IO queues? */ 1017 1018 return 0; 1019 } 1020 1021 static int nvmet_rdma_cm_reject(struct rdma_cm_id *cm_id, 1022 enum nvme_rdma_cm_status status) 1023 { 1024 struct nvme_rdma_cm_rej rej; 1025 1026 rej.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0); 1027 rej.sts = cpu_to_le16(status); 1028 1029 return rdma_reject(cm_id, (void *)&rej, sizeof(rej)); 1030 } 1031 1032 static struct nvmet_rdma_queue * 1033 nvmet_rdma_alloc_queue(struct nvmet_rdma_device *ndev, 1034 struct rdma_cm_id *cm_id, 1035 struct rdma_cm_event *event) 1036 { 1037 struct nvmet_rdma_queue *queue; 1038 int ret; 1039 1040 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 1041 if (!queue) { 1042 ret = NVME_RDMA_CM_NO_RSC; 1043 goto out_reject; 1044 } 1045 1046 ret = nvmet_sq_init(&queue->nvme_sq); 1047 if (ret) 1048 goto out_free_queue; 1049 1050 ret = nvmet_rdma_parse_cm_connect_req(&event->param.conn, queue); 1051 if (ret) 1052 goto out_destroy_sq; 1053 1054 /* 1055 * Schedules the actual release because calling rdma_destroy_id from 1056 * inside a CM callback would trigger a deadlock. (great API design..) 1057 */ 1058 INIT_WORK(&queue->release_work, nvmet_rdma_release_queue_work); 1059 queue->dev = ndev; 1060 queue->cm_id = cm_id; 1061 1062 spin_lock_init(&queue->state_lock); 1063 queue->state = NVMET_RDMA_Q_CONNECTING; 1064 INIT_LIST_HEAD(&queue->rsp_wait_list); 1065 INIT_LIST_HEAD(&queue->rsp_wr_wait_list); 1066 spin_lock_init(&queue->rsp_wr_wait_lock); 1067 INIT_LIST_HEAD(&queue->free_rsps); 1068 spin_lock_init(&queue->rsps_lock); 1069 1070 queue->idx = ida_simple_get(&nvmet_rdma_queue_ida, 0, 0, GFP_KERNEL); 1071 if (queue->idx < 0) { 1072 ret = NVME_RDMA_CM_NO_RSC; 1073 goto out_free_queue; 1074 } 1075 1076 ret = nvmet_rdma_alloc_rsps(queue); 1077 if (ret) { 1078 ret = NVME_RDMA_CM_NO_RSC; 1079 goto out_ida_remove; 1080 } 1081 1082 if (!ndev->srq) { 1083 queue->cmds = nvmet_rdma_alloc_cmds(ndev, 1084 queue->recv_queue_size, 1085 !queue->host_qid); 1086 if (IS_ERR(queue->cmds)) { 1087 ret = NVME_RDMA_CM_NO_RSC; 1088 goto out_free_responses; 1089 } 1090 } 1091 1092 ret = nvmet_rdma_create_queue_ib(queue); 1093 if (ret) { 1094 pr_err("%s: creating RDMA queue failed (%d).\n", 1095 __func__, ret); 1096 ret = NVME_RDMA_CM_NO_RSC; 1097 goto out_free_cmds; 1098 } 1099 1100 return queue; 1101 1102 out_free_cmds: 1103 if (!ndev->srq) { 1104 nvmet_rdma_free_cmds(queue->dev, queue->cmds, 1105 queue->recv_queue_size, 1106 !queue->host_qid); 1107 } 1108 out_free_responses: 1109 nvmet_rdma_free_rsps(queue); 1110 out_ida_remove: 1111 ida_simple_remove(&nvmet_rdma_queue_ida, queue->idx); 1112 out_destroy_sq: 1113 nvmet_sq_destroy(&queue->nvme_sq); 1114 out_free_queue: 1115 kfree(queue); 1116 out_reject: 1117 nvmet_rdma_cm_reject(cm_id, ret); 1118 return NULL; 1119 } 1120 1121 static void nvmet_rdma_qp_event(struct ib_event *event, void *priv) 1122 { 1123 struct nvmet_rdma_queue *queue = priv; 1124 1125 switch (event->event) { 1126 case IB_EVENT_COMM_EST: 1127 rdma_notify(queue->cm_id, event->event); 1128 break; 1129 default: 1130 pr_err("received unrecognized IB QP event %d\n", event->event); 1131 break; 1132 } 1133 } 1134 1135 static int nvmet_rdma_cm_accept(struct rdma_cm_id *cm_id, 1136 struct nvmet_rdma_queue *queue, 1137 struct rdma_conn_param *p) 1138 { 1139 struct rdma_conn_param param = { }; 1140 struct nvme_rdma_cm_rep priv = { }; 1141 int ret = -ENOMEM; 1142 1143 param.rnr_retry_count = 7; 1144 param.flow_control = 1; 1145 param.initiator_depth = min_t(u8, p->initiator_depth, 1146 queue->dev->device->attrs.max_qp_init_rd_atom); 1147 param.private_data = &priv; 1148 param.private_data_len = sizeof(priv); 1149 priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0); 1150 priv.crqsize = cpu_to_le16(queue->recv_queue_size); 1151 1152 ret = rdma_accept(cm_id, ¶m); 1153 if (ret) 1154 pr_err("rdma_accept failed (error code = %d)\n", ret); 1155 1156 return ret; 1157 } 1158 1159 static int nvmet_rdma_queue_connect(struct rdma_cm_id *cm_id, 1160 struct rdma_cm_event *event) 1161 { 1162 struct nvmet_rdma_device *ndev; 1163 struct nvmet_rdma_queue *queue; 1164 int ret = -EINVAL; 1165 1166 ndev = nvmet_rdma_find_get_device(cm_id); 1167 if (!ndev) { 1168 pr_err("no client data!\n"); 1169 nvmet_rdma_cm_reject(cm_id, NVME_RDMA_CM_NO_RSC); 1170 return -ECONNREFUSED; 1171 } 1172 1173 queue = nvmet_rdma_alloc_queue(ndev, cm_id, event); 1174 if (!queue) { 1175 ret = -ENOMEM; 1176 goto put_device; 1177 } 1178 queue->port = cm_id->context; 1179 1180 ret = nvmet_rdma_cm_accept(cm_id, queue, &event->param.conn); 1181 if (ret) 1182 goto release_queue; 1183 1184 mutex_lock(&nvmet_rdma_queue_mutex); 1185 list_add_tail(&queue->queue_list, &nvmet_rdma_queue_list); 1186 mutex_unlock(&nvmet_rdma_queue_mutex); 1187 1188 return 0; 1189 1190 release_queue: 1191 nvmet_rdma_free_queue(queue); 1192 put_device: 1193 kref_put(&ndev->ref, nvmet_rdma_free_dev); 1194 1195 return ret; 1196 } 1197 1198 static void nvmet_rdma_queue_established(struct nvmet_rdma_queue *queue) 1199 { 1200 unsigned long flags; 1201 1202 spin_lock_irqsave(&queue->state_lock, flags); 1203 if (queue->state != NVMET_RDMA_Q_CONNECTING) { 1204 pr_warn("trying to establish a connected queue\n"); 1205 goto out_unlock; 1206 } 1207 queue->state = NVMET_RDMA_Q_LIVE; 1208 1209 while (!list_empty(&queue->rsp_wait_list)) { 1210 struct nvmet_rdma_rsp *cmd; 1211 1212 cmd = list_first_entry(&queue->rsp_wait_list, 1213 struct nvmet_rdma_rsp, wait_list); 1214 list_del(&cmd->wait_list); 1215 1216 spin_unlock_irqrestore(&queue->state_lock, flags); 1217 nvmet_rdma_handle_command(queue, cmd); 1218 spin_lock_irqsave(&queue->state_lock, flags); 1219 } 1220 1221 out_unlock: 1222 spin_unlock_irqrestore(&queue->state_lock, flags); 1223 } 1224 1225 static void __nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue) 1226 { 1227 bool disconnect = false; 1228 unsigned long flags; 1229 1230 pr_debug("cm_id= %p queue->state= %d\n", queue->cm_id, queue->state); 1231 1232 spin_lock_irqsave(&queue->state_lock, flags); 1233 switch (queue->state) { 1234 case NVMET_RDMA_Q_CONNECTING: 1235 case NVMET_RDMA_Q_LIVE: 1236 disconnect = true; 1237 queue->state = NVMET_RDMA_Q_DISCONNECTING; 1238 break; 1239 case NVMET_RDMA_Q_DISCONNECTING: 1240 break; 1241 } 1242 spin_unlock_irqrestore(&queue->state_lock, flags); 1243 1244 if (disconnect) { 1245 rdma_disconnect(queue->cm_id); 1246 ib_drain_qp(queue->cm_id->qp); 1247 schedule_work(&queue->release_work); 1248 } 1249 } 1250 1251 static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue) 1252 { 1253 bool disconnect = false; 1254 1255 mutex_lock(&nvmet_rdma_queue_mutex); 1256 if (!list_empty(&queue->queue_list)) { 1257 list_del_init(&queue->queue_list); 1258 disconnect = true; 1259 } 1260 mutex_unlock(&nvmet_rdma_queue_mutex); 1261 1262 if (disconnect) 1263 __nvmet_rdma_queue_disconnect(queue); 1264 } 1265 1266 static void nvmet_rdma_queue_connect_fail(struct rdma_cm_id *cm_id, 1267 struct nvmet_rdma_queue *queue) 1268 { 1269 WARN_ON_ONCE(queue->state != NVMET_RDMA_Q_CONNECTING); 1270 1271 pr_err("failed to connect queue\n"); 1272 schedule_work(&queue->release_work); 1273 } 1274 1275 static int nvmet_rdma_cm_handler(struct rdma_cm_id *cm_id, 1276 struct rdma_cm_event *event) 1277 { 1278 struct nvmet_rdma_queue *queue = NULL; 1279 int ret = 0; 1280 1281 if (cm_id->qp) 1282 queue = cm_id->qp->qp_context; 1283 1284 pr_debug("%s (%d): status %d id %p\n", 1285 rdma_event_msg(event->event), event->event, 1286 event->status, cm_id); 1287 1288 switch (event->event) { 1289 case RDMA_CM_EVENT_CONNECT_REQUEST: 1290 ret = nvmet_rdma_queue_connect(cm_id, event); 1291 break; 1292 case RDMA_CM_EVENT_ESTABLISHED: 1293 nvmet_rdma_queue_established(queue); 1294 break; 1295 case RDMA_CM_EVENT_ADDR_CHANGE: 1296 case RDMA_CM_EVENT_DISCONNECTED: 1297 case RDMA_CM_EVENT_DEVICE_REMOVAL: 1298 case RDMA_CM_EVENT_TIMEWAIT_EXIT: 1299 /* 1300 * We can get the device removal callback even for a 1301 * CM ID that we aren't actually using. In that case 1302 * the context pointer is NULL, so we shouldn't try 1303 * to disconnect a non-existing queue. But we also 1304 * need to return 1 so that the core will destroy 1305 * it's own ID. What a great API design.. 1306 */ 1307 if (queue) 1308 nvmet_rdma_queue_disconnect(queue); 1309 else 1310 ret = 1; 1311 break; 1312 case RDMA_CM_EVENT_REJECTED: 1313 case RDMA_CM_EVENT_UNREACHABLE: 1314 case RDMA_CM_EVENT_CONNECT_ERROR: 1315 nvmet_rdma_queue_connect_fail(cm_id, queue); 1316 break; 1317 default: 1318 pr_err("received unrecognized RDMA CM event %d\n", 1319 event->event); 1320 break; 1321 } 1322 1323 return ret; 1324 } 1325 1326 static void nvmet_rdma_delete_ctrl(struct nvmet_ctrl *ctrl) 1327 { 1328 struct nvmet_rdma_queue *queue; 1329 1330 restart: 1331 mutex_lock(&nvmet_rdma_queue_mutex); 1332 list_for_each_entry(queue, &nvmet_rdma_queue_list, queue_list) { 1333 if (queue->nvme_sq.ctrl == ctrl) { 1334 list_del_init(&queue->queue_list); 1335 mutex_unlock(&nvmet_rdma_queue_mutex); 1336 1337 __nvmet_rdma_queue_disconnect(queue); 1338 goto restart; 1339 } 1340 } 1341 mutex_unlock(&nvmet_rdma_queue_mutex); 1342 } 1343 1344 static int nvmet_rdma_add_port(struct nvmet_port *port) 1345 { 1346 struct rdma_cm_id *cm_id; 1347 struct sockaddr_in addr_in; 1348 u16 port_in; 1349 int ret; 1350 1351 switch (port->disc_addr.adrfam) { 1352 case NVMF_ADDR_FAMILY_IP4: 1353 break; 1354 default: 1355 pr_err("address family %d not supported\n", 1356 port->disc_addr.adrfam); 1357 return -EINVAL; 1358 } 1359 1360 ret = kstrtou16(port->disc_addr.trsvcid, 0, &port_in); 1361 if (ret) 1362 return ret; 1363 1364 addr_in.sin_family = AF_INET; 1365 addr_in.sin_addr.s_addr = in_aton(port->disc_addr.traddr); 1366 addr_in.sin_port = htons(port_in); 1367 1368 cm_id = rdma_create_id(&init_net, nvmet_rdma_cm_handler, port, 1369 RDMA_PS_TCP, IB_QPT_RC); 1370 if (IS_ERR(cm_id)) { 1371 pr_err("CM ID creation failed\n"); 1372 return PTR_ERR(cm_id); 1373 } 1374 1375 ret = rdma_bind_addr(cm_id, (struct sockaddr *)&addr_in); 1376 if (ret) { 1377 pr_err("binding CM ID to %pISpc failed (%d)\n", &addr_in, ret); 1378 goto out_destroy_id; 1379 } 1380 1381 ret = rdma_listen(cm_id, 128); 1382 if (ret) { 1383 pr_err("listening to %pISpc failed (%d)\n", &addr_in, ret); 1384 goto out_destroy_id; 1385 } 1386 1387 pr_info("enabling port %d (%pISpc)\n", 1388 le16_to_cpu(port->disc_addr.portid), &addr_in); 1389 port->priv = cm_id; 1390 return 0; 1391 1392 out_destroy_id: 1393 rdma_destroy_id(cm_id); 1394 return ret; 1395 } 1396 1397 static void nvmet_rdma_remove_port(struct nvmet_port *port) 1398 { 1399 struct rdma_cm_id *cm_id = port->priv; 1400 1401 rdma_destroy_id(cm_id); 1402 } 1403 1404 static struct nvmet_fabrics_ops nvmet_rdma_ops = { 1405 .owner = THIS_MODULE, 1406 .type = NVMF_TRTYPE_RDMA, 1407 .sqe_inline_size = NVMET_RDMA_INLINE_DATA_SIZE, 1408 .msdbd = 1, 1409 .has_keyed_sgls = 1, 1410 .add_port = nvmet_rdma_add_port, 1411 .remove_port = nvmet_rdma_remove_port, 1412 .queue_response = nvmet_rdma_queue_response, 1413 .delete_ctrl = nvmet_rdma_delete_ctrl, 1414 }; 1415 1416 static int __init nvmet_rdma_init(void) 1417 { 1418 return nvmet_register_transport(&nvmet_rdma_ops); 1419 } 1420 1421 static void __exit nvmet_rdma_exit(void) 1422 { 1423 struct nvmet_rdma_queue *queue; 1424 1425 nvmet_unregister_transport(&nvmet_rdma_ops); 1426 1427 flush_scheduled_work(); 1428 1429 mutex_lock(&nvmet_rdma_queue_mutex); 1430 while ((queue = list_first_entry_or_null(&nvmet_rdma_queue_list, 1431 struct nvmet_rdma_queue, queue_list))) { 1432 list_del_init(&queue->queue_list); 1433 1434 mutex_unlock(&nvmet_rdma_queue_mutex); 1435 __nvmet_rdma_queue_disconnect(queue); 1436 mutex_lock(&nvmet_rdma_queue_mutex); 1437 } 1438 mutex_unlock(&nvmet_rdma_queue_mutex); 1439 1440 flush_scheduled_work(); 1441 ida_destroy(&nvmet_rdma_queue_ida); 1442 } 1443 1444 module_init(nvmet_rdma_init); 1445 module_exit(nvmet_rdma_exit); 1446 1447 MODULE_LICENSE("GPL v2"); 1448 MODULE_ALIAS("nvmet-transport-1"); /* 1 == NVMF_TRTYPE_RDMA */ 1449