1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVMe over Fabrics RDMA target. 4 * Copyright (c) 2015-2016 HGST, a Western Digital Company. 5 */ 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 #include <linux/atomic.h> 8 #include <linux/blk-integrity.h> 9 #include <linux/ctype.h> 10 #include <linux/delay.h> 11 #include <linux/err.h> 12 #include <linux/init.h> 13 #include <linux/module.h> 14 #include <linux/nvme.h> 15 #include <linux/slab.h> 16 #include <linux/string.h> 17 #include <linux/wait.h> 18 #include <linux/inet.h> 19 #include <linux/unaligned.h> 20 21 #include <rdma/ib_verbs.h> 22 #include <rdma/rdma_cm.h> 23 #include <rdma/rw.h> 24 #include <rdma/ib_cm.h> 25 26 #include <linux/nvme-rdma.h> 27 #include "nvmet.h" 28 29 /* 30 * We allow at least 1 page, up to 4 SGEs, and up to 16KB of inline data 31 */ 32 #define NVMET_RDMA_DEFAULT_INLINE_DATA_SIZE PAGE_SIZE 33 #define NVMET_RDMA_MAX_INLINE_SGE 4 34 #define NVMET_RDMA_MAX_INLINE_DATA_SIZE max_t(int, SZ_16K, PAGE_SIZE) 35 36 /* Assume mpsmin == device_page_size == 4KB */ 37 #define NVMET_RDMA_MAX_MDTS 8 38 #define NVMET_RDMA_MAX_METADATA_MDTS 5 39 40 #define NVMET_RDMA_BACKLOG 128 41 42 #define NVMET_RDMA_DISCRETE_RSP_TAG -1 43 44 struct nvmet_rdma_srq; 45 46 struct nvmet_rdma_cmd { 47 struct ib_sge sge[NVMET_RDMA_MAX_INLINE_SGE + 1]; 48 struct ib_cqe cqe; 49 struct ib_recv_wr wr; 50 struct scatterlist inline_sg[NVMET_RDMA_MAX_INLINE_SGE]; 51 struct nvme_command *nvme_cmd; 52 struct nvmet_rdma_queue *queue; 53 struct nvmet_rdma_srq *nsrq; 54 }; 55 56 enum { 57 NVMET_RDMA_REQ_INLINE_DATA = (1 << 0), 58 }; 59 60 struct nvmet_rdma_rsp { 61 struct ib_sge send_sge; 62 struct ib_cqe send_cqe; 63 struct ib_send_wr send_wr; 64 65 struct nvmet_rdma_cmd *cmd; 66 struct nvmet_rdma_queue *queue; 67 68 struct ib_cqe read_cqe; 69 struct ib_cqe write_cqe; 70 struct rdma_rw_ctx rw; 71 72 struct nvmet_req req; 73 74 bool allocated; 75 u8 n_rdma; 76 u32 flags; 77 u32 invalidate_rkey; 78 79 struct list_head wait_list; 80 int tag; 81 }; 82 83 enum nvmet_rdma_queue_state { 84 NVMET_RDMA_Q_CONNECTING, 85 NVMET_RDMA_Q_LIVE, 86 NVMET_RDMA_Q_DISCONNECTING, 87 }; 88 89 struct nvmet_rdma_queue { 90 struct rdma_cm_id *cm_id; 91 struct ib_qp *qp; 92 struct nvmet_port *port; 93 struct ib_cq *cq; 94 atomic_t sq_wr_avail; 95 struct nvmet_rdma_device *dev; 96 struct nvmet_rdma_srq *nsrq; 97 spinlock_t state_lock; 98 enum nvmet_rdma_queue_state state; 99 struct nvmet_cq nvme_cq; 100 struct nvmet_sq nvme_sq; 101 102 struct nvmet_rdma_rsp *rsps; 103 struct sbitmap rsp_tags; 104 struct nvmet_rdma_cmd *cmds; 105 106 struct work_struct release_work; 107 struct list_head rsp_wait_list; 108 struct list_head rsp_wr_wait_list; 109 spinlock_t rsp_wr_wait_lock; 110 111 int idx; 112 int host_qid; 113 int comp_vector; 114 int recv_queue_size; 115 int send_queue_size; 116 117 struct list_head queue_list; 118 }; 119 120 struct nvmet_rdma_port { 121 struct nvmet_port *nport; 122 struct sockaddr_storage addr; 123 struct rdma_cm_id *cm_id; 124 struct delayed_work repair_work; 125 }; 126 127 struct nvmet_rdma_srq { 128 struct ib_srq *srq; 129 struct nvmet_rdma_cmd *cmds; 130 struct nvmet_rdma_device *ndev; 131 }; 132 133 struct nvmet_rdma_device { 134 struct ib_device *device; 135 struct ib_pd *pd; 136 struct nvmet_rdma_srq **srqs; 137 int srq_count; 138 size_t srq_size; 139 struct kref ref; 140 struct list_head entry; 141 int inline_data_size; 142 int inline_page_count; 143 }; 144 145 static bool nvmet_rdma_use_srq; 146 module_param_named(use_srq, nvmet_rdma_use_srq, bool, 0444); 147 MODULE_PARM_DESC(use_srq, "Use shared receive queue."); 148 149 static int srq_size_set(const char *val, const struct kernel_param *kp); 150 static const struct kernel_param_ops srq_size_ops = { 151 .set = srq_size_set, 152 .get = param_get_int, 153 }; 154 155 static int nvmet_rdma_srq_size = 1024; 156 module_param_cb(srq_size, &srq_size_ops, &nvmet_rdma_srq_size, 0644); 157 MODULE_PARM_DESC(srq_size, "set Shared Receive Queue (SRQ) size, should >= 256 (default: 1024)"); 158 159 static DEFINE_IDA(nvmet_rdma_queue_ida); 160 static LIST_HEAD(nvmet_rdma_queue_list); 161 static DEFINE_MUTEX(nvmet_rdma_queue_mutex); 162 163 static LIST_HEAD(device_list); 164 static DEFINE_MUTEX(device_list_mutex); 165 166 static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp); 167 static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc); 168 static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc); 169 static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc); 170 static void nvmet_rdma_write_data_done(struct ib_cq *cq, struct ib_wc *wc); 171 static void nvmet_rdma_qp_event(struct ib_event *event, void *priv); 172 static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue); 173 static void nvmet_rdma_free_rsp(struct nvmet_rdma_device *ndev, 174 struct nvmet_rdma_rsp *r); 175 static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device *ndev, 176 struct nvmet_rdma_rsp *r, 177 int tag); 178 179 static const struct nvmet_fabrics_ops nvmet_rdma_ops; 180 181 static int srq_size_set(const char *val, const struct kernel_param *kp) 182 { 183 int n = 0, ret; 184 185 ret = kstrtoint(val, 10, &n); 186 if (ret != 0 || n < 256) 187 return -EINVAL; 188 189 return param_set_int(val, kp); 190 } 191 192 static int num_pages(int len) 193 { 194 return 1 + (((len - 1) & PAGE_MASK) >> PAGE_SHIFT); 195 } 196 197 static inline bool nvmet_rdma_need_data_in(struct nvmet_rdma_rsp *rsp) 198 { 199 return nvme_is_write(rsp->req.cmd) && 200 rsp->req.transfer_len && 201 !(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA); 202 } 203 204 static inline bool nvmet_rdma_need_data_out(struct nvmet_rdma_rsp *rsp) 205 { 206 return !nvme_is_write(rsp->req.cmd) && 207 rsp->req.transfer_len && 208 !rsp->req.cqe->status && 209 !(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA); 210 } 211 212 static inline struct nvmet_rdma_rsp * 213 nvmet_rdma_get_rsp(struct nvmet_rdma_queue *queue) 214 { 215 struct nvmet_rdma_rsp *rsp = NULL; 216 int tag; 217 218 tag = sbitmap_get(&queue->rsp_tags); 219 if (tag >= 0) 220 rsp = &queue->rsps[tag]; 221 222 if (unlikely(!rsp)) { 223 int ret; 224 225 rsp = kzalloc(sizeof(*rsp), GFP_KERNEL); 226 if (unlikely(!rsp)) 227 return NULL; 228 ret = nvmet_rdma_alloc_rsp(queue->dev, rsp, 229 NVMET_RDMA_DISCRETE_RSP_TAG); 230 if (unlikely(ret)) { 231 kfree(rsp); 232 return NULL; 233 } 234 } 235 236 return rsp; 237 } 238 239 static inline void 240 nvmet_rdma_put_rsp(struct nvmet_rdma_rsp *rsp) 241 { 242 if (unlikely(rsp->tag == NVMET_RDMA_DISCRETE_RSP_TAG)) { 243 nvmet_rdma_free_rsp(rsp->queue->dev, rsp); 244 kfree(rsp); 245 return; 246 } 247 248 sbitmap_clear_bit(&rsp->queue->rsp_tags, rsp->tag); 249 } 250 251 static void nvmet_rdma_free_inline_pages(struct nvmet_rdma_device *ndev, 252 struct nvmet_rdma_cmd *c) 253 { 254 struct scatterlist *sg; 255 struct ib_sge *sge; 256 int i; 257 258 if (!ndev->inline_data_size) 259 return; 260 261 sg = c->inline_sg; 262 sge = &c->sge[1]; 263 264 for (i = 0; i < ndev->inline_page_count; i++, sg++, sge++) { 265 if (sge->length) 266 ib_dma_unmap_page(ndev->device, sge->addr, 267 sge->length, DMA_FROM_DEVICE); 268 if (sg_page(sg)) 269 __free_page(sg_page(sg)); 270 } 271 } 272 273 static int nvmet_rdma_alloc_inline_pages(struct nvmet_rdma_device *ndev, 274 struct nvmet_rdma_cmd *c) 275 { 276 struct scatterlist *sg; 277 struct ib_sge *sge; 278 struct page *pg; 279 int len; 280 int i; 281 282 if (!ndev->inline_data_size) 283 return 0; 284 285 sg = c->inline_sg; 286 sg_init_table(sg, ndev->inline_page_count); 287 sge = &c->sge[1]; 288 len = ndev->inline_data_size; 289 290 for (i = 0; i < ndev->inline_page_count; i++, sg++, sge++) { 291 pg = alloc_page(GFP_KERNEL); 292 if (!pg) 293 goto out_err; 294 sg_assign_page(sg, pg); 295 sge->addr = ib_dma_map_page(ndev->device, 296 pg, 0, PAGE_SIZE, DMA_FROM_DEVICE); 297 if (ib_dma_mapping_error(ndev->device, sge->addr)) 298 goto out_err; 299 sge->length = min_t(int, len, PAGE_SIZE); 300 sge->lkey = ndev->pd->local_dma_lkey; 301 len -= sge->length; 302 } 303 304 return 0; 305 out_err: 306 for (; i >= 0; i--, sg--, sge--) { 307 if (sge->length) 308 ib_dma_unmap_page(ndev->device, sge->addr, 309 sge->length, DMA_FROM_DEVICE); 310 if (sg_page(sg)) 311 __free_page(sg_page(sg)); 312 } 313 return -ENOMEM; 314 } 315 316 static int nvmet_rdma_alloc_cmd(struct nvmet_rdma_device *ndev, 317 struct nvmet_rdma_cmd *c, bool admin) 318 { 319 /* NVMe command / RDMA RECV */ 320 c->nvme_cmd = kmalloc(sizeof(*c->nvme_cmd), GFP_KERNEL); 321 if (!c->nvme_cmd) 322 goto out; 323 324 c->sge[0].addr = ib_dma_map_single(ndev->device, c->nvme_cmd, 325 sizeof(*c->nvme_cmd), DMA_FROM_DEVICE); 326 if (ib_dma_mapping_error(ndev->device, c->sge[0].addr)) 327 goto out_free_cmd; 328 329 c->sge[0].length = sizeof(*c->nvme_cmd); 330 c->sge[0].lkey = ndev->pd->local_dma_lkey; 331 332 if (!admin && nvmet_rdma_alloc_inline_pages(ndev, c)) 333 goto out_unmap_cmd; 334 335 c->cqe.done = nvmet_rdma_recv_done; 336 337 c->wr.wr_cqe = &c->cqe; 338 c->wr.sg_list = c->sge; 339 c->wr.num_sge = admin ? 1 : ndev->inline_page_count + 1; 340 341 return 0; 342 343 out_unmap_cmd: 344 ib_dma_unmap_single(ndev->device, c->sge[0].addr, 345 sizeof(*c->nvme_cmd), DMA_FROM_DEVICE); 346 out_free_cmd: 347 kfree(c->nvme_cmd); 348 349 out: 350 return -ENOMEM; 351 } 352 353 static void nvmet_rdma_free_cmd(struct nvmet_rdma_device *ndev, 354 struct nvmet_rdma_cmd *c, bool admin) 355 { 356 if (!admin) 357 nvmet_rdma_free_inline_pages(ndev, c); 358 ib_dma_unmap_single(ndev->device, c->sge[0].addr, 359 sizeof(*c->nvme_cmd), DMA_FROM_DEVICE); 360 kfree(c->nvme_cmd); 361 } 362 363 static struct nvmet_rdma_cmd * 364 nvmet_rdma_alloc_cmds(struct nvmet_rdma_device *ndev, 365 int nr_cmds, bool admin) 366 { 367 struct nvmet_rdma_cmd *cmds; 368 int ret = -EINVAL, i; 369 370 cmds = kcalloc(nr_cmds, sizeof(struct nvmet_rdma_cmd), GFP_KERNEL); 371 if (!cmds) 372 goto out; 373 374 for (i = 0; i < nr_cmds; i++) { 375 ret = nvmet_rdma_alloc_cmd(ndev, cmds + i, admin); 376 if (ret) 377 goto out_free; 378 } 379 380 return cmds; 381 382 out_free: 383 while (--i >= 0) 384 nvmet_rdma_free_cmd(ndev, cmds + i, admin); 385 kfree(cmds); 386 out: 387 return ERR_PTR(ret); 388 } 389 390 static void nvmet_rdma_free_cmds(struct nvmet_rdma_device *ndev, 391 struct nvmet_rdma_cmd *cmds, int nr_cmds, bool admin) 392 { 393 int i; 394 395 for (i = 0; i < nr_cmds; i++) 396 nvmet_rdma_free_cmd(ndev, cmds + i, admin); 397 kfree(cmds); 398 } 399 400 static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device *ndev, 401 struct nvmet_rdma_rsp *r, int tag) 402 { 403 /* NVMe CQE / RDMA SEND */ 404 r->req.cqe = kmalloc(sizeof(*r->req.cqe), GFP_KERNEL); 405 if (!r->req.cqe) 406 goto out; 407 408 r->send_sge.addr = ib_dma_map_single(ndev->device, r->req.cqe, 409 sizeof(*r->req.cqe), DMA_TO_DEVICE); 410 if (ib_dma_mapping_error(ndev->device, r->send_sge.addr)) 411 goto out_free_rsp; 412 413 if (ib_dma_pci_p2p_dma_supported(ndev->device)) 414 r->req.p2p_client = &ndev->device->dev; 415 r->send_sge.length = sizeof(*r->req.cqe); 416 r->send_sge.lkey = ndev->pd->local_dma_lkey; 417 418 r->send_cqe.done = nvmet_rdma_send_done; 419 420 r->send_wr.wr_cqe = &r->send_cqe; 421 r->send_wr.sg_list = &r->send_sge; 422 r->send_wr.num_sge = 1; 423 r->send_wr.send_flags = IB_SEND_SIGNALED; 424 425 /* Data In / RDMA READ */ 426 r->read_cqe.done = nvmet_rdma_read_data_done; 427 /* Data Out / RDMA WRITE */ 428 r->write_cqe.done = nvmet_rdma_write_data_done; 429 r->tag = tag; 430 431 return 0; 432 433 out_free_rsp: 434 kfree(r->req.cqe); 435 out: 436 return -ENOMEM; 437 } 438 439 static void nvmet_rdma_free_rsp(struct nvmet_rdma_device *ndev, 440 struct nvmet_rdma_rsp *r) 441 { 442 ib_dma_unmap_single(ndev->device, r->send_sge.addr, 443 sizeof(*r->req.cqe), DMA_TO_DEVICE); 444 kfree(r->req.cqe); 445 } 446 447 static int 448 nvmet_rdma_alloc_rsps(struct nvmet_rdma_queue *queue) 449 { 450 struct nvmet_rdma_device *ndev = queue->dev; 451 int nr_rsps = queue->recv_queue_size * 2; 452 int ret = -ENOMEM, i; 453 454 if (sbitmap_init_node(&queue->rsp_tags, nr_rsps, -1, GFP_KERNEL, 455 NUMA_NO_NODE, false, true)) 456 goto out; 457 458 queue->rsps = kcalloc(nr_rsps, sizeof(struct nvmet_rdma_rsp), 459 GFP_KERNEL); 460 if (!queue->rsps) 461 goto out_free_sbitmap; 462 463 for (i = 0; i < nr_rsps; i++) { 464 struct nvmet_rdma_rsp *rsp = &queue->rsps[i]; 465 466 ret = nvmet_rdma_alloc_rsp(ndev, rsp, i); 467 if (ret) 468 goto out_free; 469 } 470 471 return 0; 472 473 out_free: 474 while (--i >= 0) 475 nvmet_rdma_free_rsp(ndev, &queue->rsps[i]); 476 kfree(queue->rsps); 477 out_free_sbitmap: 478 sbitmap_free(&queue->rsp_tags); 479 out: 480 return ret; 481 } 482 483 static void nvmet_rdma_free_rsps(struct nvmet_rdma_queue *queue) 484 { 485 struct nvmet_rdma_device *ndev = queue->dev; 486 int i, nr_rsps = queue->recv_queue_size * 2; 487 488 for (i = 0; i < nr_rsps; i++) 489 nvmet_rdma_free_rsp(ndev, &queue->rsps[i]); 490 kfree(queue->rsps); 491 sbitmap_free(&queue->rsp_tags); 492 } 493 494 static int nvmet_rdma_post_recv(struct nvmet_rdma_device *ndev, 495 struct nvmet_rdma_cmd *cmd) 496 { 497 int ret; 498 499 ib_dma_sync_single_for_device(ndev->device, 500 cmd->sge[0].addr, cmd->sge[0].length, 501 DMA_FROM_DEVICE); 502 503 if (cmd->nsrq) 504 ret = ib_post_srq_recv(cmd->nsrq->srq, &cmd->wr, NULL); 505 else 506 ret = ib_post_recv(cmd->queue->qp, &cmd->wr, NULL); 507 508 if (unlikely(ret)) 509 pr_err("post_recv cmd failed\n"); 510 511 return ret; 512 } 513 514 static void nvmet_rdma_process_wr_wait_list(struct nvmet_rdma_queue *queue) 515 { 516 spin_lock(&queue->rsp_wr_wait_lock); 517 while (!list_empty(&queue->rsp_wr_wait_list)) { 518 struct nvmet_rdma_rsp *rsp; 519 bool ret; 520 521 rsp = list_entry(queue->rsp_wr_wait_list.next, 522 struct nvmet_rdma_rsp, wait_list); 523 list_del(&rsp->wait_list); 524 525 spin_unlock(&queue->rsp_wr_wait_lock); 526 ret = nvmet_rdma_execute_command(rsp); 527 spin_lock(&queue->rsp_wr_wait_lock); 528 529 if (!ret) { 530 list_add(&rsp->wait_list, &queue->rsp_wr_wait_list); 531 break; 532 } 533 } 534 spin_unlock(&queue->rsp_wr_wait_lock); 535 } 536 537 static u16 nvmet_rdma_check_pi_status(struct ib_mr *sig_mr) 538 { 539 struct ib_mr_status mr_status; 540 int ret; 541 u16 status = 0; 542 543 ret = ib_check_mr_status(sig_mr, IB_MR_CHECK_SIG_STATUS, &mr_status); 544 if (ret) { 545 pr_err("ib_check_mr_status failed, ret %d\n", ret); 546 return NVME_SC_INVALID_PI; 547 } 548 549 if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) { 550 switch (mr_status.sig_err.err_type) { 551 case IB_SIG_BAD_GUARD: 552 status = NVME_SC_GUARD_CHECK; 553 break; 554 case IB_SIG_BAD_REFTAG: 555 status = NVME_SC_REFTAG_CHECK; 556 break; 557 case IB_SIG_BAD_APPTAG: 558 status = NVME_SC_APPTAG_CHECK; 559 break; 560 } 561 pr_err("PI error found type %d expected 0x%x vs actual 0x%x\n", 562 mr_status.sig_err.err_type, 563 mr_status.sig_err.expected, 564 mr_status.sig_err.actual); 565 } 566 567 return status; 568 } 569 570 static void nvmet_rdma_set_sig_domain(struct blk_integrity *bi, 571 struct nvme_command *cmd, struct ib_sig_domain *domain, 572 u16 control, u8 pi_type) 573 { 574 domain->sig_type = IB_SIG_TYPE_T10_DIF; 575 domain->sig.dif.bg_type = IB_T10DIF_CRC; 576 domain->sig.dif.pi_interval = 1 << bi->interval_exp; 577 domain->sig.dif.ref_tag = le32_to_cpu(cmd->rw.reftag); 578 if (control & NVME_RW_PRINFO_PRCHK_REF) 579 domain->sig.dif.ref_remap = true; 580 581 domain->sig.dif.app_tag = le16_to_cpu(cmd->rw.lbat); 582 domain->sig.dif.apptag_check_mask = le16_to_cpu(cmd->rw.lbatm); 583 domain->sig.dif.app_escape = true; 584 if (pi_type == NVME_NS_DPS_PI_TYPE3) 585 domain->sig.dif.ref_escape = true; 586 } 587 588 static void nvmet_rdma_set_sig_attrs(struct nvmet_req *req, 589 struct ib_sig_attrs *sig_attrs) 590 { 591 struct nvme_command *cmd = req->cmd; 592 u16 control = le16_to_cpu(cmd->rw.control); 593 u8 pi_type = req->ns->pi_type; 594 struct blk_integrity *bi; 595 596 bi = bdev_get_integrity(req->ns->bdev); 597 598 memset(sig_attrs, 0, sizeof(*sig_attrs)); 599 600 if (control & NVME_RW_PRINFO_PRACT) { 601 /* for WRITE_INSERT/READ_STRIP no wire domain */ 602 sig_attrs->wire.sig_type = IB_SIG_TYPE_NONE; 603 nvmet_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control, 604 pi_type); 605 /* Clear the PRACT bit since HCA will generate/verify the PI */ 606 control &= ~NVME_RW_PRINFO_PRACT; 607 cmd->rw.control = cpu_to_le16(control); 608 /* PI is added by the HW */ 609 req->transfer_len += req->metadata_len; 610 } else { 611 /* for WRITE_PASS/READ_PASS both wire/memory domains exist */ 612 nvmet_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control, 613 pi_type); 614 nvmet_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control, 615 pi_type); 616 } 617 618 if (control & NVME_RW_PRINFO_PRCHK_REF) 619 sig_attrs->check_mask |= IB_SIG_CHECK_REFTAG; 620 if (control & NVME_RW_PRINFO_PRCHK_GUARD) 621 sig_attrs->check_mask |= IB_SIG_CHECK_GUARD; 622 if (control & NVME_RW_PRINFO_PRCHK_APP) 623 sig_attrs->check_mask |= IB_SIG_CHECK_APPTAG; 624 } 625 626 static int nvmet_rdma_rw_ctx_init(struct nvmet_rdma_rsp *rsp, u64 addr, u32 key, 627 struct ib_sig_attrs *sig_attrs) 628 { 629 struct rdma_cm_id *cm_id = rsp->queue->cm_id; 630 struct nvmet_req *req = &rsp->req; 631 int ret; 632 633 if (req->metadata_len) 634 ret = rdma_rw_ctx_signature_init(&rsp->rw, cm_id->qp, 635 cm_id->port_num, req->sg, req->sg_cnt, 636 req->metadata_sg, req->metadata_sg_cnt, sig_attrs, 637 addr, key, nvmet_data_dir(req)); 638 else 639 ret = rdma_rw_ctx_init(&rsp->rw, cm_id->qp, cm_id->port_num, 640 req->sg, req->sg_cnt, 0, addr, key, 641 nvmet_data_dir(req)); 642 643 return ret; 644 } 645 646 static void nvmet_rdma_rw_ctx_destroy(struct nvmet_rdma_rsp *rsp) 647 { 648 struct rdma_cm_id *cm_id = rsp->queue->cm_id; 649 struct nvmet_req *req = &rsp->req; 650 651 if (req->metadata_len) 652 rdma_rw_ctx_destroy_signature(&rsp->rw, cm_id->qp, 653 cm_id->port_num, req->sg, req->sg_cnt, 654 req->metadata_sg, req->metadata_sg_cnt, 655 nvmet_data_dir(req)); 656 else 657 rdma_rw_ctx_destroy(&rsp->rw, cm_id->qp, cm_id->port_num, 658 req->sg, req->sg_cnt, nvmet_data_dir(req)); 659 } 660 661 static void nvmet_rdma_release_rsp(struct nvmet_rdma_rsp *rsp) 662 { 663 struct nvmet_rdma_queue *queue = rsp->queue; 664 665 atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail); 666 667 if (rsp->n_rdma) 668 nvmet_rdma_rw_ctx_destroy(rsp); 669 670 if (rsp->req.sg != rsp->cmd->inline_sg) 671 nvmet_req_free_sgls(&rsp->req); 672 673 if (unlikely(!list_empty_careful(&queue->rsp_wr_wait_list))) 674 nvmet_rdma_process_wr_wait_list(queue); 675 676 nvmet_rdma_put_rsp(rsp); 677 } 678 679 static void nvmet_rdma_error_comp(struct nvmet_rdma_queue *queue) 680 { 681 if (queue->nvme_sq.ctrl) { 682 nvmet_ctrl_fatal_error(queue->nvme_sq.ctrl); 683 } else { 684 /* 685 * we didn't setup the controller yet in case 686 * of admin connect error, just disconnect and 687 * cleanup the queue 688 */ 689 nvmet_rdma_queue_disconnect(queue); 690 } 691 } 692 693 static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc) 694 { 695 struct nvmet_rdma_rsp *rsp = 696 container_of(wc->wr_cqe, struct nvmet_rdma_rsp, send_cqe); 697 struct nvmet_rdma_queue *queue = wc->qp->qp_context; 698 699 nvmet_rdma_release_rsp(rsp); 700 701 if (unlikely(wc->status != IB_WC_SUCCESS && 702 wc->status != IB_WC_WR_FLUSH_ERR)) { 703 pr_err("SEND for CQE 0x%p failed with status %s (%d).\n", 704 wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status); 705 nvmet_rdma_error_comp(queue); 706 } 707 } 708 709 static void nvmet_rdma_queue_response(struct nvmet_req *req) 710 { 711 struct nvmet_rdma_rsp *rsp = 712 container_of(req, struct nvmet_rdma_rsp, req); 713 struct rdma_cm_id *cm_id = rsp->queue->cm_id; 714 struct ib_send_wr *first_wr; 715 716 if (rsp->invalidate_rkey) { 717 rsp->send_wr.opcode = IB_WR_SEND_WITH_INV; 718 rsp->send_wr.ex.invalidate_rkey = rsp->invalidate_rkey; 719 } else { 720 rsp->send_wr.opcode = IB_WR_SEND; 721 } 722 723 if (nvmet_rdma_need_data_out(rsp)) { 724 if (rsp->req.metadata_len) 725 first_wr = rdma_rw_ctx_wrs(&rsp->rw, cm_id->qp, 726 cm_id->port_num, &rsp->write_cqe, NULL); 727 else 728 first_wr = rdma_rw_ctx_wrs(&rsp->rw, cm_id->qp, 729 cm_id->port_num, NULL, &rsp->send_wr); 730 } else { 731 first_wr = &rsp->send_wr; 732 } 733 734 nvmet_rdma_post_recv(rsp->queue->dev, rsp->cmd); 735 736 ib_dma_sync_single_for_device(rsp->queue->dev->device, 737 rsp->send_sge.addr, rsp->send_sge.length, 738 DMA_TO_DEVICE); 739 740 if (unlikely(ib_post_send(cm_id->qp, first_wr, NULL))) { 741 pr_err("sending cmd response failed\n"); 742 nvmet_rdma_release_rsp(rsp); 743 } 744 } 745 746 static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc) 747 { 748 struct nvmet_rdma_rsp *rsp = 749 container_of(wc->wr_cqe, struct nvmet_rdma_rsp, read_cqe); 750 struct nvmet_rdma_queue *queue = wc->qp->qp_context; 751 u16 status = 0; 752 753 WARN_ON(rsp->n_rdma <= 0); 754 atomic_add(rsp->n_rdma, &queue->sq_wr_avail); 755 rsp->n_rdma = 0; 756 757 if (unlikely(wc->status != IB_WC_SUCCESS)) { 758 nvmet_rdma_rw_ctx_destroy(rsp); 759 nvmet_req_uninit(&rsp->req); 760 nvmet_rdma_release_rsp(rsp); 761 if (wc->status != IB_WC_WR_FLUSH_ERR) { 762 pr_info("RDMA READ for CQE 0x%p failed with status %s (%d).\n", 763 wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status); 764 nvmet_rdma_error_comp(queue); 765 } 766 return; 767 } 768 769 if (rsp->req.metadata_len) 770 status = nvmet_rdma_check_pi_status(rsp->rw.reg->mr); 771 nvmet_rdma_rw_ctx_destroy(rsp); 772 773 if (unlikely(status)) 774 nvmet_req_complete(&rsp->req, status); 775 else 776 rsp->req.execute(&rsp->req); 777 } 778 779 static void nvmet_rdma_write_data_done(struct ib_cq *cq, struct ib_wc *wc) 780 { 781 struct nvmet_rdma_rsp *rsp = 782 container_of(wc->wr_cqe, struct nvmet_rdma_rsp, write_cqe); 783 struct nvmet_rdma_queue *queue = wc->qp->qp_context; 784 struct rdma_cm_id *cm_id = rsp->queue->cm_id; 785 u16 status; 786 787 if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY)) 788 return; 789 790 WARN_ON(rsp->n_rdma <= 0); 791 atomic_add(rsp->n_rdma, &queue->sq_wr_avail); 792 rsp->n_rdma = 0; 793 794 if (unlikely(wc->status != IB_WC_SUCCESS)) { 795 nvmet_rdma_rw_ctx_destroy(rsp); 796 nvmet_req_uninit(&rsp->req); 797 nvmet_rdma_release_rsp(rsp); 798 if (wc->status != IB_WC_WR_FLUSH_ERR) { 799 pr_info("RDMA WRITE for CQE failed with status %s (%d).\n", 800 ib_wc_status_msg(wc->status), wc->status); 801 nvmet_rdma_error_comp(queue); 802 } 803 return; 804 } 805 806 /* 807 * Upon RDMA completion check the signature status 808 * - if succeeded send good NVMe response 809 * - if failed send bad NVMe response with appropriate error 810 */ 811 status = nvmet_rdma_check_pi_status(rsp->rw.reg->mr); 812 if (unlikely(status)) 813 rsp->req.cqe->status = cpu_to_le16(status << 1); 814 nvmet_rdma_rw_ctx_destroy(rsp); 815 816 if (unlikely(ib_post_send(cm_id->qp, &rsp->send_wr, NULL))) { 817 pr_err("sending cmd response failed\n"); 818 nvmet_rdma_release_rsp(rsp); 819 } 820 } 821 822 static void nvmet_rdma_use_inline_sg(struct nvmet_rdma_rsp *rsp, u32 len, 823 u64 off) 824 { 825 int sg_count = num_pages(len); 826 struct scatterlist *sg; 827 int i; 828 829 sg = rsp->cmd->inline_sg; 830 for (i = 0; i < sg_count; i++, sg++) { 831 if (i < sg_count - 1) 832 sg_unmark_end(sg); 833 else 834 sg_mark_end(sg); 835 sg->offset = off; 836 sg->length = min_t(int, len, PAGE_SIZE - off); 837 len -= sg->length; 838 if (!i) 839 off = 0; 840 } 841 842 rsp->req.sg = rsp->cmd->inline_sg; 843 rsp->req.sg_cnt = sg_count; 844 } 845 846 static u16 nvmet_rdma_map_sgl_inline(struct nvmet_rdma_rsp *rsp) 847 { 848 struct nvme_sgl_desc *sgl = &rsp->req.cmd->common.dptr.sgl; 849 u64 off = le64_to_cpu(sgl->addr); 850 u32 len = le32_to_cpu(sgl->length); 851 852 if (!nvme_is_write(rsp->req.cmd)) { 853 rsp->req.error_loc = 854 offsetof(struct nvme_common_command, opcode); 855 return NVME_SC_INVALID_FIELD | NVME_STATUS_DNR; 856 } 857 858 if (off + len > rsp->queue->dev->inline_data_size) { 859 pr_err("invalid inline data offset!\n"); 860 return NVME_SC_SGL_INVALID_OFFSET | NVME_STATUS_DNR; 861 } 862 863 /* no data command? */ 864 if (!len) 865 return 0; 866 867 nvmet_rdma_use_inline_sg(rsp, len, off); 868 rsp->flags |= NVMET_RDMA_REQ_INLINE_DATA; 869 rsp->req.transfer_len += len; 870 return 0; 871 } 872 873 static u16 nvmet_rdma_map_sgl_keyed(struct nvmet_rdma_rsp *rsp, 874 struct nvme_keyed_sgl_desc *sgl, bool invalidate) 875 { 876 u64 addr = le64_to_cpu(sgl->addr); 877 u32 key = get_unaligned_le32(sgl->key); 878 struct ib_sig_attrs sig_attrs; 879 int ret; 880 881 rsp->req.transfer_len = get_unaligned_le24(sgl->length); 882 883 /* no data command? */ 884 if (!rsp->req.transfer_len) 885 return 0; 886 887 if (rsp->req.metadata_len) 888 nvmet_rdma_set_sig_attrs(&rsp->req, &sig_attrs); 889 890 ret = nvmet_req_alloc_sgls(&rsp->req); 891 if (unlikely(ret < 0)) 892 goto error_out; 893 894 ret = nvmet_rdma_rw_ctx_init(rsp, addr, key, &sig_attrs); 895 if (unlikely(ret < 0)) 896 goto error_out; 897 rsp->n_rdma += ret; 898 899 if (invalidate) 900 rsp->invalidate_rkey = key; 901 902 return 0; 903 904 error_out: 905 rsp->req.transfer_len = 0; 906 return NVME_SC_INTERNAL; 907 } 908 909 static u16 nvmet_rdma_map_sgl(struct nvmet_rdma_rsp *rsp) 910 { 911 struct nvme_keyed_sgl_desc *sgl = &rsp->req.cmd->common.dptr.ksgl; 912 913 switch (sgl->type >> 4) { 914 case NVME_SGL_FMT_DATA_DESC: 915 switch (sgl->type & 0xf) { 916 case NVME_SGL_FMT_OFFSET: 917 return nvmet_rdma_map_sgl_inline(rsp); 918 default: 919 pr_err("invalid SGL subtype: %#x\n", sgl->type); 920 rsp->req.error_loc = 921 offsetof(struct nvme_common_command, dptr); 922 return NVME_SC_INVALID_FIELD | NVME_STATUS_DNR; 923 } 924 case NVME_KEY_SGL_FMT_DATA_DESC: 925 switch (sgl->type & 0xf) { 926 case NVME_SGL_FMT_ADDRESS | NVME_SGL_FMT_INVALIDATE: 927 return nvmet_rdma_map_sgl_keyed(rsp, sgl, true); 928 case NVME_SGL_FMT_ADDRESS: 929 return nvmet_rdma_map_sgl_keyed(rsp, sgl, false); 930 default: 931 pr_err("invalid SGL subtype: %#x\n", sgl->type); 932 rsp->req.error_loc = 933 offsetof(struct nvme_common_command, dptr); 934 return NVME_SC_INVALID_FIELD | NVME_STATUS_DNR; 935 } 936 default: 937 pr_err("invalid SGL type: %#x\n", sgl->type); 938 rsp->req.error_loc = offsetof(struct nvme_common_command, dptr); 939 return NVME_SC_SGL_INVALID_TYPE | NVME_STATUS_DNR; 940 } 941 } 942 943 static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp) 944 { 945 struct nvmet_rdma_queue *queue = rsp->queue; 946 947 if (unlikely(atomic_sub_return(1 + rsp->n_rdma, 948 &queue->sq_wr_avail) < 0)) { 949 pr_debug("IB send queue full (needed %d): queue %u cntlid %u\n", 950 1 + rsp->n_rdma, queue->idx, 951 queue->nvme_sq.ctrl->cntlid); 952 atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail); 953 return false; 954 } 955 956 if (nvmet_rdma_need_data_in(rsp)) { 957 if (rdma_rw_ctx_post(&rsp->rw, queue->qp, 958 queue->cm_id->port_num, &rsp->read_cqe, NULL)) 959 nvmet_req_complete(&rsp->req, NVME_SC_DATA_XFER_ERROR); 960 } else { 961 rsp->req.execute(&rsp->req); 962 } 963 964 return true; 965 } 966 967 static void nvmet_rdma_handle_command(struct nvmet_rdma_queue *queue, 968 struct nvmet_rdma_rsp *cmd) 969 { 970 u16 status; 971 972 ib_dma_sync_single_for_cpu(queue->dev->device, 973 cmd->cmd->sge[0].addr, cmd->cmd->sge[0].length, 974 DMA_FROM_DEVICE); 975 ib_dma_sync_single_for_cpu(queue->dev->device, 976 cmd->send_sge.addr, cmd->send_sge.length, 977 DMA_TO_DEVICE); 978 979 if (!nvmet_req_init(&cmd->req, &queue->nvme_cq, 980 &queue->nvme_sq, &nvmet_rdma_ops)) 981 return; 982 983 status = nvmet_rdma_map_sgl(cmd); 984 if (status) 985 goto out_err; 986 987 if (unlikely(!nvmet_rdma_execute_command(cmd))) { 988 spin_lock(&queue->rsp_wr_wait_lock); 989 list_add_tail(&cmd->wait_list, &queue->rsp_wr_wait_list); 990 spin_unlock(&queue->rsp_wr_wait_lock); 991 } 992 993 return; 994 995 out_err: 996 nvmet_req_complete(&cmd->req, status); 997 } 998 999 static bool nvmet_rdma_recv_not_live(struct nvmet_rdma_queue *queue, 1000 struct nvmet_rdma_rsp *rsp) 1001 { 1002 unsigned long flags; 1003 bool ret = true; 1004 1005 spin_lock_irqsave(&queue->state_lock, flags); 1006 /* 1007 * recheck queue state is not live to prevent a race condition 1008 * with RDMA_CM_EVENT_ESTABLISHED handler. 1009 */ 1010 if (queue->state == NVMET_RDMA_Q_LIVE) 1011 ret = false; 1012 else if (queue->state == NVMET_RDMA_Q_CONNECTING) 1013 list_add_tail(&rsp->wait_list, &queue->rsp_wait_list); 1014 else 1015 nvmet_rdma_put_rsp(rsp); 1016 spin_unlock_irqrestore(&queue->state_lock, flags); 1017 return ret; 1018 } 1019 1020 static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc) 1021 { 1022 struct nvmet_rdma_cmd *cmd = 1023 container_of(wc->wr_cqe, struct nvmet_rdma_cmd, cqe); 1024 struct nvmet_rdma_queue *queue = wc->qp->qp_context; 1025 struct nvmet_rdma_rsp *rsp; 1026 1027 if (unlikely(wc->status != IB_WC_SUCCESS)) { 1028 if (wc->status != IB_WC_WR_FLUSH_ERR) { 1029 pr_err("RECV for CQE 0x%p failed with status %s (%d)\n", 1030 wc->wr_cqe, ib_wc_status_msg(wc->status), 1031 wc->status); 1032 nvmet_rdma_error_comp(queue); 1033 } 1034 return; 1035 } 1036 1037 if (unlikely(wc->byte_len < sizeof(struct nvme_command))) { 1038 pr_err("Ctrl Fatal Error: capsule size less than 64 bytes\n"); 1039 nvmet_rdma_error_comp(queue); 1040 return; 1041 } 1042 1043 cmd->queue = queue; 1044 rsp = nvmet_rdma_get_rsp(queue); 1045 if (unlikely(!rsp)) { 1046 /* 1047 * we get here only under memory pressure, 1048 * silently drop and have the host retry 1049 * as we can't even fail it. 1050 */ 1051 nvmet_rdma_post_recv(queue->dev, cmd); 1052 return; 1053 } 1054 rsp->queue = queue; 1055 rsp->cmd = cmd; 1056 rsp->flags = 0; 1057 rsp->req.cmd = cmd->nvme_cmd; 1058 rsp->req.port = queue->port; 1059 rsp->n_rdma = 0; 1060 rsp->invalidate_rkey = 0; 1061 1062 if (unlikely(queue->state != NVMET_RDMA_Q_LIVE) && 1063 nvmet_rdma_recv_not_live(queue, rsp)) 1064 return; 1065 1066 nvmet_rdma_handle_command(queue, rsp); 1067 } 1068 1069 static void nvmet_rdma_destroy_srq(struct nvmet_rdma_srq *nsrq) 1070 { 1071 nvmet_rdma_free_cmds(nsrq->ndev, nsrq->cmds, nsrq->ndev->srq_size, 1072 false); 1073 ib_destroy_srq(nsrq->srq); 1074 1075 kfree(nsrq); 1076 } 1077 1078 static void nvmet_rdma_destroy_srqs(struct nvmet_rdma_device *ndev) 1079 { 1080 int i; 1081 1082 if (!ndev->srqs) 1083 return; 1084 1085 for (i = 0; i < ndev->srq_count; i++) 1086 nvmet_rdma_destroy_srq(ndev->srqs[i]); 1087 1088 kfree(ndev->srqs); 1089 } 1090 1091 static struct nvmet_rdma_srq * 1092 nvmet_rdma_init_srq(struct nvmet_rdma_device *ndev) 1093 { 1094 struct ib_srq_init_attr srq_attr = { NULL, }; 1095 size_t srq_size = ndev->srq_size; 1096 struct nvmet_rdma_srq *nsrq; 1097 struct ib_srq *srq; 1098 int ret, i; 1099 1100 nsrq = kzalloc(sizeof(*nsrq), GFP_KERNEL); 1101 if (!nsrq) 1102 return ERR_PTR(-ENOMEM); 1103 1104 srq_attr.attr.max_wr = srq_size; 1105 srq_attr.attr.max_sge = 1 + ndev->inline_page_count; 1106 srq_attr.attr.srq_limit = 0; 1107 srq_attr.srq_type = IB_SRQT_BASIC; 1108 srq = ib_create_srq(ndev->pd, &srq_attr); 1109 if (IS_ERR(srq)) { 1110 ret = PTR_ERR(srq); 1111 goto out_free; 1112 } 1113 1114 nsrq->cmds = nvmet_rdma_alloc_cmds(ndev, srq_size, false); 1115 if (IS_ERR(nsrq->cmds)) { 1116 ret = PTR_ERR(nsrq->cmds); 1117 goto out_destroy_srq; 1118 } 1119 1120 nsrq->srq = srq; 1121 nsrq->ndev = ndev; 1122 1123 for (i = 0; i < srq_size; i++) { 1124 nsrq->cmds[i].nsrq = nsrq; 1125 ret = nvmet_rdma_post_recv(ndev, &nsrq->cmds[i]); 1126 if (ret) 1127 goto out_free_cmds; 1128 } 1129 1130 return nsrq; 1131 1132 out_free_cmds: 1133 nvmet_rdma_free_cmds(ndev, nsrq->cmds, srq_size, false); 1134 out_destroy_srq: 1135 ib_destroy_srq(srq); 1136 out_free: 1137 kfree(nsrq); 1138 return ERR_PTR(ret); 1139 } 1140 1141 static int nvmet_rdma_init_srqs(struct nvmet_rdma_device *ndev) 1142 { 1143 int i, ret; 1144 1145 if (!ndev->device->attrs.max_srq_wr || !ndev->device->attrs.max_srq) { 1146 /* 1147 * If SRQs aren't supported we just go ahead and use normal 1148 * non-shared receive queues. 1149 */ 1150 pr_info("SRQ requested but not supported.\n"); 1151 return 0; 1152 } 1153 1154 ndev->srq_size = min(ndev->device->attrs.max_srq_wr, 1155 nvmet_rdma_srq_size); 1156 ndev->srq_count = min(ndev->device->num_comp_vectors, 1157 ndev->device->attrs.max_srq); 1158 1159 ndev->srqs = kcalloc(ndev->srq_count, sizeof(*ndev->srqs), GFP_KERNEL); 1160 if (!ndev->srqs) 1161 return -ENOMEM; 1162 1163 for (i = 0; i < ndev->srq_count; i++) { 1164 ndev->srqs[i] = nvmet_rdma_init_srq(ndev); 1165 if (IS_ERR(ndev->srqs[i])) { 1166 ret = PTR_ERR(ndev->srqs[i]); 1167 goto err_srq; 1168 } 1169 } 1170 1171 return 0; 1172 1173 err_srq: 1174 while (--i >= 0) 1175 nvmet_rdma_destroy_srq(ndev->srqs[i]); 1176 kfree(ndev->srqs); 1177 return ret; 1178 } 1179 1180 static void nvmet_rdma_free_dev(struct kref *ref) 1181 { 1182 struct nvmet_rdma_device *ndev = 1183 container_of(ref, struct nvmet_rdma_device, ref); 1184 1185 mutex_lock(&device_list_mutex); 1186 list_del(&ndev->entry); 1187 mutex_unlock(&device_list_mutex); 1188 1189 nvmet_rdma_destroy_srqs(ndev); 1190 ib_dealloc_pd(ndev->pd); 1191 1192 kfree(ndev); 1193 } 1194 1195 static struct nvmet_rdma_device * 1196 nvmet_rdma_find_get_device(struct rdma_cm_id *cm_id) 1197 { 1198 struct nvmet_rdma_port *port = cm_id->context; 1199 struct nvmet_port *nport = port->nport; 1200 struct nvmet_rdma_device *ndev; 1201 int inline_page_count; 1202 int inline_sge_count; 1203 int ret; 1204 1205 mutex_lock(&device_list_mutex); 1206 list_for_each_entry(ndev, &device_list, entry) { 1207 if (ndev->device->node_guid == cm_id->device->node_guid && 1208 kref_get_unless_zero(&ndev->ref)) 1209 goto out_unlock; 1210 } 1211 1212 ndev = kzalloc(sizeof(*ndev), GFP_KERNEL); 1213 if (!ndev) 1214 goto out_err; 1215 1216 inline_page_count = num_pages(nport->inline_data_size); 1217 inline_sge_count = max(cm_id->device->attrs.max_sge_rd, 1218 cm_id->device->attrs.max_recv_sge) - 1; 1219 if (inline_page_count > inline_sge_count) { 1220 pr_warn("inline_data_size %d cannot be supported by device %s. Reducing to %lu.\n", 1221 nport->inline_data_size, cm_id->device->name, 1222 inline_sge_count * PAGE_SIZE); 1223 nport->inline_data_size = inline_sge_count * PAGE_SIZE; 1224 inline_page_count = inline_sge_count; 1225 } 1226 ndev->inline_data_size = nport->inline_data_size; 1227 ndev->inline_page_count = inline_page_count; 1228 1229 if (nport->pi_enable && !(cm_id->device->attrs.kernel_cap_flags & 1230 IBK_INTEGRITY_HANDOVER)) { 1231 pr_warn("T10-PI is not supported by device %s. Disabling it\n", 1232 cm_id->device->name); 1233 nport->pi_enable = false; 1234 } 1235 1236 ndev->device = cm_id->device; 1237 kref_init(&ndev->ref); 1238 1239 ndev->pd = ib_alloc_pd(ndev->device, 0); 1240 if (IS_ERR(ndev->pd)) 1241 goto out_free_dev; 1242 1243 if (nvmet_rdma_use_srq) { 1244 ret = nvmet_rdma_init_srqs(ndev); 1245 if (ret) 1246 goto out_free_pd; 1247 } 1248 1249 list_add(&ndev->entry, &device_list); 1250 out_unlock: 1251 mutex_unlock(&device_list_mutex); 1252 pr_debug("added %s.\n", ndev->device->name); 1253 return ndev; 1254 1255 out_free_pd: 1256 ib_dealloc_pd(ndev->pd); 1257 out_free_dev: 1258 kfree(ndev); 1259 out_err: 1260 mutex_unlock(&device_list_mutex); 1261 return NULL; 1262 } 1263 1264 static int nvmet_rdma_create_queue_ib(struct nvmet_rdma_queue *queue) 1265 { 1266 struct ib_qp_init_attr qp_attr = { }; 1267 struct nvmet_rdma_device *ndev = queue->dev; 1268 int nr_cqe, ret, i, factor; 1269 1270 /* 1271 * Reserve CQ slots for RECV + RDMA_READ/RDMA_WRITE + RDMA_SEND. 1272 */ 1273 nr_cqe = queue->recv_queue_size + 2 * queue->send_queue_size; 1274 1275 queue->cq = ib_cq_pool_get(ndev->device, nr_cqe + 1, 1276 queue->comp_vector, IB_POLL_WORKQUEUE); 1277 if (IS_ERR(queue->cq)) { 1278 ret = PTR_ERR(queue->cq); 1279 pr_err("failed to create CQ cqe= %d ret= %d\n", 1280 nr_cqe + 1, ret); 1281 goto out; 1282 } 1283 1284 qp_attr.qp_context = queue; 1285 qp_attr.event_handler = nvmet_rdma_qp_event; 1286 qp_attr.send_cq = queue->cq; 1287 qp_attr.recv_cq = queue->cq; 1288 qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR; 1289 qp_attr.qp_type = IB_QPT_RC; 1290 /* +1 for drain */ 1291 qp_attr.cap.max_send_wr = queue->send_queue_size + 1; 1292 factor = rdma_rw_mr_factor(ndev->device, queue->cm_id->port_num, 1293 1 << NVMET_RDMA_MAX_MDTS); 1294 qp_attr.cap.max_rdma_ctxs = queue->send_queue_size * factor; 1295 qp_attr.cap.max_send_sge = max(ndev->device->attrs.max_sge_rd, 1296 ndev->device->attrs.max_send_sge); 1297 1298 if (queue->nsrq) { 1299 qp_attr.srq = queue->nsrq->srq; 1300 } else { 1301 /* +1 for drain */ 1302 qp_attr.cap.max_recv_wr = 1 + queue->recv_queue_size; 1303 qp_attr.cap.max_recv_sge = 1 + ndev->inline_page_count; 1304 } 1305 1306 if (queue->port->pi_enable && queue->host_qid) 1307 qp_attr.create_flags |= IB_QP_CREATE_INTEGRITY_EN; 1308 1309 ret = rdma_create_qp(queue->cm_id, ndev->pd, &qp_attr); 1310 if (ret) { 1311 pr_err("failed to create_qp ret= %d\n", ret); 1312 goto err_destroy_cq; 1313 } 1314 queue->qp = queue->cm_id->qp; 1315 1316 atomic_set(&queue->sq_wr_avail, qp_attr.cap.max_send_wr); 1317 1318 pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n", 1319 __func__, queue->cq->cqe, qp_attr.cap.max_send_sge, 1320 qp_attr.cap.max_send_wr, queue->cm_id); 1321 1322 if (!queue->nsrq) { 1323 for (i = 0; i < queue->recv_queue_size; i++) { 1324 queue->cmds[i].queue = queue; 1325 ret = nvmet_rdma_post_recv(ndev, &queue->cmds[i]); 1326 if (ret) 1327 goto err_destroy_qp; 1328 } 1329 } 1330 1331 out: 1332 return ret; 1333 1334 err_destroy_qp: 1335 rdma_destroy_qp(queue->cm_id); 1336 err_destroy_cq: 1337 ib_cq_pool_put(queue->cq, nr_cqe + 1); 1338 goto out; 1339 } 1340 1341 static void nvmet_rdma_destroy_queue_ib(struct nvmet_rdma_queue *queue) 1342 { 1343 ib_drain_qp(queue->qp); 1344 if (queue->cm_id) 1345 rdma_destroy_id(queue->cm_id); 1346 ib_destroy_qp(queue->qp); 1347 ib_cq_pool_put(queue->cq, queue->recv_queue_size + 2 * 1348 queue->send_queue_size + 1); 1349 } 1350 1351 static void nvmet_rdma_free_queue(struct nvmet_rdma_queue *queue) 1352 { 1353 pr_debug("freeing queue %d\n", queue->idx); 1354 1355 nvmet_sq_destroy(&queue->nvme_sq); 1356 1357 nvmet_rdma_destroy_queue_ib(queue); 1358 if (!queue->nsrq) { 1359 nvmet_rdma_free_cmds(queue->dev, queue->cmds, 1360 queue->recv_queue_size, 1361 !queue->host_qid); 1362 } 1363 nvmet_rdma_free_rsps(queue); 1364 ida_free(&nvmet_rdma_queue_ida, queue->idx); 1365 kfree(queue); 1366 } 1367 1368 static void nvmet_rdma_release_queue_work(struct work_struct *w) 1369 { 1370 struct nvmet_rdma_queue *queue = 1371 container_of(w, struct nvmet_rdma_queue, release_work); 1372 struct nvmet_rdma_device *dev = queue->dev; 1373 1374 nvmet_rdma_free_queue(queue); 1375 1376 kref_put(&dev->ref, nvmet_rdma_free_dev); 1377 } 1378 1379 static int 1380 nvmet_rdma_parse_cm_connect_req(struct rdma_conn_param *conn, 1381 struct nvmet_rdma_queue *queue) 1382 { 1383 struct nvme_rdma_cm_req *req; 1384 1385 req = (struct nvme_rdma_cm_req *)conn->private_data; 1386 if (!req || conn->private_data_len == 0) 1387 return NVME_RDMA_CM_INVALID_LEN; 1388 1389 if (le16_to_cpu(req->recfmt) != NVME_RDMA_CM_FMT_1_0) 1390 return NVME_RDMA_CM_INVALID_RECFMT; 1391 1392 queue->host_qid = le16_to_cpu(req->qid); 1393 1394 /* 1395 * req->hsqsize corresponds to our recv queue size plus 1 1396 * req->hrqsize corresponds to our send queue size 1397 */ 1398 queue->recv_queue_size = le16_to_cpu(req->hsqsize) + 1; 1399 queue->send_queue_size = le16_to_cpu(req->hrqsize); 1400 1401 if (!queue->host_qid && queue->recv_queue_size > NVME_AQ_DEPTH) 1402 return NVME_RDMA_CM_INVALID_HSQSIZE; 1403 1404 /* XXX: Should we enforce some kind of max for IO queues? */ 1405 1406 return 0; 1407 } 1408 1409 static int nvmet_rdma_cm_reject(struct rdma_cm_id *cm_id, 1410 enum nvme_rdma_cm_status status) 1411 { 1412 struct nvme_rdma_cm_rej rej; 1413 1414 pr_debug("rejecting connect request: status %d (%s)\n", 1415 status, nvme_rdma_cm_msg(status)); 1416 1417 rej.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0); 1418 rej.sts = cpu_to_le16(status); 1419 1420 return rdma_reject(cm_id, (void *)&rej, sizeof(rej), 1421 IB_CM_REJ_CONSUMER_DEFINED); 1422 } 1423 1424 static struct nvmet_rdma_queue * 1425 nvmet_rdma_alloc_queue(struct nvmet_rdma_device *ndev, 1426 struct rdma_cm_id *cm_id, 1427 struct rdma_cm_event *event) 1428 { 1429 struct nvmet_rdma_port *port = cm_id->context; 1430 struct nvmet_rdma_queue *queue; 1431 int ret; 1432 1433 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 1434 if (!queue) { 1435 ret = NVME_RDMA_CM_NO_RSC; 1436 goto out_reject; 1437 } 1438 1439 ret = nvmet_sq_init(&queue->nvme_sq); 1440 if (ret) { 1441 ret = NVME_RDMA_CM_NO_RSC; 1442 goto out_free_queue; 1443 } 1444 1445 ret = nvmet_rdma_parse_cm_connect_req(&event->param.conn, queue); 1446 if (ret) 1447 goto out_destroy_sq; 1448 1449 /* 1450 * Schedules the actual release because calling rdma_destroy_id from 1451 * inside a CM callback would trigger a deadlock. (great API design..) 1452 */ 1453 INIT_WORK(&queue->release_work, nvmet_rdma_release_queue_work); 1454 queue->dev = ndev; 1455 queue->cm_id = cm_id; 1456 queue->port = port->nport; 1457 1458 spin_lock_init(&queue->state_lock); 1459 queue->state = NVMET_RDMA_Q_CONNECTING; 1460 INIT_LIST_HEAD(&queue->rsp_wait_list); 1461 INIT_LIST_HEAD(&queue->rsp_wr_wait_list); 1462 spin_lock_init(&queue->rsp_wr_wait_lock); 1463 INIT_LIST_HEAD(&queue->queue_list); 1464 1465 queue->idx = ida_alloc(&nvmet_rdma_queue_ida, GFP_KERNEL); 1466 if (queue->idx < 0) { 1467 ret = NVME_RDMA_CM_NO_RSC; 1468 goto out_destroy_sq; 1469 } 1470 1471 /* 1472 * Spread the io queues across completion vectors, 1473 * but still keep all admin queues on vector 0. 1474 */ 1475 queue->comp_vector = !queue->host_qid ? 0 : 1476 queue->idx % ndev->device->num_comp_vectors; 1477 1478 1479 ret = nvmet_rdma_alloc_rsps(queue); 1480 if (ret) { 1481 ret = NVME_RDMA_CM_NO_RSC; 1482 goto out_ida_remove; 1483 } 1484 1485 if (ndev->srqs) { 1486 queue->nsrq = ndev->srqs[queue->comp_vector % ndev->srq_count]; 1487 } else { 1488 queue->cmds = nvmet_rdma_alloc_cmds(ndev, 1489 queue->recv_queue_size, 1490 !queue->host_qid); 1491 if (IS_ERR(queue->cmds)) { 1492 ret = NVME_RDMA_CM_NO_RSC; 1493 goto out_free_responses; 1494 } 1495 } 1496 1497 ret = nvmet_rdma_create_queue_ib(queue); 1498 if (ret) { 1499 pr_err("%s: creating RDMA queue failed (%d).\n", 1500 __func__, ret); 1501 ret = NVME_RDMA_CM_NO_RSC; 1502 goto out_free_cmds; 1503 } 1504 1505 return queue; 1506 1507 out_free_cmds: 1508 if (!queue->nsrq) { 1509 nvmet_rdma_free_cmds(queue->dev, queue->cmds, 1510 queue->recv_queue_size, 1511 !queue->host_qid); 1512 } 1513 out_free_responses: 1514 nvmet_rdma_free_rsps(queue); 1515 out_ida_remove: 1516 ida_free(&nvmet_rdma_queue_ida, queue->idx); 1517 out_destroy_sq: 1518 nvmet_sq_destroy(&queue->nvme_sq); 1519 out_free_queue: 1520 kfree(queue); 1521 out_reject: 1522 nvmet_rdma_cm_reject(cm_id, ret); 1523 return NULL; 1524 } 1525 1526 static void nvmet_rdma_qp_event(struct ib_event *event, void *priv) 1527 { 1528 struct nvmet_rdma_queue *queue = priv; 1529 1530 switch (event->event) { 1531 case IB_EVENT_COMM_EST: 1532 rdma_notify(queue->cm_id, event->event); 1533 break; 1534 case IB_EVENT_QP_LAST_WQE_REACHED: 1535 pr_debug("received last WQE reached event for queue=0x%p\n", 1536 queue); 1537 break; 1538 default: 1539 pr_err("received IB QP event: %s (%d)\n", 1540 ib_event_msg(event->event), event->event); 1541 break; 1542 } 1543 } 1544 1545 static int nvmet_rdma_cm_accept(struct rdma_cm_id *cm_id, 1546 struct nvmet_rdma_queue *queue, 1547 struct rdma_conn_param *p) 1548 { 1549 struct rdma_conn_param param = { }; 1550 struct nvme_rdma_cm_rep priv = { }; 1551 int ret = -ENOMEM; 1552 1553 param.rnr_retry_count = 7; 1554 param.flow_control = 1; 1555 param.initiator_depth = min_t(u8, p->initiator_depth, 1556 queue->dev->device->attrs.max_qp_init_rd_atom); 1557 param.private_data = &priv; 1558 param.private_data_len = sizeof(priv); 1559 priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0); 1560 priv.crqsize = cpu_to_le16(queue->recv_queue_size); 1561 1562 ret = rdma_accept(cm_id, ¶m); 1563 if (ret) 1564 pr_err("rdma_accept failed (error code = %d)\n", ret); 1565 1566 return ret; 1567 } 1568 1569 static int nvmet_rdma_queue_connect(struct rdma_cm_id *cm_id, 1570 struct rdma_cm_event *event) 1571 { 1572 struct nvmet_rdma_device *ndev; 1573 struct nvmet_rdma_queue *queue; 1574 int ret = -EINVAL; 1575 1576 ndev = nvmet_rdma_find_get_device(cm_id); 1577 if (!ndev) { 1578 nvmet_rdma_cm_reject(cm_id, NVME_RDMA_CM_NO_RSC); 1579 return -ECONNREFUSED; 1580 } 1581 1582 queue = nvmet_rdma_alloc_queue(ndev, cm_id, event); 1583 if (!queue) { 1584 ret = -ENOMEM; 1585 goto put_device; 1586 } 1587 1588 if (queue->host_qid == 0) { 1589 struct nvmet_rdma_queue *q; 1590 int pending = 0; 1591 1592 /* Check for pending controller teardown */ 1593 mutex_lock(&nvmet_rdma_queue_mutex); 1594 list_for_each_entry(q, &nvmet_rdma_queue_list, queue_list) { 1595 if (q->nvme_sq.ctrl == queue->nvme_sq.ctrl && 1596 q->state == NVMET_RDMA_Q_DISCONNECTING) 1597 pending++; 1598 } 1599 mutex_unlock(&nvmet_rdma_queue_mutex); 1600 if (pending > NVMET_RDMA_BACKLOG) 1601 return NVME_SC_CONNECT_CTRL_BUSY; 1602 } 1603 1604 ret = nvmet_rdma_cm_accept(cm_id, queue, &event->param.conn); 1605 if (ret) { 1606 /* 1607 * Don't destroy the cm_id in free path, as we implicitly 1608 * destroy the cm_id here with non-zero ret code. 1609 */ 1610 queue->cm_id = NULL; 1611 goto free_queue; 1612 } 1613 1614 mutex_lock(&nvmet_rdma_queue_mutex); 1615 list_add_tail(&queue->queue_list, &nvmet_rdma_queue_list); 1616 mutex_unlock(&nvmet_rdma_queue_mutex); 1617 1618 return 0; 1619 1620 free_queue: 1621 nvmet_rdma_free_queue(queue); 1622 put_device: 1623 kref_put(&ndev->ref, nvmet_rdma_free_dev); 1624 1625 return ret; 1626 } 1627 1628 static void nvmet_rdma_queue_established(struct nvmet_rdma_queue *queue) 1629 { 1630 unsigned long flags; 1631 1632 spin_lock_irqsave(&queue->state_lock, flags); 1633 if (queue->state != NVMET_RDMA_Q_CONNECTING) { 1634 pr_warn("trying to establish a connected queue\n"); 1635 goto out_unlock; 1636 } 1637 queue->state = NVMET_RDMA_Q_LIVE; 1638 1639 while (!list_empty(&queue->rsp_wait_list)) { 1640 struct nvmet_rdma_rsp *cmd; 1641 1642 cmd = list_first_entry(&queue->rsp_wait_list, 1643 struct nvmet_rdma_rsp, wait_list); 1644 list_del(&cmd->wait_list); 1645 1646 spin_unlock_irqrestore(&queue->state_lock, flags); 1647 nvmet_rdma_handle_command(queue, cmd); 1648 spin_lock_irqsave(&queue->state_lock, flags); 1649 } 1650 1651 out_unlock: 1652 spin_unlock_irqrestore(&queue->state_lock, flags); 1653 } 1654 1655 static void __nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue) 1656 { 1657 bool disconnect = false; 1658 unsigned long flags; 1659 1660 pr_debug("cm_id= %p queue->state= %d\n", queue->cm_id, queue->state); 1661 1662 spin_lock_irqsave(&queue->state_lock, flags); 1663 switch (queue->state) { 1664 case NVMET_RDMA_Q_CONNECTING: 1665 while (!list_empty(&queue->rsp_wait_list)) { 1666 struct nvmet_rdma_rsp *rsp; 1667 1668 rsp = list_first_entry(&queue->rsp_wait_list, 1669 struct nvmet_rdma_rsp, 1670 wait_list); 1671 list_del(&rsp->wait_list); 1672 nvmet_rdma_put_rsp(rsp); 1673 } 1674 fallthrough; 1675 case NVMET_RDMA_Q_LIVE: 1676 queue->state = NVMET_RDMA_Q_DISCONNECTING; 1677 disconnect = true; 1678 break; 1679 case NVMET_RDMA_Q_DISCONNECTING: 1680 break; 1681 } 1682 spin_unlock_irqrestore(&queue->state_lock, flags); 1683 1684 if (disconnect) { 1685 rdma_disconnect(queue->cm_id); 1686 queue_work(nvmet_wq, &queue->release_work); 1687 } 1688 } 1689 1690 static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue) 1691 { 1692 bool disconnect = false; 1693 1694 mutex_lock(&nvmet_rdma_queue_mutex); 1695 if (!list_empty(&queue->queue_list)) { 1696 list_del_init(&queue->queue_list); 1697 disconnect = true; 1698 } 1699 mutex_unlock(&nvmet_rdma_queue_mutex); 1700 1701 if (disconnect) 1702 __nvmet_rdma_queue_disconnect(queue); 1703 } 1704 1705 static void nvmet_rdma_queue_connect_fail(struct rdma_cm_id *cm_id, 1706 struct nvmet_rdma_queue *queue) 1707 { 1708 WARN_ON_ONCE(queue->state != NVMET_RDMA_Q_CONNECTING); 1709 1710 mutex_lock(&nvmet_rdma_queue_mutex); 1711 if (!list_empty(&queue->queue_list)) 1712 list_del_init(&queue->queue_list); 1713 mutex_unlock(&nvmet_rdma_queue_mutex); 1714 1715 pr_err("failed to connect queue %d\n", queue->idx); 1716 queue_work(nvmet_wq, &queue->release_work); 1717 } 1718 1719 /** 1720 * nvmet_rdma_device_removal() - Handle RDMA device removal 1721 * @cm_id: rdma_cm id, used for nvmet port 1722 * @queue: nvmet rdma queue (cm id qp_context) 1723 * 1724 * DEVICE_REMOVAL event notifies us that the RDMA device is about 1725 * to unplug. Note that this event can be generated on a normal 1726 * queue cm_id and/or a device bound listener cm_id (where in this 1727 * case queue will be null). 1728 * 1729 * We registered an ib_client to handle device removal for queues, 1730 * so we only need to handle the listening port cm_ids. In this case 1731 * we nullify the priv to prevent double cm_id destruction and destroying 1732 * the cm_id implicitely by returning a non-zero rc to the callout. 1733 */ 1734 static int nvmet_rdma_device_removal(struct rdma_cm_id *cm_id, 1735 struct nvmet_rdma_queue *queue) 1736 { 1737 struct nvmet_rdma_port *port; 1738 1739 if (queue) { 1740 /* 1741 * This is a queue cm_id. we have registered 1742 * an ib_client to handle queues removal 1743 * so don't interfear and just return. 1744 */ 1745 return 0; 1746 } 1747 1748 port = cm_id->context; 1749 1750 /* 1751 * This is a listener cm_id. Make sure that 1752 * future remove_port won't invoke a double 1753 * cm_id destroy. use atomic xchg to make sure 1754 * we don't compete with remove_port. 1755 */ 1756 if (xchg(&port->cm_id, NULL) != cm_id) 1757 return 0; 1758 1759 /* 1760 * We need to return 1 so that the core will destroy 1761 * it's own ID. What a great API design.. 1762 */ 1763 return 1; 1764 } 1765 1766 static int nvmet_rdma_cm_handler(struct rdma_cm_id *cm_id, 1767 struct rdma_cm_event *event) 1768 { 1769 struct nvmet_rdma_queue *queue = NULL; 1770 int ret = 0; 1771 1772 if (cm_id->qp) 1773 queue = cm_id->qp->qp_context; 1774 1775 pr_debug("%s (%d): status %d id %p\n", 1776 rdma_event_msg(event->event), event->event, 1777 event->status, cm_id); 1778 1779 switch (event->event) { 1780 case RDMA_CM_EVENT_CONNECT_REQUEST: 1781 ret = nvmet_rdma_queue_connect(cm_id, event); 1782 break; 1783 case RDMA_CM_EVENT_ESTABLISHED: 1784 nvmet_rdma_queue_established(queue); 1785 break; 1786 case RDMA_CM_EVENT_ADDR_CHANGE: 1787 if (!queue) { 1788 struct nvmet_rdma_port *port = cm_id->context; 1789 1790 queue_delayed_work(nvmet_wq, &port->repair_work, 0); 1791 break; 1792 } 1793 fallthrough; 1794 case RDMA_CM_EVENT_DISCONNECTED: 1795 case RDMA_CM_EVENT_TIMEWAIT_EXIT: 1796 nvmet_rdma_queue_disconnect(queue); 1797 break; 1798 case RDMA_CM_EVENT_DEVICE_REMOVAL: 1799 ret = nvmet_rdma_device_removal(cm_id, queue); 1800 break; 1801 case RDMA_CM_EVENT_REJECTED: 1802 pr_debug("Connection rejected: %s\n", 1803 rdma_reject_msg(cm_id, event->status)); 1804 fallthrough; 1805 case RDMA_CM_EVENT_UNREACHABLE: 1806 case RDMA_CM_EVENT_CONNECT_ERROR: 1807 nvmet_rdma_queue_connect_fail(cm_id, queue); 1808 break; 1809 default: 1810 pr_err("received unrecognized RDMA CM event %d\n", 1811 event->event); 1812 break; 1813 } 1814 1815 return ret; 1816 } 1817 1818 static void nvmet_rdma_delete_ctrl(struct nvmet_ctrl *ctrl) 1819 { 1820 struct nvmet_rdma_queue *queue, *n; 1821 1822 mutex_lock(&nvmet_rdma_queue_mutex); 1823 list_for_each_entry_safe(queue, n, &nvmet_rdma_queue_list, queue_list) { 1824 if (queue->nvme_sq.ctrl != ctrl) 1825 continue; 1826 list_del_init(&queue->queue_list); 1827 __nvmet_rdma_queue_disconnect(queue); 1828 } 1829 mutex_unlock(&nvmet_rdma_queue_mutex); 1830 } 1831 1832 static void nvmet_rdma_destroy_port_queues(struct nvmet_rdma_port *port) 1833 { 1834 struct nvmet_rdma_queue *queue, *tmp; 1835 struct nvmet_port *nport = port->nport; 1836 1837 mutex_lock(&nvmet_rdma_queue_mutex); 1838 list_for_each_entry_safe(queue, tmp, &nvmet_rdma_queue_list, 1839 queue_list) { 1840 if (queue->port != nport) 1841 continue; 1842 1843 list_del_init(&queue->queue_list); 1844 __nvmet_rdma_queue_disconnect(queue); 1845 } 1846 mutex_unlock(&nvmet_rdma_queue_mutex); 1847 } 1848 1849 static void nvmet_rdma_disable_port(struct nvmet_rdma_port *port) 1850 { 1851 struct rdma_cm_id *cm_id = xchg(&port->cm_id, NULL); 1852 1853 if (cm_id) 1854 rdma_destroy_id(cm_id); 1855 1856 /* 1857 * Destroy the remaining queues, which are not belong to any 1858 * controller yet. Do it here after the RDMA-CM was destroyed 1859 * guarantees that no new queue will be created. 1860 */ 1861 nvmet_rdma_destroy_port_queues(port); 1862 } 1863 1864 static int nvmet_rdma_enable_port(struct nvmet_rdma_port *port) 1865 { 1866 struct sockaddr *addr = (struct sockaddr *)&port->addr; 1867 struct rdma_cm_id *cm_id; 1868 int ret; 1869 1870 cm_id = rdma_create_id(&init_net, nvmet_rdma_cm_handler, port, 1871 RDMA_PS_TCP, IB_QPT_RC); 1872 if (IS_ERR(cm_id)) { 1873 pr_err("CM ID creation failed\n"); 1874 return PTR_ERR(cm_id); 1875 } 1876 1877 /* 1878 * Allow both IPv4 and IPv6 sockets to bind a single port 1879 * at the same time. 1880 */ 1881 ret = rdma_set_afonly(cm_id, 1); 1882 if (ret) { 1883 pr_err("rdma_set_afonly failed (%d)\n", ret); 1884 goto out_destroy_id; 1885 } 1886 1887 ret = rdma_bind_addr(cm_id, addr); 1888 if (ret) { 1889 pr_err("binding CM ID to %pISpcs failed (%d)\n", addr, ret); 1890 goto out_destroy_id; 1891 } 1892 1893 ret = rdma_listen(cm_id, NVMET_RDMA_BACKLOG); 1894 if (ret) { 1895 pr_err("listening to %pISpcs failed (%d)\n", addr, ret); 1896 goto out_destroy_id; 1897 } 1898 1899 port->cm_id = cm_id; 1900 return 0; 1901 1902 out_destroy_id: 1903 rdma_destroy_id(cm_id); 1904 return ret; 1905 } 1906 1907 static void nvmet_rdma_repair_port_work(struct work_struct *w) 1908 { 1909 struct nvmet_rdma_port *port = container_of(to_delayed_work(w), 1910 struct nvmet_rdma_port, repair_work); 1911 int ret; 1912 1913 nvmet_rdma_disable_port(port); 1914 ret = nvmet_rdma_enable_port(port); 1915 if (ret) 1916 queue_delayed_work(nvmet_wq, &port->repair_work, 5 * HZ); 1917 } 1918 1919 static int nvmet_rdma_add_port(struct nvmet_port *nport) 1920 { 1921 struct nvmet_rdma_port *port; 1922 __kernel_sa_family_t af; 1923 int ret; 1924 1925 port = kzalloc(sizeof(*port), GFP_KERNEL); 1926 if (!port) 1927 return -ENOMEM; 1928 1929 nport->priv = port; 1930 port->nport = nport; 1931 INIT_DELAYED_WORK(&port->repair_work, nvmet_rdma_repair_port_work); 1932 1933 switch (nport->disc_addr.adrfam) { 1934 case NVMF_ADDR_FAMILY_IP4: 1935 af = AF_INET; 1936 break; 1937 case NVMF_ADDR_FAMILY_IP6: 1938 af = AF_INET6; 1939 break; 1940 default: 1941 pr_err("address family %d not supported\n", 1942 nport->disc_addr.adrfam); 1943 ret = -EINVAL; 1944 goto out_free_port; 1945 } 1946 1947 if (nport->inline_data_size < 0) { 1948 nport->inline_data_size = NVMET_RDMA_DEFAULT_INLINE_DATA_SIZE; 1949 } else if (nport->inline_data_size > NVMET_RDMA_MAX_INLINE_DATA_SIZE) { 1950 pr_warn("inline_data_size %u is too large, reducing to %u\n", 1951 nport->inline_data_size, 1952 NVMET_RDMA_MAX_INLINE_DATA_SIZE); 1953 nport->inline_data_size = NVMET_RDMA_MAX_INLINE_DATA_SIZE; 1954 } 1955 1956 if (nport->max_queue_size < 0) { 1957 nport->max_queue_size = NVME_RDMA_DEFAULT_QUEUE_SIZE; 1958 } else if (nport->max_queue_size > NVME_RDMA_MAX_QUEUE_SIZE) { 1959 pr_warn("max_queue_size %u is too large, reducing to %u\n", 1960 nport->max_queue_size, NVME_RDMA_MAX_QUEUE_SIZE); 1961 nport->max_queue_size = NVME_RDMA_MAX_QUEUE_SIZE; 1962 } 1963 1964 ret = inet_pton_with_scope(&init_net, af, nport->disc_addr.traddr, 1965 nport->disc_addr.trsvcid, &port->addr); 1966 if (ret) { 1967 pr_err("malformed ip/port passed: %s:%s\n", 1968 nport->disc_addr.traddr, nport->disc_addr.trsvcid); 1969 goto out_free_port; 1970 } 1971 1972 ret = nvmet_rdma_enable_port(port); 1973 if (ret) 1974 goto out_free_port; 1975 1976 pr_info("enabling port %d (%pISpcs)\n", 1977 le16_to_cpu(nport->disc_addr.portid), 1978 (struct sockaddr *)&port->addr); 1979 1980 return 0; 1981 1982 out_free_port: 1983 kfree(port); 1984 return ret; 1985 } 1986 1987 static void nvmet_rdma_remove_port(struct nvmet_port *nport) 1988 { 1989 struct nvmet_rdma_port *port = nport->priv; 1990 1991 cancel_delayed_work_sync(&port->repair_work); 1992 nvmet_rdma_disable_port(port); 1993 kfree(port); 1994 } 1995 1996 static void nvmet_rdma_disc_port_addr(struct nvmet_req *req, 1997 struct nvmet_port *nport, char *traddr) 1998 { 1999 struct nvmet_rdma_port *port = nport->priv; 2000 struct rdma_cm_id *cm_id = port->cm_id; 2001 2002 if (inet_addr_is_any((struct sockaddr *)&cm_id->route.addr.src_addr)) { 2003 struct nvmet_rdma_rsp *rsp = 2004 container_of(req, struct nvmet_rdma_rsp, req); 2005 struct rdma_cm_id *req_cm_id = rsp->queue->cm_id; 2006 struct sockaddr *addr = (void *)&req_cm_id->route.addr.src_addr; 2007 2008 sprintf(traddr, "%pISc", addr); 2009 } else { 2010 memcpy(traddr, nport->disc_addr.traddr, NVMF_TRADDR_SIZE); 2011 } 2012 } 2013 2014 static ssize_t nvmet_rdma_host_port_addr(struct nvmet_ctrl *ctrl, 2015 char *traddr, size_t traddr_len) 2016 { 2017 struct nvmet_sq *nvme_sq = ctrl->sqs[0]; 2018 struct nvmet_rdma_queue *queue = 2019 container_of(nvme_sq, struct nvmet_rdma_queue, nvme_sq); 2020 2021 return snprintf(traddr, traddr_len, "%pISc", 2022 (struct sockaddr *)&queue->cm_id->route.addr.dst_addr); 2023 } 2024 2025 static u8 nvmet_rdma_get_mdts(const struct nvmet_ctrl *ctrl) 2026 { 2027 if (ctrl->pi_support) 2028 return NVMET_RDMA_MAX_METADATA_MDTS; 2029 return NVMET_RDMA_MAX_MDTS; 2030 } 2031 2032 static u16 nvmet_rdma_get_max_queue_size(const struct nvmet_ctrl *ctrl) 2033 { 2034 if (ctrl->pi_support) 2035 return NVME_RDMA_MAX_METADATA_QUEUE_SIZE; 2036 return NVME_RDMA_MAX_QUEUE_SIZE; 2037 } 2038 2039 static const struct nvmet_fabrics_ops nvmet_rdma_ops = { 2040 .owner = THIS_MODULE, 2041 .type = NVMF_TRTYPE_RDMA, 2042 .msdbd = 1, 2043 .flags = NVMF_KEYED_SGLS | NVMF_METADATA_SUPPORTED, 2044 .add_port = nvmet_rdma_add_port, 2045 .remove_port = nvmet_rdma_remove_port, 2046 .queue_response = nvmet_rdma_queue_response, 2047 .delete_ctrl = nvmet_rdma_delete_ctrl, 2048 .disc_traddr = nvmet_rdma_disc_port_addr, 2049 .host_traddr = nvmet_rdma_host_port_addr, 2050 .get_mdts = nvmet_rdma_get_mdts, 2051 .get_max_queue_size = nvmet_rdma_get_max_queue_size, 2052 }; 2053 2054 static void nvmet_rdma_remove_one(struct ib_device *ib_device, void *client_data) 2055 { 2056 struct nvmet_rdma_queue *queue, *tmp; 2057 struct nvmet_rdma_device *ndev; 2058 bool found = false; 2059 2060 mutex_lock(&device_list_mutex); 2061 list_for_each_entry(ndev, &device_list, entry) { 2062 if (ndev->device == ib_device) { 2063 found = true; 2064 break; 2065 } 2066 } 2067 mutex_unlock(&device_list_mutex); 2068 2069 if (!found) 2070 return; 2071 2072 /* 2073 * IB Device that is used by nvmet controllers is being removed, 2074 * delete all queues using this device. 2075 */ 2076 mutex_lock(&nvmet_rdma_queue_mutex); 2077 list_for_each_entry_safe(queue, tmp, &nvmet_rdma_queue_list, 2078 queue_list) { 2079 if (queue->dev->device != ib_device) 2080 continue; 2081 2082 pr_info("Removing queue %d\n", queue->idx); 2083 list_del_init(&queue->queue_list); 2084 __nvmet_rdma_queue_disconnect(queue); 2085 } 2086 mutex_unlock(&nvmet_rdma_queue_mutex); 2087 2088 flush_workqueue(nvmet_wq); 2089 } 2090 2091 static struct ib_client nvmet_rdma_ib_client = { 2092 .name = "nvmet_rdma", 2093 .remove = nvmet_rdma_remove_one 2094 }; 2095 2096 static int __init nvmet_rdma_init(void) 2097 { 2098 int ret; 2099 2100 ret = ib_register_client(&nvmet_rdma_ib_client); 2101 if (ret) 2102 return ret; 2103 2104 ret = nvmet_register_transport(&nvmet_rdma_ops); 2105 if (ret) 2106 goto err_ib_client; 2107 2108 return 0; 2109 2110 err_ib_client: 2111 ib_unregister_client(&nvmet_rdma_ib_client); 2112 return ret; 2113 } 2114 2115 static void __exit nvmet_rdma_exit(void) 2116 { 2117 nvmet_unregister_transport(&nvmet_rdma_ops); 2118 ib_unregister_client(&nvmet_rdma_ib_client); 2119 WARN_ON_ONCE(!list_empty(&nvmet_rdma_queue_list)); 2120 ida_destroy(&nvmet_rdma_queue_ida); 2121 } 2122 2123 module_init(nvmet_rdma_init); 2124 module_exit(nvmet_rdma_exit); 2125 2126 MODULE_DESCRIPTION("NVMe target RDMA transport driver"); 2127 MODULE_LICENSE("GPL v2"); 2128 MODULE_ALIAS("nvmet-transport-1"); /* 1 == NVMF_TRTYPE_RDMA */ 2129