1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVMe PCI Endpoint Function target driver. 4 * 5 * Copyright (c) 2024, Western Digital Corporation or its affiliates. 6 * Copyright (c) 2024, Rick Wertenbroek <rick.wertenbroek@gmail.com> 7 * REDS Institute, HEIG-VD, HES-SO, Switzerland 8 */ 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/delay.h> 12 #include <linux/dmaengine.h> 13 #include <linux/io.h> 14 #include <linux/mempool.h> 15 #include <linux/module.h> 16 #include <linux/mutex.h> 17 #include <linux/nvme.h> 18 #include <linux/pci_ids.h> 19 #include <linux/pci-epc.h> 20 #include <linux/pci-epf.h> 21 #include <linux/pci_regs.h> 22 #include <linux/slab.h> 23 24 #include "nvmet.h" 25 26 static LIST_HEAD(nvmet_pci_epf_ports); 27 static DEFINE_MUTEX(nvmet_pci_epf_ports_mutex); 28 29 /* 30 * Default and maximum allowed data transfer size. For the default, 31 * allow up to 128 page-sized segments. For the maximum allowed, 32 * use 4 times the default (which is completely arbitrary). 33 */ 34 #define NVMET_PCI_EPF_MAX_SEGS 128 35 #define NVMET_PCI_EPF_MDTS_KB \ 36 (NVMET_PCI_EPF_MAX_SEGS << (PAGE_SHIFT - 10)) 37 #define NVMET_PCI_EPF_MAX_MDTS_KB (NVMET_PCI_EPF_MDTS_KB * 4) 38 39 /* 40 * IRQ vector coalescing threshold: by default, post 8 CQEs before raising an 41 * interrupt vector to the host. This default 8 is completely arbitrary and can 42 * be changed by the host with a nvme_set_features command. 43 */ 44 #define NVMET_PCI_EPF_IV_THRESHOLD 8 45 46 /* 47 * BAR CC register and SQ polling intervals. 48 */ 49 #define NVMET_PCI_EPF_CC_POLL_INTERVAL msecs_to_jiffies(5) 50 #define NVMET_PCI_EPF_SQ_POLL_INTERVAL msecs_to_jiffies(5) 51 #define NVMET_PCI_EPF_SQ_POLL_IDLE msecs_to_jiffies(5000) 52 53 /* 54 * SQ arbitration burst default: fetch at most 8 commands at a time from an SQ. 55 */ 56 #define NVMET_PCI_EPF_SQ_AB 8 57 58 /* 59 * Handling of CQs is normally immediate, unless we fail to map a CQ or the CQ 60 * is full, in which case we retry the CQ processing after this interval. 61 */ 62 #define NVMET_PCI_EPF_CQ_RETRY_INTERVAL msecs_to_jiffies(1) 63 64 enum nvmet_pci_epf_queue_flags { 65 NVMET_PCI_EPF_Q_IS_SQ = 0, /* The queue is a submission queue */ 66 NVMET_PCI_EPF_Q_LIVE, /* The queue is live */ 67 NVMET_PCI_EPF_Q_IRQ_ENABLED, /* IRQ is enabled for this queue */ 68 }; 69 70 /* 71 * IRQ vector descriptor. 72 */ 73 struct nvmet_pci_epf_irq_vector { 74 unsigned int vector; 75 unsigned int ref; 76 bool cd; 77 int nr_irqs; 78 }; 79 80 struct nvmet_pci_epf_queue { 81 union { 82 struct nvmet_sq nvme_sq; 83 struct nvmet_cq nvme_cq; 84 }; 85 struct nvmet_pci_epf_ctrl *ctrl; 86 unsigned long flags; 87 88 u64 pci_addr; 89 size_t pci_size; 90 struct pci_epc_map pci_map; 91 92 u16 qid; 93 u16 depth; 94 u16 vector; 95 u16 head; 96 u16 tail; 97 u16 phase; 98 u32 db; 99 100 size_t qes; 101 102 struct nvmet_pci_epf_irq_vector *iv; 103 struct workqueue_struct *iod_wq; 104 struct delayed_work work; 105 spinlock_t lock; 106 struct list_head list; 107 }; 108 109 /* 110 * PCI Root Complex (RC) address data segment for mapping an admin or 111 * I/O command buffer @buf of @length bytes to the PCI address @pci_addr. 112 */ 113 struct nvmet_pci_epf_segment { 114 void *buf; 115 u64 pci_addr; 116 u32 length; 117 }; 118 119 /* 120 * Command descriptors. 121 */ 122 struct nvmet_pci_epf_iod { 123 struct list_head link; 124 125 struct nvmet_req req; 126 struct nvme_command cmd; 127 struct nvme_completion cqe; 128 unsigned int status; 129 130 struct nvmet_pci_epf_ctrl *ctrl; 131 132 struct nvmet_pci_epf_queue *sq; 133 struct nvmet_pci_epf_queue *cq; 134 135 /* Data transfer size and direction for the command. */ 136 size_t data_len; 137 enum dma_data_direction dma_dir; 138 139 /* 140 * PCI Root Complex (RC) address data segments: if nr_data_segs is 1, we 141 * use only @data_seg. Otherwise, the array of segments @data_segs is 142 * allocated to manage multiple PCI address data segments. @data_sgl and 143 * @data_sgt are used to setup the command request for execution by the 144 * target core. 145 */ 146 unsigned int nr_data_segs; 147 struct nvmet_pci_epf_segment data_seg; 148 struct nvmet_pci_epf_segment *data_segs; 149 struct scatterlist data_sgl; 150 struct sg_table data_sgt; 151 152 struct work_struct work; 153 struct completion done; 154 }; 155 156 /* 157 * PCI target controller private data. 158 */ 159 struct nvmet_pci_epf_ctrl { 160 struct nvmet_pci_epf *nvme_epf; 161 struct nvmet_port *port; 162 struct nvmet_ctrl *tctrl; 163 struct device *dev; 164 165 unsigned int nr_queues; 166 struct nvmet_pci_epf_queue *sq; 167 struct nvmet_pci_epf_queue *cq; 168 unsigned int sq_ab; 169 170 mempool_t iod_pool; 171 void *bar; 172 u64 cap; 173 u32 cc; 174 u32 csts; 175 176 size_t io_sqes; 177 size_t io_cqes; 178 179 size_t mps_shift; 180 size_t mps; 181 size_t mps_mask; 182 183 unsigned int mdts; 184 185 struct delayed_work poll_cc; 186 struct delayed_work poll_sqs; 187 188 struct mutex irq_lock; 189 struct nvmet_pci_epf_irq_vector *irq_vectors; 190 unsigned int irq_vector_threshold; 191 192 bool link_up; 193 bool enabled; 194 }; 195 196 /* 197 * PCI EPF driver private data. 198 */ 199 struct nvmet_pci_epf { 200 struct pci_epf *epf; 201 202 const struct pci_epc_features *epc_features; 203 204 void *reg_bar; 205 size_t msix_table_offset; 206 207 unsigned int irq_type; 208 unsigned int nr_vectors; 209 210 struct nvmet_pci_epf_ctrl ctrl; 211 212 bool dma_enabled; 213 struct dma_chan *dma_tx_chan; 214 struct mutex dma_tx_lock; 215 struct dma_chan *dma_rx_chan; 216 struct mutex dma_rx_lock; 217 218 struct mutex mmio_lock; 219 220 /* PCI endpoint function configfs attributes. */ 221 struct config_group group; 222 __le16 portid; 223 char subsysnqn[NVMF_NQN_SIZE]; 224 unsigned int mdts_kb; 225 }; 226 227 static inline u32 nvmet_pci_epf_bar_read32(struct nvmet_pci_epf_ctrl *ctrl, 228 u32 off) 229 { 230 __le32 *bar_reg = ctrl->bar + off; 231 232 return le32_to_cpu(READ_ONCE(*bar_reg)); 233 } 234 235 static inline void nvmet_pci_epf_bar_write32(struct nvmet_pci_epf_ctrl *ctrl, 236 u32 off, u32 val) 237 { 238 __le32 *bar_reg = ctrl->bar + off; 239 240 WRITE_ONCE(*bar_reg, cpu_to_le32(val)); 241 } 242 243 static inline u64 nvmet_pci_epf_bar_read64(struct nvmet_pci_epf_ctrl *ctrl, 244 u32 off) 245 { 246 return (u64)nvmet_pci_epf_bar_read32(ctrl, off) | 247 ((u64)nvmet_pci_epf_bar_read32(ctrl, off + 4) << 32); 248 } 249 250 static inline void nvmet_pci_epf_bar_write64(struct nvmet_pci_epf_ctrl *ctrl, 251 u32 off, u64 val) 252 { 253 nvmet_pci_epf_bar_write32(ctrl, off, val & 0xFFFFFFFF); 254 nvmet_pci_epf_bar_write32(ctrl, off + 4, (val >> 32) & 0xFFFFFFFF); 255 } 256 257 static inline int nvmet_pci_epf_mem_map(struct nvmet_pci_epf *nvme_epf, 258 u64 pci_addr, size_t size, struct pci_epc_map *map) 259 { 260 struct pci_epf *epf = nvme_epf->epf; 261 262 return pci_epc_mem_map(epf->epc, epf->func_no, epf->vfunc_no, 263 pci_addr, size, map); 264 } 265 266 static inline void nvmet_pci_epf_mem_unmap(struct nvmet_pci_epf *nvme_epf, 267 struct pci_epc_map *map) 268 { 269 struct pci_epf *epf = nvme_epf->epf; 270 271 pci_epc_mem_unmap(epf->epc, epf->func_no, epf->vfunc_no, map); 272 } 273 274 struct nvmet_pci_epf_dma_filter { 275 struct device *dev; 276 u32 dma_mask; 277 }; 278 279 static bool nvmet_pci_epf_dma_filter(struct dma_chan *chan, void *arg) 280 { 281 struct nvmet_pci_epf_dma_filter *filter = arg; 282 struct dma_slave_caps caps; 283 284 memset(&caps, 0, sizeof(caps)); 285 dma_get_slave_caps(chan, &caps); 286 287 return chan->device->dev == filter->dev && 288 (filter->dma_mask & caps.directions); 289 } 290 291 static void nvmet_pci_epf_init_dma(struct nvmet_pci_epf *nvme_epf) 292 { 293 struct pci_epf *epf = nvme_epf->epf; 294 struct device *dev = &epf->dev; 295 struct nvmet_pci_epf_dma_filter filter; 296 struct dma_chan *chan; 297 dma_cap_mask_t mask; 298 299 mutex_init(&nvme_epf->dma_rx_lock); 300 mutex_init(&nvme_epf->dma_tx_lock); 301 302 dma_cap_zero(mask); 303 dma_cap_set(DMA_SLAVE, mask); 304 305 filter.dev = epf->epc->dev.parent; 306 filter.dma_mask = BIT(DMA_DEV_TO_MEM); 307 308 chan = dma_request_channel(mask, nvmet_pci_epf_dma_filter, &filter); 309 if (!chan) 310 goto out_dma_no_rx; 311 312 nvme_epf->dma_rx_chan = chan; 313 314 filter.dma_mask = BIT(DMA_MEM_TO_DEV); 315 chan = dma_request_channel(mask, nvmet_pci_epf_dma_filter, &filter); 316 if (!chan) 317 goto out_dma_no_tx; 318 319 nvme_epf->dma_tx_chan = chan; 320 321 nvme_epf->dma_enabled = true; 322 323 dev_dbg(dev, "Using DMA RX channel %s, maximum segment size %u B\n", 324 dma_chan_name(chan), 325 dma_get_max_seg_size(dmaengine_get_dma_device(chan))); 326 327 dev_dbg(dev, "Using DMA TX channel %s, maximum segment size %u B\n", 328 dma_chan_name(chan), 329 dma_get_max_seg_size(dmaengine_get_dma_device(chan))); 330 331 return; 332 333 out_dma_no_tx: 334 dma_release_channel(nvme_epf->dma_rx_chan); 335 nvme_epf->dma_rx_chan = NULL; 336 337 out_dma_no_rx: 338 mutex_destroy(&nvme_epf->dma_rx_lock); 339 mutex_destroy(&nvme_epf->dma_tx_lock); 340 nvme_epf->dma_enabled = false; 341 342 dev_info(&epf->dev, "DMA not supported, falling back to MMIO\n"); 343 } 344 345 static void nvmet_pci_epf_deinit_dma(struct nvmet_pci_epf *nvme_epf) 346 { 347 if (!nvme_epf->dma_enabled) 348 return; 349 350 dma_release_channel(nvme_epf->dma_tx_chan); 351 nvme_epf->dma_tx_chan = NULL; 352 dma_release_channel(nvme_epf->dma_rx_chan); 353 nvme_epf->dma_rx_chan = NULL; 354 mutex_destroy(&nvme_epf->dma_rx_lock); 355 mutex_destroy(&nvme_epf->dma_tx_lock); 356 nvme_epf->dma_enabled = false; 357 } 358 359 static int nvmet_pci_epf_dma_transfer(struct nvmet_pci_epf *nvme_epf, 360 struct nvmet_pci_epf_segment *seg, enum dma_data_direction dir) 361 { 362 struct pci_epf *epf = nvme_epf->epf; 363 struct dma_async_tx_descriptor *desc; 364 struct dma_slave_config sconf = {}; 365 struct device *dev = &epf->dev; 366 struct device *dma_dev; 367 struct dma_chan *chan; 368 dma_cookie_t cookie; 369 dma_addr_t dma_addr; 370 struct mutex *lock; 371 int ret; 372 373 switch (dir) { 374 case DMA_FROM_DEVICE: 375 lock = &nvme_epf->dma_rx_lock; 376 chan = nvme_epf->dma_rx_chan; 377 sconf.direction = DMA_DEV_TO_MEM; 378 sconf.src_addr = seg->pci_addr; 379 break; 380 case DMA_TO_DEVICE: 381 lock = &nvme_epf->dma_tx_lock; 382 chan = nvme_epf->dma_tx_chan; 383 sconf.direction = DMA_MEM_TO_DEV; 384 sconf.dst_addr = seg->pci_addr; 385 break; 386 default: 387 return -EINVAL; 388 } 389 390 mutex_lock(lock); 391 392 dma_dev = dmaengine_get_dma_device(chan); 393 dma_addr = dma_map_single(dma_dev, seg->buf, seg->length, dir); 394 ret = dma_mapping_error(dma_dev, dma_addr); 395 if (ret) 396 goto unlock; 397 398 ret = dmaengine_slave_config(chan, &sconf); 399 if (ret) { 400 dev_err(dev, "Failed to configure DMA channel\n"); 401 goto unmap; 402 } 403 404 desc = dmaengine_prep_slave_single(chan, dma_addr, seg->length, 405 sconf.direction, DMA_CTRL_ACK); 406 if (!desc) { 407 dev_err(dev, "Failed to prepare DMA\n"); 408 ret = -EIO; 409 goto unmap; 410 } 411 412 cookie = dmaengine_submit(desc); 413 ret = dma_submit_error(cookie); 414 if (ret) { 415 dev_err(dev, "Failed to do DMA submit (err=%d)\n", ret); 416 goto unmap; 417 } 418 419 if (dma_sync_wait(chan, cookie) != DMA_COMPLETE) { 420 dev_err(dev, "DMA transfer failed\n"); 421 ret = -EIO; 422 } 423 424 dmaengine_terminate_sync(chan); 425 426 unmap: 427 dma_unmap_single(dma_dev, dma_addr, seg->length, dir); 428 429 unlock: 430 mutex_unlock(lock); 431 432 return ret; 433 } 434 435 static int nvmet_pci_epf_mmio_transfer(struct nvmet_pci_epf *nvme_epf, 436 struct nvmet_pci_epf_segment *seg, enum dma_data_direction dir) 437 { 438 u64 pci_addr = seg->pci_addr; 439 u32 length = seg->length; 440 void *buf = seg->buf; 441 struct pci_epc_map map; 442 int ret = -EINVAL; 443 444 /* 445 * Note: MMIO transfers do not need serialization but this is a 446 * simple way to avoid using too many mapping windows. 447 */ 448 mutex_lock(&nvme_epf->mmio_lock); 449 450 while (length) { 451 ret = nvmet_pci_epf_mem_map(nvme_epf, pci_addr, length, &map); 452 if (ret) 453 break; 454 455 switch (dir) { 456 case DMA_FROM_DEVICE: 457 memcpy_fromio(buf, map.virt_addr, map.pci_size); 458 break; 459 case DMA_TO_DEVICE: 460 memcpy_toio(map.virt_addr, buf, map.pci_size); 461 break; 462 default: 463 ret = -EINVAL; 464 goto unlock; 465 } 466 467 pci_addr += map.pci_size; 468 buf += map.pci_size; 469 length -= map.pci_size; 470 471 nvmet_pci_epf_mem_unmap(nvme_epf, &map); 472 } 473 474 unlock: 475 mutex_unlock(&nvme_epf->mmio_lock); 476 477 return ret; 478 } 479 480 static inline int nvmet_pci_epf_transfer_seg(struct nvmet_pci_epf *nvme_epf, 481 struct nvmet_pci_epf_segment *seg, enum dma_data_direction dir) 482 { 483 if (nvme_epf->dma_enabled) 484 return nvmet_pci_epf_dma_transfer(nvme_epf, seg, dir); 485 486 return nvmet_pci_epf_mmio_transfer(nvme_epf, seg, dir); 487 } 488 489 static inline int nvmet_pci_epf_transfer(struct nvmet_pci_epf_ctrl *ctrl, 490 void *buf, u64 pci_addr, u32 length, 491 enum dma_data_direction dir) 492 { 493 struct nvmet_pci_epf_segment seg = { 494 .buf = buf, 495 .pci_addr = pci_addr, 496 .length = length, 497 }; 498 499 return nvmet_pci_epf_transfer_seg(ctrl->nvme_epf, &seg, dir); 500 } 501 502 static int nvmet_pci_epf_alloc_irq_vectors(struct nvmet_pci_epf_ctrl *ctrl) 503 { 504 ctrl->irq_vectors = kcalloc(ctrl->nr_queues, 505 sizeof(struct nvmet_pci_epf_irq_vector), 506 GFP_KERNEL); 507 if (!ctrl->irq_vectors) 508 return -ENOMEM; 509 510 mutex_init(&ctrl->irq_lock); 511 512 return 0; 513 } 514 515 static void nvmet_pci_epf_free_irq_vectors(struct nvmet_pci_epf_ctrl *ctrl) 516 { 517 if (ctrl->irq_vectors) { 518 mutex_destroy(&ctrl->irq_lock); 519 kfree(ctrl->irq_vectors); 520 ctrl->irq_vectors = NULL; 521 } 522 } 523 524 static struct nvmet_pci_epf_irq_vector * 525 nvmet_pci_epf_find_irq_vector(struct nvmet_pci_epf_ctrl *ctrl, u16 vector) 526 { 527 struct nvmet_pci_epf_irq_vector *iv; 528 int i; 529 530 lockdep_assert_held(&ctrl->irq_lock); 531 532 for (i = 0; i < ctrl->nr_queues; i++) { 533 iv = &ctrl->irq_vectors[i]; 534 if (iv->ref && iv->vector == vector) 535 return iv; 536 } 537 538 return NULL; 539 } 540 541 static struct nvmet_pci_epf_irq_vector * 542 nvmet_pci_epf_add_irq_vector(struct nvmet_pci_epf_ctrl *ctrl, u16 vector) 543 { 544 struct nvmet_pci_epf_irq_vector *iv; 545 int i; 546 547 mutex_lock(&ctrl->irq_lock); 548 549 iv = nvmet_pci_epf_find_irq_vector(ctrl, vector); 550 if (iv) { 551 iv->ref++; 552 goto unlock; 553 } 554 555 for (i = 0; i < ctrl->nr_queues; i++) { 556 iv = &ctrl->irq_vectors[i]; 557 if (!iv->ref) 558 break; 559 } 560 561 if (WARN_ON_ONCE(!iv)) 562 goto unlock; 563 564 iv->ref = 1; 565 iv->vector = vector; 566 iv->nr_irqs = 0; 567 568 unlock: 569 mutex_unlock(&ctrl->irq_lock); 570 571 return iv; 572 } 573 574 static void nvmet_pci_epf_remove_irq_vector(struct nvmet_pci_epf_ctrl *ctrl, 575 u16 vector) 576 { 577 struct nvmet_pci_epf_irq_vector *iv; 578 579 mutex_lock(&ctrl->irq_lock); 580 581 iv = nvmet_pci_epf_find_irq_vector(ctrl, vector); 582 if (iv) { 583 iv->ref--; 584 if (!iv->ref) { 585 iv->vector = 0; 586 iv->nr_irqs = 0; 587 } 588 } 589 590 mutex_unlock(&ctrl->irq_lock); 591 } 592 593 static bool nvmet_pci_epf_should_raise_irq(struct nvmet_pci_epf_ctrl *ctrl, 594 struct nvmet_pci_epf_queue *cq, bool force) 595 { 596 struct nvmet_pci_epf_irq_vector *iv = cq->iv; 597 bool ret; 598 599 if (!test_bit(NVMET_PCI_EPF_Q_IRQ_ENABLED, &cq->flags)) 600 return false; 601 602 /* IRQ coalescing for the admin queue is not allowed. */ 603 if (!cq->qid) 604 return true; 605 606 if (iv->cd) 607 return true; 608 609 if (force) { 610 ret = iv->nr_irqs > 0; 611 } else { 612 iv->nr_irqs++; 613 ret = iv->nr_irqs >= ctrl->irq_vector_threshold; 614 } 615 if (ret) 616 iv->nr_irqs = 0; 617 618 return ret; 619 } 620 621 static void nvmet_pci_epf_raise_irq(struct nvmet_pci_epf_ctrl *ctrl, 622 struct nvmet_pci_epf_queue *cq, bool force) 623 { 624 struct nvmet_pci_epf *nvme_epf = ctrl->nvme_epf; 625 struct pci_epf *epf = nvme_epf->epf; 626 int ret = 0; 627 628 if (!test_bit(NVMET_PCI_EPF_Q_LIVE, &cq->flags)) 629 return; 630 631 mutex_lock(&ctrl->irq_lock); 632 633 if (!nvmet_pci_epf_should_raise_irq(ctrl, cq, force)) 634 goto unlock; 635 636 switch (nvme_epf->irq_type) { 637 case PCI_IRQ_MSIX: 638 case PCI_IRQ_MSI: 639 ret = pci_epc_raise_irq(epf->epc, epf->func_no, epf->vfunc_no, 640 nvme_epf->irq_type, cq->vector + 1); 641 if (!ret) 642 break; 643 /* 644 * If we got an error, it is likely because the host is using 645 * legacy IRQs (e.g. BIOS, grub). 646 */ 647 fallthrough; 648 case PCI_IRQ_INTX: 649 ret = pci_epc_raise_irq(epf->epc, epf->func_no, epf->vfunc_no, 650 PCI_IRQ_INTX, 0); 651 break; 652 default: 653 WARN_ON_ONCE(1); 654 ret = -EINVAL; 655 break; 656 } 657 658 if (ret) 659 dev_err(ctrl->dev, "Failed to raise IRQ (err=%d)\n", ret); 660 661 unlock: 662 mutex_unlock(&ctrl->irq_lock); 663 } 664 665 static inline const char *nvmet_pci_epf_iod_name(struct nvmet_pci_epf_iod *iod) 666 { 667 return nvme_opcode_str(iod->sq->qid, iod->cmd.common.opcode); 668 } 669 670 static void nvmet_pci_epf_exec_iod_work(struct work_struct *work); 671 672 static struct nvmet_pci_epf_iod * 673 nvmet_pci_epf_alloc_iod(struct nvmet_pci_epf_queue *sq) 674 { 675 struct nvmet_pci_epf_ctrl *ctrl = sq->ctrl; 676 struct nvmet_pci_epf_iod *iod; 677 678 iod = mempool_alloc(&ctrl->iod_pool, GFP_KERNEL); 679 if (unlikely(!iod)) 680 return NULL; 681 682 memset(iod, 0, sizeof(*iod)); 683 iod->req.cmd = &iod->cmd; 684 iod->req.cqe = &iod->cqe; 685 iod->req.port = ctrl->port; 686 iod->ctrl = ctrl; 687 iod->sq = sq; 688 iod->cq = &ctrl->cq[sq->qid]; 689 INIT_LIST_HEAD(&iod->link); 690 iod->dma_dir = DMA_NONE; 691 INIT_WORK(&iod->work, nvmet_pci_epf_exec_iod_work); 692 init_completion(&iod->done); 693 694 return iod; 695 } 696 697 /* 698 * Allocate or grow a command table of PCI segments. 699 */ 700 static int nvmet_pci_epf_alloc_iod_data_segs(struct nvmet_pci_epf_iod *iod, 701 int nsegs) 702 { 703 struct nvmet_pci_epf_segment *segs; 704 int nr_segs = iod->nr_data_segs + nsegs; 705 706 segs = krealloc(iod->data_segs, 707 nr_segs * sizeof(struct nvmet_pci_epf_segment), 708 GFP_KERNEL | __GFP_ZERO); 709 if (!segs) 710 return -ENOMEM; 711 712 iod->nr_data_segs = nr_segs; 713 iod->data_segs = segs; 714 715 return 0; 716 } 717 718 static void nvmet_pci_epf_free_iod(struct nvmet_pci_epf_iod *iod) 719 { 720 int i; 721 722 if (iod->data_segs) { 723 for (i = 0; i < iod->nr_data_segs; i++) 724 kfree(iod->data_segs[i].buf); 725 if (iod->data_segs != &iod->data_seg) 726 kfree(iod->data_segs); 727 } 728 if (iod->data_sgt.nents > 1) 729 sg_free_table(&iod->data_sgt); 730 mempool_free(iod, &iod->ctrl->iod_pool); 731 } 732 733 static int nvmet_pci_epf_transfer_iod_data(struct nvmet_pci_epf_iod *iod) 734 { 735 struct nvmet_pci_epf *nvme_epf = iod->ctrl->nvme_epf; 736 struct nvmet_pci_epf_segment *seg = &iod->data_segs[0]; 737 int i, ret; 738 739 /* Split the data transfer according to the PCI segments. */ 740 for (i = 0; i < iod->nr_data_segs; i++, seg++) { 741 ret = nvmet_pci_epf_transfer_seg(nvme_epf, seg, iod->dma_dir); 742 if (ret) { 743 iod->status = NVME_SC_DATA_XFER_ERROR | NVME_STATUS_DNR; 744 return ret; 745 } 746 } 747 748 return 0; 749 } 750 751 static inline u32 nvmet_pci_epf_prp_ofst(struct nvmet_pci_epf_ctrl *ctrl, 752 u64 prp) 753 { 754 return prp & ctrl->mps_mask; 755 } 756 757 static inline size_t nvmet_pci_epf_prp_size(struct nvmet_pci_epf_ctrl *ctrl, 758 u64 prp) 759 { 760 return ctrl->mps - nvmet_pci_epf_prp_ofst(ctrl, prp); 761 } 762 763 /* 764 * Transfer a PRP list from the host and return the number of prps. 765 */ 766 static int nvmet_pci_epf_get_prp_list(struct nvmet_pci_epf_ctrl *ctrl, u64 prp, 767 size_t xfer_len, __le64 *prps) 768 { 769 size_t nr_prps = (xfer_len + ctrl->mps_mask) >> ctrl->mps_shift; 770 u32 length; 771 int ret; 772 773 /* 774 * Compute the number of PRPs required for the number of bytes to 775 * transfer (xfer_len). If this number overflows the memory page size 776 * with the PRP list pointer specified, only return the space available 777 * in the memory page, the last PRP in there will be a PRP list pointer 778 * to the remaining PRPs. 779 */ 780 length = min(nvmet_pci_epf_prp_size(ctrl, prp), nr_prps << 3); 781 ret = nvmet_pci_epf_transfer(ctrl, prps, prp, length, DMA_FROM_DEVICE); 782 if (ret) 783 return ret; 784 785 return length >> 3; 786 } 787 788 static int nvmet_pci_epf_iod_parse_prp_list(struct nvmet_pci_epf_ctrl *ctrl, 789 struct nvmet_pci_epf_iod *iod) 790 { 791 struct nvme_command *cmd = &iod->cmd; 792 struct nvmet_pci_epf_segment *seg; 793 size_t size = 0, ofst, prp_size, xfer_len; 794 size_t transfer_len = iod->data_len; 795 int nr_segs, nr_prps = 0; 796 u64 pci_addr, prp; 797 int i = 0, ret; 798 __le64 *prps; 799 800 prps = kzalloc(ctrl->mps, GFP_KERNEL); 801 if (!prps) 802 goto err_internal; 803 804 /* 805 * Allocate PCI segments for the command: this considers the worst case 806 * scenario where all prps are discontiguous, so get as many segments 807 * as we can have prps. In practice, most of the time, we will have 808 * far less PCI segments than prps. 809 */ 810 prp = le64_to_cpu(cmd->common.dptr.prp1); 811 if (!prp) 812 goto err_invalid_field; 813 814 ofst = nvmet_pci_epf_prp_ofst(ctrl, prp); 815 nr_segs = (transfer_len + ofst + ctrl->mps - 1) >> ctrl->mps_shift; 816 817 ret = nvmet_pci_epf_alloc_iod_data_segs(iod, nr_segs); 818 if (ret) 819 goto err_internal; 820 821 /* Set the first segment using prp1. */ 822 seg = &iod->data_segs[0]; 823 seg->pci_addr = prp; 824 seg->length = nvmet_pci_epf_prp_size(ctrl, prp); 825 826 size = seg->length; 827 pci_addr = prp + size; 828 nr_segs = 1; 829 830 /* 831 * Now build the PCI address segments using the PRP lists, starting 832 * from prp2. 833 */ 834 prp = le64_to_cpu(cmd->common.dptr.prp2); 835 if (!prp) 836 goto err_invalid_field; 837 838 while (size < transfer_len) { 839 xfer_len = transfer_len - size; 840 841 if (!nr_prps) { 842 nr_prps = nvmet_pci_epf_get_prp_list(ctrl, prp, 843 xfer_len, prps); 844 if (nr_prps < 0) 845 goto err_internal; 846 847 i = 0; 848 ofst = 0; 849 } 850 851 /* Current entry */ 852 prp = le64_to_cpu(prps[i]); 853 if (!prp) 854 goto err_invalid_field; 855 856 /* Did we reach the last PRP entry of the list? */ 857 if (xfer_len > ctrl->mps && i == nr_prps - 1) { 858 /* We need more PRPs: PRP is a list pointer. */ 859 nr_prps = 0; 860 continue; 861 } 862 863 /* Only the first PRP is allowed to have an offset. */ 864 if (nvmet_pci_epf_prp_ofst(ctrl, prp)) 865 goto err_invalid_offset; 866 867 if (prp != pci_addr) { 868 /* Discontiguous prp: new segment. */ 869 nr_segs++; 870 if (WARN_ON_ONCE(nr_segs > iod->nr_data_segs)) 871 goto err_internal; 872 873 seg++; 874 seg->pci_addr = prp; 875 seg->length = 0; 876 pci_addr = prp; 877 } 878 879 prp_size = min_t(size_t, ctrl->mps, xfer_len); 880 seg->length += prp_size; 881 pci_addr += prp_size; 882 size += prp_size; 883 884 i++; 885 } 886 887 iod->nr_data_segs = nr_segs; 888 ret = 0; 889 890 if (size != transfer_len) { 891 dev_err(ctrl->dev, 892 "PRPs transfer length mismatch: got %zu B, need %zu B\n", 893 size, transfer_len); 894 goto err_internal; 895 } 896 897 kfree(prps); 898 899 return 0; 900 901 err_invalid_offset: 902 dev_err(ctrl->dev, "PRPs list invalid offset\n"); 903 iod->status = NVME_SC_PRP_INVALID_OFFSET | NVME_STATUS_DNR; 904 goto err; 905 906 err_invalid_field: 907 dev_err(ctrl->dev, "PRPs list invalid field\n"); 908 iod->status = NVME_SC_INVALID_FIELD | NVME_STATUS_DNR; 909 goto err; 910 911 err_internal: 912 dev_err(ctrl->dev, "PRPs list internal error\n"); 913 iod->status = NVME_SC_INTERNAL | NVME_STATUS_DNR; 914 915 err: 916 kfree(prps); 917 return -EINVAL; 918 } 919 920 static int nvmet_pci_epf_iod_parse_prp_simple(struct nvmet_pci_epf_ctrl *ctrl, 921 struct nvmet_pci_epf_iod *iod) 922 { 923 struct nvme_command *cmd = &iod->cmd; 924 size_t transfer_len = iod->data_len; 925 int ret, nr_segs = 1; 926 u64 prp1, prp2 = 0; 927 size_t prp1_size; 928 929 prp1 = le64_to_cpu(cmd->common.dptr.prp1); 930 prp1_size = nvmet_pci_epf_prp_size(ctrl, prp1); 931 932 /* For commands crossing a page boundary, we should have prp2. */ 933 if (transfer_len > prp1_size) { 934 prp2 = le64_to_cpu(cmd->common.dptr.prp2); 935 if (!prp2) { 936 iod->status = NVME_SC_INVALID_FIELD | NVME_STATUS_DNR; 937 return -EINVAL; 938 } 939 if (nvmet_pci_epf_prp_ofst(ctrl, prp2)) { 940 iod->status = 941 NVME_SC_PRP_INVALID_OFFSET | NVME_STATUS_DNR; 942 return -EINVAL; 943 } 944 if (prp2 != prp1 + prp1_size) 945 nr_segs = 2; 946 } 947 948 if (nr_segs == 1) { 949 iod->nr_data_segs = 1; 950 iod->data_segs = &iod->data_seg; 951 iod->data_segs[0].pci_addr = prp1; 952 iod->data_segs[0].length = transfer_len; 953 return 0; 954 } 955 956 ret = nvmet_pci_epf_alloc_iod_data_segs(iod, nr_segs); 957 if (ret) { 958 iod->status = NVME_SC_INTERNAL | NVME_STATUS_DNR; 959 return ret; 960 } 961 962 iod->data_segs[0].pci_addr = prp1; 963 iod->data_segs[0].length = prp1_size; 964 iod->data_segs[1].pci_addr = prp2; 965 iod->data_segs[1].length = transfer_len - prp1_size; 966 967 return 0; 968 } 969 970 static int nvmet_pci_epf_iod_parse_prps(struct nvmet_pci_epf_iod *iod) 971 { 972 struct nvmet_pci_epf_ctrl *ctrl = iod->ctrl; 973 u64 prp1 = le64_to_cpu(iod->cmd.common.dptr.prp1); 974 size_t ofst; 975 976 /* Get the PCI address segments for the command using its PRPs. */ 977 ofst = nvmet_pci_epf_prp_ofst(ctrl, prp1); 978 if (ofst & 0x3) { 979 iod->status = NVME_SC_PRP_INVALID_OFFSET | NVME_STATUS_DNR; 980 return -EINVAL; 981 } 982 983 if (iod->data_len + ofst <= ctrl->mps * 2) 984 return nvmet_pci_epf_iod_parse_prp_simple(ctrl, iod); 985 986 return nvmet_pci_epf_iod_parse_prp_list(ctrl, iod); 987 } 988 989 /* 990 * Transfer an SGL segment from the host and return the number of data 991 * descriptors and the next segment descriptor, if any. 992 */ 993 static struct nvme_sgl_desc * 994 nvmet_pci_epf_get_sgl_segment(struct nvmet_pci_epf_ctrl *ctrl, 995 struct nvme_sgl_desc *desc, unsigned int *nr_sgls) 996 { 997 struct nvme_sgl_desc *sgls; 998 u32 length = le32_to_cpu(desc->length); 999 int nr_descs, ret; 1000 void *buf; 1001 1002 buf = kmalloc(length, GFP_KERNEL); 1003 if (!buf) 1004 return NULL; 1005 1006 ret = nvmet_pci_epf_transfer(ctrl, buf, le64_to_cpu(desc->addr), length, 1007 DMA_FROM_DEVICE); 1008 if (ret) { 1009 kfree(buf); 1010 return NULL; 1011 } 1012 1013 sgls = buf; 1014 nr_descs = length / sizeof(struct nvme_sgl_desc); 1015 if (sgls[nr_descs - 1].type == (NVME_SGL_FMT_SEG_DESC << 4) || 1016 sgls[nr_descs - 1].type == (NVME_SGL_FMT_LAST_SEG_DESC << 4)) { 1017 /* 1018 * We have another SGL segment following this one: do not count 1019 * it as a regular data SGL descriptor and return it to the 1020 * caller. 1021 */ 1022 *desc = sgls[nr_descs - 1]; 1023 nr_descs--; 1024 } else { 1025 /* We do not have another SGL segment after this one. */ 1026 desc->length = 0; 1027 } 1028 1029 *nr_sgls = nr_descs; 1030 1031 return sgls; 1032 } 1033 1034 static int nvmet_pci_epf_iod_parse_sgl_segments(struct nvmet_pci_epf_ctrl *ctrl, 1035 struct nvmet_pci_epf_iod *iod) 1036 { 1037 struct nvme_command *cmd = &iod->cmd; 1038 struct nvme_sgl_desc seg = cmd->common.dptr.sgl; 1039 struct nvme_sgl_desc *sgls = NULL; 1040 int n = 0, i, nr_sgls; 1041 int ret; 1042 1043 /* 1044 * We do not support inline data nor keyed SGLs, so we should be seeing 1045 * only segment descriptors. 1046 */ 1047 if (seg.type != (NVME_SGL_FMT_SEG_DESC << 4) && 1048 seg.type != (NVME_SGL_FMT_LAST_SEG_DESC << 4)) { 1049 iod->status = NVME_SC_SGL_INVALID_TYPE | NVME_STATUS_DNR; 1050 return -EIO; 1051 } 1052 1053 while (seg.length) { 1054 sgls = nvmet_pci_epf_get_sgl_segment(ctrl, &seg, &nr_sgls); 1055 if (!sgls) { 1056 iod->status = NVME_SC_INTERNAL | NVME_STATUS_DNR; 1057 return -EIO; 1058 } 1059 1060 /* Grow the PCI segment table as needed. */ 1061 ret = nvmet_pci_epf_alloc_iod_data_segs(iod, nr_sgls); 1062 if (ret) { 1063 iod->status = NVME_SC_INTERNAL | NVME_STATUS_DNR; 1064 goto out; 1065 } 1066 1067 /* 1068 * Parse the SGL descriptors to build the PCI segment table, 1069 * checking the descriptor type as we go. 1070 */ 1071 for (i = 0; i < nr_sgls; i++) { 1072 if (sgls[i].type != (NVME_SGL_FMT_DATA_DESC << 4)) { 1073 iod->status = NVME_SC_SGL_INVALID_TYPE | 1074 NVME_STATUS_DNR; 1075 goto out; 1076 } 1077 iod->data_segs[n].pci_addr = le64_to_cpu(sgls[i].addr); 1078 iod->data_segs[n].length = le32_to_cpu(sgls[i].length); 1079 n++; 1080 } 1081 1082 kfree(sgls); 1083 } 1084 1085 out: 1086 if (iod->status != NVME_SC_SUCCESS) { 1087 kfree(sgls); 1088 return -EIO; 1089 } 1090 1091 return 0; 1092 } 1093 1094 static int nvmet_pci_epf_iod_parse_sgls(struct nvmet_pci_epf_iod *iod) 1095 { 1096 struct nvmet_pci_epf_ctrl *ctrl = iod->ctrl; 1097 struct nvme_sgl_desc *sgl = &iod->cmd.common.dptr.sgl; 1098 1099 if (sgl->type == (NVME_SGL_FMT_DATA_DESC << 4)) { 1100 /* Single data descriptor case. */ 1101 iod->nr_data_segs = 1; 1102 iod->data_segs = &iod->data_seg; 1103 iod->data_seg.pci_addr = le64_to_cpu(sgl->addr); 1104 iod->data_seg.length = le32_to_cpu(sgl->length); 1105 return 0; 1106 } 1107 1108 return nvmet_pci_epf_iod_parse_sgl_segments(ctrl, iod); 1109 } 1110 1111 static int nvmet_pci_epf_alloc_iod_data_buf(struct nvmet_pci_epf_iod *iod) 1112 { 1113 struct nvmet_pci_epf_ctrl *ctrl = iod->ctrl; 1114 struct nvmet_req *req = &iod->req; 1115 struct nvmet_pci_epf_segment *seg; 1116 struct scatterlist *sg; 1117 int ret, i; 1118 1119 if (iod->data_len > ctrl->mdts) { 1120 iod->status = NVME_SC_INVALID_FIELD | NVME_STATUS_DNR; 1121 return -EINVAL; 1122 } 1123 1124 /* 1125 * Get the PCI address segments for the command data buffer using either 1126 * its SGLs or PRPs. 1127 */ 1128 if (iod->cmd.common.flags & NVME_CMD_SGL_ALL) 1129 ret = nvmet_pci_epf_iod_parse_sgls(iod); 1130 else 1131 ret = nvmet_pci_epf_iod_parse_prps(iod); 1132 if (ret) 1133 return ret; 1134 1135 /* Get a command buffer using SGLs matching the PCI segments. */ 1136 if (iod->nr_data_segs == 1) { 1137 sg_init_table(&iod->data_sgl, 1); 1138 iod->data_sgt.sgl = &iod->data_sgl; 1139 iod->data_sgt.nents = 1; 1140 iod->data_sgt.orig_nents = 1; 1141 } else { 1142 ret = sg_alloc_table(&iod->data_sgt, iod->nr_data_segs, 1143 GFP_KERNEL); 1144 if (ret) 1145 goto err_nomem; 1146 } 1147 1148 for_each_sgtable_sg(&iod->data_sgt, sg, i) { 1149 seg = &iod->data_segs[i]; 1150 seg->buf = kmalloc(seg->length, GFP_KERNEL); 1151 if (!seg->buf) 1152 goto err_nomem; 1153 sg_set_buf(sg, seg->buf, seg->length); 1154 } 1155 1156 req->transfer_len = iod->data_len; 1157 req->sg = iod->data_sgt.sgl; 1158 req->sg_cnt = iod->data_sgt.nents; 1159 1160 return 0; 1161 1162 err_nomem: 1163 iod->status = NVME_SC_INTERNAL | NVME_STATUS_DNR; 1164 return -ENOMEM; 1165 } 1166 1167 static void nvmet_pci_epf_complete_iod(struct nvmet_pci_epf_iod *iod) 1168 { 1169 struct nvmet_pci_epf_queue *cq = iod->cq; 1170 unsigned long flags; 1171 1172 /* Print an error message for failed commands, except AENs. */ 1173 iod->status = le16_to_cpu(iod->cqe.status) >> 1; 1174 if (iod->status && iod->cmd.common.opcode != nvme_admin_async_event) 1175 dev_err(iod->ctrl->dev, 1176 "CQ[%d]: Command %s (0x%x) status 0x%0x\n", 1177 iod->sq->qid, nvmet_pci_epf_iod_name(iod), 1178 iod->cmd.common.opcode, iod->status); 1179 1180 /* 1181 * Add the command to the list of completed commands and schedule the 1182 * CQ work. 1183 */ 1184 spin_lock_irqsave(&cq->lock, flags); 1185 list_add_tail(&iod->link, &cq->list); 1186 queue_delayed_work(system_highpri_wq, &cq->work, 0); 1187 spin_unlock_irqrestore(&cq->lock, flags); 1188 } 1189 1190 static void nvmet_pci_epf_drain_queue(struct nvmet_pci_epf_queue *queue) 1191 { 1192 struct nvmet_pci_epf_iod *iod; 1193 unsigned long flags; 1194 1195 spin_lock_irqsave(&queue->lock, flags); 1196 while (!list_empty(&queue->list)) { 1197 iod = list_first_entry(&queue->list, struct nvmet_pci_epf_iod, 1198 link); 1199 list_del_init(&iod->link); 1200 nvmet_pci_epf_free_iod(iod); 1201 } 1202 spin_unlock_irqrestore(&queue->lock, flags); 1203 } 1204 1205 static int nvmet_pci_epf_add_port(struct nvmet_port *port) 1206 { 1207 mutex_lock(&nvmet_pci_epf_ports_mutex); 1208 list_add_tail(&port->entry, &nvmet_pci_epf_ports); 1209 mutex_unlock(&nvmet_pci_epf_ports_mutex); 1210 return 0; 1211 } 1212 1213 static void nvmet_pci_epf_remove_port(struct nvmet_port *port) 1214 { 1215 mutex_lock(&nvmet_pci_epf_ports_mutex); 1216 list_del_init(&port->entry); 1217 mutex_unlock(&nvmet_pci_epf_ports_mutex); 1218 } 1219 1220 static struct nvmet_port * 1221 nvmet_pci_epf_find_port(struct nvmet_pci_epf_ctrl *ctrl, __le16 portid) 1222 { 1223 struct nvmet_port *p, *port = NULL; 1224 1225 mutex_lock(&nvmet_pci_epf_ports_mutex); 1226 list_for_each_entry(p, &nvmet_pci_epf_ports, entry) { 1227 if (p->disc_addr.portid == portid) { 1228 port = p; 1229 break; 1230 } 1231 } 1232 mutex_unlock(&nvmet_pci_epf_ports_mutex); 1233 1234 return port; 1235 } 1236 1237 static void nvmet_pci_epf_queue_response(struct nvmet_req *req) 1238 { 1239 struct nvmet_pci_epf_iod *iod = 1240 container_of(req, struct nvmet_pci_epf_iod, req); 1241 1242 iod->status = le16_to_cpu(req->cqe->status) >> 1; 1243 1244 /* If we have no data to transfer, directly complete the command. */ 1245 if (!iod->data_len || iod->dma_dir != DMA_TO_DEVICE) { 1246 nvmet_pci_epf_complete_iod(iod); 1247 return; 1248 } 1249 1250 complete(&iod->done); 1251 } 1252 1253 static u8 nvmet_pci_epf_get_mdts(const struct nvmet_ctrl *tctrl) 1254 { 1255 struct nvmet_pci_epf_ctrl *ctrl = tctrl->drvdata; 1256 int page_shift = NVME_CAP_MPSMIN(tctrl->cap) + 12; 1257 1258 return ilog2(ctrl->mdts) - page_shift; 1259 } 1260 1261 static u16 nvmet_pci_epf_create_cq(struct nvmet_ctrl *tctrl, 1262 u16 cqid, u16 flags, u16 qsize, u64 pci_addr, u16 vector) 1263 { 1264 struct nvmet_pci_epf_ctrl *ctrl = tctrl->drvdata; 1265 struct nvmet_pci_epf_queue *cq = &ctrl->cq[cqid]; 1266 u16 status; 1267 1268 if (test_and_set_bit(NVMET_PCI_EPF_Q_LIVE, &cq->flags)) 1269 return NVME_SC_QID_INVALID | NVME_STATUS_DNR; 1270 1271 if (!(flags & NVME_QUEUE_PHYS_CONTIG)) 1272 return NVME_SC_INVALID_QUEUE | NVME_STATUS_DNR; 1273 1274 if (flags & NVME_CQ_IRQ_ENABLED) 1275 set_bit(NVMET_PCI_EPF_Q_IRQ_ENABLED, &cq->flags); 1276 1277 cq->pci_addr = pci_addr; 1278 cq->qid = cqid; 1279 cq->depth = qsize + 1; 1280 cq->vector = vector; 1281 cq->head = 0; 1282 cq->tail = 0; 1283 cq->phase = 1; 1284 cq->db = NVME_REG_DBS + (((cqid * 2) + 1) * sizeof(u32)); 1285 nvmet_pci_epf_bar_write32(ctrl, cq->db, 0); 1286 1287 if (!cqid) 1288 cq->qes = sizeof(struct nvme_completion); 1289 else 1290 cq->qes = ctrl->io_cqes; 1291 cq->pci_size = cq->qes * cq->depth; 1292 1293 cq->iv = nvmet_pci_epf_add_irq_vector(ctrl, vector); 1294 if (!cq->iv) { 1295 status = NVME_SC_INTERNAL | NVME_STATUS_DNR; 1296 goto err; 1297 } 1298 1299 status = nvmet_cq_create(tctrl, &cq->nvme_cq, cqid, cq->depth); 1300 if (status != NVME_SC_SUCCESS) 1301 goto err; 1302 1303 dev_dbg(ctrl->dev, "CQ[%u]: %u entries of %zu B, IRQ vector %u\n", 1304 cqid, qsize, cq->qes, cq->vector); 1305 1306 return NVME_SC_SUCCESS; 1307 1308 err: 1309 clear_bit(NVMET_PCI_EPF_Q_IRQ_ENABLED, &cq->flags); 1310 clear_bit(NVMET_PCI_EPF_Q_LIVE, &cq->flags); 1311 return status; 1312 } 1313 1314 static u16 nvmet_pci_epf_delete_cq(struct nvmet_ctrl *tctrl, u16 cqid) 1315 { 1316 struct nvmet_pci_epf_ctrl *ctrl = tctrl->drvdata; 1317 struct nvmet_pci_epf_queue *cq = &ctrl->cq[cqid]; 1318 1319 if (!test_and_clear_bit(NVMET_PCI_EPF_Q_LIVE, &cq->flags)) 1320 return NVME_SC_QID_INVALID | NVME_STATUS_DNR; 1321 1322 cancel_delayed_work_sync(&cq->work); 1323 nvmet_pci_epf_drain_queue(cq); 1324 nvmet_pci_epf_remove_irq_vector(ctrl, cq->vector); 1325 1326 return NVME_SC_SUCCESS; 1327 } 1328 1329 static u16 nvmet_pci_epf_create_sq(struct nvmet_ctrl *tctrl, 1330 u16 sqid, u16 flags, u16 qsize, u64 pci_addr) 1331 { 1332 struct nvmet_pci_epf_ctrl *ctrl = tctrl->drvdata; 1333 struct nvmet_pci_epf_queue *sq = &ctrl->sq[sqid]; 1334 u16 status; 1335 1336 if (test_and_set_bit(NVMET_PCI_EPF_Q_LIVE, &sq->flags)) 1337 return NVME_SC_QID_INVALID | NVME_STATUS_DNR; 1338 1339 if (!(flags & NVME_QUEUE_PHYS_CONTIG)) 1340 return NVME_SC_INVALID_QUEUE | NVME_STATUS_DNR; 1341 1342 sq->pci_addr = pci_addr; 1343 sq->qid = sqid; 1344 sq->depth = qsize + 1; 1345 sq->head = 0; 1346 sq->tail = 0; 1347 sq->phase = 0; 1348 sq->db = NVME_REG_DBS + (sqid * 2 * sizeof(u32)); 1349 nvmet_pci_epf_bar_write32(ctrl, sq->db, 0); 1350 if (!sqid) 1351 sq->qes = 1UL << NVME_ADM_SQES; 1352 else 1353 sq->qes = ctrl->io_sqes; 1354 sq->pci_size = sq->qes * sq->depth; 1355 1356 status = nvmet_sq_create(tctrl, &sq->nvme_sq, sqid, sq->depth); 1357 if (status != NVME_SC_SUCCESS) 1358 goto out_clear_bit; 1359 1360 sq->iod_wq = alloc_workqueue("sq%d_wq", WQ_UNBOUND, 1361 min_t(int, sq->depth, WQ_MAX_ACTIVE), sqid); 1362 if (!sq->iod_wq) { 1363 dev_err(ctrl->dev, "Failed to create SQ %d work queue\n", sqid); 1364 status = NVME_SC_INTERNAL | NVME_STATUS_DNR; 1365 goto out_destroy_sq; 1366 } 1367 1368 dev_dbg(ctrl->dev, "SQ[%u]: %u entries of %zu B\n", 1369 sqid, qsize, sq->qes); 1370 1371 return NVME_SC_SUCCESS; 1372 1373 out_destroy_sq: 1374 nvmet_sq_destroy(&sq->nvme_sq); 1375 out_clear_bit: 1376 clear_bit(NVMET_PCI_EPF_Q_LIVE, &sq->flags); 1377 return status; 1378 } 1379 1380 static u16 nvmet_pci_epf_delete_sq(struct nvmet_ctrl *tctrl, u16 sqid) 1381 { 1382 struct nvmet_pci_epf_ctrl *ctrl = tctrl->drvdata; 1383 struct nvmet_pci_epf_queue *sq = &ctrl->sq[sqid]; 1384 1385 if (!test_and_clear_bit(NVMET_PCI_EPF_Q_LIVE, &sq->flags)) 1386 return NVME_SC_QID_INVALID | NVME_STATUS_DNR; 1387 1388 flush_workqueue(sq->iod_wq); 1389 destroy_workqueue(sq->iod_wq); 1390 sq->iod_wq = NULL; 1391 1392 nvmet_pci_epf_drain_queue(sq); 1393 1394 if (sq->nvme_sq.ctrl) 1395 nvmet_sq_destroy(&sq->nvme_sq); 1396 1397 return NVME_SC_SUCCESS; 1398 } 1399 1400 static u16 nvmet_pci_epf_get_feat(const struct nvmet_ctrl *tctrl, 1401 u8 feat, void *data) 1402 { 1403 struct nvmet_pci_epf_ctrl *ctrl = tctrl->drvdata; 1404 struct nvmet_feat_arbitration *arb; 1405 struct nvmet_feat_irq_coalesce *irqc; 1406 struct nvmet_feat_irq_config *irqcfg; 1407 struct nvmet_pci_epf_irq_vector *iv; 1408 u16 status; 1409 1410 switch (feat) { 1411 case NVME_FEAT_ARBITRATION: 1412 arb = data; 1413 if (!ctrl->sq_ab) 1414 arb->ab = 0x7; 1415 else 1416 arb->ab = ilog2(ctrl->sq_ab); 1417 return NVME_SC_SUCCESS; 1418 1419 case NVME_FEAT_IRQ_COALESCE: 1420 irqc = data; 1421 irqc->thr = ctrl->irq_vector_threshold; 1422 irqc->time = 0; 1423 return NVME_SC_SUCCESS; 1424 1425 case NVME_FEAT_IRQ_CONFIG: 1426 irqcfg = data; 1427 mutex_lock(&ctrl->irq_lock); 1428 iv = nvmet_pci_epf_find_irq_vector(ctrl, irqcfg->iv); 1429 if (iv) { 1430 irqcfg->cd = iv->cd; 1431 status = NVME_SC_SUCCESS; 1432 } else { 1433 status = NVME_SC_INVALID_FIELD | NVME_STATUS_DNR; 1434 } 1435 mutex_unlock(&ctrl->irq_lock); 1436 return status; 1437 1438 default: 1439 return NVME_SC_INVALID_FIELD | NVME_STATUS_DNR; 1440 } 1441 } 1442 1443 static u16 nvmet_pci_epf_set_feat(const struct nvmet_ctrl *tctrl, 1444 u8 feat, void *data) 1445 { 1446 struct nvmet_pci_epf_ctrl *ctrl = tctrl->drvdata; 1447 struct nvmet_feat_arbitration *arb; 1448 struct nvmet_feat_irq_coalesce *irqc; 1449 struct nvmet_feat_irq_config *irqcfg; 1450 struct nvmet_pci_epf_irq_vector *iv; 1451 u16 status; 1452 1453 switch (feat) { 1454 case NVME_FEAT_ARBITRATION: 1455 arb = data; 1456 if (arb->ab == 0x7) 1457 ctrl->sq_ab = 0; 1458 else 1459 ctrl->sq_ab = 1 << arb->ab; 1460 return NVME_SC_SUCCESS; 1461 1462 case NVME_FEAT_IRQ_COALESCE: 1463 /* 1464 * Since we do not implement precise IRQ coalescing timing, 1465 * ignore the time field. 1466 */ 1467 irqc = data; 1468 ctrl->irq_vector_threshold = irqc->thr + 1; 1469 return NVME_SC_SUCCESS; 1470 1471 case NVME_FEAT_IRQ_CONFIG: 1472 irqcfg = data; 1473 mutex_lock(&ctrl->irq_lock); 1474 iv = nvmet_pci_epf_find_irq_vector(ctrl, irqcfg->iv); 1475 if (iv) { 1476 iv->cd = irqcfg->cd; 1477 status = NVME_SC_SUCCESS; 1478 } else { 1479 status = NVME_SC_INVALID_FIELD | NVME_STATUS_DNR; 1480 } 1481 mutex_unlock(&ctrl->irq_lock); 1482 return status; 1483 1484 default: 1485 return NVME_SC_INVALID_FIELD | NVME_STATUS_DNR; 1486 } 1487 } 1488 1489 static const struct nvmet_fabrics_ops nvmet_pci_epf_fabrics_ops = { 1490 .owner = THIS_MODULE, 1491 .type = NVMF_TRTYPE_PCI, 1492 .add_port = nvmet_pci_epf_add_port, 1493 .remove_port = nvmet_pci_epf_remove_port, 1494 .queue_response = nvmet_pci_epf_queue_response, 1495 .get_mdts = nvmet_pci_epf_get_mdts, 1496 .create_cq = nvmet_pci_epf_create_cq, 1497 .delete_cq = nvmet_pci_epf_delete_cq, 1498 .create_sq = nvmet_pci_epf_create_sq, 1499 .delete_sq = nvmet_pci_epf_delete_sq, 1500 .get_feature = nvmet_pci_epf_get_feat, 1501 .set_feature = nvmet_pci_epf_set_feat, 1502 }; 1503 1504 static void nvmet_pci_epf_cq_work(struct work_struct *work); 1505 1506 static void nvmet_pci_epf_init_queue(struct nvmet_pci_epf_ctrl *ctrl, 1507 unsigned int qid, bool sq) 1508 { 1509 struct nvmet_pci_epf_queue *queue; 1510 1511 if (sq) { 1512 queue = &ctrl->sq[qid]; 1513 set_bit(NVMET_PCI_EPF_Q_IS_SQ, &queue->flags); 1514 } else { 1515 queue = &ctrl->cq[qid]; 1516 INIT_DELAYED_WORK(&queue->work, nvmet_pci_epf_cq_work); 1517 } 1518 queue->ctrl = ctrl; 1519 queue->qid = qid; 1520 spin_lock_init(&queue->lock); 1521 INIT_LIST_HEAD(&queue->list); 1522 } 1523 1524 static int nvmet_pci_epf_alloc_queues(struct nvmet_pci_epf_ctrl *ctrl) 1525 { 1526 unsigned int qid; 1527 1528 ctrl->sq = kcalloc(ctrl->nr_queues, 1529 sizeof(struct nvmet_pci_epf_queue), GFP_KERNEL); 1530 if (!ctrl->sq) 1531 return -ENOMEM; 1532 1533 ctrl->cq = kcalloc(ctrl->nr_queues, 1534 sizeof(struct nvmet_pci_epf_queue), GFP_KERNEL); 1535 if (!ctrl->cq) { 1536 kfree(ctrl->sq); 1537 ctrl->sq = NULL; 1538 return -ENOMEM; 1539 } 1540 1541 for (qid = 0; qid < ctrl->nr_queues; qid++) { 1542 nvmet_pci_epf_init_queue(ctrl, qid, true); 1543 nvmet_pci_epf_init_queue(ctrl, qid, false); 1544 } 1545 1546 return 0; 1547 } 1548 1549 static void nvmet_pci_epf_free_queues(struct nvmet_pci_epf_ctrl *ctrl) 1550 { 1551 kfree(ctrl->sq); 1552 ctrl->sq = NULL; 1553 kfree(ctrl->cq); 1554 ctrl->cq = NULL; 1555 } 1556 1557 static int nvmet_pci_epf_map_queue(struct nvmet_pci_epf_ctrl *ctrl, 1558 struct nvmet_pci_epf_queue *queue) 1559 { 1560 struct nvmet_pci_epf *nvme_epf = ctrl->nvme_epf; 1561 int ret; 1562 1563 ret = nvmet_pci_epf_mem_map(nvme_epf, queue->pci_addr, 1564 queue->pci_size, &queue->pci_map); 1565 if (ret) { 1566 dev_err(ctrl->dev, "Failed to map queue %u (err=%d)\n", 1567 queue->qid, ret); 1568 return ret; 1569 } 1570 1571 if (queue->pci_map.pci_size < queue->pci_size) { 1572 dev_err(ctrl->dev, "Invalid partial mapping of queue %u\n", 1573 queue->qid); 1574 nvmet_pci_epf_mem_unmap(nvme_epf, &queue->pci_map); 1575 return -ENOMEM; 1576 } 1577 1578 return 0; 1579 } 1580 1581 static inline void nvmet_pci_epf_unmap_queue(struct nvmet_pci_epf_ctrl *ctrl, 1582 struct nvmet_pci_epf_queue *queue) 1583 { 1584 nvmet_pci_epf_mem_unmap(ctrl->nvme_epf, &queue->pci_map); 1585 } 1586 1587 static void nvmet_pci_epf_exec_iod_work(struct work_struct *work) 1588 { 1589 struct nvmet_pci_epf_iod *iod = 1590 container_of(work, struct nvmet_pci_epf_iod, work); 1591 struct nvmet_req *req = &iod->req; 1592 int ret; 1593 1594 if (!iod->ctrl->link_up) { 1595 nvmet_pci_epf_free_iod(iod); 1596 return; 1597 } 1598 1599 if (!test_bit(NVMET_PCI_EPF_Q_LIVE, &iod->sq->flags)) { 1600 iod->status = NVME_SC_QID_INVALID | NVME_STATUS_DNR; 1601 goto complete; 1602 } 1603 1604 if (!nvmet_req_init(req, &iod->cq->nvme_cq, &iod->sq->nvme_sq, 1605 &nvmet_pci_epf_fabrics_ops)) 1606 goto complete; 1607 1608 iod->data_len = nvmet_req_transfer_len(req); 1609 if (iod->data_len) { 1610 /* 1611 * Get the data DMA transfer direction. Here "device" means the 1612 * PCI root-complex host. 1613 */ 1614 if (nvme_is_write(&iod->cmd)) 1615 iod->dma_dir = DMA_FROM_DEVICE; 1616 else 1617 iod->dma_dir = DMA_TO_DEVICE; 1618 1619 /* 1620 * Setup the command data buffer and get the command data from 1621 * the host if needed. 1622 */ 1623 ret = nvmet_pci_epf_alloc_iod_data_buf(iod); 1624 if (!ret && iod->dma_dir == DMA_FROM_DEVICE) 1625 ret = nvmet_pci_epf_transfer_iod_data(iod); 1626 if (ret) { 1627 nvmet_req_uninit(req); 1628 goto complete; 1629 } 1630 } 1631 1632 req->execute(req); 1633 1634 /* 1635 * If we do not have data to transfer after the command execution 1636 * finishes, nvmet_pci_epf_queue_response() will complete the command 1637 * directly. No need to wait for the completion in this case. 1638 */ 1639 if (!iod->data_len || iod->dma_dir != DMA_TO_DEVICE) 1640 return; 1641 1642 wait_for_completion(&iod->done); 1643 1644 if (iod->status == NVME_SC_SUCCESS) { 1645 WARN_ON_ONCE(!iod->data_len || iod->dma_dir != DMA_TO_DEVICE); 1646 nvmet_pci_epf_transfer_iod_data(iod); 1647 } 1648 1649 complete: 1650 nvmet_pci_epf_complete_iod(iod); 1651 } 1652 1653 static int nvmet_pci_epf_process_sq(struct nvmet_pci_epf_ctrl *ctrl, 1654 struct nvmet_pci_epf_queue *sq) 1655 { 1656 struct nvmet_pci_epf_iod *iod; 1657 int ret, n = 0; 1658 1659 sq->tail = nvmet_pci_epf_bar_read32(ctrl, sq->db); 1660 while (sq->head != sq->tail && (!ctrl->sq_ab || n < ctrl->sq_ab)) { 1661 iod = nvmet_pci_epf_alloc_iod(sq); 1662 if (!iod) 1663 break; 1664 1665 /* Get the NVMe command submitted by the host. */ 1666 ret = nvmet_pci_epf_transfer(ctrl, &iod->cmd, 1667 sq->pci_addr + sq->head * sq->qes, 1668 sq->qes, DMA_FROM_DEVICE); 1669 if (ret) { 1670 /* Not much we can do... */ 1671 nvmet_pci_epf_free_iod(iod); 1672 break; 1673 } 1674 1675 dev_dbg(ctrl->dev, "SQ[%u]: head %u, tail %u, command %s\n", 1676 sq->qid, sq->head, sq->tail, 1677 nvmet_pci_epf_iod_name(iod)); 1678 1679 sq->head++; 1680 if (sq->head == sq->depth) 1681 sq->head = 0; 1682 n++; 1683 1684 queue_work_on(WORK_CPU_UNBOUND, sq->iod_wq, &iod->work); 1685 1686 sq->tail = nvmet_pci_epf_bar_read32(ctrl, sq->db); 1687 } 1688 1689 return n; 1690 } 1691 1692 static void nvmet_pci_epf_poll_sqs_work(struct work_struct *work) 1693 { 1694 struct nvmet_pci_epf_ctrl *ctrl = 1695 container_of(work, struct nvmet_pci_epf_ctrl, poll_sqs.work); 1696 struct nvmet_pci_epf_queue *sq; 1697 unsigned long last = 0; 1698 int i, nr_sqs; 1699 1700 while (ctrl->link_up && ctrl->enabled) { 1701 nr_sqs = 0; 1702 /* Do round-robin arbitration. */ 1703 for (i = 0; i < ctrl->nr_queues; i++) { 1704 sq = &ctrl->sq[i]; 1705 if (!test_bit(NVMET_PCI_EPF_Q_LIVE, &sq->flags)) 1706 continue; 1707 if (nvmet_pci_epf_process_sq(ctrl, sq)) 1708 nr_sqs++; 1709 } 1710 1711 if (nr_sqs) { 1712 last = jiffies; 1713 continue; 1714 } 1715 1716 /* 1717 * If we have not received any command on any queue for more 1718 * than NVMET_PCI_EPF_SQ_POLL_IDLE, assume we are idle and 1719 * reschedule. This avoids "burning" a CPU when the controller 1720 * is idle for a long time. 1721 */ 1722 if (time_is_before_jiffies(last + NVMET_PCI_EPF_SQ_POLL_IDLE)) 1723 break; 1724 1725 cpu_relax(); 1726 } 1727 1728 schedule_delayed_work(&ctrl->poll_sqs, NVMET_PCI_EPF_SQ_POLL_INTERVAL); 1729 } 1730 1731 static void nvmet_pci_epf_cq_work(struct work_struct *work) 1732 { 1733 struct nvmet_pci_epf_queue *cq = 1734 container_of(work, struct nvmet_pci_epf_queue, work.work); 1735 struct nvmet_pci_epf_ctrl *ctrl = cq->ctrl; 1736 struct nvme_completion *cqe; 1737 struct nvmet_pci_epf_iod *iod; 1738 unsigned long flags; 1739 int ret, n = 0; 1740 1741 ret = nvmet_pci_epf_map_queue(ctrl, cq); 1742 if (ret) 1743 goto again; 1744 1745 while (test_bit(NVMET_PCI_EPF_Q_LIVE, &cq->flags) && ctrl->link_up) { 1746 1747 /* Check that the CQ is not full. */ 1748 cq->head = nvmet_pci_epf_bar_read32(ctrl, cq->db); 1749 if (cq->head == cq->tail + 1) { 1750 ret = -EAGAIN; 1751 break; 1752 } 1753 1754 spin_lock_irqsave(&cq->lock, flags); 1755 iod = list_first_entry_or_null(&cq->list, 1756 struct nvmet_pci_epf_iod, link); 1757 if (iod) 1758 list_del_init(&iod->link); 1759 spin_unlock_irqrestore(&cq->lock, flags); 1760 1761 if (!iod) 1762 break; 1763 1764 /* Post the IOD completion entry. */ 1765 cqe = &iod->cqe; 1766 cqe->status = cpu_to_le16((iod->status << 1) | cq->phase); 1767 1768 dev_dbg(ctrl->dev, 1769 "CQ[%u]: %s status 0x%x, result 0x%llx, head %u, tail %u, phase %u\n", 1770 cq->qid, nvmet_pci_epf_iod_name(iod), iod->status, 1771 le64_to_cpu(cqe->result.u64), cq->head, cq->tail, 1772 cq->phase); 1773 1774 memcpy_toio(cq->pci_map.virt_addr + cq->tail * cq->qes, 1775 cqe, cq->qes); 1776 1777 cq->tail++; 1778 if (cq->tail >= cq->depth) { 1779 cq->tail = 0; 1780 cq->phase ^= 1; 1781 } 1782 1783 nvmet_pci_epf_free_iod(iod); 1784 1785 /* Signal the host. */ 1786 nvmet_pci_epf_raise_irq(ctrl, cq, false); 1787 n++; 1788 } 1789 1790 nvmet_pci_epf_unmap_queue(ctrl, cq); 1791 1792 /* 1793 * We do not support precise IRQ coalescing time (100ns units as per 1794 * NVMe specifications). So if we have posted completion entries without 1795 * reaching the interrupt coalescing threshold, raise an interrupt. 1796 */ 1797 if (n) 1798 nvmet_pci_epf_raise_irq(ctrl, cq, true); 1799 1800 again: 1801 if (ret < 0) 1802 queue_delayed_work(system_highpri_wq, &cq->work, 1803 NVMET_PCI_EPF_CQ_RETRY_INTERVAL); 1804 } 1805 1806 static int nvmet_pci_epf_enable_ctrl(struct nvmet_pci_epf_ctrl *ctrl) 1807 { 1808 u64 pci_addr, asq, acq; 1809 u32 aqa; 1810 u16 status, qsize; 1811 1812 if (ctrl->enabled) 1813 return 0; 1814 1815 dev_info(ctrl->dev, "Enabling controller\n"); 1816 1817 ctrl->mps_shift = nvmet_cc_mps(ctrl->cc) + 12; 1818 ctrl->mps = 1UL << ctrl->mps_shift; 1819 ctrl->mps_mask = ctrl->mps - 1; 1820 1821 ctrl->io_sqes = 1UL << nvmet_cc_iosqes(ctrl->cc); 1822 if (ctrl->io_sqes < sizeof(struct nvme_command)) { 1823 dev_err(ctrl->dev, "Unsupported I/O SQES %zu (need %zu)\n", 1824 ctrl->io_sqes, sizeof(struct nvme_command)); 1825 return -EINVAL; 1826 } 1827 1828 ctrl->io_cqes = 1UL << nvmet_cc_iocqes(ctrl->cc); 1829 if (ctrl->io_cqes < sizeof(struct nvme_completion)) { 1830 dev_err(ctrl->dev, "Unsupported I/O CQES %zu (need %zu)\n", 1831 ctrl->io_sqes, sizeof(struct nvme_completion)); 1832 return -EINVAL; 1833 } 1834 1835 /* Create the admin queue. */ 1836 aqa = nvmet_pci_epf_bar_read32(ctrl, NVME_REG_AQA); 1837 asq = nvmet_pci_epf_bar_read64(ctrl, NVME_REG_ASQ); 1838 acq = nvmet_pci_epf_bar_read64(ctrl, NVME_REG_ACQ); 1839 1840 qsize = (aqa & 0x0fff0000) >> 16; 1841 pci_addr = acq & GENMASK_ULL(63, 12); 1842 status = nvmet_pci_epf_create_cq(ctrl->tctrl, 0, 1843 NVME_CQ_IRQ_ENABLED | NVME_QUEUE_PHYS_CONTIG, 1844 qsize, pci_addr, 0); 1845 if (status != NVME_SC_SUCCESS) { 1846 dev_err(ctrl->dev, "Failed to create admin completion queue\n"); 1847 return -EINVAL; 1848 } 1849 1850 qsize = aqa & 0x00000fff; 1851 pci_addr = asq & GENMASK_ULL(63, 12); 1852 status = nvmet_pci_epf_create_sq(ctrl->tctrl, 0, NVME_QUEUE_PHYS_CONTIG, 1853 qsize, pci_addr); 1854 if (status != NVME_SC_SUCCESS) { 1855 dev_err(ctrl->dev, "Failed to create admin submission queue\n"); 1856 nvmet_pci_epf_delete_cq(ctrl->tctrl, 0); 1857 return -EINVAL; 1858 } 1859 1860 ctrl->sq_ab = NVMET_PCI_EPF_SQ_AB; 1861 ctrl->irq_vector_threshold = NVMET_PCI_EPF_IV_THRESHOLD; 1862 ctrl->enabled = true; 1863 1864 /* Start polling the controller SQs. */ 1865 schedule_delayed_work(&ctrl->poll_sqs, 0); 1866 1867 return 0; 1868 } 1869 1870 static void nvmet_pci_epf_disable_ctrl(struct nvmet_pci_epf_ctrl *ctrl) 1871 { 1872 int qid; 1873 1874 if (!ctrl->enabled) 1875 return; 1876 1877 dev_info(ctrl->dev, "Disabling controller\n"); 1878 1879 ctrl->enabled = false; 1880 cancel_delayed_work_sync(&ctrl->poll_sqs); 1881 1882 /* Delete all I/O queues first. */ 1883 for (qid = 1; qid < ctrl->nr_queues; qid++) 1884 nvmet_pci_epf_delete_sq(ctrl->tctrl, qid); 1885 1886 for (qid = 1; qid < ctrl->nr_queues; qid++) 1887 nvmet_pci_epf_delete_cq(ctrl->tctrl, qid); 1888 1889 /* Delete the admin queue last. */ 1890 nvmet_pci_epf_delete_sq(ctrl->tctrl, 0); 1891 nvmet_pci_epf_delete_cq(ctrl->tctrl, 0); 1892 } 1893 1894 static void nvmet_pci_epf_poll_cc_work(struct work_struct *work) 1895 { 1896 struct nvmet_pci_epf_ctrl *ctrl = 1897 container_of(work, struct nvmet_pci_epf_ctrl, poll_cc.work); 1898 u32 old_cc, new_cc; 1899 int ret; 1900 1901 if (!ctrl->tctrl) 1902 return; 1903 1904 old_cc = ctrl->cc; 1905 new_cc = nvmet_pci_epf_bar_read32(ctrl, NVME_REG_CC); 1906 ctrl->cc = new_cc; 1907 1908 if (nvmet_cc_en(new_cc) && !nvmet_cc_en(old_cc)) { 1909 ret = nvmet_pci_epf_enable_ctrl(ctrl); 1910 if (ret) 1911 return; 1912 ctrl->csts |= NVME_CSTS_RDY; 1913 } 1914 1915 if (!nvmet_cc_en(new_cc) && nvmet_cc_en(old_cc)) { 1916 nvmet_pci_epf_disable_ctrl(ctrl); 1917 ctrl->csts &= ~NVME_CSTS_RDY; 1918 } 1919 1920 if (nvmet_cc_shn(new_cc) && !nvmet_cc_shn(old_cc)) { 1921 nvmet_pci_epf_disable_ctrl(ctrl); 1922 ctrl->csts |= NVME_CSTS_SHST_CMPLT; 1923 } 1924 1925 if (!nvmet_cc_shn(new_cc) && nvmet_cc_shn(old_cc)) 1926 ctrl->csts &= ~NVME_CSTS_SHST_CMPLT; 1927 1928 nvmet_update_cc(ctrl->tctrl, ctrl->cc); 1929 nvmet_pci_epf_bar_write32(ctrl, NVME_REG_CSTS, ctrl->csts); 1930 1931 schedule_delayed_work(&ctrl->poll_cc, NVMET_PCI_EPF_CC_POLL_INTERVAL); 1932 } 1933 1934 static void nvmet_pci_epf_init_bar(struct nvmet_pci_epf_ctrl *ctrl) 1935 { 1936 struct nvmet_ctrl *tctrl = ctrl->tctrl; 1937 1938 ctrl->bar = ctrl->nvme_epf->reg_bar; 1939 1940 /* Copy the target controller capabilities as a base. */ 1941 ctrl->cap = tctrl->cap; 1942 1943 /* Contiguous Queues Required (CQR). */ 1944 ctrl->cap |= 0x1ULL << 16; 1945 1946 /* Set Doorbell stride to 4B (DSTRB). */ 1947 ctrl->cap &= ~GENMASK_ULL(35, 32); 1948 1949 /* Clear NVM Subsystem Reset Supported (NSSRS). */ 1950 ctrl->cap &= ~(0x1ULL << 36); 1951 1952 /* Clear Boot Partition Support (BPS). */ 1953 ctrl->cap &= ~(0x1ULL << 45); 1954 1955 /* Clear Persistent Memory Region Supported (PMRS). */ 1956 ctrl->cap &= ~(0x1ULL << 56); 1957 1958 /* Clear Controller Memory Buffer Supported (CMBS). */ 1959 ctrl->cap &= ~(0x1ULL << 57); 1960 1961 /* Controller configuration. */ 1962 ctrl->cc = tctrl->cc & (~NVME_CC_ENABLE); 1963 1964 /* Controller status. */ 1965 ctrl->csts = ctrl->tctrl->csts; 1966 1967 nvmet_pci_epf_bar_write64(ctrl, NVME_REG_CAP, ctrl->cap); 1968 nvmet_pci_epf_bar_write32(ctrl, NVME_REG_VS, tctrl->subsys->ver); 1969 nvmet_pci_epf_bar_write32(ctrl, NVME_REG_CSTS, ctrl->csts); 1970 nvmet_pci_epf_bar_write32(ctrl, NVME_REG_CC, ctrl->cc); 1971 } 1972 1973 static int nvmet_pci_epf_create_ctrl(struct nvmet_pci_epf *nvme_epf, 1974 unsigned int max_nr_queues) 1975 { 1976 struct nvmet_pci_epf_ctrl *ctrl = &nvme_epf->ctrl; 1977 struct nvmet_alloc_ctrl_args args = {}; 1978 char hostnqn[NVMF_NQN_SIZE]; 1979 uuid_t id; 1980 int ret; 1981 1982 memset(ctrl, 0, sizeof(*ctrl)); 1983 ctrl->dev = &nvme_epf->epf->dev; 1984 mutex_init(&ctrl->irq_lock); 1985 ctrl->nvme_epf = nvme_epf; 1986 ctrl->mdts = nvme_epf->mdts_kb * SZ_1K; 1987 INIT_DELAYED_WORK(&ctrl->poll_cc, nvmet_pci_epf_poll_cc_work); 1988 INIT_DELAYED_WORK(&ctrl->poll_sqs, nvmet_pci_epf_poll_sqs_work); 1989 1990 ret = mempool_init_kmalloc_pool(&ctrl->iod_pool, 1991 max_nr_queues * NVMET_MAX_QUEUE_SIZE, 1992 sizeof(struct nvmet_pci_epf_iod)); 1993 if (ret) { 1994 dev_err(ctrl->dev, "Failed to initialize IOD mempool\n"); 1995 return ret; 1996 } 1997 1998 ctrl->port = nvmet_pci_epf_find_port(ctrl, nvme_epf->portid); 1999 if (!ctrl->port) { 2000 dev_err(ctrl->dev, "Port not found\n"); 2001 ret = -EINVAL; 2002 goto out_mempool_exit; 2003 } 2004 2005 /* Create the target controller. */ 2006 uuid_gen(&id); 2007 snprintf(hostnqn, NVMF_NQN_SIZE, 2008 "nqn.2014-08.org.nvmexpress:uuid:%pUb", &id); 2009 args.port = ctrl->port; 2010 args.subsysnqn = nvme_epf->subsysnqn; 2011 memset(&id, 0, sizeof(uuid_t)); 2012 args.hostid = &id; 2013 args.hostnqn = hostnqn; 2014 args.ops = &nvmet_pci_epf_fabrics_ops; 2015 2016 ctrl->tctrl = nvmet_alloc_ctrl(&args); 2017 if (!ctrl->tctrl) { 2018 dev_err(ctrl->dev, "Failed to create target controller\n"); 2019 ret = -ENOMEM; 2020 goto out_mempool_exit; 2021 } 2022 ctrl->tctrl->drvdata = ctrl; 2023 2024 /* We do not support protection information for now. */ 2025 if (ctrl->tctrl->pi_support) { 2026 dev_err(ctrl->dev, 2027 "Protection information (PI) is not supported\n"); 2028 ret = -ENOTSUPP; 2029 goto out_put_ctrl; 2030 } 2031 2032 /* Allocate our queues, up to the maximum number. */ 2033 ctrl->nr_queues = min(ctrl->tctrl->subsys->max_qid + 1, max_nr_queues); 2034 ret = nvmet_pci_epf_alloc_queues(ctrl); 2035 if (ret) 2036 goto out_put_ctrl; 2037 2038 /* 2039 * Allocate the IRQ vectors descriptors. We cannot have more than the 2040 * maximum number of queues. 2041 */ 2042 ret = nvmet_pci_epf_alloc_irq_vectors(ctrl); 2043 if (ret) 2044 goto out_free_queues; 2045 2046 dev_info(ctrl->dev, 2047 "New PCI ctrl \"%s\", %u I/O queues, mdts %u B\n", 2048 ctrl->tctrl->subsys->subsysnqn, ctrl->nr_queues - 1, 2049 ctrl->mdts); 2050 2051 /* Initialize BAR 0 using the target controller CAP. */ 2052 nvmet_pci_epf_init_bar(ctrl); 2053 2054 return 0; 2055 2056 out_free_queues: 2057 nvmet_pci_epf_free_queues(ctrl); 2058 out_put_ctrl: 2059 nvmet_ctrl_put(ctrl->tctrl); 2060 ctrl->tctrl = NULL; 2061 out_mempool_exit: 2062 mempool_exit(&ctrl->iod_pool); 2063 return ret; 2064 } 2065 2066 static void nvmet_pci_epf_start_ctrl(struct nvmet_pci_epf_ctrl *ctrl) 2067 { 2068 schedule_delayed_work(&ctrl->poll_cc, NVMET_PCI_EPF_CC_POLL_INTERVAL); 2069 } 2070 2071 static void nvmet_pci_epf_stop_ctrl(struct nvmet_pci_epf_ctrl *ctrl) 2072 { 2073 cancel_delayed_work_sync(&ctrl->poll_cc); 2074 2075 nvmet_pci_epf_disable_ctrl(ctrl); 2076 } 2077 2078 static void nvmet_pci_epf_destroy_ctrl(struct nvmet_pci_epf_ctrl *ctrl) 2079 { 2080 if (!ctrl->tctrl) 2081 return; 2082 2083 dev_info(ctrl->dev, "Destroying PCI ctrl \"%s\"\n", 2084 ctrl->tctrl->subsys->subsysnqn); 2085 2086 nvmet_pci_epf_stop_ctrl(ctrl); 2087 2088 nvmet_pci_epf_free_queues(ctrl); 2089 nvmet_pci_epf_free_irq_vectors(ctrl); 2090 2091 nvmet_ctrl_put(ctrl->tctrl); 2092 ctrl->tctrl = NULL; 2093 2094 mempool_exit(&ctrl->iod_pool); 2095 } 2096 2097 static int nvmet_pci_epf_configure_bar(struct nvmet_pci_epf *nvme_epf) 2098 { 2099 struct pci_epf *epf = nvme_epf->epf; 2100 const struct pci_epc_features *epc_features = nvme_epf->epc_features; 2101 size_t reg_size, reg_bar_size; 2102 size_t msix_table_size = 0; 2103 2104 /* 2105 * The first free BAR will be our register BAR and per NVMe 2106 * specifications, it must be BAR 0. 2107 */ 2108 if (pci_epc_get_first_free_bar(epc_features) != BAR_0) { 2109 dev_err(&epf->dev, "BAR 0 is not free\n"); 2110 return -ENODEV; 2111 } 2112 2113 if (epc_features->bar[BAR_0].only_64bit) 2114 epf->bar[BAR_0].flags |= PCI_BASE_ADDRESS_MEM_TYPE_64; 2115 2116 /* 2117 * Calculate the size of the register bar: NVMe registers first with 2118 * enough space for the doorbells, followed by the MSI-X table 2119 * if supported. 2120 */ 2121 reg_size = NVME_REG_DBS + (NVMET_NR_QUEUES * 2 * sizeof(u32)); 2122 reg_size = ALIGN(reg_size, 8); 2123 2124 if (epc_features->msix_capable) { 2125 size_t pba_size; 2126 2127 msix_table_size = PCI_MSIX_ENTRY_SIZE * epf->msix_interrupts; 2128 nvme_epf->msix_table_offset = reg_size; 2129 pba_size = ALIGN(DIV_ROUND_UP(epf->msix_interrupts, 8), 8); 2130 2131 reg_size += msix_table_size + pba_size; 2132 } 2133 2134 if (epc_features->bar[BAR_0].type == BAR_FIXED) { 2135 if (reg_size > epc_features->bar[BAR_0].fixed_size) { 2136 dev_err(&epf->dev, 2137 "BAR 0 size %llu B too small, need %zu B\n", 2138 epc_features->bar[BAR_0].fixed_size, 2139 reg_size); 2140 return -ENOMEM; 2141 } 2142 reg_bar_size = epc_features->bar[BAR_0].fixed_size; 2143 } else { 2144 reg_bar_size = ALIGN(reg_size, max(epc_features->align, 4096)); 2145 } 2146 2147 nvme_epf->reg_bar = pci_epf_alloc_space(epf, reg_bar_size, BAR_0, 2148 epc_features, PRIMARY_INTERFACE); 2149 if (!nvme_epf->reg_bar) { 2150 dev_err(&epf->dev, "Failed to allocate BAR 0\n"); 2151 return -ENOMEM; 2152 } 2153 memset(nvme_epf->reg_bar, 0, reg_bar_size); 2154 2155 return 0; 2156 } 2157 2158 static void nvmet_pci_epf_free_bar(struct nvmet_pci_epf *nvme_epf) 2159 { 2160 struct pci_epf *epf = nvme_epf->epf; 2161 2162 if (!nvme_epf->reg_bar) 2163 return; 2164 2165 pci_epf_free_space(epf, nvme_epf->reg_bar, BAR_0, PRIMARY_INTERFACE); 2166 nvme_epf->reg_bar = NULL; 2167 } 2168 2169 static void nvmet_pci_epf_clear_bar(struct nvmet_pci_epf *nvme_epf) 2170 { 2171 struct pci_epf *epf = nvme_epf->epf; 2172 2173 pci_epc_clear_bar(epf->epc, epf->func_no, epf->vfunc_no, 2174 &epf->bar[BAR_0]); 2175 } 2176 2177 static int nvmet_pci_epf_init_irq(struct nvmet_pci_epf *nvme_epf) 2178 { 2179 const struct pci_epc_features *epc_features = nvme_epf->epc_features; 2180 struct pci_epf *epf = nvme_epf->epf; 2181 int ret; 2182 2183 /* Enable MSI-X if supported, otherwise, use MSI. */ 2184 if (epc_features->msix_capable && epf->msix_interrupts) { 2185 ret = pci_epc_set_msix(epf->epc, epf->func_no, epf->vfunc_no, 2186 epf->msix_interrupts, BAR_0, 2187 nvme_epf->msix_table_offset); 2188 if (ret) { 2189 dev_err(&epf->dev, "Failed to configure MSI-X\n"); 2190 return ret; 2191 } 2192 2193 nvme_epf->nr_vectors = epf->msix_interrupts; 2194 nvme_epf->irq_type = PCI_IRQ_MSIX; 2195 2196 return 0; 2197 } 2198 2199 if (epc_features->msi_capable && epf->msi_interrupts) { 2200 ret = pci_epc_set_msi(epf->epc, epf->func_no, epf->vfunc_no, 2201 epf->msi_interrupts); 2202 if (ret) { 2203 dev_err(&epf->dev, "Failed to configure MSI\n"); 2204 return ret; 2205 } 2206 2207 nvme_epf->nr_vectors = epf->msi_interrupts; 2208 nvme_epf->irq_type = PCI_IRQ_MSI; 2209 2210 return 0; 2211 } 2212 2213 /* MSI and MSI-X are not supported: fall back to INTx. */ 2214 nvme_epf->nr_vectors = 1; 2215 nvme_epf->irq_type = PCI_IRQ_INTX; 2216 2217 return 0; 2218 } 2219 2220 static int nvmet_pci_epf_epc_init(struct pci_epf *epf) 2221 { 2222 struct nvmet_pci_epf *nvme_epf = epf_get_drvdata(epf); 2223 const struct pci_epc_features *epc_features = nvme_epf->epc_features; 2224 struct nvmet_pci_epf_ctrl *ctrl = &nvme_epf->ctrl; 2225 unsigned int max_nr_queues = NVMET_NR_QUEUES; 2226 int ret; 2227 2228 /* For now, do not support virtual functions. */ 2229 if (epf->vfunc_no > 0) { 2230 dev_err(&epf->dev, "Virtual functions are not supported\n"); 2231 return -EINVAL; 2232 } 2233 2234 /* 2235 * Cap the maximum number of queues we can support on the controller 2236 * with the number of IRQs we can use. 2237 */ 2238 if (epc_features->msix_capable && epf->msix_interrupts) { 2239 dev_info(&epf->dev, 2240 "PCI endpoint controller supports MSI-X, %u vectors\n", 2241 epf->msix_interrupts); 2242 max_nr_queues = min(max_nr_queues, epf->msix_interrupts); 2243 } else if (epc_features->msi_capable && epf->msi_interrupts) { 2244 dev_info(&epf->dev, 2245 "PCI endpoint controller supports MSI, %u vectors\n", 2246 epf->msi_interrupts); 2247 max_nr_queues = min(max_nr_queues, epf->msi_interrupts); 2248 } 2249 2250 if (max_nr_queues < 2) { 2251 dev_err(&epf->dev, "Invalid maximum number of queues %u\n", 2252 max_nr_queues); 2253 return -EINVAL; 2254 } 2255 2256 /* Create the target controller. */ 2257 ret = nvmet_pci_epf_create_ctrl(nvme_epf, max_nr_queues); 2258 if (ret) { 2259 dev_err(&epf->dev, 2260 "Failed to create NVMe PCI target controller (err=%d)\n", 2261 ret); 2262 return ret; 2263 } 2264 2265 /* Set device ID, class, etc. */ 2266 epf->header->vendorid = ctrl->tctrl->subsys->vendor_id; 2267 epf->header->subsys_vendor_id = ctrl->tctrl->subsys->subsys_vendor_id; 2268 ret = pci_epc_write_header(epf->epc, epf->func_no, epf->vfunc_no, 2269 epf->header); 2270 if (ret) { 2271 dev_err(&epf->dev, 2272 "Failed to write configuration header (err=%d)\n", ret); 2273 goto out_destroy_ctrl; 2274 } 2275 2276 ret = pci_epc_set_bar(epf->epc, epf->func_no, epf->vfunc_no, 2277 &epf->bar[BAR_0]); 2278 if (ret) { 2279 dev_err(&epf->dev, "Failed to set BAR 0 (err=%d)\n", ret); 2280 goto out_destroy_ctrl; 2281 } 2282 2283 /* 2284 * Enable interrupts and start polling the controller BAR if we do not 2285 * have a link up notifier. 2286 */ 2287 ret = nvmet_pci_epf_init_irq(nvme_epf); 2288 if (ret) 2289 goto out_clear_bar; 2290 2291 if (!epc_features->linkup_notifier) { 2292 ctrl->link_up = true; 2293 nvmet_pci_epf_start_ctrl(&nvme_epf->ctrl); 2294 } 2295 2296 return 0; 2297 2298 out_clear_bar: 2299 nvmet_pci_epf_clear_bar(nvme_epf); 2300 out_destroy_ctrl: 2301 nvmet_pci_epf_destroy_ctrl(&nvme_epf->ctrl); 2302 return ret; 2303 } 2304 2305 static void nvmet_pci_epf_epc_deinit(struct pci_epf *epf) 2306 { 2307 struct nvmet_pci_epf *nvme_epf = epf_get_drvdata(epf); 2308 struct nvmet_pci_epf_ctrl *ctrl = &nvme_epf->ctrl; 2309 2310 ctrl->link_up = false; 2311 nvmet_pci_epf_destroy_ctrl(ctrl); 2312 2313 nvmet_pci_epf_deinit_dma(nvme_epf); 2314 nvmet_pci_epf_clear_bar(nvme_epf); 2315 } 2316 2317 static int nvmet_pci_epf_link_up(struct pci_epf *epf) 2318 { 2319 struct nvmet_pci_epf *nvme_epf = epf_get_drvdata(epf); 2320 struct nvmet_pci_epf_ctrl *ctrl = &nvme_epf->ctrl; 2321 2322 ctrl->link_up = true; 2323 nvmet_pci_epf_start_ctrl(ctrl); 2324 2325 return 0; 2326 } 2327 2328 static int nvmet_pci_epf_link_down(struct pci_epf *epf) 2329 { 2330 struct nvmet_pci_epf *nvme_epf = epf_get_drvdata(epf); 2331 struct nvmet_pci_epf_ctrl *ctrl = &nvme_epf->ctrl; 2332 2333 ctrl->link_up = false; 2334 nvmet_pci_epf_stop_ctrl(ctrl); 2335 2336 return 0; 2337 } 2338 2339 static const struct pci_epc_event_ops nvmet_pci_epf_event_ops = { 2340 .epc_init = nvmet_pci_epf_epc_init, 2341 .epc_deinit = nvmet_pci_epf_epc_deinit, 2342 .link_up = nvmet_pci_epf_link_up, 2343 .link_down = nvmet_pci_epf_link_down, 2344 }; 2345 2346 static int nvmet_pci_epf_bind(struct pci_epf *epf) 2347 { 2348 struct nvmet_pci_epf *nvme_epf = epf_get_drvdata(epf); 2349 const struct pci_epc_features *epc_features; 2350 struct pci_epc *epc = epf->epc; 2351 int ret; 2352 2353 if (WARN_ON_ONCE(!epc)) 2354 return -EINVAL; 2355 2356 epc_features = pci_epc_get_features(epc, epf->func_no, epf->vfunc_no); 2357 if (!epc_features) { 2358 dev_err(&epf->dev, "epc_features not implemented\n"); 2359 return -EOPNOTSUPP; 2360 } 2361 nvme_epf->epc_features = epc_features; 2362 2363 ret = nvmet_pci_epf_configure_bar(nvme_epf); 2364 if (ret) 2365 return ret; 2366 2367 nvmet_pci_epf_init_dma(nvme_epf); 2368 2369 return 0; 2370 } 2371 2372 static void nvmet_pci_epf_unbind(struct pci_epf *epf) 2373 { 2374 struct nvmet_pci_epf *nvme_epf = epf_get_drvdata(epf); 2375 struct pci_epc *epc = epf->epc; 2376 2377 nvmet_pci_epf_destroy_ctrl(&nvme_epf->ctrl); 2378 2379 if (epc->init_complete) { 2380 nvmet_pci_epf_deinit_dma(nvme_epf); 2381 nvmet_pci_epf_clear_bar(nvme_epf); 2382 } 2383 2384 nvmet_pci_epf_free_bar(nvme_epf); 2385 } 2386 2387 static struct pci_epf_header nvme_epf_pci_header = { 2388 .vendorid = PCI_ANY_ID, 2389 .deviceid = PCI_ANY_ID, 2390 .progif_code = 0x02, /* NVM Express */ 2391 .baseclass_code = PCI_BASE_CLASS_STORAGE, 2392 .subclass_code = 0x08, /* Non-Volatile Memory controller */ 2393 .interrupt_pin = PCI_INTERRUPT_INTA, 2394 }; 2395 2396 static int nvmet_pci_epf_probe(struct pci_epf *epf, 2397 const struct pci_epf_device_id *id) 2398 { 2399 struct nvmet_pci_epf *nvme_epf; 2400 int ret; 2401 2402 nvme_epf = devm_kzalloc(&epf->dev, sizeof(*nvme_epf), GFP_KERNEL); 2403 if (!nvme_epf) 2404 return -ENOMEM; 2405 2406 ret = devm_mutex_init(&epf->dev, &nvme_epf->mmio_lock); 2407 if (ret) 2408 return ret; 2409 2410 nvme_epf->epf = epf; 2411 nvme_epf->mdts_kb = NVMET_PCI_EPF_MDTS_KB; 2412 2413 epf->event_ops = &nvmet_pci_epf_event_ops; 2414 epf->header = &nvme_epf_pci_header; 2415 epf_set_drvdata(epf, nvme_epf); 2416 2417 return 0; 2418 } 2419 2420 #define to_nvme_epf(epf_group) \ 2421 container_of(epf_group, struct nvmet_pci_epf, group) 2422 2423 static ssize_t nvmet_pci_epf_portid_show(struct config_item *item, char *page) 2424 { 2425 struct config_group *group = to_config_group(item); 2426 struct nvmet_pci_epf *nvme_epf = to_nvme_epf(group); 2427 2428 return sysfs_emit(page, "%u\n", le16_to_cpu(nvme_epf->portid)); 2429 } 2430 2431 static ssize_t nvmet_pci_epf_portid_store(struct config_item *item, 2432 const char *page, size_t len) 2433 { 2434 struct config_group *group = to_config_group(item); 2435 struct nvmet_pci_epf *nvme_epf = to_nvme_epf(group); 2436 u16 portid; 2437 2438 /* Do not allow setting this when the function is already started. */ 2439 if (nvme_epf->ctrl.tctrl) 2440 return -EBUSY; 2441 2442 if (!len) 2443 return -EINVAL; 2444 2445 if (kstrtou16(page, 0, &portid)) 2446 return -EINVAL; 2447 2448 nvme_epf->portid = cpu_to_le16(portid); 2449 2450 return len; 2451 } 2452 2453 CONFIGFS_ATTR(nvmet_pci_epf_, portid); 2454 2455 static ssize_t nvmet_pci_epf_subsysnqn_show(struct config_item *item, 2456 char *page) 2457 { 2458 struct config_group *group = to_config_group(item); 2459 struct nvmet_pci_epf *nvme_epf = to_nvme_epf(group); 2460 2461 return sysfs_emit(page, "%s\n", nvme_epf->subsysnqn); 2462 } 2463 2464 static ssize_t nvmet_pci_epf_subsysnqn_store(struct config_item *item, 2465 const char *page, size_t len) 2466 { 2467 struct config_group *group = to_config_group(item); 2468 struct nvmet_pci_epf *nvme_epf = to_nvme_epf(group); 2469 2470 /* Do not allow setting this when the function is already started. */ 2471 if (nvme_epf->ctrl.tctrl) 2472 return -EBUSY; 2473 2474 if (!len) 2475 return -EINVAL; 2476 2477 strscpy(nvme_epf->subsysnqn, page, len); 2478 2479 return len; 2480 } 2481 2482 CONFIGFS_ATTR(nvmet_pci_epf_, subsysnqn); 2483 2484 static ssize_t nvmet_pci_epf_mdts_kb_show(struct config_item *item, char *page) 2485 { 2486 struct config_group *group = to_config_group(item); 2487 struct nvmet_pci_epf *nvme_epf = to_nvme_epf(group); 2488 2489 return sysfs_emit(page, "%u\n", nvme_epf->mdts_kb); 2490 } 2491 2492 static ssize_t nvmet_pci_epf_mdts_kb_store(struct config_item *item, 2493 const char *page, size_t len) 2494 { 2495 struct config_group *group = to_config_group(item); 2496 struct nvmet_pci_epf *nvme_epf = to_nvme_epf(group); 2497 unsigned long mdts_kb; 2498 int ret; 2499 2500 if (nvme_epf->ctrl.tctrl) 2501 return -EBUSY; 2502 2503 ret = kstrtoul(page, 0, &mdts_kb); 2504 if (ret) 2505 return ret; 2506 if (!mdts_kb) 2507 mdts_kb = NVMET_PCI_EPF_MDTS_KB; 2508 else if (mdts_kb > NVMET_PCI_EPF_MAX_MDTS_KB) 2509 mdts_kb = NVMET_PCI_EPF_MAX_MDTS_KB; 2510 2511 if (!is_power_of_2(mdts_kb)) 2512 return -EINVAL; 2513 2514 nvme_epf->mdts_kb = mdts_kb; 2515 2516 return len; 2517 } 2518 2519 CONFIGFS_ATTR(nvmet_pci_epf_, mdts_kb); 2520 2521 static struct configfs_attribute *nvmet_pci_epf_attrs[] = { 2522 &nvmet_pci_epf_attr_portid, 2523 &nvmet_pci_epf_attr_subsysnqn, 2524 &nvmet_pci_epf_attr_mdts_kb, 2525 NULL, 2526 }; 2527 2528 static const struct config_item_type nvmet_pci_epf_group_type = { 2529 .ct_attrs = nvmet_pci_epf_attrs, 2530 .ct_owner = THIS_MODULE, 2531 }; 2532 2533 static struct config_group *nvmet_pci_epf_add_cfs(struct pci_epf *epf, 2534 struct config_group *group) 2535 { 2536 struct nvmet_pci_epf *nvme_epf = epf_get_drvdata(epf); 2537 2538 config_group_init_type_name(&nvme_epf->group, "nvme", 2539 &nvmet_pci_epf_group_type); 2540 2541 return &nvme_epf->group; 2542 } 2543 2544 static const struct pci_epf_device_id nvmet_pci_epf_ids[] = { 2545 { .name = "nvmet_pci_epf" }, 2546 {}, 2547 }; 2548 2549 static struct pci_epf_ops nvmet_pci_epf_ops = { 2550 .bind = nvmet_pci_epf_bind, 2551 .unbind = nvmet_pci_epf_unbind, 2552 .add_cfs = nvmet_pci_epf_add_cfs, 2553 }; 2554 2555 static struct pci_epf_driver nvmet_pci_epf_driver = { 2556 .driver.name = "nvmet_pci_epf", 2557 .probe = nvmet_pci_epf_probe, 2558 .id_table = nvmet_pci_epf_ids, 2559 .ops = &nvmet_pci_epf_ops, 2560 .owner = THIS_MODULE, 2561 }; 2562 2563 static int __init nvmet_pci_epf_init_module(void) 2564 { 2565 int ret; 2566 2567 ret = pci_epf_register_driver(&nvmet_pci_epf_driver); 2568 if (ret) 2569 return ret; 2570 2571 ret = nvmet_register_transport(&nvmet_pci_epf_fabrics_ops); 2572 if (ret) { 2573 pci_epf_unregister_driver(&nvmet_pci_epf_driver); 2574 return ret; 2575 } 2576 2577 return 0; 2578 } 2579 2580 static void __exit nvmet_pci_epf_cleanup_module(void) 2581 { 2582 nvmet_unregister_transport(&nvmet_pci_epf_fabrics_ops); 2583 pci_epf_unregister_driver(&nvmet_pci_epf_driver); 2584 } 2585 2586 module_init(nvmet_pci_epf_init_module); 2587 module_exit(nvmet_pci_epf_cleanup_module); 2588 2589 MODULE_DESCRIPTION("NVMe PCI Endpoint Function target driver"); 2590 MODULE_AUTHOR("Damien Le Moal <dlemoal@kernel.org>"); 2591 MODULE_LICENSE("GPL"); 2592