1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVMe PCI Endpoint Function target driver. 4 * 5 * Copyright (c) 2024, Western Digital Corporation or its affiliates. 6 * Copyright (c) 2024, Rick Wertenbroek <rick.wertenbroek@gmail.com> 7 * REDS Institute, HEIG-VD, HES-SO, Switzerland 8 */ 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/delay.h> 12 #include <linux/dmaengine.h> 13 #include <linux/io.h> 14 #include <linux/mempool.h> 15 #include <linux/module.h> 16 #include <linux/mutex.h> 17 #include <linux/nvme.h> 18 #include <linux/pci_ids.h> 19 #include <linux/pci-epc.h> 20 #include <linux/pci-epf.h> 21 #include <linux/pci_regs.h> 22 #include <linux/slab.h> 23 24 #include "nvmet.h" 25 26 static LIST_HEAD(nvmet_pci_epf_ports); 27 static DEFINE_MUTEX(nvmet_pci_epf_ports_mutex); 28 29 /* 30 * Default and maximum allowed data transfer size. For the default, 31 * allow up to 128 page-sized segments. For the maximum allowed, 32 * use 4 times the default (which is completely arbitrary). 33 */ 34 #define NVMET_PCI_EPF_MAX_SEGS 128 35 #define NVMET_PCI_EPF_MDTS_KB \ 36 (NVMET_PCI_EPF_MAX_SEGS << (PAGE_SHIFT - 10)) 37 #define NVMET_PCI_EPF_MAX_MDTS_KB (NVMET_PCI_EPF_MDTS_KB * 4) 38 39 /* 40 * IRQ vector coalescing threshold: by default, post 8 CQEs before raising an 41 * interrupt vector to the host. This default 8 is completely arbitrary and can 42 * be changed by the host with a nvme_set_features command. 43 */ 44 #define NVMET_PCI_EPF_IV_THRESHOLD 8 45 46 /* 47 * BAR CC register and SQ polling intervals. 48 */ 49 #define NVMET_PCI_EPF_CC_POLL_INTERVAL msecs_to_jiffies(10) 50 #define NVMET_PCI_EPF_SQ_POLL_INTERVAL msecs_to_jiffies(5) 51 #define NVMET_PCI_EPF_SQ_POLL_IDLE msecs_to_jiffies(5000) 52 53 /* 54 * SQ arbitration burst default: fetch at most 8 commands at a time from an SQ. 55 */ 56 #define NVMET_PCI_EPF_SQ_AB 8 57 58 /* 59 * Handling of CQs is normally immediate, unless we fail to map a CQ or the CQ 60 * is full, in which case we retry the CQ processing after this interval. 61 */ 62 #define NVMET_PCI_EPF_CQ_RETRY_INTERVAL msecs_to_jiffies(1) 63 64 enum nvmet_pci_epf_queue_flags { 65 NVMET_PCI_EPF_Q_IS_SQ = 0, /* The queue is a submission queue */ 66 NVMET_PCI_EPF_Q_LIVE, /* The queue is live */ 67 NVMET_PCI_EPF_Q_IRQ_ENABLED, /* IRQ is enabled for this queue */ 68 }; 69 70 /* 71 * IRQ vector descriptor. 72 */ 73 struct nvmet_pci_epf_irq_vector { 74 unsigned int vector; 75 unsigned int ref; 76 bool cd; 77 int nr_irqs; 78 }; 79 80 struct nvmet_pci_epf_queue { 81 union { 82 struct nvmet_sq nvme_sq; 83 struct nvmet_cq nvme_cq; 84 }; 85 struct nvmet_pci_epf_ctrl *ctrl; 86 unsigned long flags; 87 88 u64 pci_addr; 89 size_t pci_size; 90 struct pci_epc_map pci_map; 91 92 u16 qid; 93 u16 depth; 94 u16 vector; 95 u16 head; 96 u16 tail; 97 u16 phase; 98 u32 db; 99 100 size_t qes; 101 102 struct nvmet_pci_epf_irq_vector *iv; 103 struct workqueue_struct *iod_wq; 104 struct delayed_work work; 105 spinlock_t lock; 106 struct list_head list; 107 }; 108 109 /* 110 * PCI Root Complex (RC) address data segment for mapping an admin or 111 * I/O command buffer @buf of @length bytes to the PCI address @pci_addr. 112 */ 113 struct nvmet_pci_epf_segment { 114 void *buf; 115 u64 pci_addr; 116 u32 length; 117 }; 118 119 /* 120 * Command descriptors. 121 */ 122 struct nvmet_pci_epf_iod { 123 struct list_head link; 124 125 struct nvmet_req req; 126 struct nvme_command cmd; 127 struct nvme_completion cqe; 128 unsigned int status; 129 130 struct nvmet_pci_epf_ctrl *ctrl; 131 132 struct nvmet_pci_epf_queue *sq; 133 struct nvmet_pci_epf_queue *cq; 134 135 /* Data transfer size and direction for the command. */ 136 size_t data_len; 137 enum dma_data_direction dma_dir; 138 139 /* 140 * PCI Root Complex (RC) address data segments: if nr_data_segs is 1, we 141 * use only @data_seg. Otherwise, the array of segments @data_segs is 142 * allocated to manage multiple PCI address data segments. @data_sgl and 143 * @data_sgt are used to setup the command request for execution by the 144 * target core. 145 */ 146 unsigned int nr_data_segs; 147 struct nvmet_pci_epf_segment data_seg; 148 struct nvmet_pci_epf_segment *data_segs; 149 struct scatterlist data_sgl; 150 struct sg_table data_sgt; 151 152 struct work_struct work; 153 struct completion done; 154 }; 155 156 /* 157 * PCI target controller private data. 158 */ 159 struct nvmet_pci_epf_ctrl { 160 struct nvmet_pci_epf *nvme_epf; 161 struct nvmet_port *port; 162 struct nvmet_ctrl *tctrl; 163 struct device *dev; 164 165 unsigned int nr_queues; 166 struct nvmet_pci_epf_queue *sq; 167 struct nvmet_pci_epf_queue *cq; 168 unsigned int sq_ab; 169 170 mempool_t iod_pool; 171 void *bar; 172 u64 cap; 173 u32 cc; 174 u32 csts; 175 176 size_t io_sqes; 177 size_t io_cqes; 178 179 size_t mps_shift; 180 size_t mps; 181 size_t mps_mask; 182 183 unsigned int mdts; 184 185 struct delayed_work poll_cc; 186 struct delayed_work poll_sqs; 187 188 struct mutex irq_lock; 189 struct nvmet_pci_epf_irq_vector *irq_vectors; 190 unsigned int irq_vector_threshold; 191 192 bool link_up; 193 bool enabled; 194 }; 195 196 /* 197 * PCI EPF driver private data. 198 */ 199 struct nvmet_pci_epf { 200 struct pci_epf *epf; 201 202 const struct pci_epc_features *epc_features; 203 204 void *reg_bar; 205 size_t msix_table_offset; 206 207 unsigned int irq_type; 208 unsigned int nr_vectors; 209 210 struct nvmet_pci_epf_ctrl ctrl; 211 212 bool dma_enabled; 213 struct dma_chan *dma_tx_chan; 214 struct mutex dma_tx_lock; 215 struct dma_chan *dma_rx_chan; 216 struct mutex dma_rx_lock; 217 218 struct mutex mmio_lock; 219 220 /* PCI endpoint function configfs attributes. */ 221 struct config_group group; 222 __le16 portid; 223 char subsysnqn[NVMF_NQN_SIZE]; 224 unsigned int mdts_kb; 225 }; 226 227 static inline u32 nvmet_pci_epf_bar_read32(struct nvmet_pci_epf_ctrl *ctrl, 228 u32 off) 229 { 230 __le32 *bar_reg = ctrl->bar + off; 231 232 return le32_to_cpu(READ_ONCE(*bar_reg)); 233 } 234 235 static inline void nvmet_pci_epf_bar_write32(struct nvmet_pci_epf_ctrl *ctrl, 236 u32 off, u32 val) 237 { 238 __le32 *bar_reg = ctrl->bar + off; 239 240 WRITE_ONCE(*bar_reg, cpu_to_le32(val)); 241 } 242 243 static inline u64 nvmet_pci_epf_bar_read64(struct nvmet_pci_epf_ctrl *ctrl, 244 u32 off) 245 { 246 return (u64)nvmet_pci_epf_bar_read32(ctrl, off) | 247 ((u64)nvmet_pci_epf_bar_read32(ctrl, off + 4) << 32); 248 } 249 250 static inline void nvmet_pci_epf_bar_write64(struct nvmet_pci_epf_ctrl *ctrl, 251 u32 off, u64 val) 252 { 253 nvmet_pci_epf_bar_write32(ctrl, off, val & 0xFFFFFFFF); 254 nvmet_pci_epf_bar_write32(ctrl, off + 4, (val >> 32) & 0xFFFFFFFF); 255 } 256 257 static inline int nvmet_pci_epf_mem_map(struct nvmet_pci_epf *nvme_epf, 258 u64 pci_addr, size_t size, struct pci_epc_map *map) 259 { 260 struct pci_epf *epf = nvme_epf->epf; 261 262 return pci_epc_mem_map(epf->epc, epf->func_no, epf->vfunc_no, 263 pci_addr, size, map); 264 } 265 266 static inline void nvmet_pci_epf_mem_unmap(struct nvmet_pci_epf *nvme_epf, 267 struct pci_epc_map *map) 268 { 269 struct pci_epf *epf = nvme_epf->epf; 270 271 pci_epc_mem_unmap(epf->epc, epf->func_no, epf->vfunc_no, map); 272 } 273 274 struct nvmet_pci_epf_dma_filter { 275 struct device *dev; 276 u32 dma_mask; 277 }; 278 279 static bool nvmet_pci_epf_dma_filter(struct dma_chan *chan, void *arg) 280 { 281 struct nvmet_pci_epf_dma_filter *filter = arg; 282 struct dma_slave_caps caps; 283 284 memset(&caps, 0, sizeof(caps)); 285 dma_get_slave_caps(chan, &caps); 286 287 return chan->device->dev == filter->dev && 288 (filter->dma_mask & caps.directions); 289 } 290 291 static void nvmet_pci_epf_init_dma(struct nvmet_pci_epf *nvme_epf) 292 { 293 struct pci_epf *epf = nvme_epf->epf; 294 struct device *dev = &epf->dev; 295 struct nvmet_pci_epf_dma_filter filter; 296 struct dma_chan *chan; 297 dma_cap_mask_t mask; 298 299 mutex_init(&nvme_epf->dma_rx_lock); 300 mutex_init(&nvme_epf->dma_tx_lock); 301 302 dma_cap_zero(mask); 303 dma_cap_set(DMA_SLAVE, mask); 304 305 filter.dev = epf->epc->dev.parent; 306 filter.dma_mask = BIT(DMA_DEV_TO_MEM); 307 308 chan = dma_request_channel(mask, nvmet_pci_epf_dma_filter, &filter); 309 if (!chan) 310 goto out_dma_no_rx; 311 312 nvme_epf->dma_rx_chan = chan; 313 314 filter.dma_mask = BIT(DMA_MEM_TO_DEV); 315 chan = dma_request_channel(mask, nvmet_pci_epf_dma_filter, &filter); 316 if (!chan) 317 goto out_dma_no_tx; 318 319 nvme_epf->dma_tx_chan = chan; 320 321 nvme_epf->dma_enabled = true; 322 323 dev_dbg(dev, "Using DMA RX channel %s, maximum segment size %u B\n", 324 dma_chan_name(chan), 325 dma_get_max_seg_size(dmaengine_get_dma_device(chan))); 326 327 dev_dbg(dev, "Using DMA TX channel %s, maximum segment size %u B\n", 328 dma_chan_name(chan), 329 dma_get_max_seg_size(dmaengine_get_dma_device(chan))); 330 331 return; 332 333 out_dma_no_tx: 334 dma_release_channel(nvme_epf->dma_rx_chan); 335 nvme_epf->dma_rx_chan = NULL; 336 337 out_dma_no_rx: 338 mutex_destroy(&nvme_epf->dma_rx_lock); 339 mutex_destroy(&nvme_epf->dma_tx_lock); 340 nvme_epf->dma_enabled = false; 341 342 dev_info(&epf->dev, "DMA not supported, falling back to MMIO\n"); 343 } 344 345 static void nvmet_pci_epf_deinit_dma(struct nvmet_pci_epf *nvme_epf) 346 { 347 if (!nvme_epf->dma_enabled) 348 return; 349 350 dma_release_channel(nvme_epf->dma_tx_chan); 351 nvme_epf->dma_tx_chan = NULL; 352 dma_release_channel(nvme_epf->dma_rx_chan); 353 nvme_epf->dma_rx_chan = NULL; 354 mutex_destroy(&nvme_epf->dma_rx_lock); 355 mutex_destroy(&nvme_epf->dma_tx_lock); 356 nvme_epf->dma_enabled = false; 357 } 358 359 static int nvmet_pci_epf_dma_transfer(struct nvmet_pci_epf *nvme_epf, 360 struct nvmet_pci_epf_segment *seg, enum dma_data_direction dir) 361 { 362 struct pci_epf *epf = nvme_epf->epf; 363 struct dma_async_tx_descriptor *desc; 364 struct dma_slave_config sconf = {}; 365 struct device *dev = &epf->dev; 366 struct device *dma_dev; 367 struct dma_chan *chan; 368 dma_cookie_t cookie; 369 dma_addr_t dma_addr; 370 struct mutex *lock; 371 int ret; 372 373 switch (dir) { 374 case DMA_FROM_DEVICE: 375 lock = &nvme_epf->dma_rx_lock; 376 chan = nvme_epf->dma_rx_chan; 377 sconf.direction = DMA_DEV_TO_MEM; 378 sconf.src_addr = seg->pci_addr; 379 break; 380 case DMA_TO_DEVICE: 381 lock = &nvme_epf->dma_tx_lock; 382 chan = nvme_epf->dma_tx_chan; 383 sconf.direction = DMA_MEM_TO_DEV; 384 sconf.dst_addr = seg->pci_addr; 385 break; 386 default: 387 return -EINVAL; 388 } 389 390 mutex_lock(lock); 391 392 dma_dev = dmaengine_get_dma_device(chan); 393 dma_addr = dma_map_single(dma_dev, seg->buf, seg->length, dir); 394 ret = dma_mapping_error(dma_dev, dma_addr); 395 if (ret) 396 goto unlock; 397 398 ret = dmaengine_slave_config(chan, &sconf); 399 if (ret) { 400 dev_err(dev, "Failed to configure DMA channel\n"); 401 goto unmap; 402 } 403 404 desc = dmaengine_prep_slave_single(chan, dma_addr, seg->length, 405 sconf.direction, DMA_CTRL_ACK); 406 if (!desc) { 407 dev_err(dev, "Failed to prepare DMA\n"); 408 ret = -EIO; 409 goto unmap; 410 } 411 412 cookie = dmaengine_submit(desc); 413 ret = dma_submit_error(cookie); 414 if (ret) { 415 dev_err(dev, "Failed to do DMA submit (err=%d)\n", ret); 416 goto unmap; 417 } 418 419 if (dma_sync_wait(chan, cookie) != DMA_COMPLETE) { 420 dev_err(dev, "DMA transfer failed\n"); 421 ret = -EIO; 422 } 423 424 dmaengine_terminate_sync(chan); 425 426 unmap: 427 dma_unmap_single(dma_dev, dma_addr, seg->length, dir); 428 429 unlock: 430 mutex_unlock(lock); 431 432 return ret; 433 } 434 435 static int nvmet_pci_epf_mmio_transfer(struct nvmet_pci_epf *nvme_epf, 436 struct nvmet_pci_epf_segment *seg, enum dma_data_direction dir) 437 { 438 u64 pci_addr = seg->pci_addr; 439 u32 length = seg->length; 440 void *buf = seg->buf; 441 struct pci_epc_map map; 442 int ret = -EINVAL; 443 444 /* 445 * Note: MMIO transfers do not need serialization but this is a 446 * simple way to avoid using too many mapping windows. 447 */ 448 mutex_lock(&nvme_epf->mmio_lock); 449 450 while (length) { 451 ret = nvmet_pci_epf_mem_map(nvme_epf, pci_addr, length, &map); 452 if (ret) 453 break; 454 455 switch (dir) { 456 case DMA_FROM_DEVICE: 457 memcpy_fromio(buf, map.virt_addr, map.pci_size); 458 break; 459 case DMA_TO_DEVICE: 460 memcpy_toio(map.virt_addr, buf, map.pci_size); 461 break; 462 default: 463 ret = -EINVAL; 464 goto unlock; 465 } 466 467 pci_addr += map.pci_size; 468 buf += map.pci_size; 469 length -= map.pci_size; 470 471 nvmet_pci_epf_mem_unmap(nvme_epf, &map); 472 } 473 474 unlock: 475 mutex_unlock(&nvme_epf->mmio_lock); 476 477 return ret; 478 } 479 480 static inline int nvmet_pci_epf_transfer_seg(struct nvmet_pci_epf *nvme_epf, 481 struct nvmet_pci_epf_segment *seg, enum dma_data_direction dir) 482 { 483 if (nvme_epf->dma_enabled) 484 return nvmet_pci_epf_dma_transfer(nvme_epf, seg, dir); 485 486 return nvmet_pci_epf_mmio_transfer(nvme_epf, seg, dir); 487 } 488 489 static inline int nvmet_pci_epf_transfer(struct nvmet_pci_epf_ctrl *ctrl, 490 void *buf, u64 pci_addr, u32 length, 491 enum dma_data_direction dir) 492 { 493 struct nvmet_pci_epf_segment seg = { 494 .buf = buf, 495 .pci_addr = pci_addr, 496 .length = length, 497 }; 498 499 return nvmet_pci_epf_transfer_seg(ctrl->nvme_epf, &seg, dir); 500 } 501 502 static int nvmet_pci_epf_alloc_irq_vectors(struct nvmet_pci_epf_ctrl *ctrl) 503 { 504 ctrl->irq_vectors = kcalloc(ctrl->nr_queues, 505 sizeof(struct nvmet_pci_epf_irq_vector), 506 GFP_KERNEL); 507 if (!ctrl->irq_vectors) 508 return -ENOMEM; 509 510 mutex_init(&ctrl->irq_lock); 511 512 return 0; 513 } 514 515 static void nvmet_pci_epf_free_irq_vectors(struct nvmet_pci_epf_ctrl *ctrl) 516 { 517 if (ctrl->irq_vectors) { 518 mutex_destroy(&ctrl->irq_lock); 519 kfree(ctrl->irq_vectors); 520 ctrl->irq_vectors = NULL; 521 } 522 } 523 524 static struct nvmet_pci_epf_irq_vector * 525 nvmet_pci_epf_find_irq_vector(struct nvmet_pci_epf_ctrl *ctrl, u16 vector) 526 { 527 struct nvmet_pci_epf_irq_vector *iv; 528 int i; 529 530 lockdep_assert_held(&ctrl->irq_lock); 531 532 for (i = 0; i < ctrl->nr_queues; i++) { 533 iv = &ctrl->irq_vectors[i]; 534 if (iv->ref && iv->vector == vector) 535 return iv; 536 } 537 538 return NULL; 539 } 540 541 static struct nvmet_pci_epf_irq_vector * 542 nvmet_pci_epf_add_irq_vector(struct nvmet_pci_epf_ctrl *ctrl, u16 vector) 543 { 544 struct nvmet_pci_epf_irq_vector *iv; 545 int i; 546 547 mutex_lock(&ctrl->irq_lock); 548 549 iv = nvmet_pci_epf_find_irq_vector(ctrl, vector); 550 if (iv) { 551 iv->ref++; 552 goto unlock; 553 } 554 555 for (i = 0; i < ctrl->nr_queues; i++) { 556 iv = &ctrl->irq_vectors[i]; 557 if (!iv->ref) 558 break; 559 } 560 561 if (WARN_ON_ONCE(!iv)) 562 goto unlock; 563 564 iv->ref = 1; 565 iv->vector = vector; 566 iv->nr_irqs = 0; 567 568 unlock: 569 mutex_unlock(&ctrl->irq_lock); 570 571 return iv; 572 } 573 574 static void nvmet_pci_epf_remove_irq_vector(struct nvmet_pci_epf_ctrl *ctrl, 575 u16 vector) 576 { 577 struct nvmet_pci_epf_irq_vector *iv; 578 579 mutex_lock(&ctrl->irq_lock); 580 581 iv = nvmet_pci_epf_find_irq_vector(ctrl, vector); 582 if (iv) { 583 iv->ref--; 584 if (!iv->ref) { 585 iv->vector = 0; 586 iv->nr_irqs = 0; 587 } 588 } 589 590 mutex_unlock(&ctrl->irq_lock); 591 } 592 593 static bool nvmet_pci_epf_should_raise_irq(struct nvmet_pci_epf_ctrl *ctrl, 594 struct nvmet_pci_epf_queue *cq, bool force) 595 { 596 struct nvmet_pci_epf_irq_vector *iv = cq->iv; 597 bool ret; 598 599 if (!test_bit(NVMET_PCI_EPF_Q_IRQ_ENABLED, &cq->flags)) 600 return false; 601 602 /* IRQ coalescing for the admin queue is not allowed. */ 603 if (!cq->qid) 604 return true; 605 606 if (iv->cd) 607 return true; 608 609 if (force) { 610 ret = iv->nr_irqs > 0; 611 } else { 612 iv->nr_irqs++; 613 ret = iv->nr_irqs >= ctrl->irq_vector_threshold; 614 } 615 if (ret) 616 iv->nr_irqs = 0; 617 618 return ret; 619 } 620 621 static void nvmet_pci_epf_raise_irq(struct nvmet_pci_epf_ctrl *ctrl, 622 struct nvmet_pci_epf_queue *cq, bool force) 623 { 624 struct nvmet_pci_epf *nvme_epf = ctrl->nvme_epf; 625 struct pci_epf *epf = nvme_epf->epf; 626 int ret = 0; 627 628 if (!test_bit(NVMET_PCI_EPF_Q_LIVE, &cq->flags)) 629 return; 630 631 mutex_lock(&ctrl->irq_lock); 632 633 if (!nvmet_pci_epf_should_raise_irq(ctrl, cq, force)) 634 goto unlock; 635 636 switch (nvme_epf->irq_type) { 637 case PCI_IRQ_MSIX: 638 case PCI_IRQ_MSI: 639 ret = pci_epc_raise_irq(epf->epc, epf->func_no, epf->vfunc_no, 640 nvme_epf->irq_type, cq->vector + 1); 641 if (!ret) 642 break; 643 /* 644 * If we got an error, it is likely because the host is using 645 * legacy IRQs (e.g. BIOS, grub). 646 */ 647 fallthrough; 648 case PCI_IRQ_INTX: 649 ret = pci_epc_raise_irq(epf->epc, epf->func_no, epf->vfunc_no, 650 PCI_IRQ_INTX, 0); 651 break; 652 default: 653 WARN_ON_ONCE(1); 654 ret = -EINVAL; 655 break; 656 } 657 658 if (ret) 659 dev_err(ctrl->dev, "Failed to raise IRQ (err=%d)\n", ret); 660 661 unlock: 662 mutex_unlock(&ctrl->irq_lock); 663 } 664 665 static inline const char *nvmet_pci_epf_iod_name(struct nvmet_pci_epf_iod *iod) 666 { 667 return nvme_opcode_str(iod->sq->qid, iod->cmd.common.opcode); 668 } 669 670 static void nvmet_pci_epf_exec_iod_work(struct work_struct *work); 671 672 static struct nvmet_pci_epf_iod * 673 nvmet_pci_epf_alloc_iod(struct nvmet_pci_epf_queue *sq) 674 { 675 struct nvmet_pci_epf_ctrl *ctrl = sq->ctrl; 676 struct nvmet_pci_epf_iod *iod; 677 678 iod = mempool_alloc(&ctrl->iod_pool, GFP_KERNEL); 679 if (unlikely(!iod)) 680 return NULL; 681 682 memset(iod, 0, sizeof(*iod)); 683 iod->req.cmd = &iod->cmd; 684 iod->req.cqe = &iod->cqe; 685 iod->req.port = ctrl->port; 686 iod->ctrl = ctrl; 687 iod->sq = sq; 688 iod->cq = &ctrl->cq[sq->qid]; 689 INIT_LIST_HEAD(&iod->link); 690 iod->dma_dir = DMA_NONE; 691 INIT_WORK(&iod->work, nvmet_pci_epf_exec_iod_work); 692 init_completion(&iod->done); 693 694 return iod; 695 } 696 697 /* 698 * Allocate or grow a command table of PCI segments. 699 */ 700 static int nvmet_pci_epf_alloc_iod_data_segs(struct nvmet_pci_epf_iod *iod, 701 int nsegs) 702 { 703 struct nvmet_pci_epf_segment *segs; 704 int nr_segs = iod->nr_data_segs + nsegs; 705 706 segs = krealloc(iod->data_segs, 707 nr_segs * sizeof(struct nvmet_pci_epf_segment), 708 GFP_KERNEL | __GFP_ZERO); 709 if (!segs) 710 return -ENOMEM; 711 712 iod->nr_data_segs = nr_segs; 713 iod->data_segs = segs; 714 715 return 0; 716 } 717 718 static void nvmet_pci_epf_free_iod(struct nvmet_pci_epf_iod *iod) 719 { 720 int i; 721 722 if (iod->data_segs) { 723 for (i = 0; i < iod->nr_data_segs; i++) 724 kfree(iod->data_segs[i].buf); 725 if (iod->data_segs != &iod->data_seg) 726 kfree(iod->data_segs); 727 } 728 if (iod->data_sgt.nents > 1) 729 sg_free_table(&iod->data_sgt); 730 mempool_free(iod, &iod->ctrl->iod_pool); 731 } 732 733 static int nvmet_pci_epf_transfer_iod_data(struct nvmet_pci_epf_iod *iod) 734 { 735 struct nvmet_pci_epf *nvme_epf = iod->ctrl->nvme_epf; 736 struct nvmet_pci_epf_segment *seg = &iod->data_segs[0]; 737 int i, ret; 738 739 /* Split the data transfer according to the PCI segments. */ 740 for (i = 0; i < iod->nr_data_segs; i++, seg++) { 741 ret = nvmet_pci_epf_transfer_seg(nvme_epf, seg, iod->dma_dir); 742 if (ret) { 743 iod->status = NVME_SC_DATA_XFER_ERROR | NVME_STATUS_DNR; 744 return ret; 745 } 746 } 747 748 return 0; 749 } 750 751 static inline u32 nvmet_pci_epf_prp_ofst(struct nvmet_pci_epf_ctrl *ctrl, 752 u64 prp) 753 { 754 return prp & ctrl->mps_mask; 755 } 756 757 static inline size_t nvmet_pci_epf_prp_size(struct nvmet_pci_epf_ctrl *ctrl, 758 u64 prp) 759 { 760 return ctrl->mps - nvmet_pci_epf_prp_ofst(ctrl, prp); 761 } 762 763 /* 764 * Transfer a PRP list from the host and return the number of prps. 765 */ 766 static int nvmet_pci_epf_get_prp_list(struct nvmet_pci_epf_ctrl *ctrl, u64 prp, 767 size_t xfer_len, __le64 *prps) 768 { 769 size_t nr_prps = (xfer_len + ctrl->mps_mask) >> ctrl->mps_shift; 770 u32 length; 771 int ret; 772 773 /* 774 * Compute the number of PRPs required for the number of bytes to 775 * transfer (xfer_len). If this number overflows the memory page size 776 * with the PRP list pointer specified, only return the space available 777 * in the memory page, the last PRP in there will be a PRP list pointer 778 * to the remaining PRPs. 779 */ 780 length = min(nvmet_pci_epf_prp_size(ctrl, prp), nr_prps << 3); 781 ret = nvmet_pci_epf_transfer(ctrl, prps, prp, length, DMA_FROM_DEVICE); 782 if (ret) 783 return ret; 784 785 return length >> 3; 786 } 787 788 static int nvmet_pci_epf_iod_parse_prp_list(struct nvmet_pci_epf_ctrl *ctrl, 789 struct nvmet_pci_epf_iod *iod) 790 { 791 struct nvme_command *cmd = &iod->cmd; 792 struct nvmet_pci_epf_segment *seg; 793 size_t size = 0, ofst, prp_size, xfer_len; 794 size_t transfer_len = iod->data_len; 795 int nr_segs, nr_prps = 0; 796 u64 pci_addr, prp; 797 int i = 0, ret; 798 __le64 *prps; 799 800 prps = kzalloc(ctrl->mps, GFP_KERNEL); 801 if (!prps) 802 goto err_internal; 803 804 /* 805 * Allocate PCI segments for the command: this considers the worst case 806 * scenario where all prps are discontiguous, so get as many segments 807 * as we can have prps. In practice, most of the time, we will have 808 * far less PCI segments than prps. 809 */ 810 prp = le64_to_cpu(cmd->common.dptr.prp1); 811 if (!prp) 812 goto err_invalid_field; 813 814 ofst = nvmet_pci_epf_prp_ofst(ctrl, prp); 815 nr_segs = (transfer_len + ofst + ctrl->mps - 1) >> ctrl->mps_shift; 816 817 ret = nvmet_pci_epf_alloc_iod_data_segs(iod, nr_segs); 818 if (ret) 819 goto err_internal; 820 821 /* Set the first segment using prp1. */ 822 seg = &iod->data_segs[0]; 823 seg->pci_addr = prp; 824 seg->length = nvmet_pci_epf_prp_size(ctrl, prp); 825 826 size = seg->length; 827 pci_addr = prp + size; 828 nr_segs = 1; 829 830 /* 831 * Now build the PCI address segments using the PRP lists, starting 832 * from prp2. 833 */ 834 prp = le64_to_cpu(cmd->common.dptr.prp2); 835 if (!prp) 836 goto err_invalid_field; 837 838 while (size < transfer_len) { 839 xfer_len = transfer_len - size; 840 841 if (!nr_prps) { 842 nr_prps = nvmet_pci_epf_get_prp_list(ctrl, prp, 843 xfer_len, prps); 844 if (nr_prps < 0) 845 goto err_internal; 846 847 i = 0; 848 ofst = 0; 849 } 850 851 /* Current entry */ 852 prp = le64_to_cpu(prps[i]); 853 if (!prp) 854 goto err_invalid_field; 855 856 /* Did we reach the last PRP entry of the list? */ 857 if (xfer_len > ctrl->mps && i == nr_prps - 1) { 858 /* We need more PRPs: PRP is a list pointer. */ 859 nr_prps = 0; 860 continue; 861 } 862 863 /* Only the first PRP is allowed to have an offset. */ 864 if (nvmet_pci_epf_prp_ofst(ctrl, prp)) 865 goto err_invalid_offset; 866 867 if (prp != pci_addr) { 868 /* Discontiguous prp: new segment. */ 869 nr_segs++; 870 if (WARN_ON_ONCE(nr_segs > iod->nr_data_segs)) 871 goto err_internal; 872 873 seg++; 874 seg->pci_addr = prp; 875 seg->length = 0; 876 pci_addr = prp; 877 } 878 879 prp_size = min_t(size_t, ctrl->mps, xfer_len); 880 seg->length += prp_size; 881 pci_addr += prp_size; 882 size += prp_size; 883 884 i++; 885 } 886 887 iod->nr_data_segs = nr_segs; 888 ret = 0; 889 890 if (size != transfer_len) { 891 dev_err(ctrl->dev, 892 "PRPs transfer length mismatch: got %zu B, need %zu B\n", 893 size, transfer_len); 894 goto err_internal; 895 } 896 897 kfree(prps); 898 899 return 0; 900 901 err_invalid_offset: 902 dev_err(ctrl->dev, "PRPs list invalid offset\n"); 903 iod->status = NVME_SC_PRP_INVALID_OFFSET | NVME_STATUS_DNR; 904 goto err; 905 906 err_invalid_field: 907 dev_err(ctrl->dev, "PRPs list invalid field\n"); 908 iod->status = NVME_SC_INVALID_FIELD | NVME_STATUS_DNR; 909 goto err; 910 911 err_internal: 912 dev_err(ctrl->dev, "PRPs list internal error\n"); 913 iod->status = NVME_SC_INTERNAL | NVME_STATUS_DNR; 914 915 err: 916 kfree(prps); 917 return -EINVAL; 918 } 919 920 static int nvmet_pci_epf_iod_parse_prp_simple(struct nvmet_pci_epf_ctrl *ctrl, 921 struct nvmet_pci_epf_iod *iod) 922 { 923 struct nvme_command *cmd = &iod->cmd; 924 size_t transfer_len = iod->data_len; 925 int ret, nr_segs = 1; 926 u64 prp1, prp2 = 0; 927 size_t prp1_size; 928 929 prp1 = le64_to_cpu(cmd->common.dptr.prp1); 930 prp1_size = nvmet_pci_epf_prp_size(ctrl, prp1); 931 932 /* For commands crossing a page boundary, we should have prp2. */ 933 if (transfer_len > prp1_size) { 934 prp2 = le64_to_cpu(cmd->common.dptr.prp2); 935 if (!prp2) { 936 iod->status = NVME_SC_INVALID_FIELD | NVME_STATUS_DNR; 937 return -EINVAL; 938 } 939 if (nvmet_pci_epf_prp_ofst(ctrl, prp2)) { 940 iod->status = 941 NVME_SC_PRP_INVALID_OFFSET | NVME_STATUS_DNR; 942 return -EINVAL; 943 } 944 if (prp2 != prp1 + prp1_size) 945 nr_segs = 2; 946 } 947 948 if (nr_segs == 1) { 949 iod->nr_data_segs = 1; 950 iod->data_segs = &iod->data_seg; 951 iod->data_segs[0].pci_addr = prp1; 952 iod->data_segs[0].length = transfer_len; 953 return 0; 954 } 955 956 ret = nvmet_pci_epf_alloc_iod_data_segs(iod, nr_segs); 957 if (ret) { 958 iod->status = NVME_SC_INTERNAL | NVME_STATUS_DNR; 959 return ret; 960 } 961 962 iod->data_segs[0].pci_addr = prp1; 963 iod->data_segs[0].length = prp1_size; 964 iod->data_segs[1].pci_addr = prp2; 965 iod->data_segs[1].length = transfer_len - prp1_size; 966 967 return 0; 968 } 969 970 static int nvmet_pci_epf_iod_parse_prps(struct nvmet_pci_epf_iod *iod) 971 { 972 struct nvmet_pci_epf_ctrl *ctrl = iod->ctrl; 973 u64 prp1 = le64_to_cpu(iod->cmd.common.dptr.prp1); 974 size_t ofst; 975 976 /* Get the PCI address segments for the command using its PRPs. */ 977 ofst = nvmet_pci_epf_prp_ofst(ctrl, prp1); 978 if (ofst & 0x3) { 979 iod->status = NVME_SC_PRP_INVALID_OFFSET | NVME_STATUS_DNR; 980 return -EINVAL; 981 } 982 983 if (iod->data_len + ofst <= ctrl->mps * 2) 984 return nvmet_pci_epf_iod_parse_prp_simple(ctrl, iod); 985 986 return nvmet_pci_epf_iod_parse_prp_list(ctrl, iod); 987 } 988 989 /* 990 * Transfer an SGL segment from the host and return the number of data 991 * descriptors and the next segment descriptor, if any. 992 */ 993 static struct nvme_sgl_desc * 994 nvmet_pci_epf_get_sgl_segment(struct nvmet_pci_epf_ctrl *ctrl, 995 struct nvme_sgl_desc *desc, unsigned int *nr_sgls) 996 { 997 struct nvme_sgl_desc *sgls; 998 u32 length = le32_to_cpu(desc->length); 999 int nr_descs, ret; 1000 void *buf; 1001 1002 buf = kmalloc(length, GFP_KERNEL); 1003 if (!buf) 1004 return NULL; 1005 1006 ret = nvmet_pci_epf_transfer(ctrl, buf, le64_to_cpu(desc->addr), length, 1007 DMA_FROM_DEVICE); 1008 if (ret) { 1009 kfree(buf); 1010 return NULL; 1011 } 1012 1013 sgls = buf; 1014 nr_descs = length / sizeof(struct nvme_sgl_desc); 1015 if (sgls[nr_descs - 1].type == (NVME_SGL_FMT_SEG_DESC << 4) || 1016 sgls[nr_descs - 1].type == (NVME_SGL_FMT_LAST_SEG_DESC << 4)) { 1017 /* 1018 * We have another SGL segment following this one: do not count 1019 * it as a regular data SGL descriptor and return it to the 1020 * caller. 1021 */ 1022 *desc = sgls[nr_descs - 1]; 1023 nr_descs--; 1024 } else { 1025 /* We do not have another SGL segment after this one. */ 1026 desc->length = 0; 1027 } 1028 1029 *nr_sgls = nr_descs; 1030 1031 return sgls; 1032 } 1033 1034 static int nvmet_pci_epf_iod_parse_sgl_segments(struct nvmet_pci_epf_ctrl *ctrl, 1035 struct nvmet_pci_epf_iod *iod) 1036 { 1037 struct nvme_command *cmd = &iod->cmd; 1038 struct nvme_sgl_desc seg = cmd->common.dptr.sgl; 1039 struct nvme_sgl_desc *sgls = NULL; 1040 int n = 0, i, nr_sgls; 1041 int ret; 1042 1043 /* 1044 * We do not support inline data nor keyed SGLs, so we should be seeing 1045 * only segment descriptors. 1046 */ 1047 if (seg.type != (NVME_SGL_FMT_SEG_DESC << 4) && 1048 seg.type != (NVME_SGL_FMT_LAST_SEG_DESC << 4)) { 1049 iod->status = NVME_SC_SGL_INVALID_TYPE | NVME_STATUS_DNR; 1050 return -EIO; 1051 } 1052 1053 while (seg.length) { 1054 sgls = nvmet_pci_epf_get_sgl_segment(ctrl, &seg, &nr_sgls); 1055 if (!sgls) { 1056 iod->status = NVME_SC_INTERNAL | NVME_STATUS_DNR; 1057 return -EIO; 1058 } 1059 1060 /* Grow the PCI segment table as needed. */ 1061 ret = nvmet_pci_epf_alloc_iod_data_segs(iod, nr_sgls); 1062 if (ret) { 1063 iod->status = NVME_SC_INTERNAL | NVME_STATUS_DNR; 1064 goto out; 1065 } 1066 1067 /* 1068 * Parse the SGL descriptors to build the PCI segment table, 1069 * checking the descriptor type as we go. 1070 */ 1071 for (i = 0; i < nr_sgls; i++) { 1072 if (sgls[i].type != (NVME_SGL_FMT_DATA_DESC << 4)) { 1073 iod->status = NVME_SC_SGL_INVALID_TYPE | 1074 NVME_STATUS_DNR; 1075 goto out; 1076 } 1077 iod->data_segs[n].pci_addr = le64_to_cpu(sgls[i].addr); 1078 iod->data_segs[n].length = le32_to_cpu(sgls[i].length); 1079 n++; 1080 } 1081 1082 kfree(sgls); 1083 } 1084 1085 out: 1086 if (iod->status != NVME_SC_SUCCESS) { 1087 kfree(sgls); 1088 return -EIO; 1089 } 1090 1091 return 0; 1092 } 1093 1094 static int nvmet_pci_epf_iod_parse_sgls(struct nvmet_pci_epf_iod *iod) 1095 { 1096 struct nvmet_pci_epf_ctrl *ctrl = iod->ctrl; 1097 struct nvme_sgl_desc *sgl = &iod->cmd.common.dptr.sgl; 1098 1099 if (sgl->type == (NVME_SGL_FMT_DATA_DESC << 4)) { 1100 /* Single data descriptor case. */ 1101 iod->nr_data_segs = 1; 1102 iod->data_segs = &iod->data_seg; 1103 iod->data_seg.pci_addr = le64_to_cpu(sgl->addr); 1104 iod->data_seg.length = le32_to_cpu(sgl->length); 1105 return 0; 1106 } 1107 1108 return nvmet_pci_epf_iod_parse_sgl_segments(ctrl, iod); 1109 } 1110 1111 static int nvmet_pci_epf_alloc_iod_data_buf(struct nvmet_pci_epf_iod *iod) 1112 { 1113 struct nvmet_pci_epf_ctrl *ctrl = iod->ctrl; 1114 struct nvmet_req *req = &iod->req; 1115 struct nvmet_pci_epf_segment *seg; 1116 struct scatterlist *sg; 1117 int ret, i; 1118 1119 if (iod->data_len > ctrl->mdts) { 1120 iod->status = NVME_SC_INVALID_FIELD | NVME_STATUS_DNR; 1121 return -EINVAL; 1122 } 1123 1124 /* 1125 * Get the PCI address segments for the command data buffer using either 1126 * its SGLs or PRPs. 1127 */ 1128 if (iod->cmd.common.flags & NVME_CMD_SGL_ALL) 1129 ret = nvmet_pci_epf_iod_parse_sgls(iod); 1130 else 1131 ret = nvmet_pci_epf_iod_parse_prps(iod); 1132 if (ret) 1133 return ret; 1134 1135 /* Get a command buffer using SGLs matching the PCI segments. */ 1136 if (iod->nr_data_segs == 1) { 1137 sg_init_table(&iod->data_sgl, 1); 1138 iod->data_sgt.sgl = &iod->data_sgl; 1139 iod->data_sgt.nents = 1; 1140 iod->data_sgt.orig_nents = 1; 1141 } else { 1142 ret = sg_alloc_table(&iod->data_sgt, iod->nr_data_segs, 1143 GFP_KERNEL); 1144 if (ret) 1145 goto err_nomem; 1146 } 1147 1148 for_each_sgtable_sg(&iod->data_sgt, sg, i) { 1149 seg = &iod->data_segs[i]; 1150 seg->buf = kmalloc(seg->length, GFP_KERNEL); 1151 if (!seg->buf) 1152 goto err_nomem; 1153 sg_set_buf(sg, seg->buf, seg->length); 1154 } 1155 1156 req->transfer_len = iod->data_len; 1157 req->sg = iod->data_sgt.sgl; 1158 req->sg_cnt = iod->data_sgt.nents; 1159 1160 return 0; 1161 1162 err_nomem: 1163 iod->status = NVME_SC_INTERNAL | NVME_STATUS_DNR; 1164 return -ENOMEM; 1165 } 1166 1167 static void nvmet_pci_epf_complete_iod(struct nvmet_pci_epf_iod *iod) 1168 { 1169 struct nvmet_pci_epf_queue *cq = iod->cq; 1170 unsigned long flags; 1171 1172 /* Print an error message for failed commands, except AENs. */ 1173 iod->status = le16_to_cpu(iod->cqe.status) >> 1; 1174 if (iod->status && iod->cmd.common.opcode != nvme_admin_async_event) 1175 dev_err(iod->ctrl->dev, 1176 "CQ[%d]: Command %s (0x%x) status 0x%0x\n", 1177 iod->sq->qid, nvmet_pci_epf_iod_name(iod), 1178 iod->cmd.common.opcode, iod->status); 1179 1180 /* 1181 * Add the command to the list of completed commands and schedule the 1182 * CQ work. 1183 */ 1184 spin_lock_irqsave(&cq->lock, flags); 1185 list_add_tail(&iod->link, &cq->list); 1186 queue_delayed_work(system_highpri_wq, &cq->work, 0); 1187 spin_unlock_irqrestore(&cq->lock, flags); 1188 } 1189 1190 static void nvmet_pci_epf_drain_queue(struct nvmet_pci_epf_queue *queue) 1191 { 1192 struct nvmet_pci_epf_iod *iod; 1193 unsigned long flags; 1194 1195 spin_lock_irqsave(&queue->lock, flags); 1196 while (!list_empty(&queue->list)) { 1197 iod = list_first_entry(&queue->list, struct nvmet_pci_epf_iod, 1198 link); 1199 list_del_init(&iod->link); 1200 nvmet_pci_epf_free_iod(iod); 1201 } 1202 spin_unlock_irqrestore(&queue->lock, flags); 1203 } 1204 1205 static int nvmet_pci_epf_add_port(struct nvmet_port *port) 1206 { 1207 mutex_lock(&nvmet_pci_epf_ports_mutex); 1208 list_add_tail(&port->entry, &nvmet_pci_epf_ports); 1209 mutex_unlock(&nvmet_pci_epf_ports_mutex); 1210 return 0; 1211 } 1212 1213 static void nvmet_pci_epf_remove_port(struct nvmet_port *port) 1214 { 1215 mutex_lock(&nvmet_pci_epf_ports_mutex); 1216 list_del_init(&port->entry); 1217 mutex_unlock(&nvmet_pci_epf_ports_mutex); 1218 } 1219 1220 static struct nvmet_port * 1221 nvmet_pci_epf_find_port(struct nvmet_pci_epf_ctrl *ctrl, __le16 portid) 1222 { 1223 struct nvmet_port *p, *port = NULL; 1224 1225 mutex_lock(&nvmet_pci_epf_ports_mutex); 1226 list_for_each_entry(p, &nvmet_pci_epf_ports, entry) { 1227 if (p->disc_addr.portid == portid) { 1228 port = p; 1229 break; 1230 } 1231 } 1232 mutex_unlock(&nvmet_pci_epf_ports_mutex); 1233 1234 return port; 1235 } 1236 1237 static void nvmet_pci_epf_queue_response(struct nvmet_req *req) 1238 { 1239 struct nvmet_pci_epf_iod *iod = 1240 container_of(req, struct nvmet_pci_epf_iod, req); 1241 1242 iod->status = le16_to_cpu(req->cqe->status) >> 1; 1243 1244 /* If we have no data to transfer, directly complete the command. */ 1245 if (!iod->data_len || iod->dma_dir != DMA_TO_DEVICE) { 1246 nvmet_pci_epf_complete_iod(iod); 1247 return; 1248 } 1249 1250 complete(&iod->done); 1251 } 1252 1253 static u8 nvmet_pci_epf_get_mdts(const struct nvmet_ctrl *tctrl) 1254 { 1255 struct nvmet_pci_epf_ctrl *ctrl = tctrl->drvdata; 1256 int page_shift = NVME_CAP_MPSMIN(tctrl->cap) + 12; 1257 1258 return ilog2(ctrl->mdts) - page_shift; 1259 } 1260 1261 static u16 nvmet_pci_epf_create_cq(struct nvmet_ctrl *tctrl, 1262 u16 cqid, u16 flags, u16 qsize, u64 pci_addr, u16 vector) 1263 { 1264 struct nvmet_pci_epf_ctrl *ctrl = tctrl->drvdata; 1265 struct nvmet_pci_epf_queue *cq = &ctrl->cq[cqid]; 1266 u16 status; 1267 1268 if (test_and_set_bit(NVMET_PCI_EPF_Q_LIVE, &cq->flags)) 1269 return NVME_SC_QID_INVALID | NVME_STATUS_DNR; 1270 1271 if (!(flags & NVME_QUEUE_PHYS_CONTIG)) 1272 return NVME_SC_INVALID_QUEUE | NVME_STATUS_DNR; 1273 1274 if (flags & NVME_CQ_IRQ_ENABLED) 1275 set_bit(NVMET_PCI_EPF_Q_IRQ_ENABLED, &cq->flags); 1276 1277 cq->pci_addr = pci_addr; 1278 cq->qid = cqid; 1279 cq->depth = qsize + 1; 1280 cq->vector = vector; 1281 cq->head = 0; 1282 cq->tail = 0; 1283 cq->phase = 1; 1284 cq->db = NVME_REG_DBS + (((cqid * 2) + 1) * sizeof(u32)); 1285 nvmet_pci_epf_bar_write32(ctrl, cq->db, 0); 1286 1287 if (!cqid) 1288 cq->qes = sizeof(struct nvme_completion); 1289 else 1290 cq->qes = ctrl->io_cqes; 1291 cq->pci_size = cq->qes * cq->depth; 1292 1293 cq->iv = nvmet_pci_epf_add_irq_vector(ctrl, vector); 1294 if (!cq->iv) { 1295 status = NVME_SC_INTERNAL | NVME_STATUS_DNR; 1296 goto err; 1297 } 1298 1299 status = nvmet_cq_create(tctrl, &cq->nvme_cq, cqid, cq->depth); 1300 if (status != NVME_SC_SUCCESS) 1301 goto err; 1302 1303 dev_dbg(ctrl->dev, "CQ[%u]: %u entries of %zu B, IRQ vector %u\n", 1304 cqid, qsize, cq->qes, cq->vector); 1305 1306 return NVME_SC_SUCCESS; 1307 1308 err: 1309 clear_bit(NVMET_PCI_EPF_Q_IRQ_ENABLED, &cq->flags); 1310 clear_bit(NVMET_PCI_EPF_Q_LIVE, &cq->flags); 1311 return status; 1312 } 1313 1314 static u16 nvmet_pci_epf_delete_cq(struct nvmet_ctrl *tctrl, u16 cqid) 1315 { 1316 struct nvmet_pci_epf_ctrl *ctrl = tctrl->drvdata; 1317 struct nvmet_pci_epf_queue *cq = &ctrl->cq[cqid]; 1318 1319 if (!test_and_clear_bit(NVMET_PCI_EPF_Q_LIVE, &cq->flags)) 1320 return NVME_SC_QID_INVALID | NVME_STATUS_DNR; 1321 1322 cancel_delayed_work_sync(&cq->work); 1323 nvmet_pci_epf_drain_queue(cq); 1324 nvmet_pci_epf_remove_irq_vector(ctrl, cq->vector); 1325 1326 return NVME_SC_SUCCESS; 1327 } 1328 1329 static u16 nvmet_pci_epf_create_sq(struct nvmet_ctrl *tctrl, 1330 u16 sqid, u16 flags, u16 qsize, u64 pci_addr) 1331 { 1332 struct nvmet_pci_epf_ctrl *ctrl = tctrl->drvdata; 1333 struct nvmet_pci_epf_queue *sq = &ctrl->sq[sqid]; 1334 u16 status; 1335 1336 if (test_and_set_bit(NVMET_PCI_EPF_Q_LIVE, &sq->flags)) 1337 return NVME_SC_QID_INVALID | NVME_STATUS_DNR; 1338 1339 if (!(flags & NVME_QUEUE_PHYS_CONTIG)) 1340 return NVME_SC_INVALID_QUEUE | NVME_STATUS_DNR; 1341 1342 sq->pci_addr = pci_addr; 1343 sq->qid = sqid; 1344 sq->depth = qsize + 1; 1345 sq->head = 0; 1346 sq->tail = 0; 1347 sq->phase = 0; 1348 sq->db = NVME_REG_DBS + (sqid * 2 * sizeof(u32)); 1349 nvmet_pci_epf_bar_write32(ctrl, sq->db, 0); 1350 if (!sqid) 1351 sq->qes = 1UL << NVME_ADM_SQES; 1352 else 1353 sq->qes = ctrl->io_sqes; 1354 sq->pci_size = sq->qes * sq->depth; 1355 1356 status = nvmet_sq_create(tctrl, &sq->nvme_sq, sqid, sq->depth); 1357 if (status != NVME_SC_SUCCESS) 1358 goto out_clear_bit; 1359 1360 sq->iod_wq = alloc_workqueue("sq%d_wq", WQ_UNBOUND, 1361 min_t(int, sq->depth, WQ_MAX_ACTIVE), sqid); 1362 if (!sq->iod_wq) { 1363 dev_err(ctrl->dev, "Failed to create SQ %d work queue\n", sqid); 1364 status = NVME_SC_INTERNAL | NVME_STATUS_DNR; 1365 goto out_destroy_sq; 1366 } 1367 1368 dev_dbg(ctrl->dev, "SQ[%u]: %u entries of %zu B\n", 1369 sqid, qsize, sq->qes); 1370 1371 return NVME_SC_SUCCESS; 1372 1373 out_destroy_sq: 1374 nvmet_sq_destroy(&sq->nvme_sq); 1375 out_clear_bit: 1376 clear_bit(NVMET_PCI_EPF_Q_LIVE, &sq->flags); 1377 return status; 1378 } 1379 1380 static u16 nvmet_pci_epf_delete_sq(struct nvmet_ctrl *tctrl, u16 sqid) 1381 { 1382 struct nvmet_pci_epf_ctrl *ctrl = tctrl->drvdata; 1383 struct nvmet_pci_epf_queue *sq = &ctrl->sq[sqid]; 1384 1385 if (!test_and_clear_bit(NVMET_PCI_EPF_Q_LIVE, &sq->flags)) 1386 return NVME_SC_QID_INVALID | NVME_STATUS_DNR; 1387 1388 flush_workqueue(sq->iod_wq); 1389 destroy_workqueue(sq->iod_wq); 1390 sq->iod_wq = NULL; 1391 1392 nvmet_pci_epf_drain_queue(sq); 1393 1394 if (sq->nvme_sq.ctrl) 1395 nvmet_sq_destroy(&sq->nvme_sq); 1396 1397 return NVME_SC_SUCCESS; 1398 } 1399 1400 static u16 nvmet_pci_epf_get_feat(const struct nvmet_ctrl *tctrl, 1401 u8 feat, void *data) 1402 { 1403 struct nvmet_pci_epf_ctrl *ctrl = tctrl->drvdata; 1404 struct nvmet_feat_arbitration *arb; 1405 struct nvmet_feat_irq_coalesce *irqc; 1406 struct nvmet_feat_irq_config *irqcfg; 1407 struct nvmet_pci_epf_irq_vector *iv; 1408 u16 status; 1409 1410 switch (feat) { 1411 case NVME_FEAT_ARBITRATION: 1412 arb = data; 1413 if (!ctrl->sq_ab) 1414 arb->ab = 0x7; 1415 else 1416 arb->ab = ilog2(ctrl->sq_ab); 1417 return NVME_SC_SUCCESS; 1418 1419 case NVME_FEAT_IRQ_COALESCE: 1420 irqc = data; 1421 irqc->thr = ctrl->irq_vector_threshold; 1422 irqc->time = 0; 1423 return NVME_SC_SUCCESS; 1424 1425 case NVME_FEAT_IRQ_CONFIG: 1426 irqcfg = data; 1427 mutex_lock(&ctrl->irq_lock); 1428 iv = nvmet_pci_epf_find_irq_vector(ctrl, irqcfg->iv); 1429 if (iv) { 1430 irqcfg->cd = iv->cd; 1431 status = NVME_SC_SUCCESS; 1432 } else { 1433 status = NVME_SC_INVALID_FIELD | NVME_STATUS_DNR; 1434 } 1435 mutex_unlock(&ctrl->irq_lock); 1436 return status; 1437 1438 default: 1439 return NVME_SC_INVALID_FIELD | NVME_STATUS_DNR; 1440 } 1441 } 1442 1443 static u16 nvmet_pci_epf_set_feat(const struct nvmet_ctrl *tctrl, 1444 u8 feat, void *data) 1445 { 1446 struct nvmet_pci_epf_ctrl *ctrl = tctrl->drvdata; 1447 struct nvmet_feat_arbitration *arb; 1448 struct nvmet_feat_irq_coalesce *irqc; 1449 struct nvmet_feat_irq_config *irqcfg; 1450 struct nvmet_pci_epf_irq_vector *iv; 1451 u16 status; 1452 1453 switch (feat) { 1454 case NVME_FEAT_ARBITRATION: 1455 arb = data; 1456 if (arb->ab == 0x7) 1457 ctrl->sq_ab = 0; 1458 else 1459 ctrl->sq_ab = 1 << arb->ab; 1460 return NVME_SC_SUCCESS; 1461 1462 case NVME_FEAT_IRQ_COALESCE: 1463 /* 1464 * Since we do not implement precise IRQ coalescing timing, 1465 * ignore the time field. 1466 */ 1467 irqc = data; 1468 ctrl->irq_vector_threshold = irqc->thr + 1; 1469 return NVME_SC_SUCCESS; 1470 1471 case NVME_FEAT_IRQ_CONFIG: 1472 irqcfg = data; 1473 mutex_lock(&ctrl->irq_lock); 1474 iv = nvmet_pci_epf_find_irq_vector(ctrl, irqcfg->iv); 1475 if (iv) { 1476 iv->cd = irqcfg->cd; 1477 status = NVME_SC_SUCCESS; 1478 } else { 1479 status = NVME_SC_INVALID_FIELD | NVME_STATUS_DNR; 1480 } 1481 mutex_unlock(&ctrl->irq_lock); 1482 return status; 1483 1484 default: 1485 return NVME_SC_INVALID_FIELD | NVME_STATUS_DNR; 1486 } 1487 } 1488 1489 static const struct nvmet_fabrics_ops nvmet_pci_epf_fabrics_ops = { 1490 .owner = THIS_MODULE, 1491 .type = NVMF_TRTYPE_PCI, 1492 .add_port = nvmet_pci_epf_add_port, 1493 .remove_port = nvmet_pci_epf_remove_port, 1494 .queue_response = nvmet_pci_epf_queue_response, 1495 .get_mdts = nvmet_pci_epf_get_mdts, 1496 .create_cq = nvmet_pci_epf_create_cq, 1497 .delete_cq = nvmet_pci_epf_delete_cq, 1498 .create_sq = nvmet_pci_epf_create_sq, 1499 .delete_sq = nvmet_pci_epf_delete_sq, 1500 .get_feature = nvmet_pci_epf_get_feat, 1501 .set_feature = nvmet_pci_epf_set_feat, 1502 }; 1503 1504 static void nvmet_pci_epf_cq_work(struct work_struct *work); 1505 1506 static void nvmet_pci_epf_init_queue(struct nvmet_pci_epf_ctrl *ctrl, 1507 unsigned int qid, bool sq) 1508 { 1509 struct nvmet_pci_epf_queue *queue; 1510 1511 if (sq) { 1512 queue = &ctrl->sq[qid]; 1513 set_bit(NVMET_PCI_EPF_Q_IS_SQ, &queue->flags); 1514 } else { 1515 queue = &ctrl->cq[qid]; 1516 INIT_DELAYED_WORK(&queue->work, nvmet_pci_epf_cq_work); 1517 } 1518 queue->ctrl = ctrl; 1519 queue->qid = qid; 1520 spin_lock_init(&queue->lock); 1521 INIT_LIST_HEAD(&queue->list); 1522 } 1523 1524 static int nvmet_pci_epf_alloc_queues(struct nvmet_pci_epf_ctrl *ctrl) 1525 { 1526 unsigned int qid; 1527 1528 ctrl->sq = kcalloc(ctrl->nr_queues, 1529 sizeof(struct nvmet_pci_epf_queue), GFP_KERNEL); 1530 if (!ctrl->sq) 1531 return -ENOMEM; 1532 1533 ctrl->cq = kcalloc(ctrl->nr_queues, 1534 sizeof(struct nvmet_pci_epf_queue), GFP_KERNEL); 1535 if (!ctrl->cq) { 1536 kfree(ctrl->sq); 1537 ctrl->sq = NULL; 1538 return -ENOMEM; 1539 } 1540 1541 for (qid = 0; qid < ctrl->nr_queues; qid++) { 1542 nvmet_pci_epf_init_queue(ctrl, qid, true); 1543 nvmet_pci_epf_init_queue(ctrl, qid, false); 1544 } 1545 1546 return 0; 1547 } 1548 1549 static void nvmet_pci_epf_free_queues(struct nvmet_pci_epf_ctrl *ctrl) 1550 { 1551 kfree(ctrl->sq); 1552 ctrl->sq = NULL; 1553 kfree(ctrl->cq); 1554 ctrl->cq = NULL; 1555 } 1556 1557 static int nvmet_pci_epf_map_queue(struct nvmet_pci_epf_ctrl *ctrl, 1558 struct nvmet_pci_epf_queue *queue) 1559 { 1560 struct nvmet_pci_epf *nvme_epf = ctrl->nvme_epf; 1561 int ret; 1562 1563 ret = nvmet_pci_epf_mem_map(nvme_epf, queue->pci_addr, 1564 queue->pci_size, &queue->pci_map); 1565 if (ret) { 1566 dev_err(ctrl->dev, "Failed to map queue %u (err=%d)\n", 1567 queue->qid, ret); 1568 return ret; 1569 } 1570 1571 if (queue->pci_map.pci_size < queue->pci_size) { 1572 dev_err(ctrl->dev, "Invalid partial mapping of queue %u\n", 1573 queue->qid); 1574 nvmet_pci_epf_mem_unmap(nvme_epf, &queue->pci_map); 1575 return -ENOMEM; 1576 } 1577 1578 return 0; 1579 } 1580 1581 static inline void nvmet_pci_epf_unmap_queue(struct nvmet_pci_epf_ctrl *ctrl, 1582 struct nvmet_pci_epf_queue *queue) 1583 { 1584 nvmet_pci_epf_mem_unmap(ctrl->nvme_epf, &queue->pci_map); 1585 } 1586 1587 static void nvmet_pci_epf_exec_iod_work(struct work_struct *work) 1588 { 1589 struct nvmet_pci_epf_iod *iod = 1590 container_of(work, struct nvmet_pci_epf_iod, work); 1591 struct nvmet_req *req = &iod->req; 1592 int ret; 1593 1594 if (!iod->ctrl->link_up) { 1595 nvmet_pci_epf_free_iod(iod); 1596 return; 1597 } 1598 1599 if (!test_bit(NVMET_PCI_EPF_Q_LIVE, &iod->sq->flags)) { 1600 iod->status = NVME_SC_QID_INVALID | NVME_STATUS_DNR; 1601 goto complete; 1602 } 1603 1604 if (!nvmet_req_init(req, &iod->cq->nvme_cq, &iod->sq->nvme_sq, 1605 &nvmet_pci_epf_fabrics_ops)) 1606 goto complete; 1607 1608 iod->data_len = nvmet_req_transfer_len(req); 1609 if (iod->data_len) { 1610 /* 1611 * Get the data DMA transfer direction. Here "device" means the 1612 * PCI root-complex host. 1613 */ 1614 if (nvme_is_write(&iod->cmd)) 1615 iod->dma_dir = DMA_FROM_DEVICE; 1616 else 1617 iod->dma_dir = DMA_TO_DEVICE; 1618 1619 /* 1620 * Setup the command data buffer and get the command data from 1621 * the host if needed. 1622 */ 1623 ret = nvmet_pci_epf_alloc_iod_data_buf(iod); 1624 if (!ret && iod->dma_dir == DMA_FROM_DEVICE) 1625 ret = nvmet_pci_epf_transfer_iod_data(iod); 1626 if (ret) { 1627 nvmet_req_uninit(req); 1628 goto complete; 1629 } 1630 } 1631 1632 req->execute(req); 1633 1634 /* 1635 * If we do not have data to transfer after the command execution 1636 * finishes, nvmet_pci_epf_queue_response() will complete the command 1637 * directly. No need to wait for the completion in this case. 1638 */ 1639 if (!iod->data_len || iod->dma_dir != DMA_TO_DEVICE) 1640 return; 1641 1642 wait_for_completion(&iod->done); 1643 1644 if (iod->status == NVME_SC_SUCCESS) { 1645 WARN_ON_ONCE(!iod->data_len || iod->dma_dir != DMA_TO_DEVICE); 1646 nvmet_pci_epf_transfer_iod_data(iod); 1647 } 1648 1649 complete: 1650 nvmet_pci_epf_complete_iod(iod); 1651 } 1652 1653 static int nvmet_pci_epf_process_sq(struct nvmet_pci_epf_ctrl *ctrl, 1654 struct nvmet_pci_epf_queue *sq) 1655 { 1656 struct nvmet_pci_epf_iod *iod; 1657 int ret, n = 0; 1658 1659 sq->tail = nvmet_pci_epf_bar_read32(ctrl, sq->db); 1660 while (sq->head != sq->tail && (!ctrl->sq_ab || n < ctrl->sq_ab)) { 1661 iod = nvmet_pci_epf_alloc_iod(sq); 1662 if (!iod) 1663 break; 1664 1665 /* Get the NVMe command submitted by the host. */ 1666 ret = nvmet_pci_epf_transfer(ctrl, &iod->cmd, 1667 sq->pci_addr + sq->head * sq->qes, 1668 sq->qes, DMA_FROM_DEVICE); 1669 if (ret) { 1670 /* Not much we can do... */ 1671 nvmet_pci_epf_free_iod(iod); 1672 break; 1673 } 1674 1675 dev_dbg(ctrl->dev, "SQ[%u]: head %u, tail %u, command %s\n", 1676 sq->qid, sq->head, sq->tail, 1677 nvmet_pci_epf_iod_name(iod)); 1678 1679 sq->head++; 1680 if (sq->head == sq->depth) 1681 sq->head = 0; 1682 n++; 1683 1684 queue_work_on(WORK_CPU_UNBOUND, sq->iod_wq, &iod->work); 1685 1686 sq->tail = nvmet_pci_epf_bar_read32(ctrl, sq->db); 1687 } 1688 1689 return n; 1690 } 1691 1692 static void nvmet_pci_epf_poll_sqs_work(struct work_struct *work) 1693 { 1694 struct nvmet_pci_epf_ctrl *ctrl = 1695 container_of(work, struct nvmet_pci_epf_ctrl, poll_sqs.work); 1696 struct nvmet_pci_epf_queue *sq; 1697 unsigned long limit = jiffies; 1698 unsigned long last = 0; 1699 int i, nr_sqs; 1700 1701 while (ctrl->link_up && ctrl->enabled) { 1702 nr_sqs = 0; 1703 /* Do round-robin arbitration. */ 1704 for (i = 0; i < ctrl->nr_queues; i++) { 1705 sq = &ctrl->sq[i]; 1706 if (!test_bit(NVMET_PCI_EPF_Q_LIVE, &sq->flags)) 1707 continue; 1708 if (nvmet_pci_epf_process_sq(ctrl, sq)) 1709 nr_sqs++; 1710 } 1711 1712 /* 1713 * If we have been running for a while, reschedule to let other 1714 * tasks run and to avoid RCU stalls. 1715 */ 1716 if (time_is_before_jiffies(limit + secs_to_jiffies(1))) { 1717 cond_resched(); 1718 limit = jiffies; 1719 continue; 1720 } 1721 1722 if (nr_sqs) { 1723 last = jiffies; 1724 continue; 1725 } 1726 1727 /* 1728 * If we have not received any command on any queue for more 1729 * than NVMET_PCI_EPF_SQ_POLL_IDLE, assume we are idle and 1730 * reschedule. This avoids "burning" a CPU when the controller 1731 * is idle for a long time. 1732 */ 1733 if (time_is_before_jiffies(last + NVMET_PCI_EPF_SQ_POLL_IDLE)) 1734 break; 1735 1736 cpu_relax(); 1737 } 1738 1739 schedule_delayed_work(&ctrl->poll_sqs, NVMET_PCI_EPF_SQ_POLL_INTERVAL); 1740 } 1741 1742 static void nvmet_pci_epf_cq_work(struct work_struct *work) 1743 { 1744 struct nvmet_pci_epf_queue *cq = 1745 container_of(work, struct nvmet_pci_epf_queue, work.work); 1746 struct nvmet_pci_epf_ctrl *ctrl = cq->ctrl; 1747 struct nvme_completion *cqe; 1748 struct nvmet_pci_epf_iod *iod; 1749 unsigned long flags; 1750 int ret, n = 0; 1751 1752 ret = nvmet_pci_epf_map_queue(ctrl, cq); 1753 if (ret) 1754 goto again; 1755 1756 while (test_bit(NVMET_PCI_EPF_Q_LIVE, &cq->flags) && ctrl->link_up) { 1757 1758 /* Check that the CQ is not full. */ 1759 cq->head = nvmet_pci_epf_bar_read32(ctrl, cq->db); 1760 if (cq->head == cq->tail + 1) { 1761 ret = -EAGAIN; 1762 break; 1763 } 1764 1765 spin_lock_irqsave(&cq->lock, flags); 1766 iod = list_first_entry_or_null(&cq->list, 1767 struct nvmet_pci_epf_iod, link); 1768 if (iod) 1769 list_del_init(&iod->link); 1770 spin_unlock_irqrestore(&cq->lock, flags); 1771 1772 if (!iod) 1773 break; 1774 1775 /* Post the IOD completion entry. */ 1776 cqe = &iod->cqe; 1777 cqe->status = cpu_to_le16((iod->status << 1) | cq->phase); 1778 1779 dev_dbg(ctrl->dev, 1780 "CQ[%u]: %s status 0x%x, result 0x%llx, head %u, tail %u, phase %u\n", 1781 cq->qid, nvmet_pci_epf_iod_name(iod), iod->status, 1782 le64_to_cpu(cqe->result.u64), cq->head, cq->tail, 1783 cq->phase); 1784 1785 memcpy_toio(cq->pci_map.virt_addr + cq->tail * cq->qes, 1786 cqe, cq->qes); 1787 1788 cq->tail++; 1789 if (cq->tail >= cq->depth) { 1790 cq->tail = 0; 1791 cq->phase ^= 1; 1792 } 1793 1794 nvmet_pci_epf_free_iod(iod); 1795 1796 /* Signal the host. */ 1797 nvmet_pci_epf_raise_irq(ctrl, cq, false); 1798 n++; 1799 } 1800 1801 nvmet_pci_epf_unmap_queue(ctrl, cq); 1802 1803 /* 1804 * We do not support precise IRQ coalescing time (100ns units as per 1805 * NVMe specifications). So if we have posted completion entries without 1806 * reaching the interrupt coalescing threshold, raise an interrupt. 1807 */ 1808 if (n) 1809 nvmet_pci_epf_raise_irq(ctrl, cq, true); 1810 1811 again: 1812 if (ret < 0) 1813 queue_delayed_work(system_highpri_wq, &cq->work, 1814 NVMET_PCI_EPF_CQ_RETRY_INTERVAL); 1815 } 1816 1817 static int nvmet_pci_epf_enable_ctrl(struct nvmet_pci_epf_ctrl *ctrl) 1818 { 1819 u64 pci_addr, asq, acq; 1820 u32 aqa; 1821 u16 status, qsize; 1822 1823 if (ctrl->enabled) 1824 return 0; 1825 1826 dev_info(ctrl->dev, "Enabling controller\n"); 1827 1828 ctrl->mps_shift = nvmet_cc_mps(ctrl->cc) + 12; 1829 ctrl->mps = 1UL << ctrl->mps_shift; 1830 ctrl->mps_mask = ctrl->mps - 1; 1831 1832 ctrl->io_sqes = 1UL << nvmet_cc_iosqes(ctrl->cc); 1833 if (ctrl->io_sqes < sizeof(struct nvme_command)) { 1834 dev_err(ctrl->dev, "Unsupported I/O SQES %zu (need %zu)\n", 1835 ctrl->io_sqes, sizeof(struct nvme_command)); 1836 goto err; 1837 } 1838 1839 ctrl->io_cqes = 1UL << nvmet_cc_iocqes(ctrl->cc); 1840 if (ctrl->io_cqes < sizeof(struct nvme_completion)) { 1841 dev_err(ctrl->dev, "Unsupported I/O CQES %zu (need %zu)\n", 1842 ctrl->io_sqes, sizeof(struct nvme_completion)); 1843 goto err; 1844 } 1845 1846 /* Create the admin queue. */ 1847 aqa = nvmet_pci_epf_bar_read32(ctrl, NVME_REG_AQA); 1848 asq = nvmet_pci_epf_bar_read64(ctrl, NVME_REG_ASQ); 1849 acq = nvmet_pci_epf_bar_read64(ctrl, NVME_REG_ACQ); 1850 1851 qsize = (aqa & 0x0fff0000) >> 16; 1852 pci_addr = acq & GENMASK_ULL(63, 12); 1853 status = nvmet_pci_epf_create_cq(ctrl->tctrl, 0, 1854 NVME_CQ_IRQ_ENABLED | NVME_QUEUE_PHYS_CONTIG, 1855 qsize, pci_addr, 0); 1856 if (status != NVME_SC_SUCCESS) { 1857 dev_err(ctrl->dev, "Failed to create admin completion queue\n"); 1858 goto err; 1859 } 1860 1861 qsize = aqa & 0x00000fff; 1862 pci_addr = asq & GENMASK_ULL(63, 12); 1863 status = nvmet_pci_epf_create_sq(ctrl->tctrl, 0, NVME_QUEUE_PHYS_CONTIG, 1864 qsize, pci_addr); 1865 if (status != NVME_SC_SUCCESS) { 1866 dev_err(ctrl->dev, "Failed to create admin submission queue\n"); 1867 nvmet_pci_epf_delete_cq(ctrl->tctrl, 0); 1868 goto err; 1869 } 1870 1871 ctrl->sq_ab = NVMET_PCI_EPF_SQ_AB; 1872 ctrl->irq_vector_threshold = NVMET_PCI_EPF_IV_THRESHOLD; 1873 ctrl->enabled = true; 1874 ctrl->csts = NVME_CSTS_RDY; 1875 1876 /* Start polling the controller SQs. */ 1877 schedule_delayed_work(&ctrl->poll_sqs, 0); 1878 1879 return 0; 1880 1881 err: 1882 ctrl->csts = 0; 1883 return -EINVAL; 1884 } 1885 1886 static void nvmet_pci_epf_disable_ctrl(struct nvmet_pci_epf_ctrl *ctrl) 1887 { 1888 int qid; 1889 1890 if (!ctrl->enabled) 1891 return; 1892 1893 dev_info(ctrl->dev, "Disabling controller\n"); 1894 1895 ctrl->enabled = false; 1896 cancel_delayed_work_sync(&ctrl->poll_sqs); 1897 1898 /* Delete all I/O queues first. */ 1899 for (qid = 1; qid < ctrl->nr_queues; qid++) 1900 nvmet_pci_epf_delete_sq(ctrl->tctrl, qid); 1901 1902 for (qid = 1; qid < ctrl->nr_queues; qid++) 1903 nvmet_pci_epf_delete_cq(ctrl->tctrl, qid); 1904 1905 /* Delete the admin queue last. */ 1906 nvmet_pci_epf_delete_sq(ctrl->tctrl, 0); 1907 nvmet_pci_epf_delete_cq(ctrl->tctrl, 0); 1908 1909 ctrl->csts &= ~NVME_CSTS_RDY; 1910 } 1911 1912 static void nvmet_pci_epf_poll_cc_work(struct work_struct *work) 1913 { 1914 struct nvmet_pci_epf_ctrl *ctrl = 1915 container_of(work, struct nvmet_pci_epf_ctrl, poll_cc.work); 1916 u32 old_cc, new_cc; 1917 int ret; 1918 1919 if (!ctrl->tctrl) 1920 return; 1921 1922 old_cc = ctrl->cc; 1923 new_cc = nvmet_pci_epf_bar_read32(ctrl, NVME_REG_CC); 1924 if (new_cc == old_cc) 1925 goto reschedule_work; 1926 1927 ctrl->cc = new_cc; 1928 1929 if (nvmet_cc_en(new_cc) && !nvmet_cc_en(old_cc)) { 1930 ret = nvmet_pci_epf_enable_ctrl(ctrl); 1931 if (ret) 1932 goto reschedule_work; 1933 } 1934 1935 if (!nvmet_cc_en(new_cc) && nvmet_cc_en(old_cc)) 1936 nvmet_pci_epf_disable_ctrl(ctrl); 1937 1938 if (nvmet_cc_shn(new_cc) && !nvmet_cc_shn(old_cc)) { 1939 nvmet_pci_epf_disable_ctrl(ctrl); 1940 ctrl->csts |= NVME_CSTS_SHST_CMPLT; 1941 } 1942 1943 if (!nvmet_cc_shn(new_cc) && nvmet_cc_shn(old_cc)) 1944 ctrl->csts &= ~NVME_CSTS_SHST_CMPLT; 1945 1946 nvmet_update_cc(ctrl->tctrl, ctrl->cc); 1947 nvmet_pci_epf_bar_write32(ctrl, NVME_REG_CSTS, ctrl->csts); 1948 1949 reschedule_work: 1950 schedule_delayed_work(&ctrl->poll_cc, NVMET_PCI_EPF_CC_POLL_INTERVAL); 1951 } 1952 1953 static void nvmet_pci_epf_init_bar(struct nvmet_pci_epf_ctrl *ctrl) 1954 { 1955 struct nvmet_ctrl *tctrl = ctrl->tctrl; 1956 1957 ctrl->bar = ctrl->nvme_epf->reg_bar; 1958 1959 /* Copy the target controller capabilities as a base. */ 1960 ctrl->cap = tctrl->cap; 1961 1962 /* Contiguous Queues Required (CQR). */ 1963 ctrl->cap |= 0x1ULL << 16; 1964 1965 /* Set Doorbell stride to 4B (DSTRB). */ 1966 ctrl->cap &= ~GENMASK_ULL(35, 32); 1967 1968 /* Clear NVM Subsystem Reset Supported (NSSRS). */ 1969 ctrl->cap &= ~(0x1ULL << 36); 1970 1971 /* Clear Boot Partition Support (BPS). */ 1972 ctrl->cap &= ~(0x1ULL << 45); 1973 1974 /* Clear Persistent Memory Region Supported (PMRS). */ 1975 ctrl->cap &= ~(0x1ULL << 56); 1976 1977 /* Clear Controller Memory Buffer Supported (CMBS). */ 1978 ctrl->cap &= ~(0x1ULL << 57); 1979 1980 /* Controller configuration. */ 1981 ctrl->cc = tctrl->cc & (~NVME_CC_ENABLE); 1982 1983 /* Controller status. */ 1984 ctrl->csts = ctrl->tctrl->csts; 1985 1986 nvmet_pci_epf_bar_write64(ctrl, NVME_REG_CAP, ctrl->cap); 1987 nvmet_pci_epf_bar_write32(ctrl, NVME_REG_VS, tctrl->subsys->ver); 1988 nvmet_pci_epf_bar_write32(ctrl, NVME_REG_CSTS, ctrl->csts); 1989 nvmet_pci_epf_bar_write32(ctrl, NVME_REG_CC, ctrl->cc); 1990 } 1991 1992 static int nvmet_pci_epf_create_ctrl(struct nvmet_pci_epf *nvme_epf, 1993 unsigned int max_nr_queues) 1994 { 1995 struct nvmet_pci_epf_ctrl *ctrl = &nvme_epf->ctrl; 1996 struct nvmet_alloc_ctrl_args args = {}; 1997 char hostnqn[NVMF_NQN_SIZE]; 1998 uuid_t id; 1999 int ret; 2000 2001 memset(ctrl, 0, sizeof(*ctrl)); 2002 ctrl->dev = &nvme_epf->epf->dev; 2003 mutex_init(&ctrl->irq_lock); 2004 ctrl->nvme_epf = nvme_epf; 2005 ctrl->mdts = nvme_epf->mdts_kb * SZ_1K; 2006 INIT_DELAYED_WORK(&ctrl->poll_cc, nvmet_pci_epf_poll_cc_work); 2007 INIT_DELAYED_WORK(&ctrl->poll_sqs, nvmet_pci_epf_poll_sqs_work); 2008 2009 ret = mempool_init_kmalloc_pool(&ctrl->iod_pool, 2010 max_nr_queues * NVMET_MAX_QUEUE_SIZE, 2011 sizeof(struct nvmet_pci_epf_iod)); 2012 if (ret) { 2013 dev_err(ctrl->dev, "Failed to initialize IOD mempool\n"); 2014 return ret; 2015 } 2016 2017 ctrl->port = nvmet_pci_epf_find_port(ctrl, nvme_epf->portid); 2018 if (!ctrl->port) { 2019 dev_err(ctrl->dev, "Port not found\n"); 2020 ret = -EINVAL; 2021 goto out_mempool_exit; 2022 } 2023 2024 /* Create the target controller. */ 2025 uuid_gen(&id); 2026 snprintf(hostnqn, NVMF_NQN_SIZE, 2027 "nqn.2014-08.org.nvmexpress:uuid:%pUb", &id); 2028 args.port = ctrl->port; 2029 args.subsysnqn = nvme_epf->subsysnqn; 2030 memset(&id, 0, sizeof(uuid_t)); 2031 args.hostid = &id; 2032 args.hostnqn = hostnqn; 2033 args.ops = &nvmet_pci_epf_fabrics_ops; 2034 2035 ctrl->tctrl = nvmet_alloc_ctrl(&args); 2036 if (!ctrl->tctrl) { 2037 dev_err(ctrl->dev, "Failed to create target controller\n"); 2038 ret = -ENOMEM; 2039 goto out_mempool_exit; 2040 } 2041 ctrl->tctrl->drvdata = ctrl; 2042 2043 /* We do not support protection information for now. */ 2044 if (ctrl->tctrl->pi_support) { 2045 dev_err(ctrl->dev, 2046 "Protection information (PI) is not supported\n"); 2047 ret = -ENOTSUPP; 2048 goto out_put_ctrl; 2049 } 2050 2051 /* Allocate our queues, up to the maximum number. */ 2052 ctrl->nr_queues = min(ctrl->tctrl->subsys->max_qid + 1, max_nr_queues); 2053 ret = nvmet_pci_epf_alloc_queues(ctrl); 2054 if (ret) 2055 goto out_put_ctrl; 2056 2057 /* 2058 * Allocate the IRQ vectors descriptors. We cannot have more than the 2059 * maximum number of queues. 2060 */ 2061 ret = nvmet_pci_epf_alloc_irq_vectors(ctrl); 2062 if (ret) 2063 goto out_free_queues; 2064 2065 dev_info(ctrl->dev, 2066 "New PCI ctrl \"%s\", %u I/O queues, mdts %u B\n", 2067 ctrl->tctrl->subsys->subsysnqn, ctrl->nr_queues - 1, 2068 ctrl->mdts); 2069 2070 /* Initialize BAR 0 using the target controller CAP. */ 2071 nvmet_pci_epf_init_bar(ctrl); 2072 2073 return 0; 2074 2075 out_free_queues: 2076 nvmet_pci_epf_free_queues(ctrl); 2077 out_put_ctrl: 2078 nvmet_ctrl_put(ctrl->tctrl); 2079 ctrl->tctrl = NULL; 2080 out_mempool_exit: 2081 mempool_exit(&ctrl->iod_pool); 2082 return ret; 2083 } 2084 2085 static void nvmet_pci_epf_start_ctrl(struct nvmet_pci_epf_ctrl *ctrl) 2086 { 2087 schedule_delayed_work(&ctrl->poll_cc, NVMET_PCI_EPF_CC_POLL_INTERVAL); 2088 } 2089 2090 static void nvmet_pci_epf_stop_ctrl(struct nvmet_pci_epf_ctrl *ctrl) 2091 { 2092 cancel_delayed_work_sync(&ctrl->poll_cc); 2093 2094 nvmet_pci_epf_disable_ctrl(ctrl); 2095 } 2096 2097 static void nvmet_pci_epf_destroy_ctrl(struct nvmet_pci_epf_ctrl *ctrl) 2098 { 2099 if (!ctrl->tctrl) 2100 return; 2101 2102 dev_info(ctrl->dev, "Destroying PCI ctrl \"%s\"\n", 2103 ctrl->tctrl->subsys->subsysnqn); 2104 2105 nvmet_pci_epf_stop_ctrl(ctrl); 2106 2107 nvmet_pci_epf_free_queues(ctrl); 2108 nvmet_pci_epf_free_irq_vectors(ctrl); 2109 2110 nvmet_ctrl_put(ctrl->tctrl); 2111 ctrl->tctrl = NULL; 2112 2113 mempool_exit(&ctrl->iod_pool); 2114 } 2115 2116 static int nvmet_pci_epf_configure_bar(struct nvmet_pci_epf *nvme_epf) 2117 { 2118 struct pci_epf *epf = nvme_epf->epf; 2119 const struct pci_epc_features *epc_features = nvme_epf->epc_features; 2120 size_t reg_size, reg_bar_size; 2121 size_t msix_table_size = 0; 2122 2123 /* 2124 * The first free BAR will be our register BAR and per NVMe 2125 * specifications, it must be BAR 0. 2126 */ 2127 if (pci_epc_get_first_free_bar(epc_features) != BAR_0) { 2128 dev_err(&epf->dev, "BAR 0 is not free\n"); 2129 return -ENODEV; 2130 } 2131 2132 if (epc_features->bar[BAR_0].only_64bit) 2133 epf->bar[BAR_0].flags |= PCI_BASE_ADDRESS_MEM_TYPE_64; 2134 2135 /* 2136 * Calculate the size of the register bar: NVMe registers first with 2137 * enough space for the doorbells, followed by the MSI-X table 2138 * if supported. 2139 */ 2140 reg_size = NVME_REG_DBS + (NVMET_NR_QUEUES * 2 * sizeof(u32)); 2141 reg_size = ALIGN(reg_size, 8); 2142 2143 if (epc_features->msix_capable) { 2144 size_t pba_size; 2145 2146 msix_table_size = PCI_MSIX_ENTRY_SIZE * epf->msix_interrupts; 2147 nvme_epf->msix_table_offset = reg_size; 2148 pba_size = ALIGN(DIV_ROUND_UP(epf->msix_interrupts, 8), 8); 2149 2150 reg_size += msix_table_size + pba_size; 2151 } 2152 2153 if (epc_features->bar[BAR_0].type == BAR_FIXED) { 2154 if (reg_size > epc_features->bar[BAR_0].fixed_size) { 2155 dev_err(&epf->dev, 2156 "BAR 0 size %llu B too small, need %zu B\n", 2157 epc_features->bar[BAR_0].fixed_size, 2158 reg_size); 2159 return -ENOMEM; 2160 } 2161 reg_bar_size = epc_features->bar[BAR_0].fixed_size; 2162 } else { 2163 reg_bar_size = ALIGN(reg_size, max(epc_features->align, 4096)); 2164 } 2165 2166 nvme_epf->reg_bar = pci_epf_alloc_space(epf, reg_bar_size, BAR_0, 2167 epc_features, PRIMARY_INTERFACE); 2168 if (!nvme_epf->reg_bar) { 2169 dev_err(&epf->dev, "Failed to allocate BAR 0\n"); 2170 return -ENOMEM; 2171 } 2172 memset(nvme_epf->reg_bar, 0, reg_bar_size); 2173 2174 return 0; 2175 } 2176 2177 static void nvmet_pci_epf_free_bar(struct nvmet_pci_epf *nvme_epf) 2178 { 2179 struct pci_epf *epf = nvme_epf->epf; 2180 2181 if (!nvme_epf->reg_bar) 2182 return; 2183 2184 pci_epf_free_space(epf, nvme_epf->reg_bar, BAR_0, PRIMARY_INTERFACE); 2185 nvme_epf->reg_bar = NULL; 2186 } 2187 2188 static void nvmet_pci_epf_clear_bar(struct nvmet_pci_epf *nvme_epf) 2189 { 2190 struct pci_epf *epf = nvme_epf->epf; 2191 2192 pci_epc_clear_bar(epf->epc, epf->func_no, epf->vfunc_no, 2193 &epf->bar[BAR_0]); 2194 } 2195 2196 static int nvmet_pci_epf_init_irq(struct nvmet_pci_epf *nvme_epf) 2197 { 2198 const struct pci_epc_features *epc_features = nvme_epf->epc_features; 2199 struct pci_epf *epf = nvme_epf->epf; 2200 int ret; 2201 2202 /* Enable MSI-X if supported, otherwise, use MSI. */ 2203 if (epc_features->msix_capable && epf->msix_interrupts) { 2204 ret = pci_epc_set_msix(epf->epc, epf->func_no, epf->vfunc_no, 2205 epf->msix_interrupts, BAR_0, 2206 nvme_epf->msix_table_offset); 2207 if (ret) { 2208 dev_err(&epf->dev, "Failed to configure MSI-X\n"); 2209 return ret; 2210 } 2211 2212 nvme_epf->nr_vectors = epf->msix_interrupts; 2213 nvme_epf->irq_type = PCI_IRQ_MSIX; 2214 2215 return 0; 2216 } 2217 2218 if (epc_features->msi_capable && epf->msi_interrupts) { 2219 ret = pci_epc_set_msi(epf->epc, epf->func_no, epf->vfunc_no, 2220 epf->msi_interrupts); 2221 if (ret) { 2222 dev_err(&epf->dev, "Failed to configure MSI\n"); 2223 return ret; 2224 } 2225 2226 nvme_epf->nr_vectors = epf->msi_interrupts; 2227 nvme_epf->irq_type = PCI_IRQ_MSI; 2228 2229 return 0; 2230 } 2231 2232 /* MSI and MSI-X are not supported: fall back to INTx. */ 2233 nvme_epf->nr_vectors = 1; 2234 nvme_epf->irq_type = PCI_IRQ_INTX; 2235 2236 return 0; 2237 } 2238 2239 static int nvmet_pci_epf_epc_init(struct pci_epf *epf) 2240 { 2241 struct nvmet_pci_epf *nvme_epf = epf_get_drvdata(epf); 2242 const struct pci_epc_features *epc_features = nvme_epf->epc_features; 2243 struct nvmet_pci_epf_ctrl *ctrl = &nvme_epf->ctrl; 2244 unsigned int max_nr_queues = NVMET_NR_QUEUES; 2245 int ret; 2246 2247 /* For now, do not support virtual functions. */ 2248 if (epf->vfunc_no > 0) { 2249 dev_err(&epf->dev, "Virtual functions are not supported\n"); 2250 return -EINVAL; 2251 } 2252 2253 /* 2254 * Cap the maximum number of queues we can support on the controller 2255 * with the number of IRQs we can use. 2256 */ 2257 if (epc_features->msix_capable && epf->msix_interrupts) { 2258 dev_info(&epf->dev, 2259 "PCI endpoint controller supports MSI-X, %u vectors\n", 2260 epf->msix_interrupts); 2261 max_nr_queues = min(max_nr_queues, epf->msix_interrupts); 2262 } else if (epc_features->msi_capable && epf->msi_interrupts) { 2263 dev_info(&epf->dev, 2264 "PCI endpoint controller supports MSI, %u vectors\n", 2265 epf->msi_interrupts); 2266 max_nr_queues = min(max_nr_queues, epf->msi_interrupts); 2267 } 2268 2269 if (max_nr_queues < 2) { 2270 dev_err(&epf->dev, "Invalid maximum number of queues %u\n", 2271 max_nr_queues); 2272 return -EINVAL; 2273 } 2274 2275 /* Create the target controller. */ 2276 ret = nvmet_pci_epf_create_ctrl(nvme_epf, max_nr_queues); 2277 if (ret) { 2278 dev_err(&epf->dev, 2279 "Failed to create NVMe PCI target controller (err=%d)\n", 2280 ret); 2281 return ret; 2282 } 2283 2284 /* Set device ID, class, etc. */ 2285 epf->header->vendorid = ctrl->tctrl->subsys->vendor_id; 2286 epf->header->subsys_vendor_id = ctrl->tctrl->subsys->subsys_vendor_id; 2287 ret = pci_epc_write_header(epf->epc, epf->func_no, epf->vfunc_no, 2288 epf->header); 2289 if (ret) { 2290 dev_err(&epf->dev, 2291 "Failed to write configuration header (err=%d)\n", ret); 2292 goto out_destroy_ctrl; 2293 } 2294 2295 ret = pci_epc_set_bar(epf->epc, epf->func_no, epf->vfunc_no, 2296 &epf->bar[BAR_0]); 2297 if (ret) { 2298 dev_err(&epf->dev, "Failed to set BAR 0 (err=%d)\n", ret); 2299 goto out_destroy_ctrl; 2300 } 2301 2302 /* 2303 * Enable interrupts and start polling the controller BAR if we do not 2304 * have a link up notifier. 2305 */ 2306 ret = nvmet_pci_epf_init_irq(nvme_epf); 2307 if (ret) 2308 goto out_clear_bar; 2309 2310 if (!epc_features->linkup_notifier) { 2311 ctrl->link_up = true; 2312 nvmet_pci_epf_start_ctrl(&nvme_epf->ctrl); 2313 } 2314 2315 return 0; 2316 2317 out_clear_bar: 2318 nvmet_pci_epf_clear_bar(nvme_epf); 2319 out_destroy_ctrl: 2320 nvmet_pci_epf_destroy_ctrl(&nvme_epf->ctrl); 2321 return ret; 2322 } 2323 2324 static void nvmet_pci_epf_epc_deinit(struct pci_epf *epf) 2325 { 2326 struct nvmet_pci_epf *nvme_epf = epf_get_drvdata(epf); 2327 struct nvmet_pci_epf_ctrl *ctrl = &nvme_epf->ctrl; 2328 2329 ctrl->link_up = false; 2330 nvmet_pci_epf_destroy_ctrl(ctrl); 2331 2332 nvmet_pci_epf_deinit_dma(nvme_epf); 2333 nvmet_pci_epf_clear_bar(nvme_epf); 2334 } 2335 2336 static int nvmet_pci_epf_link_up(struct pci_epf *epf) 2337 { 2338 struct nvmet_pci_epf *nvme_epf = epf_get_drvdata(epf); 2339 struct nvmet_pci_epf_ctrl *ctrl = &nvme_epf->ctrl; 2340 2341 ctrl->link_up = true; 2342 nvmet_pci_epf_start_ctrl(ctrl); 2343 2344 return 0; 2345 } 2346 2347 static int nvmet_pci_epf_link_down(struct pci_epf *epf) 2348 { 2349 struct nvmet_pci_epf *nvme_epf = epf_get_drvdata(epf); 2350 struct nvmet_pci_epf_ctrl *ctrl = &nvme_epf->ctrl; 2351 2352 ctrl->link_up = false; 2353 nvmet_pci_epf_stop_ctrl(ctrl); 2354 2355 return 0; 2356 } 2357 2358 static const struct pci_epc_event_ops nvmet_pci_epf_event_ops = { 2359 .epc_init = nvmet_pci_epf_epc_init, 2360 .epc_deinit = nvmet_pci_epf_epc_deinit, 2361 .link_up = nvmet_pci_epf_link_up, 2362 .link_down = nvmet_pci_epf_link_down, 2363 }; 2364 2365 static int nvmet_pci_epf_bind(struct pci_epf *epf) 2366 { 2367 struct nvmet_pci_epf *nvme_epf = epf_get_drvdata(epf); 2368 const struct pci_epc_features *epc_features; 2369 struct pci_epc *epc = epf->epc; 2370 int ret; 2371 2372 if (WARN_ON_ONCE(!epc)) 2373 return -EINVAL; 2374 2375 epc_features = pci_epc_get_features(epc, epf->func_no, epf->vfunc_no); 2376 if (!epc_features) { 2377 dev_err(&epf->dev, "epc_features not implemented\n"); 2378 return -EOPNOTSUPP; 2379 } 2380 nvme_epf->epc_features = epc_features; 2381 2382 ret = nvmet_pci_epf_configure_bar(nvme_epf); 2383 if (ret) 2384 return ret; 2385 2386 nvmet_pci_epf_init_dma(nvme_epf); 2387 2388 return 0; 2389 } 2390 2391 static void nvmet_pci_epf_unbind(struct pci_epf *epf) 2392 { 2393 struct nvmet_pci_epf *nvme_epf = epf_get_drvdata(epf); 2394 struct pci_epc *epc = epf->epc; 2395 2396 nvmet_pci_epf_destroy_ctrl(&nvme_epf->ctrl); 2397 2398 if (epc->init_complete) { 2399 nvmet_pci_epf_deinit_dma(nvme_epf); 2400 nvmet_pci_epf_clear_bar(nvme_epf); 2401 } 2402 2403 nvmet_pci_epf_free_bar(nvme_epf); 2404 } 2405 2406 static struct pci_epf_header nvme_epf_pci_header = { 2407 .vendorid = PCI_ANY_ID, 2408 .deviceid = PCI_ANY_ID, 2409 .progif_code = 0x02, /* NVM Express */ 2410 .baseclass_code = PCI_BASE_CLASS_STORAGE, 2411 .subclass_code = 0x08, /* Non-Volatile Memory controller */ 2412 .interrupt_pin = PCI_INTERRUPT_INTA, 2413 }; 2414 2415 static int nvmet_pci_epf_probe(struct pci_epf *epf, 2416 const struct pci_epf_device_id *id) 2417 { 2418 struct nvmet_pci_epf *nvme_epf; 2419 int ret; 2420 2421 nvme_epf = devm_kzalloc(&epf->dev, sizeof(*nvme_epf), GFP_KERNEL); 2422 if (!nvme_epf) 2423 return -ENOMEM; 2424 2425 ret = devm_mutex_init(&epf->dev, &nvme_epf->mmio_lock); 2426 if (ret) 2427 return ret; 2428 2429 nvme_epf->epf = epf; 2430 nvme_epf->mdts_kb = NVMET_PCI_EPF_MDTS_KB; 2431 2432 epf->event_ops = &nvmet_pci_epf_event_ops; 2433 epf->header = &nvme_epf_pci_header; 2434 epf_set_drvdata(epf, nvme_epf); 2435 2436 return 0; 2437 } 2438 2439 #define to_nvme_epf(epf_group) \ 2440 container_of(epf_group, struct nvmet_pci_epf, group) 2441 2442 static ssize_t nvmet_pci_epf_portid_show(struct config_item *item, char *page) 2443 { 2444 struct config_group *group = to_config_group(item); 2445 struct nvmet_pci_epf *nvme_epf = to_nvme_epf(group); 2446 2447 return sysfs_emit(page, "%u\n", le16_to_cpu(nvme_epf->portid)); 2448 } 2449 2450 static ssize_t nvmet_pci_epf_portid_store(struct config_item *item, 2451 const char *page, size_t len) 2452 { 2453 struct config_group *group = to_config_group(item); 2454 struct nvmet_pci_epf *nvme_epf = to_nvme_epf(group); 2455 u16 portid; 2456 2457 /* Do not allow setting this when the function is already started. */ 2458 if (nvme_epf->ctrl.tctrl) 2459 return -EBUSY; 2460 2461 if (!len) 2462 return -EINVAL; 2463 2464 if (kstrtou16(page, 0, &portid)) 2465 return -EINVAL; 2466 2467 nvme_epf->portid = cpu_to_le16(portid); 2468 2469 return len; 2470 } 2471 2472 CONFIGFS_ATTR(nvmet_pci_epf_, portid); 2473 2474 static ssize_t nvmet_pci_epf_subsysnqn_show(struct config_item *item, 2475 char *page) 2476 { 2477 struct config_group *group = to_config_group(item); 2478 struct nvmet_pci_epf *nvme_epf = to_nvme_epf(group); 2479 2480 return sysfs_emit(page, "%s\n", nvme_epf->subsysnqn); 2481 } 2482 2483 static ssize_t nvmet_pci_epf_subsysnqn_store(struct config_item *item, 2484 const char *page, size_t len) 2485 { 2486 struct config_group *group = to_config_group(item); 2487 struct nvmet_pci_epf *nvme_epf = to_nvme_epf(group); 2488 2489 /* Do not allow setting this when the function is already started. */ 2490 if (nvme_epf->ctrl.tctrl) 2491 return -EBUSY; 2492 2493 if (!len) 2494 return -EINVAL; 2495 2496 strscpy(nvme_epf->subsysnqn, page, len); 2497 2498 return len; 2499 } 2500 2501 CONFIGFS_ATTR(nvmet_pci_epf_, subsysnqn); 2502 2503 static ssize_t nvmet_pci_epf_mdts_kb_show(struct config_item *item, char *page) 2504 { 2505 struct config_group *group = to_config_group(item); 2506 struct nvmet_pci_epf *nvme_epf = to_nvme_epf(group); 2507 2508 return sysfs_emit(page, "%u\n", nvme_epf->mdts_kb); 2509 } 2510 2511 static ssize_t nvmet_pci_epf_mdts_kb_store(struct config_item *item, 2512 const char *page, size_t len) 2513 { 2514 struct config_group *group = to_config_group(item); 2515 struct nvmet_pci_epf *nvme_epf = to_nvme_epf(group); 2516 unsigned long mdts_kb; 2517 int ret; 2518 2519 if (nvme_epf->ctrl.tctrl) 2520 return -EBUSY; 2521 2522 ret = kstrtoul(page, 0, &mdts_kb); 2523 if (ret) 2524 return ret; 2525 if (!mdts_kb) 2526 mdts_kb = NVMET_PCI_EPF_MDTS_KB; 2527 else if (mdts_kb > NVMET_PCI_EPF_MAX_MDTS_KB) 2528 mdts_kb = NVMET_PCI_EPF_MAX_MDTS_KB; 2529 2530 if (!is_power_of_2(mdts_kb)) 2531 return -EINVAL; 2532 2533 nvme_epf->mdts_kb = mdts_kb; 2534 2535 return len; 2536 } 2537 2538 CONFIGFS_ATTR(nvmet_pci_epf_, mdts_kb); 2539 2540 static struct configfs_attribute *nvmet_pci_epf_attrs[] = { 2541 &nvmet_pci_epf_attr_portid, 2542 &nvmet_pci_epf_attr_subsysnqn, 2543 &nvmet_pci_epf_attr_mdts_kb, 2544 NULL, 2545 }; 2546 2547 static const struct config_item_type nvmet_pci_epf_group_type = { 2548 .ct_attrs = nvmet_pci_epf_attrs, 2549 .ct_owner = THIS_MODULE, 2550 }; 2551 2552 static struct config_group *nvmet_pci_epf_add_cfs(struct pci_epf *epf, 2553 struct config_group *group) 2554 { 2555 struct nvmet_pci_epf *nvme_epf = epf_get_drvdata(epf); 2556 2557 config_group_init_type_name(&nvme_epf->group, "nvme", 2558 &nvmet_pci_epf_group_type); 2559 2560 return &nvme_epf->group; 2561 } 2562 2563 static const struct pci_epf_device_id nvmet_pci_epf_ids[] = { 2564 { .name = "nvmet_pci_epf" }, 2565 {}, 2566 }; 2567 2568 static struct pci_epf_ops nvmet_pci_epf_ops = { 2569 .bind = nvmet_pci_epf_bind, 2570 .unbind = nvmet_pci_epf_unbind, 2571 .add_cfs = nvmet_pci_epf_add_cfs, 2572 }; 2573 2574 static struct pci_epf_driver nvmet_pci_epf_driver = { 2575 .driver.name = "nvmet_pci_epf", 2576 .probe = nvmet_pci_epf_probe, 2577 .id_table = nvmet_pci_epf_ids, 2578 .ops = &nvmet_pci_epf_ops, 2579 .owner = THIS_MODULE, 2580 }; 2581 2582 static int __init nvmet_pci_epf_init_module(void) 2583 { 2584 int ret; 2585 2586 ret = pci_epf_register_driver(&nvmet_pci_epf_driver); 2587 if (ret) 2588 return ret; 2589 2590 ret = nvmet_register_transport(&nvmet_pci_epf_fabrics_ops); 2591 if (ret) { 2592 pci_epf_unregister_driver(&nvmet_pci_epf_driver); 2593 return ret; 2594 } 2595 2596 return 0; 2597 } 2598 2599 static void __exit nvmet_pci_epf_cleanup_module(void) 2600 { 2601 nvmet_unregister_transport(&nvmet_pci_epf_fabrics_ops); 2602 pci_epf_unregister_driver(&nvmet_pci_epf_driver); 2603 } 2604 2605 module_init(nvmet_pci_epf_init_module); 2606 module_exit(nvmet_pci_epf_cleanup_module); 2607 2608 MODULE_DESCRIPTION("NVMe PCI Endpoint Function target driver"); 2609 MODULE_AUTHOR("Damien Le Moal <dlemoal@kernel.org>"); 2610 MODULE_LICENSE("GPL"); 2611