xref: /linux/drivers/nvme/target/io-cmd-bdev.c (revision e814f3fd16acfb7f9966773953de8f740a1e3202)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe I/O command implementation.
4  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/blkdev.h>
8 #include <linux/blk-integrity.h>
9 #include <linux/memremap.h>
10 #include <linux/module.h>
11 #include "nvmet.h"
12 
13 void nvmet_bdev_set_limits(struct block_device *bdev, struct nvme_id_ns *id)
14 {
15 	/* Logical blocks per physical block, 0's based. */
16 	const __le16 lpp0b = to0based(bdev_physical_block_size(bdev) /
17 				      bdev_logical_block_size(bdev));
18 
19 	/*
20 	 * For NVMe 1.2 and later, bit 1 indicates that the fields NAWUN,
21 	 * NAWUPF, and NACWU are defined for this namespace and should be
22 	 * used by the host for this namespace instead of the AWUN, AWUPF,
23 	 * and ACWU fields in the Identify Controller data structure. If
24 	 * any of these fields are zero that means that the corresponding
25 	 * field from the identify controller data structure should be used.
26 	 */
27 	id->nsfeat |= 1 << 1;
28 	id->nawun = lpp0b;
29 	id->nawupf = lpp0b;
30 	id->nacwu = lpp0b;
31 
32 	/*
33 	 * Bit 4 indicates that the fields NPWG, NPWA, NPDG, NPDA, and
34 	 * NOWS are defined for this namespace and should be used by
35 	 * the host for I/O optimization.
36 	 */
37 	id->nsfeat |= 1 << 4;
38 	/* NPWG = Namespace Preferred Write Granularity. 0's based */
39 	id->npwg = to0based(bdev_io_min(bdev) / bdev_logical_block_size(bdev));
40 	/* NPWA = Namespace Preferred Write Alignment. 0's based */
41 	id->npwa = id->npwg;
42 	/* NPDG = Namespace Preferred Deallocate Granularity. 0's based */
43 	id->npdg = to0based(bdev_discard_granularity(bdev) /
44 			    bdev_logical_block_size(bdev));
45 	/* NPDG = Namespace Preferred Deallocate Alignment */
46 	id->npda = id->npdg;
47 	/* NOWS = Namespace Optimal Write Size */
48 	id->nows = to0based(bdev_io_opt(bdev) / bdev_logical_block_size(bdev));
49 }
50 
51 void nvmet_bdev_ns_disable(struct nvmet_ns *ns)
52 {
53 	if (ns->bdev_file) {
54 		fput(ns->bdev_file);
55 		ns->bdev = NULL;
56 		ns->bdev_file = NULL;
57 	}
58 }
59 
60 static void nvmet_bdev_ns_enable_integrity(struct nvmet_ns *ns)
61 {
62 	struct blk_integrity *bi = bdev_get_integrity(ns->bdev);
63 
64 	if (!bi)
65 		return;
66 
67 	if (bi->csum_type == BLK_INTEGRITY_CSUM_CRC) {
68 		ns->metadata_size = bi->tuple_size;
69 		if (bi->flags & BLK_INTEGRITY_REF_TAG)
70 			ns->pi_type = NVME_NS_DPS_PI_TYPE1;
71 		else
72 			ns->pi_type = NVME_NS_DPS_PI_TYPE3;
73 	} else {
74 		ns->metadata_size = 0;
75 	}
76 }
77 
78 int nvmet_bdev_ns_enable(struct nvmet_ns *ns)
79 {
80 	int ret;
81 
82 	/*
83 	 * When buffered_io namespace attribute is enabled that means user want
84 	 * this block device to be used as a file, so block device can take
85 	 * an advantage of cache.
86 	 */
87 	if (ns->buffered_io)
88 		return -ENOTBLK;
89 
90 	ns->bdev_file = bdev_file_open_by_path(ns->device_path,
91 				BLK_OPEN_READ | BLK_OPEN_WRITE, NULL, NULL);
92 	if (IS_ERR(ns->bdev_file)) {
93 		ret = PTR_ERR(ns->bdev_file);
94 		if (ret != -ENOTBLK) {
95 			pr_err("failed to open block device %s: (%d)\n",
96 					ns->device_path, ret);
97 		}
98 		ns->bdev_file = NULL;
99 		return ret;
100 	}
101 	ns->bdev = file_bdev(ns->bdev_file);
102 	ns->size = bdev_nr_bytes(ns->bdev);
103 	ns->blksize_shift = blksize_bits(bdev_logical_block_size(ns->bdev));
104 
105 	ns->pi_type = 0;
106 	ns->metadata_size = 0;
107 	if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY))
108 		nvmet_bdev_ns_enable_integrity(ns);
109 
110 	if (bdev_is_zoned(ns->bdev)) {
111 		if (!nvmet_bdev_zns_enable(ns)) {
112 			nvmet_bdev_ns_disable(ns);
113 			return -EINVAL;
114 		}
115 		ns->csi = NVME_CSI_ZNS;
116 	}
117 
118 	return 0;
119 }
120 
121 void nvmet_bdev_ns_revalidate(struct nvmet_ns *ns)
122 {
123 	ns->size = bdev_nr_bytes(ns->bdev);
124 }
125 
126 u16 blk_to_nvme_status(struct nvmet_req *req, blk_status_t blk_sts)
127 {
128 	u16 status = NVME_SC_SUCCESS;
129 
130 	if (likely(blk_sts == BLK_STS_OK))
131 		return status;
132 	/*
133 	 * Right now there exists M : 1 mapping between block layer error
134 	 * to the NVMe status code (see nvme_error_status()). For consistency,
135 	 * when we reverse map we use most appropriate NVMe Status code from
136 	 * the group of the NVMe staus codes used in the nvme_error_status().
137 	 */
138 	switch (blk_sts) {
139 	case BLK_STS_NOSPC:
140 		status = NVME_SC_CAP_EXCEEDED | NVME_STATUS_DNR;
141 		req->error_loc = offsetof(struct nvme_rw_command, length);
142 		break;
143 	case BLK_STS_TARGET:
144 		status = NVME_SC_LBA_RANGE | NVME_STATUS_DNR;
145 		req->error_loc = offsetof(struct nvme_rw_command, slba);
146 		break;
147 	case BLK_STS_NOTSUPP:
148 		req->error_loc = offsetof(struct nvme_common_command, opcode);
149 		switch (req->cmd->common.opcode) {
150 		case nvme_cmd_dsm:
151 		case nvme_cmd_write_zeroes:
152 			status = NVME_SC_ONCS_NOT_SUPPORTED | NVME_STATUS_DNR;
153 			break;
154 		default:
155 			status = NVME_SC_INVALID_OPCODE | NVME_STATUS_DNR;
156 		}
157 		break;
158 	case BLK_STS_MEDIUM:
159 		status = NVME_SC_ACCESS_DENIED;
160 		req->error_loc = offsetof(struct nvme_rw_command, nsid);
161 		break;
162 	case BLK_STS_IOERR:
163 	default:
164 		status = NVME_SC_INTERNAL | NVME_STATUS_DNR;
165 		req->error_loc = offsetof(struct nvme_common_command, opcode);
166 	}
167 
168 	switch (req->cmd->common.opcode) {
169 	case nvme_cmd_read:
170 	case nvme_cmd_write:
171 		req->error_slba = le64_to_cpu(req->cmd->rw.slba);
172 		break;
173 	case nvme_cmd_write_zeroes:
174 		req->error_slba =
175 			le64_to_cpu(req->cmd->write_zeroes.slba);
176 		break;
177 	default:
178 		req->error_slba = 0;
179 	}
180 	return status;
181 }
182 
183 static void nvmet_bio_done(struct bio *bio)
184 {
185 	struct nvmet_req *req = bio->bi_private;
186 
187 	nvmet_req_complete(req, blk_to_nvme_status(req, bio->bi_status));
188 	nvmet_req_bio_put(req, bio);
189 }
190 
191 #ifdef CONFIG_BLK_DEV_INTEGRITY
192 static int nvmet_bdev_alloc_bip(struct nvmet_req *req, struct bio *bio,
193 				struct sg_mapping_iter *miter)
194 {
195 	struct blk_integrity *bi;
196 	struct bio_integrity_payload *bip;
197 	int rc;
198 	size_t resid, len;
199 
200 	bi = bdev_get_integrity(req->ns->bdev);
201 	if (unlikely(!bi)) {
202 		pr_err("Unable to locate bio_integrity\n");
203 		return -ENODEV;
204 	}
205 
206 	bip = bio_integrity_alloc(bio, GFP_NOIO,
207 					bio_max_segs(req->metadata_sg_cnt));
208 	if (IS_ERR(bip)) {
209 		pr_err("Unable to allocate bio_integrity_payload\n");
210 		return PTR_ERR(bip);
211 	}
212 
213 	/* virtual start sector must be in integrity interval units */
214 	bip_set_seed(bip, bio->bi_iter.bi_sector >>
215 		     (bi->interval_exp - SECTOR_SHIFT));
216 
217 	resid = bio_integrity_bytes(bi, bio_sectors(bio));
218 	while (resid > 0 && sg_miter_next(miter)) {
219 		len = min_t(size_t, miter->length, resid);
220 		rc = bio_integrity_add_page(bio, miter->page, len,
221 					    offset_in_page(miter->addr));
222 		if (unlikely(rc != len)) {
223 			pr_err("bio_integrity_add_page() failed; %d\n", rc);
224 			sg_miter_stop(miter);
225 			return -ENOMEM;
226 		}
227 
228 		resid -= len;
229 		if (len < miter->length)
230 			miter->consumed -= miter->length - len;
231 	}
232 	sg_miter_stop(miter);
233 
234 	return 0;
235 }
236 #else
237 static int nvmet_bdev_alloc_bip(struct nvmet_req *req, struct bio *bio,
238 				struct sg_mapping_iter *miter)
239 {
240 	return -EINVAL;
241 }
242 #endif /* CONFIG_BLK_DEV_INTEGRITY */
243 
244 static void nvmet_bdev_execute_rw(struct nvmet_req *req)
245 {
246 	unsigned int sg_cnt = req->sg_cnt;
247 	struct bio *bio;
248 	struct scatterlist *sg;
249 	struct blk_plug plug;
250 	sector_t sector;
251 	blk_opf_t opf;
252 	int i, rc;
253 	struct sg_mapping_iter prot_miter;
254 	unsigned int iter_flags;
255 	unsigned int total_len = nvmet_rw_data_len(req) + req->metadata_len;
256 
257 	if (!nvmet_check_transfer_len(req, total_len))
258 		return;
259 
260 	if (!req->sg_cnt) {
261 		nvmet_req_complete(req, 0);
262 		return;
263 	}
264 
265 	if (req->cmd->rw.opcode == nvme_cmd_write) {
266 		opf = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE;
267 		if (req->cmd->rw.control & cpu_to_le16(NVME_RW_FUA))
268 			opf |= REQ_FUA;
269 		iter_flags = SG_MITER_TO_SG;
270 	} else {
271 		opf = REQ_OP_READ;
272 		iter_flags = SG_MITER_FROM_SG;
273 	}
274 
275 	if (req->cmd->rw.control & NVME_RW_LR)
276 		opf |= REQ_FAILFAST_DEV;
277 
278 	if (is_pci_p2pdma_page(sg_page(req->sg)))
279 		opf |= REQ_NOMERGE;
280 
281 	sector = nvmet_lba_to_sect(req->ns, req->cmd->rw.slba);
282 
283 	if (nvmet_use_inline_bvec(req)) {
284 		bio = &req->b.inline_bio;
285 		bio_init(bio, req->ns->bdev, req->inline_bvec,
286 			 ARRAY_SIZE(req->inline_bvec), opf);
287 	} else {
288 		bio = bio_alloc(req->ns->bdev, bio_max_segs(sg_cnt), opf,
289 				GFP_KERNEL);
290 	}
291 	bio->bi_iter.bi_sector = sector;
292 	bio->bi_private = req;
293 	bio->bi_end_io = nvmet_bio_done;
294 
295 	blk_start_plug(&plug);
296 	if (req->metadata_len)
297 		sg_miter_start(&prot_miter, req->metadata_sg,
298 			       req->metadata_sg_cnt, iter_flags);
299 
300 	for_each_sg(req->sg, sg, req->sg_cnt, i) {
301 		while (bio_add_page(bio, sg_page(sg), sg->length, sg->offset)
302 				!= sg->length) {
303 			struct bio *prev = bio;
304 
305 			if (req->metadata_len) {
306 				rc = nvmet_bdev_alloc_bip(req, bio,
307 							  &prot_miter);
308 				if (unlikely(rc)) {
309 					bio_io_error(bio);
310 					return;
311 				}
312 			}
313 
314 			bio = bio_alloc(req->ns->bdev, bio_max_segs(sg_cnt),
315 					opf, GFP_KERNEL);
316 			bio->bi_iter.bi_sector = sector;
317 
318 			bio_chain(bio, prev);
319 			submit_bio(prev);
320 		}
321 
322 		sector += sg->length >> 9;
323 		sg_cnt--;
324 	}
325 
326 	if (req->metadata_len) {
327 		rc = nvmet_bdev_alloc_bip(req, bio, &prot_miter);
328 		if (unlikely(rc)) {
329 			bio_io_error(bio);
330 			return;
331 		}
332 	}
333 
334 	submit_bio(bio);
335 	blk_finish_plug(&plug);
336 }
337 
338 static void nvmet_bdev_execute_flush(struct nvmet_req *req)
339 {
340 	struct bio *bio = &req->b.inline_bio;
341 
342 	if (!bdev_write_cache(req->ns->bdev)) {
343 		nvmet_req_complete(req, NVME_SC_SUCCESS);
344 		return;
345 	}
346 
347 	if (!nvmet_check_transfer_len(req, 0))
348 		return;
349 
350 	bio_init(bio, req->ns->bdev, req->inline_bvec,
351 		 ARRAY_SIZE(req->inline_bvec), REQ_OP_WRITE | REQ_PREFLUSH);
352 	bio->bi_private = req;
353 	bio->bi_end_io = nvmet_bio_done;
354 
355 	submit_bio(bio);
356 }
357 
358 u16 nvmet_bdev_flush(struct nvmet_req *req)
359 {
360 	if (!bdev_write_cache(req->ns->bdev))
361 		return 0;
362 
363 	if (blkdev_issue_flush(req->ns->bdev))
364 		return NVME_SC_INTERNAL | NVME_STATUS_DNR;
365 	return 0;
366 }
367 
368 static u16 nvmet_bdev_discard_range(struct nvmet_req *req,
369 		struct nvme_dsm_range *range, struct bio **bio)
370 {
371 	struct nvmet_ns *ns = req->ns;
372 	int ret;
373 
374 	ret = __blkdev_issue_discard(ns->bdev,
375 			nvmet_lba_to_sect(ns, range->slba),
376 			le32_to_cpu(range->nlb) << (ns->blksize_shift - 9),
377 			GFP_KERNEL, bio);
378 	if (ret && ret != -EOPNOTSUPP) {
379 		req->error_slba = le64_to_cpu(range->slba);
380 		return errno_to_nvme_status(req, ret);
381 	}
382 	return NVME_SC_SUCCESS;
383 }
384 
385 static void nvmet_bdev_execute_discard(struct nvmet_req *req)
386 {
387 	struct nvme_dsm_range range;
388 	struct bio *bio = NULL;
389 	int i;
390 	u16 status;
391 
392 	for (i = 0; i <= le32_to_cpu(req->cmd->dsm.nr); i++) {
393 		status = nvmet_copy_from_sgl(req, i * sizeof(range), &range,
394 				sizeof(range));
395 		if (status)
396 			break;
397 
398 		status = nvmet_bdev_discard_range(req, &range, &bio);
399 		if (status)
400 			break;
401 	}
402 
403 	if (bio) {
404 		bio->bi_private = req;
405 		bio->bi_end_io = nvmet_bio_done;
406 		if (status)
407 			bio_io_error(bio);
408 		else
409 			submit_bio(bio);
410 	} else {
411 		nvmet_req_complete(req, status);
412 	}
413 }
414 
415 static void nvmet_bdev_execute_dsm(struct nvmet_req *req)
416 {
417 	if (!nvmet_check_data_len_lte(req, nvmet_dsm_len(req)))
418 		return;
419 
420 	switch (le32_to_cpu(req->cmd->dsm.attributes)) {
421 	case NVME_DSMGMT_AD:
422 		nvmet_bdev_execute_discard(req);
423 		return;
424 	case NVME_DSMGMT_IDR:
425 	case NVME_DSMGMT_IDW:
426 	default:
427 		/* Not supported yet */
428 		nvmet_req_complete(req, 0);
429 		return;
430 	}
431 }
432 
433 static void nvmet_bdev_execute_write_zeroes(struct nvmet_req *req)
434 {
435 	struct nvme_write_zeroes_cmd *write_zeroes = &req->cmd->write_zeroes;
436 	struct bio *bio = NULL;
437 	sector_t sector;
438 	sector_t nr_sector;
439 	int ret;
440 
441 	if (!nvmet_check_transfer_len(req, 0))
442 		return;
443 
444 	sector = nvmet_lba_to_sect(req->ns, write_zeroes->slba);
445 	nr_sector = (((sector_t)le16_to_cpu(write_zeroes->length) + 1) <<
446 		(req->ns->blksize_shift - 9));
447 
448 	ret = __blkdev_issue_zeroout(req->ns->bdev, sector, nr_sector,
449 			GFP_KERNEL, &bio, 0);
450 	if (bio) {
451 		bio->bi_private = req;
452 		bio->bi_end_io = nvmet_bio_done;
453 		submit_bio(bio);
454 	} else {
455 		nvmet_req_complete(req, errno_to_nvme_status(req, ret));
456 	}
457 }
458 
459 u16 nvmet_bdev_parse_io_cmd(struct nvmet_req *req)
460 {
461 	switch (req->cmd->common.opcode) {
462 	case nvme_cmd_read:
463 	case nvme_cmd_write:
464 		req->execute = nvmet_bdev_execute_rw;
465 		if (req->sq->ctrl->pi_support && nvmet_ns_has_pi(req->ns))
466 			req->metadata_len = nvmet_rw_metadata_len(req);
467 		return 0;
468 	case nvme_cmd_flush:
469 		req->execute = nvmet_bdev_execute_flush;
470 		return 0;
471 	case nvme_cmd_dsm:
472 		req->execute = nvmet_bdev_execute_dsm;
473 		return 0;
474 	case nvme_cmd_write_zeroes:
475 		req->execute = nvmet_bdev_execute_write_zeroes;
476 		return 0;
477 	default:
478 		return nvmet_report_invalid_opcode(req);
479 	}
480 }
481