1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVMe I/O command implementation. 4 * Copyright (c) 2015-2016 HGST, a Western Digital Company. 5 */ 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 #include <linux/blkdev.h> 8 #include <linux/blk-integrity.h> 9 #include <linux/memremap.h> 10 #include <linux/module.h> 11 #include "nvmet.h" 12 13 void nvmet_bdev_set_limits(struct block_device *bdev, struct nvme_id_ns *id) 14 { 15 /* Logical blocks per physical block, 0's based. */ 16 const __le16 lpp0b = to0based(bdev_physical_block_size(bdev) / 17 bdev_logical_block_size(bdev)); 18 19 /* 20 * For NVMe 1.2 and later, bit 1 indicates that the fields NAWUN, 21 * NAWUPF, and NACWU are defined for this namespace and should be 22 * used by the host for this namespace instead of the AWUN, AWUPF, 23 * and ACWU fields in the Identify Controller data structure. If 24 * any of these fields are zero that means that the corresponding 25 * field from the identify controller data structure should be used. 26 */ 27 id->nsfeat |= 1 << 1; 28 id->nawun = lpp0b; 29 id->nawupf = lpp0b; 30 id->nacwu = lpp0b; 31 32 /* 33 * Bit 4 indicates that the fields NPWG, NPWA, NPDG, NPDA, and 34 * NOWS are defined for this namespace and should be used by 35 * the host for I/O optimization. 36 */ 37 id->nsfeat |= 1 << 4; 38 /* NPWG = Namespace Preferred Write Granularity. 0's based */ 39 id->npwg = lpp0b; 40 /* NPWA = Namespace Preferred Write Alignment. 0's based */ 41 id->npwa = id->npwg; 42 /* NPDG = Namespace Preferred Deallocate Granularity. 0's based */ 43 id->npdg = to0based(bdev_discard_granularity(bdev) / 44 bdev_logical_block_size(bdev)); 45 /* NPDG = Namespace Preferred Deallocate Alignment */ 46 id->npda = id->npdg; 47 /* NOWS = Namespace Optimal Write Size */ 48 id->nows = to0based(bdev_io_opt(bdev) / bdev_logical_block_size(bdev)); 49 } 50 51 void nvmet_bdev_ns_disable(struct nvmet_ns *ns) 52 { 53 if (ns->bdev_handle) { 54 bdev_release(ns->bdev_handle); 55 ns->bdev = NULL; 56 ns->bdev_handle = NULL; 57 } 58 } 59 60 static void nvmet_bdev_ns_enable_integrity(struct nvmet_ns *ns) 61 { 62 struct blk_integrity *bi = bdev_get_integrity(ns->bdev); 63 64 if (bi) { 65 ns->metadata_size = bi->tuple_size; 66 if (bi->profile == &t10_pi_type1_crc) 67 ns->pi_type = NVME_NS_DPS_PI_TYPE1; 68 else if (bi->profile == &t10_pi_type3_crc) 69 ns->pi_type = NVME_NS_DPS_PI_TYPE3; 70 else 71 /* Unsupported metadata type */ 72 ns->metadata_size = 0; 73 } 74 } 75 76 int nvmet_bdev_ns_enable(struct nvmet_ns *ns) 77 { 78 int ret; 79 80 /* 81 * When buffered_io namespace attribute is enabled that means user want 82 * this block device to be used as a file, so block device can take 83 * an advantage of cache. 84 */ 85 if (ns->buffered_io) 86 return -ENOTBLK; 87 88 ns->bdev_handle = bdev_open_by_path(ns->device_path, 89 BLK_OPEN_READ | BLK_OPEN_WRITE, NULL, NULL); 90 if (IS_ERR(ns->bdev_handle)) { 91 ret = PTR_ERR(ns->bdev_handle); 92 if (ret != -ENOTBLK) { 93 pr_err("failed to open block device %s: (%d)\n", 94 ns->device_path, ret); 95 } 96 ns->bdev_handle = NULL; 97 return ret; 98 } 99 ns->bdev = ns->bdev_handle->bdev; 100 ns->size = bdev_nr_bytes(ns->bdev); 101 ns->blksize_shift = blksize_bits(bdev_logical_block_size(ns->bdev)); 102 103 ns->pi_type = 0; 104 ns->metadata_size = 0; 105 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY_T10)) 106 nvmet_bdev_ns_enable_integrity(ns); 107 108 if (bdev_is_zoned(ns->bdev)) { 109 if (!nvmet_bdev_zns_enable(ns)) { 110 nvmet_bdev_ns_disable(ns); 111 return -EINVAL; 112 } 113 ns->csi = NVME_CSI_ZNS; 114 } 115 116 return 0; 117 } 118 119 void nvmet_bdev_ns_revalidate(struct nvmet_ns *ns) 120 { 121 ns->size = bdev_nr_bytes(ns->bdev); 122 } 123 124 u16 blk_to_nvme_status(struct nvmet_req *req, blk_status_t blk_sts) 125 { 126 u16 status = NVME_SC_SUCCESS; 127 128 if (likely(blk_sts == BLK_STS_OK)) 129 return status; 130 /* 131 * Right now there exists M : 1 mapping between block layer error 132 * to the NVMe status code (see nvme_error_status()). For consistency, 133 * when we reverse map we use most appropriate NVMe Status code from 134 * the group of the NVMe staus codes used in the nvme_error_status(). 135 */ 136 switch (blk_sts) { 137 case BLK_STS_NOSPC: 138 status = NVME_SC_CAP_EXCEEDED | NVME_SC_DNR; 139 req->error_loc = offsetof(struct nvme_rw_command, length); 140 break; 141 case BLK_STS_TARGET: 142 status = NVME_SC_LBA_RANGE | NVME_SC_DNR; 143 req->error_loc = offsetof(struct nvme_rw_command, slba); 144 break; 145 case BLK_STS_NOTSUPP: 146 req->error_loc = offsetof(struct nvme_common_command, opcode); 147 switch (req->cmd->common.opcode) { 148 case nvme_cmd_dsm: 149 case nvme_cmd_write_zeroes: 150 status = NVME_SC_ONCS_NOT_SUPPORTED | NVME_SC_DNR; 151 break; 152 default: 153 status = NVME_SC_INVALID_OPCODE | NVME_SC_DNR; 154 } 155 break; 156 case BLK_STS_MEDIUM: 157 status = NVME_SC_ACCESS_DENIED; 158 req->error_loc = offsetof(struct nvme_rw_command, nsid); 159 break; 160 case BLK_STS_IOERR: 161 default: 162 status = NVME_SC_INTERNAL | NVME_SC_DNR; 163 req->error_loc = offsetof(struct nvme_common_command, opcode); 164 } 165 166 switch (req->cmd->common.opcode) { 167 case nvme_cmd_read: 168 case nvme_cmd_write: 169 req->error_slba = le64_to_cpu(req->cmd->rw.slba); 170 break; 171 case nvme_cmd_write_zeroes: 172 req->error_slba = 173 le64_to_cpu(req->cmd->write_zeroes.slba); 174 break; 175 default: 176 req->error_slba = 0; 177 } 178 return status; 179 } 180 181 static void nvmet_bio_done(struct bio *bio) 182 { 183 struct nvmet_req *req = bio->bi_private; 184 185 nvmet_req_complete(req, blk_to_nvme_status(req, bio->bi_status)); 186 nvmet_req_bio_put(req, bio); 187 } 188 189 #ifdef CONFIG_BLK_DEV_INTEGRITY 190 static int nvmet_bdev_alloc_bip(struct nvmet_req *req, struct bio *bio, 191 struct sg_mapping_iter *miter) 192 { 193 struct blk_integrity *bi; 194 struct bio_integrity_payload *bip; 195 int rc; 196 size_t resid, len; 197 198 bi = bdev_get_integrity(req->ns->bdev); 199 if (unlikely(!bi)) { 200 pr_err("Unable to locate bio_integrity\n"); 201 return -ENODEV; 202 } 203 204 bip = bio_integrity_alloc(bio, GFP_NOIO, 205 bio_max_segs(req->metadata_sg_cnt)); 206 if (IS_ERR(bip)) { 207 pr_err("Unable to allocate bio_integrity_payload\n"); 208 return PTR_ERR(bip); 209 } 210 211 /* virtual start sector must be in integrity interval units */ 212 bip_set_seed(bip, bio->bi_iter.bi_sector >> 213 (bi->interval_exp - SECTOR_SHIFT)); 214 215 resid = bio_integrity_bytes(bi, bio_sectors(bio)); 216 while (resid > 0 && sg_miter_next(miter)) { 217 len = min_t(size_t, miter->length, resid); 218 rc = bio_integrity_add_page(bio, miter->page, len, 219 offset_in_page(miter->addr)); 220 if (unlikely(rc != len)) { 221 pr_err("bio_integrity_add_page() failed; %d\n", rc); 222 sg_miter_stop(miter); 223 return -ENOMEM; 224 } 225 226 resid -= len; 227 if (len < miter->length) 228 miter->consumed -= miter->length - len; 229 } 230 sg_miter_stop(miter); 231 232 return 0; 233 } 234 #else 235 static int nvmet_bdev_alloc_bip(struct nvmet_req *req, struct bio *bio, 236 struct sg_mapping_iter *miter) 237 { 238 return -EINVAL; 239 } 240 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 241 242 static void nvmet_bdev_execute_rw(struct nvmet_req *req) 243 { 244 unsigned int sg_cnt = req->sg_cnt; 245 struct bio *bio; 246 struct scatterlist *sg; 247 struct blk_plug plug; 248 sector_t sector; 249 blk_opf_t opf; 250 int i, rc; 251 struct sg_mapping_iter prot_miter; 252 unsigned int iter_flags; 253 unsigned int total_len = nvmet_rw_data_len(req) + req->metadata_len; 254 255 if (!nvmet_check_transfer_len(req, total_len)) 256 return; 257 258 if (!req->sg_cnt) { 259 nvmet_req_complete(req, 0); 260 return; 261 } 262 263 if (req->cmd->rw.opcode == nvme_cmd_write) { 264 opf = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE; 265 if (req->cmd->rw.control & cpu_to_le16(NVME_RW_FUA)) 266 opf |= REQ_FUA; 267 iter_flags = SG_MITER_TO_SG; 268 } else { 269 opf = REQ_OP_READ; 270 iter_flags = SG_MITER_FROM_SG; 271 } 272 273 if (is_pci_p2pdma_page(sg_page(req->sg))) 274 opf |= REQ_NOMERGE; 275 276 sector = nvmet_lba_to_sect(req->ns, req->cmd->rw.slba); 277 278 if (nvmet_use_inline_bvec(req)) { 279 bio = &req->b.inline_bio; 280 bio_init(bio, req->ns->bdev, req->inline_bvec, 281 ARRAY_SIZE(req->inline_bvec), opf); 282 } else { 283 bio = bio_alloc(req->ns->bdev, bio_max_segs(sg_cnt), opf, 284 GFP_KERNEL); 285 } 286 bio->bi_iter.bi_sector = sector; 287 bio->bi_private = req; 288 bio->bi_end_io = nvmet_bio_done; 289 290 blk_start_plug(&plug); 291 if (req->metadata_len) 292 sg_miter_start(&prot_miter, req->metadata_sg, 293 req->metadata_sg_cnt, iter_flags); 294 295 for_each_sg(req->sg, sg, req->sg_cnt, i) { 296 while (bio_add_page(bio, sg_page(sg), sg->length, sg->offset) 297 != sg->length) { 298 struct bio *prev = bio; 299 300 if (req->metadata_len) { 301 rc = nvmet_bdev_alloc_bip(req, bio, 302 &prot_miter); 303 if (unlikely(rc)) { 304 bio_io_error(bio); 305 return; 306 } 307 } 308 309 bio = bio_alloc(req->ns->bdev, bio_max_segs(sg_cnt), 310 opf, GFP_KERNEL); 311 bio->bi_iter.bi_sector = sector; 312 313 bio_chain(bio, prev); 314 submit_bio(prev); 315 } 316 317 sector += sg->length >> 9; 318 sg_cnt--; 319 } 320 321 if (req->metadata_len) { 322 rc = nvmet_bdev_alloc_bip(req, bio, &prot_miter); 323 if (unlikely(rc)) { 324 bio_io_error(bio); 325 return; 326 } 327 } 328 329 submit_bio(bio); 330 blk_finish_plug(&plug); 331 } 332 333 static void nvmet_bdev_execute_flush(struct nvmet_req *req) 334 { 335 struct bio *bio = &req->b.inline_bio; 336 337 if (!bdev_write_cache(req->ns->bdev)) { 338 nvmet_req_complete(req, NVME_SC_SUCCESS); 339 return; 340 } 341 342 if (!nvmet_check_transfer_len(req, 0)) 343 return; 344 345 bio_init(bio, req->ns->bdev, req->inline_bvec, 346 ARRAY_SIZE(req->inline_bvec), REQ_OP_WRITE | REQ_PREFLUSH); 347 bio->bi_private = req; 348 bio->bi_end_io = nvmet_bio_done; 349 350 submit_bio(bio); 351 } 352 353 u16 nvmet_bdev_flush(struct nvmet_req *req) 354 { 355 if (!bdev_write_cache(req->ns->bdev)) 356 return 0; 357 358 if (blkdev_issue_flush(req->ns->bdev)) 359 return NVME_SC_INTERNAL | NVME_SC_DNR; 360 return 0; 361 } 362 363 static u16 nvmet_bdev_discard_range(struct nvmet_req *req, 364 struct nvme_dsm_range *range, struct bio **bio) 365 { 366 struct nvmet_ns *ns = req->ns; 367 int ret; 368 369 ret = __blkdev_issue_discard(ns->bdev, 370 nvmet_lba_to_sect(ns, range->slba), 371 le32_to_cpu(range->nlb) << (ns->blksize_shift - 9), 372 GFP_KERNEL, bio); 373 if (ret && ret != -EOPNOTSUPP) { 374 req->error_slba = le64_to_cpu(range->slba); 375 return errno_to_nvme_status(req, ret); 376 } 377 return NVME_SC_SUCCESS; 378 } 379 380 static void nvmet_bdev_execute_discard(struct nvmet_req *req) 381 { 382 struct nvme_dsm_range range; 383 struct bio *bio = NULL; 384 int i; 385 u16 status; 386 387 for (i = 0; i <= le32_to_cpu(req->cmd->dsm.nr); i++) { 388 status = nvmet_copy_from_sgl(req, i * sizeof(range), &range, 389 sizeof(range)); 390 if (status) 391 break; 392 393 status = nvmet_bdev_discard_range(req, &range, &bio); 394 if (status) 395 break; 396 } 397 398 if (bio) { 399 bio->bi_private = req; 400 bio->bi_end_io = nvmet_bio_done; 401 if (status) 402 bio_io_error(bio); 403 else 404 submit_bio(bio); 405 } else { 406 nvmet_req_complete(req, status); 407 } 408 } 409 410 static void nvmet_bdev_execute_dsm(struct nvmet_req *req) 411 { 412 if (!nvmet_check_data_len_lte(req, nvmet_dsm_len(req))) 413 return; 414 415 switch (le32_to_cpu(req->cmd->dsm.attributes)) { 416 case NVME_DSMGMT_AD: 417 nvmet_bdev_execute_discard(req); 418 return; 419 case NVME_DSMGMT_IDR: 420 case NVME_DSMGMT_IDW: 421 default: 422 /* Not supported yet */ 423 nvmet_req_complete(req, 0); 424 return; 425 } 426 } 427 428 static void nvmet_bdev_execute_write_zeroes(struct nvmet_req *req) 429 { 430 struct nvme_write_zeroes_cmd *write_zeroes = &req->cmd->write_zeroes; 431 struct bio *bio = NULL; 432 sector_t sector; 433 sector_t nr_sector; 434 int ret; 435 436 if (!nvmet_check_transfer_len(req, 0)) 437 return; 438 439 sector = nvmet_lba_to_sect(req->ns, write_zeroes->slba); 440 nr_sector = (((sector_t)le16_to_cpu(write_zeroes->length) + 1) << 441 (req->ns->blksize_shift - 9)); 442 443 ret = __blkdev_issue_zeroout(req->ns->bdev, sector, nr_sector, 444 GFP_KERNEL, &bio, 0); 445 if (bio) { 446 bio->bi_private = req; 447 bio->bi_end_io = nvmet_bio_done; 448 submit_bio(bio); 449 } else { 450 nvmet_req_complete(req, errno_to_nvme_status(req, ret)); 451 } 452 } 453 454 u16 nvmet_bdev_parse_io_cmd(struct nvmet_req *req) 455 { 456 switch (req->cmd->common.opcode) { 457 case nvme_cmd_read: 458 case nvme_cmd_write: 459 req->execute = nvmet_bdev_execute_rw; 460 if (req->sq->ctrl->pi_support && nvmet_ns_has_pi(req->ns)) 461 req->metadata_len = nvmet_rw_metadata_len(req); 462 return 0; 463 case nvme_cmd_flush: 464 req->execute = nvmet_bdev_execute_flush; 465 return 0; 466 case nvme_cmd_dsm: 467 req->execute = nvmet_bdev_execute_dsm; 468 return 0; 469 case nvme_cmd_write_zeroes: 470 req->execute = nvmet_bdev_execute_write_zeroes; 471 return 0; 472 default: 473 return nvmet_report_invalid_opcode(req); 474 } 475 } 476