xref: /linux/drivers/nvme/target/io-cmd-bdev.c (revision 6417f03132a6952cd17ddd8eaddbac92b61b17e0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe I/O command implementation.
4  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/blkdev.h>
8 #include <linux/module.h>
9 #include "nvmet.h"
10 
11 void nvmet_bdev_set_limits(struct block_device *bdev, struct nvme_id_ns *id)
12 {
13 	const struct queue_limits *ql = &bdev_get_queue(bdev)->limits;
14 	/* Number of logical blocks per physical block. */
15 	const u32 lpp = ql->physical_block_size / ql->logical_block_size;
16 	/* Logical blocks per physical block, 0's based. */
17 	const __le16 lpp0b = to0based(lpp);
18 
19 	/*
20 	 * For NVMe 1.2 and later, bit 1 indicates that the fields NAWUN,
21 	 * NAWUPF, and NACWU are defined for this namespace and should be
22 	 * used by the host for this namespace instead of the AWUN, AWUPF,
23 	 * and ACWU fields in the Identify Controller data structure. If
24 	 * any of these fields are zero that means that the corresponding
25 	 * field from the identify controller data structure should be used.
26 	 */
27 	id->nsfeat |= 1 << 1;
28 	id->nawun = lpp0b;
29 	id->nawupf = lpp0b;
30 	id->nacwu = lpp0b;
31 
32 	/*
33 	 * Bit 4 indicates that the fields NPWG, NPWA, NPDG, NPDA, and
34 	 * NOWS are defined for this namespace and should be used by
35 	 * the host for I/O optimization.
36 	 */
37 	id->nsfeat |= 1 << 4;
38 	/* NPWG = Namespace Preferred Write Granularity. 0's based */
39 	id->npwg = lpp0b;
40 	/* NPWA = Namespace Preferred Write Alignment. 0's based */
41 	id->npwa = id->npwg;
42 	/* NPDG = Namespace Preferred Deallocate Granularity. 0's based */
43 	id->npdg = to0based(ql->discard_granularity / ql->logical_block_size);
44 	/* NPDG = Namespace Preferred Deallocate Alignment */
45 	id->npda = id->npdg;
46 	/* NOWS = Namespace Optimal Write Size */
47 	id->nows = to0based(ql->io_opt / ql->logical_block_size);
48 }
49 
50 static void nvmet_bdev_ns_enable_integrity(struct nvmet_ns *ns)
51 {
52 	struct blk_integrity *bi = bdev_get_integrity(ns->bdev);
53 
54 	if (bi) {
55 		ns->metadata_size = bi->tuple_size;
56 		if (bi->profile == &t10_pi_type1_crc)
57 			ns->pi_type = NVME_NS_DPS_PI_TYPE1;
58 		else if (bi->profile == &t10_pi_type3_crc)
59 			ns->pi_type = NVME_NS_DPS_PI_TYPE3;
60 		else
61 			/* Unsupported metadata type */
62 			ns->metadata_size = 0;
63 	}
64 }
65 
66 int nvmet_bdev_ns_enable(struct nvmet_ns *ns)
67 {
68 	int ret;
69 
70 	ns->bdev = blkdev_get_by_path(ns->device_path,
71 			FMODE_READ | FMODE_WRITE, NULL);
72 	if (IS_ERR(ns->bdev)) {
73 		ret = PTR_ERR(ns->bdev);
74 		if (ret != -ENOTBLK) {
75 			pr_err("failed to open block device %s: (%ld)\n",
76 					ns->device_path, PTR_ERR(ns->bdev));
77 		}
78 		ns->bdev = NULL;
79 		return ret;
80 	}
81 	ns->size = i_size_read(ns->bdev->bd_inode);
82 	ns->blksize_shift = blksize_bits(bdev_logical_block_size(ns->bdev));
83 
84 	ns->pi_type = 0;
85 	ns->metadata_size = 0;
86 	if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY_T10))
87 		nvmet_bdev_ns_enable_integrity(ns);
88 
89 	return 0;
90 }
91 
92 void nvmet_bdev_ns_disable(struct nvmet_ns *ns)
93 {
94 	if (ns->bdev) {
95 		blkdev_put(ns->bdev, FMODE_WRITE | FMODE_READ);
96 		ns->bdev = NULL;
97 	}
98 }
99 
100 void nvmet_bdev_ns_revalidate(struct nvmet_ns *ns)
101 {
102 	ns->size = i_size_read(ns->bdev->bd_inode);
103 }
104 
105 static u16 blk_to_nvme_status(struct nvmet_req *req, blk_status_t blk_sts)
106 {
107 	u16 status = NVME_SC_SUCCESS;
108 
109 	if (likely(blk_sts == BLK_STS_OK))
110 		return status;
111 	/*
112 	 * Right now there exists M : 1 mapping between block layer error
113 	 * to the NVMe status code (see nvme_error_status()). For consistency,
114 	 * when we reverse map we use most appropriate NVMe Status code from
115 	 * the group of the NVMe staus codes used in the nvme_error_status().
116 	 */
117 	switch (blk_sts) {
118 	case BLK_STS_NOSPC:
119 		status = NVME_SC_CAP_EXCEEDED | NVME_SC_DNR;
120 		req->error_loc = offsetof(struct nvme_rw_command, length);
121 		break;
122 	case BLK_STS_TARGET:
123 		status = NVME_SC_LBA_RANGE | NVME_SC_DNR;
124 		req->error_loc = offsetof(struct nvme_rw_command, slba);
125 		break;
126 	case BLK_STS_NOTSUPP:
127 		req->error_loc = offsetof(struct nvme_common_command, opcode);
128 		switch (req->cmd->common.opcode) {
129 		case nvme_cmd_dsm:
130 		case nvme_cmd_write_zeroes:
131 			status = NVME_SC_ONCS_NOT_SUPPORTED | NVME_SC_DNR;
132 			break;
133 		default:
134 			status = NVME_SC_INVALID_OPCODE | NVME_SC_DNR;
135 		}
136 		break;
137 	case BLK_STS_MEDIUM:
138 		status = NVME_SC_ACCESS_DENIED;
139 		req->error_loc = offsetof(struct nvme_rw_command, nsid);
140 		break;
141 	case BLK_STS_IOERR:
142 	default:
143 		status = NVME_SC_INTERNAL | NVME_SC_DNR;
144 		req->error_loc = offsetof(struct nvme_common_command, opcode);
145 	}
146 
147 	switch (req->cmd->common.opcode) {
148 	case nvme_cmd_read:
149 	case nvme_cmd_write:
150 		req->error_slba = le64_to_cpu(req->cmd->rw.slba);
151 		break;
152 	case nvme_cmd_write_zeroes:
153 		req->error_slba =
154 			le64_to_cpu(req->cmd->write_zeroes.slba);
155 		break;
156 	default:
157 		req->error_slba = 0;
158 	}
159 	return status;
160 }
161 
162 static void nvmet_bio_done(struct bio *bio)
163 {
164 	struct nvmet_req *req = bio->bi_private;
165 
166 	nvmet_req_complete(req, blk_to_nvme_status(req, bio->bi_status));
167 	if (bio != &req->b.inline_bio)
168 		bio_put(bio);
169 }
170 
171 #ifdef CONFIG_BLK_DEV_INTEGRITY
172 static int nvmet_bdev_alloc_bip(struct nvmet_req *req, struct bio *bio,
173 				struct sg_mapping_iter *miter)
174 {
175 	struct blk_integrity *bi;
176 	struct bio_integrity_payload *bip;
177 	struct block_device *bdev = req->ns->bdev;
178 	int rc;
179 	size_t resid, len;
180 
181 	bi = bdev_get_integrity(bdev);
182 	if (unlikely(!bi)) {
183 		pr_err("Unable to locate bio_integrity\n");
184 		return -ENODEV;
185 	}
186 
187 	bip = bio_integrity_alloc(bio, GFP_NOIO,
188 					bio_max_segs(req->metadata_sg_cnt));
189 	if (IS_ERR(bip)) {
190 		pr_err("Unable to allocate bio_integrity_payload\n");
191 		return PTR_ERR(bip);
192 	}
193 
194 	bip->bip_iter.bi_size = bio_integrity_bytes(bi, bio_sectors(bio));
195 	/* virtual start sector must be in integrity interval units */
196 	bip_set_seed(bip, bio->bi_iter.bi_sector >>
197 		     (bi->interval_exp - SECTOR_SHIFT));
198 
199 	resid = bip->bip_iter.bi_size;
200 	while (resid > 0 && sg_miter_next(miter)) {
201 		len = min_t(size_t, miter->length, resid);
202 		rc = bio_integrity_add_page(bio, miter->page, len,
203 					    offset_in_page(miter->addr));
204 		if (unlikely(rc != len)) {
205 			pr_err("bio_integrity_add_page() failed; %d\n", rc);
206 			sg_miter_stop(miter);
207 			return -ENOMEM;
208 		}
209 
210 		resid -= len;
211 		if (len < miter->length)
212 			miter->consumed -= miter->length - len;
213 	}
214 	sg_miter_stop(miter);
215 
216 	return 0;
217 }
218 #else
219 static int nvmet_bdev_alloc_bip(struct nvmet_req *req, struct bio *bio,
220 				struct sg_mapping_iter *miter)
221 {
222 	return -EINVAL;
223 }
224 #endif /* CONFIG_BLK_DEV_INTEGRITY */
225 
226 static void nvmet_bdev_execute_rw(struct nvmet_req *req)
227 {
228 	unsigned int sg_cnt = req->sg_cnt;
229 	struct bio *bio;
230 	struct scatterlist *sg;
231 	struct blk_plug plug;
232 	sector_t sector;
233 	int op, i, rc;
234 	struct sg_mapping_iter prot_miter;
235 	unsigned int iter_flags;
236 	unsigned int total_len = nvmet_rw_data_len(req) + req->metadata_len;
237 
238 	if (!nvmet_check_transfer_len(req, total_len))
239 		return;
240 
241 	if (!req->sg_cnt) {
242 		nvmet_req_complete(req, 0);
243 		return;
244 	}
245 
246 	if (req->cmd->rw.opcode == nvme_cmd_write) {
247 		op = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE;
248 		if (req->cmd->rw.control & cpu_to_le16(NVME_RW_FUA))
249 			op |= REQ_FUA;
250 		iter_flags = SG_MITER_TO_SG;
251 	} else {
252 		op = REQ_OP_READ;
253 		iter_flags = SG_MITER_FROM_SG;
254 	}
255 
256 	if (is_pci_p2pdma_page(sg_page(req->sg)))
257 		op |= REQ_NOMERGE;
258 
259 	sector = nvmet_lba_to_sect(req->ns, req->cmd->rw.slba);
260 
261 	if (req->transfer_len <= NVMET_MAX_INLINE_DATA_LEN) {
262 		bio = &req->b.inline_bio;
263 		bio_init(bio, req->inline_bvec, ARRAY_SIZE(req->inline_bvec));
264 	} else {
265 		bio = bio_alloc(GFP_KERNEL, bio_max_segs(sg_cnt));
266 	}
267 	bio_set_dev(bio, req->ns->bdev);
268 	bio->bi_iter.bi_sector = sector;
269 	bio->bi_private = req;
270 	bio->bi_end_io = nvmet_bio_done;
271 	bio->bi_opf = op;
272 
273 	blk_start_plug(&plug);
274 	if (req->metadata_len)
275 		sg_miter_start(&prot_miter, req->metadata_sg,
276 			       req->metadata_sg_cnt, iter_flags);
277 
278 	for_each_sg(req->sg, sg, req->sg_cnt, i) {
279 		while (bio_add_page(bio, sg_page(sg), sg->length, sg->offset)
280 				!= sg->length) {
281 			struct bio *prev = bio;
282 
283 			if (req->metadata_len) {
284 				rc = nvmet_bdev_alloc_bip(req, bio,
285 							  &prot_miter);
286 				if (unlikely(rc)) {
287 					bio_io_error(bio);
288 					return;
289 				}
290 			}
291 
292 			bio = bio_alloc(GFP_KERNEL, bio_max_segs(sg_cnt));
293 			bio_set_dev(bio, req->ns->bdev);
294 			bio->bi_iter.bi_sector = sector;
295 			bio->bi_opf = op;
296 
297 			bio_chain(bio, prev);
298 			submit_bio(prev);
299 		}
300 
301 		sector += sg->length >> 9;
302 		sg_cnt--;
303 	}
304 
305 	if (req->metadata_len) {
306 		rc = nvmet_bdev_alloc_bip(req, bio, &prot_miter);
307 		if (unlikely(rc)) {
308 			bio_io_error(bio);
309 			return;
310 		}
311 	}
312 
313 	submit_bio(bio);
314 	blk_finish_plug(&plug);
315 }
316 
317 static void nvmet_bdev_execute_flush(struct nvmet_req *req)
318 {
319 	struct bio *bio = &req->b.inline_bio;
320 
321 	if (!nvmet_check_transfer_len(req, 0))
322 		return;
323 
324 	bio_init(bio, req->inline_bvec, ARRAY_SIZE(req->inline_bvec));
325 	bio_set_dev(bio, req->ns->bdev);
326 	bio->bi_private = req;
327 	bio->bi_end_io = nvmet_bio_done;
328 	bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
329 
330 	submit_bio(bio);
331 }
332 
333 u16 nvmet_bdev_flush(struct nvmet_req *req)
334 {
335 	if (blkdev_issue_flush(req->ns->bdev))
336 		return NVME_SC_INTERNAL | NVME_SC_DNR;
337 	return 0;
338 }
339 
340 static u16 nvmet_bdev_discard_range(struct nvmet_req *req,
341 		struct nvme_dsm_range *range, struct bio **bio)
342 {
343 	struct nvmet_ns *ns = req->ns;
344 	int ret;
345 
346 	ret = __blkdev_issue_discard(ns->bdev,
347 			nvmet_lba_to_sect(ns, range->slba),
348 			le32_to_cpu(range->nlb) << (ns->blksize_shift - 9),
349 			GFP_KERNEL, 0, bio);
350 	if (ret && ret != -EOPNOTSUPP) {
351 		req->error_slba = le64_to_cpu(range->slba);
352 		return errno_to_nvme_status(req, ret);
353 	}
354 	return NVME_SC_SUCCESS;
355 }
356 
357 static void nvmet_bdev_execute_discard(struct nvmet_req *req)
358 {
359 	struct nvme_dsm_range range;
360 	struct bio *bio = NULL;
361 	int i;
362 	u16 status;
363 
364 	for (i = 0; i <= le32_to_cpu(req->cmd->dsm.nr); i++) {
365 		status = nvmet_copy_from_sgl(req, i * sizeof(range), &range,
366 				sizeof(range));
367 		if (status)
368 			break;
369 
370 		status = nvmet_bdev_discard_range(req, &range, &bio);
371 		if (status)
372 			break;
373 	}
374 
375 	if (bio) {
376 		bio->bi_private = req;
377 		bio->bi_end_io = nvmet_bio_done;
378 		if (status)
379 			bio_io_error(bio);
380 		else
381 			submit_bio(bio);
382 	} else {
383 		nvmet_req_complete(req, status);
384 	}
385 }
386 
387 static void nvmet_bdev_execute_dsm(struct nvmet_req *req)
388 {
389 	if (!nvmet_check_data_len_lte(req, nvmet_dsm_len(req)))
390 		return;
391 
392 	switch (le32_to_cpu(req->cmd->dsm.attributes)) {
393 	case NVME_DSMGMT_AD:
394 		nvmet_bdev_execute_discard(req);
395 		return;
396 	case NVME_DSMGMT_IDR:
397 	case NVME_DSMGMT_IDW:
398 	default:
399 		/* Not supported yet */
400 		nvmet_req_complete(req, 0);
401 		return;
402 	}
403 }
404 
405 static void nvmet_bdev_execute_write_zeroes(struct nvmet_req *req)
406 {
407 	struct nvme_write_zeroes_cmd *write_zeroes = &req->cmd->write_zeroes;
408 	struct bio *bio = NULL;
409 	sector_t sector;
410 	sector_t nr_sector;
411 	int ret;
412 
413 	if (!nvmet_check_transfer_len(req, 0))
414 		return;
415 
416 	sector = nvmet_lba_to_sect(req->ns, write_zeroes->slba);
417 	nr_sector = (((sector_t)le16_to_cpu(write_zeroes->length) + 1) <<
418 		(req->ns->blksize_shift - 9));
419 
420 	ret = __blkdev_issue_zeroout(req->ns->bdev, sector, nr_sector,
421 			GFP_KERNEL, &bio, 0);
422 	if (bio) {
423 		bio->bi_private = req;
424 		bio->bi_end_io = nvmet_bio_done;
425 		submit_bio(bio);
426 	} else {
427 		nvmet_req_complete(req, errno_to_nvme_status(req, ret));
428 	}
429 }
430 
431 u16 nvmet_bdev_parse_io_cmd(struct nvmet_req *req)
432 {
433 	struct nvme_command *cmd = req->cmd;
434 
435 	switch (cmd->common.opcode) {
436 	case nvme_cmd_read:
437 	case nvme_cmd_write:
438 		req->execute = nvmet_bdev_execute_rw;
439 		if (req->sq->ctrl->pi_support && nvmet_ns_has_pi(req->ns))
440 			req->metadata_len = nvmet_rw_metadata_len(req);
441 		return 0;
442 	case nvme_cmd_flush:
443 		req->execute = nvmet_bdev_execute_flush;
444 		return 0;
445 	case nvme_cmd_dsm:
446 		req->execute = nvmet_bdev_execute_dsm;
447 		return 0;
448 	case nvme_cmd_write_zeroes:
449 		req->execute = nvmet_bdev_execute_write_zeroes;
450 		return 0;
451 	default:
452 		return nvmet_report_invalid_opcode(req);
453 	}
454 }
455