1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVMe I/O command implementation. 4 * Copyright (c) 2015-2016 HGST, a Western Digital Company. 5 */ 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 #include <linux/blkdev.h> 8 #include <linux/module.h> 9 #include "nvmet.h" 10 11 void nvmet_bdev_set_limits(struct block_device *bdev, struct nvme_id_ns *id) 12 { 13 const struct queue_limits *ql = &bdev_get_queue(bdev)->limits; 14 /* Number of logical blocks per physical block. */ 15 const u32 lpp = ql->physical_block_size / ql->logical_block_size; 16 /* Logical blocks per physical block, 0's based. */ 17 const __le16 lpp0b = to0based(lpp); 18 19 /* 20 * For NVMe 1.2 and later, bit 1 indicates that the fields NAWUN, 21 * NAWUPF, and NACWU are defined for this namespace and should be 22 * used by the host for this namespace instead of the AWUN, AWUPF, 23 * and ACWU fields in the Identify Controller data structure. If 24 * any of these fields are zero that means that the corresponding 25 * field from the identify controller data structure should be used. 26 */ 27 id->nsfeat |= 1 << 1; 28 id->nawun = lpp0b; 29 id->nawupf = lpp0b; 30 id->nacwu = lpp0b; 31 32 /* 33 * Bit 4 indicates that the fields NPWG, NPWA, NPDG, NPDA, and 34 * NOWS are defined for this namespace and should be used by 35 * the host for I/O optimization. 36 */ 37 id->nsfeat |= 1 << 4; 38 /* NPWG = Namespace Preferred Write Granularity. 0's based */ 39 id->npwg = lpp0b; 40 /* NPWA = Namespace Preferred Write Alignment. 0's based */ 41 id->npwa = id->npwg; 42 /* NPDG = Namespace Preferred Deallocate Granularity. 0's based */ 43 id->npdg = to0based(ql->discard_granularity / ql->logical_block_size); 44 /* NPDG = Namespace Preferred Deallocate Alignment */ 45 id->npda = id->npdg; 46 /* NOWS = Namespace Optimal Write Size */ 47 id->nows = to0based(ql->io_opt / ql->logical_block_size); 48 } 49 50 static void nvmet_bdev_ns_enable_integrity(struct nvmet_ns *ns) 51 { 52 struct blk_integrity *bi = bdev_get_integrity(ns->bdev); 53 54 if (bi) { 55 ns->metadata_size = bi->tuple_size; 56 if (bi->profile == &t10_pi_type1_crc) 57 ns->pi_type = NVME_NS_DPS_PI_TYPE1; 58 else if (bi->profile == &t10_pi_type3_crc) 59 ns->pi_type = NVME_NS_DPS_PI_TYPE3; 60 else 61 /* Unsupported metadata type */ 62 ns->metadata_size = 0; 63 } 64 } 65 66 int nvmet_bdev_ns_enable(struct nvmet_ns *ns) 67 { 68 int ret; 69 70 ns->bdev = blkdev_get_by_path(ns->device_path, 71 FMODE_READ | FMODE_WRITE, NULL); 72 if (IS_ERR(ns->bdev)) { 73 ret = PTR_ERR(ns->bdev); 74 if (ret != -ENOTBLK) { 75 pr_err("failed to open block device %s: (%ld)\n", 76 ns->device_path, PTR_ERR(ns->bdev)); 77 } 78 ns->bdev = NULL; 79 return ret; 80 } 81 ns->size = i_size_read(ns->bdev->bd_inode); 82 ns->blksize_shift = blksize_bits(bdev_logical_block_size(ns->bdev)); 83 84 ns->pi_type = 0; 85 ns->metadata_size = 0; 86 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY_T10)) 87 nvmet_bdev_ns_enable_integrity(ns); 88 89 return 0; 90 } 91 92 void nvmet_bdev_ns_disable(struct nvmet_ns *ns) 93 { 94 if (ns->bdev) { 95 blkdev_put(ns->bdev, FMODE_WRITE | FMODE_READ); 96 ns->bdev = NULL; 97 } 98 } 99 100 void nvmet_bdev_ns_revalidate(struct nvmet_ns *ns) 101 { 102 ns->size = i_size_read(ns->bdev->bd_inode); 103 } 104 105 static u16 blk_to_nvme_status(struct nvmet_req *req, blk_status_t blk_sts) 106 { 107 u16 status = NVME_SC_SUCCESS; 108 109 if (likely(blk_sts == BLK_STS_OK)) 110 return status; 111 /* 112 * Right now there exists M : 1 mapping between block layer error 113 * to the NVMe status code (see nvme_error_status()). For consistency, 114 * when we reverse map we use most appropriate NVMe Status code from 115 * the group of the NVMe staus codes used in the nvme_error_status(). 116 */ 117 switch (blk_sts) { 118 case BLK_STS_NOSPC: 119 status = NVME_SC_CAP_EXCEEDED | NVME_SC_DNR; 120 req->error_loc = offsetof(struct nvme_rw_command, length); 121 break; 122 case BLK_STS_TARGET: 123 status = NVME_SC_LBA_RANGE | NVME_SC_DNR; 124 req->error_loc = offsetof(struct nvme_rw_command, slba); 125 break; 126 case BLK_STS_NOTSUPP: 127 req->error_loc = offsetof(struct nvme_common_command, opcode); 128 switch (req->cmd->common.opcode) { 129 case nvme_cmd_dsm: 130 case nvme_cmd_write_zeroes: 131 status = NVME_SC_ONCS_NOT_SUPPORTED | NVME_SC_DNR; 132 break; 133 default: 134 status = NVME_SC_INVALID_OPCODE | NVME_SC_DNR; 135 } 136 break; 137 case BLK_STS_MEDIUM: 138 status = NVME_SC_ACCESS_DENIED; 139 req->error_loc = offsetof(struct nvme_rw_command, nsid); 140 break; 141 case BLK_STS_IOERR: 142 default: 143 status = NVME_SC_INTERNAL | NVME_SC_DNR; 144 req->error_loc = offsetof(struct nvme_common_command, opcode); 145 } 146 147 switch (req->cmd->common.opcode) { 148 case nvme_cmd_read: 149 case nvme_cmd_write: 150 req->error_slba = le64_to_cpu(req->cmd->rw.slba); 151 break; 152 case nvme_cmd_write_zeroes: 153 req->error_slba = 154 le64_to_cpu(req->cmd->write_zeroes.slba); 155 break; 156 default: 157 req->error_slba = 0; 158 } 159 return status; 160 } 161 162 static void nvmet_bio_done(struct bio *bio) 163 { 164 struct nvmet_req *req = bio->bi_private; 165 166 nvmet_req_complete(req, blk_to_nvme_status(req, bio->bi_status)); 167 if (bio != &req->b.inline_bio) 168 bio_put(bio); 169 } 170 171 #ifdef CONFIG_BLK_DEV_INTEGRITY 172 static int nvmet_bdev_alloc_bip(struct nvmet_req *req, struct bio *bio, 173 struct sg_mapping_iter *miter) 174 { 175 struct blk_integrity *bi; 176 struct bio_integrity_payload *bip; 177 struct block_device *bdev = req->ns->bdev; 178 int rc; 179 size_t resid, len; 180 181 bi = bdev_get_integrity(bdev); 182 if (unlikely(!bi)) { 183 pr_err("Unable to locate bio_integrity\n"); 184 return -ENODEV; 185 } 186 187 bip = bio_integrity_alloc(bio, GFP_NOIO, 188 min_t(unsigned int, req->metadata_sg_cnt, BIO_MAX_PAGES)); 189 if (IS_ERR(bip)) { 190 pr_err("Unable to allocate bio_integrity_payload\n"); 191 return PTR_ERR(bip); 192 } 193 194 bip->bip_iter.bi_size = bio_integrity_bytes(bi, bio_sectors(bio)); 195 /* virtual start sector must be in integrity interval units */ 196 bip_set_seed(bip, bio->bi_iter.bi_sector >> 197 (bi->interval_exp - SECTOR_SHIFT)); 198 199 resid = bip->bip_iter.bi_size; 200 while (resid > 0 && sg_miter_next(miter)) { 201 len = min_t(size_t, miter->length, resid); 202 rc = bio_integrity_add_page(bio, miter->page, len, 203 offset_in_page(miter->addr)); 204 if (unlikely(rc != len)) { 205 pr_err("bio_integrity_add_page() failed; %d\n", rc); 206 sg_miter_stop(miter); 207 return -ENOMEM; 208 } 209 210 resid -= len; 211 if (len < miter->length) 212 miter->consumed -= miter->length - len; 213 } 214 sg_miter_stop(miter); 215 216 return 0; 217 } 218 #else 219 static int nvmet_bdev_alloc_bip(struct nvmet_req *req, struct bio *bio, 220 struct sg_mapping_iter *miter) 221 { 222 return -EINVAL; 223 } 224 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 225 226 static void nvmet_bdev_execute_rw(struct nvmet_req *req) 227 { 228 int sg_cnt = req->sg_cnt; 229 struct bio *bio; 230 struct scatterlist *sg; 231 struct blk_plug plug; 232 sector_t sector; 233 int op, i, rc; 234 struct sg_mapping_iter prot_miter; 235 unsigned int iter_flags; 236 unsigned int total_len = nvmet_rw_data_len(req) + req->metadata_len; 237 238 if (!nvmet_check_transfer_len(req, total_len)) 239 return; 240 241 if (!req->sg_cnt) { 242 nvmet_req_complete(req, 0); 243 return; 244 } 245 246 if (req->cmd->rw.opcode == nvme_cmd_write) { 247 op = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE; 248 if (req->cmd->rw.control & cpu_to_le16(NVME_RW_FUA)) 249 op |= REQ_FUA; 250 iter_flags = SG_MITER_TO_SG; 251 } else { 252 op = REQ_OP_READ; 253 iter_flags = SG_MITER_FROM_SG; 254 } 255 256 if (is_pci_p2pdma_page(sg_page(req->sg))) 257 op |= REQ_NOMERGE; 258 259 sector = le64_to_cpu(req->cmd->rw.slba); 260 sector <<= (req->ns->blksize_shift - 9); 261 262 if (req->transfer_len <= NVMET_MAX_INLINE_DATA_LEN) { 263 bio = &req->b.inline_bio; 264 bio_init(bio, req->inline_bvec, ARRAY_SIZE(req->inline_bvec)); 265 } else { 266 bio = bio_alloc(GFP_KERNEL, min(sg_cnt, BIO_MAX_PAGES)); 267 } 268 bio_set_dev(bio, req->ns->bdev); 269 bio->bi_iter.bi_sector = sector; 270 bio->bi_private = req; 271 bio->bi_end_io = nvmet_bio_done; 272 bio->bi_opf = op; 273 274 blk_start_plug(&plug); 275 if (req->metadata_len) 276 sg_miter_start(&prot_miter, req->metadata_sg, 277 req->metadata_sg_cnt, iter_flags); 278 279 for_each_sg(req->sg, sg, req->sg_cnt, i) { 280 while (bio_add_page(bio, sg_page(sg), sg->length, sg->offset) 281 != sg->length) { 282 struct bio *prev = bio; 283 284 if (req->metadata_len) { 285 rc = nvmet_bdev_alloc_bip(req, bio, 286 &prot_miter); 287 if (unlikely(rc)) { 288 bio_io_error(bio); 289 return; 290 } 291 } 292 293 bio = bio_alloc(GFP_KERNEL, min(sg_cnt, BIO_MAX_PAGES)); 294 bio_set_dev(bio, req->ns->bdev); 295 bio->bi_iter.bi_sector = sector; 296 bio->bi_opf = op; 297 298 bio_chain(bio, prev); 299 submit_bio(prev); 300 } 301 302 sector += sg->length >> 9; 303 sg_cnt--; 304 } 305 306 if (req->metadata_len) { 307 rc = nvmet_bdev_alloc_bip(req, bio, &prot_miter); 308 if (unlikely(rc)) { 309 bio_io_error(bio); 310 return; 311 } 312 } 313 314 submit_bio(bio); 315 blk_finish_plug(&plug); 316 } 317 318 static void nvmet_bdev_execute_flush(struct nvmet_req *req) 319 { 320 struct bio *bio = &req->b.inline_bio; 321 322 if (!nvmet_check_transfer_len(req, 0)) 323 return; 324 325 bio_init(bio, req->inline_bvec, ARRAY_SIZE(req->inline_bvec)); 326 bio_set_dev(bio, req->ns->bdev); 327 bio->bi_private = req; 328 bio->bi_end_io = nvmet_bio_done; 329 bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH; 330 331 submit_bio(bio); 332 } 333 334 u16 nvmet_bdev_flush(struct nvmet_req *req) 335 { 336 if (blkdev_issue_flush(req->ns->bdev, GFP_KERNEL)) 337 return NVME_SC_INTERNAL | NVME_SC_DNR; 338 return 0; 339 } 340 341 static u16 nvmet_bdev_discard_range(struct nvmet_req *req, 342 struct nvme_dsm_range *range, struct bio **bio) 343 { 344 struct nvmet_ns *ns = req->ns; 345 int ret; 346 347 ret = __blkdev_issue_discard(ns->bdev, 348 le64_to_cpu(range->slba) << (ns->blksize_shift - 9), 349 le32_to_cpu(range->nlb) << (ns->blksize_shift - 9), 350 GFP_KERNEL, 0, bio); 351 if (ret && ret != -EOPNOTSUPP) { 352 req->error_slba = le64_to_cpu(range->slba); 353 return errno_to_nvme_status(req, ret); 354 } 355 return NVME_SC_SUCCESS; 356 } 357 358 static void nvmet_bdev_execute_discard(struct nvmet_req *req) 359 { 360 struct nvme_dsm_range range; 361 struct bio *bio = NULL; 362 int i; 363 u16 status; 364 365 for (i = 0; i <= le32_to_cpu(req->cmd->dsm.nr); i++) { 366 status = nvmet_copy_from_sgl(req, i * sizeof(range), &range, 367 sizeof(range)); 368 if (status) 369 break; 370 371 status = nvmet_bdev_discard_range(req, &range, &bio); 372 if (status) 373 break; 374 } 375 376 if (bio) { 377 bio->bi_private = req; 378 bio->bi_end_io = nvmet_bio_done; 379 if (status) 380 bio_io_error(bio); 381 else 382 submit_bio(bio); 383 } else { 384 nvmet_req_complete(req, status); 385 } 386 } 387 388 static void nvmet_bdev_execute_dsm(struct nvmet_req *req) 389 { 390 if (!nvmet_check_data_len_lte(req, nvmet_dsm_len(req))) 391 return; 392 393 switch (le32_to_cpu(req->cmd->dsm.attributes)) { 394 case NVME_DSMGMT_AD: 395 nvmet_bdev_execute_discard(req); 396 return; 397 case NVME_DSMGMT_IDR: 398 case NVME_DSMGMT_IDW: 399 default: 400 /* Not supported yet */ 401 nvmet_req_complete(req, 0); 402 return; 403 } 404 } 405 406 static void nvmet_bdev_execute_write_zeroes(struct nvmet_req *req) 407 { 408 struct nvme_write_zeroes_cmd *write_zeroes = &req->cmd->write_zeroes; 409 struct bio *bio = NULL; 410 sector_t sector; 411 sector_t nr_sector; 412 int ret; 413 414 if (!nvmet_check_transfer_len(req, 0)) 415 return; 416 417 sector = le64_to_cpu(write_zeroes->slba) << 418 (req->ns->blksize_shift - 9); 419 nr_sector = (((sector_t)le16_to_cpu(write_zeroes->length) + 1) << 420 (req->ns->blksize_shift - 9)); 421 422 ret = __blkdev_issue_zeroout(req->ns->bdev, sector, nr_sector, 423 GFP_KERNEL, &bio, 0); 424 if (bio) { 425 bio->bi_private = req; 426 bio->bi_end_io = nvmet_bio_done; 427 submit_bio(bio); 428 } else { 429 nvmet_req_complete(req, errno_to_nvme_status(req, ret)); 430 } 431 } 432 433 u16 nvmet_bdev_parse_io_cmd(struct nvmet_req *req) 434 { 435 struct nvme_command *cmd = req->cmd; 436 437 switch (cmd->common.opcode) { 438 case nvme_cmd_read: 439 case nvme_cmd_write: 440 req->execute = nvmet_bdev_execute_rw; 441 if (req->sq->ctrl->pi_support && nvmet_ns_has_pi(req->ns)) 442 req->metadata_len = nvmet_rw_metadata_len(req); 443 return 0; 444 case nvme_cmd_flush: 445 req->execute = nvmet_bdev_execute_flush; 446 return 0; 447 case nvme_cmd_dsm: 448 req->execute = nvmet_bdev_execute_dsm; 449 return 0; 450 case nvme_cmd_write_zeroes: 451 req->execute = nvmet_bdev_execute_write_zeroes; 452 return 0; 453 default: 454 pr_err("unhandled cmd %d on qid %d\n", cmd->common.opcode, 455 req->sq->qid); 456 req->error_loc = offsetof(struct nvme_common_command, opcode); 457 return NVME_SC_INVALID_OPCODE | NVME_SC_DNR; 458 } 459 } 460