1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVMe I/O command implementation. 4 * Copyright (c) 2015-2016 HGST, a Western Digital Company. 5 */ 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 #include <linux/blkdev.h> 8 #include <linux/blk-integrity.h> 9 #include <linux/memremap.h> 10 #include <linux/module.h> 11 #include "nvmet.h" 12 13 void nvmet_bdev_set_limits(struct block_device *bdev, struct nvme_id_ns *id) 14 { 15 /* Logical blocks per physical block, 0's based. */ 16 const __le16 lpp0b = to0based(bdev_physical_block_size(bdev) / 17 bdev_logical_block_size(bdev)); 18 19 /* 20 * For NVMe 1.2 and later, bit 1 indicates that the fields NAWUN, 21 * NAWUPF, and NACWU are defined for this namespace and should be 22 * used by the host for this namespace instead of the AWUN, AWUPF, 23 * and ACWU fields in the Identify Controller data structure. If 24 * any of these fields are zero that means that the corresponding 25 * field from the identify controller data structure should be used. 26 */ 27 id->nsfeat |= 1 << 1; 28 id->nawun = lpp0b; 29 id->nawupf = lpp0b; 30 id->nacwu = lpp0b; 31 32 /* 33 * Bit 4 indicates that the fields NPWG, NPWA, NPDG, NPDA, and 34 * NOWS are defined for this namespace and should be used by 35 * the host for I/O optimization. 36 */ 37 id->nsfeat |= 1 << 4; 38 /* NPWG = Namespace Preferred Write Granularity. 0's based */ 39 id->npwg = lpp0b; 40 /* NPWA = Namespace Preferred Write Alignment. 0's based */ 41 id->npwa = id->npwg; 42 /* NPDG = Namespace Preferred Deallocate Granularity. 0's based */ 43 id->npdg = to0based(bdev_discard_granularity(bdev) / 44 bdev_logical_block_size(bdev)); 45 /* NPDG = Namespace Preferred Deallocate Alignment */ 46 id->npda = id->npdg; 47 /* NOWS = Namespace Optimal Write Size */ 48 id->nows = to0based(bdev_io_opt(bdev) / bdev_logical_block_size(bdev)); 49 } 50 51 void nvmet_bdev_ns_disable(struct nvmet_ns *ns) 52 { 53 if (ns->bdev) { 54 blkdev_put(ns->bdev, FMODE_WRITE | FMODE_READ); 55 ns->bdev = NULL; 56 } 57 } 58 59 static void nvmet_bdev_ns_enable_integrity(struct nvmet_ns *ns) 60 { 61 struct blk_integrity *bi = bdev_get_integrity(ns->bdev); 62 63 if (bi) { 64 ns->metadata_size = bi->tuple_size; 65 if (bi->profile == &t10_pi_type1_crc) 66 ns->pi_type = NVME_NS_DPS_PI_TYPE1; 67 else if (bi->profile == &t10_pi_type3_crc) 68 ns->pi_type = NVME_NS_DPS_PI_TYPE3; 69 else 70 /* Unsupported metadata type */ 71 ns->metadata_size = 0; 72 } 73 } 74 75 int nvmet_bdev_ns_enable(struct nvmet_ns *ns) 76 { 77 int ret; 78 79 /* 80 * When buffered_io namespace attribute is enabled that means user want 81 * this block device to be used as a file, so block device can take 82 * an advantage of cache. 83 */ 84 if (ns->buffered_io) 85 return -ENOTBLK; 86 87 ns->bdev = blkdev_get_by_path(ns->device_path, 88 FMODE_READ | FMODE_WRITE, NULL); 89 if (IS_ERR(ns->bdev)) { 90 ret = PTR_ERR(ns->bdev); 91 if (ret != -ENOTBLK) { 92 pr_err("failed to open block device %s: (%ld)\n", 93 ns->device_path, PTR_ERR(ns->bdev)); 94 } 95 ns->bdev = NULL; 96 return ret; 97 } 98 ns->size = bdev_nr_bytes(ns->bdev); 99 ns->blksize_shift = blksize_bits(bdev_logical_block_size(ns->bdev)); 100 101 ns->pi_type = 0; 102 ns->metadata_size = 0; 103 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY_T10)) 104 nvmet_bdev_ns_enable_integrity(ns); 105 106 if (bdev_is_zoned(ns->bdev)) { 107 if (!nvmet_bdev_zns_enable(ns)) { 108 nvmet_bdev_ns_disable(ns); 109 return -EINVAL; 110 } 111 ns->csi = NVME_CSI_ZNS; 112 } 113 114 return 0; 115 } 116 117 void nvmet_bdev_ns_revalidate(struct nvmet_ns *ns) 118 { 119 ns->size = bdev_nr_bytes(ns->bdev); 120 } 121 122 u16 blk_to_nvme_status(struct nvmet_req *req, blk_status_t blk_sts) 123 { 124 u16 status = NVME_SC_SUCCESS; 125 126 if (likely(blk_sts == BLK_STS_OK)) 127 return status; 128 /* 129 * Right now there exists M : 1 mapping between block layer error 130 * to the NVMe status code (see nvme_error_status()). For consistency, 131 * when we reverse map we use most appropriate NVMe Status code from 132 * the group of the NVMe staus codes used in the nvme_error_status(). 133 */ 134 switch (blk_sts) { 135 case BLK_STS_NOSPC: 136 status = NVME_SC_CAP_EXCEEDED | NVME_SC_DNR; 137 req->error_loc = offsetof(struct nvme_rw_command, length); 138 break; 139 case BLK_STS_TARGET: 140 status = NVME_SC_LBA_RANGE | NVME_SC_DNR; 141 req->error_loc = offsetof(struct nvme_rw_command, slba); 142 break; 143 case BLK_STS_NOTSUPP: 144 req->error_loc = offsetof(struct nvme_common_command, opcode); 145 switch (req->cmd->common.opcode) { 146 case nvme_cmd_dsm: 147 case nvme_cmd_write_zeroes: 148 status = NVME_SC_ONCS_NOT_SUPPORTED | NVME_SC_DNR; 149 break; 150 default: 151 status = NVME_SC_INVALID_OPCODE | NVME_SC_DNR; 152 } 153 break; 154 case BLK_STS_MEDIUM: 155 status = NVME_SC_ACCESS_DENIED; 156 req->error_loc = offsetof(struct nvme_rw_command, nsid); 157 break; 158 case BLK_STS_IOERR: 159 default: 160 status = NVME_SC_INTERNAL | NVME_SC_DNR; 161 req->error_loc = offsetof(struct nvme_common_command, opcode); 162 } 163 164 switch (req->cmd->common.opcode) { 165 case nvme_cmd_read: 166 case nvme_cmd_write: 167 req->error_slba = le64_to_cpu(req->cmd->rw.slba); 168 break; 169 case nvme_cmd_write_zeroes: 170 req->error_slba = 171 le64_to_cpu(req->cmd->write_zeroes.slba); 172 break; 173 default: 174 req->error_slba = 0; 175 } 176 return status; 177 } 178 179 static void nvmet_bio_done(struct bio *bio) 180 { 181 struct nvmet_req *req = bio->bi_private; 182 183 nvmet_req_complete(req, blk_to_nvme_status(req, bio->bi_status)); 184 nvmet_req_bio_put(req, bio); 185 } 186 187 #ifdef CONFIG_BLK_DEV_INTEGRITY 188 static int nvmet_bdev_alloc_bip(struct nvmet_req *req, struct bio *bio, 189 struct sg_mapping_iter *miter) 190 { 191 struct blk_integrity *bi; 192 struct bio_integrity_payload *bip; 193 int rc; 194 size_t resid, len; 195 196 bi = bdev_get_integrity(req->ns->bdev); 197 if (unlikely(!bi)) { 198 pr_err("Unable to locate bio_integrity\n"); 199 return -ENODEV; 200 } 201 202 bip = bio_integrity_alloc(bio, GFP_NOIO, 203 bio_max_segs(req->metadata_sg_cnt)); 204 if (IS_ERR(bip)) { 205 pr_err("Unable to allocate bio_integrity_payload\n"); 206 return PTR_ERR(bip); 207 } 208 209 bip->bip_iter.bi_size = bio_integrity_bytes(bi, bio_sectors(bio)); 210 /* virtual start sector must be in integrity interval units */ 211 bip_set_seed(bip, bio->bi_iter.bi_sector >> 212 (bi->interval_exp - SECTOR_SHIFT)); 213 214 resid = bip->bip_iter.bi_size; 215 while (resid > 0 && sg_miter_next(miter)) { 216 len = min_t(size_t, miter->length, resid); 217 rc = bio_integrity_add_page(bio, miter->page, len, 218 offset_in_page(miter->addr)); 219 if (unlikely(rc != len)) { 220 pr_err("bio_integrity_add_page() failed; %d\n", rc); 221 sg_miter_stop(miter); 222 return -ENOMEM; 223 } 224 225 resid -= len; 226 if (len < miter->length) 227 miter->consumed -= miter->length - len; 228 } 229 sg_miter_stop(miter); 230 231 return 0; 232 } 233 #else 234 static int nvmet_bdev_alloc_bip(struct nvmet_req *req, struct bio *bio, 235 struct sg_mapping_iter *miter) 236 { 237 return -EINVAL; 238 } 239 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 240 241 static void nvmet_bdev_execute_rw(struct nvmet_req *req) 242 { 243 unsigned int sg_cnt = req->sg_cnt; 244 struct bio *bio; 245 struct scatterlist *sg; 246 struct blk_plug plug; 247 sector_t sector; 248 blk_opf_t opf; 249 int i, rc; 250 struct sg_mapping_iter prot_miter; 251 unsigned int iter_flags; 252 unsigned int total_len = nvmet_rw_data_len(req) + req->metadata_len; 253 254 if (!nvmet_check_transfer_len(req, total_len)) 255 return; 256 257 if (!req->sg_cnt) { 258 nvmet_req_complete(req, 0); 259 return; 260 } 261 262 if (req->cmd->rw.opcode == nvme_cmd_write) { 263 opf = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE; 264 if (req->cmd->rw.control & cpu_to_le16(NVME_RW_FUA)) 265 opf |= REQ_FUA; 266 iter_flags = SG_MITER_TO_SG; 267 } else { 268 opf = REQ_OP_READ; 269 iter_flags = SG_MITER_FROM_SG; 270 } 271 272 if (is_pci_p2pdma_page(sg_page(req->sg))) 273 opf |= REQ_NOMERGE; 274 275 sector = nvmet_lba_to_sect(req->ns, req->cmd->rw.slba); 276 277 if (nvmet_use_inline_bvec(req)) { 278 bio = &req->b.inline_bio; 279 bio_init(bio, req->ns->bdev, req->inline_bvec, 280 ARRAY_SIZE(req->inline_bvec), opf); 281 } else { 282 bio = bio_alloc(req->ns->bdev, bio_max_segs(sg_cnt), opf, 283 GFP_KERNEL); 284 } 285 bio->bi_iter.bi_sector = sector; 286 bio->bi_private = req; 287 bio->bi_end_io = nvmet_bio_done; 288 289 blk_start_plug(&plug); 290 if (req->metadata_len) 291 sg_miter_start(&prot_miter, req->metadata_sg, 292 req->metadata_sg_cnt, iter_flags); 293 294 for_each_sg(req->sg, sg, req->sg_cnt, i) { 295 while (bio_add_page(bio, sg_page(sg), sg->length, sg->offset) 296 != sg->length) { 297 struct bio *prev = bio; 298 299 if (req->metadata_len) { 300 rc = nvmet_bdev_alloc_bip(req, bio, 301 &prot_miter); 302 if (unlikely(rc)) { 303 bio_io_error(bio); 304 return; 305 } 306 } 307 308 bio = bio_alloc(req->ns->bdev, bio_max_segs(sg_cnt), 309 opf, GFP_KERNEL); 310 bio->bi_iter.bi_sector = sector; 311 312 bio_chain(bio, prev); 313 submit_bio(prev); 314 } 315 316 sector += sg->length >> 9; 317 sg_cnt--; 318 } 319 320 if (req->metadata_len) { 321 rc = nvmet_bdev_alloc_bip(req, bio, &prot_miter); 322 if (unlikely(rc)) { 323 bio_io_error(bio); 324 return; 325 } 326 } 327 328 submit_bio(bio); 329 blk_finish_plug(&plug); 330 } 331 332 static void nvmet_bdev_execute_flush(struct nvmet_req *req) 333 { 334 struct bio *bio = &req->b.inline_bio; 335 336 if (!bdev_write_cache(req->ns->bdev)) { 337 nvmet_req_complete(req, NVME_SC_SUCCESS); 338 return; 339 } 340 341 if (!nvmet_check_transfer_len(req, 0)) 342 return; 343 344 bio_init(bio, req->ns->bdev, req->inline_bvec, 345 ARRAY_SIZE(req->inline_bvec), REQ_OP_WRITE | REQ_PREFLUSH); 346 bio->bi_private = req; 347 bio->bi_end_io = nvmet_bio_done; 348 349 submit_bio(bio); 350 } 351 352 u16 nvmet_bdev_flush(struct nvmet_req *req) 353 { 354 if (!bdev_write_cache(req->ns->bdev)) 355 return 0; 356 357 if (blkdev_issue_flush(req->ns->bdev)) 358 return NVME_SC_INTERNAL | NVME_SC_DNR; 359 return 0; 360 } 361 362 static u16 nvmet_bdev_discard_range(struct nvmet_req *req, 363 struct nvme_dsm_range *range, struct bio **bio) 364 { 365 struct nvmet_ns *ns = req->ns; 366 int ret; 367 368 ret = __blkdev_issue_discard(ns->bdev, 369 nvmet_lba_to_sect(ns, range->slba), 370 le32_to_cpu(range->nlb) << (ns->blksize_shift - 9), 371 GFP_KERNEL, bio); 372 if (ret && ret != -EOPNOTSUPP) { 373 req->error_slba = le64_to_cpu(range->slba); 374 return errno_to_nvme_status(req, ret); 375 } 376 return NVME_SC_SUCCESS; 377 } 378 379 static void nvmet_bdev_execute_discard(struct nvmet_req *req) 380 { 381 struct nvme_dsm_range range; 382 struct bio *bio = NULL; 383 int i; 384 u16 status; 385 386 for (i = 0; i <= le32_to_cpu(req->cmd->dsm.nr); i++) { 387 status = nvmet_copy_from_sgl(req, i * sizeof(range), &range, 388 sizeof(range)); 389 if (status) 390 break; 391 392 status = nvmet_bdev_discard_range(req, &range, &bio); 393 if (status) 394 break; 395 } 396 397 if (bio) { 398 bio->bi_private = req; 399 bio->bi_end_io = nvmet_bio_done; 400 if (status) 401 bio_io_error(bio); 402 else 403 submit_bio(bio); 404 } else { 405 nvmet_req_complete(req, status); 406 } 407 } 408 409 static void nvmet_bdev_execute_dsm(struct nvmet_req *req) 410 { 411 if (!nvmet_check_data_len_lte(req, nvmet_dsm_len(req))) 412 return; 413 414 switch (le32_to_cpu(req->cmd->dsm.attributes)) { 415 case NVME_DSMGMT_AD: 416 nvmet_bdev_execute_discard(req); 417 return; 418 case NVME_DSMGMT_IDR: 419 case NVME_DSMGMT_IDW: 420 default: 421 /* Not supported yet */ 422 nvmet_req_complete(req, 0); 423 return; 424 } 425 } 426 427 static void nvmet_bdev_execute_write_zeroes(struct nvmet_req *req) 428 { 429 struct nvme_write_zeroes_cmd *write_zeroes = &req->cmd->write_zeroes; 430 struct bio *bio = NULL; 431 sector_t sector; 432 sector_t nr_sector; 433 int ret; 434 435 if (!nvmet_check_transfer_len(req, 0)) 436 return; 437 438 sector = nvmet_lba_to_sect(req->ns, write_zeroes->slba); 439 nr_sector = (((sector_t)le16_to_cpu(write_zeroes->length) + 1) << 440 (req->ns->blksize_shift - 9)); 441 442 ret = __blkdev_issue_zeroout(req->ns->bdev, sector, nr_sector, 443 GFP_KERNEL, &bio, 0); 444 if (bio) { 445 bio->bi_private = req; 446 bio->bi_end_io = nvmet_bio_done; 447 submit_bio(bio); 448 } else { 449 nvmet_req_complete(req, errno_to_nvme_status(req, ret)); 450 } 451 } 452 453 u16 nvmet_bdev_parse_io_cmd(struct nvmet_req *req) 454 { 455 switch (req->cmd->common.opcode) { 456 case nvme_cmd_read: 457 case nvme_cmd_write: 458 req->execute = nvmet_bdev_execute_rw; 459 if (req->sq->ctrl->pi_support && nvmet_ns_has_pi(req->ns)) 460 req->metadata_len = nvmet_rw_metadata_len(req); 461 return 0; 462 case nvme_cmd_flush: 463 req->execute = nvmet_bdev_execute_flush; 464 return 0; 465 case nvme_cmd_dsm: 466 req->execute = nvmet_bdev_execute_dsm; 467 return 0; 468 case nvme_cmd_write_zeroes: 469 req->execute = nvmet_bdev_execute_write_zeroes; 470 return 0; 471 default: 472 return nvmet_report_invalid_opcode(req); 473 } 474 } 475