1 /* 2 * Copyright (c) 2016 Avago Technologies. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of version 2 of the GNU General Public License as 6 * published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful. 9 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, 10 * INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A 11 * PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO 12 * THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID. 13 * See the GNU General Public License for more details, a copy of which 14 * can be found in the file COPYING included with this package 15 * 16 */ 17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 18 #include <linux/module.h> 19 #include <linux/slab.h> 20 #include <linux/blk-mq.h> 21 #include <linux/parser.h> 22 #include <linux/random.h> 23 #include <uapi/scsi/fc/fc_fs.h> 24 #include <uapi/scsi/fc/fc_els.h> 25 26 #include "nvmet.h" 27 #include <linux/nvme-fc-driver.h> 28 #include <linux/nvme-fc.h> 29 30 31 /* *************************** Data Structures/Defines ****************** */ 32 33 34 #define NVMET_LS_CTX_COUNT 256 35 36 /* for this implementation, assume small single frame rqst/rsp */ 37 #define NVME_FC_MAX_LS_BUFFER_SIZE 2048 38 39 struct nvmet_fc_tgtport; 40 struct nvmet_fc_tgt_assoc; 41 42 struct nvmet_fc_ls_iod { 43 struct nvmefc_tgt_ls_req *lsreq; 44 struct nvmefc_tgt_fcp_req *fcpreq; /* only if RS */ 45 46 struct list_head ls_list; /* tgtport->ls_list */ 47 48 struct nvmet_fc_tgtport *tgtport; 49 struct nvmet_fc_tgt_assoc *assoc; 50 51 u8 *rqstbuf; 52 u8 *rspbuf; 53 u16 rqstdatalen; 54 dma_addr_t rspdma; 55 56 struct scatterlist sg[2]; 57 58 struct work_struct work; 59 } __aligned(sizeof(unsigned long long)); 60 61 /* desired maximum for a single sequence - if sg list allows it */ 62 #define NVMET_FC_MAX_SEQ_LENGTH (256 * 1024) 63 64 enum nvmet_fcp_datadir { 65 NVMET_FCP_NODATA, 66 NVMET_FCP_WRITE, 67 NVMET_FCP_READ, 68 NVMET_FCP_ABORTED, 69 }; 70 71 struct nvmet_fc_fcp_iod { 72 struct nvmefc_tgt_fcp_req *fcpreq; 73 74 struct nvme_fc_cmd_iu cmdiubuf; 75 struct nvme_fc_ersp_iu rspiubuf; 76 dma_addr_t rspdma; 77 struct scatterlist *next_sg; 78 struct scatterlist *data_sg; 79 int data_sg_cnt; 80 u32 offset; 81 enum nvmet_fcp_datadir io_dir; 82 bool active; 83 bool abort; 84 bool aborted; 85 bool writedataactive; 86 spinlock_t flock; 87 88 struct nvmet_req req; 89 struct work_struct work; 90 struct work_struct done_work; 91 struct work_struct defer_work; 92 93 struct nvmet_fc_tgtport *tgtport; 94 struct nvmet_fc_tgt_queue *queue; 95 96 struct list_head fcp_list; /* tgtport->fcp_list */ 97 }; 98 99 struct nvmet_fc_tgtport { 100 101 struct nvmet_fc_target_port fc_target_port; 102 103 struct list_head tgt_list; /* nvmet_fc_target_list */ 104 struct device *dev; /* dev for dma mapping */ 105 struct nvmet_fc_target_template *ops; 106 107 struct nvmet_fc_ls_iod *iod; 108 spinlock_t lock; 109 struct list_head ls_list; 110 struct list_head ls_busylist; 111 struct list_head assoc_list; 112 struct ida assoc_cnt; 113 struct nvmet_port *port; 114 struct kref ref; 115 u32 max_sg_cnt; 116 }; 117 118 struct nvmet_fc_defer_fcp_req { 119 struct list_head req_list; 120 struct nvmefc_tgt_fcp_req *fcp_req; 121 }; 122 123 struct nvmet_fc_tgt_queue { 124 bool ninetypercent; 125 u16 qid; 126 u16 sqsize; 127 u16 ersp_ratio; 128 __le16 sqhd; 129 int cpu; 130 atomic_t connected; 131 atomic_t sqtail; 132 atomic_t zrspcnt; 133 atomic_t rsn; 134 spinlock_t qlock; 135 struct nvmet_port *port; 136 struct nvmet_cq nvme_cq; 137 struct nvmet_sq nvme_sq; 138 struct nvmet_fc_tgt_assoc *assoc; 139 struct nvmet_fc_fcp_iod *fod; /* array of fcp_iods */ 140 struct list_head fod_list; 141 struct list_head pending_cmd_list; 142 struct list_head avail_defer_list; 143 struct workqueue_struct *work_q; 144 struct kref ref; 145 } __aligned(sizeof(unsigned long long)); 146 147 struct nvmet_fc_tgt_assoc { 148 u64 association_id; 149 u32 a_id; 150 struct nvmet_fc_tgtport *tgtport; 151 struct list_head a_list; 152 struct nvmet_fc_tgt_queue *queues[NVMET_NR_QUEUES + 1]; 153 struct kref ref; 154 struct work_struct del_work; 155 }; 156 157 158 static inline int 159 nvmet_fc_iodnum(struct nvmet_fc_ls_iod *iodptr) 160 { 161 return (iodptr - iodptr->tgtport->iod); 162 } 163 164 static inline int 165 nvmet_fc_fodnum(struct nvmet_fc_fcp_iod *fodptr) 166 { 167 return (fodptr - fodptr->queue->fod); 168 } 169 170 171 /* 172 * Association and Connection IDs: 173 * 174 * Association ID will have random number in upper 6 bytes and zero 175 * in lower 2 bytes 176 * 177 * Connection IDs will be Association ID with QID or'd in lower 2 bytes 178 * 179 * note: Association ID = Connection ID for queue 0 180 */ 181 #define BYTES_FOR_QID sizeof(u16) 182 #define BYTES_FOR_QID_SHIFT (BYTES_FOR_QID * 8) 183 #define NVMET_FC_QUEUEID_MASK ((u64)((1 << BYTES_FOR_QID_SHIFT) - 1)) 184 185 static inline u64 186 nvmet_fc_makeconnid(struct nvmet_fc_tgt_assoc *assoc, u16 qid) 187 { 188 return (assoc->association_id | qid); 189 } 190 191 static inline u64 192 nvmet_fc_getassociationid(u64 connectionid) 193 { 194 return connectionid & ~NVMET_FC_QUEUEID_MASK; 195 } 196 197 static inline u16 198 nvmet_fc_getqueueid(u64 connectionid) 199 { 200 return (u16)(connectionid & NVMET_FC_QUEUEID_MASK); 201 } 202 203 static inline struct nvmet_fc_tgtport * 204 targetport_to_tgtport(struct nvmet_fc_target_port *targetport) 205 { 206 return container_of(targetport, struct nvmet_fc_tgtport, 207 fc_target_port); 208 } 209 210 static inline struct nvmet_fc_fcp_iod * 211 nvmet_req_to_fod(struct nvmet_req *nvme_req) 212 { 213 return container_of(nvme_req, struct nvmet_fc_fcp_iod, req); 214 } 215 216 217 /* *************************** Globals **************************** */ 218 219 220 static DEFINE_SPINLOCK(nvmet_fc_tgtlock); 221 222 static LIST_HEAD(nvmet_fc_target_list); 223 static DEFINE_IDA(nvmet_fc_tgtport_cnt); 224 225 226 static void nvmet_fc_handle_ls_rqst_work(struct work_struct *work); 227 static void nvmet_fc_handle_fcp_rqst_work(struct work_struct *work); 228 static void nvmet_fc_fcp_rqst_op_done_work(struct work_struct *work); 229 static void nvmet_fc_fcp_rqst_op_defer_work(struct work_struct *work); 230 static void nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc); 231 static int nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc); 232 static void nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue); 233 static int nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue); 234 static void nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport); 235 static int nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport); 236 static void nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport, 237 struct nvmet_fc_fcp_iod *fod); 238 static void nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc *assoc); 239 240 241 /* *********************** FC-NVME DMA Handling **************************** */ 242 243 /* 244 * The fcloop device passes in a NULL device pointer. Real LLD's will 245 * pass in a valid device pointer. If NULL is passed to the dma mapping 246 * routines, depending on the platform, it may or may not succeed, and 247 * may crash. 248 * 249 * As such: 250 * Wrapper all the dma routines and check the dev pointer. 251 * 252 * If simple mappings (return just a dma address, we'll noop them, 253 * returning a dma address of 0. 254 * 255 * On more complex mappings (dma_map_sg), a pseudo routine fills 256 * in the scatter list, setting all dma addresses to 0. 257 */ 258 259 static inline dma_addr_t 260 fc_dma_map_single(struct device *dev, void *ptr, size_t size, 261 enum dma_data_direction dir) 262 { 263 return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L; 264 } 265 266 static inline int 267 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr) 268 { 269 return dev ? dma_mapping_error(dev, dma_addr) : 0; 270 } 271 272 static inline void 273 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size, 274 enum dma_data_direction dir) 275 { 276 if (dev) 277 dma_unmap_single(dev, addr, size, dir); 278 } 279 280 static inline void 281 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size, 282 enum dma_data_direction dir) 283 { 284 if (dev) 285 dma_sync_single_for_cpu(dev, addr, size, dir); 286 } 287 288 static inline void 289 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size, 290 enum dma_data_direction dir) 291 { 292 if (dev) 293 dma_sync_single_for_device(dev, addr, size, dir); 294 } 295 296 /* pseudo dma_map_sg call */ 297 static int 298 fc_map_sg(struct scatterlist *sg, int nents) 299 { 300 struct scatterlist *s; 301 int i; 302 303 WARN_ON(nents == 0 || sg[0].length == 0); 304 305 for_each_sg(sg, s, nents, i) { 306 s->dma_address = 0L; 307 #ifdef CONFIG_NEED_SG_DMA_LENGTH 308 s->dma_length = s->length; 309 #endif 310 } 311 return nents; 312 } 313 314 static inline int 315 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, 316 enum dma_data_direction dir) 317 { 318 return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents); 319 } 320 321 static inline void 322 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, 323 enum dma_data_direction dir) 324 { 325 if (dev) 326 dma_unmap_sg(dev, sg, nents, dir); 327 } 328 329 330 /* *********************** FC-NVME Port Management ************************ */ 331 332 333 static int 334 nvmet_fc_alloc_ls_iodlist(struct nvmet_fc_tgtport *tgtport) 335 { 336 struct nvmet_fc_ls_iod *iod; 337 int i; 338 339 iod = kcalloc(NVMET_LS_CTX_COUNT, sizeof(struct nvmet_fc_ls_iod), 340 GFP_KERNEL); 341 if (!iod) 342 return -ENOMEM; 343 344 tgtport->iod = iod; 345 346 for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) { 347 INIT_WORK(&iod->work, nvmet_fc_handle_ls_rqst_work); 348 iod->tgtport = tgtport; 349 list_add_tail(&iod->ls_list, &tgtport->ls_list); 350 351 iod->rqstbuf = kcalloc(2, NVME_FC_MAX_LS_BUFFER_SIZE, 352 GFP_KERNEL); 353 if (!iod->rqstbuf) 354 goto out_fail; 355 356 iod->rspbuf = iod->rqstbuf + NVME_FC_MAX_LS_BUFFER_SIZE; 357 358 iod->rspdma = fc_dma_map_single(tgtport->dev, iod->rspbuf, 359 NVME_FC_MAX_LS_BUFFER_SIZE, 360 DMA_TO_DEVICE); 361 if (fc_dma_mapping_error(tgtport->dev, iod->rspdma)) 362 goto out_fail; 363 } 364 365 return 0; 366 367 out_fail: 368 kfree(iod->rqstbuf); 369 list_del(&iod->ls_list); 370 for (iod--, i--; i >= 0; iod--, i--) { 371 fc_dma_unmap_single(tgtport->dev, iod->rspdma, 372 NVME_FC_MAX_LS_BUFFER_SIZE, DMA_TO_DEVICE); 373 kfree(iod->rqstbuf); 374 list_del(&iod->ls_list); 375 } 376 377 kfree(iod); 378 379 return -EFAULT; 380 } 381 382 static void 383 nvmet_fc_free_ls_iodlist(struct nvmet_fc_tgtport *tgtport) 384 { 385 struct nvmet_fc_ls_iod *iod = tgtport->iod; 386 int i; 387 388 for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) { 389 fc_dma_unmap_single(tgtport->dev, 390 iod->rspdma, NVME_FC_MAX_LS_BUFFER_SIZE, 391 DMA_TO_DEVICE); 392 kfree(iod->rqstbuf); 393 list_del(&iod->ls_list); 394 } 395 kfree(tgtport->iod); 396 } 397 398 static struct nvmet_fc_ls_iod * 399 nvmet_fc_alloc_ls_iod(struct nvmet_fc_tgtport *tgtport) 400 { 401 struct nvmet_fc_ls_iod *iod; 402 unsigned long flags; 403 404 spin_lock_irqsave(&tgtport->lock, flags); 405 iod = list_first_entry_or_null(&tgtport->ls_list, 406 struct nvmet_fc_ls_iod, ls_list); 407 if (iod) 408 list_move_tail(&iod->ls_list, &tgtport->ls_busylist); 409 spin_unlock_irqrestore(&tgtport->lock, flags); 410 return iod; 411 } 412 413 414 static void 415 nvmet_fc_free_ls_iod(struct nvmet_fc_tgtport *tgtport, 416 struct nvmet_fc_ls_iod *iod) 417 { 418 unsigned long flags; 419 420 spin_lock_irqsave(&tgtport->lock, flags); 421 list_move(&iod->ls_list, &tgtport->ls_list); 422 spin_unlock_irqrestore(&tgtport->lock, flags); 423 } 424 425 static void 426 nvmet_fc_prep_fcp_iodlist(struct nvmet_fc_tgtport *tgtport, 427 struct nvmet_fc_tgt_queue *queue) 428 { 429 struct nvmet_fc_fcp_iod *fod = queue->fod; 430 int i; 431 432 for (i = 0; i < queue->sqsize; fod++, i++) { 433 INIT_WORK(&fod->work, nvmet_fc_handle_fcp_rqst_work); 434 INIT_WORK(&fod->done_work, nvmet_fc_fcp_rqst_op_done_work); 435 INIT_WORK(&fod->defer_work, nvmet_fc_fcp_rqst_op_defer_work); 436 fod->tgtport = tgtport; 437 fod->queue = queue; 438 fod->active = false; 439 fod->abort = false; 440 fod->aborted = false; 441 fod->fcpreq = NULL; 442 list_add_tail(&fod->fcp_list, &queue->fod_list); 443 spin_lock_init(&fod->flock); 444 445 fod->rspdma = fc_dma_map_single(tgtport->dev, &fod->rspiubuf, 446 sizeof(fod->rspiubuf), DMA_TO_DEVICE); 447 if (fc_dma_mapping_error(tgtport->dev, fod->rspdma)) { 448 list_del(&fod->fcp_list); 449 for (fod--, i--; i >= 0; fod--, i--) { 450 fc_dma_unmap_single(tgtport->dev, fod->rspdma, 451 sizeof(fod->rspiubuf), 452 DMA_TO_DEVICE); 453 fod->rspdma = 0L; 454 list_del(&fod->fcp_list); 455 } 456 457 return; 458 } 459 } 460 } 461 462 static void 463 nvmet_fc_destroy_fcp_iodlist(struct nvmet_fc_tgtport *tgtport, 464 struct nvmet_fc_tgt_queue *queue) 465 { 466 struct nvmet_fc_fcp_iod *fod = queue->fod; 467 int i; 468 469 for (i = 0; i < queue->sqsize; fod++, i++) { 470 if (fod->rspdma) 471 fc_dma_unmap_single(tgtport->dev, fod->rspdma, 472 sizeof(fod->rspiubuf), DMA_TO_DEVICE); 473 } 474 } 475 476 static struct nvmet_fc_fcp_iod * 477 nvmet_fc_alloc_fcp_iod(struct nvmet_fc_tgt_queue *queue) 478 { 479 struct nvmet_fc_fcp_iod *fod; 480 481 lockdep_assert_held(&queue->qlock); 482 483 fod = list_first_entry_or_null(&queue->fod_list, 484 struct nvmet_fc_fcp_iod, fcp_list); 485 if (fod) { 486 list_del(&fod->fcp_list); 487 fod->active = true; 488 /* 489 * no queue reference is taken, as it was taken by the 490 * queue lookup just prior to the allocation. The iod 491 * will "inherit" that reference. 492 */ 493 } 494 return fod; 495 } 496 497 498 static void 499 nvmet_fc_queue_fcp_req(struct nvmet_fc_tgtport *tgtport, 500 struct nvmet_fc_tgt_queue *queue, 501 struct nvmefc_tgt_fcp_req *fcpreq) 502 { 503 struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private; 504 505 /* 506 * put all admin cmds on hw queue id 0. All io commands go to 507 * the respective hw queue based on a modulo basis 508 */ 509 fcpreq->hwqid = queue->qid ? 510 ((queue->qid - 1) % tgtport->ops->max_hw_queues) : 0; 511 512 if (tgtport->ops->target_features & NVMET_FCTGTFEAT_CMD_IN_ISR) 513 queue_work_on(queue->cpu, queue->work_q, &fod->work); 514 else 515 nvmet_fc_handle_fcp_rqst(tgtport, fod); 516 } 517 518 static void 519 nvmet_fc_fcp_rqst_op_defer_work(struct work_struct *work) 520 { 521 struct nvmet_fc_fcp_iod *fod = 522 container_of(work, struct nvmet_fc_fcp_iod, defer_work); 523 524 /* Submit deferred IO for processing */ 525 nvmet_fc_queue_fcp_req(fod->tgtport, fod->queue, fod->fcpreq); 526 527 } 528 529 static void 530 nvmet_fc_free_fcp_iod(struct nvmet_fc_tgt_queue *queue, 531 struct nvmet_fc_fcp_iod *fod) 532 { 533 struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq; 534 struct nvmet_fc_tgtport *tgtport = fod->tgtport; 535 struct nvmet_fc_defer_fcp_req *deferfcp; 536 unsigned long flags; 537 538 fc_dma_sync_single_for_cpu(tgtport->dev, fod->rspdma, 539 sizeof(fod->rspiubuf), DMA_TO_DEVICE); 540 541 fcpreq->nvmet_fc_private = NULL; 542 543 fod->active = false; 544 fod->abort = false; 545 fod->aborted = false; 546 fod->writedataactive = false; 547 fod->fcpreq = NULL; 548 549 tgtport->ops->fcp_req_release(&tgtport->fc_target_port, fcpreq); 550 551 /* release the queue lookup reference on the completed IO */ 552 nvmet_fc_tgt_q_put(queue); 553 554 spin_lock_irqsave(&queue->qlock, flags); 555 deferfcp = list_first_entry_or_null(&queue->pending_cmd_list, 556 struct nvmet_fc_defer_fcp_req, req_list); 557 if (!deferfcp) { 558 list_add_tail(&fod->fcp_list, &fod->queue->fod_list); 559 spin_unlock_irqrestore(&queue->qlock, flags); 560 return; 561 } 562 563 /* Re-use the fod for the next pending cmd that was deferred */ 564 list_del(&deferfcp->req_list); 565 566 fcpreq = deferfcp->fcp_req; 567 568 /* deferfcp can be reused for another IO at a later date */ 569 list_add_tail(&deferfcp->req_list, &queue->avail_defer_list); 570 571 spin_unlock_irqrestore(&queue->qlock, flags); 572 573 /* Save NVME CMD IO in fod */ 574 memcpy(&fod->cmdiubuf, fcpreq->rspaddr, fcpreq->rsplen); 575 576 /* Setup new fcpreq to be processed */ 577 fcpreq->rspaddr = NULL; 578 fcpreq->rsplen = 0; 579 fcpreq->nvmet_fc_private = fod; 580 fod->fcpreq = fcpreq; 581 fod->active = true; 582 583 /* inform LLDD IO is now being processed */ 584 tgtport->ops->defer_rcv(&tgtport->fc_target_port, fcpreq); 585 586 /* 587 * Leave the queue lookup get reference taken when 588 * fod was originally allocated. 589 */ 590 591 queue_work(queue->work_q, &fod->defer_work); 592 } 593 594 static int 595 nvmet_fc_queue_to_cpu(struct nvmet_fc_tgtport *tgtport, int qid) 596 { 597 int cpu, idx, cnt; 598 599 if (tgtport->ops->max_hw_queues == 1) 600 return WORK_CPU_UNBOUND; 601 602 /* Simple cpu selection based on qid modulo active cpu count */ 603 idx = !qid ? 0 : (qid - 1) % num_active_cpus(); 604 605 /* find the n'th active cpu */ 606 for (cpu = 0, cnt = 0; ; ) { 607 if (cpu_active(cpu)) { 608 if (cnt == idx) 609 break; 610 cnt++; 611 } 612 cpu = (cpu + 1) % num_possible_cpus(); 613 } 614 615 return cpu; 616 } 617 618 static struct nvmet_fc_tgt_queue * 619 nvmet_fc_alloc_target_queue(struct nvmet_fc_tgt_assoc *assoc, 620 u16 qid, u16 sqsize) 621 { 622 struct nvmet_fc_tgt_queue *queue; 623 unsigned long flags; 624 int ret; 625 626 if (qid > NVMET_NR_QUEUES) 627 return NULL; 628 629 queue = kzalloc((sizeof(*queue) + 630 (sizeof(struct nvmet_fc_fcp_iod) * sqsize)), 631 GFP_KERNEL); 632 if (!queue) 633 return NULL; 634 635 if (!nvmet_fc_tgt_a_get(assoc)) 636 goto out_free_queue; 637 638 queue->work_q = alloc_workqueue("ntfc%d.%d.%d", 0, 0, 639 assoc->tgtport->fc_target_port.port_num, 640 assoc->a_id, qid); 641 if (!queue->work_q) 642 goto out_a_put; 643 644 queue->fod = (struct nvmet_fc_fcp_iod *)&queue[1]; 645 queue->qid = qid; 646 queue->sqsize = sqsize; 647 queue->assoc = assoc; 648 queue->port = assoc->tgtport->port; 649 queue->cpu = nvmet_fc_queue_to_cpu(assoc->tgtport, qid); 650 INIT_LIST_HEAD(&queue->fod_list); 651 INIT_LIST_HEAD(&queue->avail_defer_list); 652 INIT_LIST_HEAD(&queue->pending_cmd_list); 653 atomic_set(&queue->connected, 0); 654 atomic_set(&queue->sqtail, 0); 655 atomic_set(&queue->rsn, 1); 656 atomic_set(&queue->zrspcnt, 0); 657 spin_lock_init(&queue->qlock); 658 kref_init(&queue->ref); 659 660 nvmet_fc_prep_fcp_iodlist(assoc->tgtport, queue); 661 662 ret = nvmet_sq_init(&queue->nvme_sq); 663 if (ret) 664 goto out_fail_iodlist; 665 666 WARN_ON(assoc->queues[qid]); 667 spin_lock_irqsave(&assoc->tgtport->lock, flags); 668 assoc->queues[qid] = queue; 669 spin_unlock_irqrestore(&assoc->tgtport->lock, flags); 670 671 return queue; 672 673 out_fail_iodlist: 674 nvmet_fc_destroy_fcp_iodlist(assoc->tgtport, queue); 675 destroy_workqueue(queue->work_q); 676 out_a_put: 677 nvmet_fc_tgt_a_put(assoc); 678 out_free_queue: 679 kfree(queue); 680 return NULL; 681 } 682 683 684 static void 685 nvmet_fc_tgt_queue_free(struct kref *ref) 686 { 687 struct nvmet_fc_tgt_queue *queue = 688 container_of(ref, struct nvmet_fc_tgt_queue, ref); 689 unsigned long flags; 690 691 spin_lock_irqsave(&queue->assoc->tgtport->lock, flags); 692 queue->assoc->queues[queue->qid] = NULL; 693 spin_unlock_irqrestore(&queue->assoc->tgtport->lock, flags); 694 695 nvmet_fc_destroy_fcp_iodlist(queue->assoc->tgtport, queue); 696 697 nvmet_fc_tgt_a_put(queue->assoc); 698 699 destroy_workqueue(queue->work_q); 700 701 kfree(queue); 702 } 703 704 static void 705 nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue) 706 { 707 kref_put(&queue->ref, nvmet_fc_tgt_queue_free); 708 } 709 710 static int 711 nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue) 712 { 713 return kref_get_unless_zero(&queue->ref); 714 } 715 716 717 static void 718 nvmet_fc_delete_target_queue(struct nvmet_fc_tgt_queue *queue) 719 { 720 struct nvmet_fc_tgtport *tgtport = queue->assoc->tgtport; 721 struct nvmet_fc_fcp_iod *fod = queue->fod; 722 struct nvmet_fc_defer_fcp_req *deferfcp, *tempptr; 723 unsigned long flags; 724 int i, writedataactive; 725 bool disconnect; 726 727 disconnect = atomic_xchg(&queue->connected, 0); 728 729 spin_lock_irqsave(&queue->qlock, flags); 730 /* about outstanding io's */ 731 for (i = 0; i < queue->sqsize; fod++, i++) { 732 if (fod->active) { 733 spin_lock(&fod->flock); 734 fod->abort = true; 735 writedataactive = fod->writedataactive; 736 spin_unlock(&fod->flock); 737 /* 738 * only call lldd abort routine if waiting for 739 * writedata. other outstanding ops should finish 740 * on their own. 741 */ 742 if (writedataactive) { 743 spin_lock(&fod->flock); 744 fod->aborted = true; 745 spin_unlock(&fod->flock); 746 tgtport->ops->fcp_abort( 747 &tgtport->fc_target_port, fod->fcpreq); 748 } 749 } 750 } 751 752 /* Cleanup defer'ed IOs in queue */ 753 list_for_each_entry_safe(deferfcp, tempptr, &queue->avail_defer_list, 754 req_list) { 755 list_del(&deferfcp->req_list); 756 kfree(deferfcp); 757 } 758 759 for (;;) { 760 deferfcp = list_first_entry_or_null(&queue->pending_cmd_list, 761 struct nvmet_fc_defer_fcp_req, req_list); 762 if (!deferfcp) 763 break; 764 765 list_del(&deferfcp->req_list); 766 spin_unlock_irqrestore(&queue->qlock, flags); 767 768 tgtport->ops->defer_rcv(&tgtport->fc_target_port, 769 deferfcp->fcp_req); 770 771 tgtport->ops->fcp_abort(&tgtport->fc_target_port, 772 deferfcp->fcp_req); 773 774 tgtport->ops->fcp_req_release(&tgtport->fc_target_port, 775 deferfcp->fcp_req); 776 777 /* release the queue lookup reference */ 778 nvmet_fc_tgt_q_put(queue); 779 780 kfree(deferfcp); 781 782 spin_lock_irqsave(&queue->qlock, flags); 783 } 784 spin_unlock_irqrestore(&queue->qlock, flags); 785 786 flush_workqueue(queue->work_q); 787 788 if (disconnect) 789 nvmet_sq_destroy(&queue->nvme_sq); 790 791 nvmet_fc_tgt_q_put(queue); 792 } 793 794 static struct nvmet_fc_tgt_queue * 795 nvmet_fc_find_target_queue(struct nvmet_fc_tgtport *tgtport, 796 u64 connection_id) 797 { 798 struct nvmet_fc_tgt_assoc *assoc; 799 struct nvmet_fc_tgt_queue *queue; 800 u64 association_id = nvmet_fc_getassociationid(connection_id); 801 u16 qid = nvmet_fc_getqueueid(connection_id); 802 unsigned long flags; 803 804 if (qid > NVMET_NR_QUEUES) 805 return NULL; 806 807 spin_lock_irqsave(&tgtport->lock, flags); 808 list_for_each_entry(assoc, &tgtport->assoc_list, a_list) { 809 if (association_id == assoc->association_id) { 810 queue = assoc->queues[qid]; 811 if (queue && 812 (!atomic_read(&queue->connected) || 813 !nvmet_fc_tgt_q_get(queue))) 814 queue = NULL; 815 spin_unlock_irqrestore(&tgtport->lock, flags); 816 return queue; 817 } 818 } 819 spin_unlock_irqrestore(&tgtport->lock, flags); 820 return NULL; 821 } 822 823 static void 824 nvmet_fc_delete_assoc(struct work_struct *work) 825 { 826 struct nvmet_fc_tgt_assoc *assoc = 827 container_of(work, struct nvmet_fc_tgt_assoc, del_work); 828 829 nvmet_fc_delete_target_assoc(assoc); 830 nvmet_fc_tgt_a_put(assoc); 831 } 832 833 static struct nvmet_fc_tgt_assoc * 834 nvmet_fc_alloc_target_assoc(struct nvmet_fc_tgtport *tgtport) 835 { 836 struct nvmet_fc_tgt_assoc *assoc, *tmpassoc; 837 unsigned long flags; 838 u64 ran; 839 int idx; 840 bool needrandom = true; 841 842 assoc = kzalloc(sizeof(*assoc), GFP_KERNEL); 843 if (!assoc) 844 return NULL; 845 846 idx = ida_simple_get(&tgtport->assoc_cnt, 0, 0, GFP_KERNEL); 847 if (idx < 0) 848 goto out_free_assoc; 849 850 if (!nvmet_fc_tgtport_get(tgtport)) 851 goto out_ida_put; 852 853 assoc->tgtport = tgtport; 854 assoc->a_id = idx; 855 INIT_LIST_HEAD(&assoc->a_list); 856 kref_init(&assoc->ref); 857 INIT_WORK(&assoc->del_work, nvmet_fc_delete_assoc); 858 859 while (needrandom) { 860 get_random_bytes(&ran, sizeof(ran) - BYTES_FOR_QID); 861 ran = ran << BYTES_FOR_QID_SHIFT; 862 863 spin_lock_irqsave(&tgtport->lock, flags); 864 needrandom = false; 865 list_for_each_entry(tmpassoc, &tgtport->assoc_list, a_list) 866 if (ran == tmpassoc->association_id) { 867 needrandom = true; 868 break; 869 } 870 if (!needrandom) { 871 assoc->association_id = ran; 872 list_add_tail(&assoc->a_list, &tgtport->assoc_list); 873 } 874 spin_unlock_irqrestore(&tgtport->lock, flags); 875 } 876 877 return assoc; 878 879 out_ida_put: 880 ida_simple_remove(&tgtport->assoc_cnt, idx); 881 out_free_assoc: 882 kfree(assoc); 883 return NULL; 884 } 885 886 static void 887 nvmet_fc_target_assoc_free(struct kref *ref) 888 { 889 struct nvmet_fc_tgt_assoc *assoc = 890 container_of(ref, struct nvmet_fc_tgt_assoc, ref); 891 struct nvmet_fc_tgtport *tgtport = assoc->tgtport; 892 unsigned long flags; 893 894 spin_lock_irqsave(&tgtport->lock, flags); 895 list_del(&assoc->a_list); 896 spin_unlock_irqrestore(&tgtport->lock, flags); 897 ida_simple_remove(&tgtport->assoc_cnt, assoc->a_id); 898 kfree(assoc); 899 nvmet_fc_tgtport_put(tgtport); 900 } 901 902 static void 903 nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc) 904 { 905 kref_put(&assoc->ref, nvmet_fc_target_assoc_free); 906 } 907 908 static int 909 nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc) 910 { 911 return kref_get_unless_zero(&assoc->ref); 912 } 913 914 static void 915 nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc *assoc) 916 { 917 struct nvmet_fc_tgtport *tgtport = assoc->tgtport; 918 struct nvmet_fc_tgt_queue *queue; 919 unsigned long flags; 920 int i; 921 922 spin_lock_irqsave(&tgtport->lock, flags); 923 for (i = NVMET_NR_QUEUES; i >= 0; i--) { 924 queue = assoc->queues[i]; 925 if (queue) { 926 if (!nvmet_fc_tgt_q_get(queue)) 927 continue; 928 spin_unlock_irqrestore(&tgtport->lock, flags); 929 nvmet_fc_delete_target_queue(queue); 930 nvmet_fc_tgt_q_put(queue); 931 spin_lock_irqsave(&tgtport->lock, flags); 932 } 933 } 934 spin_unlock_irqrestore(&tgtport->lock, flags); 935 936 nvmet_fc_tgt_a_put(assoc); 937 } 938 939 static struct nvmet_fc_tgt_assoc * 940 nvmet_fc_find_target_assoc(struct nvmet_fc_tgtport *tgtport, 941 u64 association_id) 942 { 943 struct nvmet_fc_tgt_assoc *assoc; 944 struct nvmet_fc_tgt_assoc *ret = NULL; 945 unsigned long flags; 946 947 spin_lock_irqsave(&tgtport->lock, flags); 948 list_for_each_entry(assoc, &tgtport->assoc_list, a_list) { 949 if (association_id == assoc->association_id) { 950 ret = assoc; 951 nvmet_fc_tgt_a_get(assoc); 952 break; 953 } 954 } 955 spin_unlock_irqrestore(&tgtport->lock, flags); 956 957 return ret; 958 } 959 960 961 /** 962 * nvme_fc_register_targetport - transport entry point called by an 963 * LLDD to register the existence of a local 964 * NVME subystem FC port. 965 * @pinfo: pointer to information about the port to be registered 966 * @template: LLDD entrypoints and operational parameters for the port 967 * @dev: physical hardware device node port corresponds to. Will be 968 * used for DMA mappings 969 * @portptr: pointer to a local port pointer. Upon success, the routine 970 * will allocate a nvme_fc_local_port structure and place its 971 * address in the local port pointer. Upon failure, local port 972 * pointer will be set to NULL. 973 * 974 * Returns: 975 * a completion status. Must be 0 upon success; a negative errno 976 * (ex: -ENXIO) upon failure. 977 */ 978 int 979 nvmet_fc_register_targetport(struct nvmet_fc_port_info *pinfo, 980 struct nvmet_fc_target_template *template, 981 struct device *dev, 982 struct nvmet_fc_target_port **portptr) 983 { 984 struct nvmet_fc_tgtport *newrec; 985 unsigned long flags; 986 int ret, idx; 987 988 if (!template->xmt_ls_rsp || !template->fcp_op || 989 !template->fcp_abort || 990 !template->fcp_req_release || !template->targetport_delete || 991 !template->max_hw_queues || !template->max_sgl_segments || 992 !template->max_dif_sgl_segments || !template->dma_boundary) { 993 ret = -EINVAL; 994 goto out_regtgt_failed; 995 } 996 997 newrec = kzalloc((sizeof(*newrec) + template->target_priv_sz), 998 GFP_KERNEL); 999 if (!newrec) { 1000 ret = -ENOMEM; 1001 goto out_regtgt_failed; 1002 } 1003 1004 idx = ida_simple_get(&nvmet_fc_tgtport_cnt, 0, 0, GFP_KERNEL); 1005 if (idx < 0) { 1006 ret = -ENOSPC; 1007 goto out_fail_kfree; 1008 } 1009 1010 if (!get_device(dev) && dev) { 1011 ret = -ENODEV; 1012 goto out_ida_put; 1013 } 1014 1015 newrec->fc_target_port.node_name = pinfo->node_name; 1016 newrec->fc_target_port.port_name = pinfo->port_name; 1017 newrec->fc_target_port.private = &newrec[1]; 1018 newrec->fc_target_port.port_id = pinfo->port_id; 1019 newrec->fc_target_port.port_num = idx; 1020 INIT_LIST_HEAD(&newrec->tgt_list); 1021 newrec->dev = dev; 1022 newrec->ops = template; 1023 spin_lock_init(&newrec->lock); 1024 INIT_LIST_HEAD(&newrec->ls_list); 1025 INIT_LIST_HEAD(&newrec->ls_busylist); 1026 INIT_LIST_HEAD(&newrec->assoc_list); 1027 kref_init(&newrec->ref); 1028 ida_init(&newrec->assoc_cnt); 1029 newrec->max_sg_cnt = template->max_sgl_segments; 1030 1031 ret = nvmet_fc_alloc_ls_iodlist(newrec); 1032 if (ret) { 1033 ret = -ENOMEM; 1034 goto out_free_newrec; 1035 } 1036 1037 spin_lock_irqsave(&nvmet_fc_tgtlock, flags); 1038 list_add_tail(&newrec->tgt_list, &nvmet_fc_target_list); 1039 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags); 1040 1041 *portptr = &newrec->fc_target_port; 1042 return 0; 1043 1044 out_free_newrec: 1045 put_device(dev); 1046 out_ida_put: 1047 ida_simple_remove(&nvmet_fc_tgtport_cnt, idx); 1048 out_fail_kfree: 1049 kfree(newrec); 1050 out_regtgt_failed: 1051 *portptr = NULL; 1052 return ret; 1053 } 1054 EXPORT_SYMBOL_GPL(nvmet_fc_register_targetport); 1055 1056 1057 static void 1058 nvmet_fc_free_tgtport(struct kref *ref) 1059 { 1060 struct nvmet_fc_tgtport *tgtport = 1061 container_of(ref, struct nvmet_fc_tgtport, ref); 1062 struct device *dev = tgtport->dev; 1063 unsigned long flags; 1064 1065 spin_lock_irqsave(&nvmet_fc_tgtlock, flags); 1066 list_del(&tgtport->tgt_list); 1067 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags); 1068 1069 nvmet_fc_free_ls_iodlist(tgtport); 1070 1071 /* let the LLDD know we've finished tearing it down */ 1072 tgtport->ops->targetport_delete(&tgtport->fc_target_port); 1073 1074 ida_simple_remove(&nvmet_fc_tgtport_cnt, 1075 tgtport->fc_target_port.port_num); 1076 1077 ida_destroy(&tgtport->assoc_cnt); 1078 1079 kfree(tgtport); 1080 1081 put_device(dev); 1082 } 1083 1084 static void 1085 nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport) 1086 { 1087 kref_put(&tgtport->ref, nvmet_fc_free_tgtport); 1088 } 1089 1090 static int 1091 nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport) 1092 { 1093 return kref_get_unless_zero(&tgtport->ref); 1094 } 1095 1096 static void 1097 __nvmet_fc_free_assocs(struct nvmet_fc_tgtport *tgtport) 1098 { 1099 struct nvmet_fc_tgt_assoc *assoc, *next; 1100 unsigned long flags; 1101 1102 spin_lock_irqsave(&tgtport->lock, flags); 1103 list_for_each_entry_safe(assoc, next, 1104 &tgtport->assoc_list, a_list) { 1105 if (!nvmet_fc_tgt_a_get(assoc)) 1106 continue; 1107 spin_unlock_irqrestore(&tgtport->lock, flags); 1108 nvmet_fc_delete_target_assoc(assoc); 1109 nvmet_fc_tgt_a_put(assoc); 1110 spin_lock_irqsave(&tgtport->lock, flags); 1111 } 1112 spin_unlock_irqrestore(&tgtport->lock, flags); 1113 } 1114 1115 /* 1116 * nvmet layer has called to terminate an association 1117 */ 1118 static void 1119 nvmet_fc_delete_ctrl(struct nvmet_ctrl *ctrl) 1120 { 1121 struct nvmet_fc_tgtport *tgtport, *next; 1122 struct nvmet_fc_tgt_assoc *assoc; 1123 struct nvmet_fc_tgt_queue *queue; 1124 unsigned long flags; 1125 bool found_ctrl = false; 1126 1127 /* this is a bit ugly, but don't want to make locks layered */ 1128 spin_lock_irqsave(&nvmet_fc_tgtlock, flags); 1129 list_for_each_entry_safe(tgtport, next, &nvmet_fc_target_list, 1130 tgt_list) { 1131 if (!nvmet_fc_tgtport_get(tgtport)) 1132 continue; 1133 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags); 1134 1135 spin_lock_irqsave(&tgtport->lock, flags); 1136 list_for_each_entry(assoc, &tgtport->assoc_list, a_list) { 1137 queue = assoc->queues[0]; 1138 if (queue && queue->nvme_sq.ctrl == ctrl) { 1139 if (nvmet_fc_tgt_a_get(assoc)) 1140 found_ctrl = true; 1141 break; 1142 } 1143 } 1144 spin_unlock_irqrestore(&tgtport->lock, flags); 1145 1146 nvmet_fc_tgtport_put(tgtport); 1147 1148 if (found_ctrl) { 1149 schedule_work(&assoc->del_work); 1150 return; 1151 } 1152 1153 spin_lock_irqsave(&nvmet_fc_tgtlock, flags); 1154 } 1155 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags); 1156 } 1157 1158 /** 1159 * nvme_fc_unregister_targetport - transport entry point called by an 1160 * LLDD to deregister/remove a previously 1161 * registered a local NVME subsystem FC port. 1162 * @tgtport: pointer to the (registered) target port that is to be 1163 * deregistered. 1164 * 1165 * Returns: 1166 * a completion status. Must be 0 upon success; a negative errno 1167 * (ex: -ENXIO) upon failure. 1168 */ 1169 int 1170 nvmet_fc_unregister_targetport(struct nvmet_fc_target_port *target_port) 1171 { 1172 struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port); 1173 1174 /* terminate any outstanding associations */ 1175 __nvmet_fc_free_assocs(tgtport); 1176 1177 nvmet_fc_tgtport_put(tgtport); 1178 1179 return 0; 1180 } 1181 EXPORT_SYMBOL_GPL(nvmet_fc_unregister_targetport); 1182 1183 1184 /* *********************** FC-NVME LS Handling **************************** */ 1185 1186 1187 static void 1188 nvmet_fc_format_rsp_hdr(void *buf, u8 ls_cmd, __be32 desc_len, u8 rqst_ls_cmd) 1189 { 1190 struct fcnvme_ls_acc_hdr *acc = buf; 1191 1192 acc->w0.ls_cmd = ls_cmd; 1193 acc->desc_list_len = desc_len; 1194 acc->rqst.desc_tag = cpu_to_be32(FCNVME_LSDESC_RQST); 1195 acc->rqst.desc_len = 1196 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)); 1197 acc->rqst.w0.ls_cmd = rqst_ls_cmd; 1198 } 1199 1200 static int 1201 nvmet_fc_format_rjt(void *buf, u16 buflen, u8 ls_cmd, 1202 u8 reason, u8 explanation, u8 vendor) 1203 { 1204 struct fcnvme_ls_rjt *rjt = buf; 1205 1206 nvmet_fc_format_rsp_hdr(buf, FCNVME_LSDESC_RQST, 1207 fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_rjt)), 1208 ls_cmd); 1209 rjt->rjt.desc_tag = cpu_to_be32(FCNVME_LSDESC_RJT); 1210 rjt->rjt.desc_len = fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rjt)); 1211 rjt->rjt.reason_code = reason; 1212 rjt->rjt.reason_explanation = explanation; 1213 rjt->rjt.vendor = vendor; 1214 1215 return sizeof(struct fcnvme_ls_rjt); 1216 } 1217 1218 /* Validation Error indexes into the string table below */ 1219 enum { 1220 VERR_NO_ERROR = 0, 1221 VERR_CR_ASSOC_LEN = 1, 1222 VERR_CR_ASSOC_RQST_LEN = 2, 1223 VERR_CR_ASSOC_CMD = 3, 1224 VERR_CR_ASSOC_CMD_LEN = 4, 1225 VERR_ERSP_RATIO = 5, 1226 VERR_ASSOC_ALLOC_FAIL = 6, 1227 VERR_QUEUE_ALLOC_FAIL = 7, 1228 VERR_CR_CONN_LEN = 8, 1229 VERR_CR_CONN_RQST_LEN = 9, 1230 VERR_ASSOC_ID = 10, 1231 VERR_ASSOC_ID_LEN = 11, 1232 VERR_NO_ASSOC = 12, 1233 VERR_CONN_ID = 13, 1234 VERR_CONN_ID_LEN = 14, 1235 VERR_NO_CONN = 15, 1236 VERR_CR_CONN_CMD = 16, 1237 VERR_CR_CONN_CMD_LEN = 17, 1238 VERR_DISCONN_LEN = 18, 1239 VERR_DISCONN_RQST_LEN = 19, 1240 VERR_DISCONN_CMD = 20, 1241 VERR_DISCONN_CMD_LEN = 21, 1242 VERR_DISCONN_SCOPE = 22, 1243 VERR_RS_LEN = 23, 1244 VERR_RS_RQST_LEN = 24, 1245 VERR_RS_CMD = 25, 1246 VERR_RS_CMD_LEN = 26, 1247 VERR_RS_RCTL = 27, 1248 VERR_RS_RO = 28, 1249 }; 1250 1251 static char *validation_errors[] = { 1252 "OK", 1253 "Bad CR_ASSOC Length", 1254 "Bad CR_ASSOC Rqst Length", 1255 "Not CR_ASSOC Cmd", 1256 "Bad CR_ASSOC Cmd Length", 1257 "Bad Ersp Ratio", 1258 "Association Allocation Failed", 1259 "Queue Allocation Failed", 1260 "Bad CR_CONN Length", 1261 "Bad CR_CONN Rqst Length", 1262 "Not Association ID", 1263 "Bad Association ID Length", 1264 "No Association", 1265 "Not Connection ID", 1266 "Bad Connection ID Length", 1267 "No Connection", 1268 "Not CR_CONN Cmd", 1269 "Bad CR_CONN Cmd Length", 1270 "Bad DISCONN Length", 1271 "Bad DISCONN Rqst Length", 1272 "Not DISCONN Cmd", 1273 "Bad DISCONN Cmd Length", 1274 "Bad Disconnect Scope", 1275 "Bad RS Length", 1276 "Bad RS Rqst Length", 1277 "Not RS Cmd", 1278 "Bad RS Cmd Length", 1279 "Bad RS R_CTL", 1280 "Bad RS Relative Offset", 1281 }; 1282 1283 static void 1284 nvmet_fc_ls_create_association(struct nvmet_fc_tgtport *tgtport, 1285 struct nvmet_fc_ls_iod *iod) 1286 { 1287 struct fcnvme_ls_cr_assoc_rqst *rqst = 1288 (struct fcnvme_ls_cr_assoc_rqst *)iod->rqstbuf; 1289 struct fcnvme_ls_cr_assoc_acc *acc = 1290 (struct fcnvme_ls_cr_assoc_acc *)iod->rspbuf; 1291 struct nvmet_fc_tgt_queue *queue; 1292 int ret = 0; 1293 1294 memset(acc, 0, sizeof(*acc)); 1295 1296 /* 1297 * FC-NVME spec changes. There are initiators sending different 1298 * lengths as padding sizes for Create Association Cmd descriptor 1299 * was incorrect. 1300 * Accept anything of "minimum" length. Assume format per 1.15 1301 * spec (with HOSTID reduced to 16 bytes), ignore how long the 1302 * trailing pad length is. 1303 */ 1304 if (iod->rqstdatalen < FCNVME_LSDESC_CRA_RQST_MINLEN) 1305 ret = VERR_CR_ASSOC_LEN; 1306 else if (be32_to_cpu(rqst->desc_list_len) < 1307 FCNVME_LSDESC_CRA_RQST_MIN_LISTLEN) 1308 ret = VERR_CR_ASSOC_RQST_LEN; 1309 else if (rqst->assoc_cmd.desc_tag != 1310 cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD)) 1311 ret = VERR_CR_ASSOC_CMD; 1312 else if (be32_to_cpu(rqst->assoc_cmd.desc_len) < 1313 FCNVME_LSDESC_CRA_CMD_DESC_MIN_DESCLEN) 1314 ret = VERR_CR_ASSOC_CMD_LEN; 1315 else if (!rqst->assoc_cmd.ersp_ratio || 1316 (be16_to_cpu(rqst->assoc_cmd.ersp_ratio) >= 1317 be16_to_cpu(rqst->assoc_cmd.sqsize))) 1318 ret = VERR_ERSP_RATIO; 1319 1320 else { 1321 /* new association w/ admin queue */ 1322 iod->assoc = nvmet_fc_alloc_target_assoc(tgtport); 1323 if (!iod->assoc) 1324 ret = VERR_ASSOC_ALLOC_FAIL; 1325 else { 1326 queue = nvmet_fc_alloc_target_queue(iod->assoc, 0, 1327 be16_to_cpu(rqst->assoc_cmd.sqsize)); 1328 if (!queue) 1329 ret = VERR_QUEUE_ALLOC_FAIL; 1330 } 1331 } 1332 1333 if (ret) { 1334 dev_err(tgtport->dev, 1335 "Create Association LS failed: %s\n", 1336 validation_errors[ret]); 1337 iod->lsreq->rsplen = nvmet_fc_format_rjt(acc, 1338 NVME_FC_MAX_LS_BUFFER_SIZE, rqst->w0.ls_cmd, 1339 FCNVME_RJT_RC_LOGIC, 1340 FCNVME_RJT_EXP_NONE, 0); 1341 return; 1342 } 1343 1344 queue->ersp_ratio = be16_to_cpu(rqst->assoc_cmd.ersp_ratio); 1345 atomic_set(&queue->connected, 1); 1346 queue->sqhd = 0; /* best place to init value */ 1347 1348 /* format a response */ 1349 1350 iod->lsreq->rsplen = sizeof(*acc); 1351 1352 nvmet_fc_format_rsp_hdr(acc, FCNVME_LS_ACC, 1353 fcnvme_lsdesc_len( 1354 sizeof(struct fcnvme_ls_cr_assoc_acc)), 1355 FCNVME_LS_CREATE_ASSOCIATION); 1356 acc->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID); 1357 acc->associd.desc_len = 1358 fcnvme_lsdesc_len( 1359 sizeof(struct fcnvme_lsdesc_assoc_id)); 1360 acc->associd.association_id = 1361 cpu_to_be64(nvmet_fc_makeconnid(iod->assoc, 0)); 1362 acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID); 1363 acc->connectid.desc_len = 1364 fcnvme_lsdesc_len( 1365 sizeof(struct fcnvme_lsdesc_conn_id)); 1366 acc->connectid.connection_id = acc->associd.association_id; 1367 } 1368 1369 static void 1370 nvmet_fc_ls_create_connection(struct nvmet_fc_tgtport *tgtport, 1371 struct nvmet_fc_ls_iod *iod) 1372 { 1373 struct fcnvme_ls_cr_conn_rqst *rqst = 1374 (struct fcnvme_ls_cr_conn_rqst *)iod->rqstbuf; 1375 struct fcnvme_ls_cr_conn_acc *acc = 1376 (struct fcnvme_ls_cr_conn_acc *)iod->rspbuf; 1377 struct nvmet_fc_tgt_queue *queue; 1378 int ret = 0; 1379 1380 memset(acc, 0, sizeof(*acc)); 1381 1382 if (iod->rqstdatalen < sizeof(struct fcnvme_ls_cr_conn_rqst)) 1383 ret = VERR_CR_CONN_LEN; 1384 else if (rqst->desc_list_len != 1385 fcnvme_lsdesc_len( 1386 sizeof(struct fcnvme_ls_cr_conn_rqst))) 1387 ret = VERR_CR_CONN_RQST_LEN; 1388 else if (rqst->associd.desc_tag != cpu_to_be32(FCNVME_LSDESC_ASSOC_ID)) 1389 ret = VERR_ASSOC_ID; 1390 else if (rqst->associd.desc_len != 1391 fcnvme_lsdesc_len( 1392 sizeof(struct fcnvme_lsdesc_assoc_id))) 1393 ret = VERR_ASSOC_ID_LEN; 1394 else if (rqst->connect_cmd.desc_tag != 1395 cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD)) 1396 ret = VERR_CR_CONN_CMD; 1397 else if (rqst->connect_cmd.desc_len != 1398 fcnvme_lsdesc_len( 1399 sizeof(struct fcnvme_lsdesc_cr_conn_cmd))) 1400 ret = VERR_CR_CONN_CMD_LEN; 1401 else if (!rqst->connect_cmd.ersp_ratio || 1402 (be16_to_cpu(rqst->connect_cmd.ersp_ratio) >= 1403 be16_to_cpu(rqst->connect_cmd.sqsize))) 1404 ret = VERR_ERSP_RATIO; 1405 1406 else { 1407 /* new io queue */ 1408 iod->assoc = nvmet_fc_find_target_assoc(tgtport, 1409 be64_to_cpu(rqst->associd.association_id)); 1410 if (!iod->assoc) 1411 ret = VERR_NO_ASSOC; 1412 else { 1413 queue = nvmet_fc_alloc_target_queue(iod->assoc, 1414 be16_to_cpu(rqst->connect_cmd.qid), 1415 be16_to_cpu(rqst->connect_cmd.sqsize)); 1416 if (!queue) 1417 ret = VERR_QUEUE_ALLOC_FAIL; 1418 1419 /* release get taken in nvmet_fc_find_target_assoc */ 1420 nvmet_fc_tgt_a_put(iod->assoc); 1421 } 1422 } 1423 1424 if (ret) { 1425 dev_err(tgtport->dev, 1426 "Create Connection LS failed: %s\n", 1427 validation_errors[ret]); 1428 iod->lsreq->rsplen = nvmet_fc_format_rjt(acc, 1429 NVME_FC_MAX_LS_BUFFER_SIZE, rqst->w0.ls_cmd, 1430 (ret == VERR_NO_ASSOC) ? 1431 FCNVME_RJT_RC_INV_ASSOC : 1432 FCNVME_RJT_RC_LOGIC, 1433 FCNVME_RJT_EXP_NONE, 0); 1434 return; 1435 } 1436 1437 queue->ersp_ratio = be16_to_cpu(rqst->connect_cmd.ersp_ratio); 1438 atomic_set(&queue->connected, 1); 1439 queue->sqhd = 0; /* best place to init value */ 1440 1441 /* format a response */ 1442 1443 iod->lsreq->rsplen = sizeof(*acc); 1444 1445 nvmet_fc_format_rsp_hdr(acc, FCNVME_LS_ACC, 1446 fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)), 1447 FCNVME_LS_CREATE_CONNECTION); 1448 acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID); 1449 acc->connectid.desc_len = 1450 fcnvme_lsdesc_len( 1451 sizeof(struct fcnvme_lsdesc_conn_id)); 1452 acc->connectid.connection_id = 1453 cpu_to_be64(nvmet_fc_makeconnid(iod->assoc, 1454 be16_to_cpu(rqst->connect_cmd.qid))); 1455 } 1456 1457 static void 1458 nvmet_fc_ls_disconnect(struct nvmet_fc_tgtport *tgtport, 1459 struct nvmet_fc_ls_iod *iod) 1460 { 1461 struct fcnvme_ls_disconnect_rqst *rqst = 1462 (struct fcnvme_ls_disconnect_rqst *)iod->rqstbuf; 1463 struct fcnvme_ls_disconnect_acc *acc = 1464 (struct fcnvme_ls_disconnect_acc *)iod->rspbuf; 1465 struct nvmet_fc_tgt_queue *queue = NULL; 1466 struct nvmet_fc_tgt_assoc *assoc; 1467 int ret = 0; 1468 bool del_assoc = false; 1469 1470 memset(acc, 0, sizeof(*acc)); 1471 1472 if (iod->rqstdatalen < sizeof(struct fcnvme_ls_disconnect_rqst)) 1473 ret = VERR_DISCONN_LEN; 1474 else if (rqst->desc_list_len != 1475 fcnvme_lsdesc_len( 1476 sizeof(struct fcnvme_ls_disconnect_rqst))) 1477 ret = VERR_DISCONN_RQST_LEN; 1478 else if (rqst->associd.desc_tag != cpu_to_be32(FCNVME_LSDESC_ASSOC_ID)) 1479 ret = VERR_ASSOC_ID; 1480 else if (rqst->associd.desc_len != 1481 fcnvme_lsdesc_len( 1482 sizeof(struct fcnvme_lsdesc_assoc_id))) 1483 ret = VERR_ASSOC_ID_LEN; 1484 else if (rqst->discon_cmd.desc_tag != 1485 cpu_to_be32(FCNVME_LSDESC_DISCONN_CMD)) 1486 ret = VERR_DISCONN_CMD; 1487 else if (rqst->discon_cmd.desc_len != 1488 fcnvme_lsdesc_len( 1489 sizeof(struct fcnvme_lsdesc_disconn_cmd))) 1490 ret = VERR_DISCONN_CMD_LEN; 1491 else if ((rqst->discon_cmd.scope != FCNVME_DISCONN_ASSOCIATION) && 1492 (rqst->discon_cmd.scope != FCNVME_DISCONN_CONNECTION)) 1493 ret = VERR_DISCONN_SCOPE; 1494 else { 1495 /* match an active association */ 1496 assoc = nvmet_fc_find_target_assoc(tgtport, 1497 be64_to_cpu(rqst->associd.association_id)); 1498 iod->assoc = assoc; 1499 if (assoc) { 1500 if (rqst->discon_cmd.scope == 1501 FCNVME_DISCONN_CONNECTION) { 1502 queue = nvmet_fc_find_target_queue(tgtport, 1503 be64_to_cpu( 1504 rqst->discon_cmd.id)); 1505 if (!queue) { 1506 nvmet_fc_tgt_a_put(assoc); 1507 ret = VERR_NO_CONN; 1508 } 1509 } 1510 } else 1511 ret = VERR_NO_ASSOC; 1512 } 1513 1514 if (ret) { 1515 dev_err(tgtport->dev, 1516 "Disconnect LS failed: %s\n", 1517 validation_errors[ret]); 1518 iod->lsreq->rsplen = nvmet_fc_format_rjt(acc, 1519 NVME_FC_MAX_LS_BUFFER_SIZE, rqst->w0.ls_cmd, 1520 (ret == VERR_NO_ASSOC) ? 1521 FCNVME_RJT_RC_INV_ASSOC : 1522 (ret == VERR_NO_CONN) ? 1523 FCNVME_RJT_RC_INV_CONN : 1524 FCNVME_RJT_RC_LOGIC, 1525 FCNVME_RJT_EXP_NONE, 0); 1526 return; 1527 } 1528 1529 /* format a response */ 1530 1531 iod->lsreq->rsplen = sizeof(*acc); 1532 1533 nvmet_fc_format_rsp_hdr(acc, FCNVME_LS_ACC, 1534 fcnvme_lsdesc_len( 1535 sizeof(struct fcnvme_ls_disconnect_acc)), 1536 FCNVME_LS_DISCONNECT); 1537 1538 1539 /* are we to delete a Connection ID (queue) */ 1540 if (queue) { 1541 int qid = queue->qid; 1542 1543 nvmet_fc_delete_target_queue(queue); 1544 1545 /* release the get taken by find_target_queue */ 1546 nvmet_fc_tgt_q_put(queue); 1547 1548 /* tear association down if io queue terminated */ 1549 if (!qid) 1550 del_assoc = true; 1551 } 1552 1553 /* release get taken in nvmet_fc_find_target_assoc */ 1554 nvmet_fc_tgt_a_put(iod->assoc); 1555 1556 if (del_assoc) 1557 nvmet_fc_delete_target_assoc(iod->assoc); 1558 } 1559 1560 1561 /* *********************** NVME Ctrl Routines **************************** */ 1562 1563 1564 static void nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req); 1565 1566 static const struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops; 1567 1568 static void 1569 nvmet_fc_xmt_ls_rsp_done(struct nvmefc_tgt_ls_req *lsreq) 1570 { 1571 struct nvmet_fc_ls_iod *iod = lsreq->nvmet_fc_private; 1572 struct nvmet_fc_tgtport *tgtport = iod->tgtport; 1573 1574 fc_dma_sync_single_for_cpu(tgtport->dev, iod->rspdma, 1575 NVME_FC_MAX_LS_BUFFER_SIZE, DMA_TO_DEVICE); 1576 nvmet_fc_free_ls_iod(tgtport, iod); 1577 nvmet_fc_tgtport_put(tgtport); 1578 } 1579 1580 static void 1581 nvmet_fc_xmt_ls_rsp(struct nvmet_fc_tgtport *tgtport, 1582 struct nvmet_fc_ls_iod *iod) 1583 { 1584 int ret; 1585 1586 fc_dma_sync_single_for_device(tgtport->dev, iod->rspdma, 1587 NVME_FC_MAX_LS_BUFFER_SIZE, DMA_TO_DEVICE); 1588 1589 ret = tgtport->ops->xmt_ls_rsp(&tgtport->fc_target_port, iod->lsreq); 1590 if (ret) 1591 nvmet_fc_xmt_ls_rsp_done(iod->lsreq); 1592 } 1593 1594 /* 1595 * Actual processing routine for received FC-NVME LS Requests from the LLD 1596 */ 1597 static void 1598 nvmet_fc_handle_ls_rqst(struct nvmet_fc_tgtport *tgtport, 1599 struct nvmet_fc_ls_iod *iod) 1600 { 1601 struct fcnvme_ls_rqst_w0 *w0 = 1602 (struct fcnvme_ls_rqst_w0 *)iod->rqstbuf; 1603 1604 iod->lsreq->nvmet_fc_private = iod; 1605 iod->lsreq->rspbuf = iod->rspbuf; 1606 iod->lsreq->rspdma = iod->rspdma; 1607 iod->lsreq->done = nvmet_fc_xmt_ls_rsp_done; 1608 /* Be preventative. handlers will later set to valid length */ 1609 iod->lsreq->rsplen = 0; 1610 1611 iod->assoc = NULL; 1612 1613 /* 1614 * handlers: 1615 * parse request input, execute the request, and format the 1616 * LS response 1617 */ 1618 switch (w0->ls_cmd) { 1619 case FCNVME_LS_CREATE_ASSOCIATION: 1620 /* Creates Association and initial Admin Queue/Connection */ 1621 nvmet_fc_ls_create_association(tgtport, iod); 1622 break; 1623 case FCNVME_LS_CREATE_CONNECTION: 1624 /* Creates an IO Queue/Connection */ 1625 nvmet_fc_ls_create_connection(tgtport, iod); 1626 break; 1627 case FCNVME_LS_DISCONNECT: 1628 /* Terminate a Queue/Connection or the Association */ 1629 nvmet_fc_ls_disconnect(tgtport, iod); 1630 break; 1631 default: 1632 iod->lsreq->rsplen = nvmet_fc_format_rjt(iod->rspbuf, 1633 NVME_FC_MAX_LS_BUFFER_SIZE, w0->ls_cmd, 1634 FCNVME_RJT_RC_INVAL, FCNVME_RJT_EXP_NONE, 0); 1635 } 1636 1637 nvmet_fc_xmt_ls_rsp(tgtport, iod); 1638 } 1639 1640 /* 1641 * Actual processing routine for received FC-NVME LS Requests from the LLD 1642 */ 1643 static void 1644 nvmet_fc_handle_ls_rqst_work(struct work_struct *work) 1645 { 1646 struct nvmet_fc_ls_iod *iod = 1647 container_of(work, struct nvmet_fc_ls_iod, work); 1648 struct nvmet_fc_tgtport *tgtport = iod->tgtport; 1649 1650 nvmet_fc_handle_ls_rqst(tgtport, iod); 1651 } 1652 1653 1654 /** 1655 * nvmet_fc_rcv_ls_req - transport entry point called by an LLDD 1656 * upon the reception of a NVME LS request. 1657 * 1658 * The nvmet-fc layer will copy payload to an internal structure for 1659 * processing. As such, upon completion of the routine, the LLDD may 1660 * immediately free/reuse the LS request buffer passed in the call. 1661 * 1662 * If this routine returns error, the LLDD should abort the exchange. 1663 * 1664 * @tgtport: pointer to the (registered) target port the LS was 1665 * received on. 1666 * @lsreq: pointer to a lsreq request structure to be used to reference 1667 * the exchange corresponding to the LS. 1668 * @lsreqbuf: pointer to the buffer containing the LS Request 1669 * @lsreqbuf_len: length, in bytes, of the received LS request 1670 */ 1671 int 1672 nvmet_fc_rcv_ls_req(struct nvmet_fc_target_port *target_port, 1673 struct nvmefc_tgt_ls_req *lsreq, 1674 void *lsreqbuf, u32 lsreqbuf_len) 1675 { 1676 struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port); 1677 struct nvmet_fc_ls_iod *iod; 1678 1679 if (lsreqbuf_len > NVME_FC_MAX_LS_BUFFER_SIZE) 1680 return -E2BIG; 1681 1682 if (!nvmet_fc_tgtport_get(tgtport)) 1683 return -ESHUTDOWN; 1684 1685 iod = nvmet_fc_alloc_ls_iod(tgtport); 1686 if (!iod) { 1687 nvmet_fc_tgtport_put(tgtport); 1688 return -ENOENT; 1689 } 1690 1691 iod->lsreq = lsreq; 1692 iod->fcpreq = NULL; 1693 memcpy(iod->rqstbuf, lsreqbuf, lsreqbuf_len); 1694 iod->rqstdatalen = lsreqbuf_len; 1695 1696 schedule_work(&iod->work); 1697 1698 return 0; 1699 } 1700 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_ls_req); 1701 1702 1703 /* 1704 * ********************** 1705 * Start of FCP handling 1706 * ********************** 1707 */ 1708 1709 static int 1710 nvmet_fc_alloc_tgt_pgs(struct nvmet_fc_fcp_iod *fod) 1711 { 1712 struct scatterlist *sg; 1713 unsigned int nent; 1714 1715 sg = sgl_alloc(fod->req.transfer_len, GFP_KERNEL, &nent); 1716 if (!sg) 1717 goto out; 1718 1719 fod->data_sg = sg; 1720 fod->data_sg_cnt = nent; 1721 fod->data_sg_cnt = fc_dma_map_sg(fod->tgtport->dev, sg, nent, 1722 ((fod->io_dir == NVMET_FCP_WRITE) ? 1723 DMA_FROM_DEVICE : DMA_TO_DEVICE)); 1724 /* note: write from initiator perspective */ 1725 fod->next_sg = fod->data_sg; 1726 1727 return 0; 1728 1729 out: 1730 return NVME_SC_INTERNAL; 1731 } 1732 1733 static void 1734 nvmet_fc_free_tgt_pgs(struct nvmet_fc_fcp_iod *fod) 1735 { 1736 if (!fod->data_sg || !fod->data_sg_cnt) 1737 return; 1738 1739 fc_dma_unmap_sg(fod->tgtport->dev, fod->data_sg, fod->data_sg_cnt, 1740 ((fod->io_dir == NVMET_FCP_WRITE) ? 1741 DMA_FROM_DEVICE : DMA_TO_DEVICE)); 1742 sgl_free(fod->data_sg); 1743 fod->data_sg = NULL; 1744 fod->data_sg_cnt = 0; 1745 } 1746 1747 1748 static bool 1749 queue_90percent_full(struct nvmet_fc_tgt_queue *q, u32 sqhd) 1750 { 1751 u32 sqtail, used; 1752 1753 /* egad, this is ugly. And sqtail is just a best guess */ 1754 sqtail = atomic_read(&q->sqtail) % q->sqsize; 1755 1756 used = (sqtail < sqhd) ? (sqtail + q->sqsize - sqhd) : (sqtail - sqhd); 1757 return ((used * 10) >= (((u32)(q->sqsize - 1) * 9))); 1758 } 1759 1760 /* 1761 * Prep RSP payload. 1762 * May be a NVMET_FCOP_RSP or NVMET_FCOP_READDATA_RSP op 1763 */ 1764 static void 1765 nvmet_fc_prep_fcp_rsp(struct nvmet_fc_tgtport *tgtport, 1766 struct nvmet_fc_fcp_iod *fod) 1767 { 1768 struct nvme_fc_ersp_iu *ersp = &fod->rspiubuf; 1769 struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common; 1770 struct nvme_completion *cqe = &ersp->cqe; 1771 u32 *cqewd = (u32 *)cqe; 1772 bool send_ersp = false; 1773 u32 rsn, rspcnt, xfr_length; 1774 1775 if (fod->fcpreq->op == NVMET_FCOP_READDATA_RSP) 1776 xfr_length = fod->req.transfer_len; 1777 else 1778 xfr_length = fod->offset; 1779 1780 /* 1781 * check to see if we can send a 0's rsp. 1782 * Note: to send a 0's response, the NVME-FC host transport will 1783 * recreate the CQE. The host transport knows: sq id, SQHD (last 1784 * seen in an ersp), and command_id. Thus it will create a 1785 * zero-filled CQE with those known fields filled in. Transport 1786 * must send an ersp for any condition where the cqe won't match 1787 * this. 1788 * 1789 * Here are the FC-NVME mandated cases where we must send an ersp: 1790 * every N responses, where N=ersp_ratio 1791 * force fabric commands to send ersp's (not in FC-NVME but good 1792 * practice) 1793 * normal cmds: any time status is non-zero, or status is zero 1794 * but words 0 or 1 are non-zero. 1795 * the SQ is 90% or more full 1796 * the cmd is a fused command 1797 * transferred data length not equal to cmd iu length 1798 */ 1799 rspcnt = atomic_inc_return(&fod->queue->zrspcnt); 1800 if (!(rspcnt % fod->queue->ersp_ratio) || 1801 sqe->opcode == nvme_fabrics_command || 1802 xfr_length != fod->req.transfer_len || 1803 (le16_to_cpu(cqe->status) & 0xFFFE) || cqewd[0] || cqewd[1] || 1804 (sqe->flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND)) || 1805 queue_90percent_full(fod->queue, le16_to_cpu(cqe->sq_head))) 1806 send_ersp = true; 1807 1808 /* re-set the fields */ 1809 fod->fcpreq->rspaddr = ersp; 1810 fod->fcpreq->rspdma = fod->rspdma; 1811 1812 if (!send_ersp) { 1813 memset(ersp, 0, NVME_FC_SIZEOF_ZEROS_RSP); 1814 fod->fcpreq->rsplen = NVME_FC_SIZEOF_ZEROS_RSP; 1815 } else { 1816 ersp->iu_len = cpu_to_be16(sizeof(*ersp)/sizeof(u32)); 1817 rsn = atomic_inc_return(&fod->queue->rsn); 1818 ersp->rsn = cpu_to_be32(rsn); 1819 ersp->xfrd_len = cpu_to_be32(xfr_length); 1820 fod->fcpreq->rsplen = sizeof(*ersp); 1821 } 1822 1823 fc_dma_sync_single_for_device(tgtport->dev, fod->rspdma, 1824 sizeof(fod->rspiubuf), DMA_TO_DEVICE); 1825 } 1826 1827 static void nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq); 1828 1829 static void 1830 nvmet_fc_abort_op(struct nvmet_fc_tgtport *tgtport, 1831 struct nvmet_fc_fcp_iod *fod) 1832 { 1833 struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq; 1834 1835 /* data no longer needed */ 1836 nvmet_fc_free_tgt_pgs(fod); 1837 1838 /* 1839 * if an ABTS was received or we issued the fcp_abort early 1840 * don't call abort routine again. 1841 */ 1842 /* no need to take lock - lock was taken earlier to get here */ 1843 if (!fod->aborted) 1844 tgtport->ops->fcp_abort(&tgtport->fc_target_port, fcpreq); 1845 1846 nvmet_fc_free_fcp_iod(fod->queue, fod); 1847 } 1848 1849 static void 1850 nvmet_fc_xmt_fcp_rsp(struct nvmet_fc_tgtport *tgtport, 1851 struct nvmet_fc_fcp_iod *fod) 1852 { 1853 int ret; 1854 1855 fod->fcpreq->op = NVMET_FCOP_RSP; 1856 fod->fcpreq->timeout = 0; 1857 1858 nvmet_fc_prep_fcp_rsp(tgtport, fod); 1859 1860 ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq); 1861 if (ret) 1862 nvmet_fc_abort_op(tgtport, fod); 1863 } 1864 1865 static void 1866 nvmet_fc_transfer_fcp_data(struct nvmet_fc_tgtport *tgtport, 1867 struct nvmet_fc_fcp_iod *fod, u8 op) 1868 { 1869 struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq; 1870 struct scatterlist *sg = fod->next_sg; 1871 unsigned long flags; 1872 u32 remaininglen = fod->req.transfer_len - fod->offset; 1873 u32 tlen = 0; 1874 int ret; 1875 1876 fcpreq->op = op; 1877 fcpreq->offset = fod->offset; 1878 fcpreq->timeout = NVME_FC_TGTOP_TIMEOUT_SEC; 1879 1880 /* 1881 * for next sequence: 1882 * break at a sg element boundary 1883 * attempt to keep sequence length capped at 1884 * NVMET_FC_MAX_SEQ_LENGTH but allow sequence to 1885 * be longer if a single sg element is larger 1886 * than that amount. This is done to avoid creating 1887 * a new sg list to use for the tgtport api. 1888 */ 1889 fcpreq->sg = sg; 1890 fcpreq->sg_cnt = 0; 1891 while (tlen < remaininglen && 1892 fcpreq->sg_cnt < tgtport->max_sg_cnt && 1893 tlen + sg_dma_len(sg) < NVMET_FC_MAX_SEQ_LENGTH) { 1894 fcpreq->sg_cnt++; 1895 tlen += sg_dma_len(sg); 1896 sg = sg_next(sg); 1897 } 1898 if (tlen < remaininglen && fcpreq->sg_cnt == 0) { 1899 fcpreq->sg_cnt++; 1900 tlen += min_t(u32, sg_dma_len(sg), remaininglen); 1901 sg = sg_next(sg); 1902 } 1903 if (tlen < remaininglen) 1904 fod->next_sg = sg; 1905 else 1906 fod->next_sg = NULL; 1907 1908 fcpreq->transfer_length = tlen; 1909 fcpreq->transferred_length = 0; 1910 fcpreq->fcp_error = 0; 1911 fcpreq->rsplen = 0; 1912 1913 /* 1914 * If the last READDATA request: check if LLDD supports 1915 * combined xfr with response. 1916 */ 1917 if ((op == NVMET_FCOP_READDATA) && 1918 ((fod->offset + fcpreq->transfer_length) == fod->req.transfer_len) && 1919 (tgtport->ops->target_features & NVMET_FCTGTFEAT_READDATA_RSP)) { 1920 fcpreq->op = NVMET_FCOP_READDATA_RSP; 1921 nvmet_fc_prep_fcp_rsp(tgtport, fod); 1922 } 1923 1924 ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq); 1925 if (ret) { 1926 /* 1927 * should be ok to set w/o lock as its in the thread of 1928 * execution (not an async timer routine) and doesn't 1929 * contend with any clearing action 1930 */ 1931 fod->abort = true; 1932 1933 if (op == NVMET_FCOP_WRITEDATA) { 1934 spin_lock_irqsave(&fod->flock, flags); 1935 fod->writedataactive = false; 1936 spin_unlock_irqrestore(&fod->flock, flags); 1937 nvmet_req_complete(&fod->req, NVME_SC_INTERNAL); 1938 } else /* NVMET_FCOP_READDATA or NVMET_FCOP_READDATA_RSP */ { 1939 fcpreq->fcp_error = ret; 1940 fcpreq->transferred_length = 0; 1941 nvmet_fc_xmt_fcp_op_done(fod->fcpreq); 1942 } 1943 } 1944 } 1945 1946 static inline bool 1947 __nvmet_fc_fod_op_abort(struct nvmet_fc_fcp_iod *fod, bool abort) 1948 { 1949 struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq; 1950 struct nvmet_fc_tgtport *tgtport = fod->tgtport; 1951 1952 /* if in the middle of an io and we need to tear down */ 1953 if (abort) { 1954 if (fcpreq->op == NVMET_FCOP_WRITEDATA) { 1955 nvmet_req_complete(&fod->req, NVME_SC_INTERNAL); 1956 return true; 1957 } 1958 1959 nvmet_fc_abort_op(tgtport, fod); 1960 return true; 1961 } 1962 1963 return false; 1964 } 1965 1966 /* 1967 * actual done handler for FCP operations when completed by the lldd 1968 */ 1969 static void 1970 nvmet_fc_fod_op_done(struct nvmet_fc_fcp_iod *fod) 1971 { 1972 struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq; 1973 struct nvmet_fc_tgtport *tgtport = fod->tgtport; 1974 unsigned long flags; 1975 bool abort; 1976 1977 spin_lock_irqsave(&fod->flock, flags); 1978 abort = fod->abort; 1979 fod->writedataactive = false; 1980 spin_unlock_irqrestore(&fod->flock, flags); 1981 1982 switch (fcpreq->op) { 1983 1984 case NVMET_FCOP_WRITEDATA: 1985 if (__nvmet_fc_fod_op_abort(fod, abort)) 1986 return; 1987 if (fcpreq->fcp_error || 1988 fcpreq->transferred_length != fcpreq->transfer_length) { 1989 spin_lock(&fod->flock); 1990 fod->abort = true; 1991 spin_unlock(&fod->flock); 1992 1993 nvmet_req_complete(&fod->req, NVME_SC_INTERNAL); 1994 return; 1995 } 1996 1997 fod->offset += fcpreq->transferred_length; 1998 if (fod->offset != fod->req.transfer_len) { 1999 spin_lock_irqsave(&fod->flock, flags); 2000 fod->writedataactive = true; 2001 spin_unlock_irqrestore(&fod->flock, flags); 2002 2003 /* transfer the next chunk */ 2004 nvmet_fc_transfer_fcp_data(tgtport, fod, 2005 NVMET_FCOP_WRITEDATA); 2006 return; 2007 } 2008 2009 /* data transfer complete, resume with nvmet layer */ 2010 nvmet_req_execute(&fod->req); 2011 break; 2012 2013 case NVMET_FCOP_READDATA: 2014 case NVMET_FCOP_READDATA_RSP: 2015 if (__nvmet_fc_fod_op_abort(fod, abort)) 2016 return; 2017 if (fcpreq->fcp_error || 2018 fcpreq->transferred_length != fcpreq->transfer_length) { 2019 nvmet_fc_abort_op(tgtport, fod); 2020 return; 2021 } 2022 2023 /* success */ 2024 2025 if (fcpreq->op == NVMET_FCOP_READDATA_RSP) { 2026 /* data no longer needed */ 2027 nvmet_fc_free_tgt_pgs(fod); 2028 nvmet_fc_free_fcp_iod(fod->queue, fod); 2029 return; 2030 } 2031 2032 fod->offset += fcpreq->transferred_length; 2033 if (fod->offset != fod->req.transfer_len) { 2034 /* transfer the next chunk */ 2035 nvmet_fc_transfer_fcp_data(tgtport, fod, 2036 NVMET_FCOP_READDATA); 2037 return; 2038 } 2039 2040 /* data transfer complete, send response */ 2041 2042 /* data no longer needed */ 2043 nvmet_fc_free_tgt_pgs(fod); 2044 2045 nvmet_fc_xmt_fcp_rsp(tgtport, fod); 2046 2047 break; 2048 2049 case NVMET_FCOP_RSP: 2050 if (__nvmet_fc_fod_op_abort(fod, abort)) 2051 return; 2052 nvmet_fc_free_fcp_iod(fod->queue, fod); 2053 break; 2054 2055 default: 2056 break; 2057 } 2058 } 2059 2060 static void 2061 nvmet_fc_fcp_rqst_op_done_work(struct work_struct *work) 2062 { 2063 struct nvmet_fc_fcp_iod *fod = 2064 container_of(work, struct nvmet_fc_fcp_iod, done_work); 2065 2066 nvmet_fc_fod_op_done(fod); 2067 } 2068 2069 static void 2070 nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq) 2071 { 2072 struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private; 2073 struct nvmet_fc_tgt_queue *queue = fod->queue; 2074 2075 if (fod->tgtport->ops->target_features & NVMET_FCTGTFEAT_OPDONE_IN_ISR) 2076 /* context switch so completion is not in ISR context */ 2077 queue_work_on(queue->cpu, queue->work_q, &fod->done_work); 2078 else 2079 nvmet_fc_fod_op_done(fod); 2080 } 2081 2082 /* 2083 * actual completion handler after execution by the nvmet layer 2084 */ 2085 static void 2086 __nvmet_fc_fcp_nvme_cmd_done(struct nvmet_fc_tgtport *tgtport, 2087 struct nvmet_fc_fcp_iod *fod, int status) 2088 { 2089 struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common; 2090 struct nvme_completion *cqe = &fod->rspiubuf.cqe; 2091 unsigned long flags; 2092 bool abort; 2093 2094 spin_lock_irqsave(&fod->flock, flags); 2095 abort = fod->abort; 2096 spin_unlock_irqrestore(&fod->flock, flags); 2097 2098 /* if we have a CQE, snoop the last sq_head value */ 2099 if (!status) 2100 fod->queue->sqhd = cqe->sq_head; 2101 2102 if (abort) { 2103 nvmet_fc_abort_op(tgtport, fod); 2104 return; 2105 } 2106 2107 /* if an error handling the cmd post initial parsing */ 2108 if (status) { 2109 /* fudge up a failed CQE status for our transport error */ 2110 memset(cqe, 0, sizeof(*cqe)); 2111 cqe->sq_head = fod->queue->sqhd; /* echo last cqe sqhd */ 2112 cqe->sq_id = cpu_to_le16(fod->queue->qid); 2113 cqe->command_id = sqe->command_id; 2114 cqe->status = cpu_to_le16(status); 2115 } else { 2116 2117 /* 2118 * try to push the data even if the SQE status is non-zero. 2119 * There may be a status where data still was intended to 2120 * be moved 2121 */ 2122 if ((fod->io_dir == NVMET_FCP_READ) && (fod->data_sg_cnt)) { 2123 /* push the data over before sending rsp */ 2124 nvmet_fc_transfer_fcp_data(tgtport, fod, 2125 NVMET_FCOP_READDATA); 2126 return; 2127 } 2128 2129 /* writes & no data - fall thru */ 2130 } 2131 2132 /* data no longer needed */ 2133 nvmet_fc_free_tgt_pgs(fod); 2134 2135 nvmet_fc_xmt_fcp_rsp(tgtport, fod); 2136 } 2137 2138 2139 static void 2140 nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req) 2141 { 2142 struct nvmet_fc_fcp_iod *fod = nvmet_req_to_fod(nvme_req); 2143 struct nvmet_fc_tgtport *tgtport = fod->tgtport; 2144 2145 __nvmet_fc_fcp_nvme_cmd_done(tgtport, fod, 0); 2146 } 2147 2148 2149 /* 2150 * Actual processing routine for received FC-NVME LS Requests from the LLD 2151 */ 2152 static void 2153 nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport, 2154 struct nvmet_fc_fcp_iod *fod) 2155 { 2156 struct nvme_fc_cmd_iu *cmdiu = &fod->cmdiubuf; 2157 u32 xfrlen = be32_to_cpu(cmdiu->data_len); 2158 int ret; 2159 2160 /* 2161 * Fused commands are currently not supported in the linux 2162 * implementation. 2163 * 2164 * As such, the implementation of the FC transport does not 2165 * look at the fused commands and order delivery to the upper 2166 * layer until we have both based on csn. 2167 */ 2168 2169 fod->fcpreq->done = nvmet_fc_xmt_fcp_op_done; 2170 2171 if (cmdiu->flags & FCNVME_CMD_FLAGS_WRITE) { 2172 fod->io_dir = NVMET_FCP_WRITE; 2173 if (!nvme_is_write(&cmdiu->sqe)) 2174 goto transport_error; 2175 } else if (cmdiu->flags & FCNVME_CMD_FLAGS_READ) { 2176 fod->io_dir = NVMET_FCP_READ; 2177 if (nvme_is_write(&cmdiu->sqe)) 2178 goto transport_error; 2179 } else { 2180 fod->io_dir = NVMET_FCP_NODATA; 2181 if (xfrlen) 2182 goto transport_error; 2183 } 2184 2185 fod->req.cmd = &fod->cmdiubuf.sqe; 2186 fod->req.rsp = &fod->rspiubuf.cqe; 2187 fod->req.port = fod->queue->port; 2188 2189 /* clear any response payload */ 2190 memset(&fod->rspiubuf, 0, sizeof(fod->rspiubuf)); 2191 2192 fod->data_sg = NULL; 2193 fod->data_sg_cnt = 0; 2194 2195 ret = nvmet_req_init(&fod->req, 2196 &fod->queue->nvme_cq, 2197 &fod->queue->nvme_sq, 2198 &nvmet_fc_tgt_fcp_ops); 2199 if (!ret) { 2200 /* bad SQE content or invalid ctrl state */ 2201 /* nvmet layer has already called op done to send rsp. */ 2202 return; 2203 } 2204 2205 fod->req.transfer_len = xfrlen; 2206 2207 /* keep a running counter of tail position */ 2208 atomic_inc(&fod->queue->sqtail); 2209 2210 if (fod->req.transfer_len) { 2211 ret = nvmet_fc_alloc_tgt_pgs(fod); 2212 if (ret) { 2213 nvmet_req_complete(&fod->req, ret); 2214 return; 2215 } 2216 } 2217 fod->req.sg = fod->data_sg; 2218 fod->req.sg_cnt = fod->data_sg_cnt; 2219 fod->offset = 0; 2220 2221 if (fod->io_dir == NVMET_FCP_WRITE) { 2222 /* pull the data over before invoking nvmet layer */ 2223 nvmet_fc_transfer_fcp_data(tgtport, fod, NVMET_FCOP_WRITEDATA); 2224 return; 2225 } 2226 2227 /* 2228 * Reads or no data: 2229 * 2230 * can invoke the nvmet_layer now. If read data, cmd completion will 2231 * push the data 2232 */ 2233 nvmet_req_execute(&fod->req); 2234 return; 2235 2236 transport_error: 2237 nvmet_fc_abort_op(tgtport, fod); 2238 } 2239 2240 /* 2241 * Actual processing routine for received FC-NVME LS Requests from the LLD 2242 */ 2243 static void 2244 nvmet_fc_handle_fcp_rqst_work(struct work_struct *work) 2245 { 2246 struct nvmet_fc_fcp_iod *fod = 2247 container_of(work, struct nvmet_fc_fcp_iod, work); 2248 struct nvmet_fc_tgtport *tgtport = fod->tgtport; 2249 2250 nvmet_fc_handle_fcp_rqst(tgtport, fod); 2251 } 2252 2253 /** 2254 * nvmet_fc_rcv_fcp_req - transport entry point called by an LLDD 2255 * upon the reception of a NVME FCP CMD IU. 2256 * 2257 * Pass a FC-NVME FCP CMD IU received from the FC link to the nvmet-fc 2258 * layer for processing. 2259 * 2260 * The nvmet_fc layer allocates a local job structure (struct 2261 * nvmet_fc_fcp_iod) from the queue for the io and copies the 2262 * CMD IU buffer to the job structure. As such, on a successful 2263 * completion (returns 0), the LLDD may immediately free/reuse 2264 * the CMD IU buffer passed in the call. 2265 * 2266 * However, in some circumstances, due to the packetized nature of FC 2267 * and the api of the FC LLDD which may issue a hw command to send the 2268 * response, but the LLDD may not get the hw completion for that command 2269 * and upcall the nvmet_fc layer before a new command may be 2270 * asynchronously received - its possible for a command to be received 2271 * before the LLDD and nvmet_fc have recycled the job structure. It gives 2272 * the appearance of more commands received than fits in the sq. 2273 * To alleviate this scenario, a temporary queue is maintained in the 2274 * transport for pending LLDD requests waiting for a queue job structure. 2275 * In these "overrun" cases, a temporary queue element is allocated 2276 * the LLDD request and CMD iu buffer information remembered, and the 2277 * routine returns a -EOVERFLOW status. Subsequently, when a queue job 2278 * structure is freed, it is immediately reallocated for anything on the 2279 * pending request list. The LLDDs defer_rcv() callback is called, 2280 * informing the LLDD that it may reuse the CMD IU buffer, and the io 2281 * is then started normally with the transport. 2282 * 2283 * The LLDD, when receiving an -EOVERFLOW completion status, is to treat 2284 * the completion as successful but must not reuse the CMD IU buffer 2285 * until the LLDD's defer_rcv() callback has been called for the 2286 * corresponding struct nvmefc_tgt_fcp_req pointer. 2287 * 2288 * If there is any other condition in which an error occurs, the 2289 * transport will return a non-zero status indicating the error. 2290 * In all cases other than -EOVERFLOW, the transport has not accepted the 2291 * request and the LLDD should abort the exchange. 2292 * 2293 * @target_port: pointer to the (registered) target port the FCP CMD IU 2294 * was received on. 2295 * @fcpreq: pointer to a fcpreq request structure to be used to reference 2296 * the exchange corresponding to the FCP Exchange. 2297 * @cmdiubuf: pointer to the buffer containing the FCP CMD IU 2298 * @cmdiubuf_len: length, in bytes, of the received FCP CMD IU 2299 */ 2300 int 2301 nvmet_fc_rcv_fcp_req(struct nvmet_fc_target_port *target_port, 2302 struct nvmefc_tgt_fcp_req *fcpreq, 2303 void *cmdiubuf, u32 cmdiubuf_len) 2304 { 2305 struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port); 2306 struct nvme_fc_cmd_iu *cmdiu = cmdiubuf; 2307 struct nvmet_fc_tgt_queue *queue; 2308 struct nvmet_fc_fcp_iod *fod; 2309 struct nvmet_fc_defer_fcp_req *deferfcp; 2310 unsigned long flags; 2311 2312 /* validate iu, so the connection id can be used to find the queue */ 2313 if ((cmdiubuf_len != sizeof(*cmdiu)) || 2314 (cmdiu->scsi_id != NVME_CMD_SCSI_ID) || 2315 (cmdiu->fc_id != NVME_CMD_FC_ID) || 2316 (be16_to_cpu(cmdiu->iu_len) != (sizeof(*cmdiu)/4))) 2317 return -EIO; 2318 2319 queue = nvmet_fc_find_target_queue(tgtport, 2320 be64_to_cpu(cmdiu->connection_id)); 2321 if (!queue) 2322 return -ENOTCONN; 2323 2324 /* 2325 * note: reference taken by find_target_queue 2326 * After successful fod allocation, the fod will inherit the 2327 * ownership of that reference and will remove the reference 2328 * when the fod is freed. 2329 */ 2330 2331 spin_lock_irqsave(&queue->qlock, flags); 2332 2333 fod = nvmet_fc_alloc_fcp_iod(queue); 2334 if (fod) { 2335 spin_unlock_irqrestore(&queue->qlock, flags); 2336 2337 fcpreq->nvmet_fc_private = fod; 2338 fod->fcpreq = fcpreq; 2339 2340 memcpy(&fod->cmdiubuf, cmdiubuf, cmdiubuf_len); 2341 2342 nvmet_fc_queue_fcp_req(tgtport, queue, fcpreq); 2343 2344 return 0; 2345 } 2346 2347 if (!tgtport->ops->defer_rcv) { 2348 spin_unlock_irqrestore(&queue->qlock, flags); 2349 /* release the queue lookup reference */ 2350 nvmet_fc_tgt_q_put(queue); 2351 return -ENOENT; 2352 } 2353 2354 deferfcp = list_first_entry_or_null(&queue->avail_defer_list, 2355 struct nvmet_fc_defer_fcp_req, req_list); 2356 if (deferfcp) { 2357 /* Just re-use one that was previously allocated */ 2358 list_del(&deferfcp->req_list); 2359 } else { 2360 spin_unlock_irqrestore(&queue->qlock, flags); 2361 2362 /* Now we need to dynamically allocate one */ 2363 deferfcp = kmalloc(sizeof(*deferfcp), GFP_KERNEL); 2364 if (!deferfcp) { 2365 /* release the queue lookup reference */ 2366 nvmet_fc_tgt_q_put(queue); 2367 return -ENOMEM; 2368 } 2369 spin_lock_irqsave(&queue->qlock, flags); 2370 } 2371 2372 /* For now, use rspaddr / rsplen to save payload information */ 2373 fcpreq->rspaddr = cmdiubuf; 2374 fcpreq->rsplen = cmdiubuf_len; 2375 deferfcp->fcp_req = fcpreq; 2376 2377 /* defer processing till a fod becomes available */ 2378 list_add_tail(&deferfcp->req_list, &queue->pending_cmd_list); 2379 2380 /* NOTE: the queue lookup reference is still valid */ 2381 2382 spin_unlock_irqrestore(&queue->qlock, flags); 2383 2384 return -EOVERFLOW; 2385 } 2386 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_req); 2387 2388 /** 2389 * nvmet_fc_rcv_fcp_abort - transport entry point called by an LLDD 2390 * upon the reception of an ABTS for a FCP command 2391 * 2392 * Notify the transport that an ABTS has been received for a FCP command 2393 * that had been given to the transport via nvmet_fc_rcv_fcp_req(). The 2394 * LLDD believes the command is still being worked on 2395 * (template_ops->fcp_req_release() has not been called). 2396 * 2397 * The transport will wait for any outstanding work (an op to the LLDD, 2398 * which the lldd should complete with error due to the ABTS; or the 2399 * completion from the nvmet layer of the nvme command), then will 2400 * stop processing and call the nvmet_fc_rcv_fcp_req() callback to 2401 * return the i/o context to the LLDD. The LLDD may send the BA_ACC 2402 * to the ABTS either after return from this function (assuming any 2403 * outstanding op work has been terminated) or upon the callback being 2404 * called. 2405 * 2406 * @target_port: pointer to the (registered) target port the FCP CMD IU 2407 * was received on. 2408 * @fcpreq: pointer to the fcpreq request structure that corresponds 2409 * to the exchange that received the ABTS. 2410 */ 2411 void 2412 nvmet_fc_rcv_fcp_abort(struct nvmet_fc_target_port *target_port, 2413 struct nvmefc_tgt_fcp_req *fcpreq) 2414 { 2415 struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private; 2416 struct nvmet_fc_tgt_queue *queue; 2417 unsigned long flags; 2418 2419 if (!fod || fod->fcpreq != fcpreq) 2420 /* job appears to have already completed, ignore abort */ 2421 return; 2422 2423 queue = fod->queue; 2424 2425 spin_lock_irqsave(&queue->qlock, flags); 2426 if (fod->active) { 2427 /* 2428 * mark as abort. The abort handler, invoked upon completion 2429 * of any work, will detect the aborted status and do the 2430 * callback. 2431 */ 2432 spin_lock(&fod->flock); 2433 fod->abort = true; 2434 fod->aborted = true; 2435 spin_unlock(&fod->flock); 2436 } 2437 spin_unlock_irqrestore(&queue->qlock, flags); 2438 } 2439 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_abort); 2440 2441 2442 struct nvmet_fc_traddr { 2443 u64 nn; 2444 u64 pn; 2445 }; 2446 2447 static int 2448 __nvme_fc_parse_u64(substring_t *sstr, u64 *val) 2449 { 2450 u64 token64; 2451 2452 if (match_u64(sstr, &token64)) 2453 return -EINVAL; 2454 *val = token64; 2455 2456 return 0; 2457 } 2458 2459 /* 2460 * This routine validates and extracts the WWN's from the TRADDR string. 2461 * As kernel parsers need the 0x to determine number base, universally 2462 * build string to parse with 0x prefix before parsing name strings. 2463 */ 2464 static int 2465 nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen) 2466 { 2467 char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1]; 2468 substring_t wwn = { name, &name[sizeof(name)-1] }; 2469 int nnoffset, pnoffset; 2470 2471 /* validate it string one of the 2 allowed formats */ 2472 if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH && 2473 !strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) && 2474 !strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET], 2475 "pn-0x", NVME_FC_TRADDR_OXNNLEN)) { 2476 nnoffset = NVME_FC_TRADDR_OXNNLEN; 2477 pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET + 2478 NVME_FC_TRADDR_OXNNLEN; 2479 } else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH && 2480 !strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) && 2481 !strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET], 2482 "pn-", NVME_FC_TRADDR_NNLEN))) { 2483 nnoffset = NVME_FC_TRADDR_NNLEN; 2484 pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN; 2485 } else 2486 goto out_einval; 2487 2488 name[0] = '0'; 2489 name[1] = 'x'; 2490 name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0; 2491 2492 memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN); 2493 if (__nvme_fc_parse_u64(&wwn, &traddr->nn)) 2494 goto out_einval; 2495 2496 memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN); 2497 if (__nvme_fc_parse_u64(&wwn, &traddr->pn)) 2498 goto out_einval; 2499 2500 return 0; 2501 2502 out_einval: 2503 pr_warn("%s: bad traddr string\n", __func__); 2504 return -EINVAL; 2505 } 2506 2507 static int 2508 nvmet_fc_add_port(struct nvmet_port *port) 2509 { 2510 struct nvmet_fc_tgtport *tgtport; 2511 struct nvmet_fc_traddr traddr = { 0L, 0L }; 2512 unsigned long flags; 2513 int ret; 2514 2515 /* validate the address info */ 2516 if ((port->disc_addr.trtype != NVMF_TRTYPE_FC) || 2517 (port->disc_addr.adrfam != NVMF_ADDR_FAMILY_FC)) 2518 return -EINVAL; 2519 2520 /* map the traddr address info to a target port */ 2521 2522 ret = nvme_fc_parse_traddr(&traddr, port->disc_addr.traddr, 2523 sizeof(port->disc_addr.traddr)); 2524 if (ret) 2525 return ret; 2526 2527 ret = -ENXIO; 2528 spin_lock_irqsave(&nvmet_fc_tgtlock, flags); 2529 list_for_each_entry(tgtport, &nvmet_fc_target_list, tgt_list) { 2530 if ((tgtport->fc_target_port.node_name == traddr.nn) && 2531 (tgtport->fc_target_port.port_name == traddr.pn)) { 2532 tgtport->port = port; 2533 ret = 0; 2534 break; 2535 } 2536 } 2537 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags); 2538 return ret; 2539 } 2540 2541 static void 2542 nvmet_fc_remove_port(struct nvmet_port *port) 2543 { 2544 /* nothing to do */ 2545 } 2546 2547 static const struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops = { 2548 .owner = THIS_MODULE, 2549 .type = NVMF_TRTYPE_FC, 2550 .msdbd = 1, 2551 .add_port = nvmet_fc_add_port, 2552 .remove_port = nvmet_fc_remove_port, 2553 .queue_response = nvmet_fc_fcp_nvme_cmd_done, 2554 .delete_ctrl = nvmet_fc_delete_ctrl, 2555 }; 2556 2557 static int __init nvmet_fc_init_module(void) 2558 { 2559 return nvmet_register_transport(&nvmet_fc_tgt_fcp_ops); 2560 } 2561 2562 static void __exit nvmet_fc_exit_module(void) 2563 { 2564 /* sanity check - all lports should be removed */ 2565 if (!list_empty(&nvmet_fc_target_list)) 2566 pr_warn("%s: targetport list not empty\n", __func__); 2567 2568 nvmet_unregister_transport(&nvmet_fc_tgt_fcp_ops); 2569 2570 ida_destroy(&nvmet_fc_tgtport_cnt); 2571 } 2572 2573 module_init(nvmet_fc_init_module); 2574 module_exit(nvmet_fc_exit_module); 2575 2576 MODULE_LICENSE("GPL v2"); 2577