1 /* 2 * Copyright (c) 2016 Avago Technologies. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of version 2 of the GNU General Public License as 6 * published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful. 9 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, 10 * INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A 11 * PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO 12 * THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID. 13 * See the GNU General Public License for more details, a copy of which 14 * can be found in the file COPYING included with this package 15 * 16 */ 17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 18 #include <linux/module.h> 19 #include <linux/slab.h> 20 #include <linux/blk-mq.h> 21 #include <linux/parser.h> 22 #include <linux/random.h> 23 #include <uapi/scsi/fc/fc_fs.h> 24 #include <uapi/scsi/fc/fc_els.h> 25 26 #include "nvmet.h" 27 #include <linux/nvme-fc-driver.h> 28 #include <linux/nvme-fc.h> 29 30 31 /* *************************** Data Structures/Defines ****************** */ 32 33 34 #define NVMET_LS_CTX_COUNT 256 35 36 /* for this implementation, assume small single frame rqst/rsp */ 37 #define NVME_FC_MAX_LS_BUFFER_SIZE 2048 38 39 struct nvmet_fc_tgtport; 40 struct nvmet_fc_tgt_assoc; 41 42 struct nvmet_fc_ls_iod { 43 struct nvmefc_tgt_ls_req *lsreq; 44 struct nvmefc_tgt_fcp_req *fcpreq; /* only if RS */ 45 46 struct list_head ls_list; /* tgtport->ls_list */ 47 48 struct nvmet_fc_tgtport *tgtport; 49 struct nvmet_fc_tgt_assoc *assoc; 50 51 u8 *rqstbuf; 52 u8 *rspbuf; 53 u16 rqstdatalen; 54 dma_addr_t rspdma; 55 56 struct scatterlist sg[2]; 57 58 struct work_struct work; 59 } __aligned(sizeof(unsigned long long)); 60 61 /* desired maximum for a single sequence - if sg list allows it */ 62 #define NVMET_FC_MAX_SEQ_LENGTH (256 * 1024) 63 64 enum nvmet_fcp_datadir { 65 NVMET_FCP_NODATA, 66 NVMET_FCP_WRITE, 67 NVMET_FCP_READ, 68 NVMET_FCP_ABORTED, 69 }; 70 71 struct nvmet_fc_fcp_iod { 72 struct nvmefc_tgt_fcp_req *fcpreq; 73 74 struct nvme_fc_cmd_iu cmdiubuf; 75 struct nvme_fc_ersp_iu rspiubuf; 76 dma_addr_t rspdma; 77 struct scatterlist *next_sg; 78 struct scatterlist *data_sg; 79 int data_sg_cnt; 80 u32 offset; 81 enum nvmet_fcp_datadir io_dir; 82 bool active; 83 bool abort; 84 bool aborted; 85 bool writedataactive; 86 spinlock_t flock; 87 88 struct nvmet_req req; 89 struct work_struct defer_work; 90 91 struct nvmet_fc_tgtport *tgtport; 92 struct nvmet_fc_tgt_queue *queue; 93 94 struct list_head fcp_list; /* tgtport->fcp_list */ 95 }; 96 97 struct nvmet_fc_tgtport { 98 99 struct nvmet_fc_target_port fc_target_port; 100 101 struct list_head tgt_list; /* nvmet_fc_target_list */ 102 struct device *dev; /* dev for dma mapping */ 103 struct nvmet_fc_target_template *ops; 104 105 struct nvmet_fc_ls_iod *iod; 106 spinlock_t lock; 107 struct list_head ls_list; 108 struct list_head ls_busylist; 109 struct list_head assoc_list; 110 struct ida assoc_cnt; 111 struct nvmet_fc_port_entry *pe; 112 struct kref ref; 113 u32 max_sg_cnt; 114 }; 115 116 struct nvmet_fc_port_entry { 117 struct nvmet_fc_tgtport *tgtport; 118 struct nvmet_port *port; 119 u64 node_name; 120 u64 port_name; 121 struct list_head pe_list; 122 }; 123 124 struct nvmet_fc_defer_fcp_req { 125 struct list_head req_list; 126 struct nvmefc_tgt_fcp_req *fcp_req; 127 }; 128 129 struct nvmet_fc_tgt_queue { 130 bool ninetypercent; 131 u16 qid; 132 u16 sqsize; 133 u16 ersp_ratio; 134 __le16 sqhd; 135 atomic_t connected; 136 atomic_t sqtail; 137 atomic_t zrspcnt; 138 atomic_t rsn; 139 spinlock_t qlock; 140 struct nvmet_cq nvme_cq; 141 struct nvmet_sq nvme_sq; 142 struct nvmet_fc_tgt_assoc *assoc; 143 struct nvmet_fc_fcp_iod *fod; /* array of fcp_iods */ 144 struct list_head fod_list; 145 struct list_head pending_cmd_list; 146 struct list_head avail_defer_list; 147 struct workqueue_struct *work_q; 148 struct kref ref; 149 } __aligned(sizeof(unsigned long long)); 150 151 struct nvmet_fc_tgt_assoc { 152 u64 association_id; 153 u32 a_id; 154 struct nvmet_fc_tgtport *tgtport; 155 struct list_head a_list; 156 struct nvmet_fc_tgt_queue *queues[NVMET_NR_QUEUES + 1]; 157 struct kref ref; 158 struct work_struct del_work; 159 }; 160 161 162 static inline int 163 nvmet_fc_iodnum(struct nvmet_fc_ls_iod *iodptr) 164 { 165 return (iodptr - iodptr->tgtport->iod); 166 } 167 168 static inline int 169 nvmet_fc_fodnum(struct nvmet_fc_fcp_iod *fodptr) 170 { 171 return (fodptr - fodptr->queue->fod); 172 } 173 174 175 /* 176 * Association and Connection IDs: 177 * 178 * Association ID will have random number in upper 6 bytes and zero 179 * in lower 2 bytes 180 * 181 * Connection IDs will be Association ID with QID or'd in lower 2 bytes 182 * 183 * note: Association ID = Connection ID for queue 0 184 */ 185 #define BYTES_FOR_QID sizeof(u16) 186 #define BYTES_FOR_QID_SHIFT (BYTES_FOR_QID * 8) 187 #define NVMET_FC_QUEUEID_MASK ((u64)((1 << BYTES_FOR_QID_SHIFT) - 1)) 188 189 static inline u64 190 nvmet_fc_makeconnid(struct nvmet_fc_tgt_assoc *assoc, u16 qid) 191 { 192 return (assoc->association_id | qid); 193 } 194 195 static inline u64 196 nvmet_fc_getassociationid(u64 connectionid) 197 { 198 return connectionid & ~NVMET_FC_QUEUEID_MASK; 199 } 200 201 static inline u16 202 nvmet_fc_getqueueid(u64 connectionid) 203 { 204 return (u16)(connectionid & NVMET_FC_QUEUEID_MASK); 205 } 206 207 static inline struct nvmet_fc_tgtport * 208 targetport_to_tgtport(struct nvmet_fc_target_port *targetport) 209 { 210 return container_of(targetport, struct nvmet_fc_tgtport, 211 fc_target_port); 212 } 213 214 static inline struct nvmet_fc_fcp_iod * 215 nvmet_req_to_fod(struct nvmet_req *nvme_req) 216 { 217 return container_of(nvme_req, struct nvmet_fc_fcp_iod, req); 218 } 219 220 221 /* *************************** Globals **************************** */ 222 223 224 static DEFINE_SPINLOCK(nvmet_fc_tgtlock); 225 226 static LIST_HEAD(nvmet_fc_target_list); 227 static DEFINE_IDA(nvmet_fc_tgtport_cnt); 228 static LIST_HEAD(nvmet_fc_portentry_list); 229 230 231 static void nvmet_fc_handle_ls_rqst_work(struct work_struct *work); 232 static void nvmet_fc_fcp_rqst_op_defer_work(struct work_struct *work); 233 static void nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc); 234 static int nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc); 235 static void nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue); 236 static int nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue); 237 static void nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport); 238 static int nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport); 239 static void nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport, 240 struct nvmet_fc_fcp_iod *fod); 241 static void nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc *assoc); 242 243 244 /* *********************** FC-NVME DMA Handling **************************** */ 245 246 /* 247 * The fcloop device passes in a NULL device pointer. Real LLD's will 248 * pass in a valid device pointer. If NULL is passed to the dma mapping 249 * routines, depending on the platform, it may or may not succeed, and 250 * may crash. 251 * 252 * As such: 253 * Wrapper all the dma routines and check the dev pointer. 254 * 255 * If simple mappings (return just a dma address, we'll noop them, 256 * returning a dma address of 0. 257 * 258 * On more complex mappings (dma_map_sg), a pseudo routine fills 259 * in the scatter list, setting all dma addresses to 0. 260 */ 261 262 static inline dma_addr_t 263 fc_dma_map_single(struct device *dev, void *ptr, size_t size, 264 enum dma_data_direction dir) 265 { 266 return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L; 267 } 268 269 static inline int 270 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr) 271 { 272 return dev ? dma_mapping_error(dev, dma_addr) : 0; 273 } 274 275 static inline void 276 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size, 277 enum dma_data_direction dir) 278 { 279 if (dev) 280 dma_unmap_single(dev, addr, size, dir); 281 } 282 283 static inline void 284 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size, 285 enum dma_data_direction dir) 286 { 287 if (dev) 288 dma_sync_single_for_cpu(dev, addr, size, dir); 289 } 290 291 static inline void 292 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size, 293 enum dma_data_direction dir) 294 { 295 if (dev) 296 dma_sync_single_for_device(dev, addr, size, dir); 297 } 298 299 /* pseudo dma_map_sg call */ 300 static int 301 fc_map_sg(struct scatterlist *sg, int nents) 302 { 303 struct scatterlist *s; 304 int i; 305 306 WARN_ON(nents == 0 || sg[0].length == 0); 307 308 for_each_sg(sg, s, nents, i) { 309 s->dma_address = 0L; 310 #ifdef CONFIG_NEED_SG_DMA_LENGTH 311 s->dma_length = s->length; 312 #endif 313 } 314 return nents; 315 } 316 317 static inline int 318 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, 319 enum dma_data_direction dir) 320 { 321 return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents); 322 } 323 324 static inline void 325 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, 326 enum dma_data_direction dir) 327 { 328 if (dev) 329 dma_unmap_sg(dev, sg, nents, dir); 330 } 331 332 333 /* *********************** FC-NVME Port Management ************************ */ 334 335 336 static int 337 nvmet_fc_alloc_ls_iodlist(struct nvmet_fc_tgtport *tgtport) 338 { 339 struct nvmet_fc_ls_iod *iod; 340 int i; 341 342 iod = kcalloc(NVMET_LS_CTX_COUNT, sizeof(struct nvmet_fc_ls_iod), 343 GFP_KERNEL); 344 if (!iod) 345 return -ENOMEM; 346 347 tgtport->iod = iod; 348 349 for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) { 350 INIT_WORK(&iod->work, nvmet_fc_handle_ls_rqst_work); 351 iod->tgtport = tgtport; 352 list_add_tail(&iod->ls_list, &tgtport->ls_list); 353 354 iod->rqstbuf = kcalloc(2, NVME_FC_MAX_LS_BUFFER_SIZE, 355 GFP_KERNEL); 356 if (!iod->rqstbuf) 357 goto out_fail; 358 359 iod->rspbuf = iod->rqstbuf + NVME_FC_MAX_LS_BUFFER_SIZE; 360 361 iod->rspdma = fc_dma_map_single(tgtport->dev, iod->rspbuf, 362 NVME_FC_MAX_LS_BUFFER_SIZE, 363 DMA_TO_DEVICE); 364 if (fc_dma_mapping_error(tgtport->dev, iod->rspdma)) 365 goto out_fail; 366 } 367 368 return 0; 369 370 out_fail: 371 kfree(iod->rqstbuf); 372 list_del(&iod->ls_list); 373 for (iod--, i--; i >= 0; iod--, i--) { 374 fc_dma_unmap_single(tgtport->dev, iod->rspdma, 375 NVME_FC_MAX_LS_BUFFER_SIZE, DMA_TO_DEVICE); 376 kfree(iod->rqstbuf); 377 list_del(&iod->ls_list); 378 } 379 380 kfree(iod); 381 382 return -EFAULT; 383 } 384 385 static void 386 nvmet_fc_free_ls_iodlist(struct nvmet_fc_tgtport *tgtport) 387 { 388 struct nvmet_fc_ls_iod *iod = tgtport->iod; 389 int i; 390 391 for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) { 392 fc_dma_unmap_single(tgtport->dev, 393 iod->rspdma, NVME_FC_MAX_LS_BUFFER_SIZE, 394 DMA_TO_DEVICE); 395 kfree(iod->rqstbuf); 396 list_del(&iod->ls_list); 397 } 398 kfree(tgtport->iod); 399 } 400 401 static struct nvmet_fc_ls_iod * 402 nvmet_fc_alloc_ls_iod(struct nvmet_fc_tgtport *tgtport) 403 { 404 struct nvmet_fc_ls_iod *iod; 405 unsigned long flags; 406 407 spin_lock_irqsave(&tgtport->lock, flags); 408 iod = list_first_entry_or_null(&tgtport->ls_list, 409 struct nvmet_fc_ls_iod, ls_list); 410 if (iod) 411 list_move_tail(&iod->ls_list, &tgtport->ls_busylist); 412 spin_unlock_irqrestore(&tgtport->lock, flags); 413 return iod; 414 } 415 416 417 static void 418 nvmet_fc_free_ls_iod(struct nvmet_fc_tgtport *tgtport, 419 struct nvmet_fc_ls_iod *iod) 420 { 421 unsigned long flags; 422 423 spin_lock_irqsave(&tgtport->lock, flags); 424 list_move(&iod->ls_list, &tgtport->ls_list); 425 spin_unlock_irqrestore(&tgtport->lock, flags); 426 } 427 428 static void 429 nvmet_fc_prep_fcp_iodlist(struct nvmet_fc_tgtport *tgtport, 430 struct nvmet_fc_tgt_queue *queue) 431 { 432 struct nvmet_fc_fcp_iod *fod = queue->fod; 433 int i; 434 435 for (i = 0; i < queue->sqsize; fod++, i++) { 436 INIT_WORK(&fod->defer_work, nvmet_fc_fcp_rqst_op_defer_work); 437 fod->tgtport = tgtport; 438 fod->queue = queue; 439 fod->active = false; 440 fod->abort = false; 441 fod->aborted = false; 442 fod->fcpreq = NULL; 443 list_add_tail(&fod->fcp_list, &queue->fod_list); 444 spin_lock_init(&fod->flock); 445 446 fod->rspdma = fc_dma_map_single(tgtport->dev, &fod->rspiubuf, 447 sizeof(fod->rspiubuf), DMA_TO_DEVICE); 448 if (fc_dma_mapping_error(tgtport->dev, fod->rspdma)) { 449 list_del(&fod->fcp_list); 450 for (fod--, i--; i >= 0; fod--, i--) { 451 fc_dma_unmap_single(tgtport->dev, fod->rspdma, 452 sizeof(fod->rspiubuf), 453 DMA_TO_DEVICE); 454 fod->rspdma = 0L; 455 list_del(&fod->fcp_list); 456 } 457 458 return; 459 } 460 } 461 } 462 463 static void 464 nvmet_fc_destroy_fcp_iodlist(struct nvmet_fc_tgtport *tgtport, 465 struct nvmet_fc_tgt_queue *queue) 466 { 467 struct nvmet_fc_fcp_iod *fod = queue->fod; 468 int i; 469 470 for (i = 0; i < queue->sqsize; fod++, i++) { 471 if (fod->rspdma) 472 fc_dma_unmap_single(tgtport->dev, fod->rspdma, 473 sizeof(fod->rspiubuf), DMA_TO_DEVICE); 474 } 475 } 476 477 static struct nvmet_fc_fcp_iod * 478 nvmet_fc_alloc_fcp_iod(struct nvmet_fc_tgt_queue *queue) 479 { 480 struct nvmet_fc_fcp_iod *fod; 481 482 lockdep_assert_held(&queue->qlock); 483 484 fod = list_first_entry_or_null(&queue->fod_list, 485 struct nvmet_fc_fcp_iod, fcp_list); 486 if (fod) { 487 list_del(&fod->fcp_list); 488 fod->active = true; 489 /* 490 * no queue reference is taken, as it was taken by the 491 * queue lookup just prior to the allocation. The iod 492 * will "inherit" that reference. 493 */ 494 } 495 return fod; 496 } 497 498 499 static void 500 nvmet_fc_queue_fcp_req(struct nvmet_fc_tgtport *tgtport, 501 struct nvmet_fc_tgt_queue *queue, 502 struct nvmefc_tgt_fcp_req *fcpreq) 503 { 504 struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private; 505 506 /* 507 * put all admin cmds on hw queue id 0. All io commands go to 508 * the respective hw queue based on a modulo basis 509 */ 510 fcpreq->hwqid = queue->qid ? 511 ((queue->qid - 1) % tgtport->ops->max_hw_queues) : 0; 512 513 nvmet_fc_handle_fcp_rqst(tgtport, fod); 514 } 515 516 static void 517 nvmet_fc_fcp_rqst_op_defer_work(struct work_struct *work) 518 { 519 struct nvmet_fc_fcp_iod *fod = 520 container_of(work, struct nvmet_fc_fcp_iod, defer_work); 521 522 /* Submit deferred IO for processing */ 523 nvmet_fc_queue_fcp_req(fod->tgtport, fod->queue, fod->fcpreq); 524 525 } 526 527 static void 528 nvmet_fc_free_fcp_iod(struct nvmet_fc_tgt_queue *queue, 529 struct nvmet_fc_fcp_iod *fod) 530 { 531 struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq; 532 struct nvmet_fc_tgtport *tgtport = fod->tgtport; 533 struct nvmet_fc_defer_fcp_req *deferfcp; 534 unsigned long flags; 535 536 fc_dma_sync_single_for_cpu(tgtport->dev, fod->rspdma, 537 sizeof(fod->rspiubuf), DMA_TO_DEVICE); 538 539 fcpreq->nvmet_fc_private = NULL; 540 541 fod->active = false; 542 fod->abort = false; 543 fod->aborted = false; 544 fod->writedataactive = false; 545 fod->fcpreq = NULL; 546 547 tgtport->ops->fcp_req_release(&tgtport->fc_target_port, fcpreq); 548 549 /* release the queue lookup reference on the completed IO */ 550 nvmet_fc_tgt_q_put(queue); 551 552 spin_lock_irqsave(&queue->qlock, flags); 553 deferfcp = list_first_entry_or_null(&queue->pending_cmd_list, 554 struct nvmet_fc_defer_fcp_req, req_list); 555 if (!deferfcp) { 556 list_add_tail(&fod->fcp_list, &fod->queue->fod_list); 557 spin_unlock_irqrestore(&queue->qlock, flags); 558 return; 559 } 560 561 /* Re-use the fod for the next pending cmd that was deferred */ 562 list_del(&deferfcp->req_list); 563 564 fcpreq = deferfcp->fcp_req; 565 566 /* deferfcp can be reused for another IO at a later date */ 567 list_add_tail(&deferfcp->req_list, &queue->avail_defer_list); 568 569 spin_unlock_irqrestore(&queue->qlock, flags); 570 571 /* Save NVME CMD IO in fod */ 572 memcpy(&fod->cmdiubuf, fcpreq->rspaddr, fcpreq->rsplen); 573 574 /* Setup new fcpreq to be processed */ 575 fcpreq->rspaddr = NULL; 576 fcpreq->rsplen = 0; 577 fcpreq->nvmet_fc_private = fod; 578 fod->fcpreq = fcpreq; 579 fod->active = true; 580 581 /* inform LLDD IO is now being processed */ 582 tgtport->ops->defer_rcv(&tgtport->fc_target_port, fcpreq); 583 584 /* 585 * Leave the queue lookup get reference taken when 586 * fod was originally allocated. 587 */ 588 589 queue_work(queue->work_q, &fod->defer_work); 590 } 591 592 static struct nvmet_fc_tgt_queue * 593 nvmet_fc_alloc_target_queue(struct nvmet_fc_tgt_assoc *assoc, 594 u16 qid, u16 sqsize) 595 { 596 struct nvmet_fc_tgt_queue *queue; 597 unsigned long flags; 598 int ret; 599 600 if (qid > NVMET_NR_QUEUES) 601 return NULL; 602 603 queue = kzalloc((sizeof(*queue) + 604 (sizeof(struct nvmet_fc_fcp_iod) * sqsize)), 605 GFP_KERNEL); 606 if (!queue) 607 return NULL; 608 609 if (!nvmet_fc_tgt_a_get(assoc)) 610 goto out_free_queue; 611 612 queue->work_q = alloc_workqueue("ntfc%d.%d.%d", 0, 0, 613 assoc->tgtport->fc_target_port.port_num, 614 assoc->a_id, qid); 615 if (!queue->work_q) 616 goto out_a_put; 617 618 queue->fod = (struct nvmet_fc_fcp_iod *)&queue[1]; 619 queue->qid = qid; 620 queue->sqsize = sqsize; 621 queue->assoc = assoc; 622 INIT_LIST_HEAD(&queue->fod_list); 623 INIT_LIST_HEAD(&queue->avail_defer_list); 624 INIT_LIST_HEAD(&queue->pending_cmd_list); 625 atomic_set(&queue->connected, 0); 626 atomic_set(&queue->sqtail, 0); 627 atomic_set(&queue->rsn, 1); 628 atomic_set(&queue->zrspcnt, 0); 629 spin_lock_init(&queue->qlock); 630 kref_init(&queue->ref); 631 632 nvmet_fc_prep_fcp_iodlist(assoc->tgtport, queue); 633 634 ret = nvmet_sq_init(&queue->nvme_sq); 635 if (ret) 636 goto out_fail_iodlist; 637 638 WARN_ON(assoc->queues[qid]); 639 spin_lock_irqsave(&assoc->tgtport->lock, flags); 640 assoc->queues[qid] = queue; 641 spin_unlock_irqrestore(&assoc->tgtport->lock, flags); 642 643 return queue; 644 645 out_fail_iodlist: 646 nvmet_fc_destroy_fcp_iodlist(assoc->tgtport, queue); 647 destroy_workqueue(queue->work_q); 648 out_a_put: 649 nvmet_fc_tgt_a_put(assoc); 650 out_free_queue: 651 kfree(queue); 652 return NULL; 653 } 654 655 656 static void 657 nvmet_fc_tgt_queue_free(struct kref *ref) 658 { 659 struct nvmet_fc_tgt_queue *queue = 660 container_of(ref, struct nvmet_fc_tgt_queue, ref); 661 unsigned long flags; 662 663 spin_lock_irqsave(&queue->assoc->tgtport->lock, flags); 664 queue->assoc->queues[queue->qid] = NULL; 665 spin_unlock_irqrestore(&queue->assoc->tgtport->lock, flags); 666 667 nvmet_fc_destroy_fcp_iodlist(queue->assoc->tgtport, queue); 668 669 nvmet_fc_tgt_a_put(queue->assoc); 670 671 destroy_workqueue(queue->work_q); 672 673 kfree(queue); 674 } 675 676 static void 677 nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue) 678 { 679 kref_put(&queue->ref, nvmet_fc_tgt_queue_free); 680 } 681 682 static int 683 nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue) 684 { 685 return kref_get_unless_zero(&queue->ref); 686 } 687 688 689 static void 690 nvmet_fc_delete_target_queue(struct nvmet_fc_tgt_queue *queue) 691 { 692 struct nvmet_fc_tgtport *tgtport = queue->assoc->tgtport; 693 struct nvmet_fc_fcp_iod *fod = queue->fod; 694 struct nvmet_fc_defer_fcp_req *deferfcp, *tempptr; 695 unsigned long flags; 696 int i, writedataactive; 697 bool disconnect; 698 699 disconnect = atomic_xchg(&queue->connected, 0); 700 701 spin_lock_irqsave(&queue->qlock, flags); 702 /* about outstanding io's */ 703 for (i = 0; i < queue->sqsize; fod++, i++) { 704 if (fod->active) { 705 spin_lock(&fod->flock); 706 fod->abort = true; 707 writedataactive = fod->writedataactive; 708 spin_unlock(&fod->flock); 709 /* 710 * only call lldd abort routine if waiting for 711 * writedata. other outstanding ops should finish 712 * on their own. 713 */ 714 if (writedataactive) { 715 spin_lock(&fod->flock); 716 fod->aborted = true; 717 spin_unlock(&fod->flock); 718 tgtport->ops->fcp_abort( 719 &tgtport->fc_target_port, fod->fcpreq); 720 } 721 } 722 } 723 724 /* Cleanup defer'ed IOs in queue */ 725 list_for_each_entry_safe(deferfcp, tempptr, &queue->avail_defer_list, 726 req_list) { 727 list_del(&deferfcp->req_list); 728 kfree(deferfcp); 729 } 730 731 for (;;) { 732 deferfcp = list_first_entry_or_null(&queue->pending_cmd_list, 733 struct nvmet_fc_defer_fcp_req, req_list); 734 if (!deferfcp) 735 break; 736 737 list_del(&deferfcp->req_list); 738 spin_unlock_irqrestore(&queue->qlock, flags); 739 740 tgtport->ops->defer_rcv(&tgtport->fc_target_port, 741 deferfcp->fcp_req); 742 743 tgtport->ops->fcp_abort(&tgtport->fc_target_port, 744 deferfcp->fcp_req); 745 746 tgtport->ops->fcp_req_release(&tgtport->fc_target_port, 747 deferfcp->fcp_req); 748 749 /* release the queue lookup reference */ 750 nvmet_fc_tgt_q_put(queue); 751 752 kfree(deferfcp); 753 754 spin_lock_irqsave(&queue->qlock, flags); 755 } 756 spin_unlock_irqrestore(&queue->qlock, flags); 757 758 flush_workqueue(queue->work_q); 759 760 if (disconnect) 761 nvmet_sq_destroy(&queue->nvme_sq); 762 763 nvmet_fc_tgt_q_put(queue); 764 } 765 766 static struct nvmet_fc_tgt_queue * 767 nvmet_fc_find_target_queue(struct nvmet_fc_tgtport *tgtport, 768 u64 connection_id) 769 { 770 struct nvmet_fc_tgt_assoc *assoc; 771 struct nvmet_fc_tgt_queue *queue; 772 u64 association_id = nvmet_fc_getassociationid(connection_id); 773 u16 qid = nvmet_fc_getqueueid(connection_id); 774 unsigned long flags; 775 776 if (qid > NVMET_NR_QUEUES) 777 return NULL; 778 779 spin_lock_irqsave(&tgtport->lock, flags); 780 list_for_each_entry(assoc, &tgtport->assoc_list, a_list) { 781 if (association_id == assoc->association_id) { 782 queue = assoc->queues[qid]; 783 if (queue && 784 (!atomic_read(&queue->connected) || 785 !nvmet_fc_tgt_q_get(queue))) 786 queue = NULL; 787 spin_unlock_irqrestore(&tgtport->lock, flags); 788 return queue; 789 } 790 } 791 spin_unlock_irqrestore(&tgtport->lock, flags); 792 return NULL; 793 } 794 795 static void 796 nvmet_fc_delete_assoc(struct work_struct *work) 797 { 798 struct nvmet_fc_tgt_assoc *assoc = 799 container_of(work, struct nvmet_fc_tgt_assoc, del_work); 800 801 nvmet_fc_delete_target_assoc(assoc); 802 nvmet_fc_tgt_a_put(assoc); 803 } 804 805 static struct nvmet_fc_tgt_assoc * 806 nvmet_fc_alloc_target_assoc(struct nvmet_fc_tgtport *tgtport) 807 { 808 struct nvmet_fc_tgt_assoc *assoc, *tmpassoc; 809 unsigned long flags; 810 u64 ran; 811 int idx; 812 bool needrandom = true; 813 814 assoc = kzalloc(sizeof(*assoc), GFP_KERNEL); 815 if (!assoc) 816 return NULL; 817 818 idx = ida_simple_get(&tgtport->assoc_cnt, 0, 0, GFP_KERNEL); 819 if (idx < 0) 820 goto out_free_assoc; 821 822 if (!nvmet_fc_tgtport_get(tgtport)) 823 goto out_ida_put; 824 825 assoc->tgtport = tgtport; 826 assoc->a_id = idx; 827 INIT_LIST_HEAD(&assoc->a_list); 828 kref_init(&assoc->ref); 829 INIT_WORK(&assoc->del_work, nvmet_fc_delete_assoc); 830 831 while (needrandom) { 832 get_random_bytes(&ran, sizeof(ran) - BYTES_FOR_QID); 833 ran = ran << BYTES_FOR_QID_SHIFT; 834 835 spin_lock_irqsave(&tgtport->lock, flags); 836 needrandom = false; 837 list_for_each_entry(tmpassoc, &tgtport->assoc_list, a_list) 838 if (ran == tmpassoc->association_id) { 839 needrandom = true; 840 break; 841 } 842 if (!needrandom) { 843 assoc->association_id = ran; 844 list_add_tail(&assoc->a_list, &tgtport->assoc_list); 845 } 846 spin_unlock_irqrestore(&tgtport->lock, flags); 847 } 848 849 return assoc; 850 851 out_ida_put: 852 ida_simple_remove(&tgtport->assoc_cnt, idx); 853 out_free_assoc: 854 kfree(assoc); 855 return NULL; 856 } 857 858 static void 859 nvmet_fc_target_assoc_free(struct kref *ref) 860 { 861 struct nvmet_fc_tgt_assoc *assoc = 862 container_of(ref, struct nvmet_fc_tgt_assoc, ref); 863 struct nvmet_fc_tgtport *tgtport = assoc->tgtport; 864 unsigned long flags; 865 866 spin_lock_irqsave(&tgtport->lock, flags); 867 list_del(&assoc->a_list); 868 spin_unlock_irqrestore(&tgtport->lock, flags); 869 ida_simple_remove(&tgtport->assoc_cnt, assoc->a_id); 870 kfree(assoc); 871 nvmet_fc_tgtport_put(tgtport); 872 } 873 874 static void 875 nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc) 876 { 877 kref_put(&assoc->ref, nvmet_fc_target_assoc_free); 878 } 879 880 static int 881 nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc) 882 { 883 return kref_get_unless_zero(&assoc->ref); 884 } 885 886 static void 887 nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc *assoc) 888 { 889 struct nvmet_fc_tgtport *tgtport = assoc->tgtport; 890 struct nvmet_fc_tgt_queue *queue; 891 unsigned long flags; 892 int i; 893 894 spin_lock_irqsave(&tgtport->lock, flags); 895 for (i = NVMET_NR_QUEUES; i >= 0; i--) { 896 queue = assoc->queues[i]; 897 if (queue) { 898 if (!nvmet_fc_tgt_q_get(queue)) 899 continue; 900 spin_unlock_irqrestore(&tgtport->lock, flags); 901 nvmet_fc_delete_target_queue(queue); 902 nvmet_fc_tgt_q_put(queue); 903 spin_lock_irqsave(&tgtport->lock, flags); 904 } 905 } 906 spin_unlock_irqrestore(&tgtport->lock, flags); 907 908 nvmet_fc_tgt_a_put(assoc); 909 } 910 911 static struct nvmet_fc_tgt_assoc * 912 nvmet_fc_find_target_assoc(struct nvmet_fc_tgtport *tgtport, 913 u64 association_id) 914 { 915 struct nvmet_fc_tgt_assoc *assoc; 916 struct nvmet_fc_tgt_assoc *ret = NULL; 917 unsigned long flags; 918 919 spin_lock_irqsave(&tgtport->lock, flags); 920 list_for_each_entry(assoc, &tgtport->assoc_list, a_list) { 921 if (association_id == assoc->association_id) { 922 ret = assoc; 923 nvmet_fc_tgt_a_get(assoc); 924 break; 925 } 926 } 927 spin_unlock_irqrestore(&tgtport->lock, flags); 928 929 return ret; 930 } 931 932 static void 933 nvmet_fc_portentry_bind(struct nvmet_fc_tgtport *tgtport, 934 struct nvmet_fc_port_entry *pe, 935 struct nvmet_port *port) 936 { 937 lockdep_assert_held(&nvmet_fc_tgtlock); 938 939 pe->tgtport = tgtport; 940 tgtport->pe = pe; 941 942 pe->port = port; 943 port->priv = pe; 944 945 pe->node_name = tgtport->fc_target_port.node_name; 946 pe->port_name = tgtport->fc_target_port.port_name; 947 INIT_LIST_HEAD(&pe->pe_list); 948 949 list_add_tail(&pe->pe_list, &nvmet_fc_portentry_list); 950 } 951 952 static void 953 nvmet_fc_portentry_unbind(struct nvmet_fc_port_entry *pe) 954 { 955 unsigned long flags; 956 957 spin_lock_irqsave(&nvmet_fc_tgtlock, flags); 958 if (pe->tgtport) 959 pe->tgtport->pe = NULL; 960 list_del(&pe->pe_list); 961 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags); 962 } 963 964 /* 965 * called when a targetport deregisters. Breaks the relationship 966 * with the nvmet port, but leaves the port_entry in place so that 967 * re-registration can resume operation. 968 */ 969 static void 970 nvmet_fc_portentry_unbind_tgt(struct nvmet_fc_tgtport *tgtport) 971 { 972 struct nvmet_fc_port_entry *pe; 973 unsigned long flags; 974 975 spin_lock_irqsave(&nvmet_fc_tgtlock, flags); 976 pe = tgtport->pe; 977 if (pe) 978 pe->tgtport = NULL; 979 tgtport->pe = NULL; 980 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags); 981 } 982 983 /* 984 * called when a new targetport is registered. Looks in the 985 * existing nvmet port_entries to see if the nvmet layer is 986 * configured for the targetport's wwn's. (the targetport existed, 987 * nvmet configured, the lldd unregistered the tgtport, and is now 988 * reregistering the same targetport). If so, set the nvmet port 989 * port entry on the targetport. 990 */ 991 static void 992 nvmet_fc_portentry_rebind_tgt(struct nvmet_fc_tgtport *tgtport) 993 { 994 struct nvmet_fc_port_entry *pe; 995 unsigned long flags; 996 997 spin_lock_irqsave(&nvmet_fc_tgtlock, flags); 998 list_for_each_entry(pe, &nvmet_fc_portentry_list, pe_list) { 999 if (tgtport->fc_target_port.node_name == pe->node_name && 1000 tgtport->fc_target_port.port_name == pe->port_name) { 1001 WARN_ON(pe->tgtport); 1002 tgtport->pe = pe; 1003 pe->tgtport = tgtport; 1004 break; 1005 } 1006 } 1007 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags); 1008 } 1009 1010 /** 1011 * nvme_fc_register_targetport - transport entry point called by an 1012 * LLDD to register the existence of a local 1013 * NVME subystem FC port. 1014 * @pinfo: pointer to information about the port to be registered 1015 * @template: LLDD entrypoints and operational parameters for the port 1016 * @dev: physical hardware device node port corresponds to. Will be 1017 * used for DMA mappings 1018 * @portptr: pointer to a local port pointer. Upon success, the routine 1019 * will allocate a nvme_fc_local_port structure and place its 1020 * address in the local port pointer. Upon failure, local port 1021 * pointer will be set to NULL. 1022 * 1023 * Returns: 1024 * a completion status. Must be 0 upon success; a negative errno 1025 * (ex: -ENXIO) upon failure. 1026 */ 1027 int 1028 nvmet_fc_register_targetport(struct nvmet_fc_port_info *pinfo, 1029 struct nvmet_fc_target_template *template, 1030 struct device *dev, 1031 struct nvmet_fc_target_port **portptr) 1032 { 1033 struct nvmet_fc_tgtport *newrec; 1034 unsigned long flags; 1035 int ret, idx; 1036 1037 if (!template->xmt_ls_rsp || !template->fcp_op || 1038 !template->fcp_abort || 1039 !template->fcp_req_release || !template->targetport_delete || 1040 !template->max_hw_queues || !template->max_sgl_segments || 1041 !template->max_dif_sgl_segments || !template->dma_boundary) { 1042 ret = -EINVAL; 1043 goto out_regtgt_failed; 1044 } 1045 1046 newrec = kzalloc((sizeof(*newrec) + template->target_priv_sz), 1047 GFP_KERNEL); 1048 if (!newrec) { 1049 ret = -ENOMEM; 1050 goto out_regtgt_failed; 1051 } 1052 1053 idx = ida_simple_get(&nvmet_fc_tgtport_cnt, 0, 0, GFP_KERNEL); 1054 if (idx < 0) { 1055 ret = -ENOSPC; 1056 goto out_fail_kfree; 1057 } 1058 1059 if (!get_device(dev) && dev) { 1060 ret = -ENODEV; 1061 goto out_ida_put; 1062 } 1063 1064 newrec->fc_target_port.node_name = pinfo->node_name; 1065 newrec->fc_target_port.port_name = pinfo->port_name; 1066 newrec->fc_target_port.private = &newrec[1]; 1067 newrec->fc_target_port.port_id = pinfo->port_id; 1068 newrec->fc_target_port.port_num = idx; 1069 INIT_LIST_HEAD(&newrec->tgt_list); 1070 newrec->dev = dev; 1071 newrec->ops = template; 1072 spin_lock_init(&newrec->lock); 1073 INIT_LIST_HEAD(&newrec->ls_list); 1074 INIT_LIST_HEAD(&newrec->ls_busylist); 1075 INIT_LIST_HEAD(&newrec->assoc_list); 1076 kref_init(&newrec->ref); 1077 ida_init(&newrec->assoc_cnt); 1078 newrec->max_sg_cnt = template->max_sgl_segments; 1079 1080 ret = nvmet_fc_alloc_ls_iodlist(newrec); 1081 if (ret) { 1082 ret = -ENOMEM; 1083 goto out_free_newrec; 1084 } 1085 1086 nvmet_fc_portentry_rebind_tgt(newrec); 1087 1088 spin_lock_irqsave(&nvmet_fc_tgtlock, flags); 1089 list_add_tail(&newrec->tgt_list, &nvmet_fc_target_list); 1090 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags); 1091 1092 *portptr = &newrec->fc_target_port; 1093 return 0; 1094 1095 out_free_newrec: 1096 put_device(dev); 1097 out_ida_put: 1098 ida_simple_remove(&nvmet_fc_tgtport_cnt, idx); 1099 out_fail_kfree: 1100 kfree(newrec); 1101 out_regtgt_failed: 1102 *portptr = NULL; 1103 return ret; 1104 } 1105 EXPORT_SYMBOL_GPL(nvmet_fc_register_targetport); 1106 1107 1108 static void 1109 nvmet_fc_free_tgtport(struct kref *ref) 1110 { 1111 struct nvmet_fc_tgtport *tgtport = 1112 container_of(ref, struct nvmet_fc_tgtport, ref); 1113 struct device *dev = tgtport->dev; 1114 unsigned long flags; 1115 1116 spin_lock_irqsave(&nvmet_fc_tgtlock, flags); 1117 list_del(&tgtport->tgt_list); 1118 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags); 1119 1120 nvmet_fc_free_ls_iodlist(tgtport); 1121 1122 /* let the LLDD know we've finished tearing it down */ 1123 tgtport->ops->targetport_delete(&tgtport->fc_target_port); 1124 1125 ida_simple_remove(&nvmet_fc_tgtport_cnt, 1126 tgtport->fc_target_port.port_num); 1127 1128 ida_destroy(&tgtport->assoc_cnt); 1129 1130 kfree(tgtport); 1131 1132 put_device(dev); 1133 } 1134 1135 static void 1136 nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport) 1137 { 1138 kref_put(&tgtport->ref, nvmet_fc_free_tgtport); 1139 } 1140 1141 static int 1142 nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport) 1143 { 1144 return kref_get_unless_zero(&tgtport->ref); 1145 } 1146 1147 static void 1148 __nvmet_fc_free_assocs(struct nvmet_fc_tgtport *tgtport) 1149 { 1150 struct nvmet_fc_tgt_assoc *assoc, *next; 1151 unsigned long flags; 1152 1153 spin_lock_irqsave(&tgtport->lock, flags); 1154 list_for_each_entry_safe(assoc, next, 1155 &tgtport->assoc_list, a_list) { 1156 if (!nvmet_fc_tgt_a_get(assoc)) 1157 continue; 1158 spin_unlock_irqrestore(&tgtport->lock, flags); 1159 nvmet_fc_delete_target_assoc(assoc); 1160 nvmet_fc_tgt_a_put(assoc); 1161 spin_lock_irqsave(&tgtport->lock, flags); 1162 } 1163 spin_unlock_irqrestore(&tgtport->lock, flags); 1164 } 1165 1166 /* 1167 * nvmet layer has called to terminate an association 1168 */ 1169 static void 1170 nvmet_fc_delete_ctrl(struct nvmet_ctrl *ctrl) 1171 { 1172 struct nvmet_fc_tgtport *tgtport, *next; 1173 struct nvmet_fc_tgt_assoc *assoc; 1174 struct nvmet_fc_tgt_queue *queue; 1175 unsigned long flags; 1176 bool found_ctrl = false; 1177 1178 /* this is a bit ugly, but don't want to make locks layered */ 1179 spin_lock_irqsave(&nvmet_fc_tgtlock, flags); 1180 list_for_each_entry_safe(tgtport, next, &nvmet_fc_target_list, 1181 tgt_list) { 1182 if (!nvmet_fc_tgtport_get(tgtport)) 1183 continue; 1184 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags); 1185 1186 spin_lock_irqsave(&tgtport->lock, flags); 1187 list_for_each_entry(assoc, &tgtport->assoc_list, a_list) { 1188 queue = assoc->queues[0]; 1189 if (queue && queue->nvme_sq.ctrl == ctrl) { 1190 if (nvmet_fc_tgt_a_get(assoc)) 1191 found_ctrl = true; 1192 break; 1193 } 1194 } 1195 spin_unlock_irqrestore(&tgtport->lock, flags); 1196 1197 nvmet_fc_tgtport_put(tgtport); 1198 1199 if (found_ctrl) { 1200 schedule_work(&assoc->del_work); 1201 return; 1202 } 1203 1204 spin_lock_irqsave(&nvmet_fc_tgtlock, flags); 1205 } 1206 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags); 1207 } 1208 1209 /** 1210 * nvme_fc_unregister_targetport - transport entry point called by an 1211 * LLDD to deregister/remove a previously 1212 * registered a local NVME subsystem FC port. 1213 * @target_port: pointer to the (registered) target port that is to be 1214 * deregistered. 1215 * 1216 * Returns: 1217 * a completion status. Must be 0 upon success; a negative errno 1218 * (ex: -ENXIO) upon failure. 1219 */ 1220 int 1221 nvmet_fc_unregister_targetport(struct nvmet_fc_target_port *target_port) 1222 { 1223 struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port); 1224 1225 nvmet_fc_portentry_unbind_tgt(tgtport); 1226 1227 /* terminate any outstanding associations */ 1228 __nvmet_fc_free_assocs(tgtport); 1229 1230 nvmet_fc_tgtport_put(tgtport); 1231 1232 return 0; 1233 } 1234 EXPORT_SYMBOL_GPL(nvmet_fc_unregister_targetport); 1235 1236 1237 /* *********************** FC-NVME LS Handling **************************** */ 1238 1239 1240 static void 1241 nvmet_fc_format_rsp_hdr(void *buf, u8 ls_cmd, __be32 desc_len, u8 rqst_ls_cmd) 1242 { 1243 struct fcnvme_ls_acc_hdr *acc = buf; 1244 1245 acc->w0.ls_cmd = ls_cmd; 1246 acc->desc_list_len = desc_len; 1247 acc->rqst.desc_tag = cpu_to_be32(FCNVME_LSDESC_RQST); 1248 acc->rqst.desc_len = 1249 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)); 1250 acc->rqst.w0.ls_cmd = rqst_ls_cmd; 1251 } 1252 1253 static int 1254 nvmet_fc_format_rjt(void *buf, u16 buflen, u8 ls_cmd, 1255 u8 reason, u8 explanation, u8 vendor) 1256 { 1257 struct fcnvme_ls_rjt *rjt = buf; 1258 1259 nvmet_fc_format_rsp_hdr(buf, FCNVME_LSDESC_RQST, 1260 fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_rjt)), 1261 ls_cmd); 1262 rjt->rjt.desc_tag = cpu_to_be32(FCNVME_LSDESC_RJT); 1263 rjt->rjt.desc_len = fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rjt)); 1264 rjt->rjt.reason_code = reason; 1265 rjt->rjt.reason_explanation = explanation; 1266 rjt->rjt.vendor = vendor; 1267 1268 return sizeof(struct fcnvme_ls_rjt); 1269 } 1270 1271 /* Validation Error indexes into the string table below */ 1272 enum { 1273 VERR_NO_ERROR = 0, 1274 VERR_CR_ASSOC_LEN = 1, 1275 VERR_CR_ASSOC_RQST_LEN = 2, 1276 VERR_CR_ASSOC_CMD = 3, 1277 VERR_CR_ASSOC_CMD_LEN = 4, 1278 VERR_ERSP_RATIO = 5, 1279 VERR_ASSOC_ALLOC_FAIL = 6, 1280 VERR_QUEUE_ALLOC_FAIL = 7, 1281 VERR_CR_CONN_LEN = 8, 1282 VERR_CR_CONN_RQST_LEN = 9, 1283 VERR_ASSOC_ID = 10, 1284 VERR_ASSOC_ID_LEN = 11, 1285 VERR_NO_ASSOC = 12, 1286 VERR_CONN_ID = 13, 1287 VERR_CONN_ID_LEN = 14, 1288 VERR_NO_CONN = 15, 1289 VERR_CR_CONN_CMD = 16, 1290 VERR_CR_CONN_CMD_LEN = 17, 1291 VERR_DISCONN_LEN = 18, 1292 VERR_DISCONN_RQST_LEN = 19, 1293 VERR_DISCONN_CMD = 20, 1294 VERR_DISCONN_CMD_LEN = 21, 1295 VERR_DISCONN_SCOPE = 22, 1296 VERR_RS_LEN = 23, 1297 VERR_RS_RQST_LEN = 24, 1298 VERR_RS_CMD = 25, 1299 VERR_RS_CMD_LEN = 26, 1300 VERR_RS_RCTL = 27, 1301 VERR_RS_RO = 28, 1302 }; 1303 1304 static char *validation_errors[] = { 1305 "OK", 1306 "Bad CR_ASSOC Length", 1307 "Bad CR_ASSOC Rqst Length", 1308 "Not CR_ASSOC Cmd", 1309 "Bad CR_ASSOC Cmd Length", 1310 "Bad Ersp Ratio", 1311 "Association Allocation Failed", 1312 "Queue Allocation Failed", 1313 "Bad CR_CONN Length", 1314 "Bad CR_CONN Rqst Length", 1315 "Not Association ID", 1316 "Bad Association ID Length", 1317 "No Association", 1318 "Not Connection ID", 1319 "Bad Connection ID Length", 1320 "No Connection", 1321 "Not CR_CONN Cmd", 1322 "Bad CR_CONN Cmd Length", 1323 "Bad DISCONN Length", 1324 "Bad DISCONN Rqst Length", 1325 "Not DISCONN Cmd", 1326 "Bad DISCONN Cmd Length", 1327 "Bad Disconnect Scope", 1328 "Bad RS Length", 1329 "Bad RS Rqst Length", 1330 "Not RS Cmd", 1331 "Bad RS Cmd Length", 1332 "Bad RS R_CTL", 1333 "Bad RS Relative Offset", 1334 }; 1335 1336 static void 1337 nvmet_fc_ls_create_association(struct nvmet_fc_tgtport *tgtport, 1338 struct nvmet_fc_ls_iod *iod) 1339 { 1340 struct fcnvme_ls_cr_assoc_rqst *rqst = 1341 (struct fcnvme_ls_cr_assoc_rqst *)iod->rqstbuf; 1342 struct fcnvme_ls_cr_assoc_acc *acc = 1343 (struct fcnvme_ls_cr_assoc_acc *)iod->rspbuf; 1344 struct nvmet_fc_tgt_queue *queue; 1345 int ret = 0; 1346 1347 memset(acc, 0, sizeof(*acc)); 1348 1349 /* 1350 * FC-NVME spec changes. There are initiators sending different 1351 * lengths as padding sizes for Create Association Cmd descriptor 1352 * was incorrect. 1353 * Accept anything of "minimum" length. Assume format per 1.15 1354 * spec (with HOSTID reduced to 16 bytes), ignore how long the 1355 * trailing pad length is. 1356 */ 1357 if (iod->rqstdatalen < FCNVME_LSDESC_CRA_RQST_MINLEN) 1358 ret = VERR_CR_ASSOC_LEN; 1359 else if (be32_to_cpu(rqst->desc_list_len) < 1360 FCNVME_LSDESC_CRA_RQST_MIN_LISTLEN) 1361 ret = VERR_CR_ASSOC_RQST_LEN; 1362 else if (rqst->assoc_cmd.desc_tag != 1363 cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD)) 1364 ret = VERR_CR_ASSOC_CMD; 1365 else if (be32_to_cpu(rqst->assoc_cmd.desc_len) < 1366 FCNVME_LSDESC_CRA_CMD_DESC_MIN_DESCLEN) 1367 ret = VERR_CR_ASSOC_CMD_LEN; 1368 else if (!rqst->assoc_cmd.ersp_ratio || 1369 (be16_to_cpu(rqst->assoc_cmd.ersp_ratio) >= 1370 be16_to_cpu(rqst->assoc_cmd.sqsize))) 1371 ret = VERR_ERSP_RATIO; 1372 1373 else { 1374 /* new association w/ admin queue */ 1375 iod->assoc = nvmet_fc_alloc_target_assoc(tgtport); 1376 if (!iod->assoc) 1377 ret = VERR_ASSOC_ALLOC_FAIL; 1378 else { 1379 queue = nvmet_fc_alloc_target_queue(iod->assoc, 0, 1380 be16_to_cpu(rqst->assoc_cmd.sqsize)); 1381 if (!queue) 1382 ret = VERR_QUEUE_ALLOC_FAIL; 1383 } 1384 } 1385 1386 if (ret) { 1387 dev_err(tgtport->dev, 1388 "Create Association LS failed: %s\n", 1389 validation_errors[ret]); 1390 iod->lsreq->rsplen = nvmet_fc_format_rjt(acc, 1391 NVME_FC_MAX_LS_BUFFER_SIZE, rqst->w0.ls_cmd, 1392 FCNVME_RJT_RC_LOGIC, 1393 FCNVME_RJT_EXP_NONE, 0); 1394 return; 1395 } 1396 1397 queue->ersp_ratio = be16_to_cpu(rqst->assoc_cmd.ersp_ratio); 1398 atomic_set(&queue->connected, 1); 1399 queue->sqhd = 0; /* best place to init value */ 1400 1401 /* format a response */ 1402 1403 iod->lsreq->rsplen = sizeof(*acc); 1404 1405 nvmet_fc_format_rsp_hdr(acc, FCNVME_LS_ACC, 1406 fcnvme_lsdesc_len( 1407 sizeof(struct fcnvme_ls_cr_assoc_acc)), 1408 FCNVME_LS_CREATE_ASSOCIATION); 1409 acc->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID); 1410 acc->associd.desc_len = 1411 fcnvme_lsdesc_len( 1412 sizeof(struct fcnvme_lsdesc_assoc_id)); 1413 acc->associd.association_id = 1414 cpu_to_be64(nvmet_fc_makeconnid(iod->assoc, 0)); 1415 acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID); 1416 acc->connectid.desc_len = 1417 fcnvme_lsdesc_len( 1418 sizeof(struct fcnvme_lsdesc_conn_id)); 1419 acc->connectid.connection_id = acc->associd.association_id; 1420 } 1421 1422 static void 1423 nvmet_fc_ls_create_connection(struct nvmet_fc_tgtport *tgtport, 1424 struct nvmet_fc_ls_iod *iod) 1425 { 1426 struct fcnvme_ls_cr_conn_rqst *rqst = 1427 (struct fcnvme_ls_cr_conn_rqst *)iod->rqstbuf; 1428 struct fcnvme_ls_cr_conn_acc *acc = 1429 (struct fcnvme_ls_cr_conn_acc *)iod->rspbuf; 1430 struct nvmet_fc_tgt_queue *queue; 1431 int ret = 0; 1432 1433 memset(acc, 0, sizeof(*acc)); 1434 1435 if (iod->rqstdatalen < sizeof(struct fcnvme_ls_cr_conn_rqst)) 1436 ret = VERR_CR_CONN_LEN; 1437 else if (rqst->desc_list_len != 1438 fcnvme_lsdesc_len( 1439 sizeof(struct fcnvme_ls_cr_conn_rqst))) 1440 ret = VERR_CR_CONN_RQST_LEN; 1441 else if (rqst->associd.desc_tag != cpu_to_be32(FCNVME_LSDESC_ASSOC_ID)) 1442 ret = VERR_ASSOC_ID; 1443 else if (rqst->associd.desc_len != 1444 fcnvme_lsdesc_len( 1445 sizeof(struct fcnvme_lsdesc_assoc_id))) 1446 ret = VERR_ASSOC_ID_LEN; 1447 else if (rqst->connect_cmd.desc_tag != 1448 cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD)) 1449 ret = VERR_CR_CONN_CMD; 1450 else if (rqst->connect_cmd.desc_len != 1451 fcnvme_lsdesc_len( 1452 sizeof(struct fcnvme_lsdesc_cr_conn_cmd))) 1453 ret = VERR_CR_CONN_CMD_LEN; 1454 else if (!rqst->connect_cmd.ersp_ratio || 1455 (be16_to_cpu(rqst->connect_cmd.ersp_ratio) >= 1456 be16_to_cpu(rqst->connect_cmd.sqsize))) 1457 ret = VERR_ERSP_RATIO; 1458 1459 else { 1460 /* new io queue */ 1461 iod->assoc = nvmet_fc_find_target_assoc(tgtport, 1462 be64_to_cpu(rqst->associd.association_id)); 1463 if (!iod->assoc) 1464 ret = VERR_NO_ASSOC; 1465 else { 1466 queue = nvmet_fc_alloc_target_queue(iod->assoc, 1467 be16_to_cpu(rqst->connect_cmd.qid), 1468 be16_to_cpu(rqst->connect_cmd.sqsize)); 1469 if (!queue) 1470 ret = VERR_QUEUE_ALLOC_FAIL; 1471 1472 /* release get taken in nvmet_fc_find_target_assoc */ 1473 nvmet_fc_tgt_a_put(iod->assoc); 1474 } 1475 } 1476 1477 if (ret) { 1478 dev_err(tgtport->dev, 1479 "Create Connection LS failed: %s\n", 1480 validation_errors[ret]); 1481 iod->lsreq->rsplen = nvmet_fc_format_rjt(acc, 1482 NVME_FC_MAX_LS_BUFFER_SIZE, rqst->w0.ls_cmd, 1483 (ret == VERR_NO_ASSOC) ? 1484 FCNVME_RJT_RC_INV_ASSOC : 1485 FCNVME_RJT_RC_LOGIC, 1486 FCNVME_RJT_EXP_NONE, 0); 1487 return; 1488 } 1489 1490 queue->ersp_ratio = be16_to_cpu(rqst->connect_cmd.ersp_ratio); 1491 atomic_set(&queue->connected, 1); 1492 queue->sqhd = 0; /* best place to init value */ 1493 1494 /* format a response */ 1495 1496 iod->lsreq->rsplen = sizeof(*acc); 1497 1498 nvmet_fc_format_rsp_hdr(acc, FCNVME_LS_ACC, 1499 fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)), 1500 FCNVME_LS_CREATE_CONNECTION); 1501 acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID); 1502 acc->connectid.desc_len = 1503 fcnvme_lsdesc_len( 1504 sizeof(struct fcnvme_lsdesc_conn_id)); 1505 acc->connectid.connection_id = 1506 cpu_to_be64(nvmet_fc_makeconnid(iod->assoc, 1507 be16_to_cpu(rqst->connect_cmd.qid))); 1508 } 1509 1510 static void 1511 nvmet_fc_ls_disconnect(struct nvmet_fc_tgtport *tgtport, 1512 struct nvmet_fc_ls_iod *iod) 1513 { 1514 struct fcnvme_ls_disconnect_rqst *rqst = 1515 (struct fcnvme_ls_disconnect_rqst *)iod->rqstbuf; 1516 struct fcnvme_ls_disconnect_acc *acc = 1517 (struct fcnvme_ls_disconnect_acc *)iod->rspbuf; 1518 struct nvmet_fc_tgt_queue *queue = NULL; 1519 struct nvmet_fc_tgt_assoc *assoc; 1520 int ret = 0; 1521 bool del_assoc = false; 1522 1523 memset(acc, 0, sizeof(*acc)); 1524 1525 if (iod->rqstdatalen < sizeof(struct fcnvme_ls_disconnect_rqst)) 1526 ret = VERR_DISCONN_LEN; 1527 else if (rqst->desc_list_len != 1528 fcnvme_lsdesc_len( 1529 sizeof(struct fcnvme_ls_disconnect_rqst))) 1530 ret = VERR_DISCONN_RQST_LEN; 1531 else if (rqst->associd.desc_tag != cpu_to_be32(FCNVME_LSDESC_ASSOC_ID)) 1532 ret = VERR_ASSOC_ID; 1533 else if (rqst->associd.desc_len != 1534 fcnvme_lsdesc_len( 1535 sizeof(struct fcnvme_lsdesc_assoc_id))) 1536 ret = VERR_ASSOC_ID_LEN; 1537 else if (rqst->discon_cmd.desc_tag != 1538 cpu_to_be32(FCNVME_LSDESC_DISCONN_CMD)) 1539 ret = VERR_DISCONN_CMD; 1540 else if (rqst->discon_cmd.desc_len != 1541 fcnvme_lsdesc_len( 1542 sizeof(struct fcnvme_lsdesc_disconn_cmd))) 1543 ret = VERR_DISCONN_CMD_LEN; 1544 else if ((rqst->discon_cmd.scope != FCNVME_DISCONN_ASSOCIATION) && 1545 (rqst->discon_cmd.scope != FCNVME_DISCONN_CONNECTION)) 1546 ret = VERR_DISCONN_SCOPE; 1547 else { 1548 /* match an active association */ 1549 assoc = nvmet_fc_find_target_assoc(tgtport, 1550 be64_to_cpu(rqst->associd.association_id)); 1551 iod->assoc = assoc; 1552 if (assoc) { 1553 if (rqst->discon_cmd.scope == 1554 FCNVME_DISCONN_CONNECTION) { 1555 queue = nvmet_fc_find_target_queue(tgtport, 1556 be64_to_cpu( 1557 rqst->discon_cmd.id)); 1558 if (!queue) { 1559 nvmet_fc_tgt_a_put(assoc); 1560 ret = VERR_NO_CONN; 1561 } 1562 } 1563 } else 1564 ret = VERR_NO_ASSOC; 1565 } 1566 1567 if (ret) { 1568 dev_err(tgtport->dev, 1569 "Disconnect LS failed: %s\n", 1570 validation_errors[ret]); 1571 iod->lsreq->rsplen = nvmet_fc_format_rjt(acc, 1572 NVME_FC_MAX_LS_BUFFER_SIZE, rqst->w0.ls_cmd, 1573 (ret == VERR_NO_ASSOC) ? 1574 FCNVME_RJT_RC_INV_ASSOC : 1575 (ret == VERR_NO_CONN) ? 1576 FCNVME_RJT_RC_INV_CONN : 1577 FCNVME_RJT_RC_LOGIC, 1578 FCNVME_RJT_EXP_NONE, 0); 1579 return; 1580 } 1581 1582 /* format a response */ 1583 1584 iod->lsreq->rsplen = sizeof(*acc); 1585 1586 nvmet_fc_format_rsp_hdr(acc, FCNVME_LS_ACC, 1587 fcnvme_lsdesc_len( 1588 sizeof(struct fcnvme_ls_disconnect_acc)), 1589 FCNVME_LS_DISCONNECT); 1590 1591 1592 /* are we to delete a Connection ID (queue) */ 1593 if (queue) { 1594 int qid = queue->qid; 1595 1596 nvmet_fc_delete_target_queue(queue); 1597 1598 /* release the get taken by find_target_queue */ 1599 nvmet_fc_tgt_q_put(queue); 1600 1601 /* tear association down if io queue terminated */ 1602 if (!qid) 1603 del_assoc = true; 1604 } 1605 1606 /* release get taken in nvmet_fc_find_target_assoc */ 1607 nvmet_fc_tgt_a_put(iod->assoc); 1608 1609 if (del_assoc) 1610 nvmet_fc_delete_target_assoc(iod->assoc); 1611 } 1612 1613 1614 /* *********************** NVME Ctrl Routines **************************** */ 1615 1616 1617 static void nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req); 1618 1619 static const struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops; 1620 1621 static void 1622 nvmet_fc_xmt_ls_rsp_done(struct nvmefc_tgt_ls_req *lsreq) 1623 { 1624 struct nvmet_fc_ls_iod *iod = lsreq->nvmet_fc_private; 1625 struct nvmet_fc_tgtport *tgtport = iod->tgtport; 1626 1627 fc_dma_sync_single_for_cpu(tgtport->dev, iod->rspdma, 1628 NVME_FC_MAX_LS_BUFFER_SIZE, DMA_TO_DEVICE); 1629 nvmet_fc_free_ls_iod(tgtport, iod); 1630 nvmet_fc_tgtport_put(tgtport); 1631 } 1632 1633 static void 1634 nvmet_fc_xmt_ls_rsp(struct nvmet_fc_tgtport *tgtport, 1635 struct nvmet_fc_ls_iod *iod) 1636 { 1637 int ret; 1638 1639 fc_dma_sync_single_for_device(tgtport->dev, iod->rspdma, 1640 NVME_FC_MAX_LS_BUFFER_SIZE, DMA_TO_DEVICE); 1641 1642 ret = tgtport->ops->xmt_ls_rsp(&tgtport->fc_target_port, iod->lsreq); 1643 if (ret) 1644 nvmet_fc_xmt_ls_rsp_done(iod->lsreq); 1645 } 1646 1647 /* 1648 * Actual processing routine for received FC-NVME LS Requests from the LLD 1649 */ 1650 static void 1651 nvmet_fc_handle_ls_rqst(struct nvmet_fc_tgtport *tgtport, 1652 struct nvmet_fc_ls_iod *iod) 1653 { 1654 struct fcnvme_ls_rqst_w0 *w0 = 1655 (struct fcnvme_ls_rqst_w0 *)iod->rqstbuf; 1656 1657 iod->lsreq->nvmet_fc_private = iod; 1658 iod->lsreq->rspbuf = iod->rspbuf; 1659 iod->lsreq->rspdma = iod->rspdma; 1660 iod->lsreq->done = nvmet_fc_xmt_ls_rsp_done; 1661 /* Be preventative. handlers will later set to valid length */ 1662 iod->lsreq->rsplen = 0; 1663 1664 iod->assoc = NULL; 1665 1666 /* 1667 * handlers: 1668 * parse request input, execute the request, and format the 1669 * LS response 1670 */ 1671 switch (w0->ls_cmd) { 1672 case FCNVME_LS_CREATE_ASSOCIATION: 1673 /* Creates Association and initial Admin Queue/Connection */ 1674 nvmet_fc_ls_create_association(tgtport, iod); 1675 break; 1676 case FCNVME_LS_CREATE_CONNECTION: 1677 /* Creates an IO Queue/Connection */ 1678 nvmet_fc_ls_create_connection(tgtport, iod); 1679 break; 1680 case FCNVME_LS_DISCONNECT: 1681 /* Terminate a Queue/Connection or the Association */ 1682 nvmet_fc_ls_disconnect(tgtport, iod); 1683 break; 1684 default: 1685 iod->lsreq->rsplen = nvmet_fc_format_rjt(iod->rspbuf, 1686 NVME_FC_MAX_LS_BUFFER_SIZE, w0->ls_cmd, 1687 FCNVME_RJT_RC_INVAL, FCNVME_RJT_EXP_NONE, 0); 1688 } 1689 1690 nvmet_fc_xmt_ls_rsp(tgtport, iod); 1691 } 1692 1693 /* 1694 * Actual processing routine for received FC-NVME LS Requests from the LLD 1695 */ 1696 static void 1697 nvmet_fc_handle_ls_rqst_work(struct work_struct *work) 1698 { 1699 struct nvmet_fc_ls_iod *iod = 1700 container_of(work, struct nvmet_fc_ls_iod, work); 1701 struct nvmet_fc_tgtport *tgtport = iod->tgtport; 1702 1703 nvmet_fc_handle_ls_rqst(tgtport, iod); 1704 } 1705 1706 1707 /** 1708 * nvmet_fc_rcv_ls_req - transport entry point called by an LLDD 1709 * upon the reception of a NVME LS request. 1710 * 1711 * The nvmet-fc layer will copy payload to an internal structure for 1712 * processing. As such, upon completion of the routine, the LLDD may 1713 * immediately free/reuse the LS request buffer passed in the call. 1714 * 1715 * If this routine returns error, the LLDD should abort the exchange. 1716 * 1717 * @target_port: pointer to the (registered) target port the LS was 1718 * received on. 1719 * @lsreq: pointer to a lsreq request structure to be used to reference 1720 * the exchange corresponding to the LS. 1721 * @lsreqbuf: pointer to the buffer containing the LS Request 1722 * @lsreqbuf_len: length, in bytes, of the received LS request 1723 */ 1724 int 1725 nvmet_fc_rcv_ls_req(struct nvmet_fc_target_port *target_port, 1726 struct nvmefc_tgt_ls_req *lsreq, 1727 void *lsreqbuf, u32 lsreqbuf_len) 1728 { 1729 struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port); 1730 struct nvmet_fc_ls_iod *iod; 1731 1732 if (lsreqbuf_len > NVME_FC_MAX_LS_BUFFER_SIZE) 1733 return -E2BIG; 1734 1735 if (!nvmet_fc_tgtport_get(tgtport)) 1736 return -ESHUTDOWN; 1737 1738 iod = nvmet_fc_alloc_ls_iod(tgtport); 1739 if (!iod) { 1740 nvmet_fc_tgtport_put(tgtport); 1741 return -ENOENT; 1742 } 1743 1744 iod->lsreq = lsreq; 1745 iod->fcpreq = NULL; 1746 memcpy(iod->rqstbuf, lsreqbuf, lsreqbuf_len); 1747 iod->rqstdatalen = lsreqbuf_len; 1748 1749 schedule_work(&iod->work); 1750 1751 return 0; 1752 } 1753 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_ls_req); 1754 1755 1756 /* 1757 * ********************** 1758 * Start of FCP handling 1759 * ********************** 1760 */ 1761 1762 static int 1763 nvmet_fc_alloc_tgt_pgs(struct nvmet_fc_fcp_iod *fod) 1764 { 1765 struct scatterlist *sg; 1766 unsigned int nent; 1767 1768 sg = sgl_alloc(fod->req.transfer_len, GFP_KERNEL, &nent); 1769 if (!sg) 1770 goto out; 1771 1772 fod->data_sg = sg; 1773 fod->data_sg_cnt = nent; 1774 fod->data_sg_cnt = fc_dma_map_sg(fod->tgtport->dev, sg, nent, 1775 ((fod->io_dir == NVMET_FCP_WRITE) ? 1776 DMA_FROM_DEVICE : DMA_TO_DEVICE)); 1777 /* note: write from initiator perspective */ 1778 fod->next_sg = fod->data_sg; 1779 1780 return 0; 1781 1782 out: 1783 return NVME_SC_INTERNAL; 1784 } 1785 1786 static void 1787 nvmet_fc_free_tgt_pgs(struct nvmet_fc_fcp_iod *fod) 1788 { 1789 if (!fod->data_sg || !fod->data_sg_cnt) 1790 return; 1791 1792 fc_dma_unmap_sg(fod->tgtport->dev, fod->data_sg, fod->data_sg_cnt, 1793 ((fod->io_dir == NVMET_FCP_WRITE) ? 1794 DMA_FROM_DEVICE : DMA_TO_DEVICE)); 1795 sgl_free(fod->data_sg); 1796 fod->data_sg = NULL; 1797 fod->data_sg_cnt = 0; 1798 } 1799 1800 1801 static bool 1802 queue_90percent_full(struct nvmet_fc_tgt_queue *q, u32 sqhd) 1803 { 1804 u32 sqtail, used; 1805 1806 /* egad, this is ugly. And sqtail is just a best guess */ 1807 sqtail = atomic_read(&q->sqtail) % q->sqsize; 1808 1809 used = (sqtail < sqhd) ? (sqtail + q->sqsize - sqhd) : (sqtail - sqhd); 1810 return ((used * 10) >= (((u32)(q->sqsize - 1) * 9))); 1811 } 1812 1813 /* 1814 * Prep RSP payload. 1815 * May be a NVMET_FCOP_RSP or NVMET_FCOP_READDATA_RSP op 1816 */ 1817 static void 1818 nvmet_fc_prep_fcp_rsp(struct nvmet_fc_tgtport *tgtport, 1819 struct nvmet_fc_fcp_iod *fod) 1820 { 1821 struct nvme_fc_ersp_iu *ersp = &fod->rspiubuf; 1822 struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common; 1823 struct nvme_completion *cqe = &ersp->cqe; 1824 u32 *cqewd = (u32 *)cqe; 1825 bool send_ersp = false; 1826 u32 rsn, rspcnt, xfr_length; 1827 1828 if (fod->fcpreq->op == NVMET_FCOP_READDATA_RSP) 1829 xfr_length = fod->req.transfer_len; 1830 else 1831 xfr_length = fod->offset; 1832 1833 /* 1834 * check to see if we can send a 0's rsp. 1835 * Note: to send a 0's response, the NVME-FC host transport will 1836 * recreate the CQE. The host transport knows: sq id, SQHD (last 1837 * seen in an ersp), and command_id. Thus it will create a 1838 * zero-filled CQE with those known fields filled in. Transport 1839 * must send an ersp for any condition where the cqe won't match 1840 * this. 1841 * 1842 * Here are the FC-NVME mandated cases where we must send an ersp: 1843 * every N responses, where N=ersp_ratio 1844 * force fabric commands to send ersp's (not in FC-NVME but good 1845 * practice) 1846 * normal cmds: any time status is non-zero, or status is zero 1847 * but words 0 or 1 are non-zero. 1848 * the SQ is 90% or more full 1849 * the cmd is a fused command 1850 * transferred data length not equal to cmd iu length 1851 */ 1852 rspcnt = atomic_inc_return(&fod->queue->zrspcnt); 1853 if (!(rspcnt % fod->queue->ersp_ratio) || 1854 sqe->opcode == nvme_fabrics_command || 1855 xfr_length != fod->req.transfer_len || 1856 (le16_to_cpu(cqe->status) & 0xFFFE) || cqewd[0] || cqewd[1] || 1857 (sqe->flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND)) || 1858 queue_90percent_full(fod->queue, le16_to_cpu(cqe->sq_head))) 1859 send_ersp = true; 1860 1861 /* re-set the fields */ 1862 fod->fcpreq->rspaddr = ersp; 1863 fod->fcpreq->rspdma = fod->rspdma; 1864 1865 if (!send_ersp) { 1866 memset(ersp, 0, NVME_FC_SIZEOF_ZEROS_RSP); 1867 fod->fcpreq->rsplen = NVME_FC_SIZEOF_ZEROS_RSP; 1868 } else { 1869 ersp->iu_len = cpu_to_be16(sizeof(*ersp)/sizeof(u32)); 1870 rsn = atomic_inc_return(&fod->queue->rsn); 1871 ersp->rsn = cpu_to_be32(rsn); 1872 ersp->xfrd_len = cpu_to_be32(xfr_length); 1873 fod->fcpreq->rsplen = sizeof(*ersp); 1874 } 1875 1876 fc_dma_sync_single_for_device(tgtport->dev, fod->rspdma, 1877 sizeof(fod->rspiubuf), DMA_TO_DEVICE); 1878 } 1879 1880 static void nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq); 1881 1882 static void 1883 nvmet_fc_abort_op(struct nvmet_fc_tgtport *tgtport, 1884 struct nvmet_fc_fcp_iod *fod) 1885 { 1886 struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq; 1887 1888 /* data no longer needed */ 1889 nvmet_fc_free_tgt_pgs(fod); 1890 1891 /* 1892 * if an ABTS was received or we issued the fcp_abort early 1893 * don't call abort routine again. 1894 */ 1895 /* no need to take lock - lock was taken earlier to get here */ 1896 if (!fod->aborted) 1897 tgtport->ops->fcp_abort(&tgtport->fc_target_port, fcpreq); 1898 1899 nvmet_fc_free_fcp_iod(fod->queue, fod); 1900 } 1901 1902 static void 1903 nvmet_fc_xmt_fcp_rsp(struct nvmet_fc_tgtport *tgtport, 1904 struct nvmet_fc_fcp_iod *fod) 1905 { 1906 int ret; 1907 1908 fod->fcpreq->op = NVMET_FCOP_RSP; 1909 fod->fcpreq->timeout = 0; 1910 1911 nvmet_fc_prep_fcp_rsp(tgtport, fod); 1912 1913 ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq); 1914 if (ret) 1915 nvmet_fc_abort_op(tgtport, fod); 1916 } 1917 1918 static void 1919 nvmet_fc_transfer_fcp_data(struct nvmet_fc_tgtport *tgtport, 1920 struct nvmet_fc_fcp_iod *fod, u8 op) 1921 { 1922 struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq; 1923 struct scatterlist *sg = fod->next_sg; 1924 unsigned long flags; 1925 u32 remaininglen = fod->req.transfer_len - fod->offset; 1926 u32 tlen = 0; 1927 int ret; 1928 1929 fcpreq->op = op; 1930 fcpreq->offset = fod->offset; 1931 fcpreq->timeout = NVME_FC_TGTOP_TIMEOUT_SEC; 1932 1933 /* 1934 * for next sequence: 1935 * break at a sg element boundary 1936 * attempt to keep sequence length capped at 1937 * NVMET_FC_MAX_SEQ_LENGTH but allow sequence to 1938 * be longer if a single sg element is larger 1939 * than that amount. This is done to avoid creating 1940 * a new sg list to use for the tgtport api. 1941 */ 1942 fcpreq->sg = sg; 1943 fcpreq->sg_cnt = 0; 1944 while (tlen < remaininglen && 1945 fcpreq->sg_cnt < tgtport->max_sg_cnt && 1946 tlen + sg_dma_len(sg) < NVMET_FC_MAX_SEQ_LENGTH) { 1947 fcpreq->sg_cnt++; 1948 tlen += sg_dma_len(sg); 1949 sg = sg_next(sg); 1950 } 1951 if (tlen < remaininglen && fcpreq->sg_cnt == 0) { 1952 fcpreq->sg_cnt++; 1953 tlen += min_t(u32, sg_dma_len(sg), remaininglen); 1954 sg = sg_next(sg); 1955 } 1956 if (tlen < remaininglen) 1957 fod->next_sg = sg; 1958 else 1959 fod->next_sg = NULL; 1960 1961 fcpreq->transfer_length = tlen; 1962 fcpreq->transferred_length = 0; 1963 fcpreq->fcp_error = 0; 1964 fcpreq->rsplen = 0; 1965 1966 /* 1967 * If the last READDATA request: check if LLDD supports 1968 * combined xfr with response. 1969 */ 1970 if ((op == NVMET_FCOP_READDATA) && 1971 ((fod->offset + fcpreq->transfer_length) == fod->req.transfer_len) && 1972 (tgtport->ops->target_features & NVMET_FCTGTFEAT_READDATA_RSP)) { 1973 fcpreq->op = NVMET_FCOP_READDATA_RSP; 1974 nvmet_fc_prep_fcp_rsp(tgtport, fod); 1975 } 1976 1977 ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq); 1978 if (ret) { 1979 /* 1980 * should be ok to set w/o lock as its in the thread of 1981 * execution (not an async timer routine) and doesn't 1982 * contend with any clearing action 1983 */ 1984 fod->abort = true; 1985 1986 if (op == NVMET_FCOP_WRITEDATA) { 1987 spin_lock_irqsave(&fod->flock, flags); 1988 fod->writedataactive = false; 1989 spin_unlock_irqrestore(&fod->flock, flags); 1990 nvmet_req_complete(&fod->req, NVME_SC_INTERNAL); 1991 } else /* NVMET_FCOP_READDATA or NVMET_FCOP_READDATA_RSP */ { 1992 fcpreq->fcp_error = ret; 1993 fcpreq->transferred_length = 0; 1994 nvmet_fc_xmt_fcp_op_done(fod->fcpreq); 1995 } 1996 } 1997 } 1998 1999 static inline bool 2000 __nvmet_fc_fod_op_abort(struct nvmet_fc_fcp_iod *fod, bool abort) 2001 { 2002 struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq; 2003 struct nvmet_fc_tgtport *tgtport = fod->tgtport; 2004 2005 /* if in the middle of an io and we need to tear down */ 2006 if (abort) { 2007 if (fcpreq->op == NVMET_FCOP_WRITEDATA) { 2008 nvmet_req_complete(&fod->req, NVME_SC_INTERNAL); 2009 return true; 2010 } 2011 2012 nvmet_fc_abort_op(tgtport, fod); 2013 return true; 2014 } 2015 2016 return false; 2017 } 2018 2019 /* 2020 * actual done handler for FCP operations when completed by the lldd 2021 */ 2022 static void 2023 nvmet_fc_fod_op_done(struct nvmet_fc_fcp_iod *fod) 2024 { 2025 struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq; 2026 struct nvmet_fc_tgtport *tgtport = fod->tgtport; 2027 unsigned long flags; 2028 bool abort; 2029 2030 spin_lock_irqsave(&fod->flock, flags); 2031 abort = fod->abort; 2032 fod->writedataactive = false; 2033 spin_unlock_irqrestore(&fod->flock, flags); 2034 2035 switch (fcpreq->op) { 2036 2037 case NVMET_FCOP_WRITEDATA: 2038 if (__nvmet_fc_fod_op_abort(fod, abort)) 2039 return; 2040 if (fcpreq->fcp_error || 2041 fcpreq->transferred_length != fcpreq->transfer_length) { 2042 spin_lock(&fod->flock); 2043 fod->abort = true; 2044 spin_unlock(&fod->flock); 2045 2046 nvmet_req_complete(&fod->req, NVME_SC_INTERNAL); 2047 return; 2048 } 2049 2050 fod->offset += fcpreq->transferred_length; 2051 if (fod->offset != fod->req.transfer_len) { 2052 spin_lock_irqsave(&fod->flock, flags); 2053 fod->writedataactive = true; 2054 spin_unlock_irqrestore(&fod->flock, flags); 2055 2056 /* transfer the next chunk */ 2057 nvmet_fc_transfer_fcp_data(tgtport, fod, 2058 NVMET_FCOP_WRITEDATA); 2059 return; 2060 } 2061 2062 /* data transfer complete, resume with nvmet layer */ 2063 nvmet_req_execute(&fod->req); 2064 break; 2065 2066 case NVMET_FCOP_READDATA: 2067 case NVMET_FCOP_READDATA_RSP: 2068 if (__nvmet_fc_fod_op_abort(fod, abort)) 2069 return; 2070 if (fcpreq->fcp_error || 2071 fcpreq->transferred_length != fcpreq->transfer_length) { 2072 nvmet_fc_abort_op(tgtport, fod); 2073 return; 2074 } 2075 2076 /* success */ 2077 2078 if (fcpreq->op == NVMET_FCOP_READDATA_RSP) { 2079 /* data no longer needed */ 2080 nvmet_fc_free_tgt_pgs(fod); 2081 nvmet_fc_free_fcp_iod(fod->queue, fod); 2082 return; 2083 } 2084 2085 fod->offset += fcpreq->transferred_length; 2086 if (fod->offset != fod->req.transfer_len) { 2087 /* transfer the next chunk */ 2088 nvmet_fc_transfer_fcp_data(tgtport, fod, 2089 NVMET_FCOP_READDATA); 2090 return; 2091 } 2092 2093 /* data transfer complete, send response */ 2094 2095 /* data no longer needed */ 2096 nvmet_fc_free_tgt_pgs(fod); 2097 2098 nvmet_fc_xmt_fcp_rsp(tgtport, fod); 2099 2100 break; 2101 2102 case NVMET_FCOP_RSP: 2103 if (__nvmet_fc_fod_op_abort(fod, abort)) 2104 return; 2105 nvmet_fc_free_fcp_iod(fod->queue, fod); 2106 break; 2107 2108 default: 2109 break; 2110 } 2111 } 2112 2113 static void 2114 nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq) 2115 { 2116 struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private; 2117 2118 nvmet_fc_fod_op_done(fod); 2119 } 2120 2121 /* 2122 * actual completion handler after execution by the nvmet layer 2123 */ 2124 static void 2125 __nvmet_fc_fcp_nvme_cmd_done(struct nvmet_fc_tgtport *tgtport, 2126 struct nvmet_fc_fcp_iod *fod, int status) 2127 { 2128 struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common; 2129 struct nvme_completion *cqe = &fod->rspiubuf.cqe; 2130 unsigned long flags; 2131 bool abort; 2132 2133 spin_lock_irqsave(&fod->flock, flags); 2134 abort = fod->abort; 2135 spin_unlock_irqrestore(&fod->flock, flags); 2136 2137 /* if we have a CQE, snoop the last sq_head value */ 2138 if (!status) 2139 fod->queue->sqhd = cqe->sq_head; 2140 2141 if (abort) { 2142 nvmet_fc_abort_op(tgtport, fod); 2143 return; 2144 } 2145 2146 /* if an error handling the cmd post initial parsing */ 2147 if (status) { 2148 /* fudge up a failed CQE status for our transport error */ 2149 memset(cqe, 0, sizeof(*cqe)); 2150 cqe->sq_head = fod->queue->sqhd; /* echo last cqe sqhd */ 2151 cqe->sq_id = cpu_to_le16(fod->queue->qid); 2152 cqe->command_id = sqe->command_id; 2153 cqe->status = cpu_to_le16(status); 2154 } else { 2155 2156 /* 2157 * try to push the data even if the SQE status is non-zero. 2158 * There may be a status where data still was intended to 2159 * be moved 2160 */ 2161 if ((fod->io_dir == NVMET_FCP_READ) && (fod->data_sg_cnt)) { 2162 /* push the data over before sending rsp */ 2163 nvmet_fc_transfer_fcp_data(tgtport, fod, 2164 NVMET_FCOP_READDATA); 2165 return; 2166 } 2167 2168 /* writes & no data - fall thru */ 2169 } 2170 2171 /* data no longer needed */ 2172 nvmet_fc_free_tgt_pgs(fod); 2173 2174 nvmet_fc_xmt_fcp_rsp(tgtport, fod); 2175 } 2176 2177 2178 static void 2179 nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req) 2180 { 2181 struct nvmet_fc_fcp_iod *fod = nvmet_req_to_fod(nvme_req); 2182 struct nvmet_fc_tgtport *tgtport = fod->tgtport; 2183 2184 __nvmet_fc_fcp_nvme_cmd_done(tgtport, fod, 0); 2185 } 2186 2187 2188 /* 2189 * Actual processing routine for received FC-NVME I/O Requests from the LLD 2190 */ 2191 static void 2192 nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport, 2193 struct nvmet_fc_fcp_iod *fod) 2194 { 2195 struct nvme_fc_cmd_iu *cmdiu = &fod->cmdiubuf; 2196 u32 xfrlen = be32_to_cpu(cmdiu->data_len); 2197 int ret; 2198 2199 /* 2200 * if there is no nvmet mapping to the targetport there 2201 * shouldn't be requests. just terminate them. 2202 */ 2203 if (!tgtport->pe) 2204 goto transport_error; 2205 2206 /* 2207 * Fused commands are currently not supported in the linux 2208 * implementation. 2209 * 2210 * As such, the implementation of the FC transport does not 2211 * look at the fused commands and order delivery to the upper 2212 * layer until we have both based on csn. 2213 */ 2214 2215 fod->fcpreq->done = nvmet_fc_xmt_fcp_op_done; 2216 2217 if (cmdiu->flags & FCNVME_CMD_FLAGS_WRITE) { 2218 fod->io_dir = NVMET_FCP_WRITE; 2219 if (!nvme_is_write(&cmdiu->sqe)) 2220 goto transport_error; 2221 } else if (cmdiu->flags & FCNVME_CMD_FLAGS_READ) { 2222 fod->io_dir = NVMET_FCP_READ; 2223 if (nvme_is_write(&cmdiu->sqe)) 2224 goto transport_error; 2225 } else { 2226 fod->io_dir = NVMET_FCP_NODATA; 2227 if (xfrlen) 2228 goto transport_error; 2229 } 2230 2231 fod->req.cmd = &fod->cmdiubuf.sqe; 2232 fod->req.rsp = &fod->rspiubuf.cqe; 2233 fod->req.port = tgtport->pe->port; 2234 2235 /* clear any response payload */ 2236 memset(&fod->rspiubuf, 0, sizeof(fod->rspiubuf)); 2237 2238 fod->data_sg = NULL; 2239 fod->data_sg_cnt = 0; 2240 2241 ret = nvmet_req_init(&fod->req, 2242 &fod->queue->nvme_cq, 2243 &fod->queue->nvme_sq, 2244 &nvmet_fc_tgt_fcp_ops); 2245 if (!ret) { 2246 /* bad SQE content or invalid ctrl state */ 2247 /* nvmet layer has already called op done to send rsp. */ 2248 return; 2249 } 2250 2251 fod->req.transfer_len = xfrlen; 2252 2253 /* keep a running counter of tail position */ 2254 atomic_inc(&fod->queue->sqtail); 2255 2256 if (fod->req.transfer_len) { 2257 ret = nvmet_fc_alloc_tgt_pgs(fod); 2258 if (ret) { 2259 nvmet_req_complete(&fod->req, ret); 2260 return; 2261 } 2262 } 2263 fod->req.sg = fod->data_sg; 2264 fod->req.sg_cnt = fod->data_sg_cnt; 2265 fod->offset = 0; 2266 2267 if (fod->io_dir == NVMET_FCP_WRITE) { 2268 /* pull the data over before invoking nvmet layer */ 2269 nvmet_fc_transfer_fcp_data(tgtport, fod, NVMET_FCOP_WRITEDATA); 2270 return; 2271 } 2272 2273 /* 2274 * Reads or no data: 2275 * 2276 * can invoke the nvmet_layer now. If read data, cmd completion will 2277 * push the data 2278 */ 2279 nvmet_req_execute(&fod->req); 2280 return; 2281 2282 transport_error: 2283 nvmet_fc_abort_op(tgtport, fod); 2284 } 2285 2286 /** 2287 * nvmet_fc_rcv_fcp_req - transport entry point called by an LLDD 2288 * upon the reception of a NVME FCP CMD IU. 2289 * 2290 * Pass a FC-NVME FCP CMD IU received from the FC link to the nvmet-fc 2291 * layer for processing. 2292 * 2293 * The nvmet_fc layer allocates a local job structure (struct 2294 * nvmet_fc_fcp_iod) from the queue for the io and copies the 2295 * CMD IU buffer to the job structure. As such, on a successful 2296 * completion (returns 0), the LLDD may immediately free/reuse 2297 * the CMD IU buffer passed in the call. 2298 * 2299 * However, in some circumstances, due to the packetized nature of FC 2300 * and the api of the FC LLDD which may issue a hw command to send the 2301 * response, but the LLDD may not get the hw completion for that command 2302 * and upcall the nvmet_fc layer before a new command may be 2303 * asynchronously received - its possible for a command to be received 2304 * before the LLDD and nvmet_fc have recycled the job structure. It gives 2305 * the appearance of more commands received than fits in the sq. 2306 * To alleviate this scenario, a temporary queue is maintained in the 2307 * transport for pending LLDD requests waiting for a queue job structure. 2308 * In these "overrun" cases, a temporary queue element is allocated 2309 * the LLDD request and CMD iu buffer information remembered, and the 2310 * routine returns a -EOVERFLOW status. Subsequently, when a queue job 2311 * structure is freed, it is immediately reallocated for anything on the 2312 * pending request list. The LLDDs defer_rcv() callback is called, 2313 * informing the LLDD that it may reuse the CMD IU buffer, and the io 2314 * is then started normally with the transport. 2315 * 2316 * The LLDD, when receiving an -EOVERFLOW completion status, is to treat 2317 * the completion as successful but must not reuse the CMD IU buffer 2318 * until the LLDD's defer_rcv() callback has been called for the 2319 * corresponding struct nvmefc_tgt_fcp_req pointer. 2320 * 2321 * If there is any other condition in which an error occurs, the 2322 * transport will return a non-zero status indicating the error. 2323 * In all cases other than -EOVERFLOW, the transport has not accepted the 2324 * request and the LLDD should abort the exchange. 2325 * 2326 * @target_port: pointer to the (registered) target port the FCP CMD IU 2327 * was received on. 2328 * @fcpreq: pointer to a fcpreq request structure to be used to reference 2329 * the exchange corresponding to the FCP Exchange. 2330 * @cmdiubuf: pointer to the buffer containing the FCP CMD IU 2331 * @cmdiubuf_len: length, in bytes, of the received FCP CMD IU 2332 */ 2333 int 2334 nvmet_fc_rcv_fcp_req(struct nvmet_fc_target_port *target_port, 2335 struct nvmefc_tgt_fcp_req *fcpreq, 2336 void *cmdiubuf, u32 cmdiubuf_len) 2337 { 2338 struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port); 2339 struct nvme_fc_cmd_iu *cmdiu = cmdiubuf; 2340 struct nvmet_fc_tgt_queue *queue; 2341 struct nvmet_fc_fcp_iod *fod; 2342 struct nvmet_fc_defer_fcp_req *deferfcp; 2343 unsigned long flags; 2344 2345 /* validate iu, so the connection id can be used to find the queue */ 2346 if ((cmdiubuf_len != sizeof(*cmdiu)) || 2347 (cmdiu->scsi_id != NVME_CMD_SCSI_ID) || 2348 (cmdiu->fc_id != NVME_CMD_FC_ID) || 2349 (be16_to_cpu(cmdiu->iu_len) != (sizeof(*cmdiu)/4))) 2350 return -EIO; 2351 2352 queue = nvmet_fc_find_target_queue(tgtport, 2353 be64_to_cpu(cmdiu->connection_id)); 2354 if (!queue) 2355 return -ENOTCONN; 2356 2357 /* 2358 * note: reference taken by find_target_queue 2359 * After successful fod allocation, the fod will inherit the 2360 * ownership of that reference and will remove the reference 2361 * when the fod is freed. 2362 */ 2363 2364 spin_lock_irqsave(&queue->qlock, flags); 2365 2366 fod = nvmet_fc_alloc_fcp_iod(queue); 2367 if (fod) { 2368 spin_unlock_irqrestore(&queue->qlock, flags); 2369 2370 fcpreq->nvmet_fc_private = fod; 2371 fod->fcpreq = fcpreq; 2372 2373 memcpy(&fod->cmdiubuf, cmdiubuf, cmdiubuf_len); 2374 2375 nvmet_fc_queue_fcp_req(tgtport, queue, fcpreq); 2376 2377 return 0; 2378 } 2379 2380 if (!tgtport->ops->defer_rcv) { 2381 spin_unlock_irqrestore(&queue->qlock, flags); 2382 /* release the queue lookup reference */ 2383 nvmet_fc_tgt_q_put(queue); 2384 return -ENOENT; 2385 } 2386 2387 deferfcp = list_first_entry_or_null(&queue->avail_defer_list, 2388 struct nvmet_fc_defer_fcp_req, req_list); 2389 if (deferfcp) { 2390 /* Just re-use one that was previously allocated */ 2391 list_del(&deferfcp->req_list); 2392 } else { 2393 spin_unlock_irqrestore(&queue->qlock, flags); 2394 2395 /* Now we need to dynamically allocate one */ 2396 deferfcp = kmalloc(sizeof(*deferfcp), GFP_KERNEL); 2397 if (!deferfcp) { 2398 /* release the queue lookup reference */ 2399 nvmet_fc_tgt_q_put(queue); 2400 return -ENOMEM; 2401 } 2402 spin_lock_irqsave(&queue->qlock, flags); 2403 } 2404 2405 /* For now, use rspaddr / rsplen to save payload information */ 2406 fcpreq->rspaddr = cmdiubuf; 2407 fcpreq->rsplen = cmdiubuf_len; 2408 deferfcp->fcp_req = fcpreq; 2409 2410 /* defer processing till a fod becomes available */ 2411 list_add_tail(&deferfcp->req_list, &queue->pending_cmd_list); 2412 2413 /* NOTE: the queue lookup reference is still valid */ 2414 2415 spin_unlock_irqrestore(&queue->qlock, flags); 2416 2417 return -EOVERFLOW; 2418 } 2419 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_req); 2420 2421 /** 2422 * nvmet_fc_rcv_fcp_abort - transport entry point called by an LLDD 2423 * upon the reception of an ABTS for a FCP command 2424 * 2425 * Notify the transport that an ABTS has been received for a FCP command 2426 * that had been given to the transport via nvmet_fc_rcv_fcp_req(). The 2427 * LLDD believes the command is still being worked on 2428 * (template_ops->fcp_req_release() has not been called). 2429 * 2430 * The transport will wait for any outstanding work (an op to the LLDD, 2431 * which the lldd should complete with error due to the ABTS; or the 2432 * completion from the nvmet layer of the nvme command), then will 2433 * stop processing and call the nvmet_fc_rcv_fcp_req() callback to 2434 * return the i/o context to the LLDD. The LLDD may send the BA_ACC 2435 * to the ABTS either after return from this function (assuming any 2436 * outstanding op work has been terminated) or upon the callback being 2437 * called. 2438 * 2439 * @target_port: pointer to the (registered) target port the FCP CMD IU 2440 * was received on. 2441 * @fcpreq: pointer to the fcpreq request structure that corresponds 2442 * to the exchange that received the ABTS. 2443 */ 2444 void 2445 nvmet_fc_rcv_fcp_abort(struct nvmet_fc_target_port *target_port, 2446 struct nvmefc_tgt_fcp_req *fcpreq) 2447 { 2448 struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private; 2449 struct nvmet_fc_tgt_queue *queue; 2450 unsigned long flags; 2451 2452 if (!fod || fod->fcpreq != fcpreq) 2453 /* job appears to have already completed, ignore abort */ 2454 return; 2455 2456 queue = fod->queue; 2457 2458 spin_lock_irqsave(&queue->qlock, flags); 2459 if (fod->active) { 2460 /* 2461 * mark as abort. The abort handler, invoked upon completion 2462 * of any work, will detect the aborted status and do the 2463 * callback. 2464 */ 2465 spin_lock(&fod->flock); 2466 fod->abort = true; 2467 fod->aborted = true; 2468 spin_unlock(&fod->flock); 2469 } 2470 spin_unlock_irqrestore(&queue->qlock, flags); 2471 } 2472 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_abort); 2473 2474 2475 struct nvmet_fc_traddr { 2476 u64 nn; 2477 u64 pn; 2478 }; 2479 2480 static int 2481 __nvme_fc_parse_u64(substring_t *sstr, u64 *val) 2482 { 2483 u64 token64; 2484 2485 if (match_u64(sstr, &token64)) 2486 return -EINVAL; 2487 *val = token64; 2488 2489 return 0; 2490 } 2491 2492 /* 2493 * This routine validates and extracts the WWN's from the TRADDR string. 2494 * As kernel parsers need the 0x to determine number base, universally 2495 * build string to parse with 0x prefix before parsing name strings. 2496 */ 2497 static int 2498 nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen) 2499 { 2500 char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1]; 2501 substring_t wwn = { name, &name[sizeof(name)-1] }; 2502 int nnoffset, pnoffset; 2503 2504 /* validate if string is one of the 2 allowed formats */ 2505 if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH && 2506 !strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) && 2507 !strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET], 2508 "pn-0x", NVME_FC_TRADDR_OXNNLEN)) { 2509 nnoffset = NVME_FC_TRADDR_OXNNLEN; 2510 pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET + 2511 NVME_FC_TRADDR_OXNNLEN; 2512 } else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH && 2513 !strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) && 2514 !strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET], 2515 "pn-", NVME_FC_TRADDR_NNLEN))) { 2516 nnoffset = NVME_FC_TRADDR_NNLEN; 2517 pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN; 2518 } else 2519 goto out_einval; 2520 2521 name[0] = '0'; 2522 name[1] = 'x'; 2523 name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0; 2524 2525 memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN); 2526 if (__nvme_fc_parse_u64(&wwn, &traddr->nn)) 2527 goto out_einval; 2528 2529 memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN); 2530 if (__nvme_fc_parse_u64(&wwn, &traddr->pn)) 2531 goto out_einval; 2532 2533 return 0; 2534 2535 out_einval: 2536 pr_warn("%s: bad traddr string\n", __func__); 2537 return -EINVAL; 2538 } 2539 2540 static int 2541 nvmet_fc_add_port(struct nvmet_port *port) 2542 { 2543 struct nvmet_fc_tgtport *tgtport; 2544 struct nvmet_fc_port_entry *pe; 2545 struct nvmet_fc_traddr traddr = { 0L, 0L }; 2546 unsigned long flags; 2547 int ret; 2548 2549 /* validate the address info */ 2550 if ((port->disc_addr.trtype != NVMF_TRTYPE_FC) || 2551 (port->disc_addr.adrfam != NVMF_ADDR_FAMILY_FC)) 2552 return -EINVAL; 2553 2554 /* map the traddr address info to a target port */ 2555 2556 ret = nvme_fc_parse_traddr(&traddr, port->disc_addr.traddr, 2557 sizeof(port->disc_addr.traddr)); 2558 if (ret) 2559 return ret; 2560 2561 pe = kzalloc(sizeof(*pe), GFP_KERNEL); 2562 if (!pe) 2563 return -ENOMEM; 2564 2565 ret = -ENXIO; 2566 spin_lock_irqsave(&nvmet_fc_tgtlock, flags); 2567 list_for_each_entry(tgtport, &nvmet_fc_target_list, tgt_list) { 2568 if ((tgtport->fc_target_port.node_name == traddr.nn) && 2569 (tgtport->fc_target_port.port_name == traddr.pn)) { 2570 /* a FC port can only be 1 nvmet port id */ 2571 if (!tgtport->pe) { 2572 nvmet_fc_portentry_bind(tgtport, pe, port); 2573 ret = 0; 2574 } else 2575 ret = -EALREADY; 2576 break; 2577 } 2578 } 2579 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags); 2580 2581 if (ret) 2582 kfree(pe); 2583 2584 return ret; 2585 } 2586 2587 static void 2588 nvmet_fc_remove_port(struct nvmet_port *port) 2589 { 2590 struct nvmet_fc_port_entry *pe = port->priv; 2591 2592 nvmet_fc_portentry_unbind(pe); 2593 2594 kfree(pe); 2595 } 2596 2597 static const struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops = { 2598 .owner = THIS_MODULE, 2599 .type = NVMF_TRTYPE_FC, 2600 .msdbd = 1, 2601 .add_port = nvmet_fc_add_port, 2602 .remove_port = nvmet_fc_remove_port, 2603 .queue_response = nvmet_fc_fcp_nvme_cmd_done, 2604 .delete_ctrl = nvmet_fc_delete_ctrl, 2605 }; 2606 2607 static int __init nvmet_fc_init_module(void) 2608 { 2609 return nvmet_register_transport(&nvmet_fc_tgt_fcp_ops); 2610 } 2611 2612 static void __exit nvmet_fc_exit_module(void) 2613 { 2614 /* sanity check - all lports should be removed */ 2615 if (!list_empty(&nvmet_fc_target_list)) 2616 pr_warn("%s: targetport list not empty\n", __func__); 2617 2618 nvmet_unregister_transport(&nvmet_fc_tgt_fcp_ops); 2619 2620 ida_destroy(&nvmet_fc_tgtport_cnt); 2621 } 2622 2623 module_init(nvmet_fc_init_module); 2624 module_exit(nvmet_fc_exit_module); 2625 2626 MODULE_LICENSE("GPL v2"); 2627