xref: /linux/drivers/nvme/target/fc.c (revision ad30469a841b50dbb541df4d6971d891f703c297)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2016 Avago Technologies.  All rights reserved.
4  */
5 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
6 #include <linux/module.h>
7 #include <linux/slab.h>
8 #include <linux/blk-mq.h>
9 #include <linux/parser.h>
10 #include <linux/random.h>
11 #include <uapi/scsi/fc/fc_fs.h>
12 #include <uapi/scsi/fc/fc_els.h>
13 
14 #include "nvmet.h"
15 #include <linux/nvme-fc-driver.h>
16 #include <linux/nvme-fc.h>
17 #include "../host/fc.h"
18 
19 
20 /* *************************** Data Structures/Defines ****************** */
21 
22 
23 #define NVMET_LS_CTX_COUNT		256
24 
25 struct nvmet_fc_tgtport;
26 struct nvmet_fc_tgt_assoc;
27 
28 struct nvmet_fc_ls_iod {		/* for an LS RQST RCV */
29 	struct nvmefc_ls_rsp		*lsrsp;
30 	struct nvmefc_tgt_fcp_req	*fcpreq;	/* only if RS */
31 
32 	struct list_head		ls_rcv_list; /* tgtport->ls_rcv_list */
33 
34 	struct nvmet_fc_tgtport		*tgtport;
35 	struct nvmet_fc_tgt_assoc	*assoc;
36 	void				*hosthandle;
37 
38 	union nvmefc_ls_requests	*rqstbuf;
39 	union nvmefc_ls_responses	*rspbuf;
40 	u16				rqstdatalen;
41 	dma_addr_t			rspdma;
42 
43 	struct scatterlist		sg[2];
44 
45 	struct work_struct		work;
46 } __aligned(sizeof(unsigned long long));
47 
48 struct nvmet_fc_ls_req_op {		/* for an LS RQST XMT */
49 	struct nvmefc_ls_req		ls_req;
50 
51 	struct nvmet_fc_tgtport		*tgtport;
52 	void				*hosthandle;
53 
54 	int				ls_error;
55 	struct list_head		lsreq_list; /* tgtport->ls_req_list */
56 	bool				req_queued;
57 };
58 
59 
60 /* desired maximum for a single sequence - if sg list allows it */
61 #define NVMET_FC_MAX_SEQ_LENGTH		(256 * 1024)
62 
63 enum nvmet_fcp_datadir {
64 	NVMET_FCP_NODATA,
65 	NVMET_FCP_WRITE,
66 	NVMET_FCP_READ,
67 	NVMET_FCP_ABORTED,
68 };
69 
70 struct nvmet_fc_fcp_iod {
71 	struct nvmefc_tgt_fcp_req	*fcpreq;
72 
73 	struct nvme_fc_cmd_iu		cmdiubuf;
74 	struct nvme_fc_ersp_iu		rspiubuf;
75 	dma_addr_t			rspdma;
76 	struct scatterlist		*next_sg;
77 	struct scatterlist		*data_sg;
78 	int				data_sg_cnt;
79 	u32				offset;
80 	enum nvmet_fcp_datadir		io_dir;
81 	bool				active;
82 	bool				abort;
83 	bool				aborted;
84 	bool				writedataactive;
85 	spinlock_t			flock;
86 
87 	struct nvmet_req		req;
88 	struct work_struct		defer_work;
89 
90 	struct nvmet_fc_tgtport		*tgtport;
91 	struct nvmet_fc_tgt_queue	*queue;
92 
93 	struct list_head		fcp_list;	/* tgtport->fcp_list */
94 };
95 
96 struct nvmet_fc_tgtport {
97 	struct nvmet_fc_target_port	fc_target_port;
98 
99 	struct list_head		tgt_list; /* nvmet_fc_target_list */
100 	struct device			*dev;	/* dev for dma mapping */
101 	struct nvmet_fc_target_template	*ops;
102 
103 	struct nvmet_fc_ls_iod		*iod;
104 	spinlock_t			lock;
105 	struct list_head		ls_rcv_list;
106 	struct list_head		ls_req_list;
107 	struct list_head		ls_busylist;
108 	struct list_head		assoc_list;
109 	struct list_head		host_list;
110 	struct ida			assoc_cnt;
111 	struct nvmet_fc_port_entry	*pe;
112 	struct kref			ref;
113 	u32				max_sg_cnt;
114 };
115 
116 struct nvmet_fc_port_entry {
117 	struct nvmet_fc_tgtport		*tgtport;
118 	struct nvmet_port		*port;
119 	u64				node_name;
120 	u64				port_name;
121 	struct list_head		pe_list;
122 };
123 
124 struct nvmet_fc_defer_fcp_req {
125 	struct list_head		req_list;
126 	struct nvmefc_tgt_fcp_req	*fcp_req;
127 };
128 
129 struct nvmet_fc_tgt_queue {
130 	bool				ninetypercent;
131 	u16				qid;
132 	u16				sqsize;
133 	u16				ersp_ratio;
134 	__le16				sqhd;
135 	atomic_t			connected;
136 	atomic_t			sqtail;
137 	atomic_t			zrspcnt;
138 	atomic_t			rsn;
139 	spinlock_t			qlock;
140 	struct nvmet_cq			nvme_cq;
141 	struct nvmet_sq			nvme_sq;
142 	struct nvmet_fc_tgt_assoc	*assoc;
143 	struct list_head		fod_list;
144 	struct list_head		pending_cmd_list;
145 	struct list_head		avail_defer_list;
146 	struct workqueue_struct		*work_q;
147 	struct kref			ref;
148 	struct rcu_head			rcu;
149 	/* array of fcp_iods */
150 	struct nvmet_fc_fcp_iod		fod[] __counted_by(sqsize);
151 } __aligned(sizeof(unsigned long long));
152 
153 struct nvmet_fc_hostport {
154 	struct nvmet_fc_tgtport		*tgtport;
155 	void				*hosthandle;
156 	struct list_head		host_list;
157 	struct kref			ref;
158 	u8				invalid;
159 };
160 
161 struct nvmet_fc_tgt_assoc {
162 	u64				association_id;
163 	u32				a_id;
164 	atomic_t			terminating;
165 	struct nvmet_fc_tgtport		*tgtport;
166 	struct nvmet_fc_hostport	*hostport;
167 	struct nvmet_fc_ls_iod		*rcv_disconn;
168 	struct list_head		a_list;
169 	struct nvmet_fc_tgt_queue __rcu	*queues[NVMET_NR_QUEUES + 1];
170 	struct kref			ref;
171 	struct work_struct		del_work;
172 	struct rcu_head			rcu;
173 };
174 
175 
176 static inline int
177 nvmet_fc_iodnum(struct nvmet_fc_ls_iod *iodptr)
178 {
179 	return (iodptr - iodptr->tgtport->iod);
180 }
181 
182 static inline int
183 nvmet_fc_fodnum(struct nvmet_fc_fcp_iod *fodptr)
184 {
185 	return (fodptr - fodptr->queue->fod);
186 }
187 
188 
189 /*
190  * Association and Connection IDs:
191  *
192  * Association ID will have random number in upper 6 bytes and zero
193  *   in lower 2 bytes
194  *
195  * Connection IDs will be Association ID with QID or'd in lower 2 bytes
196  *
197  * note: Association ID = Connection ID for queue 0
198  */
199 #define BYTES_FOR_QID			sizeof(u16)
200 #define BYTES_FOR_QID_SHIFT		(BYTES_FOR_QID * 8)
201 #define NVMET_FC_QUEUEID_MASK		((u64)((1 << BYTES_FOR_QID_SHIFT) - 1))
202 
203 static inline u64
204 nvmet_fc_makeconnid(struct nvmet_fc_tgt_assoc *assoc, u16 qid)
205 {
206 	return (assoc->association_id | qid);
207 }
208 
209 static inline u64
210 nvmet_fc_getassociationid(u64 connectionid)
211 {
212 	return connectionid & ~NVMET_FC_QUEUEID_MASK;
213 }
214 
215 static inline u16
216 nvmet_fc_getqueueid(u64 connectionid)
217 {
218 	return (u16)(connectionid & NVMET_FC_QUEUEID_MASK);
219 }
220 
221 static inline struct nvmet_fc_tgtport *
222 targetport_to_tgtport(struct nvmet_fc_target_port *targetport)
223 {
224 	return container_of(targetport, struct nvmet_fc_tgtport,
225 				 fc_target_port);
226 }
227 
228 static inline struct nvmet_fc_fcp_iod *
229 nvmet_req_to_fod(struct nvmet_req *nvme_req)
230 {
231 	return container_of(nvme_req, struct nvmet_fc_fcp_iod, req);
232 }
233 
234 
235 /* *************************** Globals **************************** */
236 
237 
238 static DEFINE_SPINLOCK(nvmet_fc_tgtlock);
239 
240 static LIST_HEAD(nvmet_fc_target_list);
241 static DEFINE_IDA(nvmet_fc_tgtport_cnt);
242 static LIST_HEAD(nvmet_fc_portentry_list);
243 
244 
245 static void nvmet_fc_handle_ls_rqst_work(struct work_struct *work);
246 static void nvmet_fc_fcp_rqst_op_defer_work(struct work_struct *work);
247 static void nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc);
248 static int nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc);
249 static void nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue);
250 static int nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue);
251 static void nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport);
252 static int nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport);
253 static void nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport,
254 					struct nvmet_fc_fcp_iod *fod);
255 static void nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc *assoc);
256 static void nvmet_fc_xmt_ls_rsp(struct nvmet_fc_tgtport *tgtport,
257 				struct nvmet_fc_ls_iod *iod);
258 
259 
260 /* *********************** FC-NVME DMA Handling **************************** */
261 
262 /*
263  * The fcloop device passes in a NULL device pointer. Real LLD's will
264  * pass in a valid device pointer. If NULL is passed to the dma mapping
265  * routines, depending on the platform, it may or may not succeed, and
266  * may crash.
267  *
268  * As such:
269  * Wrapper all the dma routines and check the dev pointer.
270  *
271  * If simple mappings (return just a dma address, we'll noop them,
272  * returning a dma address of 0.
273  *
274  * On more complex mappings (dma_map_sg), a pseudo routine fills
275  * in the scatter list, setting all dma addresses to 0.
276  */
277 
278 static inline dma_addr_t
279 fc_dma_map_single(struct device *dev, void *ptr, size_t size,
280 		enum dma_data_direction dir)
281 {
282 	return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
283 }
284 
285 static inline int
286 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
287 {
288 	return dev ? dma_mapping_error(dev, dma_addr) : 0;
289 }
290 
291 static inline void
292 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
293 	enum dma_data_direction dir)
294 {
295 	if (dev)
296 		dma_unmap_single(dev, addr, size, dir);
297 }
298 
299 static inline void
300 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
301 		enum dma_data_direction dir)
302 {
303 	if (dev)
304 		dma_sync_single_for_cpu(dev, addr, size, dir);
305 }
306 
307 static inline void
308 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
309 		enum dma_data_direction dir)
310 {
311 	if (dev)
312 		dma_sync_single_for_device(dev, addr, size, dir);
313 }
314 
315 /* pseudo dma_map_sg call */
316 static int
317 fc_map_sg(struct scatterlist *sg, int nents)
318 {
319 	struct scatterlist *s;
320 	int i;
321 
322 	WARN_ON(nents == 0 || sg[0].length == 0);
323 
324 	for_each_sg(sg, s, nents, i) {
325 		s->dma_address = 0L;
326 #ifdef CONFIG_NEED_SG_DMA_LENGTH
327 		s->dma_length = s->length;
328 #endif
329 	}
330 	return nents;
331 }
332 
333 static inline int
334 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
335 		enum dma_data_direction dir)
336 {
337 	return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
338 }
339 
340 static inline void
341 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
342 		enum dma_data_direction dir)
343 {
344 	if (dev)
345 		dma_unmap_sg(dev, sg, nents, dir);
346 }
347 
348 
349 /* ********************** FC-NVME LS XMT Handling ************************* */
350 
351 
352 static void
353 __nvmet_fc_finish_ls_req(struct nvmet_fc_ls_req_op *lsop)
354 {
355 	struct nvmet_fc_tgtport *tgtport = lsop->tgtport;
356 	struct nvmefc_ls_req *lsreq = &lsop->ls_req;
357 	unsigned long flags;
358 
359 	spin_lock_irqsave(&tgtport->lock, flags);
360 
361 	if (!lsop->req_queued) {
362 		spin_unlock_irqrestore(&tgtport->lock, flags);
363 		return;
364 	}
365 
366 	list_del(&lsop->lsreq_list);
367 
368 	lsop->req_queued = false;
369 
370 	spin_unlock_irqrestore(&tgtport->lock, flags);
371 
372 	fc_dma_unmap_single(tgtport->dev, lsreq->rqstdma,
373 				  (lsreq->rqstlen + lsreq->rsplen),
374 				  DMA_BIDIRECTIONAL);
375 
376 	nvmet_fc_tgtport_put(tgtport);
377 }
378 
379 static int
380 __nvmet_fc_send_ls_req(struct nvmet_fc_tgtport *tgtport,
381 		struct nvmet_fc_ls_req_op *lsop,
382 		void (*done)(struct nvmefc_ls_req *req, int status))
383 {
384 	struct nvmefc_ls_req *lsreq = &lsop->ls_req;
385 	unsigned long flags;
386 	int ret = 0;
387 
388 	if (!tgtport->ops->ls_req)
389 		return -EOPNOTSUPP;
390 
391 	if (!nvmet_fc_tgtport_get(tgtport))
392 		return -ESHUTDOWN;
393 
394 	lsreq->done = done;
395 	lsop->req_queued = false;
396 	INIT_LIST_HEAD(&lsop->lsreq_list);
397 
398 	lsreq->rqstdma = fc_dma_map_single(tgtport->dev, lsreq->rqstaddr,
399 				  lsreq->rqstlen + lsreq->rsplen,
400 				  DMA_BIDIRECTIONAL);
401 	if (fc_dma_mapping_error(tgtport->dev, lsreq->rqstdma)) {
402 		ret = -EFAULT;
403 		goto out_puttgtport;
404 	}
405 	lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen;
406 
407 	spin_lock_irqsave(&tgtport->lock, flags);
408 
409 	list_add_tail(&lsop->lsreq_list, &tgtport->ls_req_list);
410 
411 	lsop->req_queued = true;
412 
413 	spin_unlock_irqrestore(&tgtport->lock, flags);
414 
415 	ret = tgtport->ops->ls_req(&tgtport->fc_target_port, lsop->hosthandle,
416 				   lsreq);
417 	if (ret)
418 		goto out_unlink;
419 
420 	return 0;
421 
422 out_unlink:
423 	lsop->ls_error = ret;
424 	spin_lock_irqsave(&tgtport->lock, flags);
425 	lsop->req_queued = false;
426 	list_del(&lsop->lsreq_list);
427 	spin_unlock_irqrestore(&tgtport->lock, flags);
428 	fc_dma_unmap_single(tgtport->dev, lsreq->rqstdma,
429 				  (lsreq->rqstlen + lsreq->rsplen),
430 				  DMA_BIDIRECTIONAL);
431 out_puttgtport:
432 	nvmet_fc_tgtport_put(tgtport);
433 
434 	return ret;
435 }
436 
437 static int
438 nvmet_fc_send_ls_req_async(struct nvmet_fc_tgtport *tgtport,
439 		struct nvmet_fc_ls_req_op *lsop,
440 		void (*done)(struct nvmefc_ls_req *req, int status))
441 {
442 	/* don't wait for completion */
443 
444 	return __nvmet_fc_send_ls_req(tgtport, lsop, done);
445 }
446 
447 static void
448 nvmet_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status)
449 {
450 	struct nvmet_fc_ls_req_op *lsop =
451 		container_of(lsreq, struct nvmet_fc_ls_req_op, ls_req);
452 
453 	__nvmet_fc_finish_ls_req(lsop);
454 
455 	/* fc-nvme target doesn't care about success or failure of cmd */
456 
457 	kfree(lsop);
458 }
459 
460 /*
461  * This routine sends a FC-NVME LS to disconnect (aka terminate)
462  * the FC-NVME Association.  Terminating the association also
463  * terminates the FC-NVME connections (per queue, both admin and io
464  * queues) that are part of the association. E.g. things are torn
465  * down, and the related FC-NVME Association ID and Connection IDs
466  * become invalid.
467  *
468  * The behavior of the fc-nvme target is such that it's
469  * understanding of the association and connections will implicitly
470  * be torn down. The action is implicit as it may be due to a loss of
471  * connectivity with the fc-nvme host, so the target may never get a
472  * response even if it tried.  As such, the action of this routine
473  * is to asynchronously send the LS, ignore any results of the LS, and
474  * continue on with terminating the association. If the fc-nvme host
475  * is present and receives the LS, it too can tear down.
476  */
477 static void
478 nvmet_fc_xmt_disconnect_assoc(struct nvmet_fc_tgt_assoc *assoc)
479 {
480 	struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
481 	struct fcnvme_ls_disconnect_assoc_rqst *discon_rqst;
482 	struct fcnvme_ls_disconnect_assoc_acc *discon_acc;
483 	struct nvmet_fc_ls_req_op *lsop;
484 	struct nvmefc_ls_req *lsreq;
485 	int ret;
486 
487 	/*
488 	 * If ls_req is NULL or no hosthandle, it's an older lldd and no
489 	 * message is normal. Otherwise, send unless the hostport has
490 	 * already been invalidated by the lldd.
491 	 */
492 	if (!tgtport->ops->ls_req || !assoc->hostport ||
493 	    assoc->hostport->invalid)
494 		return;
495 
496 	lsop = kzalloc((sizeof(*lsop) +
497 			sizeof(*discon_rqst) + sizeof(*discon_acc) +
498 			tgtport->ops->lsrqst_priv_sz), GFP_KERNEL);
499 	if (!lsop) {
500 		dev_info(tgtport->dev,
501 			"{%d:%d} send Disconnect Association failed: ENOMEM\n",
502 			tgtport->fc_target_port.port_num, assoc->a_id);
503 		return;
504 	}
505 
506 	discon_rqst = (struct fcnvme_ls_disconnect_assoc_rqst *)&lsop[1];
507 	discon_acc = (struct fcnvme_ls_disconnect_assoc_acc *)&discon_rqst[1];
508 	lsreq = &lsop->ls_req;
509 	if (tgtport->ops->lsrqst_priv_sz)
510 		lsreq->private = (void *)&discon_acc[1];
511 	else
512 		lsreq->private = NULL;
513 
514 	lsop->tgtport = tgtport;
515 	lsop->hosthandle = assoc->hostport->hosthandle;
516 
517 	nvmefc_fmt_lsreq_discon_assoc(lsreq, discon_rqst, discon_acc,
518 				assoc->association_id);
519 
520 	ret = nvmet_fc_send_ls_req_async(tgtport, lsop,
521 				nvmet_fc_disconnect_assoc_done);
522 	if (ret) {
523 		dev_info(tgtport->dev,
524 			"{%d:%d} XMT Disconnect Association failed: %d\n",
525 			tgtport->fc_target_port.port_num, assoc->a_id, ret);
526 		kfree(lsop);
527 	}
528 }
529 
530 
531 /* *********************** FC-NVME Port Management ************************ */
532 
533 
534 static int
535 nvmet_fc_alloc_ls_iodlist(struct nvmet_fc_tgtport *tgtport)
536 {
537 	struct nvmet_fc_ls_iod *iod;
538 	int i;
539 
540 	iod = kcalloc(NVMET_LS_CTX_COUNT, sizeof(struct nvmet_fc_ls_iod),
541 			GFP_KERNEL);
542 	if (!iod)
543 		return -ENOMEM;
544 
545 	tgtport->iod = iod;
546 
547 	for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) {
548 		INIT_WORK(&iod->work, nvmet_fc_handle_ls_rqst_work);
549 		iod->tgtport = tgtport;
550 		list_add_tail(&iod->ls_rcv_list, &tgtport->ls_rcv_list);
551 
552 		iod->rqstbuf = kzalloc(sizeof(union nvmefc_ls_requests) +
553 				       sizeof(union nvmefc_ls_responses),
554 				       GFP_KERNEL);
555 		if (!iod->rqstbuf)
556 			goto out_fail;
557 
558 		iod->rspbuf = (union nvmefc_ls_responses *)&iod->rqstbuf[1];
559 
560 		iod->rspdma = fc_dma_map_single(tgtport->dev, iod->rspbuf,
561 						sizeof(*iod->rspbuf),
562 						DMA_TO_DEVICE);
563 		if (fc_dma_mapping_error(tgtport->dev, iod->rspdma))
564 			goto out_fail;
565 	}
566 
567 	return 0;
568 
569 out_fail:
570 	kfree(iod->rqstbuf);
571 	list_del(&iod->ls_rcv_list);
572 	for (iod--, i--; i >= 0; iod--, i--) {
573 		fc_dma_unmap_single(tgtport->dev, iod->rspdma,
574 				sizeof(*iod->rspbuf), DMA_TO_DEVICE);
575 		kfree(iod->rqstbuf);
576 		list_del(&iod->ls_rcv_list);
577 	}
578 
579 	kfree(iod);
580 
581 	return -EFAULT;
582 }
583 
584 static void
585 nvmet_fc_free_ls_iodlist(struct nvmet_fc_tgtport *tgtport)
586 {
587 	struct nvmet_fc_ls_iod *iod = tgtport->iod;
588 	int i;
589 
590 	for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) {
591 		fc_dma_unmap_single(tgtport->dev,
592 				iod->rspdma, sizeof(*iod->rspbuf),
593 				DMA_TO_DEVICE);
594 		kfree(iod->rqstbuf);
595 		list_del(&iod->ls_rcv_list);
596 	}
597 	kfree(tgtport->iod);
598 }
599 
600 static struct nvmet_fc_ls_iod *
601 nvmet_fc_alloc_ls_iod(struct nvmet_fc_tgtport *tgtport)
602 {
603 	struct nvmet_fc_ls_iod *iod;
604 	unsigned long flags;
605 
606 	spin_lock_irqsave(&tgtport->lock, flags);
607 	iod = list_first_entry_or_null(&tgtport->ls_rcv_list,
608 					struct nvmet_fc_ls_iod, ls_rcv_list);
609 	if (iod)
610 		list_move_tail(&iod->ls_rcv_list, &tgtport->ls_busylist);
611 	spin_unlock_irqrestore(&tgtport->lock, flags);
612 	return iod;
613 }
614 
615 
616 static void
617 nvmet_fc_free_ls_iod(struct nvmet_fc_tgtport *tgtport,
618 			struct nvmet_fc_ls_iod *iod)
619 {
620 	unsigned long flags;
621 
622 	spin_lock_irqsave(&tgtport->lock, flags);
623 	list_move(&iod->ls_rcv_list, &tgtport->ls_rcv_list);
624 	spin_unlock_irqrestore(&tgtport->lock, flags);
625 }
626 
627 static void
628 nvmet_fc_prep_fcp_iodlist(struct nvmet_fc_tgtport *tgtport,
629 				struct nvmet_fc_tgt_queue *queue)
630 {
631 	struct nvmet_fc_fcp_iod *fod = queue->fod;
632 	int i;
633 
634 	for (i = 0; i < queue->sqsize; fod++, i++) {
635 		INIT_WORK(&fod->defer_work, nvmet_fc_fcp_rqst_op_defer_work);
636 		fod->tgtport = tgtport;
637 		fod->queue = queue;
638 		fod->active = false;
639 		fod->abort = false;
640 		fod->aborted = false;
641 		fod->fcpreq = NULL;
642 		list_add_tail(&fod->fcp_list, &queue->fod_list);
643 		spin_lock_init(&fod->flock);
644 
645 		fod->rspdma = fc_dma_map_single(tgtport->dev, &fod->rspiubuf,
646 					sizeof(fod->rspiubuf), DMA_TO_DEVICE);
647 		if (fc_dma_mapping_error(tgtport->dev, fod->rspdma)) {
648 			list_del(&fod->fcp_list);
649 			for (fod--, i--; i >= 0; fod--, i--) {
650 				fc_dma_unmap_single(tgtport->dev, fod->rspdma,
651 						sizeof(fod->rspiubuf),
652 						DMA_TO_DEVICE);
653 				fod->rspdma = 0L;
654 				list_del(&fod->fcp_list);
655 			}
656 
657 			return;
658 		}
659 	}
660 }
661 
662 static void
663 nvmet_fc_destroy_fcp_iodlist(struct nvmet_fc_tgtport *tgtport,
664 				struct nvmet_fc_tgt_queue *queue)
665 {
666 	struct nvmet_fc_fcp_iod *fod = queue->fod;
667 	int i;
668 
669 	for (i = 0; i < queue->sqsize; fod++, i++) {
670 		if (fod->rspdma)
671 			fc_dma_unmap_single(tgtport->dev, fod->rspdma,
672 				sizeof(fod->rspiubuf), DMA_TO_DEVICE);
673 	}
674 }
675 
676 static struct nvmet_fc_fcp_iod *
677 nvmet_fc_alloc_fcp_iod(struct nvmet_fc_tgt_queue *queue)
678 {
679 	struct nvmet_fc_fcp_iod *fod;
680 
681 	lockdep_assert_held(&queue->qlock);
682 
683 	fod = list_first_entry_or_null(&queue->fod_list,
684 					struct nvmet_fc_fcp_iod, fcp_list);
685 	if (fod) {
686 		list_del(&fod->fcp_list);
687 		fod->active = true;
688 		/*
689 		 * no queue reference is taken, as it was taken by the
690 		 * queue lookup just prior to the allocation. The iod
691 		 * will "inherit" that reference.
692 		 */
693 	}
694 	return fod;
695 }
696 
697 
698 static void
699 nvmet_fc_queue_fcp_req(struct nvmet_fc_tgtport *tgtport,
700 		       struct nvmet_fc_tgt_queue *queue,
701 		       struct nvmefc_tgt_fcp_req *fcpreq)
702 {
703 	struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
704 
705 	/*
706 	 * put all admin cmds on hw queue id 0. All io commands go to
707 	 * the respective hw queue based on a modulo basis
708 	 */
709 	fcpreq->hwqid = queue->qid ?
710 			((queue->qid - 1) % tgtport->ops->max_hw_queues) : 0;
711 
712 	nvmet_fc_handle_fcp_rqst(tgtport, fod);
713 }
714 
715 static void
716 nvmet_fc_fcp_rqst_op_defer_work(struct work_struct *work)
717 {
718 	struct nvmet_fc_fcp_iod *fod =
719 		container_of(work, struct nvmet_fc_fcp_iod, defer_work);
720 
721 	/* Submit deferred IO for processing */
722 	nvmet_fc_queue_fcp_req(fod->tgtport, fod->queue, fod->fcpreq);
723 
724 }
725 
726 static void
727 nvmet_fc_free_fcp_iod(struct nvmet_fc_tgt_queue *queue,
728 			struct nvmet_fc_fcp_iod *fod)
729 {
730 	struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
731 	struct nvmet_fc_tgtport *tgtport = fod->tgtport;
732 	struct nvmet_fc_defer_fcp_req *deferfcp;
733 	unsigned long flags;
734 
735 	fc_dma_sync_single_for_cpu(tgtport->dev, fod->rspdma,
736 				sizeof(fod->rspiubuf), DMA_TO_DEVICE);
737 
738 	fcpreq->nvmet_fc_private = NULL;
739 
740 	fod->active = false;
741 	fod->abort = false;
742 	fod->aborted = false;
743 	fod->writedataactive = false;
744 	fod->fcpreq = NULL;
745 
746 	tgtport->ops->fcp_req_release(&tgtport->fc_target_port, fcpreq);
747 
748 	/* release the queue lookup reference on the completed IO */
749 	nvmet_fc_tgt_q_put(queue);
750 
751 	spin_lock_irqsave(&queue->qlock, flags);
752 	deferfcp = list_first_entry_or_null(&queue->pending_cmd_list,
753 				struct nvmet_fc_defer_fcp_req, req_list);
754 	if (!deferfcp) {
755 		list_add_tail(&fod->fcp_list, &fod->queue->fod_list);
756 		spin_unlock_irqrestore(&queue->qlock, flags);
757 		return;
758 	}
759 
760 	/* Re-use the fod for the next pending cmd that was deferred */
761 	list_del(&deferfcp->req_list);
762 
763 	fcpreq = deferfcp->fcp_req;
764 
765 	/* deferfcp can be reused for another IO at a later date */
766 	list_add_tail(&deferfcp->req_list, &queue->avail_defer_list);
767 
768 	spin_unlock_irqrestore(&queue->qlock, flags);
769 
770 	/* Save NVME CMD IO in fod */
771 	memcpy(&fod->cmdiubuf, fcpreq->rspaddr, fcpreq->rsplen);
772 
773 	/* Setup new fcpreq to be processed */
774 	fcpreq->rspaddr = NULL;
775 	fcpreq->rsplen  = 0;
776 	fcpreq->nvmet_fc_private = fod;
777 	fod->fcpreq = fcpreq;
778 	fod->active = true;
779 
780 	/* inform LLDD IO is now being processed */
781 	tgtport->ops->defer_rcv(&tgtport->fc_target_port, fcpreq);
782 
783 	/*
784 	 * Leave the queue lookup get reference taken when
785 	 * fod was originally allocated.
786 	 */
787 
788 	queue_work(queue->work_q, &fod->defer_work);
789 }
790 
791 static struct nvmet_fc_tgt_queue *
792 nvmet_fc_alloc_target_queue(struct nvmet_fc_tgt_assoc *assoc,
793 			u16 qid, u16 sqsize)
794 {
795 	struct nvmet_fc_tgt_queue *queue;
796 	int ret;
797 
798 	if (qid > NVMET_NR_QUEUES)
799 		return NULL;
800 
801 	queue = kzalloc(struct_size(queue, fod, sqsize), GFP_KERNEL);
802 	if (!queue)
803 		return NULL;
804 
805 	if (!nvmet_fc_tgt_a_get(assoc))
806 		goto out_free_queue;
807 
808 	queue->work_q = alloc_workqueue("ntfc%d.%d.%d", 0, 0,
809 				assoc->tgtport->fc_target_port.port_num,
810 				assoc->a_id, qid);
811 	if (!queue->work_q)
812 		goto out_a_put;
813 
814 	queue->qid = qid;
815 	queue->sqsize = sqsize;
816 	queue->assoc = assoc;
817 	INIT_LIST_HEAD(&queue->fod_list);
818 	INIT_LIST_HEAD(&queue->avail_defer_list);
819 	INIT_LIST_HEAD(&queue->pending_cmd_list);
820 	atomic_set(&queue->connected, 0);
821 	atomic_set(&queue->sqtail, 0);
822 	atomic_set(&queue->rsn, 1);
823 	atomic_set(&queue->zrspcnt, 0);
824 	spin_lock_init(&queue->qlock);
825 	kref_init(&queue->ref);
826 
827 	nvmet_fc_prep_fcp_iodlist(assoc->tgtport, queue);
828 
829 	ret = nvmet_sq_init(&queue->nvme_sq);
830 	if (ret)
831 		goto out_fail_iodlist;
832 
833 	WARN_ON(assoc->queues[qid]);
834 	rcu_assign_pointer(assoc->queues[qid], queue);
835 
836 	return queue;
837 
838 out_fail_iodlist:
839 	nvmet_fc_destroy_fcp_iodlist(assoc->tgtport, queue);
840 	destroy_workqueue(queue->work_q);
841 out_a_put:
842 	nvmet_fc_tgt_a_put(assoc);
843 out_free_queue:
844 	kfree(queue);
845 	return NULL;
846 }
847 
848 
849 static void
850 nvmet_fc_tgt_queue_free(struct kref *ref)
851 {
852 	struct nvmet_fc_tgt_queue *queue =
853 		container_of(ref, struct nvmet_fc_tgt_queue, ref);
854 
855 	rcu_assign_pointer(queue->assoc->queues[queue->qid], NULL);
856 
857 	nvmet_fc_destroy_fcp_iodlist(queue->assoc->tgtport, queue);
858 
859 	nvmet_fc_tgt_a_put(queue->assoc);
860 
861 	destroy_workqueue(queue->work_q);
862 
863 	kfree_rcu(queue, rcu);
864 }
865 
866 static void
867 nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue)
868 {
869 	kref_put(&queue->ref, nvmet_fc_tgt_queue_free);
870 }
871 
872 static int
873 nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue)
874 {
875 	return kref_get_unless_zero(&queue->ref);
876 }
877 
878 
879 static void
880 nvmet_fc_delete_target_queue(struct nvmet_fc_tgt_queue *queue)
881 {
882 	struct nvmet_fc_tgtport *tgtport = queue->assoc->tgtport;
883 	struct nvmet_fc_fcp_iod *fod = queue->fod;
884 	struct nvmet_fc_defer_fcp_req *deferfcp, *tempptr;
885 	unsigned long flags;
886 	int i;
887 	bool disconnect;
888 
889 	disconnect = atomic_xchg(&queue->connected, 0);
890 
891 	/* if not connected, nothing to do */
892 	if (!disconnect)
893 		return;
894 
895 	spin_lock_irqsave(&queue->qlock, flags);
896 	/* abort outstanding io's */
897 	for (i = 0; i < queue->sqsize; fod++, i++) {
898 		if (fod->active) {
899 			spin_lock(&fod->flock);
900 			fod->abort = true;
901 			/*
902 			 * only call lldd abort routine if waiting for
903 			 * writedata. other outstanding ops should finish
904 			 * on their own.
905 			 */
906 			if (fod->writedataactive) {
907 				fod->aborted = true;
908 				spin_unlock(&fod->flock);
909 				tgtport->ops->fcp_abort(
910 					&tgtport->fc_target_port, fod->fcpreq);
911 			} else
912 				spin_unlock(&fod->flock);
913 		}
914 	}
915 
916 	/* Cleanup defer'ed IOs in queue */
917 	list_for_each_entry_safe(deferfcp, tempptr, &queue->avail_defer_list,
918 				req_list) {
919 		list_del(&deferfcp->req_list);
920 		kfree(deferfcp);
921 	}
922 
923 	for (;;) {
924 		deferfcp = list_first_entry_or_null(&queue->pending_cmd_list,
925 				struct nvmet_fc_defer_fcp_req, req_list);
926 		if (!deferfcp)
927 			break;
928 
929 		list_del(&deferfcp->req_list);
930 		spin_unlock_irqrestore(&queue->qlock, flags);
931 
932 		tgtport->ops->defer_rcv(&tgtport->fc_target_port,
933 				deferfcp->fcp_req);
934 
935 		tgtport->ops->fcp_abort(&tgtport->fc_target_port,
936 				deferfcp->fcp_req);
937 
938 		tgtport->ops->fcp_req_release(&tgtport->fc_target_port,
939 				deferfcp->fcp_req);
940 
941 		/* release the queue lookup reference */
942 		nvmet_fc_tgt_q_put(queue);
943 
944 		kfree(deferfcp);
945 
946 		spin_lock_irqsave(&queue->qlock, flags);
947 	}
948 	spin_unlock_irqrestore(&queue->qlock, flags);
949 
950 	flush_workqueue(queue->work_q);
951 
952 	nvmet_sq_destroy(&queue->nvme_sq);
953 
954 	nvmet_fc_tgt_q_put(queue);
955 }
956 
957 static struct nvmet_fc_tgt_queue *
958 nvmet_fc_find_target_queue(struct nvmet_fc_tgtport *tgtport,
959 				u64 connection_id)
960 {
961 	struct nvmet_fc_tgt_assoc *assoc;
962 	struct nvmet_fc_tgt_queue *queue;
963 	u64 association_id = nvmet_fc_getassociationid(connection_id);
964 	u16 qid = nvmet_fc_getqueueid(connection_id);
965 
966 	if (qid > NVMET_NR_QUEUES)
967 		return NULL;
968 
969 	rcu_read_lock();
970 	list_for_each_entry_rcu(assoc, &tgtport->assoc_list, a_list) {
971 		if (association_id == assoc->association_id) {
972 			queue = rcu_dereference(assoc->queues[qid]);
973 			if (queue &&
974 			    (!atomic_read(&queue->connected) ||
975 			     !nvmet_fc_tgt_q_get(queue)))
976 				queue = NULL;
977 			rcu_read_unlock();
978 			return queue;
979 		}
980 	}
981 	rcu_read_unlock();
982 	return NULL;
983 }
984 
985 static void
986 nvmet_fc_hostport_free(struct kref *ref)
987 {
988 	struct nvmet_fc_hostport *hostport =
989 		container_of(ref, struct nvmet_fc_hostport, ref);
990 	struct nvmet_fc_tgtport *tgtport = hostport->tgtport;
991 	unsigned long flags;
992 
993 	spin_lock_irqsave(&tgtport->lock, flags);
994 	list_del(&hostport->host_list);
995 	spin_unlock_irqrestore(&tgtport->lock, flags);
996 	if (tgtport->ops->host_release && hostport->invalid)
997 		tgtport->ops->host_release(hostport->hosthandle);
998 	kfree(hostport);
999 	nvmet_fc_tgtport_put(tgtport);
1000 }
1001 
1002 static void
1003 nvmet_fc_hostport_put(struct nvmet_fc_hostport *hostport)
1004 {
1005 	kref_put(&hostport->ref, nvmet_fc_hostport_free);
1006 }
1007 
1008 static int
1009 nvmet_fc_hostport_get(struct nvmet_fc_hostport *hostport)
1010 {
1011 	return kref_get_unless_zero(&hostport->ref);
1012 }
1013 
1014 static void
1015 nvmet_fc_free_hostport(struct nvmet_fc_hostport *hostport)
1016 {
1017 	/* if LLDD not implemented, leave as NULL */
1018 	if (!hostport || !hostport->hosthandle)
1019 		return;
1020 
1021 	nvmet_fc_hostport_put(hostport);
1022 }
1023 
1024 static struct nvmet_fc_hostport *
1025 nvmet_fc_match_hostport(struct nvmet_fc_tgtport *tgtport, void *hosthandle)
1026 {
1027 	struct nvmet_fc_hostport *host;
1028 
1029 	lockdep_assert_held(&tgtport->lock);
1030 
1031 	list_for_each_entry(host, &tgtport->host_list, host_list) {
1032 		if (host->hosthandle == hosthandle && !host->invalid) {
1033 			if (nvmet_fc_hostport_get(host))
1034 				return (host);
1035 		}
1036 	}
1037 
1038 	return NULL;
1039 }
1040 
1041 static struct nvmet_fc_hostport *
1042 nvmet_fc_alloc_hostport(struct nvmet_fc_tgtport *tgtport, void *hosthandle)
1043 {
1044 	struct nvmet_fc_hostport *newhost, *match = NULL;
1045 	unsigned long flags;
1046 
1047 	/* if LLDD not implemented, leave as NULL */
1048 	if (!hosthandle)
1049 		return NULL;
1050 
1051 	/*
1052 	 * take reference for what will be the newly allocated hostport if
1053 	 * we end up using a new allocation
1054 	 */
1055 	if (!nvmet_fc_tgtport_get(tgtport))
1056 		return ERR_PTR(-EINVAL);
1057 
1058 	spin_lock_irqsave(&tgtport->lock, flags);
1059 	match = nvmet_fc_match_hostport(tgtport, hosthandle);
1060 	spin_unlock_irqrestore(&tgtport->lock, flags);
1061 
1062 	if (match) {
1063 		/* no new allocation - release reference */
1064 		nvmet_fc_tgtport_put(tgtport);
1065 		return match;
1066 	}
1067 
1068 	newhost = kzalloc(sizeof(*newhost), GFP_KERNEL);
1069 	if (!newhost) {
1070 		/* no new allocation - release reference */
1071 		nvmet_fc_tgtport_put(tgtport);
1072 		return ERR_PTR(-ENOMEM);
1073 	}
1074 
1075 	spin_lock_irqsave(&tgtport->lock, flags);
1076 	match = nvmet_fc_match_hostport(tgtport, hosthandle);
1077 	if (match) {
1078 		/* new allocation not needed */
1079 		kfree(newhost);
1080 		newhost = match;
1081 		/* no new allocation - release reference */
1082 		nvmet_fc_tgtport_put(tgtport);
1083 	} else {
1084 		newhost->tgtport = tgtport;
1085 		newhost->hosthandle = hosthandle;
1086 		INIT_LIST_HEAD(&newhost->host_list);
1087 		kref_init(&newhost->ref);
1088 
1089 		list_add_tail(&newhost->host_list, &tgtport->host_list);
1090 	}
1091 	spin_unlock_irqrestore(&tgtport->lock, flags);
1092 
1093 	return newhost;
1094 }
1095 
1096 static void
1097 nvmet_fc_delete_assoc(struct work_struct *work)
1098 {
1099 	struct nvmet_fc_tgt_assoc *assoc =
1100 		container_of(work, struct nvmet_fc_tgt_assoc, del_work);
1101 
1102 	nvmet_fc_delete_target_assoc(assoc);
1103 	nvmet_fc_tgt_a_put(assoc);
1104 }
1105 
1106 static struct nvmet_fc_tgt_assoc *
1107 nvmet_fc_alloc_target_assoc(struct nvmet_fc_tgtport *tgtport, void *hosthandle)
1108 {
1109 	struct nvmet_fc_tgt_assoc *assoc, *tmpassoc;
1110 	unsigned long flags;
1111 	u64 ran;
1112 	int idx;
1113 	bool needrandom = true;
1114 
1115 	assoc = kzalloc(sizeof(*assoc), GFP_KERNEL);
1116 	if (!assoc)
1117 		return NULL;
1118 
1119 	idx = ida_alloc(&tgtport->assoc_cnt, GFP_KERNEL);
1120 	if (idx < 0)
1121 		goto out_free_assoc;
1122 
1123 	if (!nvmet_fc_tgtport_get(tgtport))
1124 		goto out_ida;
1125 
1126 	assoc->hostport = nvmet_fc_alloc_hostport(tgtport, hosthandle);
1127 	if (IS_ERR(assoc->hostport))
1128 		goto out_put;
1129 
1130 	assoc->tgtport = tgtport;
1131 	assoc->a_id = idx;
1132 	INIT_LIST_HEAD(&assoc->a_list);
1133 	kref_init(&assoc->ref);
1134 	INIT_WORK(&assoc->del_work, nvmet_fc_delete_assoc);
1135 	atomic_set(&assoc->terminating, 0);
1136 
1137 	while (needrandom) {
1138 		get_random_bytes(&ran, sizeof(ran) - BYTES_FOR_QID);
1139 		ran = ran << BYTES_FOR_QID_SHIFT;
1140 
1141 		spin_lock_irqsave(&tgtport->lock, flags);
1142 		needrandom = false;
1143 		list_for_each_entry(tmpassoc, &tgtport->assoc_list, a_list) {
1144 			if (ran == tmpassoc->association_id) {
1145 				needrandom = true;
1146 				break;
1147 			}
1148 		}
1149 		if (!needrandom) {
1150 			assoc->association_id = ran;
1151 			list_add_tail_rcu(&assoc->a_list, &tgtport->assoc_list);
1152 		}
1153 		spin_unlock_irqrestore(&tgtport->lock, flags);
1154 	}
1155 
1156 	return assoc;
1157 
1158 out_put:
1159 	nvmet_fc_tgtport_put(tgtport);
1160 out_ida:
1161 	ida_free(&tgtport->assoc_cnt, idx);
1162 out_free_assoc:
1163 	kfree(assoc);
1164 	return NULL;
1165 }
1166 
1167 static void
1168 nvmet_fc_target_assoc_free(struct kref *ref)
1169 {
1170 	struct nvmet_fc_tgt_assoc *assoc =
1171 		container_of(ref, struct nvmet_fc_tgt_assoc, ref);
1172 	struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
1173 	struct nvmet_fc_ls_iod	*oldls;
1174 	unsigned long flags;
1175 
1176 	/* Send Disconnect now that all i/o has completed */
1177 	nvmet_fc_xmt_disconnect_assoc(assoc);
1178 
1179 	nvmet_fc_free_hostport(assoc->hostport);
1180 	spin_lock_irqsave(&tgtport->lock, flags);
1181 	list_del_rcu(&assoc->a_list);
1182 	oldls = assoc->rcv_disconn;
1183 	spin_unlock_irqrestore(&tgtport->lock, flags);
1184 	/* if pending Rcv Disconnect Association LS, send rsp now */
1185 	if (oldls)
1186 		nvmet_fc_xmt_ls_rsp(tgtport, oldls);
1187 	ida_free(&tgtport->assoc_cnt, assoc->a_id);
1188 	dev_info(tgtport->dev,
1189 		"{%d:%d} Association freed\n",
1190 		tgtport->fc_target_port.port_num, assoc->a_id);
1191 	kfree_rcu(assoc, rcu);
1192 	nvmet_fc_tgtport_put(tgtport);
1193 }
1194 
1195 static void
1196 nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc)
1197 {
1198 	kref_put(&assoc->ref, nvmet_fc_target_assoc_free);
1199 }
1200 
1201 static int
1202 nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc)
1203 {
1204 	return kref_get_unless_zero(&assoc->ref);
1205 }
1206 
1207 static void
1208 nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc *assoc)
1209 {
1210 	struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
1211 	struct nvmet_fc_tgt_queue *queue;
1212 	int i, terminating;
1213 
1214 	terminating = atomic_xchg(&assoc->terminating, 1);
1215 
1216 	/* if already terminating, do nothing */
1217 	if (terminating)
1218 		return;
1219 
1220 
1221 	for (i = NVMET_NR_QUEUES; i >= 0; i--) {
1222 		rcu_read_lock();
1223 		queue = rcu_dereference(assoc->queues[i]);
1224 		if (!queue) {
1225 			rcu_read_unlock();
1226 			continue;
1227 		}
1228 
1229 		if (!nvmet_fc_tgt_q_get(queue)) {
1230 			rcu_read_unlock();
1231 			continue;
1232 		}
1233 		rcu_read_unlock();
1234 		nvmet_fc_delete_target_queue(queue);
1235 		nvmet_fc_tgt_q_put(queue);
1236 	}
1237 
1238 	dev_info(tgtport->dev,
1239 		"{%d:%d} Association deleted\n",
1240 		tgtport->fc_target_port.port_num, assoc->a_id);
1241 
1242 	nvmet_fc_tgt_a_put(assoc);
1243 }
1244 
1245 static struct nvmet_fc_tgt_assoc *
1246 nvmet_fc_find_target_assoc(struct nvmet_fc_tgtport *tgtport,
1247 				u64 association_id)
1248 {
1249 	struct nvmet_fc_tgt_assoc *assoc;
1250 	struct nvmet_fc_tgt_assoc *ret = NULL;
1251 
1252 	rcu_read_lock();
1253 	list_for_each_entry_rcu(assoc, &tgtport->assoc_list, a_list) {
1254 		if (association_id == assoc->association_id) {
1255 			ret = assoc;
1256 			if (!nvmet_fc_tgt_a_get(assoc))
1257 				ret = NULL;
1258 			break;
1259 		}
1260 	}
1261 	rcu_read_unlock();
1262 
1263 	return ret;
1264 }
1265 
1266 static void
1267 nvmet_fc_portentry_bind(struct nvmet_fc_tgtport *tgtport,
1268 			struct nvmet_fc_port_entry *pe,
1269 			struct nvmet_port *port)
1270 {
1271 	lockdep_assert_held(&nvmet_fc_tgtlock);
1272 
1273 	pe->tgtport = tgtport;
1274 	tgtport->pe = pe;
1275 
1276 	pe->port = port;
1277 	port->priv = pe;
1278 
1279 	pe->node_name = tgtport->fc_target_port.node_name;
1280 	pe->port_name = tgtport->fc_target_port.port_name;
1281 	INIT_LIST_HEAD(&pe->pe_list);
1282 
1283 	list_add_tail(&pe->pe_list, &nvmet_fc_portentry_list);
1284 }
1285 
1286 static void
1287 nvmet_fc_portentry_unbind(struct nvmet_fc_port_entry *pe)
1288 {
1289 	unsigned long flags;
1290 
1291 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1292 	if (pe->tgtport)
1293 		pe->tgtport->pe = NULL;
1294 	list_del(&pe->pe_list);
1295 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1296 }
1297 
1298 /*
1299  * called when a targetport deregisters. Breaks the relationship
1300  * with the nvmet port, but leaves the port_entry in place so that
1301  * re-registration can resume operation.
1302  */
1303 static void
1304 nvmet_fc_portentry_unbind_tgt(struct nvmet_fc_tgtport *tgtport)
1305 {
1306 	struct nvmet_fc_port_entry *pe;
1307 	unsigned long flags;
1308 
1309 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1310 	pe = tgtport->pe;
1311 	if (pe)
1312 		pe->tgtport = NULL;
1313 	tgtport->pe = NULL;
1314 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1315 }
1316 
1317 /*
1318  * called when a new targetport is registered. Looks in the
1319  * existing nvmet port_entries to see if the nvmet layer is
1320  * configured for the targetport's wwn's. (the targetport existed,
1321  * nvmet configured, the lldd unregistered the tgtport, and is now
1322  * reregistering the same targetport).  If so, set the nvmet port
1323  * port entry on the targetport.
1324  */
1325 static void
1326 nvmet_fc_portentry_rebind_tgt(struct nvmet_fc_tgtport *tgtport)
1327 {
1328 	struct nvmet_fc_port_entry *pe;
1329 	unsigned long flags;
1330 
1331 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1332 	list_for_each_entry(pe, &nvmet_fc_portentry_list, pe_list) {
1333 		if (tgtport->fc_target_port.node_name == pe->node_name &&
1334 		    tgtport->fc_target_port.port_name == pe->port_name) {
1335 			WARN_ON(pe->tgtport);
1336 			tgtport->pe = pe;
1337 			pe->tgtport = tgtport;
1338 			break;
1339 		}
1340 	}
1341 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1342 }
1343 
1344 /**
1345  * nvmet_fc_register_targetport - transport entry point called by an
1346  *                              LLDD to register the existence of a local
1347  *                              NVME subystem FC port.
1348  * @pinfo:     pointer to information about the port to be registered
1349  * @template:  LLDD entrypoints and operational parameters for the port
1350  * @dev:       physical hardware device node port corresponds to. Will be
1351  *             used for DMA mappings
1352  * @portptr:   pointer to a local port pointer. Upon success, the routine
1353  *             will allocate a nvme_fc_local_port structure and place its
1354  *             address in the local port pointer. Upon failure, local port
1355  *             pointer will be set to NULL.
1356  *
1357  * Returns:
1358  * a completion status. Must be 0 upon success; a negative errno
1359  * (ex: -ENXIO) upon failure.
1360  */
1361 int
1362 nvmet_fc_register_targetport(struct nvmet_fc_port_info *pinfo,
1363 			struct nvmet_fc_target_template *template,
1364 			struct device *dev,
1365 			struct nvmet_fc_target_port **portptr)
1366 {
1367 	struct nvmet_fc_tgtport *newrec;
1368 	unsigned long flags;
1369 	int ret, idx;
1370 
1371 	if (!template->xmt_ls_rsp || !template->fcp_op ||
1372 	    !template->fcp_abort ||
1373 	    !template->fcp_req_release || !template->targetport_delete ||
1374 	    !template->max_hw_queues || !template->max_sgl_segments ||
1375 	    !template->max_dif_sgl_segments || !template->dma_boundary) {
1376 		ret = -EINVAL;
1377 		goto out_regtgt_failed;
1378 	}
1379 
1380 	newrec = kzalloc((sizeof(*newrec) + template->target_priv_sz),
1381 			 GFP_KERNEL);
1382 	if (!newrec) {
1383 		ret = -ENOMEM;
1384 		goto out_regtgt_failed;
1385 	}
1386 
1387 	idx = ida_alloc(&nvmet_fc_tgtport_cnt, GFP_KERNEL);
1388 	if (idx < 0) {
1389 		ret = -ENOSPC;
1390 		goto out_fail_kfree;
1391 	}
1392 
1393 	if (!get_device(dev) && dev) {
1394 		ret = -ENODEV;
1395 		goto out_ida_put;
1396 	}
1397 
1398 	newrec->fc_target_port.node_name = pinfo->node_name;
1399 	newrec->fc_target_port.port_name = pinfo->port_name;
1400 	if (template->target_priv_sz)
1401 		newrec->fc_target_port.private = &newrec[1];
1402 	else
1403 		newrec->fc_target_port.private = NULL;
1404 	newrec->fc_target_port.port_id = pinfo->port_id;
1405 	newrec->fc_target_port.port_num = idx;
1406 	INIT_LIST_HEAD(&newrec->tgt_list);
1407 	newrec->dev = dev;
1408 	newrec->ops = template;
1409 	spin_lock_init(&newrec->lock);
1410 	INIT_LIST_HEAD(&newrec->ls_rcv_list);
1411 	INIT_LIST_HEAD(&newrec->ls_req_list);
1412 	INIT_LIST_HEAD(&newrec->ls_busylist);
1413 	INIT_LIST_HEAD(&newrec->assoc_list);
1414 	INIT_LIST_HEAD(&newrec->host_list);
1415 	kref_init(&newrec->ref);
1416 	ida_init(&newrec->assoc_cnt);
1417 	newrec->max_sg_cnt = template->max_sgl_segments;
1418 
1419 	ret = nvmet_fc_alloc_ls_iodlist(newrec);
1420 	if (ret) {
1421 		ret = -ENOMEM;
1422 		goto out_free_newrec;
1423 	}
1424 
1425 	nvmet_fc_portentry_rebind_tgt(newrec);
1426 
1427 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1428 	list_add_tail(&newrec->tgt_list, &nvmet_fc_target_list);
1429 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1430 
1431 	*portptr = &newrec->fc_target_port;
1432 	return 0;
1433 
1434 out_free_newrec:
1435 	put_device(dev);
1436 out_ida_put:
1437 	ida_free(&nvmet_fc_tgtport_cnt, idx);
1438 out_fail_kfree:
1439 	kfree(newrec);
1440 out_regtgt_failed:
1441 	*portptr = NULL;
1442 	return ret;
1443 }
1444 EXPORT_SYMBOL_GPL(nvmet_fc_register_targetport);
1445 
1446 
1447 static void
1448 nvmet_fc_free_tgtport(struct kref *ref)
1449 {
1450 	struct nvmet_fc_tgtport *tgtport =
1451 		container_of(ref, struct nvmet_fc_tgtport, ref);
1452 	struct device *dev = tgtport->dev;
1453 	unsigned long flags;
1454 
1455 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1456 	list_del(&tgtport->tgt_list);
1457 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1458 
1459 	nvmet_fc_free_ls_iodlist(tgtport);
1460 
1461 	/* let the LLDD know we've finished tearing it down */
1462 	tgtport->ops->targetport_delete(&tgtport->fc_target_port);
1463 
1464 	ida_free(&nvmet_fc_tgtport_cnt,
1465 			tgtport->fc_target_port.port_num);
1466 
1467 	ida_destroy(&tgtport->assoc_cnt);
1468 
1469 	kfree(tgtport);
1470 
1471 	put_device(dev);
1472 }
1473 
1474 static void
1475 nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport)
1476 {
1477 	kref_put(&tgtport->ref, nvmet_fc_free_tgtport);
1478 }
1479 
1480 static int
1481 nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport)
1482 {
1483 	return kref_get_unless_zero(&tgtport->ref);
1484 }
1485 
1486 static void
1487 __nvmet_fc_free_assocs(struct nvmet_fc_tgtport *tgtport)
1488 {
1489 	struct nvmet_fc_tgt_assoc *assoc;
1490 
1491 	rcu_read_lock();
1492 	list_for_each_entry_rcu(assoc, &tgtport->assoc_list, a_list) {
1493 		if (!nvmet_fc_tgt_a_get(assoc))
1494 			continue;
1495 		if (!queue_work(nvmet_wq, &assoc->del_work))
1496 			/* already deleting - release local reference */
1497 			nvmet_fc_tgt_a_put(assoc);
1498 	}
1499 	rcu_read_unlock();
1500 }
1501 
1502 /**
1503  * nvmet_fc_invalidate_host - transport entry point called by an LLDD
1504  *                       to remove references to a hosthandle for LS's.
1505  *
1506  * The nvmet-fc layer ensures that any references to the hosthandle
1507  * on the targetport are forgotten (set to NULL).  The LLDD will
1508  * typically call this when a login with a remote host port has been
1509  * lost, thus LS's for the remote host port are no longer possible.
1510  *
1511  * If an LS request is outstanding to the targetport/hosthandle (or
1512  * issued concurrently with the call to invalidate the host), the
1513  * LLDD is responsible for terminating/aborting the LS and completing
1514  * the LS request. It is recommended that these terminations/aborts
1515  * occur after calling to invalidate the host handle to avoid additional
1516  * retries by the nvmet-fc transport. The nvmet-fc transport may
1517  * continue to reference host handle while it cleans up outstanding
1518  * NVME associations. The nvmet-fc transport will call the
1519  * ops->host_release() callback to notify the LLDD that all references
1520  * are complete and the related host handle can be recovered.
1521  * Note: if there are no references, the callback may be called before
1522  * the invalidate host call returns.
1523  *
1524  * @target_port: pointer to the (registered) target port that a prior
1525  *              LS was received on and which supplied the transport the
1526  *              hosthandle.
1527  * @hosthandle: the handle (pointer) that represents the host port
1528  *              that no longer has connectivity and that LS's should
1529  *              no longer be directed to.
1530  */
1531 void
1532 nvmet_fc_invalidate_host(struct nvmet_fc_target_port *target_port,
1533 			void *hosthandle)
1534 {
1535 	struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
1536 	struct nvmet_fc_tgt_assoc *assoc, *next;
1537 	unsigned long flags;
1538 	bool noassoc = true;
1539 
1540 	spin_lock_irqsave(&tgtport->lock, flags);
1541 	list_for_each_entry_safe(assoc, next,
1542 				&tgtport->assoc_list, a_list) {
1543 		if (!assoc->hostport ||
1544 		    assoc->hostport->hosthandle != hosthandle)
1545 			continue;
1546 		if (!nvmet_fc_tgt_a_get(assoc))
1547 			continue;
1548 		assoc->hostport->invalid = 1;
1549 		noassoc = false;
1550 		if (!queue_work(nvmet_wq, &assoc->del_work))
1551 			/* already deleting - release local reference */
1552 			nvmet_fc_tgt_a_put(assoc);
1553 	}
1554 	spin_unlock_irqrestore(&tgtport->lock, flags);
1555 
1556 	/* if there's nothing to wait for - call the callback */
1557 	if (noassoc && tgtport->ops->host_release)
1558 		tgtport->ops->host_release(hosthandle);
1559 }
1560 EXPORT_SYMBOL_GPL(nvmet_fc_invalidate_host);
1561 
1562 /*
1563  * nvmet layer has called to terminate an association
1564  */
1565 static void
1566 nvmet_fc_delete_ctrl(struct nvmet_ctrl *ctrl)
1567 {
1568 	struct nvmet_fc_tgtport *tgtport, *next;
1569 	struct nvmet_fc_tgt_assoc *assoc;
1570 	struct nvmet_fc_tgt_queue *queue;
1571 	unsigned long flags;
1572 	bool found_ctrl = false;
1573 
1574 	/* this is a bit ugly, but don't want to make locks layered */
1575 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1576 	list_for_each_entry_safe(tgtport, next, &nvmet_fc_target_list,
1577 			tgt_list) {
1578 		if (!nvmet_fc_tgtport_get(tgtport))
1579 			continue;
1580 		spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1581 
1582 		rcu_read_lock();
1583 		list_for_each_entry_rcu(assoc, &tgtport->assoc_list, a_list) {
1584 			queue = rcu_dereference(assoc->queues[0]);
1585 			if (queue && queue->nvme_sq.ctrl == ctrl) {
1586 				if (nvmet_fc_tgt_a_get(assoc))
1587 					found_ctrl = true;
1588 				break;
1589 			}
1590 		}
1591 		rcu_read_unlock();
1592 
1593 		nvmet_fc_tgtport_put(tgtport);
1594 
1595 		if (found_ctrl) {
1596 			if (!queue_work(nvmet_wq, &assoc->del_work))
1597 				/* already deleting - release local reference */
1598 				nvmet_fc_tgt_a_put(assoc);
1599 			return;
1600 		}
1601 
1602 		spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1603 	}
1604 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1605 }
1606 
1607 /**
1608  * nvmet_fc_unregister_targetport - transport entry point called by an
1609  *                              LLDD to deregister/remove a previously
1610  *                              registered a local NVME subsystem FC port.
1611  * @target_port: pointer to the (registered) target port that is to be
1612  *               deregistered.
1613  *
1614  * Returns:
1615  * a completion status. Must be 0 upon success; a negative errno
1616  * (ex: -ENXIO) upon failure.
1617  */
1618 int
1619 nvmet_fc_unregister_targetport(struct nvmet_fc_target_port *target_port)
1620 {
1621 	struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
1622 
1623 	nvmet_fc_portentry_unbind_tgt(tgtport);
1624 
1625 	/* terminate any outstanding associations */
1626 	__nvmet_fc_free_assocs(tgtport);
1627 
1628 	/*
1629 	 * should terminate LS's as well. However, LS's will be generated
1630 	 * at the tail end of association termination, so they likely don't
1631 	 * exist yet. And even if they did, it's worthwhile to just let
1632 	 * them finish and targetport ref counting will clean things up.
1633 	 */
1634 
1635 	nvmet_fc_tgtport_put(tgtport);
1636 
1637 	return 0;
1638 }
1639 EXPORT_SYMBOL_GPL(nvmet_fc_unregister_targetport);
1640 
1641 
1642 /* ********************** FC-NVME LS RCV Handling ************************* */
1643 
1644 
1645 static void
1646 nvmet_fc_ls_create_association(struct nvmet_fc_tgtport *tgtport,
1647 			struct nvmet_fc_ls_iod *iod)
1648 {
1649 	struct fcnvme_ls_cr_assoc_rqst *rqst = &iod->rqstbuf->rq_cr_assoc;
1650 	struct fcnvme_ls_cr_assoc_acc *acc = &iod->rspbuf->rsp_cr_assoc;
1651 	struct nvmet_fc_tgt_queue *queue;
1652 	int ret = 0;
1653 
1654 	memset(acc, 0, sizeof(*acc));
1655 
1656 	/*
1657 	 * FC-NVME spec changes. There are initiators sending different
1658 	 * lengths as padding sizes for Create Association Cmd descriptor
1659 	 * was incorrect.
1660 	 * Accept anything of "minimum" length. Assume format per 1.15
1661 	 * spec (with HOSTID reduced to 16 bytes), ignore how long the
1662 	 * trailing pad length is.
1663 	 */
1664 	if (iod->rqstdatalen < FCNVME_LSDESC_CRA_RQST_MINLEN)
1665 		ret = VERR_CR_ASSOC_LEN;
1666 	else if (be32_to_cpu(rqst->desc_list_len) <
1667 			FCNVME_LSDESC_CRA_RQST_MIN_LISTLEN)
1668 		ret = VERR_CR_ASSOC_RQST_LEN;
1669 	else if (rqst->assoc_cmd.desc_tag !=
1670 			cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD))
1671 		ret = VERR_CR_ASSOC_CMD;
1672 	else if (be32_to_cpu(rqst->assoc_cmd.desc_len) <
1673 			FCNVME_LSDESC_CRA_CMD_DESC_MIN_DESCLEN)
1674 		ret = VERR_CR_ASSOC_CMD_LEN;
1675 	else if (!rqst->assoc_cmd.ersp_ratio ||
1676 		 (be16_to_cpu(rqst->assoc_cmd.ersp_ratio) >=
1677 				be16_to_cpu(rqst->assoc_cmd.sqsize)))
1678 		ret = VERR_ERSP_RATIO;
1679 
1680 	else {
1681 		/* new association w/ admin queue */
1682 		iod->assoc = nvmet_fc_alloc_target_assoc(
1683 						tgtport, iod->hosthandle);
1684 		if (!iod->assoc)
1685 			ret = VERR_ASSOC_ALLOC_FAIL;
1686 		else {
1687 			queue = nvmet_fc_alloc_target_queue(iod->assoc, 0,
1688 					be16_to_cpu(rqst->assoc_cmd.sqsize));
1689 			if (!queue) {
1690 				ret = VERR_QUEUE_ALLOC_FAIL;
1691 				nvmet_fc_tgt_a_put(iod->assoc);
1692 			}
1693 		}
1694 	}
1695 
1696 	if (ret) {
1697 		dev_err(tgtport->dev,
1698 			"Create Association LS failed: %s\n",
1699 			validation_errors[ret]);
1700 		iod->lsrsp->rsplen = nvme_fc_format_rjt(acc,
1701 				sizeof(*acc), rqst->w0.ls_cmd,
1702 				FCNVME_RJT_RC_LOGIC,
1703 				FCNVME_RJT_EXP_NONE, 0);
1704 		return;
1705 	}
1706 
1707 	queue->ersp_ratio = be16_to_cpu(rqst->assoc_cmd.ersp_ratio);
1708 	atomic_set(&queue->connected, 1);
1709 	queue->sqhd = 0;	/* best place to init value */
1710 
1711 	dev_info(tgtport->dev,
1712 		"{%d:%d} Association created\n",
1713 		tgtport->fc_target_port.port_num, iod->assoc->a_id);
1714 
1715 	/* format a response */
1716 
1717 	iod->lsrsp->rsplen = sizeof(*acc);
1718 
1719 	nvme_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1720 			fcnvme_lsdesc_len(
1721 				sizeof(struct fcnvme_ls_cr_assoc_acc)),
1722 			FCNVME_LS_CREATE_ASSOCIATION);
1723 	acc->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1724 	acc->associd.desc_len =
1725 			fcnvme_lsdesc_len(
1726 				sizeof(struct fcnvme_lsdesc_assoc_id));
1727 	acc->associd.association_id =
1728 			cpu_to_be64(nvmet_fc_makeconnid(iod->assoc, 0));
1729 	acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID);
1730 	acc->connectid.desc_len =
1731 			fcnvme_lsdesc_len(
1732 				sizeof(struct fcnvme_lsdesc_conn_id));
1733 	acc->connectid.connection_id = acc->associd.association_id;
1734 }
1735 
1736 static void
1737 nvmet_fc_ls_create_connection(struct nvmet_fc_tgtport *tgtport,
1738 			struct nvmet_fc_ls_iod *iod)
1739 {
1740 	struct fcnvme_ls_cr_conn_rqst *rqst = &iod->rqstbuf->rq_cr_conn;
1741 	struct fcnvme_ls_cr_conn_acc *acc = &iod->rspbuf->rsp_cr_conn;
1742 	struct nvmet_fc_tgt_queue *queue;
1743 	int ret = 0;
1744 
1745 	memset(acc, 0, sizeof(*acc));
1746 
1747 	if (iod->rqstdatalen < sizeof(struct fcnvme_ls_cr_conn_rqst))
1748 		ret = VERR_CR_CONN_LEN;
1749 	else if (rqst->desc_list_len !=
1750 			fcnvme_lsdesc_len(
1751 				sizeof(struct fcnvme_ls_cr_conn_rqst)))
1752 		ret = VERR_CR_CONN_RQST_LEN;
1753 	else if (rqst->associd.desc_tag != cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1754 		ret = VERR_ASSOC_ID;
1755 	else if (rqst->associd.desc_len !=
1756 			fcnvme_lsdesc_len(
1757 				sizeof(struct fcnvme_lsdesc_assoc_id)))
1758 		ret = VERR_ASSOC_ID_LEN;
1759 	else if (rqst->connect_cmd.desc_tag !=
1760 			cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD))
1761 		ret = VERR_CR_CONN_CMD;
1762 	else if (rqst->connect_cmd.desc_len !=
1763 			fcnvme_lsdesc_len(
1764 				sizeof(struct fcnvme_lsdesc_cr_conn_cmd)))
1765 		ret = VERR_CR_CONN_CMD_LEN;
1766 	else if (!rqst->connect_cmd.ersp_ratio ||
1767 		 (be16_to_cpu(rqst->connect_cmd.ersp_ratio) >=
1768 				be16_to_cpu(rqst->connect_cmd.sqsize)))
1769 		ret = VERR_ERSP_RATIO;
1770 
1771 	else {
1772 		/* new io queue */
1773 		iod->assoc = nvmet_fc_find_target_assoc(tgtport,
1774 				be64_to_cpu(rqst->associd.association_id));
1775 		if (!iod->assoc)
1776 			ret = VERR_NO_ASSOC;
1777 		else {
1778 			queue = nvmet_fc_alloc_target_queue(iod->assoc,
1779 					be16_to_cpu(rqst->connect_cmd.qid),
1780 					be16_to_cpu(rqst->connect_cmd.sqsize));
1781 			if (!queue)
1782 				ret = VERR_QUEUE_ALLOC_FAIL;
1783 
1784 			/* release get taken in nvmet_fc_find_target_assoc */
1785 			nvmet_fc_tgt_a_put(iod->assoc);
1786 		}
1787 	}
1788 
1789 	if (ret) {
1790 		dev_err(tgtport->dev,
1791 			"Create Connection LS failed: %s\n",
1792 			validation_errors[ret]);
1793 		iod->lsrsp->rsplen = nvme_fc_format_rjt(acc,
1794 				sizeof(*acc), rqst->w0.ls_cmd,
1795 				(ret == VERR_NO_ASSOC) ?
1796 					FCNVME_RJT_RC_INV_ASSOC :
1797 					FCNVME_RJT_RC_LOGIC,
1798 				FCNVME_RJT_EXP_NONE, 0);
1799 		return;
1800 	}
1801 
1802 	queue->ersp_ratio = be16_to_cpu(rqst->connect_cmd.ersp_ratio);
1803 	atomic_set(&queue->connected, 1);
1804 	queue->sqhd = 0;	/* best place to init value */
1805 
1806 	/* format a response */
1807 
1808 	iod->lsrsp->rsplen = sizeof(*acc);
1809 
1810 	nvme_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1811 			fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)),
1812 			FCNVME_LS_CREATE_CONNECTION);
1813 	acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID);
1814 	acc->connectid.desc_len =
1815 			fcnvme_lsdesc_len(
1816 				sizeof(struct fcnvme_lsdesc_conn_id));
1817 	acc->connectid.connection_id =
1818 			cpu_to_be64(nvmet_fc_makeconnid(iod->assoc,
1819 				be16_to_cpu(rqst->connect_cmd.qid)));
1820 }
1821 
1822 /*
1823  * Returns true if the LS response is to be transmit
1824  * Returns false if the LS response is to be delayed
1825  */
1826 static int
1827 nvmet_fc_ls_disconnect(struct nvmet_fc_tgtport *tgtport,
1828 			struct nvmet_fc_ls_iod *iod)
1829 {
1830 	struct fcnvme_ls_disconnect_assoc_rqst *rqst =
1831 						&iod->rqstbuf->rq_dis_assoc;
1832 	struct fcnvme_ls_disconnect_assoc_acc *acc =
1833 						&iod->rspbuf->rsp_dis_assoc;
1834 	struct nvmet_fc_tgt_assoc *assoc = NULL;
1835 	struct nvmet_fc_ls_iod *oldls = NULL;
1836 	unsigned long flags;
1837 	int ret = 0;
1838 
1839 	memset(acc, 0, sizeof(*acc));
1840 
1841 	ret = nvmefc_vldt_lsreq_discon_assoc(iod->rqstdatalen, rqst);
1842 	if (!ret) {
1843 		/* match an active association - takes an assoc ref if !NULL */
1844 		assoc = nvmet_fc_find_target_assoc(tgtport,
1845 				be64_to_cpu(rqst->associd.association_id));
1846 		iod->assoc = assoc;
1847 		if (!assoc)
1848 			ret = VERR_NO_ASSOC;
1849 	}
1850 
1851 	if (ret || !assoc) {
1852 		dev_err(tgtport->dev,
1853 			"Disconnect LS failed: %s\n",
1854 			validation_errors[ret]);
1855 		iod->lsrsp->rsplen = nvme_fc_format_rjt(acc,
1856 				sizeof(*acc), rqst->w0.ls_cmd,
1857 				(ret == VERR_NO_ASSOC) ?
1858 					FCNVME_RJT_RC_INV_ASSOC :
1859 					FCNVME_RJT_RC_LOGIC,
1860 				FCNVME_RJT_EXP_NONE, 0);
1861 		return true;
1862 	}
1863 
1864 	/* format a response */
1865 
1866 	iod->lsrsp->rsplen = sizeof(*acc);
1867 
1868 	nvme_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1869 			fcnvme_lsdesc_len(
1870 				sizeof(struct fcnvme_ls_disconnect_assoc_acc)),
1871 			FCNVME_LS_DISCONNECT_ASSOC);
1872 
1873 	/* release get taken in nvmet_fc_find_target_assoc */
1874 	nvmet_fc_tgt_a_put(assoc);
1875 
1876 	/*
1877 	 * The rules for LS response says the response cannot
1878 	 * go back until ABTS's have been sent for all outstanding
1879 	 * I/O and a Disconnect Association LS has been sent.
1880 	 * So... save off the Disconnect LS to send the response
1881 	 * later. If there was a prior LS already saved, replace
1882 	 * it with the newer one and send a can't perform reject
1883 	 * on the older one.
1884 	 */
1885 	spin_lock_irqsave(&tgtport->lock, flags);
1886 	oldls = assoc->rcv_disconn;
1887 	assoc->rcv_disconn = iod;
1888 	spin_unlock_irqrestore(&tgtport->lock, flags);
1889 
1890 	nvmet_fc_delete_target_assoc(assoc);
1891 
1892 	if (oldls) {
1893 		dev_info(tgtport->dev,
1894 			"{%d:%d} Multiple Disconnect Association LS's "
1895 			"received\n",
1896 			tgtport->fc_target_port.port_num, assoc->a_id);
1897 		/* overwrite good response with bogus failure */
1898 		oldls->lsrsp->rsplen = nvme_fc_format_rjt(oldls->rspbuf,
1899 						sizeof(*iod->rspbuf),
1900 						/* ok to use rqst, LS is same */
1901 						rqst->w0.ls_cmd,
1902 						FCNVME_RJT_RC_UNAB,
1903 						FCNVME_RJT_EXP_NONE, 0);
1904 		nvmet_fc_xmt_ls_rsp(tgtport, oldls);
1905 	}
1906 
1907 	return false;
1908 }
1909 
1910 
1911 /* *********************** NVME Ctrl Routines **************************** */
1912 
1913 
1914 static void nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req);
1915 
1916 static const struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops;
1917 
1918 static void
1919 nvmet_fc_xmt_ls_rsp_done(struct nvmefc_ls_rsp *lsrsp)
1920 {
1921 	struct nvmet_fc_ls_iod *iod = lsrsp->nvme_fc_private;
1922 	struct nvmet_fc_tgtport *tgtport = iod->tgtport;
1923 
1924 	fc_dma_sync_single_for_cpu(tgtport->dev, iod->rspdma,
1925 				sizeof(*iod->rspbuf), DMA_TO_DEVICE);
1926 	nvmet_fc_free_ls_iod(tgtport, iod);
1927 	nvmet_fc_tgtport_put(tgtport);
1928 }
1929 
1930 static void
1931 nvmet_fc_xmt_ls_rsp(struct nvmet_fc_tgtport *tgtport,
1932 				struct nvmet_fc_ls_iod *iod)
1933 {
1934 	int ret;
1935 
1936 	fc_dma_sync_single_for_device(tgtport->dev, iod->rspdma,
1937 				  sizeof(*iod->rspbuf), DMA_TO_DEVICE);
1938 
1939 	ret = tgtport->ops->xmt_ls_rsp(&tgtport->fc_target_port, iod->lsrsp);
1940 	if (ret)
1941 		nvmet_fc_xmt_ls_rsp_done(iod->lsrsp);
1942 }
1943 
1944 /*
1945  * Actual processing routine for received FC-NVME LS Requests from the LLD
1946  */
1947 static void
1948 nvmet_fc_handle_ls_rqst(struct nvmet_fc_tgtport *tgtport,
1949 			struct nvmet_fc_ls_iod *iod)
1950 {
1951 	struct fcnvme_ls_rqst_w0 *w0 = &iod->rqstbuf->rq_cr_assoc.w0;
1952 	bool sendrsp = true;
1953 
1954 	iod->lsrsp->nvme_fc_private = iod;
1955 	iod->lsrsp->rspbuf = iod->rspbuf;
1956 	iod->lsrsp->rspdma = iod->rspdma;
1957 	iod->lsrsp->done = nvmet_fc_xmt_ls_rsp_done;
1958 	/* Be preventative. handlers will later set to valid length */
1959 	iod->lsrsp->rsplen = 0;
1960 
1961 	iod->assoc = NULL;
1962 
1963 	/*
1964 	 * handlers:
1965 	 *   parse request input, execute the request, and format the
1966 	 *   LS response
1967 	 */
1968 	switch (w0->ls_cmd) {
1969 	case FCNVME_LS_CREATE_ASSOCIATION:
1970 		/* Creates Association and initial Admin Queue/Connection */
1971 		nvmet_fc_ls_create_association(tgtport, iod);
1972 		break;
1973 	case FCNVME_LS_CREATE_CONNECTION:
1974 		/* Creates an IO Queue/Connection */
1975 		nvmet_fc_ls_create_connection(tgtport, iod);
1976 		break;
1977 	case FCNVME_LS_DISCONNECT_ASSOC:
1978 		/* Terminate a Queue/Connection or the Association */
1979 		sendrsp = nvmet_fc_ls_disconnect(tgtport, iod);
1980 		break;
1981 	default:
1982 		iod->lsrsp->rsplen = nvme_fc_format_rjt(iod->rspbuf,
1983 				sizeof(*iod->rspbuf), w0->ls_cmd,
1984 				FCNVME_RJT_RC_INVAL, FCNVME_RJT_EXP_NONE, 0);
1985 	}
1986 
1987 	if (sendrsp)
1988 		nvmet_fc_xmt_ls_rsp(tgtport, iod);
1989 }
1990 
1991 /*
1992  * Actual processing routine for received FC-NVME LS Requests from the LLD
1993  */
1994 static void
1995 nvmet_fc_handle_ls_rqst_work(struct work_struct *work)
1996 {
1997 	struct nvmet_fc_ls_iod *iod =
1998 		container_of(work, struct nvmet_fc_ls_iod, work);
1999 	struct nvmet_fc_tgtport *tgtport = iod->tgtport;
2000 
2001 	nvmet_fc_handle_ls_rqst(tgtport, iod);
2002 }
2003 
2004 
2005 /**
2006  * nvmet_fc_rcv_ls_req - transport entry point called by an LLDD
2007  *                       upon the reception of a NVME LS request.
2008  *
2009  * The nvmet-fc layer will copy payload to an internal structure for
2010  * processing.  As such, upon completion of the routine, the LLDD may
2011  * immediately free/reuse the LS request buffer passed in the call.
2012  *
2013  * If this routine returns error, the LLDD should abort the exchange.
2014  *
2015  * @target_port: pointer to the (registered) target port the LS was
2016  *              received on.
2017  * @hosthandle: pointer to the host specific data, gets stored in iod.
2018  * @lsrsp:      pointer to a lsrsp structure to be used to reference
2019  *              the exchange corresponding to the LS.
2020  * @lsreqbuf:   pointer to the buffer containing the LS Request
2021  * @lsreqbuf_len: length, in bytes, of the received LS request
2022  */
2023 int
2024 nvmet_fc_rcv_ls_req(struct nvmet_fc_target_port *target_port,
2025 			void *hosthandle,
2026 			struct nvmefc_ls_rsp *lsrsp,
2027 			void *lsreqbuf, u32 lsreqbuf_len)
2028 {
2029 	struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
2030 	struct nvmet_fc_ls_iod *iod;
2031 	struct fcnvme_ls_rqst_w0 *w0 = (struct fcnvme_ls_rqst_w0 *)lsreqbuf;
2032 
2033 	if (lsreqbuf_len > sizeof(union nvmefc_ls_requests)) {
2034 		dev_info(tgtport->dev,
2035 			"RCV %s LS failed: payload too large (%d)\n",
2036 			(w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
2037 				nvmefc_ls_names[w0->ls_cmd] : "",
2038 			lsreqbuf_len);
2039 		return -E2BIG;
2040 	}
2041 
2042 	if (!nvmet_fc_tgtport_get(tgtport)) {
2043 		dev_info(tgtport->dev,
2044 			"RCV %s LS failed: target deleting\n",
2045 			(w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
2046 				nvmefc_ls_names[w0->ls_cmd] : "");
2047 		return -ESHUTDOWN;
2048 	}
2049 
2050 	iod = nvmet_fc_alloc_ls_iod(tgtport);
2051 	if (!iod) {
2052 		dev_info(tgtport->dev,
2053 			"RCV %s LS failed: context allocation failed\n",
2054 			(w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
2055 				nvmefc_ls_names[w0->ls_cmd] : "");
2056 		nvmet_fc_tgtport_put(tgtport);
2057 		return -ENOENT;
2058 	}
2059 
2060 	iod->lsrsp = lsrsp;
2061 	iod->fcpreq = NULL;
2062 	memcpy(iod->rqstbuf, lsreqbuf, lsreqbuf_len);
2063 	iod->rqstdatalen = lsreqbuf_len;
2064 	iod->hosthandle = hosthandle;
2065 
2066 	queue_work(nvmet_wq, &iod->work);
2067 
2068 	return 0;
2069 }
2070 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_ls_req);
2071 
2072 
2073 /*
2074  * **********************
2075  * Start of FCP handling
2076  * **********************
2077  */
2078 
2079 static int
2080 nvmet_fc_alloc_tgt_pgs(struct nvmet_fc_fcp_iod *fod)
2081 {
2082 	struct scatterlist *sg;
2083 	unsigned int nent;
2084 
2085 	sg = sgl_alloc(fod->req.transfer_len, GFP_KERNEL, &nent);
2086 	if (!sg)
2087 		goto out;
2088 
2089 	fod->data_sg = sg;
2090 	fod->data_sg_cnt = nent;
2091 	fod->data_sg_cnt = fc_dma_map_sg(fod->tgtport->dev, sg, nent,
2092 				((fod->io_dir == NVMET_FCP_WRITE) ?
2093 					DMA_FROM_DEVICE : DMA_TO_DEVICE));
2094 				/* note: write from initiator perspective */
2095 	fod->next_sg = fod->data_sg;
2096 
2097 	return 0;
2098 
2099 out:
2100 	return NVME_SC_INTERNAL;
2101 }
2102 
2103 static void
2104 nvmet_fc_free_tgt_pgs(struct nvmet_fc_fcp_iod *fod)
2105 {
2106 	if (!fod->data_sg || !fod->data_sg_cnt)
2107 		return;
2108 
2109 	fc_dma_unmap_sg(fod->tgtport->dev, fod->data_sg, fod->data_sg_cnt,
2110 				((fod->io_dir == NVMET_FCP_WRITE) ?
2111 					DMA_FROM_DEVICE : DMA_TO_DEVICE));
2112 	sgl_free(fod->data_sg);
2113 	fod->data_sg = NULL;
2114 	fod->data_sg_cnt = 0;
2115 }
2116 
2117 
2118 static bool
2119 queue_90percent_full(struct nvmet_fc_tgt_queue *q, u32 sqhd)
2120 {
2121 	u32 sqtail, used;
2122 
2123 	/* egad, this is ugly. And sqtail is just a best guess */
2124 	sqtail = atomic_read(&q->sqtail) % q->sqsize;
2125 
2126 	used = (sqtail < sqhd) ? (sqtail + q->sqsize - sqhd) : (sqtail - sqhd);
2127 	return ((used * 10) >= (((u32)(q->sqsize - 1) * 9)));
2128 }
2129 
2130 /*
2131  * Prep RSP payload.
2132  * May be a NVMET_FCOP_RSP or NVMET_FCOP_READDATA_RSP op
2133  */
2134 static void
2135 nvmet_fc_prep_fcp_rsp(struct nvmet_fc_tgtport *tgtport,
2136 				struct nvmet_fc_fcp_iod *fod)
2137 {
2138 	struct nvme_fc_ersp_iu *ersp = &fod->rspiubuf;
2139 	struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common;
2140 	struct nvme_completion *cqe = &ersp->cqe;
2141 	u32 *cqewd = (u32 *)cqe;
2142 	bool send_ersp = false;
2143 	u32 rsn, rspcnt, xfr_length;
2144 
2145 	if (fod->fcpreq->op == NVMET_FCOP_READDATA_RSP)
2146 		xfr_length = fod->req.transfer_len;
2147 	else
2148 		xfr_length = fod->offset;
2149 
2150 	/*
2151 	 * check to see if we can send a 0's rsp.
2152 	 *   Note: to send a 0's response, the NVME-FC host transport will
2153 	 *   recreate the CQE. The host transport knows: sq id, SQHD (last
2154 	 *   seen in an ersp), and command_id. Thus it will create a
2155 	 *   zero-filled CQE with those known fields filled in. Transport
2156 	 *   must send an ersp for any condition where the cqe won't match
2157 	 *   this.
2158 	 *
2159 	 * Here are the FC-NVME mandated cases where we must send an ersp:
2160 	 *  every N responses, where N=ersp_ratio
2161 	 *  force fabric commands to send ersp's (not in FC-NVME but good
2162 	 *    practice)
2163 	 *  normal cmds: any time status is non-zero, or status is zero
2164 	 *     but words 0 or 1 are non-zero.
2165 	 *  the SQ is 90% or more full
2166 	 *  the cmd is a fused command
2167 	 *  transferred data length not equal to cmd iu length
2168 	 */
2169 	rspcnt = atomic_inc_return(&fod->queue->zrspcnt);
2170 	if (!(rspcnt % fod->queue->ersp_ratio) ||
2171 	    nvme_is_fabrics((struct nvme_command *) sqe) ||
2172 	    xfr_length != fod->req.transfer_len ||
2173 	    (le16_to_cpu(cqe->status) & 0xFFFE) || cqewd[0] || cqewd[1] ||
2174 	    (sqe->flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND)) ||
2175 	    queue_90percent_full(fod->queue, le16_to_cpu(cqe->sq_head)))
2176 		send_ersp = true;
2177 
2178 	/* re-set the fields */
2179 	fod->fcpreq->rspaddr = ersp;
2180 	fod->fcpreq->rspdma = fod->rspdma;
2181 
2182 	if (!send_ersp) {
2183 		memset(ersp, 0, NVME_FC_SIZEOF_ZEROS_RSP);
2184 		fod->fcpreq->rsplen = NVME_FC_SIZEOF_ZEROS_RSP;
2185 	} else {
2186 		ersp->iu_len = cpu_to_be16(sizeof(*ersp)/sizeof(u32));
2187 		rsn = atomic_inc_return(&fod->queue->rsn);
2188 		ersp->rsn = cpu_to_be32(rsn);
2189 		ersp->xfrd_len = cpu_to_be32(xfr_length);
2190 		fod->fcpreq->rsplen = sizeof(*ersp);
2191 	}
2192 
2193 	fc_dma_sync_single_for_device(tgtport->dev, fod->rspdma,
2194 				  sizeof(fod->rspiubuf), DMA_TO_DEVICE);
2195 }
2196 
2197 static void nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq);
2198 
2199 static void
2200 nvmet_fc_abort_op(struct nvmet_fc_tgtport *tgtport,
2201 				struct nvmet_fc_fcp_iod *fod)
2202 {
2203 	struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2204 
2205 	/* data no longer needed */
2206 	nvmet_fc_free_tgt_pgs(fod);
2207 
2208 	/*
2209 	 * if an ABTS was received or we issued the fcp_abort early
2210 	 * don't call abort routine again.
2211 	 */
2212 	/* no need to take lock - lock was taken earlier to get here */
2213 	if (!fod->aborted)
2214 		tgtport->ops->fcp_abort(&tgtport->fc_target_port, fcpreq);
2215 
2216 	nvmet_fc_free_fcp_iod(fod->queue, fod);
2217 }
2218 
2219 static void
2220 nvmet_fc_xmt_fcp_rsp(struct nvmet_fc_tgtport *tgtport,
2221 				struct nvmet_fc_fcp_iod *fod)
2222 {
2223 	int ret;
2224 
2225 	fod->fcpreq->op = NVMET_FCOP_RSP;
2226 	fod->fcpreq->timeout = 0;
2227 
2228 	nvmet_fc_prep_fcp_rsp(tgtport, fod);
2229 
2230 	ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq);
2231 	if (ret)
2232 		nvmet_fc_abort_op(tgtport, fod);
2233 }
2234 
2235 static void
2236 nvmet_fc_transfer_fcp_data(struct nvmet_fc_tgtport *tgtport,
2237 				struct nvmet_fc_fcp_iod *fod, u8 op)
2238 {
2239 	struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2240 	struct scatterlist *sg = fod->next_sg;
2241 	unsigned long flags;
2242 	u32 remaininglen = fod->req.transfer_len - fod->offset;
2243 	u32 tlen = 0;
2244 	int ret;
2245 
2246 	fcpreq->op = op;
2247 	fcpreq->offset = fod->offset;
2248 	fcpreq->timeout = NVME_FC_TGTOP_TIMEOUT_SEC;
2249 
2250 	/*
2251 	 * for next sequence:
2252 	 *  break at a sg element boundary
2253 	 *  attempt to keep sequence length capped at
2254 	 *    NVMET_FC_MAX_SEQ_LENGTH but allow sequence to
2255 	 *    be longer if a single sg element is larger
2256 	 *    than that amount. This is done to avoid creating
2257 	 *    a new sg list to use for the tgtport api.
2258 	 */
2259 	fcpreq->sg = sg;
2260 	fcpreq->sg_cnt = 0;
2261 	while (tlen < remaininglen &&
2262 	       fcpreq->sg_cnt < tgtport->max_sg_cnt &&
2263 	       tlen + sg_dma_len(sg) < NVMET_FC_MAX_SEQ_LENGTH) {
2264 		fcpreq->sg_cnt++;
2265 		tlen += sg_dma_len(sg);
2266 		sg = sg_next(sg);
2267 	}
2268 	if (tlen < remaininglen && fcpreq->sg_cnt == 0) {
2269 		fcpreq->sg_cnt++;
2270 		tlen += min_t(u32, sg_dma_len(sg), remaininglen);
2271 		sg = sg_next(sg);
2272 	}
2273 	if (tlen < remaininglen)
2274 		fod->next_sg = sg;
2275 	else
2276 		fod->next_sg = NULL;
2277 
2278 	fcpreq->transfer_length = tlen;
2279 	fcpreq->transferred_length = 0;
2280 	fcpreq->fcp_error = 0;
2281 	fcpreq->rsplen = 0;
2282 
2283 	/*
2284 	 * If the last READDATA request: check if LLDD supports
2285 	 * combined xfr with response.
2286 	 */
2287 	if ((op == NVMET_FCOP_READDATA) &&
2288 	    ((fod->offset + fcpreq->transfer_length) == fod->req.transfer_len) &&
2289 	    (tgtport->ops->target_features & NVMET_FCTGTFEAT_READDATA_RSP)) {
2290 		fcpreq->op = NVMET_FCOP_READDATA_RSP;
2291 		nvmet_fc_prep_fcp_rsp(tgtport, fod);
2292 	}
2293 
2294 	ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq);
2295 	if (ret) {
2296 		/*
2297 		 * should be ok to set w/o lock as its in the thread of
2298 		 * execution (not an async timer routine) and doesn't
2299 		 * contend with any clearing action
2300 		 */
2301 		fod->abort = true;
2302 
2303 		if (op == NVMET_FCOP_WRITEDATA) {
2304 			spin_lock_irqsave(&fod->flock, flags);
2305 			fod->writedataactive = false;
2306 			spin_unlock_irqrestore(&fod->flock, flags);
2307 			nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
2308 		} else /* NVMET_FCOP_READDATA or NVMET_FCOP_READDATA_RSP */ {
2309 			fcpreq->fcp_error = ret;
2310 			fcpreq->transferred_length = 0;
2311 			nvmet_fc_xmt_fcp_op_done(fod->fcpreq);
2312 		}
2313 	}
2314 }
2315 
2316 static inline bool
2317 __nvmet_fc_fod_op_abort(struct nvmet_fc_fcp_iod *fod, bool abort)
2318 {
2319 	struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2320 	struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2321 
2322 	/* if in the middle of an io and we need to tear down */
2323 	if (abort) {
2324 		if (fcpreq->op == NVMET_FCOP_WRITEDATA) {
2325 			nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
2326 			return true;
2327 		}
2328 
2329 		nvmet_fc_abort_op(tgtport, fod);
2330 		return true;
2331 	}
2332 
2333 	return false;
2334 }
2335 
2336 /*
2337  * actual done handler for FCP operations when completed by the lldd
2338  */
2339 static void
2340 nvmet_fc_fod_op_done(struct nvmet_fc_fcp_iod *fod)
2341 {
2342 	struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2343 	struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2344 	unsigned long flags;
2345 	bool abort;
2346 
2347 	spin_lock_irqsave(&fod->flock, flags);
2348 	abort = fod->abort;
2349 	fod->writedataactive = false;
2350 	spin_unlock_irqrestore(&fod->flock, flags);
2351 
2352 	switch (fcpreq->op) {
2353 
2354 	case NVMET_FCOP_WRITEDATA:
2355 		if (__nvmet_fc_fod_op_abort(fod, abort))
2356 			return;
2357 		if (fcpreq->fcp_error ||
2358 		    fcpreq->transferred_length != fcpreq->transfer_length) {
2359 			spin_lock_irqsave(&fod->flock, flags);
2360 			fod->abort = true;
2361 			spin_unlock_irqrestore(&fod->flock, flags);
2362 
2363 			nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
2364 			return;
2365 		}
2366 
2367 		fod->offset += fcpreq->transferred_length;
2368 		if (fod->offset != fod->req.transfer_len) {
2369 			spin_lock_irqsave(&fod->flock, flags);
2370 			fod->writedataactive = true;
2371 			spin_unlock_irqrestore(&fod->flock, flags);
2372 
2373 			/* transfer the next chunk */
2374 			nvmet_fc_transfer_fcp_data(tgtport, fod,
2375 						NVMET_FCOP_WRITEDATA);
2376 			return;
2377 		}
2378 
2379 		/* data transfer complete, resume with nvmet layer */
2380 		fod->req.execute(&fod->req);
2381 		break;
2382 
2383 	case NVMET_FCOP_READDATA:
2384 	case NVMET_FCOP_READDATA_RSP:
2385 		if (__nvmet_fc_fod_op_abort(fod, abort))
2386 			return;
2387 		if (fcpreq->fcp_error ||
2388 		    fcpreq->transferred_length != fcpreq->transfer_length) {
2389 			nvmet_fc_abort_op(tgtport, fod);
2390 			return;
2391 		}
2392 
2393 		/* success */
2394 
2395 		if (fcpreq->op == NVMET_FCOP_READDATA_RSP) {
2396 			/* data no longer needed */
2397 			nvmet_fc_free_tgt_pgs(fod);
2398 			nvmet_fc_free_fcp_iod(fod->queue, fod);
2399 			return;
2400 		}
2401 
2402 		fod->offset += fcpreq->transferred_length;
2403 		if (fod->offset != fod->req.transfer_len) {
2404 			/* transfer the next chunk */
2405 			nvmet_fc_transfer_fcp_data(tgtport, fod,
2406 						NVMET_FCOP_READDATA);
2407 			return;
2408 		}
2409 
2410 		/* data transfer complete, send response */
2411 
2412 		/* data no longer needed */
2413 		nvmet_fc_free_tgt_pgs(fod);
2414 
2415 		nvmet_fc_xmt_fcp_rsp(tgtport, fod);
2416 
2417 		break;
2418 
2419 	case NVMET_FCOP_RSP:
2420 		if (__nvmet_fc_fod_op_abort(fod, abort))
2421 			return;
2422 		nvmet_fc_free_fcp_iod(fod->queue, fod);
2423 		break;
2424 
2425 	default:
2426 		break;
2427 	}
2428 }
2429 
2430 static void
2431 nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq)
2432 {
2433 	struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
2434 
2435 	nvmet_fc_fod_op_done(fod);
2436 }
2437 
2438 /*
2439  * actual completion handler after execution by the nvmet layer
2440  */
2441 static void
2442 __nvmet_fc_fcp_nvme_cmd_done(struct nvmet_fc_tgtport *tgtport,
2443 			struct nvmet_fc_fcp_iod *fod, int status)
2444 {
2445 	struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common;
2446 	struct nvme_completion *cqe = &fod->rspiubuf.cqe;
2447 	unsigned long flags;
2448 	bool abort;
2449 
2450 	spin_lock_irqsave(&fod->flock, flags);
2451 	abort = fod->abort;
2452 	spin_unlock_irqrestore(&fod->flock, flags);
2453 
2454 	/* if we have a CQE, snoop the last sq_head value */
2455 	if (!status)
2456 		fod->queue->sqhd = cqe->sq_head;
2457 
2458 	if (abort) {
2459 		nvmet_fc_abort_op(tgtport, fod);
2460 		return;
2461 	}
2462 
2463 	/* if an error handling the cmd post initial parsing */
2464 	if (status) {
2465 		/* fudge up a failed CQE status for our transport error */
2466 		memset(cqe, 0, sizeof(*cqe));
2467 		cqe->sq_head = fod->queue->sqhd;	/* echo last cqe sqhd */
2468 		cqe->sq_id = cpu_to_le16(fod->queue->qid);
2469 		cqe->command_id = sqe->command_id;
2470 		cqe->status = cpu_to_le16(status);
2471 	} else {
2472 
2473 		/*
2474 		 * try to push the data even if the SQE status is non-zero.
2475 		 * There may be a status where data still was intended to
2476 		 * be moved
2477 		 */
2478 		if ((fod->io_dir == NVMET_FCP_READ) && (fod->data_sg_cnt)) {
2479 			/* push the data over before sending rsp */
2480 			nvmet_fc_transfer_fcp_data(tgtport, fod,
2481 						NVMET_FCOP_READDATA);
2482 			return;
2483 		}
2484 
2485 		/* writes & no data - fall thru */
2486 	}
2487 
2488 	/* data no longer needed */
2489 	nvmet_fc_free_tgt_pgs(fod);
2490 
2491 	nvmet_fc_xmt_fcp_rsp(tgtport, fod);
2492 }
2493 
2494 
2495 static void
2496 nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req)
2497 {
2498 	struct nvmet_fc_fcp_iod *fod = nvmet_req_to_fod(nvme_req);
2499 	struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2500 
2501 	__nvmet_fc_fcp_nvme_cmd_done(tgtport, fod, 0);
2502 }
2503 
2504 
2505 /*
2506  * Actual processing routine for received FC-NVME I/O Requests from the LLD
2507  */
2508 static void
2509 nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport,
2510 			struct nvmet_fc_fcp_iod *fod)
2511 {
2512 	struct nvme_fc_cmd_iu *cmdiu = &fod->cmdiubuf;
2513 	u32 xfrlen = be32_to_cpu(cmdiu->data_len);
2514 	int ret;
2515 
2516 	/*
2517 	 * Fused commands are currently not supported in the linux
2518 	 * implementation.
2519 	 *
2520 	 * As such, the implementation of the FC transport does not
2521 	 * look at the fused commands and order delivery to the upper
2522 	 * layer until we have both based on csn.
2523 	 */
2524 
2525 	fod->fcpreq->done = nvmet_fc_xmt_fcp_op_done;
2526 
2527 	if (cmdiu->flags & FCNVME_CMD_FLAGS_WRITE) {
2528 		fod->io_dir = NVMET_FCP_WRITE;
2529 		if (!nvme_is_write(&cmdiu->sqe))
2530 			goto transport_error;
2531 	} else if (cmdiu->flags & FCNVME_CMD_FLAGS_READ) {
2532 		fod->io_dir = NVMET_FCP_READ;
2533 		if (nvme_is_write(&cmdiu->sqe))
2534 			goto transport_error;
2535 	} else {
2536 		fod->io_dir = NVMET_FCP_NODATA;
2537 		if (xfrlen)
2538 			goto transport_error;
2539 	}
2540 
2541 	fod->req.cmd = &fod->cmdiubuf.sqe;
2542 	fod->req.cqe = &fod->rspiubuf.cqe;
2543 	if (tgtport->pe)
2544 		fod->req.port = tgtport->pe->port;
2545 
2546 	/* clear any response payload */
2547 	memset(&fod->rspiubuf, 0, sizeof(fod->rspiubuf));
2548 
2549 	fod->data_sg = NULL;
2550 	fod->data_sg_cnt = 0;
2551 
2552 	ret = nvmet_req_init(&fod->req,
2553 				&fod->queue->nvme_cq,
2554 				&fod->queue->nvme_sq,
2555 				&nvmet_fc_tgt_fcp_ops);
2556 	if (!ret) {
2557 		/* bad SQE content or invalid ctrl state */
2558 		/* nvmet layer has already called op done to send rsp. */
2559 		return;
2560 	}
2561 
2562 	fod->req.transfer_len = xfrlen;
2563 
2564 	/* keep a running counter of tail position */
2565 	atomic_inc(&fod->queue->sqtail);
2566 
2567 	if (fod->req.transfer_len) {
2568 		ret = nvmet_fc_alloc_tgt_pgs(fod);
2569 		if (ret) {
2570 			nvmet_req_complete(&fod->req, ret);
2571 			return;
2572 		}
2573 	}
2574 	fod->req.sg = fod->data_sg;
2575 	fod->req.sg_cnt = fod->data_sg_cnt;
2576 	fod->offset = 0;
2577 
2578 	if (fod->io_dir == NVMET_FCP_WRITE) {
2579 		/* pull the data over before invoking nvmet layer */
2580 		nvmet_fc_transfer_fcp_data(tgtport, fod, NVMET_FCOP_WRITEDATA);
2581 		return;
2582 	}
2583 
2584 	/*
2585 	 * Reads or no data:
2586 	 *
2587 	 * can invoke the nvmet_layer now. If read data, cmd completion will
2588 	 * push the data
2589 	 */
2590 	fod->req.execute(&fod->req);
2591 	return;
2592 
2593 transport_error:
2594 	nvmet_fc_abort_op(tgtport, fod);
2595 }
2596 
2597 /**
2598  * nvmet_fc_rcv_fcp_req - transport entry point called by an LLDD
2599  *                       upon the reception of a NVME FCP CMD IU.
2600  *
2601  * Pass a FC-NVME FCP CMD IU received from the FC link to the nvmet-fc
2602  * layer for processing.
2603  *
2604  * The nvmet_fc layer allocates a local job structure (struct
2605  * nvmet_fc_fcp_iod) from the queue for the io and copies the
2606  * CMD IU buffer to the job structure. As such, on a successful
2607  * completion (returns 0), the LLDD may immediately free/reuse
2608  * the CMD IU buffer passed in the call.
2609  *
2610  * However, in some circumstances, due to the packetized nature of FC
2611  * and the api of the FC LLDD which may issue a hw command to send the
2612  * response, but the LLDD may not get the hw completion for that command
2613  * and upcall the nvmet_fc layer before a new command may be
2614  * asynchronously received - its possible for a command to be received
2615  * before the LLDD and nvmet_fc have recycled the job structure. It gives
2616  * the appearance of more commands received than fits in the sq.
2617  * To alleviate this scenario, a temporary queue is maintained in the
2618  * transport for pending LLDD requests waiting for a queue job structure.
2619  * In these "overrun" cases, a temporary queue element is allocated
2620  * the LLDD request and CMD iu buffer information remembered, and the
2621  * routine returns a -EOVERFLOW status. Subsequently, when a queue job
2622  * structure is freed, it is immediately reallocated for anything on the
2623  * pending request list. The LLDDs defer_rcv() callback is called,
2624  * informing the LLDD that it may reuse the CMD IU buffer, and the io
2625  * is then started normally with the transport.
2626  *
2627  * The LLDD, when receiving an -EOVERFLOW completion status, is to treat
2628  * the completion as successful but must not reuse the CMD IU buffer
2629  * until the LLDD's defer_rcv() callback has been called for the
2630  * corresponding struct nvmefc_tgt_fcp_req pointer.
2631  *
2632  * If there is any other condition in which an error occurs, the
2633  * transport will return a non-zero status indicating the error.
2634  * In all cases other than -EOVERFLOW, the transport has not accepted the
2635  * request and the LLDD should abort the exchange.
2636  *
2637  * @target_port: pointer to the (registered) target port the FCP CMD IU
2638  *              was received on.
2639  * @fcpreq:     pointer to a fcpreq request structure to be used to reference
2640  *              the exchange corresponding to the FCP Exchange.
2641  * @cmdiubuf:   pointer to the buffer containing the FCP CMD IU
2642  * @cmdiubuf_len: length, in bytes, of the received FCP CMD IU
2643  */
2644 int
2645 nvmet_fc_rcv_fcp_req(struct nvmet_fc_target_port *target_port,
2646 			struct nvmefc_tgt_fcp_req *fcpreq,
2647 			void *cmdiubuf, u32 cmdiubuf_len)
2648 {
2649 	struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
2650 	struct nvme_fc_cmd_iu *cmdiu = cmdiubuf;
2651 	struct nvmet_fc_tgt_queue *queue;
2652 	struct nvmet_fc_fcp_iod *fod;
2653 	struct nvmet_fc_defer_fcp_req *deferfcp;
2654 	unsigned long flags;
2655 
2656 	/* validate iu, so the connection id can be used to find the queue */
2657 	if ((cmdiubuf_len != sizeof(*cmdiu)) ||
2658 			(cmdiu->format_id != NVME_CMD_FORMAT_ID) ||
2659 			(cmdiu->fc_id != NVME_CMD_FC_ID) ||
2660 			(be16_to_cpu(cmdiu->iu_len) != (sizeof(*cmdiu)/4)))
2661 		return -EIO;
2662 
2663 	queue = nvmet_fc_find_target_queue(tgtport,
2664 				be64_to_cpu(cmdiu->connection_id));
2665 	if (!queue)
2666 		return -ENOTCONN;
2667 
2668 	/*
2669 	 * note: reference taken by find_target_queue
2670 	 * After successful fod allocation, the fod will inherit the
2671 	 * ownership of that reference and will remove the reference
2672 	 * when the fod is freed.
2673 	 */
2674 
2675 	spin_lock_irqsave(&queue->qlock, flags);
2676 
2677 	fod = nvmet_fc_alloc_fcp_iod(queue);
2678 	if (fod) {
2679 		spin_unlock_irqrestore(&queue->qlock, flags);
2680 
2681 		fcpreq->nvmet_fc_private = fod;
2682 		fod->fcpreq = fcpreq;
2683 
2684 		memcpy(&fod->cmdiubuf, cmdiubuf, cmdiubuf_len);
2685 
2686 		nvmet_fc_queue_fcp_req(tgtport, queue, fcpreq);
2687 
2688 		return 0;
2689 	}
2690 
2691 	if (!tgtport->ops->defer_rcv) {
2692 		spin_unlock_irqrestore(&queue->qlock, flags);
2693 		/* release the queue lookup reference */
2694 		nvmet_fc_tgt_q_put(queue);
2695 		return -ENOENT;
2696 	}
2697 
2698 	deferfcp = list_first_entry_or_null(&queue->avail_defer_list,
2699 			struct nvmet_fc_defer_fcp_req, req_list);
2700 	if (deferfcp) {
2701 		/* Just re-use one that was previously allocated */
2702 		list_del(&deferfcp->req_list);
2703 	} else {
2704 		spin_unlock_irqrestore(&queue->qlock, flags);
2705 
2706 		/* Now we need to dynamically allocate one */
2707 		deferfcp = kmalloc(sizeof(*deferfcp), GFP_KERNEL);
2708 		if (!deferfcp) {
2709 			/* release the queue lookup reference */
2710 			nvmet_fc_tgt_q_put(queue);
2711 			return -ENOMEM;
2712 		}
2713 		spin_lock_irqsave(&queue->qlock, flags);
2714 	}
2715 
2716 	/* For now, use rspaddr / rsplen to save payload information */
2717 	fcpreq->rspaddr = cmdiubuf;
2718 	fcpreq->rsplen  = cmdiubuf_len;
2719 	deferfcp->fcp_req = fcpreq;
2720 
2721 	/* defer processing till a fod becomes available */
2722 	list_add_tail(&deferfcp->req_list, &queue->pending_cmd_list);
2723 
2724 	/* NOTE: the queue lookup reference is still valid */
2725 
2726 	spin_unlock_irqrestore(&queue->qlock, flags);
2727 
2728 	return -EOVERFLOW;
2729 }
2730 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_req);
2731 
2732 /**
2733  * nvmet_fc_rcv_fcp_abort - transport entry point called by an LLDD
2734  *                       upon the reception of an ABTS for a FCP command
2735  *
2736  * Notify the transport that an ABTS has been received for a FCP command
2737  * that had been given to the transport via nvmet_fc_rcv_fcp_req(). The
2738  * LLDD believes the command is still being worked on
2739  * (template_ops->fcp_req_release() has not been called).
2740  *
2741  * The transport will wait for any outstanding work (an op to the LLDD,
2742  * which the lldd should complete with error due to the ABTS; or the
2743  * completion from the nvmet layer of the nvme command), then will
2744  * stop processing and call the nvmet_fc_rcv_fcp_req() callback to
2745  * return the i/o context to the LLDD.  The LLDD may send the BA_ACC
2746  * to the ABTS either after return from this function (assuming any
2747  * outstanding op work has been terminated) or upon the callback being
2748  * called.
2749  *
2750  * @target_port: pointer to the (registered) target port the FCP CMD IU
2751  *              was received on.
2752  * @fcpreq:     pointer to the fcpreq request structure that corresponds
2753  *              to the exchange that received the ABTS.
2754  */
2755 void
2756 nvmet_fc_rcv_fcp_abort(struct nvmet_fc_target_port *target_port,
2757 			struct nvmefc_tgt_fcp_req *fcpreq)
2758 {
2759 	struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
2760 	struct nvmet_fc_tgt_queue *queue;
2761 	unsigned long flags;
2762 
2763 	if (!fod || fod->fcpreq != fcpreq)
2764 		/* job appears to have already completed, ignore abort */
2765 		return;
2766 
2767 	queue = fod->queue;
2768 
2769 	spin_lock_irqsave(&queue->qlock, flags);
2770 	if (fod->active) {
2771 		/*
2772 		 * mark as abort. The abort handler, invoked upon completion
2773 		 * of any work, will detect the aborted status and do the
2774 		 * callback.
2775 		 */
2776 		spin_lock(&fod->flock);
2777 		fod->abort = true;
2778 		fod->aborted = true;
2779 		spin_unlock(&fod->flock);
2780 	}
2781 	spin_unlock_irqrestore(&queue->qlock, flags);
2782 }
2783 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_abort);
2784 
2785 
2786 struct nvmet_fc_traddr {
2787 	u64	nn;
2788 	u64	pn;
2789 };
2790 
2791 static int
2792 __nvme_fc_parse_u64(substring_t *sstr, u64 *val)
2793 {
2794 	u64 token64;
2795 
2796 	if (match_u64(sstr, &token64))
2797 		return -EINVAL;
2798 	*val = token64;
2799 
2800 	return 0;
2801 }
2802 
2803 /*
2804  * This routine validates and extracts the WWN's from the TRADDR string.
2805  * As kernel parsers need the 0x to determine number base, universally
2806  * build string to parse with 0x prefix before parsing name strings.
2807  */
2808 static int
2809 nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen)
2810 {
2811 	char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1];
2812 	substring_t wwn = { name, &name[sizeof(name)-1] };
2813 	int nnoffset, pnoffset;
2814 
2815 	/* validate if string is one of the 2 allowed formats */
2816 	if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH &&
2817 			!strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) &&
2818 			!strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET],
2819 				"pn-0x", NVME_FC_TRADDR_OXNNLEN)) {
2820 		nnoffset = NVME_FC_TRADDR_OXNNLEN;
2821 		pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET +
2822 						NVME_FC_TRADDR_OXNNLEN;
2823 	} else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH &&
2824 			!strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) &&
2825 			!strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET],
2826 				"pn-", NVME_FC_TRADDR_NNLEN))) {
2827 		nnoffset = NVME_FC_TRADDR_NNLEN;
2828 		pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN;
2829 	} else
2830 		goto out_einval;
2831 
2832 	name[0] = '0';
2833 	name[1] = 'x';
2834 	name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0;
2835 
2836 	memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN);
2837 	if (__nvme_fc_parse_u64(&wwn, &traddr->nn))
2838 		goto out_einval;
2839 
2840 	memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN);
2841 	if (__nvme_fc_parse_u64(&wwn, &traddr->pn))
2842 		goto out_einval;
2843 
2844 	return 0;
2845 
2846 out_einval:
2847 	pr_warn("%s: bad traddr string\n", __func__);
2848 	return -EINVAL;
2849 }
2850 
2851 static int
2852 nvmet_fc_add_port(struct nvmet_port *port)
2853 {
2854 	struct nvmet_fc_tgtport *tgtport;
2855 	struct nvmet_fc_port_entry *pe;
2856 	struct nvmet_fc_traddr traddr = { 0L, 0L };
2857 	unsigned long flags;
2858 	int ret;
2859 
2860 	/* validate the address info */
2861 	if ((port->disc_addr.trtype != NVMF_TRTYPE_FC) ||
2862 	    (port->disc_addr.adrfam != NVMF_ADDR_FAMILY_FC))
2863 		return -EINVAL;
2864 
2865 	/* map the traddr address info to a target port */
2866 
2867 	ret = nvme_fc_parse_traddr(&traddr, port->disc_addr.traddr,
2868 			sizeof(port->disc_addr.traddr));
2869 	if (ret)
2870 		return ret;
2871 
2872 	pe = kzalloc(sizeof(*pe), GFP_KERNEL);
2873 	if (!pe)
2874 		return -ENOMEM;
2875 
2876 	ret = -ENXIO;
2877 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
2878 	list_for_each_entry(tgtport, &nvmet_fc_target_list, tgt_list) {
2879 		if ((tgtport->fc_target_port.node_name == traddr.nn) &&
2880 		    (tgtport->fc_target_port.port_name == traddr.pn)) {
2881 			/* a FC port can only be 1 nvmet port id */
2882 			if (!tgtport->pe) {
2883 				nvmet_fc_portentry_bind(tgtport, pe, port);
2884 				ret = 0;
2885 			} else
2886 				ret = -EALREADY;
2887 			break;
2888 		}
2889 	}
2890 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
2891 
2892 	if (ret)
2893 		kfree(pe);
2894 
2895 	return ret;
2896 }
2897 
2898 static void
2899 nvmet_fc_remove_port(struct nvmet_port *port)
2900 {
2901 	struct nvmet_fc_port_entry *pe = port->priv;
2902 
2903 	nvmet_fc_portentry_unbind(pe);
2904 
2905 	kfree(pe);
2906 }
2907 
2908 static void
2909 nvmet_fc_discovery_chg(struct nvmet_port *port)
2910 {
2911 	struct nvmet_fc_port_entry *pe = port->priv;
2912 	struct nvmet_fc_tgtport *tgtport = pe->tgtport;
2913 
2914 	if (tgtport && tgtport->ops->discovery_event)
2915 		tgtport->ops->discovery_event(&tgtport->fc_target_port);
2916 }
2917 
2918 static const struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops = {
2919 	.owner			= THIS_MODULE,
2920 	.type			= NVMF_TRTYPE_FC,
2921 	.msdbd			= 1,
2922 	.add_port		= nvmet_fc_add_port,
2923 	.remove_port		= nvmet_fc_remove_port,
2924 	.queue_response		= nvmet_fc_fcp_nvme_cmd_done,
2925 	.delete_ctrl		= nvmet_fc_delete_ctrl,
2926 	.discovery_chg		= nvmet_fc_discovery_chg,
2927 };
2928 
2929 static int __init nvmet_fc_init_module(void)
2930 {
2931 	return nvmet_register_transport(&nvmet_fc_tgt_fcp_ops);
2932 }
2933 
2934 static void __exit nvmet_fc_exit_module(void)
2935 {
2936 	/* sanity check - all lports should be removed */
2937 	if (!list_empty(&nvmet_fc_target_list))
2938 		pr_warn("%s: targetport list not empty\n", __func__);
2939 
2940 	nvmet_unregister_transport(&nvmet_fc_tgt_fcp_ops);
2941 
2942 	ida_destroy(&nvmet_fc_tgtport_cnt);
2943 }
2944 
2945 module_init(nvmet_fc_init_module);
2946 module_exit(nvmet_fc_exit_module);
2947 
2948 MODULE_LICENSE("GPL v2");
2949