xref: /linux/drivers/nvme/target/fc.c (revision 68a052239fc4b351e961f698b824f7654a346091)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2016 Avago Technologies.  All rights reserved.
4  */
5 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
6 #include <linux/module.h>
7 #include <linux/slab.h>
8 #include <linux/blk-mq.h>
9 #include <linux/parser.h>
10 #include <linux/random.h>
11 #include <uapi/scsi/fc/fc_fs.h>
12 #include <uapi/scsi/fc/fc_els.h>
13 
14 #include "nvmet.h"
15 #include <linux/nvme-fc-driver.h>
16 #include <linux/nvme-fc.h>
17 #include "../host/fc.h"
18 
19 
20 /* *************************** Data Structures/Defines ****************** */
21 
22 
23 #define NVMET_LS_CTX_COUNT		256
24 
25 struct nvmet_fc_tgtport;
26 struct nvmet_fc_tgt_assoc;
27 
28 struct nvmet_fc_ls_iod {		/* for an LS RQST RCV */
29 	struct nvmefc_ls_rsp		*lsrsp;
30 	struct nvmefc_tgt_fcp_req	*fcpreq;	/* only if RS */
31 
32 	struct list_head		ls_rcv_list; /* tgtport->ls_rcv_list */
33 
34 	struct nvmet_fc_tgtport		*tgtport;
35 	struct nvmet_fc_tgt_assoc	*assoc;
36 	void				*hosthandle;
37 
38 	union nvmefc_ls_requests	*rqstbuf;
39 	union nvmefc_ls_responses	*rspbuf;
40 	u16				rqstdatalen;
41 	dma_addr_t			rspdma;
42 
43 	struct scatterlist		sg[2];
44 
45 	struct work_struct		work;
46 } __aligned(sizeof(unsigned long long));
47 
48 struct nvmet_fc_ls_req_op {		/* for an LS RQST XMT */
49 	struct nvmefc_ls_req		ls_req;
50 
51 	struct nvmet_fc_tgtport		*tgtport;
52 	void				*hosthandle;
53 
54 	int				ls_error;
55 	struct list_head		lsreq_list; /* tgtport->ls_req_list */
56 	bool				req_queued;
57 
58 	struct work_struct		put_work;
59 };
60 
61 
62 /* desired maximum for a single sequence - if sg list allows it */
63 #define NVMET_FC_MAX_SEQ_LENGTH		(256 * 1024)
64 
65 enum nvmet_fcp_datadir {
66 	NVMET_FCP_NODATA,
67 	NVMET_FCP_WRITE,
68 	NVMET_FCP_READ,
69 	NVMET_FCP_ABORTED,
70 };
71 
72 struct nvmet_fc_fcp_iod {
73 	struct nvmefc_tgt_fcp_req	*fcpreq;
74 
75 	struct nvme_fc_cmd_iu		cmdiubuf;
76 	struct nvme_fc_ersp_iu		rspiubuf;
77 	dma_addr_t			rspdma;
78 	struct scatterlist		*next_sg;
79 	struct scatterlist		*data_sg;
80 	int				data_sg_cnt;
81 	u32				offset;
82 	enum nvmet_fcp_datadir		io_dir;
83 	bool				active;
84 	bool				abort;
85 	bool				aborted;
86 	bool				writedataactive;
87 	spinlock_t			flock;
88 
89 	struct nvmet_req		req;
90 	struct work_struct		defer_work;
91 
92 	struct nvmet_fc_tgtport		*tgtport;
93 	struct nvmet_fc_tgt_queue	*queue;
94 
95 	struct list_head		fcp_list;	/* tgtport->fcp_list */
96 };
97 
98 struct nvmet_fc_tgtport {
99 	struct nvmet_fc_target_port	fc_target_port;
100 
101 	struct list_head		tgt_list; /* nvmet_fc_target_list */
102 	struct device			*dev;	/* dev for dma mapping */
103 	struct nvmet_fc_target_template	*ops;
104 
105 	struct nvmet_fc_ls_iod		*iod;
106 	spinlock_t			lock;
107 	struct list_head		ls_rcv_list;
108 	struct list_head		ls_req_list;
109 	struct list_head		ls_busylist;
110 	struct list_head		assoc_list;
111 	struct list_head		host_list;
112 	struct ida			assoc_cnt;
113 	struct nvmet_fc_port_entry	*pe;
114 	struct kref			ref;
115 	u32				max_sg_cnt;
116 };
117 
118 struct nvmet_fc_port_entry {
119 	struct nvmet_fc_tgtport		*tgtport;
120 	struct nvmet_port		*port;
121 	u64				node_name;
122 	u64				port_name;
123 	struct list_head		pe_list;
124 };
125 
126 struct nvmet_fc_defer_fcp_req {
127 	struct list_head		req_list;
128 	struct nvmefc_tgt_fcp_req	*fcp_req;
129 };
130 
131 struct nvmet_fc_tgt_queue {
132 	bool				ninetypercent;
133 	u16				qid;
134 	u16				sqsize;
135 	u16				ersp_ratio;
136 	__le16				sqhd;
137 	atomic_t			connected;
138 	atomic_t			sqtail;
139 	atomic_t			zrspcnt;
140 	atomic_t			rsn;
141 	spinlock_t			qlock;
142 	struct nvmet_cq			nvme_cq;
143 	struct nvmet_sq			nvme_sq;
144 	struct nvmet_fc_tgt_assoc	*assoc;
145 	struct list_head		fod_list;
146 	struct list_head		pending_cmd_list;
147 	struct list_head		avail_defer_list;
148 	struct workqueue_struct		*work_q;
149 	struct kref			ref;
150 	/* array of fcp_iods */
151 	struct nvmet_fc_fcp_iod		fod[] /* __counted_by(sqsize) */;
152 } __aligned(sizeof(unsigned long long));
153 
154 struct nvmet_fc_hostport {
155 	struct nvmet_fc_tgtport		*tgtport;
156 	void				*hosthandle;
157 	struct list_head		host_list;
158 	struct kref			ref;
159 	u8				invalid;
160 };
161 
162 struct nvmet_fc_tgt_assoc {
163 	u64				association_id;
164 	u32				a_id;
165 	atomic_t			terminating;
166 	struct nvmet_fc_tgtport		*tgtport;
167 	struct nvmet_fc_hostport	*hostport;
168 	struct nvmet_fc_ls_iod		*rcv_disconn;
169 	struct list_head		a_list;
170 	struct nvmet_fc_tgt_queue 	*queues[NVMET_NR_QUEUES + 1];
171 	struct kref			ref;
172 	struct work_struct		del_work;
173 };
174 
175 /*
176  * Association and Connection IDs:
177  *
178  * Association ID will have random number in upper 6 bytes and zero
179  *   in lower 2 bytes
180  *
181  * Connection IDs will be Association ID with QID or'd in lower 2 bytes
182  *
183  * note: Association ID = Connection ID for queue 0
184  */
185 #define BYTES_FOR_QID			sizeof(u16)
186 #define BYTES_FOR_QID_SHIFT		(BYTES_FOR_QID * 8)
187 #define NVMET_FC_QUEUEID_MASK		((u64)((1 << BYTES_FOR_QID_SHIFT) - 1))
188 
189 static inline u64
190 nvmet_fc_makeconnid(struct nvmet_fc_tgt_assoc *assoc, u16 qid)
191 {
192 	return (assoc->association_id | qid);
193 }
194 
195 static inline u64
196 nvmet_fc_getassociationid(u64 connectionid)
197 {
198 	return connectionid & ~NVMET_FC_QUEUEID_MASK;
199 }
200 
201 static inline u16
202 nvmet_fc_getqueueid(u64 connectionid)
203 {
204 	return (u16)(connectionid & NVMET_FC_QUEUEID_MASK);
205 }
206 
207 static inline struct nvmet_fc_tgtport *
208 targetport_to_tgtport(struct nvmet_fc_target_port *targetport)
209 {
210 	return container_of(targetport, struct nvmet_fc_tgtport,
211 				 fc_target_port);
212 }
213 
214 static inline struct nvmet_fc_fcp_iod *
215 nvmet_req_to_fod(struct nvmet_req *nvme_req)
216 {
217 	return container_of(nvme_req, struct nvmet_fc_fcp_iod, req);
218 }
219 
220 
221 /* *************************** Globals **************************** */
222 
223 
224 static DEFINE_SPINLOCK(nvmet_fc_tgtlock);
225 
226 static LIST_HEAD(nvmet_fc_target_list);
227 static DEFINE_IDA(nvmet_fc_tgtport_cnt);
228 static LIST_HEAD(nvmet_fc_portentry_list);
229 
230 
231 static void nvmet_fc_handle_ls_rqst_work(struct work_struct *work);
232 static void nvmet_fc_fcp_rqst_op_defer_work(struct work_struct *work);
233 static void nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc);
234 static int nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc);
235 static void nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue);
236 static int nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue);
237 static void nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport);
238 static void nvmet_fc_put_lsop_work(struct work_struct *work)
239 {
240 	struct nvmet_fc_ls_req_op *lsop =
241 		container_of(work, struct nvmet_fc_ls_req_op, put_work);
242 
243 	nvmet_fc_tgtport_put(lsop->tgtport);
244 	kfree(lsop);
245 }
246 static int nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport);
247 static void nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport,
248 					struct nvmet_fc_fcp_iod *fod);
249 static void nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc *assoc);
250 static void nvmet_fc_xmt_ls_rsp(struct nvmet_fc_tgtport *tgtport,
251 				struct nvmet_fc_ls_iod *iod);
252 
253 
254 /* *********************** FC-NVME DMA Handling **************************** */
255 
256 /*
257  * The fcloop device passes in a NULL device pointer. Real LLD's will
258  * pass in a valid device pointer. If NULL is passed to the dma mapping
259  * routines, depending on the platform, it may or may not succeed, and
260  * may crash.
261  *
262  * As such:
263  * Wrapper all the dma routines and check the dev pointer.
264  *
265  * If simple mappings (return just a dma address, we'll noop them,
266  * returning a dma address of 0.
267  *
268  * On more complex mappings (dma_map_sg), a pseudo routine fills
269  * in the scatter list, setting all dma addresses to 0.
270  */
271 
272 static inline dma_addr_t
273 fc_dma_map_single(struct device *dev, void *ptr, size_t size,
274 		enum dma_data_direction dir)
275 {
276 	return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
277 }
278 
279 static inline int
280 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
281 {
282 	return dev ? dma_mapping_error(dev, dma_addr) : 0;
283 }
284 
285 static inline void
286 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
287 	enum dma_data_direction dir)
288 {
289 	if (dev)
290 		dma_unmap_single(dev, addr, size, dir);
291 }
292 
293 static inline void
294 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
295 		enum dma_data_direction dir)
296 {
297 	if (dev)
298 		dma_sync_single_for_cpu(dev, addr, size, dir);
299 }
300 
301 static inline void
302 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
303 		enum dma_data_direction dir)
304 {
305 	if (dev)
306 		dma_sync_single_for_device(dev, addr, size, dir);
307 }
308 
309 /* pseudo dma_map_sg call */
310 static int
311 fc_map_sg(struct scatterlist *sg, int nents)
312 {
313 	struct scatterlist *s;
314 	int i;
315 
316 	WARN_ON(nents == 0 || sg[0].length == 0);
317 
318 	for_each_sg(sg, s, nents, i) {
319 		s->dma_address = 0L;
320 #ifdef CONFIG_NEED_SG_DMA_LENGTH
321 		s->dma_length = s->length;
322 #endif
323 	}
324 	return nents;
325 }
326 
327 static inline int
328 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
329 		enum dma_data_direction dir)
330 {
331 	return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
332 }
333 
334 static inline void
335 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
336 		enum dma_data_direction dir)
337 {
338 	if (dev)
339 		dma_unmap_sg(dev, sg, nents, dir);
340 }
341 
342 
343 /* ********************** FC-NVME LS XMT Handling ************************* */
344 
345 
346 static void
347 __nvmet_fc_finish_ls_req(struct nvmet_fc_ls_req_op *lsop)
348 {
349 	struct nvmet_fc_tgtport *tgtport = lsop->tgtport;
350 	struct nvmefc_ls_req *lsreq = &lsop->ls_req;
351 	unsigned long flags;
352 
353 	spin_lock_irqsave(&tgtport->lock, flags);
354 
355 	if (!lsop->req_queued) {
356 		spin_unlock_irqrestore(&tgtport->lock, flags);
357 		goto out_putwork;
358 	}
359 
360 	list_del(&lsop->lsreq_list);
361 
362 	lsop->req_queued = false;
363 
364 	spin_unlock_irqrestore(&tgtport->lock, flags);
365 
366 	fc_dma_unmap_single(tgtport->dev, lsreq->rqstdma,
367 				  (lsreq->rqstlen + lsreq->rsplen),
368 				  DMA_BIDIRECTIONAL);
369 
370 out_putwork:
371 	queue_work(nvmet_wq, &lsop->put_work);
372 }
373 
374 static int
375 __nvmet_fc_send_ls_req(struct nvmet_fc_tgtport *tgtport,
376 		struct nvmet_fc_ls_req_op *lsop,
377 		void (*done)(struct nvmefc_ls_req *req, int status))
378 {
379 	struct nvmefc_ls_req *lsreq = &lsop->ls_req;
380 	unsigned long flags;
381 	int ret = 0;
382 
383 	if (!tgtport->ops->ls_req)
384 		return -EOPNOTSUPP;
385 
386 	if (!nvmet_fc_tgtport_get(tgtport))
387 		return -ESHUTDOWN;
388 
389 	lsreq->done = done;
390 	lsop->req_queued = false;
391 	INIT_LIST_HEAD(&lsop->lsreq_list);
392 	INIT_WORK(&lsop->put_work, nvmet_fc_put_lsop_work);
393 
394 	lsreq->rqstdma = fc_dma_map_single(tgtport->dev, lsreq->rqstaddr,
395 				  lsreq->rqstlen + lsreq->rsplen,
396 				  DMA_BIDIRECTIONAL);
397 	if (fc_dma_mapping_error(tgtport->dev, lsreq->rqstdma)) {
398 		ret = -EFAULT;
399 		goto out_puttgtport;
400 	}
401 	lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen;
402 
403 	spin_lock_irqsave(&tgtport->lock, flags);
404 
405 	list_add_tail(&lsop->lsreq_list, &tgtport->ls_req_list);
406 
407 	lsop->req_queued = true;
408 
409 	spin_unlock_irqrestore(&tgtport->lock, flags);
410 
411 	ret = tgtport->ops->ls_req(&tgtport->fc_target_port, lsop->hosthandle,
412 				   lsreq);
413 	if (ret)
414 		goto out_unlink;
415 
416 	return 0;
417 
418 out_unlink:
419 	lsop->ls_error = ret;
420 	spin_lock_irqsave(&tgtport->lock, flags);
421 	lsop->req_queued = false;
422 	list_del(&lsop->lsreq_list);
423 	spin_unlock_irqrestore(&tgtport->lock, flags);
424 	fc_dma_unmap_single(tgtport->dev, lsreq->rqstdma,
425 				  (lsreq->rqstlen + lsreq->rsplen),
426 				  DMA_BIDIRECTIONAL);
427 out_puttgtport:
428 	nvmet_fc_tgtport_put(tgtport);
429 
430 	return ret;
431 }
432 
433 static int
434 nvmet_fc_send_ls_req_async(struct nvmet_fc_tgtport *tgtport,
435 		struct nvmet_fc_ls_req_op *lsop,
436 		void (*done)(struct nvmefc_ls_req *req, int status))
437 {
438 	/* don't wait for completion */
439 
440 	return __nvmet_fc_send_ls_req(tgtport, lsop, done);
441 }
442 
443 static void
444 nvmet_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status)
445 {
446 	struct nvmet_fc_ls_req_op *lsop =
447 		container_of(lsreq, struct nvmet_fc_ls_req_op, ls_req);
448 
449 	__nvmet_fc_finish_ls_req(lsop);
450 
451 	/* fc-nvme target doesn't care about success or failure of cmd */
452 }
453 
454 /*
455  * This routine sends a FC-NVME LS to disconnect (aka terminate)
456  * the FC-NVME Association.  Terminating the association also
457  * terminates the FC-NVME connections (per queue, both admin and io
458  * queues) that are part of the association. E.g. things are torn
459  * down, and the related FC-NVME Association ID and Connection IDs
460  * become invalid.
461  *
462  * The behavior of the fc-nvme target is such that its
463  * understanding of the association and connections will implicitly
464  * be torn down. The action is implicit as it may be due to a loss of
465  * connectivity with the fc-nvme host, so the target may never get a
466  * response even if it tried.  As such, the action of this routine
467  * is to asynchronously send the LS, ignore any results of the LS, and
468  * continue on with terminating the association. If the fc-nvme host
469  * is present and receives the LS, it too can tear down.
470  */
471 static void
472 nvmet_fc_xmt_disconnect_assoc(struct nvmet_fc_tgt_assoc *assoc)
473 {
474 	struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
475 	struct fcnvme_ls_disconnect_assoc_rqst *discon_rqst;
476 	struct fcnvme_ls_disconnect_assoc_acc *discon_acc;
477 	struct nvmet_fc_ls_req_op *lsop;
478 	struct nvmefc_ls_req *lsreq;
479 	int ret;
480 
481 	/*
482 	 * If ls_req is NULL or no hosthandle, it's an older lldd and no
483 	 * message is normal. Otherwise, send unless the hostport has
484 	 * already been invalidated by the lldd.
485 	 */
486 	if (!tgtport->ops->ls_req || assoc->hostport->invalid)
487 		return;
488 
489 	lsop = kzalloc((sizeof(*lsop) +
490 			sizeof(*discon_rqst) + sizeof(*discon_acc) +
491 			tgtport->ops->lsrqst_priv_sz), GFP_KERNEL);
492 	if (!lsop) {
493 		dev_info(tgtport->dev,
494 			"{%d:%d} send Disconnect Association failed: ENOMEM\n",
495 			tgtport->fc_target_port.port_num, assoc->a_id);
496 		return;
497 	}
498 
499 	discon_rqst = (struct fcnvme_ls_disconnect_assoc_rqst *)&lsop[1];
500 	discon_acc = (struct fcnvme_ls_disconnect_assoc_acc *)&discon_rqst[1];
501 	lsreq = &lsop->ls_req;
502 	if (tgtport->ops->lsrqst_priv_sz)
503 		lsreq->private = (void *)&discon_acc[1];
504 	else
505 		lsreq->private = NULL;
506 
507 	lsop->tgtport = tgtport;
508 	lsop->hosthandle = assoc->hostport->hosthandle;
509 
510 	nvmefc_fmt_lsreq_discon_assoc(lsreq, discon_rqst, discon_acc,
511 				assoc->association_id);
512 
513 	ret = nvmet_fc_send_ls_req_async(tgtport, lsop,
514 				nvmet_fc_disconnect_assoc_done);
515 	if (ret) {
516 		dev_info(tgtport->dev,
517 			"{%d:%d} XMT Disconnect Association failed: %d\n",
518 			tgtport->fc_target_port.port_num, assoc->a_id, ret);
519 		kfree(lsop);
520 	}
521 }
522 
523 
524 /* *********************** FC-NVME Port Management ************************ */
525 
526 
527 static int
528 nvmet_fc_alloc_ls_iodlist(struct nvmet_fc_tgtport *tgtport)
529 {
530 	struct nvmet_fc_ls_iod *iod;
531 	int i;
532 
533 	iod = kcalloc(NVMET_LS_CTX_COUNT, sizeof(struct nvmet_fc_ls_iod),
534 			GFP_KERNEL);
535 	if (!iod)
536 		return -ENOMEM;
537 
538 	tgtport->iod = iod;
539 
540 	for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) {
541 		INIT_WORK(&iod->work, nvmet_fc_handle_ls_rqst_work);
542 		iod->tgtport = tgtport;
543 		list_add_tail(&iod->ls_rcv_list, &tgtport->ls_rcv_list);
544 
545 		iod->rqstbuf = kzalloc(sizeof(union nvmefc_ls_requests) +
546 				       sizeof(union nvmefc_ls_responses),
547 				       GFP_KERNEL);
548 		if (!iod->rqstbuf)
549 			goto out_fail;
550 
551 		iod->rspbuf = (union nvmefc_ls_responses *)&iod->rqstbuf[1];
552 
553 		iod->rspdma = fc_dma_map_single(tgtport->dev, iod->rspbuf,
554 						sizeof(*iod->rspbuf),
555 						DMA_TO_DEVICE);
556 		if (fc_dma_mapping_error(tgtport->dev, iod->rspdma))
557 			goto out_fail;
558 	}
559 
560 	return 0;
561 
562 out_fail:
563 	kfree(iod->rqstbuf);
564 	list_del(&iod->ls_rcv_list);
565 	for (iod--, i--; i >= 0; iod--, i--) {
566 		fc_dma_unmap_single(tgtport->dev, iod->rspdma,
567 				sizeof(*iod->rspbuf), DMA_TO_DEVICE);
568 		kfree(iod->rqstbuf);
569 		list_del(&iod->ls_rcv_list);
570 	}
571 
572 	kfree(iod);
573 
574 	return -EFAULT;
575 }
576 
577 static void
578 nvmet_fc_free_ls_iodlist(struct nvmet_fc_tgtport *tgtport)
579 {
580 	struct nvmet_fc_ls_iod *iod = tgtport->iod;
581 	int i;
582 
583 	for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) {
584 		fc_dma_unmap_single(tgtport->dev,
585 				iod->rspdma, sizeof(*iod->rspbuf),
586 				DMA_TO_DEVICE);
587 		kfree(iod->rqstbuf);
588 		list_del(&iod->ls_rcv_list);
589 	}
590 	kfree(tgtport->iod);
591 }
592 
593 static struct nvmet_fc_ls_iod *
594 nvmet_fc_alloc_ls_iod(struct nvmet_fc_tgtport *tgtport)
595 {
596 	struct nvmet_fc_ls_iod *iod;
597 	unsigned long flags;
598 
599 	spin_lock_irqsave(&tgtport->lock, flags);
600 	iod = list_first_entry_or_null(&tgtport->ls_rcv_list,
601 					struct nvmet_fc_ls_iod, ls_rcv_list);
602 	if (iod)
603 		list_move_tail(&iod->ls_rcv_list, &tgtport->ls_busylist);
604 	spin_unlock_irqrestore(&tgtport->lock, flags);
605 	return iod;
606 }
607 
608 
609 static void
610 nvmet_fc_free_ls_iod(struct nvmet_fc_tgtport *tgtport,
611 			struct nvmet_fc_ls_iod *iod)
612 {
613 	unsigned long flags;
614 
615 	spin_lock_irqsave(&tgtport->lock, flags);
616 	list_move(&iod->ls_rcv_list, &tgtport->ls_rcv_list);
617 	spin_unlock_irqrestore(&tgtport->lock, flags);
618 }
619 
620 static void
621 nvmet_fc_prep_fcp_iodlist(struct nvmet_fc_tgtport *tgtport,
622 				struct nvmet_fc_tgt_queue *queue)
623 {
624 	struct nvmet_fc_fcp_iod *fod = queue->fod;
625 	int i;
626 
627 	for (i = 0; i < queue->sqsize; fod++, i++) {
628 		INIT_WORK(&fod->defer_work, nvmet_fc_fcp_rqst_op_defer_work);
629 		fod->tgtport = tgtport;
630 		fod->queue = queue;
631 		fod->active = false;
632 		fod->abort = false;
633 		fod->aborted = false;
634 		fod->fcpreq = NULL;
635 		list_add_tail(&fod->fcp_list, &queue->fod_list);
636 		spin_lock_init(&fod->flock);
637 
638 		fod->rspdma = fc_dma_map_single(tgtport->dev, &fod->rspiubuf,
639 					sizeof(fod->rspiubuf), DMA_TO_DEVICE);
640 		if (fc_dma_mapping_error(tgtport->dev, fod->rspdma)) {
641 			list_del(&fod->fcp_list);
642 			for (fod--, i--; i >= 0; fod--, i--) {
643 				fc_dma_unmap_single(tgtport->dev, fod->rspdma,
644 						sizeof(fod->rspiubuf),
645 						DMA_TO_DEVICE);
646 				fod->rspdma = 0L;
647 				list_del(&fod->fcp_list);
648 			}
649 
650 			return;
651 		}
652 	}
653 }
654 
655 static void
656 nvmet_fc_destroy_fcp_iodlist(struct nvmet_fc_tgtport *tgtport,
657 				struct nvmet_fc_tgt_queue *queue)
658 {
659 	struct nvmet_fc_fcp_iod *fod = queue->fod;
660 	int i;
661 
662 	for (i = 0; i < queue->sqsize; fod++, i++) {
663 		if (fod->rspdma)
664 			fc_dma_unmap_single(tgtport->dev, fod->rspdma,
665 				sizeof(fod->rspiubuf), DMA_TO_DEVICE);
666 	}
667 }
668 
669 static struct nvmet_fc_fcp_iod *
670 nvmet_fc_alloc_fcp_iod(struct nvmet_fc_tgt_queue *queue)
671 {
672 	struct nvmet_fc_fcp_iod *fod;
673 
674 	lockdep_assert_held(&queue->qlock);
675 
676 	fod = list_first_entry_or_null(&queue->fod_list,
677 					struct nvmet_fc_fcp_iod, fcp_list);
678 	if (fod) {
679 		list_del(&fod->fcp_list);
680 		fod->active = true;
681 		/*
682 		 * no queue reference is taken, as it was taken by the
683 		 * queue lookup just prior to the allocation. The iod
684 		 * will "inherit" that reference.
685 		 */
686 	}
687 	return fod;
688 }
689 
690 
691 static void
692 nvmet_fc_queue_fcp_req(struct nvmet_fc_tgtport *tgtport,
693 		       struct nvmet_fc_tgt_queue *queue,
694 		       struct nvmefc_tgt_fcp_req *fcpreq)
695 {
696 	struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
697 
698 	/*
699 	 * put all admin cmds on hw queue id 0. All io commands go to
700 	 * the respective hw queue based on a modulo basis
701 	 */
702 	fcpreq->hwqid = queue->qid ?
703 			((queue->qid - 1) % tgtport->ops->max_hw_queues) : 0;
704 
705 	nvmet_fc_handle_fcp_rqst(tgtport, fod);
706 }
707 
708 static void
709 nvmet_fc_fcp_rqst_op_defer_work(struct work_struct *work)
710 {
711 	struct nvmet_fc_fcp_iod *fod =
712 		container_of(work, struct nvmet_fc_fcp_iod, defer_work);
713 
714 	/* Submit deferred IO for processing */
715 	nvmet_fc_queue_fcp_req(fod->tgtport, fod->queue, fod->fcpreq);
716 
717 }
718 
719 static void
720 nvmet_fc_free_fcp_iod(struct nvmet_fc_tgt_queue *queue,
721 			struct nvmet_fc_fcp_iod *fod)
722 {
723 	struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
724 	struct nvmet_fc_tgtport *tgtport = fod->tgtport;
725 	struct nvmet_fc_defer_fcp_req *deferfcp;
726 	unsigned long flags;
727 
728 	fc_dma_sync_single_for_cpu(tgtport->dev, fod->rspdma,
729 				sizeof(fod->rspiubuf), DMA_TO_DEVICE);
730 
731 	fcpreq->nvmet_fc_private = NULL;
732 
733 	fod->active = false;
734 	fod->abort = false;
735 	fod->aborted = false;
736 	fod->writedataactive = false;
737 	fod->fcpreq = NULL;
738 
739 	tgtport->ops->fcp_req_release(&tgtport->fc_target_port, fcpreq);
740 
741 	/* release the queue lookup reference on the completed IO */
742 	nvmet_fc_tgt_q_put(queue);
743 
744 	spin_lock_irqsave(&queue->qlock, flags);
745 	deferfcp = list_first_entry_or_null(&queue->pending_cmd_list,
746 				struct nvmet_fc_defer_fcp_req, req_list);
747 	if (!deferfcp) {
748 		list_add_tail(&fod->fcp_list, &fod->queue->fod_list);
749 		spin_unlock_irqrestore(&queue->qlock, flags);
750 		return;
751 	}
752 
753 	/* Re-use the fod for the next pending cmd that was deferred */
754 	list_del(&deferfcp->req_list);
755 
756 	fcpreq = deferfcp->fcp_req;
757 
758 	/* deferfcp can be reused for another IO at a later date */
759 	list_add_tail(&deferfcp->req_list, &queue->avail_defer_list);
760 
761 	spin_unlock_irqrestore(&queue->qlock, flags);
762 
763 	/* Save NVME CMD IO in fod */
764 	memcpy(&fod->cmdiubuf, fcpreq->rspaddr, fcpreq->rsplen);
765 
766 	/* Setup new fcpreq to be processed */
767 	fcpreq->rspaddr = NULL;
768 	fcpreq->rsplen  = 0;
769 	fcpreq->nvmet_fc_private = fod;
770 	fod->fcpreq = fcpreq;
771 	fod->active = true;
772 
773 	/* inform LLDD IO is now being processed */
774 	tgtport->ops->defer_rcv(&tgtport->fc_target_port, fcpreq);
775 
776 	/*
777 	 * Leave the queue lookup get reference taken when
778 	 * fod was originally allocated.
779 	 */
780 
781 	queue_work(queue->work_q, &fod->defer_work);
782 }
783 
784 static struct nvmet_fc_tgt_queue *
785 nvmet_fc_alloc_target_queue(struct nvmet_fc_tgt_assoc *assoc,
786 			u16 qid, u16 sqsize)
787 {
788 	struct nvmet_fc_tgt_queue *queue;
789 	int ret;
790 
791 	if (qid > NVMET_NR_QUEUES)
792 		return NULL;
793 
794 	queue = kzalloc(struct_size(queue, fod, sqsize), GFP_KERNEL);
795 	if (!queue)
796 		return NULL;
797 
798 	queue->work_q = alloc_workqueue("ntfc%d.%d.%d", 0, 0,
799 				assoc->tgtport->fc_target_port.port_num,
800 				assoc->a_id, qid);
801 	if (!queue->work_q)
802 		goto out_free_queue;
803 
804 	queue->qid = qid;
805 	queue->sqsize = sqsize;
806 	queue->assoc = assoc;
807 	INIT_LIST_HEAD(&queue->fod_list);
808 	INIT_LIST_HEAD(&queue->avail_defer_list);
809 	INIT_LIST_HEAD(&queue->pending_cmd_list);
810 	atomic_set(&queue->connected, 0);
811 	atomic_set(&queue->sqtail, 0);
812 	atomic_set(&queue->rsn, 1);
813 	atomic_set(&queue->zrspcnt, 0);
814 	spin_lock_init(&queue->qlock);
815 	kref_init(&queue->ref);
816 
817 	nvmet_fc_prep_fcp_iodlist(assoc->tgtport, queue);
818 
819 	nvmet_cq_init(&queue->nvme_cq);
820 	ret = nvmet_sq_init(&queue->nvme_sq, &queue->nvme_cq);
821 	if (ret)
822 		goto out_fail_iodlist;
823 
824 	WARN_ON(assoc->queues[qid]);
825 	assoc->queues[qid] = queue;
826 
827 	return queue;
828 
829 out_fail_iodlist:
830 	nvmet_cq_put(&queue->nvme_cq);
831 	nvmet_fc_destroy_fcp_iodlist(assoc->tgtport, queue);
832 	destroy_workqueue(queue->work_q);
833 out_free_queue:
834 	kfree(queue);
835 	return NULL;
836 }
837 
838 
839 static void
840 nvmet_fc_tgt_queue_free(struct kref *ref)
841 {
842 	struct nvmet_fc_tgt_queue *queue =
843 		container_of(ref, struct nvmet_fc_tgt_queue, ref);
844 
845 	nvmet_fc_destroy_fcp_iodlist(queue->assoc->tgtport, queue);
846 
847 	destroy_workqueue(queue->work_q);
848 
849 	kfree(queue);
850 }
851 
852 static void
853 nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue)
854 {
855 	kref_put(&queue->ref, nvmet_fc_tgt_queue_free);
856 }
857 
858 static int
859 nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue)
860 {
861 	return kref_get_unless_zero(&queue->ref);
862 }
863 
864 
865 static void
866 nvmet_fc_delete_target_queue(struct nvmet_fc_tgt_queue *queue)
867 {
868 	struct nvmet_fc_tgtport *tgtport = queue->assoc->tgtport;
869 	struct nvmet_fc_fcp_iod *fod = queue->fod;
870 	struct nvmet_fc_defer_fcp_req *deferfcp, *tempptr;
871 	unsigned long flags;
872 	int i;
873 	bool disconnect;
874 
875 	disconnect = atomic_xchg(&queue->connected, 0);
876 
877 	/* if not connected, nothing to do */
878 	if (!disconnect)
879 		return;
880 
881 	spin_lock_irqsave(&queue->qlock, flags);
882 	/* abort outstanding io's */
883 	for (i = 0; i < queue->sqsize; fod++, i++) {
884 		if (fod->active) {
885 			spin_lock(&fod->flock);
886 			fod->abort = true;
887 			/*
888 			 * only call lldd abort routine if waiting for
889 			 * writedata. other outstanding ops should finish
890 			 * on their own.
891 			 */
892 			if (fod->writedataactive) {
893 				fod->aborted = true;
894 				spin_unlock(&fod->flock);
895 				tgtport->ops->fcp_abort(
896 					&tgtport->fc_target_port, fod->fcpreq);
897 			} else
898 				spin_unlock(&fod->flock);
899 		}
900 	}
901 
902 	/* Cleanup defer'ed IOs in queue */
903 	list_for_each_entry_safe(deferfcp, tempptr, &queue->avail_defer_list,
904 				req_list) {
905 		list_del(&deferfcp->req_list);
906 		kfree(deferfcp);
907 	}
908 
909 	for (;;) {
910 		deferfcp = list_first_entry_or_null(&queue->pending_cmd_list,
911 				struct nvmet_fc_defer_fcp_req, req_list);
912 		if (!deferfcp)
913 			break;
914 
915 		list_del(&deferfcp->req_list);
916 		spin_unlock_irqrestore(&queue->qlock, flags);
917 
918 		tgtport->ops->defer_rcv(&tgtport->fc_target_port,
919 				deferfcp->fcp_req);
920 
921 		tgtport->ops->fcp_abort(&tgtport->fc_target_port,
922 				deferfcp->fcp_req);
923 
924 		tgtport->ops->fcp_req_release(&tgtport->fc_target_port,
925 				deferfcp->fcp_req);
926 
927 		/* release the queue lookup reference */
928 		nvmet_fc_tgt_q_put(queue);
929 
930 		kfree(deferfcp);
931 
932 		spin_lock_irqsave(&queue->qlock, flags);
933 	}
934 	spin_unlock_irqrestore(&queue->qlock, flags);
935 
936 	flush_workqueue(queue->work_q);
937 
938 	nvmet_sq_destroy(&queue->nvme_sq);
939 	nvmet_cq_put(&queue->nvme_cq);
940 
941 	nvmet_fc_tgt_q_put(queue);
942 }
943 
944 static struct nvmet_fc_tgt_queue *
945 nvmet_fc_find_target_queue(struct nvmet_fc_tgtport *tgtport,
946 				u64 connection_id)
947 {
948 	struct nvmet_fc_tgt_assoc *assoc;
949 	struct nvmet_fc_tgt_queue *queue;
950 	u64 association_id = nvmet_fc_getassociationid(connection_id);
951 	u16 qid = nvmet_fc_getqueueid(connection_id);
952 
953 	if (qid > NVMET_NR_QUEUES)
954 		return NULL;
955 
956 	rcu_read_lock();
957 	list_for_each_entry_rcu(assoc, &tgtport->assoc_list, a_list) {
958 		if (association_id == assoc->association_id) {
959 			queue = assoc->queues[qid];
960 			if (queue &&
961 			    (!atomic_read(&queue->connected) ||
962 			     !nvmet_fc_tgt_q_get(queue)))
963 				queue = NULL;
964 			rcu_read_unlock();
965 			return queue;
966 		}
967 	}
968 	rcu_read_unlock();
969 	return NULL;
970 }
971 
972 static void
973 nvmet_fc_hostport_free(struct kref *ref)
974 {
975 	struct nvmet_fc_hostport *hostport =
976 		container_of(ref, struct nvmet_fc_hostport, ref);
977 	struct nvmet_fc_tgtport *tgtport = hostport->tgtport;
978 	unsigned long flags;
979 
980 	spin_lock_irqsave(&tgtport->lock, flags);
981 	list_del(&hostport->host_list);
982 	spin_unlock_irqrestore(&tgtport->lock, flags);
983 	if (tgtport->ops->host_release && hostport->invalid)
984 		tgtport->ops->host_release(hostport->hosthandle);
985 	kfree(hostport);
986 	nvmet_fc_tgtport_put(tgtport);
987 }
988 
989 static void
990 nvmet_fc_hostport_put(struct nvmet_fc_hostport *hostport)
991 {
992 	kref_put(&hostport->ref, nvmet_fc_hostport_free);
993 }
994 
995 static int
996 nvmet_fc_hostport_get(struct nvmet_fc_hostport *hostport)
997 {
998 	return kref_get_unless_zero(&hostport->ref);
999 }
1000 
1001 static struct nvmet_fc_hostport *
1002 nvmet_fc_match_hostport(struct nvmet_fc_tgtport *tgtport, void *hosthandle)
1003 {
1004 	struct nvmet_fc_hostport *host;
1005 
1006 	lockdep_assert_held(&tgtport->lock);
1007 
1008 	list_for_each_entry(host, &tgtport->host_list, host_list) {
1009 		if (host->hosthandle == hosthandle && !host->invalid) {
1010 			if (nvmet_fc_hostport_get(host))
1011 				return host;
1012 		}
1013 	}
1014 
1015 	return NULL;
1016 }
1017 
1018 static struct nvmet_fc_hostport *
1019 nvmet_fc_alloc_hostport(struct nvmet_fc_tgtport *tgtport, void *hosthandle)
1020 {
1021 	struct nvmet_fc_hostport *newhost, *match = NULL;
1022 	unsigned long flags;
1023 
1024 	/*
1025 	 * Caller holds a reference on tgtport.
1026 	 */
1027 
1028 	/* if LLDD not implemented, leave as NULL */
1029 	if (!hosthandle)
1030 		return NULL;
1031 
1032 	spin_lock_irqsave(&tgtport->lock, flags);
1033 	match = nvmet_fc_match_hostport(tgtport, hosthandle);
1034 	spin_unlock_irqrestore(&tgtport->lock, flags);
1035 
1036 	if (match)
1037 		return match;
1038 
1039 	newhost = kzalloc(sizeof(*newhost), GFP_KERNEL);
1040 	if (!newhost)
1041 		return ERR_PTR(-ENOMEM);
1042 
1043 	spin_lock_irqsave(&tgtport->lock, flags);
1044 	match = nvmet_fc_match_hostport(tgtport, hosthandle);
1045 	if (match) {
1046 		/* new allocation not needed */
1047 		kfree(newhost);
1048 		newhost = match;
1049 	} else {
1050 		nvmet_fc_tgtport_get(tgtport);
1051 		newhost->tgtport = tgtport;
1052 		newhost->hosthandle = hosthandle;
1053 		INIT_LIST_HEAD(&newhost->host_list);
1054 		kref_init(&newhost->ref);
1055 
1056 		list_add_tail(&newhost->host_list, &tgtport->host_list);
1057 	}
1058 	spin_unlock_irqrestore(&tgtport->lock, flags);
1059 
1060 	return newhost;
1061 }
1062 
1063 static void
1064 nvmet_fc_delete_assoc_work(struct work_struct *work)
1065 {
1066 	struct nvmet_fc_tgt_assoc *assoc =
1067 		container_of(work, struct nvmet_fc_tgt_assoc, del_work);
1068 	struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
1069 
1070 	nvmet_fc_delete_target_assoc(assoc);
1071 	nvmet_fc_tgt_a_put(assoc);
1072 	nvmet_fc_tgtport_put(tgtport);
1073 }
1074 
1075 static void
1076 nvmet_fc_schedule_delete_assoc(struct nvmet_fc_tgt_assoc *assoc)
1077 {
1078 	int terminating;
1079 
1080 	terminating = atomic_xchg(&assoc->terminating, 1);
1081 
1082 	/* if already terminating, do nothing */
1083 	if (terminating)
1084 		return;
1085 
1086 	nvmet_fc_tgtport_get(assoc->tgtport);
1087 	if (!queue_work(nvmet_wq, &assoc->del_work))
1088 		nvmet_fc_tgtport_put(assoc->tgtport);
1089 }
1090 
1091 static bool
1092 nvmet_fc_assoc_exists(struct nvmet_fc_tgtport *tgtport, u64 association_id)
1093 {
1094 	struct nvmet_fc_tgt_assoc *a;
1095 	bool found = false;
1096 
1097 	rcu_read_lock();
1098 	list_for_each_entry_rcu(a, &tgtport->assoc_list, a_list) {
1099 		if (association_id == a->association_id) {
1100 			found = true;
1101 			break;
1102 		}
1103 	}
1104 	rcu_read_unlock();
1105 
1106 	return found;
1107 }
1108 
1109 static struct nvmet_fc_tgt_assoc *
1110 nvmet_fc_alloc_target_assoc(struct nvmet_fc_tgtport *tgtport, void *hosthandle)
1111 {
1112 	struct nvmet_fc_tgt_assoc *assoc;
1113 	unsigned long flags;
1114 	bool done;
1115 	u64 ran;
1116 	int idx;
1117 
1118 	if (!tgtport->pe)
1119 		return NULL;
1120 
1121 	assoc = kzalloc(sizeof(*assoc), GFP_KERNEL);
1122 	if (!assoc)
1123 		return NULL;
1124 
1125 	idx = ida_alloc(&tgtport->assoc_cnt, GFP_KERNEL);
1126 	if (idx < 0)
1127 		goto out_free_assoc;
1128 
1129 	assoc->hostport = nvmet_fc_alloc_hostport(tgtport, hosthandle);
1130 	if (IS_ERR(assoc->hostport))
1131 		goto out_ida;
1132 
1133 	assoc->tgtport = tgtport;
1134 	nvmet_fc_tgtport_get(tgtport);
1135 	assoc->a_id = idx;
1136 	INIT_LIST_HEAD(&assoc->a_list);
1137 	kref_init(&assoc->ref);
1138 	INIT_WORK(&assoc->del_work, nvmet_fc_delete_assoc_work);
1139 	atomic_set(&assoc->terminating, 0);
1140 
1141 	done = false;
1142 	do {
1143 		get_random_bytes(&ran, sizeof(ran) - BYTES_FOR_QID);
1144 		ran = ran << BYTES_FOR_QID_SHIFT;
1145 
1146 		spin_lock_irqsave(&tgtport->lock, flags);
1147 		if (!nvmet_fc_assoc_exists(tgtport, ran)) {
1148 			assoc->association_id = ran;
1149 			list_add_tail_rcu(&assoc->a_list, &tgtport->assoc_list);
1150 			done = true;
1151 		}
1152 		spin_unlock_irqrestore(&tgtport->lock, flags);
1153 	} while (!done);
1154 
1155 	return assoc;
1156 
1157 out_ida:
1158 	ida_free(&tgtport->assoc_cnt, idx);
1159 out_free_assoc:
1160 	kfree(assoc);
1161 	return NULL;
1162 }
1163 
1164 static void
1165 nvmet_fc_target_assoc_free(struct kref *ref)
1166 {
1167 	struct nvmet_fc_tgt_assoc *assoc =
1168 		container_of(ref, struct nvmet_fc_tgt_assoc, ref);
1169 	struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
1170 	struct nvmet_fc_ls_iod	*oldls;
1171 	unsigned long flags;
1172 	int i;
1173 
1174 	for (i = NVMET_NR_QUEUES; i >= 0; i--) {
1175 		if (assoc->queues[i])
1176 			nvmet_fc_delete_target_queue(assoc->queues[i]);
1177 	}
1178 
1179 	/* Send Disconnect now that all i/o has completed */
1180 	nvmet_fc_xmt_disconnect_assoc(assoc);
1181 
1182 	nvmet_fc_hostport_put(assoc->hostport);
1183 	spin_lock_irqsave(&tgtport->lock, flags);
1184 	oldls = assoc->rcv_disconn;
1185 	spin_unlock_irqrestore(&tgtport->lock, flags);
1186 	/* if pending Rcv Disconnect Association LS, send rsp now */
1187 	if (oldls)
1188 		nvmet_fc_xmt_ls_rsp(tgtport, oldls);
1189 	ida_free(&tgtport->assoc_cnt, assoc->a_id);
1190 	dev_info(tgtport->dev,
1191 		"{%d:%d} Association freed\n",
1192 		tgtport->fc_target_port.port_num, assoc->a_id);
1193 	kfree(assoc);
1194 }
1195 
1196 static void
1197 nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc)
1198 {
1199 	kref_put(&assoc->ref, nvmet_fc_target_assoc_free);
1200 }
1201 
1202 static int
1203 nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc)
1204 {
1205 	return kref_get_unless_zero(&assoc->ref);
1206 }
1207 
1208 static void
1209 nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc *assoc)
1210 {
1211 	struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
1212 	unsigned long flags;
1213 	int i;
1214 
1215 	spin_lock_irqsave(&tgtport->lock, flags);
1216 	list_del_rcu(&assoc->a_list);
1217 	spin_unlock_irqrestore(&tgtport->lock, flags);
1218 
1219 	synchronize_rcu();
1220 
1221 	/* ensure all in-flight I/Os have been processed */
1222 	for (i = NVMET_NR_QUEUES; i >= 0; i--) {
1223 		if (assoc->queues[i])
1224 			flush_workqueue(assoc->queues[i]->work_q);
1225 	}
1226 
1227 	dev_info(tgtport->dev,
1228 		"{%d:%d} Association deleted\n",
1229 		tgtport->fc_target_port.port_num, assoc->a_id);
1230 
1231 	nvmet_fc_tgtport_put(tgtport);
1232 }
1233 
1234 static struct nvmet_fc_tgt_assoc *
1235 nvmet_fc_find_target_assoc(struct nvmet_fc_tgtport *tgtport,
1236 				u64 association_id)
1237 {
1238 	struct nvmet_fc_tgt_assoc *assoc;
1239 	struct nvmet_fc_tgt_assoc *ret = NULL;
1240 
1241 	rcu_read_lock();
1242 	list_for_each_entry_rcu(assoc, &tgtport->assoc_list, a_list) {
1243 		if (association_id == assoc->association_id) {
1244 			ret = assoc;
1245 			if (!nvmet_fc_tgt_a_get(assoc))
1246 				ret = NULL;
1247 			break;
1248 		}
1249 	}
1250 	rcu_read_unlock();
1251 
1252 	return ret;
1253 }
1254 
1255 static void
1256 nvmet_fc_portentry_bind(struct nvmet_fc_tgtport *tgtport,
1257 			struct nvmet_fc_port_entry *pe,
1258 			struct nvmet_port *port)
1259 {
1260 	lockdep_assert_held(&nvmet_fc_tgtlock);
1261 
1262 	nvmet_fc_tgtport_get(tgtport);
1263 	pe->tgtport = tgtport;
1264 	tgtport->pe = pe;
1265 
1266 	pe->port = port;
1267 	port->priv = pe;
1268 
1269 	pe->node_name = tgtport->fc_target_port.node_name;
1270 	pe->port_name = tgtport->fc_target_port.port_name;
1271 	INIT_LIST_HEAD(&pe->pe_list);
1272 
1273 	list_add_tail(&pe->pe_list, &nvmet_fc_portentry_list);
1274 }
1275 
1276 static void
1277 nvmet_fc_portentry_unbind(struct nvmet_fc_port_entry *pe)
1278 {
1279 	unsigned long flags;
1280 
1281 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1282 	if (pe->tgtport) {
1283 		nvmet_fc_tgtport_put(pe->tgtport);
1284 		pe->tgtport->pe = NULL;
1285 	}
1286 	list_del(&pe->pe_list);
1287 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1288 }
1289 
1290 /*
1291  * called when a targetport deregisters. Breaks the relationship
1292  * with the nvmet port, but leaves the port_entry in place so that
1293  * re-registration can resume operation.
1294  */
1295 static void
1296 nvmet_fc_portentry_unbind_tgt(struct nvmet_fc_tgtport *tgtport)
1297 {
1298 	struct nvmet_fc_port_entry *pe;
1299 	unsigned long flags;
1300 
1301 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1302 	pe = tgtport->pe;
1303 	if (pe) {
1304 		nvmet_fc_tgtport_put(pe->tgtport);
1305 		pe->tgtport = NULL;
1306 	}
1307 	tgtport->pe = NULL;
1308 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1309 }
1310 
1311 /*
1312  * called when a new targetport is registered. Looks in the
1313  * existing nvmet port_entries to see if the nvmet layer is
1314  * configured for the targetport's wwn's. (the targetport existed,
1315  * nvmet configured, the lldd unregistered the tgtport, and is now
1316  * reregistering the same targetport).  If so, set the nvmet port
1317  * port entry on the targetport.
1318  */
1319 static void
1320 nvmet_fc_portentry_rebind_tgt(struct nvmet_fc_tgtport *tgtport)
1321 {
1322 	struct nvmet_fc_port_entry *pe;
1323 	unsigned long flags;
1324 
1325 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1326 	list_for_each_entry(pe, &nvmet_fc_portentry_list, pe_list) {
1327 		if (tgtport->fc_target_port.node_name == pe->node_name &&
1328 		    tgtport->fc_target_port.port_name == pe->port_name) {
1329 			if (!nvmet_fc_tgtport_get(tgtport))
1330 				continue;
1331 
1332 			WARN_ON(pe->tgtport);
1333 			tgtport->pe = pe;
1334 			pe->tgtport = tgtport;
1335 			break;
1336 		}
1337 	}
1338 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1339 }
1340 
1341 /**
1342  * nvmet_fc_register_targetport - transport entry point called by an
1343  *                              LLDD to register the existence of a local
1344  *                              NVME subsystem FC port.
1345  * @pinfo:     pointer to information about the port to be registered
1346  * @template:  LLDD entrypoints and operational parameters for the port
1347  * @dev:       physical hardware device node port corresponds to. Will be
1348  *             used for DMA mappings
1349  * @portptr:   pointer to a local port pointer. Upon success, the routine
1350  *             will allocate a nvme_fc_local_port structure and place its
1351  *             address in the local port pointer. Upon failure, local port
1352  *             pointer will be set to NULL.
1353  *
1354  * Returns:
1355  * a completion status. Must be 0 upon success; a negative errno
1356  * (ex: -ENXIO) upon failure.
1357  */
1358 int
1359 nvmet_fc_register_targetport(struct nvmet_fc_port_info *pinfo,
1360 			struct nvmet_fc_target_template *template,
1361 			struct device *dev,
1362 			struct nvmet_fc_target_port **portptr)
1363 {
1364 	struct nvmet_fc_tgtport *newrec;
1365 	unsigned long flags;
1366 	int ret, idx;
1367 
1368 	if (!template->xmt_ls_rsp || !template->fcp_op ||
1369 	    !template->fcp_abort ||
1370 	    !template->fcp_req_release || !template->targetport_delete ||
1371 	    !template->max_hw_queues || !template->max_sgl_segments ||
1372 	    !template->max_dif_sgl_segments || !template->dma_boundary) {
1373 		ret = -EINVAL;
1374 		goto out_regtgt_failed;
1375 	}
1376 
1377 	newrec = kzalloc((sizeof(*newrec) + template->target_priv_sz),
1378 			 GFP_KERNEL);
1379 	if (!newrec) {
1380 		ret = -ENOMEM;
1381 		goto out_regtgt_failed;
1382 	}
1383 
1384 	idx = ida_alloc(&nvmet_fc_tgtport_cnt, GFP_KERNEL);
1385 	if (idx < 0) {
1386 		ret = -ENOSPC;
1387 		goto out_fail_kfree;
1388 	}
1389 
1390 	if (!get_device(dev) && dev) {
1391 		ret = -ENODEV;
1392 		goto out_ida_put;
1393 	}
1394 
1395 	newrec->fc_target_port.node_name = pinfo->node_name;
1396 	newrec->fc_target_port.port_name = pinfo->port_name;
1397 	if (template->target_priv_sz)
1398 		newrec->fc_target_port.private = &newrec[1];
1399 	else
1400 		newrec->fc_target_port.private = NULL;
1401 	newrec->fc_target_port.port_id = pinfo->port_id;
1402 	newrec->fc_target_port.port_num = idx;
1403 	INIT_LIST_HEAD(&newrec->tgt_list);
1404 	newrec->dev = dev;
1405 	newrec->ops = template;
1406 	spin_lock_init(&newrec->lock);
1407 	INIT_LIST_HEAD(&newrec->ls_rcv_list);
1408 	INIT_LIST_HEAD(&newrec->ls_req_list);
1409 	INIT_LIST_HEAD(&newrec->ls_busylist);
1410 	INIT_LIST_HEAD(&newrec->assoc_list);
1411 	INIT_LIST_HEAD(&newrec->host_list);
1412 	kref_init(&newrec->ref);
1413 	ida_init(&newrec->assoc_cnt);
1414 	newrec->max_sg_cnt = template->max_sgl_segments;
1415 
1416 	ret = nvmet_fc_alloc_ls_iodlist(newrec);
1417 	if (ret) {
1418 		ret = -ENOMEM;
1419 		goto out_free_newrec;
1420 	}
1421 
1422 	nvmet_fc_portentry_rebind_tgt(newrec);
1423 
1424 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1425 	list_add_tail(&newrec->tgt_list, &nvmet_fc_target_list);
1426 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1427 
1428 	*portptr = &newrec->fc_target_port;
1429 	return 0;
1430 
1431 out_free_newrec:
1432 	put_device(dev);
1433 out_ida_put:
1434 	ida_free(&nvmet_fc_tgtport_cnt, idx);
1435 out_fail_kfree:
1436 	kfree(newrec);
1437 out_regtgt_failed:
1438 	*portptr = NULL;
1439 	return ret;
1440 }
1441 EXPORT_SYMBOL_GPL(nvmet_fc_register_targetport);
1442 
1443 
1444 static void
1445 nvmet_fc_free_tgtport(struct kref *ref)
1446 {
1447 	struct nvmet_fc_tgtport *tgtport =
1448 		container_of(ref, struct nvmet_fc_tgtport, ref);
1449 	struct device *dev = tgtport->dev;
1450 
1451 	nvmet_fc_free_ls_iodlist(tgtport);
1452 
1453 	/* let the LLDD know we've finished tearing it down */
1454 	tgtport->ops->targetport_delete(&tgtport->fc_target_port);
1455 
1456 	ida_free(&nvmet_fc_tgtport_cnt,
1457 			tgtport->fc_target_port.port_num);
1458 
1459 	ida_destroy(&tgtport->assoc_cnt);
1460 
1461 	kfree(tgtport);
1462 
1463 	put_device(dev);
1464 }
1465 
1466 static void
1467 nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport)
1468 {
1469 	kref_put(&tgtport->ref, nvmet_fc_free_tgtport);
1470 }
1471 
1472 static int
1473 nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport)
1474 {
1475 	return kref_get_unless_zero(&tgtport->ref);
1476 }
1477 
1478 static void
1479 __nvmet_fc_free_assocs(struct nvmet_fc_tgtport *tgtport)
1480 {
1481 	struct nvmet_fc_tgt_assoc *assoc;
1482 
1483 	rcu_read_lock();
1484 	list_for_each_entry_rcu(assoc, &tgtport->assoc_list, a_list) {
1485 		if (!nvmet_fc_tgt_a_get(assoc))
1486 			continue;
1487 		nvmet_fc_schedule_delete_assoc(assoc);
1488 		nvmet_fc_tgt_a_put(assoc);
1489 	}
1490 	rcu_read_unlock();
1491 }
1492 
1493 /**
1494  * nvmet_fc_invalidate_host - transport entry point called by an LLDD
1495  *                       to remove references to a hosthandle for LS's.
1496  *
1497  * The nvmet-fc layer ensures that any references to the hosthandle
1498  * on the targetport are forgotten (set to NULL).  The LLDD will
1499  * typically call this when a login with a remote host port has been
1500  * lost, thus LS's for the remote host port are no longer possible.
1501  *
1502  * If an LS request is outstanding to the targetport/hosthandle (or
1503  * issued concurrently with the call to invalidate the host), the
1504  * LLDD is responsible for terminating/aborting the LS and completing
1505  * the LS request. It is recommended that these terminations/aborts
1506  * occur after calling to invalidate the host handle to avoid additional
1507  * retries by the nvmet-fc transport. The nvmet-fc transport may
1508  * continue to reference host handle while it cleans up outstanding
1509  * NVME associations. The nvmet-fc transport will call the
1510  * ops->host_release() callback to notify the LLDD that all references
1511  * are complete and the related host handle can be recovered.
1512  * Note: if there are no references, the callback may be called before
1513  * the invalidate host call returns.
1514  *
1515  * @target_port: pointer to the (registered) target port that a prior
1516  *              LS was received on and which supplied the transport the
1517  *              hosthandle.
1518  * @hosthandle: the handle (pointer) that represents the host port
1519  *              that no longer has connectivity and that LS's should
1520  *              no longer be directed to.
1521  */
1522 void
1523 nvmet_fc_invalidate_host(struct nvmet_fc_target_port *target_port,
1524 			void *hosthandle)
1525 {
1526 	struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
1527 	struct nvmet_fc_tgt_assoc *assoc, *next;
1528 	unsigned long flags;
1529 	bool noassoc = true;
1530 
1531 	spin_lock_irqsave(&tgtport->lock, flags);
1532 	list_for_each_entry_safe(assoc, next,
1533 				&tgtport->assoc_list, a_list) {
1534 		if (assoc->hostport->hosthandle != hosthandle)
1535 			continue;
1536 		if (!nvmet_fc_tgt_a_get(assoc))
1537 			continue;
1538 		assoc->hostport->invalid = 1;
1539 		noassoc = false;
1540 		nvmet_fc_schedule_delete_assoc(assoc);
1541 		nvmet_fc_tgt_a_put(assoc);
1542 	}
1543 	spin_unlock_irqrestore(&tgtport->lock, flags);
1544 
1545 	/* if there's nothing to wait for - call the callback */
1546 	if (noassoc && tgtport->ops->host_release)
1547 		tgtport->ops->host_release(hosthandle);
1548 }
1549 EXPORT_SYMBOL_GPL(nvmet_fc_invalidate_host);
1550 
1551 /*
1552  * nvmet layer has called to terminate an association
1553  */
1554 static void
1555 nvmet_fc_delete_ctrl(struct nvmet_ctrl *ctrl)
1556 {
1557 	struct nvmet_fc_tgtport *tgtport, *next;
1558 	struct nvmet_fc_tgt_assoc *assoc;
1559 	struct nvmet_fc_tgt_queue *queue;
1560 	unsigned long flags;
1561 	bool found_ctrl = false;
1562 
1563 	/* this is a bit ugly, but don't want to make locks layered */
1564 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1565 	list_for_each_entry_safe(tgtport, next, &nvmet_fc_target_list,
1566 			tgt_list) {
1567 		if (!nvmet_fc_tgtport_get(tgtport))
1568 			continue;
1569 		spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1570 
1571 		rcu_read_lock();
1572 		list_for_each_entry_rcu(assoc, &tgtport->assoc_list, a_list) {
1573 			queue = assoc->queues[0];
1574 			if (queue && queue->nvme_sq.ctrl == ctrl) {
1575 				if (nvmet_fc_tgt_a_get(assoc))
1576 					found_ctrl = true;
1577 				break;
1578 			}
1579 		}
1580 		rcu_read_unlock();
1581 
1582 		nvmet_fc_tgtport_put(tgtport);
1583 
1584 		if (found_ctrl) {
1585 			nvmet_fc_schedule_delete_assoc(assoc);
1586 			nvmet_fc_tgt_a_put(assoc);
1587 			return;
1588 		}
1589 
1590 		spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1591 	}
1592 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1593 }
1594 
1595 static void
1596 nvmet_fc_free_pending_reqs(struct nvmet_fc_tgtport *tgtport)
1597 {
1598 	struct nvmet_fc_ls_req_op *lsop;
1599 	struct nvmefc_ls_req *lsreq;
1600 	struct nvmet_fc_ls_iod *iod;
1601 	int i;
1602 
1603 	iod = tgtport->iod;
1604 	for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++)
1605 		cancel_work(&iod->work);
1606 
1607 	/*
1608 	 * After this point the connection is lost and thus any pending
1609 	 * request can't be processed by the normal completion path. This
1610 	 * is likely a request from nvmet_fc_send_ls_req_async.
1611 	 */
1612 	while ((lsop = list_first_entry_or_null(&tgtport->ls_req_list,
1613 				struct nvmet_fc_ls_req_op, lsreq_list))) {
1614 		list_del(&lsop->lsreq_list);
1615 
1616 		if (!lsop->req_queued)
1617 			continue;
1618 
1619 		lsreq = &lsop->ls_req;
1620 		fc_dma_unmap_single(tgtport->dev, lsreq->rqstdma,
1621 				    (lsreq->rqstlen + lsreq->rsplen),
1622 				    DMA_BIDIRECTIONAL);
1623 		nvmet_fc_tgtport_put(tgtport);
1624 		kfree(lsop);
1625 	}
1626 }
1627 
1628 /**
1629  * nvmet_fc_unregister_targetport - transport entry point called by an
1630  *                              LLDD to deregister/remove a previously
1631  *                              registered a local NVME subsystem FC port.
1632  * @target_port: pointer to the (registered) target port that is to be
1633  *               deregistered.
1634  *
1635  * Returns:
1636  * a completion status. Must be 0 upon success; a negative errno
1637  * (ex: -ENXIO) upon failure.
1638  */
1639 int
1640 nvmet_fc_unregister_targetport(struct nvmet_fc_target_port *target_port)
1641 {
1642 	struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
1643 	unsigned long flags;
1644 
1645 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1646 	list_del(&tgtport->tgt_list);
1647 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1648 
1649 	nvmet_fc_portentry_unbind_tgt(tgtport);
1650 
1651 	/* terminate any outstanding associations */
1652 	__nvmet_fc_free_assocs(tgtport);
1653 
1654 	flush_workqueue(nvmet_wq);
1655 
1656 	nvmet_fc_free_pending_reqs(tgtport);
1657 	nvmet_fc_tgtport_put(tgtport);
1658 
1659 	return 0;
1660 }
1661 EXPORT_SYMBOL_GPL(nvmet_fc_unregister_targetport);
1662 
1663 
1664 /* ********************** FC-NVME LS RCV Handling ************************* */
1665 
1666 
1667 static void
1668 nvmet_fc_ls_create_association(struct nvmet_fc_tgtport *tgtport,
1669 			struct nvmet_fc_ls_iod *iod)
1670 {
1671 	struct fcnvme_ls_cr_assoc_rqst *rqst = &iod->rqstbuf->rq_cr_assoc;
1672 	struct fcnvme_ls_cr_assoc_acc *acc = &iod->rspbuf->rsp_cr_assoc;
1673 	struct nvmet_fc_tgt_queue *queue;
1674 	int ret = 0;
1675 
1676 	memset(acc, 0, sizeof(*acc));
1677 
1678 	/*
1679 	 * FC-NVME spec changes. There are initiators sending different
1680 	 * lengths as padding sizes for Create Association Cmd descriptor
1681 	 * was incorrect.
1682 	 * Accept anything of "minimum" length. Assume format per 1.15
1683 	 * spec (with HOSTID reduced to 16 bytes), ignore how long the
1684 	 * trailing pad length is.
1685 	 */
1686 	if (iod->rqstdatalen < FCNVME_LSDESC_CRA_RQST_MINLEN)
1687 		ret = VERR_CR_ASSOC_LEN;
1688 	else if (be32_to_cpu(rqst->desc_list_len) <
1689 			FCNVME_LSDESC_CRA_RQST_MIN_LISTLEN)
1690 		ret = VERR_CR_ASSOC_RQST_LEN;
1691 	else if (rqst->assoc_cmd.desc_tag !=
1692 			cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD))
1693 		ret = VERR_CR_ASSOC_CMD;
1694 	else if (be32_to_cpu(rqst->assoc_cmd.desc_len) <
1695 			FCNVME_LSDESC_CRA_CMD_DESC_MIN_DESCLEN)
1696 		ret = VERR_CR_ASSOC_CMD_LEN;
1697 	else if (!rqst->assoc_cmd.ersp_ratio ||
1698 		 (be16_to_cpu(rqst->assoc_cmd.ersp_ratio) >=
1699 				be16_to_cpu(rqst->assoc_cmd.sqsize)))
1700 		ret = VERR_ERSP_RATIO;
1701 
1702 	else {
1703 		/* new association w/ admin queue */
1704 		iod->assoc = nvmet_fc_alloc_target_assoc(
1705 						tgtport, iod->hosthandle);
1706 		if (!iod->assoc)
1707 			ret = VERR_ASSOC_ALLOC_FAIL;
1708 		else {
1709 			queue = nvmet_fc_alloc_target_queue(iod->assoc, 0,
1710 					be16_to_cpu(rqst->assoc_cmd.sqsize));
1711 			if (!queue) {
1712 				ret = VERR_QUEUE_ALLOC_FAIL;
1713 				nvmet_fc_tgt_a_put(iod->assoc);
1714 			}
1715 		}
1716 	}
1717 
1718 	if (ret) {
1719 		dev_err(tgtport->dev,
1720 			"Create Association LS failed: %s\n",
1721 			validation_errors[ret]);
1722 		iod->lsrsp->rsplen = nvme_fc_format_rjt(acc,
1723 				sizeof(*acc), rqst->w0.ls_cmd,
1724 				FCNVME_RJT_RC_LOGIC,
1725 				FCNVME_RJT_EXP_NONE, 0);
1726 		return;
1727 	}
1728 
1729 	queue->ersp_ratio = be16_to_cpu(rqst->assoc_cmd.ersp_ratio);
1730 	atomic_set(&queue->connected, 1);
1731 	queue->sqhd = 0;	/* best place to init value */
1732 
1733 	dev_info(tgtport->dev,
1734 		"{%d:%d} Association created\n",
1735 		tgtport->fc_target_port.port_num, iod->assoc->a_id);
1736 
1737 	/* format a response */
1738 
1739 	iod->lsrsp->rsplen = sizeof(*acc);
1740 
1741 	nvme_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1742 			fcnvme_lsdesc_len(
1743 				sizeof(struct fcnvme_ls_cr_assoc_acc)),
1744 			FCNVME_LS_CREATE_ASSOCIATION);
1745 	acc->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1746 	acc->associd.desc_len =
1747 			fcnvme_lsdesc_len(
1748 				sizeof(struct fcnvme_lsdesc_assoc_id));
1749 	acc->associd.association_id =
1750 			cpu_to_be64(nvmet_fc_makeconnid(iod->assoc, 0));
1751 	acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID);
1752 	acc->connectid.desc_len =
1753 			fcnvme_lsdesc_len(
1754 				sizeof(struct fcnvme_lsdesc_conn_id));
1755 	acc->connectid.connection_id = acc->associd.association_id;
1756 }
1757 
1758 static void
1759 nvmet_fc_ls_create_connection(struct nvmet_fc_tgtport *tgtport,
1760 			struct nvmet_fc_ls_iod *iod)
1761 {
1762 	struct fcnvme_ls_cr_conn_rqst *rqst = &iod->rqstbuf->rq_cr_conn;
1763 	struct fcnvme_ls_cr_conn_acc *acc = &iod->rspbuf->rsp_cr_conn;
1764 	struct nvmet_fc_tgt_queue *queue;
1765 	int ret = 0;
1766 
1767 	memset(acc, 0, sizeof(*acc));
1768 
1769 	if (iod->rqstdatalen < sizeof(struct fcnvme_ls_cr_conn_rqst))
1770 		ret = VERR_CR_CONN_LEN;
1771 	else if (rqst->desc_list_len !=
1772 			fcnvme_lsdesc_len(
1773 				sizeof(struct fcnvme_ls_cr_conn_rqst)))
1774 		ret = VERR_CR_CONN_RQST_LEN;
1775 	else if (rqst->associd.desc_tag != cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1776 		ret = VERR_ASSOC_ID;
1777 	else if (rqst->associd.desc_len !=
1778 			fcnvme_lsdesc_len(
1779 				sizeof(struct fcnvme_lsdesc_assoc_id)))
1780 		ret = VERR_ASSOC_ID_LEN;
1781 	else if (rqst->connect_cmd.desc_tag !=
1782 			cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD))
1783 		ret = VERR_CR_CONN_CMD;
1784 	else if (rqst->connect_cmd.desc_len !=
1785 			fcnvme_lsdesc_len(
1786 				sizeof(struct fcnvme_lsdesc_cr_conn_cmd)))
1787 		ret = VERR_CR_CONN_CMD_LEN;
1788 	else if (!rqst->connect_cmd.ersp_ratio ||
1789 		 (be16_to_cpu(rqst->connect_cmd.ersp_ratio) >=
1790 				be16_to_cpu(rqst->connect_cmd.sqsize)))
1791 		ret = VERR_ERSP_RATIO;
1792 
1793 	else {
1794 		/* new io queue */
1795 		iod->assoc = nvmet_fc_find_target_assoc(tgtport,
1796 				be64_to_cpu(rqst->associd.association_id));
1797 		if (!iod->assoc)
1798 			ret = VERR_NO_ASSOC;
1799 		else {
1800 			queue = nvmet_fc_alloc_target_queue(iod->assoc,
1801 					be16_to_cpu(rqst->connect_cmd.qid),
1802 					be16_to_cpu(rqst->connect_cmd.sqsize));
1803 			if (!queue)
1804 				ret = VERR_QUEUE_ALLOC_FAIL;
1805 
1806 			/* release get taken in nvmet_fc_find_target_assoc */
1807 			nvmet_fc_tgt_a_put(iod->assoc);
1808 		}
1809 	}
1810 
1811 	if (ret) {
1812 		dev_err(tgtport->dev,
1813 			"Create Connection LS failed: %s\n",
1814 			validation_errors[ret]);
1815 		iod->lsrsp->rsplen = nvme_fc_format_rjt(acc,
1816 				sizeof(*acc), rqst->w0.ls_cmd,
1817 				(ret == VERR_NO_ASSOC) ?
1818 					FCNVME_RJT_RC_INV_ASSOC :
1819 					FCNVME_RJT_RC_LOGIC,
1820 				FCNVME_RJT_EXP_NONE, 0);
1821 		return;
1822 	}
1823 
1824 	queue->ersp_ratio = be16_to_cpu(rqst->connect_cmd.ersp_ratio);
1825 	atomic_set(&queue->connected, 1);
1826 	queue->sqhd = 0;	/* best place to init value */
1827 
1828 	/* format a response */
1829 
1830 	iod->lsrsp->rsplen = sizeof(*acc);
1831 
1832 	nvme_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1833 			fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)),
1834 			FCNVME_LS_CREATE_CONNECTION);
1835 	acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID);
1836 	acc->connectid.desc_len =
1837 			fcnvme_lsdesc_len(
1838 				sizeof(struct fcnvme_lsdesc_conn_id));
1839 	acc->connectid.connection_id =
1840 			cpu_to_be64(nvmet_fc_makeconnid(iod->assoc,
1841 				be16_to_cpu(rqst->connect_cmd.qid)));
1842 }
1843 
1844 /*
1845  * Returns true if the LS response is to be transmit
1846  * Returns false if the LS response is to be delayed
1847  */
1848 static int
1849 nvmet_fc_ls_disconnect(struct nvmet_fc_tgtport *tgtport,
1850 			struct nvmet_fc_ls_iod *iod)
1851 {
1852 	struct fcnvme_ls_disconnect_assoc_rqst *rqst =
1853 						&iod->rqstbuf->rq_dis_assoc;
1854 	struct fcnvme_ls_disconnect_assoc_acc *acc =
1855 						&iod->rspbuf->rsp_dis_assoc;
1856 	struct nvmet_fc_tgt_assoc *assoc = NULL;
1857 	struct nvmet_fc_ls_iod *oldls = NULL;
1858 	unsigned long flags;
1859 	int ret = 0;
1860 
1861 	memset(acc, 0, sizeof(*acc));
1862 
1863 	ret = nvmefc_vldt_lsreq_discon_assoc(iod->rqstdatalen, rqst);
1864 	if (!ret) {
1865 		/* match an active association - takes an assoc ref if !NULL */
1866 		assoc = nvmet_fc_find_target_assoc(tgtport,
1867 				be64_to_cpu(rqst->associd.association_id));
1868 		iod->assoc = assoc;
1869 		if (!assoc)
1870 			ret = VERR_NO_ASSOC;
1871 	}
1872 
1873 	if (ret || !assoc) {
1874 		dev_err(tgtport->dev,
1875 			"Disconnect LS failed: %s\n",
1876 			validation_errors[ret]);
1877 		iod->lsrsp->rsplen = nvme_fc_format_rjt(acc,
1878 				sizeof(*acc), rqst->w0.ls_cmd,
1879 				(ret == VERR_NO_ASSOC) ?
1880 					FCNVME_RJT_RC_INV_ASSOC :
1881 					FCNVME_RJT_RC_LOGIC,
1882 				FCNVME_RJT_EXP_NONE, 0);
1883 		return true;
1884 	}
1885 
1886 	/* format a response */
1887 
1888 	iod->lsrsp->rsplen = sizeof(*acc);
1889 
1890 	nvme_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1891 			fcnvme_lsdesc_len(
1892 				sizeof(struct fcnvme_ls_disconnect_assoc_acc)),
1893 			FCNVME_LS_DISCONNECT_ASSOC);
1894 
1895 	/*
1896 	 * The rules for LS response says the response cannot
1897 	 * go back until ABTS's have been sent for all outstanding
1898 	 * I/O and a Disconnect Association LS has been sent.
1899 	 * So... save off the Disconnect LS to send the response
1900 	 * later. If there was a prior LS already saved, replace
1901 	 * it with the newer one and send a can't perform reject
1902 	 * on the older one.
1903 	 */
1904 	spin_lock_irqsave(&tgtport->lock, flags);
1905 	oldls = assoc->rcv_disconn;
1906 	assoc->rcv_disconn = iod;
1907 	spin_unlock_irqrestore(&tgtport->lock, flags);
1908 
1909 	if (oldls) {
1910 		dev_info(tgtport->dev,
1911 			"{%d:%d} Multiple Disconnect Association LS's "
1912 			"received\n",
1913 			tgtport->fc_target_port.port_num, assoc->a_id);
1914 		/* overwrite good response with bogus failure */
1915 		oldls->lsrsp->rsplen = nvme_fc_format_rjt(oldls->rspbuf,
1916 						sizeof(*iod->rspbuf),
1917 						/* ok to use rqst, LS is same */
1918 						rqst->w0.ls_cmd,
1919 						FCNVME_RJT_RC_UNAB,
1920 						FCNVME_RJT_EXP_NONE, 0);
1921 		nvmet_fc_xmt_ls_rsp(tgtport, oldls);
1922 	}
1923 
1924 	nvmet_fc_schedule_delete_assoc(assoc);
1925 	nvmet_fc_tgt_a_put(assoc);
1926 
1927 	return false;
1928 }
1929 
1930 
1931 /* *********************** NVME Ctrl Routines **************************** */
1932 
1933 
1934 static void nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req);
1935 
1936 static const struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops;
1937 
1938 static void
1939 nvmet_fc_xmt_ls_rsp_done(struct nvmefc_ls_rsp *lsrsp)
1940 {
1941 	struct nvmet_fc_ls_iod *iod = lsrsp->nvme_fc_private;
1942 	struct nvmet_fc_tgtport *tgtport = iod->tgtport;
1943 
1944 	fc_dma_sync_single_for_cpu(tgtport->dev, iod->rspdma,
1945 				sizeof(*iod->rspbuf), DMA_TO_DEVICE);
1946 	nvmet_fc_free_ls_iod(tgtport, iod);
1947 	nvmet_fc_tgtport_put(tgtport);
1948 }
1949 
1950 static void
1951 nvmet_fc_xmt_ls_rsp(struct nvmet_fc_tgtport *tgtport,
1952 				struct nvmet_fc_ls_iod *iod)
1953 {
1954 	int ret;
1955 
1956 	fc_dma_sync_single_for_device(tgtport->dev, iod->rspdma,
1957 				  sizeof(*iod->rspbuf), DMA_TO_DEVICE);
1958 
1959 	ret = tgtport->ops->xmt_ls_rsp(&tgtport->fc_target_port, iod->lsrsp);
1960 	if (ret)
1961 		nvmet_fc_xmt_ls_rsp_done(iod->lsrsp);
1962 }
1963 
1964 /*
1965  * Actual processing routine for received FC-NVME LS Requests from the LLD
1966  */
1967 static void
1968 nvmet_fc_handle_ls_rqst(struct nvmet_fc_tgtport *tgtport,
1969 			struct nvmet_fc_ls_iod *iod)
1970 {
1971 	struct fcnvme_ls_rqst_w0 *w0 = &iod->rqstbuf->rq_cr_assoc.w0;
1972 	bool sendrsp = true;
1973 
1974 	iod->lsrsp->nvme_fc_private = iod;
1975 	iod->lsrsp->rspbuf = iod->rspbuf;
1976 	iod->lsrsp->rspdma = iod->rspdma;
1977 	iod->lsrsp->done = nvmet_fc_xmt_ls_rsp_done;
1978 	/* Be preventative. handlers will later set to valid length */
1979 	iod->lsrsp->rsplen = 0;
1980 
1981 	iod->assoc = NULL;
1982 
1983 	/*
1984 	 * handlers:
1985 	 *   parse request input, execute the request, and format the
1986 	 *   LS response
1987 	 */
1988 	switch (w0->ls_cmd) {
1989 	case FCNVME_LS_CREATE_ASSOCIATION:
1990 		/* Creates Association and initial Admin Queue/Connection */
1991 		nvmet_fc_ls_create_association(tgtport, iod);
1992 		break;
1993 	case FCNVME_LS_CREATE_CONNECTION:
1994 		/* Creates an IO Queue/Connection */
1995 		nvmet_fc_ls_create_connection(tgtport, iod);
1996 		break;
1997 	case FCNVME_LS_DISCONNECT_ASSOC:
1998 		/* Terminate a Queue/Connection or the Association */
1999 		sendrsp = nvmet_fc_ls_disconnect(tgtport, iod);
2000 		break;
2001 	default:
2002 		iod->lsrsp->rsplen = nvme_fc_format_rjt(iod->rspbuf,
2003 				sizeof(*iod->rspbuf), w0->ls_cmd,
2004 				FCNVME_RJT_RC_INVAL, FCNVME_RJT_EXP_NONE, 0);
2005 	}
2006 
2007 	if (sendrsp)
2008 		nvmet_fc_xmt_ls_rsp(tgtport, iod);
2009 }
2010 
2011 /*
2012  * Actual processing routine for received FC-NVME LS Requests from the LLD
2013  */
2014 static void
2015 nvmet_fc_handle_ls_rqst_work(struct work_struct *work)
2016 {
2017 	struct nvmet_fc_ls_iod *iod =
2018 		container_of(work, struct nvmet_fc_ls_iod, work);
2019 	struct nvmet_fc_tgtport *tgtport = iod->tgtport;
2020 
2021 	nvmet_fc_handle_ls_rqst(tgtport, iod);
2022 }
2023 
2024 
2025 /**
2026  * nvmet_fc_rcv_ls_req - transport entry point called by an LLDD
2027  *                       upon the reception of a NVME LS request.
2028  *
2029  * The nvmet-fc layer will copy payload to an internal structure for
2030  * processing.  As such, upon completion of the routine, the LLDD may
2031  * immediately free/reuse the LS request buffer passed in the call.
2032  *
2033  * If this routine returns error, the LLDD should abort the exchange.
2034  *
2035  * @target_port: pointer to the (registered) target port the LS was
2036  *              received on.
2037  * @hosthandle: pointer to the host specific data, gets stored in iod.
2038  * @lsrsp:      pointer to a lsrsp structure to be used to reference
2039  *              the exchange corresponding to the LS.
2040  * @lsreqbuf:   pointer to the buffer containing the LS Request
2041  * @lsreqbuf_len: length, in bytes, of the received LS request
2042  */
2043 int
2044 nvmet_fc_rcv_ls_req(struct nvmet_fc_target_port *target_port,
2045 			void *hosthandle,
2046 			struct nvmefc_ls_rsp *lsrsp,
2047 			void *lsreqbuf, u32 lsreqbuf_len)
2048 {
2049 	struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
2050 	struct nvmet_fc_ls_iod *iod;
2051 	struct fcnvme_ls_rqst_w0 *w0 = (struct fcnvme_ls_rqst_w0 *)lsreqbuf;
2052 
2053 	if (lsreqbuf_len > sizeof(union nvmefc_ls_requests)) {
2054 		dev_info(tgtport->dev,
2055 			"RCV %s LS failed: payload too large (%d)\n",
2056 			(w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
2057 				nvmefc_ls_names[w0->ls_cmd] : "",
2058 			lsreqbuf_len);
2059 		return -E2BIG;
2060 	}
2061 
2062 	if (!nvmet_fc_tgtport_get(tgtport)) {
2063 		dev_info(tgtport->dev,
2064 			"RCV %s LS failed: target deleting\n",
2065 			(w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
2066 				nvmefc_ls_names[w0->ls_cmd] : "");
2067 		return -ESHUTDOWN;
2068 	}
2069 
2070 	iod = nvmet_fc_alloc_ls_iod(tgtport);
2071 	if (!iod) {
2072 		dev_info(tgtport->dev,
2073 			"RCV %s LS failed: context allocation failed\n",
2074 			(w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
2075 				nvmefc_ls_names[w0->ls_cmd] : "");
2076 		nvmet_fc_tgtport_put(tgtport);
2077 		return -ENOENT;
2078 	}
2079 
2080 	iod->lsrsp = lsrsp;
2081 	iod->fcpreq = NULL;
2082 	memcpy(iod->rqstbuf, lsreqbuf, lsreqbuf_len);
2083 	iod->rqstdatalen = lsreqbuf_len;
2084 	iod->hosthandle = hosthandle;
2085 
2086 	queue_work(nvmet_wq, &iod->work);
2087 
2088 	return 0;
2089 }
2090 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_ls_req);
2091 
2092 
2093 /*
2094  * **********************
2095  * Start of FCP handling
2096  * **********************
2097  */
2098 
2099 static int
2100 nvmet_fc_alloc_tgt_pgs(struct nvmet_fc_fcp_iod *fod)
2101 {
2102 	struct scatterlist *sg;
2103 	unsigned int nent;
2104 
2105 	sg = sgl_alloc(fod->req.transfer_len, GFP_KERNEL, &nent);
2106 	if (!sg)
2107 		goto out;
2108 
2109 	fod->data_sg = sg;
2110 	fod->data_sg_cnt = nent;
2111 	fod->data_sg_cnt = fc_dma_map_sg(fod->tgtport->dev, sg, nent,
2112 				((fod->io_dir == NVMET_FCP_WRITE) ?
2113 					DMA_FROM_DEVICE : DMA_TO_DEVICE));
2114 				/* note: write from initiator perspective */
2115 	fod->next_sg = fod->data_sg;
2116 
2117 	return 0;
2118 
2119 out:
2120 	return NVME_SC_INTERNAL;
2121 }
2122 
2123 static void
2124 nvmet_fc_free_tgt_pgs(struct nvmet_fc_fcp_iod *fod)
2125 {
2126 	if (!fod->data_sg || !fod->data_sg_cnt)
2127 		return;
2128 
2129 	fc_dma_unmap_sg(fod->tgtport->dev, fod->data_sg, fod->data_sg_cnt,
2130 				((fod->io_dir == NVMET_FCP_WRITE) ?
2131 					DMA_FROM_DEVICE : DMA_TO_DEVICE));
2132 	sgl_free(fod->data_sg);
2133 	fod->data_sg = NULL;
2134 	fod->data_sg_cnt = 0;
2135 }
2136 
2137 
2138 static bool
2139 queue_90percent_full(struct nvmet_fc_tgt_queue *q, u32 sqhd)
2140 {
2141 	u32 sqtail, used;
2142 
2143 	/* egad, this is ugly. And sqtail is just a best guess */
2144 	sqtail = atomic_read(&q->sqtail) % q->sqsize;
2145 
2146 	used = (sqtail < sqhd) ? (sqtail + q->sqsize - sqhd) : (sqtail - sqhd);
2147 	return ((used * 10) >= (((u32)(q->sqsize - 1) * 9)));
2148 }
2149 
2150 /*
2151  * Prep RSP payload.
2152  * May be a NVMET_FCOP_RSP or NVMET_FCOP_READDATA_RSP op
2153  */
2154 static void
2155 nvmet_fc_prep_fcp_rsp(struct nvmet_fc_tgtport *tgtport,
2156 				struct nvmet_fc_fcp_iod *fod)
2157 {
2158 	struct nvme_fc_ersp_iu *ersp = &fod->rspiubuf;
2159 	struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common;
2160 	struct nvme_completion *cqe = &ersp->cqe;
2161 	u32 *cqewd = (u32 *)cqe;
2162 	bool send_ersp = false;
2163 	u32 rsn, rspcnt, xfr_length;
2164 
2165 	if (fod->fcpreq->op == NVMET_FCOP_READDATA_RSP)
2166 		xfr_length = fod->req.transfer_len;
2167 	else
2168 		xfr_length = fod->offset;
2169 
2170 	/*
2171 	 * check to see if we can send a 0's rsp.
2172 	 *   Note: to send a 0's response, the NVME-FC host transport will
2173 	 *   recreate the CQE. The host transport knows: sq id, SQHD (last
2174 	 *   seen in an ersp), and command_id. Thus it will create a
2175 	 *   zero-filled CQE with those known fields filled in. Transport
2176 	 *   must send an ersp for any condition where the cqe won't match
2177 	 *   this.
2178 	 *
2179 	 * Here are the FC-NVME mandated cases where we must send an ersp:
2180 	 *  every N responses, where N=ersp_ratio
2181 	 *  force fabric commands to send ersp's (not in FC-NVME but good
2182 	 *    practice)
2183 	 *  normal cmds: any time status is non-zero, or status is zero
2184 	 *     but words 0 or 1 are non-zero.
2185 	 *  the SQ is 90% or more full
2186 	 *  the cmd is a fused command
2187 	 *  transferred data length not equal to cmd iu length
2188 	 */
2189 	rspcnt = atomic_inc_return(&fod->queue->zrspcnt);
2190 	if (!(rspcnt % fod->queue->ersp_ratio) ||
2191 	    nvme_is_fabrics((struct nvme_command *) sqe) ||
2192 	    xfr_length != fod->req.transfer_len ||
2193 	    (le16_to_cpu(cqe->status) & 0xFFFE) || cqewd[0] || cqewd[1] ||
2194 	    (sqe->flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND)) ||
2195 	    queue_90percent_full(fod->queue, le16_to_cpu(cqe->sq_head)))
2196 		send_ersp = true;
2197 
2198 	/* re-set the fields */
2199 	fod->fcpreq->rspaddr = ersp;
2200 	fod->fcpreq->rspdma = fod->rspdma;
2201 
2202 	if (!send_ersp) {
2203 		memset(ersp, 0, NVME_FC_SIZEOF_ZEROS_RSP);
2204 		fod->fcpreq->rsplen = NVME_FC_SIZEOF_ZEROS_RSP;
2205 	} else {
2206 		ersp->iu_len = cpu_to_be16(sizeof(*ersp)/sizeof(u32));
2207 		rsn = atomic_inc_return(&fod->queue->rsn);
2208 		ersp->rsn = cpu_to_be32(rsn);
2209 		ersp->xfrd_len = cpu_to_be32(xfr_length);
2210 		fod->fcpreq->rsplen = sizeof(*ersp);
2211 	}
2212 
2213 	fc_dma_sync_single_for_device(tgtport->dev, fod->rspdma,
2214 				  sizeof(fod->rspiubuf), DMA_TO_DEVICE);
2215 }
2216 
2217 static void nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq);
2218 
2219 static void
2220 nvmet_fc_abort_op(struct nvmet_fc_tgtport *tgtport,
2221 				struct nvmet_fc_fcp_iod *fod)
2222 {
2223 	struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2224 
2225 	/* data no longer needed */
2226 	nvmet_fc_free_tgt_pgs(fod);
2227 
2228 	/*
2229 	 * if an ABTS was received or we issued the fcp_abort early
2230 	 * don't call abort routine again.
2231 	 */
2232 	/* no need to take lock - lock was taken earlier to get here */
2233 	if (!fod->aborted)
2234 		tgtport->ops->fcp_abort(&tgtport->fc_target_port, fcpreq);
2235 
2236 	nvmet_fc_free_fcp_iod(fod->queue, fod);
2237 }
2238 
2239 static void
2240 nvmet_fc_xmt_fcp_rsp(struct nvmet_fc_tgtport *tgtport,
2241 				struct nvmet_fc_fcp_iod *fod)
2242 {
2243 	int ret;
2244 
2245 	fod->fcpreq->op = NVMET_FCOP_RSP;
2246 	fod->fcpreq->timeout = 0;
2247 
2248 	nvmet_fc_prep_fcp_rsp(tgtport, fod);
2249 
2250 	ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq);
2251 	if (ret)
2252 		nvmet_fc_abort_op(tgtport, fod);
2253 }
2254 
2255 static void
2256 nvmet_fc_transfer_fcp_data(struct nvmet_fc_tgtport *tgtport,
2257 				struct nvmet_fc_fcp_iod *fod, u8 op)
2258 {
2259 	struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2260 	struct scatterlist *sg = fod->next_sg;
2261 	unsigned long flags;
2262 	u32 remaininglen = fod->req.transfer_len - fod->offset;
2263 	u32 tlen = 0;
2264 	int ret;
2265 
2266 	fcpreq->op = op;
2267 	fcpreq->offset = fod->offset;
2268 	fcpreq->timeout = NVME_FC_TGTOP_TIMEOUT_SEC;
2269 
2270 	/*
2271 	 * for next sequence:
2272 	 *  break at a sg element boundary
2273 	 *  attempt to keep sequence length capped at
2274 	 *    NVMET_FC_MAX_SEQ_LENGTH but allow sequence to
2275 	 *    be longer if a single sg element is larger
2276 	 *    than that amount. This is done to avoid creating
2277 	 *    a new sg list to use for the tgtport api.
2278 	 */
2279 	fcpreq->sg = sg;
2280 	fcpreq->sg_cnt = 0;
2281 	while (tlen < remaininglen &&
2282 	       fcpreq->sg_cnt < tgtport->max_sg_cnt &&
2283 	       tlen + sg_dma_len(sg) < NVMET_FC_MAX_SEQ_LENGTH) {
2284 		fcpreq->sg_cnt++;
2285 		tlen += sg_dma_len(sg);
2286 		sg = sg_next(sg);
2287 	}
2288 	if (tlen < remaininglen && fcpreq->sg_cnt == 0) {
2289 		fcpreq->sg_cnt++;
2290 		tlen += min_t(u32, sg_dma_len(sg), remaininglen);
2291 		sg = sg_next(sg);
2292 	}
2293 	if (tlen < remaininglen)
2294 		fod->next_sg = sg;
2295 	else
2296 		fod->next_sg = NULL;
2297 
2298 	fcpreq->transfer_length = tlen;
2299 	fcpreq->transferred_length = 0;
2300 	fcpreq->fcp_error = 0;
2301 	fcpreq->rsplen = 0;
2302 
2303 	/*
2304 	 * If the last READDATA request: check if LLDD supports
2305 	 * combined xfr with response.
2306 	 */
2307 	if ((op == NVMET_FCOP_READDATA) &&
2308 	    ((fod->offset + fcpreq->transfer_length) == fod->req.transfer_len) &&
2309 	    (tgtport->ops->target_features & NVMET_FCTGTFEAT_READDATA_RSP)) {
2310 		fcpreq->op = NVMET_FCOP_READDATA_RSP;
2311 		nvmet_fc_prep_fcp_rsp(tgtport, fod);
2312 	}
2313 
2314 	ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq);
2315 	if (ret) {
2316 		/*
2317 		 * should be ok to set w/o lock as it's in the thread of
2318 		 * execution (not an async timer routine) and doesn't
2319 		 * contend with any clearing action
2320 		 */
2321 		fod->abort = true;
2322 
2323 		if (op == NVMET_FCOP_WRITEDATA) {
2324 			spin_lock_irqsave(&fod->flock, flags);
2325 			fod->writedataactive = false;
2326 			spin_unlock_irqrestore(&fod->flock, flags);
2327 			nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
2328 		} else /* NVMET_FCOP_READDATA or NVMET_FCOP_READDATA_RSP */ {
2329 			fcpreq->fcp_error = ret;
2330 			fcpreq->transferred_length = 0;
2331 			nvmet_fc_xmt_fcp_op_done(fod->fcpreq);
2332 		}
2333 	}
2334 }
2335 
2336 static inline bool
2337 __nvmet_fc_fod_op_abort(struct nvmet_fc_fcp_iod *fod, bool abort)
2338 {
2339 	struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2340 	struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2341 
2342 	/* if in the middle of an io and we need to tear down */
2343 	if (abort) {
2344 		if (fcpreq->op == NVMET_FCOP_WRITEDATA) {
2345 			nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
2346 			return true;
2347 		}
2348 
2349 		nvmet_fc_abort_op(tgtport, fod);
2350 		return true;
2351 	}
2352 
2353 	return false;
2354 }
2355 
2356 /*
2357  * actual done handler for FCP operations when completed by the lldd
2358  */
2359 static void
2360 nvmet_fc_fod_op_done(struct nvmet_fc_fcp_iod *fod)
2361 {
2362 	struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2363 	struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2364 	unsigned long flags;
2365 	bool abort;
2366 
2367 	spin_lock_irqsave(&fod->flock, flags);
2368 	abort = fod->abort;
2369 	fod->writedataactive = false;
2370 	spin_unlock_irqrestore(&fod->flock, flags);
2371 
2372 	switch (fcpreq->op) {
2373 
2374 	case NVMET_FCOP_WRITEDATA:
2375 		if (__nvmet_fc_fod_op_abort(fod, abort))
2376 			return;
2377 		if (fcpreq->fcp_error ||
2378 		    fcpreq->transferred_length != fcpreq->transfer_length) {
2379 			spin_lock_irqsave(&fod->flock, flags);
2380 			fod->abort = true;
2381 			spin_unlock_irqrestore(&fod->flock, flags);
2382 
2383 			nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
2384 			return;
2385 		}
2386 
2387 		fod->offset += fcpreq->transferred_length;
2388 		if (fod->offset != fod->req.transfer_len) {
2389 			spin_lock_irqsave(&fod->flock, flags);
2390 			fod->writedataactive = true;
2391 			spin_unlock_irqrestore(&fod->flock, flags);
2392 
2393 			/* transfer the next chunk */
2394 			nvmet_fc_transfer_fcp_data(tgtport, fod,
2395 						NVMET_FCOP_WRITEDATA);
2396 			return;
2397 		}
2398 
2399 		/* data transfer complete, resume with nvmet layer */
2400 		fod->req.execute(&fod->req);
2401 		break;
2402 
2403 	case NVMET_FCOP_READDATA:
2404 	case NVMET_FCOP_READDATA_RSP:
2405 		if (__nvmet_fc_fod_op_abort(fod, abort))
2406 			return;
2407 		if (fcpreq->fcp_error ||
2408 		    fcpreq->transferred_length != fcpreq->transfer_length) {
2409 			nvmet_fc_abort_op(tgtport, fod);
2410 			return;
2411 		}
2412 
2413 		/* success */
2414 
2415 		if (fcpreq->op == NVMET_FCOP_READDATA_RSP) {
2416 			/* data no longer needed */
2417 			nvmet_fc_free_tgt_pgs(fod);
2418 			nvmet_fc_free_fcp_iod(fod->queue, fod);
2419 			return;
2420 		}
2421 
2422 		fod->offset += fcpreq->transferred_length;
2423 		if (fod->offset != fod->req.transfer_len) {
2424 			/* transfer the next chunk */
2425 			nvmet_fc_transfer_fcp_data(tgtport, fod,
2426 						NVMET_FCOP_READDATA);
2427 			return;
2428 		}
2429 
2430 		/* data transfer complete, send response */
2431 
2432 		/* data no longer needed */
2433 		nvmet_fc_free_tgt_pgs(fod);
2434 
2435 		nvmet_fc_xmt_fcp_rsp(tgtport, fod);
2436 
2437 		break;
2438 
2439 	case NVMET_FCOP_RSP:
2440 		if (__nvmet_fc_fod_op_abort(fod, abort))
2441 			return;
2442 		nvmet_fc_free_fcp_iod(fod->queue, fod);
2443 		break;
2444 
2445 	default:
2446 		break;
2447 	}
2448 }
2449 
2450 static void
2451 nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq)
2452 {
2453 	struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
2454 
2455 	nvmet_fc_fod_op_done(fod);
2456 }
2457 
2458 /*
2459  * actual completion handler after execution by the nvmet layer
2460  */
2461 static void
2462 __nvmet_fc_fcp_nvme_cmd_done(struct nvmet_fc_tgtport *tgtport,
2463 			struct nvmet_fc_fcp_iod *fod, int status)
2464 {
2465 	struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common;
2466 	struct nvme_completion *cqe = &fod->rspiubuf.cqe;
2467 	unsigned long flags;
2468 	bool abort;
2469 
2470 	spin_lock_irqsave(&fod->flock, flags);
2471 	abort = fod->abort;
2472 	spin_unlock_irqrestore(&fod->flock, flags);
2473 
2474 	/* if we have a CQE, snoop the last sq_head value */
2475 	if (!status)
2476 		fod->queue->sqhd = cqe->sq_head;
2477 
2478 	if (abort) {
2479 		nvmet_fc_abort_op(tgtport, fod);
2480 		return;
2481 	}
2482 
2483 	/* if an error handling the cmd post initial parsing */
2484 	if (status) {
2485 		/* fudge up a failed CQE status for our transport error */
2486 		memset(cqe, 0, sizeof(*cqe));
2487 		cqe->sq_head = fod->queue->sqhd;	/* echo last cqe sqhd */
2488 		cqe->sq_id = cpu_to_le16(fod->queue->qid);
2489 		cqe->command_id = sqe->command_id;
2490 		cqe->status = cpu_to_le16(status);
2491 	} else {
2492 
2493 		/*
2494 		 * try to push the data even if the SQE status is non-zero.
2495 		 * There may be a status where data still was intended to
2496 		 * be moved
2497 		 */
2498 		if ((fod->io_dir == NVMET_FCP_READ) && (fod->data_sg_cnt)) {
2499 			/* push the data over before sending rsp */
2500 			nvmet_fc_transfer_fcp_data(tgtport, fod,
2501 						NVMET_FCOP_READDATA);
2502 			return;
2503 		}
2504 
2505 		/* writes & no data - fall thru */
2506 	}
2507 
2508 	/* data no longer needed */
2509 	nvmet_fc_free_tgt_pgs(fod);
2510 
2511 	nvmet_fc_xmt_fcp_rsp(tgtport, fod);
2512 }
2513 
2514 
2515 static void
2516 nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req)
2517 {
2518 	struct nvmet_fc_fcp_iod *fod = nvmet_req_to_fod(nvme_req);
2519 	struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2520 
2521 	__nvmet_fc_fcp_nvme_cmd_done(tgtport, fod, 0);
2522 }
2523 
2524 
2525 /*
2526  * Actual processing routine for received FC-NVME I/O Requests from the LLD
2527  */
2528 static void
2529 nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport,
2530 			struct nvmet_fc_fcp_iod *fod)
2531 {
2532 	struct nvme_fc_cmd_iu *cmdiu = &fod->cmdiubuf;
2533 	u32 xfrlen = be32_to_cpu(cmdiu->data_len);
2534 	int ret;
2535 
2536 	/*
2537 	 * Fused commands are currently not supported in the linux
2538 	 * implementation.
2539 	 *
2540 	 * As such, the implementation of the FC transport does not
2541 	 * look at the fused commands and order delivery to the upper
2542 	 * layer until we have both based on csn.
2543 	 */
2544 
2545 	fod->fcpreq->done = nvmet_fc_xmt_fcp_op_done;
2546 
2547 	if (cmdiu->flags & FCNVME_CMD_FLAGS_WRITE) {
2548 		fod->io_dir = NVMET_FCP_WRITE;
2549 		if (!nvme_is_write(&cmdiu->sqe))
2550 			goto transport_error;
2551 	} else if (cmdiu->flags & FCNVME_CMD_FLAGS_READ) {
2552 		fod->io_dir = NVMET_FCP_READ;
2553 		if (nvme_is_write(&cmdiu->sqe))
2554 			goto transport_error;
2555 	} else {
2556 		fod->io_dir = NVMET_FCP_NODATA;
2557 		if (xfrlen)
2558 			goto transport_error;
2559 	}
2560 
2561 	fod->req.cmd = &fod->cmdiubuf.sqe;
2562 	fod->req.cqe = &fod->rspiubuf.cqe;
2563 	if (!tgtport->pe)
2564 		goto transport_error;
2565 	fod->req.port = tgtport->pe->port;
2566 
2567 	/* clear any response payload */
2568 	memset(&fod->rspiubuf, 0, sizeof(fod->rspiubuf));
2569 
2570 	fod->data_sg = NULL;
2571 	fod->data_sg_cnt = 0;
2572 
2573 	ret = nvmet_req_init(&fod->req, &fod->queue->nvme_sq,
2574 			&nvmet_fc_tgt_fcp_ops);
2575 	if (!ret) {
2576 		/* bad SQE content or invalid ctrl state */
2577 		/* nvmet layer has already called op done to send rsp. */
2578 		return;
2579 	}
2580 
2581 	fod->req.transfer_len = xfrlen;
2582 
2583 	/* keep a running counter of tail position */
2584 	atomic_inc(&fod->queue->sqtail);
2585 
2586 	if (fod->req.transfer_len) {
2587 		ret = nvmet_fc_alloc_tgt_pgs(fod);
2588 		if (ret) {
2589 			nvmet_req_complete(&fod->req, ret);
2590 			return;
2591 		}
2592 	}
2593 	fod->req.sg = fod->data_sg;
2594 	fod->req.sg_cnt = fod->data_sg_cnt;
2595 	fod->offset = 0;
2596 
2597 	if (fod->io_dir == NVMET_FCP_WRITE) {
2598 		/* pull the data over before invoking nvmet layer */
2599 		nvmet_fc_transfer_fcp_data(tgtport, fod, NVMET_FCOP_WRITEDATA);
2600 		return;
2601 	}
2602 
2603 	/*
2604 	 * Reads or no data:
2605 	 *
2606 	 * can invoke the nvmet_layer now. If read data, cmd completion will
2607 	 * push the data
2608 	 */
2609 	fod->req.execute(&fod->req);
2610 	return;
2611 
2612 transport_error:
2613 	nvmet_fc_abort_op(tgtport, fod);
2614 }
2615 
2616 /**
2617  * nvmet_fc_rcv_fcp_req - transport entry point called by an LLDD
2618  *                       upon the reception of a NVME FCP CMD IU.
2619  *
2620  * Pass a FC-NVME FCP CMD IU received from the FC link to the nvmet-fc
2621  * layer for processing.
2622  *
2623  * The nvmet_fc layer allocates a local job structure (struct
2624  * nvmet_fc_fcp_iod) from the queue for the io and copies the
2625  * CMD IU buffer to the job structure. As such, on a successful
2626  * completion (returns 0), the LLDD may immediately free/reuse
2627  * the CMD IU buffer passed in the call.
2628  *
2629  * However, in some circumstances, due to the packetized nature of FC
2630  * and the api of the FC LLDD which may issue a hw command to send the
2631  * response, but the LLDD may not get the hw completion for that command
2632  * and upcall the nvmet_fc layer before a new command may be
2633  * asynchronously received - it's possible for a command to be received
2634  * before the LLDD and nvmet_fc have recycled the job structure. It gives
2635  * the appearance of more commands received than fits in the sq.
2636  * To alleviate this scenario, a temporary queue is maintained in the
2637  * transport for pending LLDD requests waiting for a queue job structure.
2638  * In these "overrun" cases, a temporary queue element is allocated
2639  * the LLDD request and CMD iu buffer information remembered, and the
2640  * routine returns a -EOVERFLOW status. Subsequently, when a queue job
2641  * structure is freed, it is immediately reallocated for anything on the
2642  * pending request list. The LLDDs defer_rcv() callback is called,
2643  * informing the LLDD that it may reuse the CMD IU buffer, and the io
2644  * is then started normally with the transport.
2645  *
2646  * The LLDD, when receiving an -EOVERFLOW completion status, is to treat
2647  * the completion as successful but must not reuse the CMD IU buffer
2648  * until the LLDD's defer_rcv() callback has been called for the
2649  * corresponding struct nvmefc_tgt_fcp_req pointer.
2650  *
2651  * If there is any other condition in which an error occurs, the
2652  * transport will return a non-zero status indicating the error.
2653  * In all cases other than -EOVERFLOW, the transport has not accepted the
2654  * request and the LLDD should abort the exchange.
2655  *
2656  * @target_port: pointer to the (registered) target port the FCP CMD IU
2657  *              was received on.
2658  * @fcpreq:     pointer to a fcpreq request structure to be used to reference
2659  *              the exchange corresponding to the FCP Exchange.
2660  * @cmdiubuf:   pointer to the buffer containing the FCP CMD IU
2661  * @cmdiubuf_len: length, in bytes, of the received FCP CMD IU
2662  */
2663 int
2664 nvmet_fc_rcv_fcp_req(struct nvmet_fc_target_port *target_port,
2665 			struct nvmefc_tgt_fcp_req *fcpreq,
2666 			void *cmdiubuf, u32 cmdiubuf_len)
2667 {
2668 	struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
2669 	struct nvme_fc_cmd_iu *cmdiu = cmdiubuf;
2670 	struct nvmet_fc_tgt_queue *queue;
2671 	struct nvmet_fc_fcp_iod *fod;
2672 	struct nvmet_fc_defer_fcp_req *deferfcp;
2673 	unsigned long flags;
2674 
2675 	/* validate iu, so the connection id can be used to find the queue */
2676 	if ((cmdiubuf_len != sizeof(*cmdiu)) ||
2677 			(cmdiu->format_id != NVME_CMD_FORMAT_ID) ||
2678 			(cmdiu->fc_id != NVME_CMD_FC_ID) ||
2679 			(be16_to_cpu(cmdiu->iu_len) != (sizeof(*cmdiu)/4)))
2680 		return -EIO;
2681 
2682 	queue = nvmet_fc_find_target_queue(tgtport,
2683 				be64_to_cpu(cmdiu->connection_id));
2684 	if (!queue)
2685 		return -ENOTCONN;
2686 
2687 	/*
2688 	 * note: reference taken by find_target_queue
2689 	 * After successful fod allocation, the fod will inherit the
2690 	 * ownership of that reference and will remove the reference
2691 	 * when the fod is freed.
2692 	 */
2693 
2694 	spin_lock_irqsave(&queue->qlock, flags);
2695 
2696 	fod = nvmet_fc_alloc_fcp_iod(queue);
2697 	if (fod) {
2698 		spin_unlock_irqrestore(&queue->qlock, flags);
2699 
2700 		fcpreq->nvmet_fc_private = fod;
2701 		fod->fcpreq = fcpreq;
2702 
2703 		memcpy(&fod->cmdiubuf, cmdiubuf, cmdiubuf_len);
2704 
2705 		nvmet_fc_queue_fcp_req(tgtport, queue, fcpreq);
2706 
2707 		return 0;
2708 	}
2709 
2710 	if (!tgtport->ops->defer_rcv) {
2711 		spin_unlock_irqrestore(&queue->qlock, flags);
2712 		/* release the queue lookup reference */
2713 		nvmet_fc_tgt_q_put(queue);
2714 		return -ENOENT;
2715 	}
2716 
2717 	deferfcp = list_first_entry_or_null(&queue->avail_defer_list,
2718 			struct nvmet_fc_defer_fcp_req, req_list);
2719 	if (deferfcp) {
2720 		/* Just re-use one that was previously allocated */
2721 		list_del(&deferfcp->req_list);
2722 	} else {
2723 		spin_unlock_irqrestore(&queue->qlock, flags);
2724 
2725 		/* Now we need to dynamically allocate one */
2726 		deferfcp = kmalloc(sizeof(*deferfcp), GFP_KERNEL);
2727 		if (!deferfcp) {
2728 			/* release the queue lookup reference */
2729 			nvmet_fc_tgt_q_put(queue);
2730 			return -ENOMEM;
2731 		}
2732 		spin_lock_irqsave(&queue->qlock, flags);
2733 	}
2734 
2735 	/* For now, use rspaddr / rsplen to save payload information */
2736 	fcpreq->rspaddr = cmdiubuf;
2737 	fcpreq->rsplen  = cmdiubuf_len;
2738 	deferfcp->fcp_req = fcpreq;
2739 
2740 	/* defer processing till a fod becomes available */
2741 	list_add_tail(&deferfcp->req_list, &queue->pending_cmd_list);
2742 
2743 	/* NOTE: the queue lookup reference is still valid */
2744 
2745 	spin_unlock_irqrestore(&queue->qlock, flags);
2746 
2747 	return -EOVERFLOW;
2748 }
2749 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_req);
2750 
2751 /**
2752  * nvmet_fc_rcv_fcp_abort - transport entry point called by an LLDD
2753  *                       upon the reception of an ABTS for a FCP command
2754  *
2755  * Notify the transport that an ABTS has been received for a FCP command
2756  * that had been given to the transport via nvmet_fc_rcv_fcp_req(). The
2757  * LLDD believes the command is still being worked on
2758  * (template_ops->fcp_req_release() has not been called).
2759  *
2760  * The transport will wait for any outstanding work (an op to the LLDD,
2761  * which the lldd should complete with error due to the ABTS; or the
2762  * completion from the nvmet layer of the nvme command), then will
2763  * stop processing and call the nvmet_fc_rcv_fcp_req() callback to
2764  * return the i/o context to the LLDD.  The LLDD may send the BA_ACC
2765  * to the ABTS either after return from this function (assuming any
2766  * outstanding op work has been terminated) or upon the callback being
2767  * called.
2768  *
2769  * @target_port: pointer to the (registered) target port the FCP CMD IU
2770  *              was received on.
2771  * @fcpreq:     pointer to the fcpreq request structure that corresponds
2772  *              to the exchange that received the ABTS.
2773  */
2774 void
2775 nvmet_fc_rcv_fcp_abort(struct nvmet_fc_target_port *target_port,
2776 			struct nvmefc_tgt_fcp_req *fcpreq)
2777 {
2778 	struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
2779 	struct nvmet_fc_tgt_queue *queue;
2780 	unsigned long flags;
2781 
2782 	if (!fod || fod->fcpreq != fcpreq)
2783 		/* job appears to have already completed, ignore abort */
2784 		return;
2785 
2786 	queue = fod->queue;
2787 
2788 	spin_lock_irqsave(&queue->qlock, flags);
2789 	if (fod->active) {
2790 		/*
2791 		 * mark as abort. The abort handler, invoked upon completion
2792 		 * of any work, will detect the aborted status and do the
2793 		 * callback.
2794 		 */
2795 		spin_lock(&fod->flock);
2796 		fod->abort = true;
2797 		fod->aborted = true;
2798 		spin_unlock(&fod->flock);
2799 	}
2800 	spin_unlock_irqrestore(&queue->qlock, flags);
2801 }
2802 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_abort);
2803 
2804 
2805 struct nvmet_fc_traddr {
2806 	u64	nn;
2807 	u64	pn;
2808 };
2809 
2810 static int
2811 __nvme_fc_parse_u64(substring_t *sstr, u64 *val)
2812 {
2813 	u64 token64;
2814 
2815 	if (match_u64(sstr, &token64))
2816 		return -EINVAL;
2817 	*val = token64;
2818 
2819 	return 0;
2820 }
2821 
2822 /*
2823  * This routine validates and extracts the WWN's from the TRADDR string.
2824  * As kernel parsers need the 0x to determine number base, universally
2825  * build string to parse with 0x prefix before parsing name strings.
2826  */
2827 static int
2828 nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen)
2829 {
2830 	char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1];
2831 	substring_t wwn = { name, &name[sizeof(name)-1] };
2832 	int nnoffset, pnoffset;
2833 
2834 	/* validate if string is one of the 2 allowed formats */
2835 	if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH &&
2836 			!strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) &&
2837 			!strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET],
2838 				"pn-0x", NVME_FC_TRADDR_OXNNLEN)) {
2839 		nnoffset = NVME_FC_TRADDR_OXNNLEN;
2840 		pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET +
2841 						NVME_FC_TRADDR_OXNNLEN;
2842 	} else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH &&
2843 			!strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) &&
2844 			!strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET],
2845 				"pn-", NVME_FC_TRADDR_NNLEN))) {
2846 		nnoffset = NVME_FC_TRADDR_NNLEN;
2847 		pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN;
2848 	} else
2849 		goto out_einval;
2850 
2851 	name[0] = '0';
2852 	name[1] = 'x';
2853 	name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0;
2854 
2855 	memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN);
2856 	if (__nvme_fc_parse_u64(&wwn, &traddr->nn))
2857 		goto out_einval;
2858 
2859 	memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN);
2860 	if (__nvme_fc_parse_u64(&wwn, &traddr->pn))
2861 		goto out_einval;
2862 
2863 	return 0;
2864 
2865 out_einval:
2866 	pr_warn("%s: bad traddr string\n", __func__);
2867 	return -EINVAL;
2868 }
2869 
2870 static int
2871 nvmet_fc_add_port(struct nvmet_port *port)
2872 {
2873 	struct nvmet_fc_tgtport *tgtport;
2874 	struct nvmet_fc_port_entry *pe;
2875 	struct nvmet_fc_traddr traddr = { 0L, 0L };
2876 	unsigned long flags;
2877 	int ret;
2878 
2879 	/* validate the address info */
2880 	if ((port->disc_addr.trtype != NVMF_TRTYPE_FC) ||
2881 	    (port->disc_addr.adrfam != NVMF_ADDR_FAMILY_FC))
2882 		return -EINVAL;
2883 
2884 	/* map the traddr address info to a target port */
2885 
2886 	ret = nvme_fc_parse_traddr(&traddr, port->disc_addr.traddr,
2887 			sizeof(port->disc_addr.traddr));
2888 	if (ret)
2889 		return ret;
2890 
2891 	pe = kzalloc(sizeof(*pe), GFP_KERNEL);
2892 	if (!pe)
2893 		return -ENOMEM;
2894 
2895 	ret = -ENXIO;
2896 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
2897 	list_for_each_entry(tgtport, &nvmet_fc_target_list, tgt_list) {
2898 		if ((tgtport->fc_target_port.node_name == traddr.nn) &&
2899 		    (tgtport->fc_target_port.port_name == traddr.pn)) {
2900 			if (!nvmet_fc_tgtport_get(tgtport))
2901 				continue;
2902 
2903 			/* a FC port can only be 1 nvmet port id */
2904 			if (!tgtport->pe) {
2905 				nvmet_fc_portentry_bind(tgtport, pe, port);
2906 				ret = 0;
2907 			} else
2908 				ret = -EALREADY;
2909 
2910 			nvmet_fc_tgtport_put(tgtport);
2911 			break;
2912 		}
2913 	}
2914 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
2915 
2916 	if (ret)
2917 		kfree(pe);
2918 
2919 	return ret;
2920 }
2921 
2922 static void
2923 nvmet_fc_remove_port(struct nvmet_port *port)
2924 {
2925 	struct nvmet_fc_port_entry *pe = port->priv;
2926 	struct nvmet_fc_tgtport *tgtport = NULL;
2927 	unsigned long flags;
2928 
2929 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
2930 	if (pe->tgtport && nvmet_fc_tgtport_get(pe->tgtport))
2931 		tgtport = pe->tgtport;
2932 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
2933 
2934 	nvmet_fc_portentry_unbind(pe);
2935 
2936 	if (tgtport) {
2937 		/* terminate any outstanding associations */
2938 		__nvmet_fc_free_assocs(tgtport);
2939 		nvmet_fc_tgtport_put(tgtport);
2940 	}
2941 
2942 	kfree(pe);
2943 }
2944 
2945 static void
2946 nvmet_fc_discovery_chg(struct nvmet_port *port)
2947 {
2948 	struct nvmet_fc_port_entry *pe = port->priv;
2949 	struct nvmet_fc_tgtport *tgtport = NULL;
2950 	unsigned long flags;
2951 
2952 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
2953 	if (pe->tgtport && nvmet_fc_tgtport_get(pe->tgtport))
2954 		tgtport = pe->tgtport;
2955 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
2956 
2957 	if (!tgtport)
2958 		return;
2959 
2960 	if (tgtport && tgtport->ops->discovery_event)
2961 		tgtport->ops->discovery_event(&tgtport->fc_target_port);
2962 
2963 	nvmet_fc_tgtport_put(tgtport);
2964 }
2965 
2966 static ssize_t
2967 nvmet_fc_host_traddr(struct nvmet_ctrl *ctrl,
2968 		char *traddr, size_t traddr_size)
2969 {
2970 	struct nvmet_sq *sq = ctrl->sqs[0];
2971 	struct nvmet_fc_tgt_queue *queue =
2972 		container_of(sq, struct nvmet_fc_tgt_queue, nvme_sq);
2973 	struct nvmet_fc_tgtport *tgtport = queue->assoc ? queue->assoc->tgtport : NULL;
2974 	struct nvmet_fc_hostport *hostport = queue->assoc ? queue->assoc->hostport : NULL;
2975 	u64 wwnn, wwpn;
2976 	ssize_t ret = 0;
2977 
2978 	if (!tgtport || !nvmet_fc_tgtport_get(tgtport))
2979 		return -ENODEV;
2980 	if (!hostport || !nvmet_fc_hostport_get(hostport)) {
2981 		ret = -ENODEV;
2982 		goto out_put;
2983 	}
2984 
2985 	if (tgtport->ops->host_traddr) {
2986 		ret = tgtport->ops->host_traddr(hostport->hosthandle, &wwnn, &wwpn);
2987 		if (ret)
2988 			goto out_put_host;
2989 		ret = snprintf(traddr, traddr_size, "nn-0x%llx:pn-0x%llx", wwnn, wwpn);
2990 	}
2991 out_put_host:
2992 	nvmet_fc_hostport_put(hostport);
2993 out_put:
2994 	nvmet_fc_tgtport_put(tgtport);
2995 	return ret;
2996 }
2997 
2998 static const struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops = {
2999 	.owner			= THIS_MODULE,
3000 	.type			= NVMF_TRTYPE_FC,
3001 	.msdbd			= 1,
3002 	.add_port		= nvmet_fc_add_port,
3003 	.remove_port		= nvmet_fc_remove_port,
3004 	.queue_response		= nvmet_fc_fcp_nvme_cmd_done,
3005 	.delete_ctrl		= nvmet_fc_delete_ctrl,
3006 	.discovery_chg		= nvmet_fc_discovery_chg,
3007 	.host_traddr		= nvmet_fc_host_traddr,
3008 };
3009 
3010 static int __init nvmet_fc_init_module(void)
3011 {
3012 	return nvmet_register_transport(&nvmet_fc_tgt_fcp_ops);
3013 }
3014 
3015 static void __exit nvmet_fc_exit_module(void)
3016 {
3017 	/* ensure any shutdown operation, e.g. delete ctrls have finished */
3018 	flush_workqueue(nvmet_wq);
3019 
3020 	/* sanity check - all lports should be removed */
3021 	if (!list_empty(&nvmet_fc_target_list))
3022 		pr_warn("%s: targetport list not empty\n", __func__);
3023 
3024 	nvmet_unregister_transport(&nvmet_fc_tgt_fcp_ops);
3025 
3026 	ida_destroy(&nvmet_fc_tgtport_cnt);
3027 }
3028 
3029 module_init(nvmet_fc_init_module);
3030 module_exit(nvmet_fc_exit_module);
3031 
3032 MODULE_DESCRIPTION("NVMe target FC transport driver");
3033 MODULE_LICENSE("GPL v2");
3034