1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Common code for the NVMe target. 4 * Copyright (c) 2015-2016 HGST, a Western Digital Company. 5 */ 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 #include <linux/module.h> 8 #include <linux/random.h> 9 #include <linux/rculist.h> 10 #include <linux/pci-p2pdma.h> 11 #include <linux/scatterlist.h> 12 13 #include <generated/utsrelease.h> 14 15 #define CREATE_TRACE_POINTS 16 #include "trace.h" 17 18 #include "nvmet.h" 19 #include "debugfs.h" 20 21 struct kmem_cache *nvmet_bvec_cache; 22 struct workqueue_struct *buffered_io_wq; 23 struct workqueue_struct *zbd_wq; 24 static const struct nvmet_fabrics_ops *nvmet_transports[NVMF_TRTYPE_MAX]; 25 static DEFINE_IDA(cntlid_ida); 26 27 struct workqueue_struct *nvmet_wq; 28 EXPORT_SYMBOL_GPL(nvmet_wq); 29 30 /* 31 * This read/write semaphore is used to synchronize access to configuration 32 * information on a target system that will result in discovery log page 33 * information change for at least one host. 34 * The full list of resources to protected by this semaphore is: 35 * 36 * - subsystems list 37 * - per-subsystem allowed hosts list 38 * - allow_any_host subsystem attribute 39 * - nvmet_genctr 40 * - the nvmet_transports array 41 * 42 * When updating any of those lists/structures write lock should be obtained, 43 * while when reading (popolating discovery log page or checking host-subsystem 44 * link) read lock is obtained to allow concurrent reads. 45 */ 46 DECLARE_RWSEM(nvmet_config_sem); 47 48 u32 nvmet_ana_group_enabled[NVMET_MAX_ANAGRPS + 1]; 49 u64 nvmet_ana_chgcnt; 50 DECLARE_RWSEM(nvmet_ana_sem); 51 52 inline u16 errno_to_nvme_status(struct nvmet_req *req, int errno) 53 { 54 switch (errno) { 55 case 0: 56 return NVME_SC_SUCCESS; 57 case -ENOSPC: 58 req->error_loc = offsetof(struct nvme_rw_command, length); 59 return NVME_SC_CAP_EXCEEDED | NVME_STATUS_DNR; 60 case -EREMOTEIO: 61 req->error_loc = offsetof(struct nvme_rw_command, slba); 62 return NVME_SC_LBA_RANGE | NVME_STATUS_DNR; 63 case -EOPNOTSUPP: 64 req->error_loc = offsetof(struct nvme_common_command, opcode); 65 switch (req->cmd->common.opcode) { 66 case nvme_cmd_dsm: 67 case nvme_cmd_write_zeroes: 68 return NVME_SC_ONCS_NOT_SUPPORTED | NVME_STATUS_DNR; 69 default: 70 return NVME_SC_INVALID_OPCODE | NVME_STATUS_DNR; 71 } 72 break; 73 case -ENODATA: 74 req->error_loc = offsetof(struct nvme_rw_command, nsid); 75 return NVME_SC_ACCESS_DENIED; 76 case -EIO: 77 fallthrough; 78 default: 79 req->error_loc = offsetof(struct nvme_common_command, opcode); 80 return NVME_SC_INTERNAL | NVME_STATUS_DNR; 81 } 82 } 83 84 u16 nvmet_report_invalid_opcode(struct nvmet_req *req) 85 { 86 pr_debug("unhandled cmd %d on qid %d\n", req->cmd->common.opcode, 87 req->sq->qid); 88 89 req->error_loc = offsetof(struct nvme_common_command, opcode); 90 return NVME_SC_INVALID_OPCODE | NVME_STATUS_DNR; 91 } 92 93 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port, 94 const char *subsysnqn); 95 96 u16 nvmet_copy_to_sgl(struct nvmet_req *req, off_t off, const void *buf, 97 size_t len) 98 { 99 if (sg_pcopy_from_buffer(req->sg, req->sg_cnt, buf, len, off) != len) { 100 req->error_loc = offsetof(struct nvme_common_command, dptr); 101 return NVME_SC_SGL_INVALID_DATA | NVME_STATUS_DNR; 102 } 103 return 0; 104 } 105 106 u16 nvmet_copy_from_sgl(struct nvmet_req *req, off_t off, void *buf, size_t len) 107 { 108 if (sg_pcopy_to_buffer(req->sg, req->sg_cnt, buf, len, off) != len) { 109 req->error_loc = offsetof(struct nvme_common_command, dptr); 110 return NVME_SC_SGL_INVALID_DATA | NVME_STATUS_DNR; 111 } 112 return 0; 113 } 114 115 u16 nvmet_zero_sgl(struct nvmet_req *req, off_t off, size_t len) 116 { 117 if (sg_zero_buffer(req->sg, req->sg_cnt, len, off) != len) { 118 req->error_loc = offsetof(struct nvme_common_command, dptr); 119 return NVME_SC_SGL_INVALID_DATA | NVME_STATUS_DNR; 120 } 121 return 0; 122 } 123 124 static u32 nvmet_max_nsid(struct nvmet_subsys *subsys) 125 { 126 struct nvmet_ns *cur; 127 unsigned long idx; 128 u32 nsid = 0; 129 130 nvmet_for_each_enabled_ns(&subsys->namespaces, idx, cur) 131 nsid = cur->nsid; 132 133 return nsid; 134 } 135 136 static u32 nvmet_async_event_result(struct nvmet_async_event *aen) 137 { 138 return aen->event_type | (aen->event_info << 8) | (aen->log_page << 16); 139 } 140 141 static void nvmet_async_events_failall(struct nvmet_ctrl *ctrl) 142 { 143 struct nvmet_req *req; 144 145 mutex_lock(&ctrl->lock); 146 while (ctrl->nr_async_event_cmds) { 147 req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds]; 148 mutex_unlock(&ctrl->lock); 149 nvmet_req_complete(req, NVME_SC_INTERNAL | NVME_STATUS_DNR); 150 mutex_lock(&ctrl->lock); 151 } 152 mutex_unlock(&ctrl->lock); 153 } 154 155 static void nvmet_async_events_process(struct nvmet_ctrl *ctrl) 156 { 157 struct nvmet_async_event *aen; 158 struct nvmet_req *req; 159 160 mutex_lock(&ctrl->lock); 161 while (ctrl->nr_async_event_cmds && !list_empty(&ctrl->async_events)) { 162 aen = list_first_entry(&ctrl->async_events, 163 struct nvmet_async_event, entry); 164 req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds]; 165 nvmet_set_result(req, nvmet_async_event_result(aen)); 166 167 list_del(&aen->entry); 168 kfree(aen); 169 170 mutex_unlock(&ctrl->lock); 171 trace_nvmet_async_event(ctrl, req->cqe->result.u32); 172 nvmet_req_complete(req, 0); 173 mutex_lock(&ctrl->lock); 174 } 175 mutex_unlock(&ctrl->lock); 176 } 177 178 static void nvmet_async_events_free(struct nvmet_ctrl *ctrl) 179 { 180 struct nvmet_async_event *aen, *tmp; 181 182 mutex_lock(&ctrl->lock); 183 list_for_each_entry_safe(aen, tmp, &ctrl->async_events, entry) { 184 list_del(&aen->entry); 185 kfree(aen); 186 } 187 mutex_unlock(&ctrl->lock); 188 } 189 190 static void nvmet_async_event_work(struct work_struct *work) 191 { 192 struct nvmet_ctrl *ctrl = 193 container_of(work, struct nvmet_ctrl, async_event_work); 194 195 nvmet_async_events_process(ctrl); 196 } 197 198 void nvmet_add_async_event(struct nvmet_ctrl *ctrl, u8 event_type, 199 u8 event_info, u8 log_page) 200 { 201 struct nvmet_async_event *aen; 202 203 aen = kmalloc(sizeof(*aen), GFP_KERNEL); 204 if (!aen) 205 return; 206 207 aen->event_type = event_type; 208 aen->event_info = event_info; 209 aen->log_page = log_page; 210 211 mutex_lock(&ctrl->lock); 212 list_add_tail(&aen->entry, &ctrl->async_events); 213 mutex_unlock(&ctrl->lock); 214 215 queue_work(nvmet_wq, &ctrl->async_event_work); 216 } 217 218 static void nvmet_add_to_changed_ns_log(struct nvmet_ctrl *ctrl, __le32 nsid) 219 { 220 u32 i; 221 222 mutex_lock(&ctrl->lock); 223 if (ctrl->nr_changed_ns > NVME_MAX_CHANGED_NAMESPACES) 224 goto out_unlock; 225 226 for (i = 0; i < ctrl->nr_changed_ns; i++) { 227 if (ctrl->changed_ns_list[i] == nsid) 228 goto out_unlock; 229 } 230 231 if (ctrl->nr_changed_ns == NVME_MAX_CHANGED_NAMESPACES) { 232 ctrl->changed_ns_list[0] = cpu_to_le32(0xffffffff); 233 ctrl->nr_changed_ns = U32_MAX; 234 goto out_unlock; 235 } 236 237 ctrl->changed_ns_list[ctrl->nr_changed_ns++] = nsid; 238 out_unlock: 239 mutex_unlock(&ctrl->lock); 240 } 241 242 void nvmet_ns_changed(struct nvmet_subsys *subsys, u32 nsid) 243 { 244 struct nvmet_ctrl *ctrl; 245 246 lockdep_assert_held(&subsys->lock); 247 248 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) { 249 nvmet_add_to_changed_ns_log(ctrl, cpu_to_le32(nsid)); 250 if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_NS_ATTR)) 251 continue; 252 nvmet_add_async_event(ctrl, NVME_AER_NOTICE, 253 NVME_AER_NOTICE_NS_CHANGED, 254 NVME_LOG_CHANGED_NS); 255 } 256 } 257 258 void nvmet_send_ana_event(struct nvmet_subsys *subsys, 259 struct nvmet_port *port) 260 { 261 struct nvmet_ctrl *ctrl; 262 263 mutex_lock(&subsys->lock); 264 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) { 265 if (port && ctrl->port != port) 266 continue; 267 if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_ANA_CHANGE)) 268 continue; 269 nvmet_add_async_event(ctrl, NVME_AER_NOTICE, 270 NVME_AER_NOTICE_ANA, NVME_LOG_ANA); 271 } 272 mutex_unlock(&subsys->lock); 273 } 274 275 void nvmet_port_send_ana_event(struct nvmet_port *port) 276 { 277 struct nvmet_subsys_link *p; 278 279 down_read(&nvmet_config_sem); 280 list_for_each_entry(p, &port->subsystems, entry) 281 nvmet_send_ana_event(p->subsys, port); 282 up_read(&nvmet_config_sem); 283 } 284 285 int nvmet_register_transport(const struct nvmet_fabrics_ops *ops) 286 { 287 int ret = 0; 288 289 down_write(&nvmet_config_sem); 290 if (nvmet_transports[ops->type]) 291 ret = -EINVAL; 292 else 293 nvmet_transports[ops->type] = ops; 294 up_write(&nvmet_config_sem); 295 296 return ret; 297 } 298 EXPORT_SYMBOL_GPL(nvmet_register_transport); 299 300 void nvmet_unregister_transport(const struct nvmet_fabrics_ops *ops) 301 { 302 down_write(&nvmet_config_sem); 303 nvmet_transports[ops->type] = NULL; 304 up_write(&nvmet_config_sem); 305 } 306 EXPORT_SYMBOL_GPL(nvmet_unregister_transport); 307 308 void nvmet_port_del_ctrls(struct nvmet_port *port, struct nvmet_subsys *subsys) 309 { 310 struct nvmet_ctrl *ctrl; 311 312 mutex_lock(&subsys->lock); 313 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) { 314 if (ctrl->port == port) 315 ctrl->ops->delete_ctrl(ctrl); 316 } 317 mutex_unlock(&subsys->lock); 318 } 319 320 int nvmet_enable_port(struct nvmet_port *port) 321 { 322 const struct nvmet_fabrics_ops *ops; 323 int ret; 324 325 lockdep_assert_held(&nvmet_config_sem); 326 327 ops = nvmet_transports[port->disc_addr.trtype]; 328 if (!ops) { 329 up_write(&nvmet_config_sem); 330 request_module("nvmet-transport-%d", port->disc_addr.trtype); 331 down_write(&nvmet_config_sem); 332 ops = nvmet_transports[port->disc_addr.trtype]; 333 if (!ops) { 334 pr_err("transport type %d not supported\n", 335 port->disc_addr.trtype); 336 return -EINVAL; 337 } 338 } 339 340 if (!try_module_get(ops->owner)) 341 return -EINVAL; 342 343 /* 344 * If the user requested PI support and the transport isn't pi capable, 345 * don't enable the port. 346 */ 347 if (port->pi_enable && !(ops->flags & NVMF_METADATA_SUPPORTED)) { 348 pr_err("T10-PI is not supported by transport type %d\n", 349 port->disc_addr.trtype); 350 ret = -EINVAL; 351 goto out_put; 352 } 353 354 ret = ops->add_port(port); 355 if (ret) 356 goto out_put; 357 358 /* If the transport didn't set inline_data_size, then disable it. */ 359 if (port->inline_data_size < 0) 360 port->inline_data_size = 0; 361 362 /* 363 * If the transport didn't set the max_queue_size properly, then clamp 364 * it to the target limits. Also set default values in case the 365 * transport didn't set it at all. 366 */ 367 if (port->max_queue_size < 0) 368 port->max_queue_size = NVMET_MAX_QUEUE_SIZE; 369 else 370 port->max_queue_size = clamp_t(int, port->max_queue_size, 371 NVMET_MIN_QUEUE_SIZE, 372 NVMET_MAX_QUEUE_SIZE); 373 374 port->enabled = true; 375 port->tr_ops = ops; 376 return 0; 377 378 out_put: 379 module_put(ops->owner); 380 return ret; 381 } 382 383 void nvmet_disable_port(struct nvmet_port *port) 384 { 385 const struct nvmet_fabrics_ops *ops; 386 387 lockdep_assert_held(&nvmet_config_sem); 388 389 port->enabled = false; 390 port->tr_ops = NULL; 391 392 ops = nvmet_transports[port->disc_addr.trtype]; 393 ops->remove_port(port); 394 module_put(ops->owner); 395 } 396 397 static void nvmet_keep_alive_timer(struct work_struct *work) 398 { 399 struct nvmet_ctrl *ctrl = container_of(to_delayed_work(work), 400 struct nvmet_ctrl, ka_work); 401 bool reset_tbkas = ctrl->reset_tbkas; 402 403 ctrl->reset_tbkas = false; 404 if (reset_tbkas) { 405 pr_debug("ctrl %d reschedule traffic based keep-alive timer\n", 406 ctrl->cntlid); 407 queue_delayed_work(nvmet_wq, &ctrl->ka_work, ctrl->kato * HZ); 408 return; 409 } 410 411 pr_err("ctrl %d keep-alive timer (%d seconds) expired!\n", 412 ctrl->cntlid, ctrl->kato); 413 414 nvmet_ctrl_fatal_error(ctrl); 415 } 416 417 void nvmet_start_keep_alive_timer(struct nvmet_ctrl *ctrl) 418 { 419 if (unlikely(ctrl->kato == 0)) 420 return; 421 422 pr_debug("ctrl %d start keep-alive timer for %d secs\n", 423 ctrl->cntlid, ctrl->kato); 424 425 queue_delayed_work(nvmet_wq, &ctrl->ka_work, ctrl->kato * HZ); 426 } 427 428 void nvmet_stop_keep_alive_timer(struct nvmet_ctrl *ctrl) 429 { 430 if (unlikely(ctrl->kato == 0)) 431 return; 432 433 pr_debug("ctrl %d stop keep-alive\n", ctrl->cntlid); 434 435 cancel_delayed_work_sync(&ctrl->ka_work); 436 } 437 438 u16 nvmet_req_find_ns(struct nvmet_req *req) 439 { 440 u32 nsid = le32_to_cpu(req->cmd->common.nsid); 441 struct nvmet_subsys *subsys = nvmet_req_subsys(req); 442 443 req->ns = xa_load(&subsys->namespaces, nsid); 444 if (unlikely(!req->ns || !req->ns->enabled)) { 445 req->error_loc = offsetof(struct nvme_common_command, nsid); 446 if (!req->ns) /* ns doesn't exist! */ 447 return NVME_SC_INVALID_NS | NVME_STATUS_DNR; 448 449 /* ns exists but it's disabled */ 450 req->ns = NULL; 451 return NVME_SC_INTERNAL_PATH_ERROR; 452 } 453 454 percpu_ref_get(&req->ns->ref); 455 return NVME_SC_SUCCESS; 456 } 457 458 static void nvmet_destroy_namespace(struct percpu_ref *ref) 459 { 460 struct nvmet_ns *ns = container_of(ref, struct nvmet_ns, ref); 461 462 complete(&ns->disable_done); 463 } 464 465 void nvmet_put_namespace(struct nvmet_ns *ns) 466 { 467 percpu_ref_put(&ns->ref); 468 } 469 470 static void nvmet_ns_dev_disable(struct nvmet_ns *ns) 471 { 472 nvmet_bdev_ns_disable(ns); 473 nvmet_file_ns_disable(ns); 474 } 475 476 static int nvmet_p2pmem_ns_enable(struct nvmet_ns *ns) 477 { 478 int ret; 479 struct pci_dev *p2p_dev; 480 481 if (!ns->use_p2pmem) 482 return 0; 483 484 if (!ns->bdev) { 485 pr_err("peer-to-peer DMA is not supported by non-block device namespaces\n"); 486 return -EINVAL; 487 } 488 489 if (!blk_queue_pci_p2pdma(ns->bdev->bd_disk->queue)) { 490 pr_err("peer-to-peer DMA is not supported by the driver of %s\n", 491 ns->device_path); 492 return -EINVAL; 493 } 494 495 if (ns->p2p_dev) { 496 ret = pci_p2pdma_distance(ns->p2p_dev, nvmet_ns_dev(ns), true); 497 if (ret < 0) 498 return -EINVAL; 499 } else { 500 /* 501 * Right now we just check that there is p2pmem available so 502 * we can report an error to the user right away if there 503 * is not. We'll find the actual device to use once we 504 * setup the controller when the port's device is available. 505 */ 506 507 p2p_dev = pci_p2pmem_find(nvmet_ns_dev(ns)); 508 if (!p2p_dev) { 509 pr_err("no peer-to-peer memory is available for %s\n", 510 ns->device_path); 511 return -EINVAL; 512 } 513 514 pci_dev_put(p2p_dev); 515 } 516 517 return 0; 518 } 519 520 /* 521 * Note: ctrl->subsys->lock should be held when calling this function 522 */ 523 static void nvmet_p2pmem_ns_add_p2p(struct nvmet_ctrl *ctrl, 524 struct nvmet_ns *ns) 525 { 526 struct device *clients[2]; 527 struct pci_dev *p2p_dev; 528 int ret; 529 530 if (!ctrl->p2p_client || !ns->use_p2pmem) 531 return; 532 533 if (ns->p2p_dev) { 534 ret = pci_p2pdma_distance(ns->p2p_dev, ctrl->p2p_client, true); 535 if (ret < 0) 536 return; 537 538 p2p_dev = pci_dev_get(ns->p2p_dev); 539 } else { 540 clients[0] = ctrl->p2p_client; 541 clients[1] = nvmet_ns_dev(ns); 542 543 p2p_dev = pci_p2pmem_find_many(clients, ARRAY_SIZE(clients)); 544 if (!p2p_dev) { 545 pr_err("no peer-to-peer memory is available that's supported by %s and %s\n", 546 dev_name(ctrl->p2p_client), ns->device_path); 547 return; 548 } 549 } 550 551 ret = radix_tree_insert(&ctrl->p2p_ns_map, ns->nsid, p2p_dev); 552 if (ret < 0) 553 pci_dev_put(p2p_dev); 554 555 pr_info("using p2pmem on %s for nsid %d\n", pci_name(p2p_dev), 556 ns->nsid); 557 } 558 559 bool nvmet_ns_revalidate(struct nvmet_ns *ns) 560 { 561 loff_t oldsize = ns->size; 562 563 if (ns->bdev) 564 nvmet_bdev_ns_revalidate(ns); 565 else 566 nvmet_file_ns_revalidate(ns); 567 568 return oldsize != ns->size; 569 } 570 571 int nvmet_ns_enable(struct nvmet_ns *ns) 572 { 573 struct nvmet_subsys *subsys = ns->subsys; 574 struct nvmet_ctrl *ctrl; 575 int ret; 576 577 mutex_lock(&subsys->lock); 578 ret = 0; 579 580 if (nvmet_is_passthru_subsys(subsys)) { 581 pr_info("cannot enable both passthru and regular namespaces for a single subsystem"); 582 goto out_unlock; 583 } 584 585 if (ns->enabled) 586 goto out_unlock; 587 588 ret = -EMFILE; 589 590 ret = nvmet_bdev_ns_enable(ns); 591 if (ret == -ENOTBLK) 592 ret = nvmet_file_ns_enable(ns); 593 if (ret) 594 goto out_unlock; 595 596 ret = nvmet_p2pmem_ns_enable(ns); 597 if (ret) 598 goto out_dev_disable; 599 600 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) 601 nvmet_p2pmem_ns_add_p2p(ctrl, ns); 602 603 if (ns->pr.enable) { 604 ret = nvmet_pr_init_ns(ns); 605 if (ret) 606 goto out_dev_put; 607 } 608 609 nvmet_ns_changed(subsys, ns->nsid); 610 ns->enabled = true; 611 xa_set_mark(&subsys->namespaces, ns->nsid, NVMET_NS_ENABLED); 612 ret = 0; 613 out_unlock: 614 mutex_unlock(&subsys->lock); 615 return ret; 616 out_dev_put: 617 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) 618 pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid)); 619 out_dev_disable: 620 nvmet_ns_dev_disable(ns); 621 goto out_unlock; 622 } 623 624 void nvmet_ns_disable(struct nvmet_ns *ns) 625 { 626 struct nvmet_subsys *subsys = ns->subsys; 627 struct nvmet_ctrl *ctrl; 628 629 mutex_lock(&subsys->lock); 630 if (!ns->enabled) 631 goto out_unlock; 632 633 ns->enabled = false; 634 xa_clear_mark(&subsys->namespaces, ns->nsid, NVMET_NS_ENABLED); 635 636 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) 637 pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid)); 638 639 mutex_unlock(&subsys->lock); 640 641 if (ns->pr.enable) 642 nvmet_pr_exit_ns(ns); 643 644 mutex_lock(&subsys->lock); 645 nvmet_ns_changed(subsys, ns->nsid); 646 nvmet_ns_dev_disable(ns); 647 out_unlock: 648 mutex_unlock(&subsys->lock); 649 } 650 651 void nvmet_ns_free(struct nvmet_ns *ns) 652 { 653 struct nvmet_subsys *subsys = ns->subsys; 654 655 nvmet_ns_disable(ns); 656 657 mutex_lock(&subsys->lock); 658 659 xa_erase(&subsys->namespaces, ns->nsid); 660 if (ns->nsid == subsys->max_nsid) 661 subsys->max_nsid = nvmet_max_nsid(subsys); 662 663 mutex_unlock(&subsys->lock); 664 665 /* 666 * Now that we removed the namespaces from the lookup list, we 667 * can kill the per_cpu ref and wait for any remaining references 668 * to be dropped, as well as a RCU grace period for anyone only 669 * using the namepace under rcu_read_lock(). Note that we can't 670 * use call_rcu here as we need to ensure the namespaces have 671 * been fully destroyed before unloading the module. 672 */ 673 percpu_ref_kill(&ns->ref); 674 synchronize_rcu(); 675 wait_for_completion(&ns->disable_done); 676 percpu_ref_exit(&ns->ref); 677 678 mutex_lock(&subsys->lock); 679 subsys->nr_namespaces--; 680 mutex_unlock(&subsys->lock); 681 682 down_write(&nvmet_ana_sem); 683 nvmet_ana_group_enabled[ns->anagrpid]--; 684 up_write(&nvmet_ana_sem); 685 686 kfree(ns->device_path); 687 kfree(ns); 688 } 689 690 struct nvmet_ns *nvmet_ns_alloc(struct nvmet_subsys *subsys, u32 nsid) 691 { 692 struct nvmet_ns *ns; 693 694 mutex_lock(&subsys->lock); 695 696 if (subsys->nr_namespaces == NVMET_MAX_NAMESPACES) 697 goto out_unlock; 698 699 ns = kzalloc(sizeof(*ns), GFP_KERNEL); 700 if (!ns) 701 goto out_unlock; 702 703 init_completion(&ns->disable_done); 704 705 ns->nsid = nsid; 706 ns->subsys = subsys; 707 708 if (percpu_ref_init(&ns->ref, nvmet_destroy_namespace, 0, GFP_KERNEL)) 709 goto out_free; 710 711 if (ns->nsid > subsys->max_nsid) 712 subsys->max_nsid = nsid; 713 714 if (xa_insert(&subsys->namespaces, ns->nsid, ns, GFP_KERNEL)) 715 goto out_exit; 716 717 subsys->nr_namespaces++; 718 719 mutex_unlock(&subsys->lock); 720 721 down_write(&nvmet_ana_sem); 722 ns->anagrpid = NVMET_DEFAULT_ANA_GRPID; 723 nvmet_ana_group_enabled[ns->anagrpid]++; 724 up_write(&nvmet_ana_sem); 725 726 uuid_gen(&ns->uuid); 727 ns->buffered_io = false; 728 ns->csi = NVME_CSI_NVM; 729 730 return ns; 731 out_exit: 732 subsys->max_nsid = nvmet_max_nsid(subsys); 733 percpu_ref_exit(&ns->ref); 734 out_free: 735 kfree(ns); 736 out_unlock: 737 mutex_unlock(&subsys->lock); 738 return NULL; 739 } 740 741 static void nvmet_update_sq_head(struct nvmet_req *req) 742 { 743 if (req->sq->size) { 744 u32 old_sqhd, new_sqhd; 745 746 old_sqhd = READ_ONCE(req->sq->sqhd); 747 do { 748 new_sqhd = (old_sqhd + 1) % req->sq->size; 749 } while (!try_cmpxchg(&req->sq->sqhd, &old_sqhd, new_sqhd)); 750 } 751 req->cqe->sq_head = cpu_to_le16(req->sq->sqhd & 0x0000FFFF); 752 } 753 754 static void nvmet_set_error(struct nvmet_req *req, u16 status) 755 { 756 struct nvmet_ctrl *ctrl = req->sq->ctrl; 757 struct nvme_error_slot *new_error_slot; 758 unsigned long flags; 759 760 req->cqe->status = cpu_to_le16(status << 1); 761 762 if (!ctrl || req->error_loc == NVMET_NO_ERROR_LOC) 763 return; 764 765 spin_lock_irqsave(&ctrl->error_lock, flags); 766 ctrl->err_counter++; 767 new_error_slot = 768 &ctrl->slots[ctrl->err_counter % NVMET_ERROR_LOG_SLOTS]; 769 770 new_error_slot->error_count = cpu_to_le64(ctrl->err_counter); 771 new_error_slot->sqid = cpu_to_le16(req->sq->qid); 772 new_error_slot->cmdid = cpu_to_le16(req->cmd->common.command_id); 773 new_error_slot->status_field = cpu_to_le16(status << 1); 774 new_error_slot->param_error_location = cpu_to_le16(req->error_loc); 775 new_error_slot->lba = cpu_to_le64(req->error_slba); 776 new_error_slot->nsid = req->cmd->common.nsid; 777 spin_unlock_irqrestore(&ctrl->error_lock, flags); 778 779 /* set the more bit for this request */ 780 req->cqe->status |= cpu_to_le16(1 << 14); 781 } 782 783 static void __nvmet_req_complete(struct nvmet_req *req, u16 status) 784 { 785 struct nvmet_ns *ns = req->ns; 786 struct nvmet_pr_per_ctrl_ref *pc_ref = req->pc_ref; 787 788 if (!req->sq->sqhd_disabled) 789 nvmet_update_sq_head(req); 790 req->cqe->sq_id = cpu_to_le16(req->sq->qid); 791 req->cqe->command_id = req->cmd->common.command_id; 792 793 if (unlikely(status)) 794 nvmet_set_error(req, status); 795 796 trace_nvmet_req_complete(req); 797 798 req->ops->queue_response(req); 799 800 if (pc_ref) 801 nvmet_pr_put_ns_pc_ref(pc_ref); 802 if (ns) 803 nvmet_put_namespace(ns); 804 } 805 806 void nvmet_req_complete(struct nvmet_req *req, u16 status) 807 { 808 struct nvmet_sq *sq = req->sq; 809 810 __nvmet_req_complete(req, status); 811 percpu_ref_put(&sq->ref); 812 } 813 EXPORT_SYMBOL_GPL(nvmet_req_complete); 814 815 void nvmet_cq_setup(struct nvmet_ctrl *ctrl, struct nvmet_cq *cq, 816 u16 qid, u16 size) 817 { 818 cq->qid = qid; 819 cq->size = size; 820 } 821 822 void nvmet_sq_setup(struct nvmet_ctrl *ctrl, struct nvmet_sq *sq, 823 u16 qid, u16 size) 824 { 825 sq->sqhd = 0; 826 sq->qid = qid; 827 sq->size = size; 828 829 ctrl->sqs[qid] = sq; 830 } 831 832 static void nvmet_confirm_sq(struct percpu_ref *ref) 833 { 834 struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref); 835 836 complete(&sq->confirm_done); 837 } 838 839 u16 nvmet_check_cqid(struct nvmet_ctrl *ctrl, u16 cqid) 840 { 841 if (!ctrl->sqs) 842 return NVME_SC_INTERNAL | NVME_STATUS_DNR; 843 844 if (cqid > ctrl->subsys->max_qid) 845 return NVME_SC_QID_INVALID | NVME_STATUS_DNR; 846 847 /* 848 * Note: For PCI controllers, the NVMe specifications allows multiple 849 * SQs to share a single CQ. However, we do not support this yet, so 850 * check that there is no SQ defined for a CQ. If one exist, then the 851 * CQ ID is invalid for creation as well as when the CQ is being 852 * deleted (as that would mean that the SQ was not deleted before the 853 * CQ). 854 */ 855 if (ctrl->sqs[cqid]) 856 return NVME_SC_QID_INVALID | NVME_STATUS_DNR; 857 858 return NVME_SC_SUCCESS; 859 } 860 861 u16 nvmet_cq_create(struct nvmet_ctrl *ctrl, struct nvmet_cq *cq, 862 u16 qid, u16 size) 863 { 864 u16 status; 865 866 status = nvmet_check_cqid(ctrl, qid); 867 if (status != NVME_SC_SUCCESS) 868 return status; 869 870 nvmet_cq_setup(ctrl, cq, qid, size); 871 872 return NVME_SC_SUCCESS; 873 } 874 EXPORT_SYMBOL_GPL(nvmet_cq_create); 875 876 u16 nvmet_check_sqid(struct nvmet_ctrl *ctrl, u16 sqid, 877 bool create) 878 { 879 if (!ctrl->sqs) 880 return NVME_SC_INTERNAL | NVME_STATUS_DNR; 881 882 if (sqid > ctrl->subsys->max_qid) 883 return NVME_SC_QID_INVALID | NVME_STATUS_DNR; 884 885 if ((create && ctrl->sqs[sqid]) || 886 (!create && !ctrl->sqs[sqid])) 887 return NVME_SC_QID_INVALID | NVME_STATUS_DNR; 888 889 return NVME_SC_SUCCESS; 890 } 891 892 u16 nvmet_sq_create(struct nvmet_ctrl *ctrl, struct nvmet_sq *sq, 893 u16 sqid, u16 size) 894 { 895 u16 status; 896 int ret; 897 898 if (!kref_get_unless_zero(&ctrl->ref)) 899 return NVME_SC_INTERNAL | NVME_STATUS_DNR; 900 901 status = nvmet_check_sqid(ctrl, sqid, true); 902 if (status != NVME_SC_SUCCESS) 903 return status; 904 905 ret = nvmet_sq_init(sq); 906 if (ret) { 907 status = NVME_SC_INTERNAL | NVME_STATUS_DNR; 908 goto ctrl_put; 909 } 910 911 nvmet_sq_setup(ctrl, sq, sqid, size); 912 sq->ctrl = ctrl; 913 914 return NVME_SC_SUCCESS; 915 916 ctrl_put: 917 nvmet_ctrl_put(ctrl); 918 return status; 919 } 920 EXPORT_SYMBOL_GPL(nvmet_sq_create); 921 922 void nvmet_sq_destroy(struct nvmet_sq *sq) 923 { 924 struct nvmet_ctrl *ctrl = sq->ctrl; 925 926 /* 927 * If this is the admin queue, complete all AERs so that our 928 * queue doesn't have outstanding requests on it. 929 */ 930 if (ctrl && ctrl->sqs && ctrl->sqs[0] == sq) 931 nvmet_async_events_failall(ctrl); 932 percpu_ref_kill_and_confirm(&sq->ref, nvmet_confirm_sq); 933 wait_for_completion(&sq->confirm_done); 934 wait_for_completion(&sq->free_done); 935 percpu_ref_exit(&sq->ref); 936 nvmet_auth_sq_free(sq); 937 938 /* 939 * we must reference the ctrl again after waiting for inflight IO 940 * to complete. Because admin connect may have sneaked in after we 941 * store sq->ctrl locally, but before we killed the percpu_ref. the 942 * admin connect allocates and assigns sq->ctrl, which now needs a 943 * final ref put, as this ctrl is going away. 944 */ 945 ctrl = sq->ctrl; 946 947 if (ctrl) { 948 /* 949 * The teardown flow may take some time, and the host may not 950 * send us keep-alive during this period, hence reset the 951 * traffic based keep-alive timer so we don't trigger a 952 * controller teardown as a result of a keep-alive expiration. 953 */ 954 ctrl->reset_tbkas = true; 955 sq->ctrl->sqs[sq->qid] = NULL; 956 nvmet_ctrl_put(ctrl); 957 sq->ctrl = NULL; /* allows reusing the queue later */ 958 } 959 } 960 EXPORT_SYMBOL_GPL(nvmet_sq_destroy); 961 962 static void nvmet_sq_free(struct percpu_ref *ref) 963 { 964 struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref); 965 966 complete(&sq->free_done); 967 } 968 969 int nvmet_sq_init(struct nvmet_sq *sq) 970 { 971 int ret; 972 973 ret = percpu_ref_init(&sq->ref, nvmet_sq_free, 0, GFP_KERNEL); 974 if (ret) { 975 pr_err("percpu_ref init failed!\n"); 976 return ret; 977 } 978 init_completion(&sq->free_done); 979 init_completion(&sq->confirm_done); 980 nvmet_auth_sq_init(sq); 981 982 return 0; 983 } 984 EXPORT_SYMBOL_GPL(nvmet_sq_init); 985 986 static inline u16 nvmet_check_ana_state(struct nvmet_port *port, 987 struct nvmet_ns *ns) 988 { 989 enum nvme_ana_state state = port->ana_state[ns->anagrpid]; 990 991 if (unlikely(state == NVME_ANA_INACCESSIBLE)) 992 return NVME_SC_ANA_INACCESSIBLE; 993 if (unlikely(state == NVME_ANA_PERSISTENT_LOSS)) 994 return NVME_SC_ANA_PERSISTENT_LOSS; 995 if (unlikely(state == NVME_ANA_CHANGE)) 996 return NVME_SC_ANA_TRANSITION; 997 return 0; 998 } 999 1000 static inline u16 nvmet_io_cmd_check_access(struct nvmet_req *req) 1001 { 1002 if (unlikely(req->ns->readonly)) { 1003 switch (req->cmd->common.opcode) { 1004 case nvme_cmd_read: 1005 case nvme_cmd_flush: 1006 break; 1007 default: 1008 return NVME_SC_NS_WRITE_PROTECTED; 1009 } 1010 } 1011 1012 return 0; 1013 } 1014 1015 static u32 nvmet_io_cmd_transfer_len(struct nvmet_req *req) 1016 { 1017 struct nvme_command *cmd = req->cmd; 1018 u32 metadata_len = 0; 1019 1020 if (nvme_is_fabrics(cmd)) 1021 return nvmet_fabrics_io_cmd_data_len(req); 1022 1023 if (!req->ns) 1024 return 0; 1025 1026 switch (req->cmd->common.opcode) { 1027 case nvme_cmd_read: 1028 case nvme_cmd_write: 1029 case nvme_cmd_zone_append: 1030 if (req->sq->ctrl->pi_support && nvmet_ns_has_pi(req->ns)) 1031 metadata_len = nvmet_rw_metadata_len(req); 1032 return nvmet_rw_data_len(req) + metadata_len; 1033 case nvme_cmd_dsm: 1034 return nvmet_dsm_len(req); 1035 case nvme_cmd_zone_mgmt_recv: 1036 return (le32_to_cpu(req->cmd->zmr.numd) + 1) << 2; 1037 default: 1038 return 0; 1039 } 1040 } 1041 1042 static u16 nvmet_parse_io_cmd(struct nvmet_req *req) 1043 { 1044 struct nvme_command *cmd = req->cmd; 1045 u16 ret; 1046 1047 if (nvme_is_fabrics(cmd)) 1048 return nvmet_parse_fabrics_io_cmd(req); 1049 1050 if (unlikely(!nvmet_check_auth_status(req))) 1051 return NVME_SC_AUTH_REQUIRED | NVME_STATUS_DNR; 1052 1053 ret = nvmet_check_ctrl_status(req); 1054 if (unlikely(ret)) 1055 return ret; 1056 1057 if (nvmet_is_passthru_req(req)) 1058 return nvmet_parse_passthru_io_cmd(req); 1059 1060 ret = nvmet_req_find_ns(req); 1061 if (unlikely(ret)) 1062 return ret; 1063 1064 ret = nvmet_check_ana_state(req->port, req->ns); 1065 if (unlikely(ret)) { 1066 req->error_loc = offsetof(struct nvme_common_command, nsid); 1067 return ret; 1068 } 1069 ret = nvmet_io_cmd_check_access(req); 1070 if (unlikely(ret)) { 1071 req->error_loc = offsetof(struct nvme_common_command, nsid); 1072 return ret; 1073 } 1074 1075 if (req->ns->pr.enable) { 1076 ret = nvmet_parse_pr_cmd(req); 1077 if (!ret) 1078 return ret; 1079 } 1080 1081 switch (req->ns->csi) { 1082 case NVME_CSI_NVM: 1083 if (req->ns->file) 1084 ret = nvmet_file_parse_io_cmd(req); 1085 else 1086 ret = nvmet_bdev_parse_io_cmd(req); 1087 break; 1088 case NVME_CSI_ZNS: 1089 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED)) 1090 ret = nvmet_bdev_zns_parse_io_cmd(req); 1091 else 1092 ret = NVME_SC_INVALID_IO_CMD_SET; 1093 break; 1094 default: 1095 ret = NVME_SC_INVALID_IO_CMD_SET; 1096 } 1097 if (ret) 1098 return ret; 1099 1100 if (req->ns->pr.enable) { 1101 ret = nvmet_pr_check_cmd_access(req); 1102 if (ret) 1103 return ret; 1104 1105 ret = nvmet_pr_get_ns_pc_ref(req); 1106 } 1107 return ret; 1108 } 1109 1110 bool nvmet_req_init(struct nvmet_req *req, struct nvmet_cq *cq, 1111 struct nvmet_sq *sq, const struct nvmet_fabrics_ops *ops) 1112 { 1113 u8 flags = req->cmd->common.flags; 1114 u16 status; 1115 1116 req->cq = cq; 1117 req->sq = sq; 1118 req->ops = ops; 1119 req->sg = NULL; 1120 req->metadata_sg = NULL; 1121 req->sg_cnt = 0; 1122 req->metadata_sg_cnt = 0; 1123 req->transfer_len = 0; 1124 req->metadata_len = 0; 1125 req->cqe->result.u64 = 0; 1126 req->cqe->status = 0; 1127 req->cqe->sq_head = 0; 1128 req->ns = NULL; 1129 req->error_loc = NVMET_NO_ERROR_LOC; 1130 req->error_slba = 0; 1131 req->pc_ref = NULL; 1132 1133 /* no support for fused commands yet */ 1134 if (unlikely(flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND))) { 1135 req->error_loc = offsetof(struct nvme_common_command, flags); 1136 status = NVME_SC_INVALID_FIELD | NVME_STATUS_DNR; 1137 goto fail; 1138 } 1139 1140 /* 1141 * For fabrics, PSDT field shall describe metadata pointer (MPTR) that 1142 * contains an address of a single contiguous physical buffer that is 1143 * byte aligned. For PCI controllers, this is optional so not enforced. 1144 */ 1145 if (unlikely((flags & NVME_CMD_SGL_ALL) != NVME_CMD_SGL_METABUF)) { 1146 if (!req->sq->ctrl || !nvmet_is_pci_ctrl(req->sq->ctrl)) { 1147 req->error_loc = 1148 offsetof(struct nvme_common_command, flags); 1149 status = NVME_SC_INVALID_FIELD | NVME_STATUS_DNR; 1150 goto fail; 1151 } 1152 } 1153 1154 if (unlikely(!req->sq->ctrl)) 1155 /* will return an error for any non-connect command: */ 1156 status = nvmet_parse_connect_cmd(req); 1157 else if (likely(req->sq->qid != 0)) 1158 status = nvmet_parse_io_cmd(req); 1159 else 1160 status = nvmet_parse_admin_cmd(req); 1161 1162 if (status) 1163 goto fail; 1164 1165 trace_nvmet_req_init(req, req->cmd); 1166 1167 if (unlikely(!percpu_ref_tryget_live(&sq->ref))) { 1168 status = NVME_SC_INVALID_FIELD | NVME_STATUS_DNR; 1169 goto fail; 1170 } 1171 1172 if (sq->ctrl) 1173 sq->ctrl->reset_tbkas = true; 1174 1175 return true; 1176 1177 fail: 1178 __nvmet_req_complete(req, status); 1179 return false; 1180 } 1181 EXPORT_SYMBOL_GPL(nvmet_req_init); 1182 1183 void nvmet_req_uninit(struct nvmet_req *req) 1184 { 1185 percpu_ref_put(&req->sq->ref); 1186 if (req->pc_ref) 1187 nvmet_pr_put_ns_pc_ref(req->pc_ref); 1188 if (req->ns) 1189 nvmet_put_namespace(req->ns); 1190 } 1191 EXPORT_SYMBOL_GPL(nvmet_req_uninit); 1192 1193 size_t nvmet_req_transfer_len(struct nvmet_req *req) 1194 { 1195 if (likely(req->sq->qid != 0)) 1196 return nvmet_io_cmd_transfer_len(req); 1197 if (unlikely(!req->sq->ctrl)) 1198 return nvmet_connect_cmd_data_len(req); 1199 return nvmet_admin_cmd_data_len(req); 1200 } 1201 EXPORT_SYMBOL_GPL(nvmet_req_transfer_len); 1202 1203 bool nvmet_check_transfer_len(struct nvmet_req *req, size_t len) 1204 { 1205 if (unlikely(len != req->transfer_len)) { 1206 u16 status; 1207 1208 req->error_loc = offsetof(struct nvme_common_command, dptr); 1209 if (req->cmd->common.flags & NVME_CMD_SGL_ALL) 1210 status = NVME_SC_SGL_INVALID_DATA; 1211 else 1212 status = NVME_SC_INVALID_FIELD; 1213 nvmet_req_complete(req, status | NVME_STATUS_DNR); 1214 return false; 1215 } 1216 1217 return true; 1218 } 1219 EXPORT_SYMBOL_GPL(nvmet_check_transfer_len); 1220 1221 bool nvmet_check_data_len_lte(struct nvmet_req *req, size_t data_len) 1222 { 1223 if (unlikely(data_len > req->transfer_len)) { 1224 u16 status; 1225 1226 req->error_loc = offsetof(struct nvme_common_command, dptr); 1227 if (req->cmd->common.flags & NVME_CMD_SGL_ALL) 1228 status = NVME_SC_SGL_INVALID_DATA; 1229 else 1230 status = NVME_SC_INVALID_FIELD; 1231 nvmet_req_complete(req, status | NVME_STATUS_DNR); 1232 return false; 1233 } 1234 1235 return true; 1236 } 1237 1238 static unsigned int nvmet_data_transfer_len(struct nvmet_req *req) 1239 { 1240 return req->transfer_len - req->metadata_len; 1241 } 1242 1243 static int nvmet_req_alloc_p2pmem_sgls(struct pci_dev *p2p_dev, 1244 struct nvmet_req *req) 1245 { 1246 req->sg = pci_p2pmem_alloc_sgl(p2p_dev, &req->sg_cnt, 1247 nvmet_data_transfer_len(req)); 1248 if (!req->sg) 1249 goto out_err; 1250 1251 if (req->metadata_len) { 1252 req->metadata_sg = pci_p2pmem_alloc_sgl(p2p_dev, 1253 &req->metadata_sg_cnt, req->metadata_len); 1254 if (!req->metadata_sg) 1255 goto out_free_sg; 1256 } 1257 1258 req->p2p_dev = p2p_dev; 1259 1260 return 0; 1261 out_free_sg: 1262 pci_p2pmem_free_sgl(req->p2p_dev, req->sg); 1263 out_err: 1264 return -ENOMEM; 1265 } 1266 1267 static struct pci_dev *nvmet_req_find_p2p_dev(struct nvmet_req *req) 1268 { 1269 if (!IS_ENABLED(CONFIG_PCI_P2PDMA) || 1270 !req->sq->ctrl || !req->sq->qid || !req->ns) 1271 return NULL; 1272 return radix_tree_lookup(&req->sq->ctrl->p2p_ns_map, req->ns->nsid); 1273 } 1274 1275 int nvmet_req_alloc_sgls(struct nvmet_req *req) 1276 { 1277 struct pci_dev *p2p_dev = nvmet_req_find_p2p_dev(req); 1278 1279 if (p2p_dev && !nvmet_req_alloc_p2pmem_sgls(p2p_dev, req)) 1280 return 0; 1281 1282 req->sg = sgl_alloc(nvmet_data_transfer_len(req), GFP_KERNEL, 1283 &req->sg_cnt); 1284 if (unlikely(!req->sg)) 1285 goto out; 1286 1287 if (req->metadata_len) { 1288 req->metadata_sg = sgl_alloc(req->metadata_len, GFP_KERNEL, 1289 &req->metadata_sg_cnt); 1290 if (unlikely(!req->metadata_sg)) 1291 goto out_free; 1292 } 1293 1294 return 0; 1295 out_free: 1296 sgl_free(req->sg); 1297 out: 1298 return -ENOMEM; 1299 } 1300 EXPORT_SYMBOL_GPL(nvmet_req_alloc_sgls); 1301 1302 void nvmet_req_free_sgls(struct nvmet_req *req) 1303 { 1304 if (req->p2p_dev) { 1305 pci_p2pmem_free_sgl(req->p2p_dev, req->sg); 1306 if (req->metadata_sg) 1307 pci_p2pmem_free_sgl(req->p2p_dev, req->metadata_sg); 1308 req->p2p_dev = NULL; 1309 } else { 1310 sgl_free(req->sg); 1311 if (req->metadata_sg) 1312 sgl_free(req->metadata_sg); 1313 } 1314 1315 req->sg = NULL; 1316 req->metadata_sg = NULL; 1317 req->sg_cnt = 0; 1318 req->metadata_sg_cnt = 0; 1319 } 1320 EXPORT_SYMBOL_GPL(nvmet_req_free_sgls); 1321 1322 static inline bool nvmet_css_supported(u8 cc_css) 1323 { 1324 switch (cc_css << NVME_CC_CSS_SHIFT) { 1325 case NVME_CC_CSS_NVM: 1326 case NVME_CC_CSS_CSI: 1327 return true; 1328 default: 1329 return false; 1330 } 1331 } 1332 1333 static void nvmet_start_ctrl(struct nvmet_ctrl *ctrl) 1334 { 1335 lockdep_assert_held(&ctrl->lock); 1336 1337 /* 1338 * Only I/O controllers should verify iosqes,iocqes. 1339 * Strictly speaking, the spec says a discovery controller 1340 * should verify iosqes,iocqes are zeroed, however that 1341 * would break backwards compatibility, so don't enforce it. 1342 */ 1343 if (!nvmet_is_disc_subsys(ctrl->subsys) && 1344 (nvmet_cc_iosqes(ctrl->cc) != NVME_NVM_IOSQES || 1345 nvmet_cc_iocqes(ctrl->cc) != NVME_NVM_IOCQES)) { 1346 ctrl->csts = NVME_CSTS_CFS; 1347 return; 1348 } 1349 1350 if (nvmet_cc_mps(ctrl->cc) != 0 || 1351 nvmet_cc_ams(ctrl->cc) != 0 || 1352 !nvmet_css_supported(nvmet_cc_css(ctrl->cc))) { 1353 ctrl->csts = NVME_CSTS_CFS; 1354 return; 1355 } 1356 1357 ctrl->csts = NVME_CSTS_RDY; 1358 1359 /* 1360 * Controllers that are not yet enabled should not really enforce the 1361 * keep alive timeout, but we still want to track a timeout and cleanup 1362 * in case a host died before it enabled the controller. Hence, simply 1363 * reset the keep alive timer when the controller is enabled. 1364 */ 1365 if (ctrl->kato) 1366 mod_delayed_work(nvmet_wq, &ctrl->ka_work, ctrl->kato * HZ); 1367 } 1368 1369 static void nvmet_clear_ctrl(struct nvmet_ctrl *ctrl) 1370 { 1371 lockdep_assert_held(&ctrl->lock); 1372 1373 /* XXX: tear down queues? */ 1374 ctrl->csts &= ~NVME_CSTS_RDY; 1375 ctrl->cc = 0; 1376 } 1377 1378 void nvmet_update_cc(struct nvmet_ctrl *ctrl, u32 new) 1379 { 1380 u32 old; 1381 1382 mutex_lock(&ctrl->lock); 1383 old = ctrl->cc; 1384 ctrl->cc = new; 1385 1386 if (nvmet_cc_en(new) && !nvmet_cc_en(old)) 1387 nvmet_start_ctrl(ctrl); 1388 if (!nvmet_cc_en(new) && nvmet_cc_en(old)) 1389 nvmet_clear_ctrl(ctrl); 1390 if (nvmet_cc_shn(new) && !nvmet_cc_shn(old)) { 1391 nvmet_clear_ctrl(ctrl); 1392 ctrl->csts |= NVME_CSTS_SHST_CMPLT; 1393 } 1394 if (!nvmet_cc_shn(new) && nvmet_cc_shn(old)) 1395 ctrl->csts &= ~NVME_CSTS_SHST_CMPLT; 1396 mutex_unlock(&ctrl->lock); 1397 } 1398 EXPORT_SYMBOL_GPL(nvmet_update_cc); 1399 1400 static void nvmet_init_cap(struct nvmet_ctrl *ctrl) 1401 { 1402 /* command sets supported: NVMe command set: */ 1403 ctrl->cap = (1ULL << 37); 1404 /* Controller supports one or more I/O Command Sets */ 1405 ctrl->cap |= (1ULL << 43); 1406 /* CC.EN timeout in 500msec units: */ 1407 ctrl->cap |= (15ULL << 24); 1408 /* maximum queue entries supported: */ 1409 if (ctrl->ops->get_max_queue_size) 1410 ctrl->cap |= min_t(u16, ctrl->ops->get_max_queue_size(ctrl), 1411 ctrl->port->max_queue_size) - 1; 1412 else 1413 ctrl->cap |= ctrl->port->max_queue_size - 1; 1414 1415 if (nvmet_is_passthru_subsys(ctrl->subsys)) 1416 nvmet_passthrough_override_cap(ctrl); 1417 } 1418 1419 struct nvmet_ctrl *nvmet_ctrl_find_get(const char *subsysnqn, 1420 const char *hostnqn, u16 cntlid, 1421 struct nvmet_req *req) 1422 { 1423 struct nvmet_ctrl *ctrl = NULL; 1424 struct nvmet_subsys *subsys; 1425 1426 subsys = nvmet_find_get_subsys(req->port, subsysnqn); 1427 if (!subsys) { 1428 pr_warn("connect request for invalid subsystem %s!\n", 1429 subsysnqn); 1430 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn); 1431 goto out; 1432 } 1433 1434 mutex_lock(&subsys->lock); 1435 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) { 1436 if (ctrl->cntlid == cntlid) { 1437 if (strncmp(hostnqn, ctrl->hostnqn, NVMF_NQN_SIZE)) { 1438 pr_warn("hostnqn mismatch.\n"); 1439 continue; 1440 } 1441 if (!kref_get_unless_zero(&ctrl->ref)) 1442 continue; 1443 1444 /* ctrl found */ 1445 goto found; 1446 } 1447 } 1448 1449 ctrl = NULL; /* ctrl not found */ 1450 pr_warn("could not find controller %d for subsys %s / host %s\n", 1451 cntlid, subsysnqn, hostnqn); 1452 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(cntlid); 1453 1454 found: 1455 mutex_unlock(&subsys->lock); 1456 nvmet_subsys_put(subsys); 1457 out: 1458 return ctrl; 1459 } 1460 1461 u16 nvmet_check_ctrl_status(struct nvmet_req *req) 1462 { 1463 if (unlikely(!(req->sq->ctrl->cc & NVME_CC_ENABLE))) { 1464 pr_err("got cmd %d while CC.EN == 0 on qid = %d\n", 1465 req->cmd->common.opcode, req->sq->qid); 1466 return NVME_SC_CMD_SEQ_ERROR | NVME_STATUS_DNR; 1467 } 1468 1469 if (unlikely(!(req->sq->ctrl->csts & NVME_CSTS_RDY))) { 1470 pr_err("got cmd %d while CSTS.RDY == 0 on qid = %d\n", 1471 req->cmd->common.opcode, req->sq->qid); 1472 return NVME_SC_CMD_SEQ_ERROR | NVME_STATUS_DNR; 1473 } 1474 1475 if (unlikely(!nvmet_check_auth_status(req))) { 1476 pr_warn("qid %d not authenticated\n", req->sq->qid); 1477 return NVME_SC_AUTH_REQUIRED | NVME_STATUS_DNR; 1478 } 1479 return 0; 1480 } 1481 1482 bool nvmet_host_allowed(struct nvmet_subsys *subsys, const char *hostnqn) 1483 { 1484 struct nvmet_host_link *p; 1485 1486 lockdep_assert_held(&nvmet_config_sem); 1487 1488 if (subsys->allow_any_host) 1489 return true; 1490 1491 if (nvmet_is_disc_subsys(subsys)) /* allow all access to disc subsys */ 1492 return true; 1493 1494 list_for_each_entry(p, &subsys->hosts, entry) { 1495 if (!strcmp(nvmet_host_name(p->host), hostnqn)) 1496 return true; 1497 } 1498 1499 return false; 1500 } 1501 1502 /* 1503 * Note: ctrl->subsys->lock should be held when calling this function 1504 */ 1505 static void nvmet_setup_p2p_ns_map(struct nvmet_ctrl *ctrl, 1506 struct device *p2p_client) 1507 { 1508 struct nvmet_ns *ns; 1509 unsigned long idx; 1510 1511 if (!p2p_client) 1512 return; 1513 1514 ctrl->p2p_client = get_device(p2p_client); 1515 1516 nvmet_for_each_enabled_ns(&ctrl->subsys->namespaces, idx, ns) 1517 nvmet_p2pmem_ns_add_p2p(ctrl, ns); 1518 } 1519 1520 /* 1521 * Note: ctrl->subsys->lock should be held when calling this function 1522 */ 1523 static void nvmet_release_p2p_ns_map(struct nvmet_ctrl *ctrl) 1524 { 1525 struct radix_tree_iter iter; 1526 void __rcu **slot; 1527 1528 radix_tree_for_each_slot(slot, &ctrl->p2p_ns_map, &iter, 0) 1529 pci_dev_put(radix_tree_deref_slot(slot)); 1530 1531 put_device(ctrl->p2p_client); 1532 } 1533 1534 static void nvmet_fatal_error_handler(struct work_struct *work) 1535 { 1536 struct nvmet_ctrl *ctrl = 1537 container_of(work, struct nvmet_ctrl, fatal_err_work); 1538 1539 pr_err("ctrl %d fatal error occurred!\n", ctrl->cntlid); 1540 ctrl->ops->delete_ctrl(ctrl); 1541 } 1542 1543 struct nvmet_ctrl *nvmet_alloc_ctrl(struct nvmet_alloc_ctrl_args *args) 1544 { 1545 struct nvmet_subsys *subsys; 1546 struct nvmet_ctrl *ctrl; 1547 u32 kato = args->kato; 1548 u8 dhchap_status; 1549 int ret; 1550 1551 args->status = NVME_SC_CONNECT_INVALID_PARAM | NVME_STATUS_DNR; 1552 subsys = nvmet_find_get_subsys(args->port, args->subsysnqn); 1553 if (!subsys) { 1554 pr_warn("connect request for invalid subsystem %s!\n", 1555 args->subsysnqn); 1556 args->result = IPO_IATTR_CONNECT_DATA(subsysnqn); 1557 args->error_loc = offsetof(struct nvme_common_command, dptr); 1558 return NULL; 1559 } 1560 1561 down_read(&nvmet_config_sem); 1562 if (!nvmet_host_allowed(subsys, args->hostnqn)) { 1563 pr_info("connect by host %s for subsystem %s not allowed\n", 1564 args->hostnqn, args->subsysnqn); 1565 args->result = IPO_IATTR_CONNECT_DATA(hostnqn); 1566 up_read(&nvmet_config_sem); 1567 args->status = NVME_SC_CONNECT_INVALID_HOST | NVME_STATUS_DNR; 1568 args->error_loc = offsetof(struct nvme_common_command, dptr); 1569 goto out_put_subsystem; 1570 } 1571 up_read(&nvmet_config_sem); 1572 1573 args->status = NVME_SC_INTERNAL; 1574 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 1575 if (!ctrl) 1576 goto out_put_subsystem; 1577 mutex_init(&ctrl->lock); 1578 1579 ctrl->port = args->port; 1580 ctrl->ops = args->ops; 1581 1582 #ifdef CONFIG_NVME_TARGET_PASSTHRU 1583 /* By default, set loop targets to clear IDS by default */ 1584 if (ctrl->port->disc_addr.trtype == NVMF_TRTYPE_LOOP) 1585 subsys->clear_ids = 1; 1586 #endif 1587 1588 INIT_WORK(&ctrl->async_event_work, nvmet_async_event_work); 1589 INIT_LIST_HEAD(&ctrl->async_events); 1590 INIT_RADIX_TREE(&ctrl->p2p_ns_map, GFP_KERNEL); 1591 INIT_WORK(&ctrl->fatal_err_work, nvmet_fatal_error_handler); 1592 INIT_DELAYED_WORK(&ctrl->ka_work, nvmet_keep_alive_timer); 1593 1594 memcpy(ctrl->subsysnqn, args->subsysnqn, NVMF_NQN_SIZE); 1595 memcpy(ctrl->hostnqn, args->hostnqn, NVMF_NQN_SIZE); 1596 1597 kref_init(&ctrl->ref); 1598 ctrl->subsys = subsys; 1599 ctrl->pi_support = ctrl->port->pi_enable && ctrl->subsys->pi_support; 1600 nvmet_init_cap(ctrl); 1601 WRITE_ONCE(ctrl->aen_enabled, NVMET_AEN_CFG_OPTIONAL); 1602 1603 ctrl->changed_ns_list = kmalloc_array(NVME_MAX_CHANGED_NAMESPACES, 1604 sizeof(__le32), GFP_KERNEL); 1605 if (!ctrl->changed_ns_list) 1606 goto out_free_ctrl; 1607 1608 ctrl->sqs = kcalloc(subsys->max_qid + 1, 1609 sizeof(struct nvmet_sq *), 1610 GFP_KERNEL); 1611 if (!ctrl->sqs) 1612 goto out_free_changed_ns_list; 1613 1614 ret = ida_alloc_range(&cntlid_ida, 1615 subsys->cntlid_min, subsys->cntlid_max, 1616 GFP_KERNEL); 1617 if (ret < 0) { 1618 args->status = NVME_SC_CONNECT_CTRL_BUSY | NVME_STATUS_DNR; 1619 goto out_free_sqs; 1620 } 1621 ctrl->cntlid = ret; 1622 1623 uuid_copy(&ctrl->hostid, args->hostid); 1624 1625 /* 1626 * Discovery controllers may use some arbitrary high value 1627 * in order to cleanup stale discovery sessions 1628 */ 1629 if (nvmet_is_disc_subsys(ctrl->subsys) && !kato) 1630 kato = NVMET_DISC_KATO_MS; 1631 1632 /* keep-alive timeout in seconds */ 1633 ctrl->kato = DIV_ROUND_UP(kato, 1000); 1634 1635 ctrl->err_counter = 0; 1636 spin_lock_init(&ctrl->error_lock); 1637 1638 nvmet_start_keep_alive_timer(ctrl); 1639 1640 mutex_lock(&subsys->lock); 1641 ret = nvmet_ctrl_init_pr(ctrl); 1642 if (ret) 1643 goto init_pr_fail; 1644 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls); 1645 nvmet_setup_p2p_ns_map(ctrl, args->p2p_client); 1646 nvmet_debugfs_ctrl_setup(ctrl); 1647 mutex_unlock(&subsys->lock); 1648 1649 if (args->hostid) 1650 uuid_copy(&ctrl->hostid, args->hostid); 1651 1652 dhchap_status = nvmet_setup_auth(ctrl); 1653 if (dhchap_status) { 1654 pr_err("Failed to setup authentication, dhchap status %u\n", 1655 dhchap_status); 1656 nvmet_ctrl_put(ctrl); 1657 if (dhchap_status == NVME_AUTH_DHCHAP_FAILURE_FAILED) 1658 args->status = 1659 NVME_SC_CONNECT_INVALID_HOST | NVME_STATUS_DNR; 1660 else 1661 args->status = NVME_SC_INTERNAL; 1662 return NULL; 1663 } 1664 1665 args->status = NVME_SC_SUCCESS; 1666 1667 pr_info("Created %s controller %d for subsystem %s for NQN %s%s%s.\n", 1668 nvmet_is_disc_subsys(ctrl->subsys) ? "discovery" : "nvm", 1669 ctrl->cntlid, ctrl->subsys->subsysnqn, ctrl->hostnqn, 1670 ctrl->pi_support ? " T10-PI is enabled" : "", 1671 nvmet_has_auth(ctrl) ? " with DH-HMAC-CHAP" : ""); 1672 1673 return ctrl; 1674 1675 init_pr_fail: 1676 mutex_unlock(&subsys->lock); 1677 nvmet_stop_keep_alive_timer(ctrl); 1678 ida_free(&cntlid_ida, ctrl->cntlid); 1679 out_free_sqs: 1680 kfree(ctrl->sqs); 1681 out_free_changed_ns_list: 1682 kfree(ctrl->changed_ns_list); 1683 out_free_ctrl: 1684 kfree(ctrl); 1685 out_put_subsystem: 1686 nvmet_subsys_put(subsys); 1687 return NULL; 1688 } 1689 EXPORT_SYMBOL_GPL(nvmet_alloc_ctrl); 1690 1691 static void nvmet_ctrl_free(struct kref *ref) 1692 { 1693 struct nvmet_ctrl *ctrl = container_of(ref, struct nvmet_ctrl, ref); 1694 struct nvmet_subsys *subsys = ctrl->subsys; 1695 1696 mutex_lock(&subsys->lock); 1697 nvmet_ctrl_destroy_pr(ctrl); 1698 nvmet_release_p2p_ns_map(ctrl); 1699 list_del(&ctrl->subsys_entry); 1700 mutex_unlock(&subsys->lock); 1701 1702 nvmet_stop_keep_alive_timer(ctrl); 1703 1704 flush_work(&ctrl->async_event_work); 1705 cancel_work_sync(&ctrl->fatal_err_work); 1706 1707 nvmet_destroy_auth(ctrl); 1708 1709 nvmet_debugfs_ctrl_free(ctrl); 1710 1711 ida_free(&cntlid_ida, ctrl->cntlid); 1712 1713 nvmet_async_events_free(ctrl); 1714 kfree(ctrl->sqs); 1715 kfree(ctrl->changed_ns_list); 1716 kfree(ctrl); 1717 1718 nvmet_subsys_put(subsys); 1719 } 1720 1721 void nvmet_ctrl_put(struct nvmet_ctrl *ctrl) 1722 { 1723 kref_put(&ctrl->ref, nvmet_ctrl_free); 1724 } 1725 EXPORT_SYMBOL_GPL(nvmet_ctrl_put); 1726 1727 void nvmet_ctrl_fatal_error(struct nvmet_ctrl *ctrl) 1728 { 1729 mutex_lock(&ctrl->lock); 1730 if (!(ctrl->csts & NVME_CSTS_CFS)) { 1731 ctrl->csts |= NVME_CSTS_CFS; 1732 queue_work(nvmet_wq, &ctrl->fatal_err_work); 1733 } 1734 mutex_unlock(&ctrl->lock); 1735 } 1736 EXPORT_SYMBOL_GPL(nvmet_ctrl_fatal_error); 1737 1738 ssize_t nvmet_ctrl_host_traddr(struct nvmet_ctrl *ctrl, 1739 char *traddr, size_t traddr_len) 1740 { 1741 if (!ctrl->ops->host_traddr) 1742 return -EOPNOTSUPP; 1743 return ctrl->ops->host_traddr(ctrl, traddr, traddr_len); 1744 } 1745 1746 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port, 1747 const char *subsysnqn) 1748 { 1749 struct nvmet_subsys_link *p; 1750 1751 if (!port) 1752 return NULL; 1753 1754 if (!strcmp(NVME_DISC_SUBSYS_NAME, subsysnqn)) { 1755 if (!kref_get_unless_zero(&nvmet_disc_subsys->ref)) 1756 return NULL; 1757 return nvmet_disc_subsys; 1758 } 1759 1760 down_read(&nvmet_config_sem); 1761 if (!strncmp(nvmet_disc_subsys->subsysnqn, subsysnqn, 1762 NVMF_NQN_SIZE)) { 1763 if (kref_get_unless_zero(&nvmet_disc_subsys->ref)) { 1764 up_read(&nvmet_config_sem); 1765 return nvmet_disc_subsys; 1766 } 1767 } 1768 list_for_each_entry(p, &port->subsystems, entry) { 1769 if (!strncmp(p->subsys->subsysnqn, subsysnqn, 1770 NVMF_NQN_SIZE)) { 1771 if (!kref_get_unless_zero(&p->subsys->ref)) 1772 break; 1773 up_read(&nvmet_config_sem); 1774 return p->subsys; 1775 } 1776 } 1777 up_read(&nvmet_config_sem); 1778 return NULL; 1779 } 1780 1781 struct nvmet_subsys *nvmet_subsys_alloc(const char *subsysnqn, 1782 enum nvme_subsys_type type) 1783 { 1784 struct nvmet_subsys *subsys; 1785 char serial[NVMET_SN_MAX_SIZE / 2]; 1786 int ret; 1787 1788 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL); 1789 if (!subsys) 1790 return ERR_PTR(-ENOMEM); 1791 1792 subsys->ver = NVMET_DEFAULT_VS; 1793 /* generate a random serial number as our controllers are ephemeral: */ 1794 get_random_bytes(&serial, sizeof(serial)); 1795 bin2hex(subsys->serial, &serial, sizeof(serial)); 1796 1797 subsys->model_number = kstrdup(NVMET_DEFAULT_CTRL_MODEL, GFP_KERNEL); 1798 if (!subsys->model_number) { 1799 ret = -ENOMEM; 1800 goto free_subsys; 1801 } 1802 1803 subsys->ieee_oui = 0; 1804 1805 subsys->firmware_rev = kstrndup(UTS_RELEASE, NVMET_FR_MAX_SIZE, GFP_KERNEL); 1806 if (!subsys->firmware_rev) { 1807 ret = -ENOMEM; 1808 goto free_mn; 1809 } 1810 1811 switch (type) { 1812 case NVME_NQN_NVME: 1813 subsys->max_qid = NVMET_NR_QUEUES; 1814 break; 1815 case NVME_NQN_DISC: 1816 case NVME_NQN_CURR: 1817 subsys->max_qid = 0; 1818 break; 1819 default: 1820 pr_err("%s: Unknown Subsystem type - %d\n", __func__, type); 1821 ret = -EINVAL; 1822 goto free_fr; 1823 } 1824 subsys->type = type; 1825 subsys->subsysnqn = kstrndup(subsysnqn, NVMF_NQN_SIZE, 1826 GFP_KERNEL); 1827 if (!subsys->subsysnqn) { 1828 ret = -ENOMEM; 1829 goto free_fr; 1830 } 1831 subsys->cntlid_min = NVME_CNTLID_MIN; 1832 subsys->cntlid_max = NVME_CNTLID_MAX; 1833 kref_init(&subsys->ref); 1834 1835 mutex_init(&subsys->lock); 1836 xa_init(&subsys->namespaces); 1837 INIT_LIST_HEAD(&subsys->ctrls); 1838 INIT_LIST_HEAD(&subsys->hosts); 1839 1840 ret = nvmet_debugfs_subsys_setup(subsys); 1841 if (ret) 1842 goto free_subsysnqn; 1843 1844 return subsys; 1845 1846 free_subsysnqn: 1847 kfree(subsys->subsysnqn); 1848 free_fr: 1849 kfree(subsys->firmware_rev); 1850 free_mn: 1851 kfree(subsys->model_number); 1852 free_subsys: 1853 kfree(subsys); 1854 return ERR_PTR(ret); 1855 } 1856 1857 static void nvmet_subsys_free(struct kref *ref) 1858 { 1859 struct nvmet_subsys *subsys = 1860 container_of(ref, struct nvmet_subsys, ref); 1861 1862 WARN_ON_ONCE(!xa_empty(&subsys->namespaces)); 1863 1864 nvmet_debugfs_subsys_free(subsys); 1865 1866 xa_destroy(&subsys->namespaces); 1867 nvmet_passthru_subsys_free(subsys); 1868 1869 kfree(subsys->subsysnqn); 1870 kfree(subsys->model_number); 1871 kfree(subsys->firmware_rev); 1872 kfree(subsys); 1873 } 1874 1875 void nvmet_subsys_del_ctrls(struct nvmet_subsys *subsys) 1876 { 1877 struct nvmet_ctrl *ctrl; 1878 1879 mutex_lock(&subsys->lock); 1880 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) 1881 ctrl->ops->delete_ctrl(ctrl); 1882 mutex_unlock(&subsys->lock); 1883 } 1884 1885 void nvmet_subsys_put(struct nvmet_subsys *subsys) 1886 { 1887 kref_put(&subsys->ref, nvmet_subsys_free); 1888 } 1889 1890 static int __init nvmet_init(void) 1891 { 1892 int error = -ENOMEM; 1893 1894 nvmet_ana_group_enabled[NVMET_DEFAULT_ANA_GRPID] = 1; 1895 1896 nvmet_bvec_cache = kmem_cache_create("nvmet-bvec", 1897 NVMET_MAX_MPOOL_BVEC * sizeof(struct bio_vec), 0, 1898 SLAB_HWCACHE_ALIGN, NULL); 1899 if (!nvmet_bvec_cache) 1900 return -ENOMEM; 1901 1902 zbd_wq = alloc_workqueue("nvmet-zbd-wq", WQ_MEM_RECLAIM, 0); 1903 if (!zbd_wq) 1904 goto out_destroy_bvec_cache; 1905 1906 buffered_io_wq = alloc_workqueue("nvmet-buffered-io-wq", 1907 WQ_MEM_RECLAIM, 0); 1908 if (!buffered_io_wq) 1909 goto out_free_zbd_work_queue; 1910 1911 nvmet_wq = alloc_workqueue("nvmet-wq", 1912 WQ_MEM_RECLAIM | WQ_UNBOUND | WQ_SYSFS, 0); 1913 if (!nvmet_wq) 1914 goto out_free_buffered_work_queue; 1915 1916 error = nvmet_init_discovery(); 1917 if (error) 1918 goto out_free_nvmet_work_queue; 1919 1920 error = nvmet_init_debugfs(); 1921 if (error) 1922 goto out_exit_discovery; 1923 1924 error = nvmet_init_configfs(); 1925 if (error) 1926 goto out_exit_debugfs; 1927 1928 return 0; 1929 1930 out_exit_debugfs: 1931 nvmet_exit_debugfs(); 1932 out_exit_discovery: 1933 nvmet_exit_discovery(); 1934 out_free_nvmet_work_queue: 1935 destroy_workqueue(nvmet_wq); 1936 out_free_buffered_work_queue: 1937 destroy_workqueue(buffered_io_wq); 1938 out_free_zbd_work_queue: 1939 destroy_workqueue(zbd_wq); 1940 out_destroy_bvec_cache: 1941 kmem_cache_destroy(nvmet_bvec_cache); 1942 return error; 1943 } 1944 1945 static void __exit nvmet_exit(void) 1946 { 1947 nvmet_exit_configfs(); 1948 nvmet_exit_debugfs(); 1949 nvmet_exit_discovery(); 1950 ida_destroy(&cntlid_ida); 1951 destroy_workqueue(nvmet_wq); 1952 destroy_workqueue(buffered_io_wq); 1953 destroy_workqueue(zbd_wq); 1954 kmem_cache_destroy(nvmet_bvec_cache); 1955 1956 BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_entry) != 1024); 1957 BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_hdr) != 1024); 1958 } 1959 1960 module_init(nvmet_init); 1961 module_exit(nvmet_exit); 1962 1963 MODULE_DESCRIPTION("NVMe target core framework"); 1964 MODULE_LICENSE("GPL v2"); 1965