xref: /linux/drivers/nvme/target/core.c (revision f96a974170b749e3a56844e25b31d46a7233b6f6)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Common code for the NVMe target.
4  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/random.h>
9 #include <linux/rculist.h>
10 #include <linux/pci-p2pdma.h>
11 #include <linux/scatterlist.h>
12 
13 #include <generated/utsrelease.h>
14 
15 #define CREATE_TRACE_POINTS
16 #include "trace.h"
17 
18 #include "nvmet.h"
19 #include "debugfs.h"
20 
21 struct kmem_cache *nvmet_bvec_cache;
22 struct workqueue_struct *buffered_io_wq;
23 struct workqueue_struct *zbd_wq;
24 static const struct nvmet_fabrics_ops *nvmet_transports[NVMF_TRTYPE_MAX];
25 static DEFINE_IDA(cntlid_ida);
26 
27 struct workqueue_struct *nvmet_wq;
28 EXPORT_SYMBOL_GPL(nvmet_wq);
29 
30 /*
31  * This read/write semaphore is used to synchronize access to configuration
32  * information on a target system that will result in discovery log page
33  * information change for at least one host.
34  * The full list of resources to protected by this semaphore is:
35  *
36  *  - subsystems list
37  *  - per-subsystem allowed hosts list
38  *  - allow_any_host subsystem attribute
39  *  - nvmet_genctr
40  *  - the nvmet_transports array
41  *
42  * When updating any of those lists/structures write lock should be obtained,
43  * while when reading (popolating discovery log page or checking host-subsystem
44  * link) read lock is obtained to allow concurrent reads.
45  */
46 DECLARE_RWSEM(nvmet_config_sem);
47 
48 u32 nvmet_ana_group_enabled[NVMET_MAX_ANAGRPS + 1];
49 u64 nvmet_ana_chgcnt;
50 DECLARE_RWSEM(nvmet_ana_sem);
51 
52 inline u16 errno_to_nvme_status(struct nvmet_req *req, int errno)
53 {
54 	switch (errno) {
55 	case 0:
56 		return NVME_SC_SUCCESS;
57 	case -ENOSPC:
58 		req->error_loc = offsetof(struct nvme_rw_command, length);
59 		return NVME_SC_CAP_EXCEEDED | NVME_STATUS_DNR;
60 	case -EREMOTEIO:
61 		req->error_loc = offsetof(struct nvme_rw_command, slba);
62 		return  NVME_SC_LBA_RANGE | NVME_STATUS_DNR;
63 	case -EOPNOTSUPP:
64 		req->error_loc = offsetof(struct nvme_common_command, opcode);
65 		switch (req->cmd->common.opcode) {
66 		case nvme_cmd_dsm:
67 		case nvme_cmd_write_zeroes:
68 			return NVME_SC_ONCS_NOT_SUPPORTED | NVME_STATUS_DNR;
69 		default:
70 			return NVME_SC_INVALID_OPCODE | NVME_STATUS_DNR;
71 		}
72 		break;
73 	case -ENODATA:
74 		req->error_loc = offsetof(struct nvme_rw_command, nsid);
75 		return NVME_SC_ACCESS_DENIED;
76 	case -EIO:
77 		fallthrough;
78 	default:
79 		req->error_loc = offsetof(struct nvme_common_command, opcode);
80 		return NVME_SC_INTERNAL | NVME_STATUS_DNR;
81 	}
82 }
83 
84 u16 nvmet_report_invalid_opcode(struct nvmet_req *req)
85 {
86 	pr_debug("unhandled cmd %d on qid %d\n", req->cmd->common.opcode,
87 		 req->sq->qid);
88 
89 	req->error_loc = offsetof(struct nvme_common_command, opcode);
90 	return NVME_SC_INVALID_OPCODE | NVME_STATUS_DNR;
91 }
92 
93 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
94 		const char *subsysnqn);
95 
96 u16 nvmet_copy_to_sgl(struct nvmet_req *req, off_t off, const void *buf,
97 		size_t len)
98 {
99 	if (sg_pcopy_from_buffer(req->sg, req->sg_cnt, buf, len, off) != len) {
100 		req->error_loc = offsetof(struct nvme_common_command, dptr);
101 		return NVME_SC_SGL_INVALID_DATA | NVME_STATUS_DNR;
102 	}
103 	return 0;
104 }
105 
106 u16 nvmet_copy_from_sgl(struct nvmet_req *req, off_t off, void *buf, size_t len)
107 {
108 	if (sg_pcopy_to_buffer(req->sg, req->sg_cnt, buf, len, off) != len) {
109 		req->error_loc = offsetof(struct nvme_common_command, dptr);
110 		return NVME_SC_SGL_INVALID_DATA | NVME_STATUS_DNR;
111 	}
112 	return 0;
113 }
114 
115 u16 nvmet_zero_sgl(struct nvmet_req *req, off_t off, size_t len)
116 {
117 	if (sg_zero_buffer(req->sg, req->sg_cnt, len, off) != len) {
118 		req->error_loc = offsetof(struct nvme_common_command, dptr);
119 		return NVME_SC_SGL_INVALID_DATA | NVME_STATUS_DNR;
120 	}
121 	return 0;
122 }
123 
124 static u32 nvmet_max_nsid(struct nvmet_subsys *subsys)
125 {
126 	struct nvmet_ns *cur;
127 	unsigned long idx;
128 	u32 nsid = 0;
129 
130 	nvmet_for_each_enabled_ns(&subsys->namespaces, idx, cur)
131 		nsid = cur->nsid;
132 
133 	return nsid;
134 }
135 
136 static u32 nvmet_async_event_result(struct nvmet_async_event *aen)
137 {
138 	return aen->event_type | (aen->event_info << 8) | (aen->log_page << 16);
139 }
140 
141 static void nvmet_async_events_failall(struct nvmet_ctrl *ctrl)
142 {
143 	struct nvmet_req *req;
144 
145 	mutex_lock(&ctrl->lock);
146 	while (ctrl->nr_async_event_cmds) {
147 		req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds];
148 		mutex_unlock(&ctrl->lock);
149 		nvmet_req_complete(req, NVME_SC_INTERNAL | NVME_STATUS_DNR);
150 		mutex_lock(&ctrl->lock);
151 	}
152 	mutex_unlock(&ctrl->lock);
153 }
154 
155 static void nvmet_async_events_process(struct nvmet_ctrl *ctrl)
156 {
157 	struct nvmet_async_event *aen;
158 	struct nvmet_req *req;
159 
160 	mutex_lock(&ctrl->lock);
161 	while (ctrl->nr_async_event_cmds && !list_empty(&ctrl->async_events)) {
162 		aen = list_first_entry(&ctrl->async_events,
163 				       struct nvmet_async_event, entry);
164 		req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds];
165 		nvmet_set_result(req, nvmet_async_event_result(aen));
166 
167 		list_del(&aen->entry);
168 		kfree(aen);
169 
170 		mutex_unlock(&ctrl->lock);
171 		trace_nvmet_async_event(ctrl, req->cqe->result.u32);
172 		nvmet_req_complete(req, 0);
173 		mutex_lock(&ctrl->lock);
174 	}
175 	mutex_unlock(&ctrl->lock);
176 }
177 
178 static void nvmet_async_events_free(struct nvmet_ctrl *ctrl)
179 {
180 	struct nvmet_async_event *aen, *tmp;
181 
182 	mutex_lock(&ctrl->lock);
183 	list_for_each_entry_safe(aen, tmp, &ctrl->async_events, entry) {
184 		list_del(&aen->entry);
185 		kfree(aen);
186 	}
187 	mutex_unlock(&ctrl->lock);
188 }
189 
190 static void nvmet_async_event_work(struct work_struct *work)
191 {
192 	struct nvmet_ctrl *ctrl =
193 		container_of(work, struct nvmet_ctrl, async_event_work);
194 
195 	nvmet_async_events_process(ctrl);
196 }
197 
198 void nvmet_add_async_event(struct nvmet_ctrl *ctrl, u8 event_type,
199 		u8 event_info, u8 log_page)
200 {
201 	struct nvmet_async_event *aen;
202 
203 	aen = kmalloc(sizeof(*aen), GFP_KERNEL);
204 	if (!aen)
205 		return;
206 
207 	aen->event_type = event_type;
208 	aen->event_info = event_info;
209 	aen->log_page = log_page;
210 
211 	mutex_lock(&ctrl->lock);
212 	list_add_tail(&aen->entry, &ctrl->async_events);
213 	mutex_unlock(&ctrl->lock);
214 
215 	queue_work(nvmet_wq, &ctrl->async_event_work);
216 }
217 
218 static void nvmet_add_to_changed_ns_log(struct nvmet_ctrl *ctrl, __le32 nsid)
219 {
220 	u32 i;
221 
222 	mutex_lock(&ctrl->lock);
223 	if (ctrl->nr_changed_ns > NVME_MAX_CHANGED_NAMESPACES)
224 		goto out_unlock;
225 
226 	for (i = 0; i < ctrl->nr_changed_ns; i++) {
227 		if (ctrl->changed_ns_list[i] == nsid)
228 			goto out_unlock;
229 	}
230 
231 	if (ctrl->nr_changed_ns == NVME_MAX_CHANGED_NAMESPACES) {
232 		ctrl->changed_ns_list[0] = cpu_to_le32(0xffffffff);
233 		ctrl->nr_changed_ns = U32_MAX;
234 		goto out_unlock;
235 	}
236 
237 	ctrl->changed_ns_list[ctrl->nr_changed_ns++] = nsid;
238 out_unlock:
239 	mutex_unlock(&ctrl->lock);
240 }
241 
242 void nvmet_ns_changed(struct nvmet_subsys *subsys, u32 nsid)
243 {
244 	struct nvmet_ctrl *ctrl;
245 
246 	lockdep_assert_held(&subsys->lock);
247 
248 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
249 		nvmet_add_to_changed_ns_log(ctrl, cpu_to_le32(nsid));
250 		if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_NS_ATTR))
251 			continue;
252 		nvmet_add_async_event(ctrl, NVME_AER_NOTICE,
253 				NVME_AER_NOTICE_NS_CHANGED,
254 				NVME_LOG_CHANGED_NS);
255 	}
256 }
257 
258 void nvmet_send_ana_event(struct nvmet_subsys *subsys,
259 		struct nvmet_port *port)
260 {
261 	struct nvmet_ctrl *ctrl;
262 
263 	mutex_lock(&subsys->lock);
264 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
265 		if (port && ctrl->port != port)
266 			continue;
267 		if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_ANA_CHANGE))
268 			continue;
269 		nvmet_add_async_event(ctrl, NVME_AER_NOTICE,
270 				NVME_AER_NOTICE_ANA, NVME_LOG_ANA);
271 	}
272 	mutex_unlock(&subsys->lock);
273 }
274 
275 void nvmet_port_send_ana_event(struct nvmet_port *port)
276 {
277 	struct nvmet_subsys_link *p;
278 
279 	down_read(&nvmet_config_sem);
280 	list_for_each_entry(p, &port->subsystems, entry)
281 		nvmet_send_ana_event(p->subsys, port);
282 	up_read(&nvmet_config_sem);
283 }
284 
285 int nvmet_register_transport(const struct nvmet_fabrics_ops *ops)
286 {
287 	int ret = 0;
288 
289 	down_write(&nvmet_config_sem);
290 	if (nvmet_transports[ops->type])
291 		ret = -EINVAL;
292 	else
293 		nvmet_transports[ops->type] = ops;
294 	up_write(&nvmet_config_sem);
295 
296 	return ret;
297 }
298 EXPORT_SYMBOL_GPL(nvmet_register_transport);
299 
300 void nvmet_unregister_transport(const struct nvmet_fabrics_ops *ops)
301 {
302 	down_write(&nvmet_config_sem);
303 	nvmet_transports[ops->type] = NULL;
304 	up_write(&nvmet_config_sem);
305 }
306 EXPORT_SYMBOL_GPL(nvmet_unregister_transport);
307 
308 void nvmet_port_del_ctrls(struct nvmet_port *port, struct nvmet_subsys *subsys)
309 {
310 	struct nvmet_ctrl *ctrl;
311 
312 	mutex_lock(&subsys->lock);
313 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
314 		if (ctrl->port == port)
315 			ctrl->ops->delete_ctrl(ctrl);
316 	}
317 	mutex_unlock(&subsys->lock);
318 }
319 
320 int nvmet_enable_port(struct nvmet_port *port)
321 {
322 	const struct nvmet_fabrics_ops *ops;
323 	int ret;
324 
325 	lockdep_assert_held(&nvmet_config_sem);
326 
327 	ops = nvmet_transports[port->disc_addr.trtype];
328 	if (!ops) {
329 		up_write(&nvmet_config_sem);
330 		request_module("nvmet-transport-%d", port->disc_addr.trtype);
331 		down_write(&nvmet_config_sem);
332 		ops = nvmet_transports[port->disc_addr.trtype];
333 		if (!ops) {
334 			pr_err("transport type %d not supported\n",
335 				port->disc_addr.trtype);
336 			return -EINVAL;
337 		}
338 	}
339 
340 	if (!try_module_get(ops->owner))
341 		return -EINVAL;
342 
343 	/*
344 	 * If the user requested PI support and the transport isn't pi capable,
345 	 * don't enable the port.
346 	 */
347 	if (port->pi_enable && !(ops->flags & NVMF_METADATA_SUPPORTED)) {
348 		pr_err("T10-PI is not supported by transport type %d\n",
349 		       port->disc_addr.trtype);
350 		ret = -EINVAL;
351 		goto out_put;
352 	}
353 
354 	ret = ops->add_port(port);
355 	if (ret)
356 		goto out_put;
357 
358 	/* If the transport didn't set inline_data_size, then disable it. */
359 	if (port->inline_data_size < 0)
360 		port->inline_data_size = 0;
361 
362 	/*
363 	 * If the transport didn't set the max_queue_size properly, then clamp
364 	 * it to the target limits. Also set default values in case the
365 	 * transport didn't set it at all.
366 	 */
367 	if (port->max_queue_size < 0)
368 		port->max_queue_size = NVMET_MAX_QUEUE_SIZE;
369 	else
370 		port->max_queue_size = clamp_t(int, port->max_queue_size,
371 					       NVMET_MIN_QUEUE_SIZE,
372 					       NVMET_MAX_QUEUE_SIZE);
373 
374 	port->enabled = true;
375 	port->tr_ops = ops;
376 	return 0;
377 
378 out_put:
379 	module_put(ops->owner);
380 	return ret;
381 }
382 
383 void nvmet_disable_port(struct nvmet_port *port)
384 {
385 	const struct nvmet_fabrics_ops *ops;
386 
387 	lockdep_assert_held(&nvmet_config_sem);
388 
389 	port->enabled = false;
390 	port->tr_ops = NULL;
391 
392 	ops = nvmet_transports[port->disc_addr.trtype];
393 	ops->remove_port(port);
394 	module_put(ops->owner);
395 }
396 
397 static void nvmet_keep_alive_timer(struct work_struct *work)
398 {
399 	struct nvmet_ctrl *ctrl = container_of(to_delayed_work(work),
400 			struct nvmet_ctrl, ka_work);
401 	bool reset_tbkas = ctrl->reset_tbkas;
402 
403 	ctrl->reset_tbkas = false;
404 	if (reset_tbkas) {
405 		pr_debug("ctrl %d reschedule traffic based keep-alive timer\n",
406 			ctrl->cntlid);
407 		queue_delayed_work(nvmet_wq, &ctrl->ka_work, ctrl->kato * HZ);
408 		return;
409 	}
410 
411 	pr_err("ctrl %d keep-alive timer (%d seconds) expired!\n",
412 		ctrl->cntlid, ctrl->kato);
413 
414 	nvmet_ctrl_fatal_error(ctrl);
415 }
416 
417 void nvmet_start_keep_alive_timer(struct nvmet_ctrl *ctrl)
418 {
419 	if (unlikely(ctrl->kato == 0))
420 		return;
421 
422 	pr_debug("ctrl %d start keep-alive timer for %d secs\n",
423 		ctrl->cntlid, ctrl->kato);
424 
425 	queue_delayed_work(nvmet_wq, &ctrl->ka_work, ctrl->kato * HZ);
426 }
427 
428 void nvmet_stop_keep_alive_timer(struct nvmet_ctrl *ctrl)
429 {
430 	if (unlikely(ctrl->kato == 0))
431 		return;
432 
433 	pr_debug("ctrl %d stop keep-alive\n", ctrl->cntlid);
434 
435 	cancel_delayed_work_sync(&ctrl->ka_work);
436 }
437 
438 u16 nvmet_req_find_ns(struct nvmet_req *req)
439 {
440 	u32 nsid = le32_to_cpu(req->cmd->common.nsid);
441 	struct nvmet_subsys *subsys = nvmet_req_subsys(req);
442 
443 	req->ns = xa_load(&subsys->namespaces, nsid);
444 	if (unlikely(!req->ns || !req->ns->enabled)) {
445 		req->error_loc = offsetof(struct nvme_common_command, nsid);
446 		if (!req->ns) /* ns doesn't exist! */
447 			return NVME_SC_INVALID_NS | NVME_STATUS_DNR;
448 
449 		/* ns exists but it's disabled */
450 		req->ns = NULL;
451 		return NVME_SC_INTERNAL_PATH_ERROR;
452 	}
453 
454 	percpu_ref_get(&req->ns->ref);
455 	return NVME_SC_SUCCESS;
456 }
457 
458 static void nvmet_destroy_namespace(struct percpu_ref *ref)
459 {
460 	struct nvmet_ns *ns = container_of(ref, struct nvmet_ns, ref);
461 
462 	complete(&ns->disable_done);
463 }
464 
465 void nvmet_put_namespace(struct nvmet_ns *ns)
466 {
467 	percpu_ref_put(&ns->ref);
468 }
469 
470 static void nvmet_ns_dev_disable(struct nvmet_ns *ns)
471 {
472 	nvmet_bdev_ns_disable(ns);
473 	nvmet_file_ns_disable(ns);
474 }
475 
476 static int nvmet_p2pmem_ns_enable(struct nvmet_ns *ns)
477 {
478 	int ret;
479 	struct pci_dev *p2p_dev;
480 
481 	if (!ns->use_p2pmem)
482 		return 0;
483 
484 	if (!ns->bdev) {
485 		pr_err("peer-to-peer DMA is not supported by non-block device namespaces\n");
486 		return -EINVAL;
487 	}
488 
489 	if (!blk_queue_pci_p2pdma(ns->bdev->bd_disk->queue)) {
490 		pr_err("peer-to-peer DMA is not supported by the driver of %s\n",
491 		       ns->device_path);
492 		return -EINVAL;
493 	}
494 
495 	if (ns->p2p_dev) {
496 		ret = pci_p2pdma_distance(ns->p2p_dev, nvmet_ns_dev(ns), true);
497 		if (ret < 0)
498 			return -EINVAL;
499 	} else {
500 		/*
501 		 * Right now we just check that there is p2pmem available so
502 		 * we can report an error to the user right away if there
503 		 * is not. We'll find the actual device to use once we
504 		 * setup the controller when the port's device is available.
505 		 */
506 
507 		p2p_dev = pci_p2pmem_find(nvmet_ns_dev(ns));
508 		if (!p2p_dev) {
509 			pr_err("no peer-to-peer memory is available for %s\n",
510 			       ns->device_path);
511 			return -EINVAL;
512 		}
513 
514 		pci_dev_put(p2p_dev);
515 	}
516 
517 	return 0;
518 }
519 
520 /*
521  * Note: ctrl->subsys->lock should be held when calling this function
522  */
523 static void nvmet_p2pmem_ns_add_p2p(struct nvmet_ctrl *ctrl,
524 				    struct nvmet_ns *ns)
525 {
526 	struct device *clients[2];
527 	struct pci_dev *p2p_dev;
528 	int ret;
529 
530 	if (!ctrl->p2p_client || !ns->use_p2pmem)
531 		return;
532 
533 	if (ns->p2p_dev) {
534 		ret = pci_p2pdma_distance(ns->p2p_dev, ctrl->p2p_client, true);
535 		if (ret < 0)
536 			return;
537 
538 		p2p_dev = pci_dev_get(ns->p2p_dev);
539 	} else {
540 		clients[0] = ctrl->p2p_client;
541 		clients[1] = nvmet_ns_dev(ns);
542 
543 		p2p_dev = pci_p2pmem_find_many(clients, ARRAY_SIZE(clients));
544 		if (!p2p_dev) {
545 			pr_err("no peer-to-peer memory is available that's supported by %s and %s\n",
546 			       dev_name(ctrl->p2p_client), ns->device_path);
547 			return;
548 		}
549 	}
550 
551 	ret = radix_tree_insert(&ctrl->p2p_ns_map, ns->nsid, p2p_dev);
552 	if (ret < 0)
553 		pci_dev_put(p2p_dev);
554 
555 	pr_info("using p2pmem on %s for nsid %d\n", pci_name(p2p_dev),
556 		ns->nsid);
557 }
558 
559 bool nvmet_ns_revalidate(struct nvmet_ns *ns)
560 {
561 	loff_t oldsize = ns->size;
562 
563 	if (ns->bdev)
564 		nvmet_bdev_ns_revalidate(ns);
565 	else
566 		nvmet_file_ns_revalidate(ns);
567 
568 	return oldsize != ns->size;
569 }
570 
571 int nvmet_ns_enable(struct nvmet_ns *ns)
572 {
573 	struct nvmet_subsys *subsys = ns->subsys;
574 	struct nvmet_ctrl *ctrl;
575 	int ret;
576 
577 	mutex_lock(&subsys->lock);
578 	ret = 0;
579 
580 	if (nvmet_is_passthru_subsys(subsys)) {
581 		pr_info("cannot enable both passthru and regular namespaces for a single subsystem");
582 		goto out_unlock;
583 	}
584 
585 	if (ns->enabled)
586 		goto out_unlock;
587 
588 	ret = -EMFILE;
589 
590 	ret = nvmet_bdev_ns_enable(ns);
591 	if (ret == -ENOTBLK)
592 		ret = nvmet_file_ns_enable(ns);
593 	if (ret)
594 		goto out_unlock;
595 
596 	ret = nvmet_p2pmem_ns_enable(ns);
597 	if (ret)
598 		goto out_dev_disable;
599 
600 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
601 		nvmet_p2pmem_ns_add_p2p(ctrl, ns);
602 
603 	if (ns->pr.enable) {
604 		ret = nvmet_pr_init_ns(ns);
605 		if (ret)
606 			goto out_dev_put;
607 	}
608 
609 	nvmet_ns_changed(subsys, ns->nsid);
610 	ns->enabled = true;
611 	xa_set_mark(&subsys->namespaces, ns->nsid, NVMET_NS_ENABLED);
612 	ret = 0;
613 out_unlock:
614 	mutex_unlock(&subsys->lock);
615 	return ret;
616 out_dev_put:
617 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
618 		pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid));
619 out_dev_disable:
620 	nvmet_ns_dev_disable(ns);
621 	goto out_unlock;
622 }
623 
624 void nvmet_ns_disable(struct nvmet_ns *ns)
625 {
626 	struct nvmet_subsys *subsys = ns->subsys;
627 	struct nvmet_ctrl *ctrl;
628 
629 	mutex_lock(&subsys->lock);
630 	if (!ns->enabled)
631 		goto out_unlock;
632 
633 	ns->enabled = false;
634 	xa_clear_mark(&subsys->namespaces, ns->nsid, NVMET_NS_ENABLED);
635 
636 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
637 		pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid));
638 
639 	mutex_unlock(&subsys->lock);
640 
641 	if (ns->pr.enable)
642 		nvmet_pr_exit_ns(ns);
643 
644 	mutex_lock(&subsys->lock);
645 	nvmet_ns_changed(subsys, ns->nsid);
646 	nvmet_ns_dev_disable(ns);
647 out_unlock:
648 	mutex_unlock(&subsys->lock);
649 }
650 
651 void nvmet_ns_free(struct nvmet_ns *ns)
652 {
653 	struct nvmet_subsys *subsys = ns->subsys;
654 
655 	nvmet_ns_disable(ns);
656 
657 	mutex_lock(&subsys->lock);
658 
659 	xa_erase(&subsys->namespaces, ns->nsid);
660 	if (ns->nsid == subsys->max_nsid)
661 		subsys->max_nsid = nvmet_max_nsid(subsys);
662 
663 	mutex_unlock(&subsys->lock);
664 
665 	/*
666 	 * Now that we removed the namespaces from the lookup list, we
667 	 * can kill the per_cpu ref and wait for any remaining references
668 	 * to be dropped, as well as a RCU grace period for anyone only
669 	 * using the namepace under rcu_read_lock().  Note that we can't
670 	 * use call_rcu here as we need to ensure the namespaces have
671 	 * been fully destroyed before unloading the module.
672 	 */
673 	percpu_ref_kill(&ns->ref);
674 	synchronize_rcu();
675 	wait_for_completion(&ns->disable_done);
676 	percpu_ref_exit(&ns->ref);
677 
678 	mutex_lock(&subsys->lock);
679 	subsys->nr_namespaces--;
680 	mutex_unlock(&subsys->lock);
681 
682 	down_write(&nvmet_ana_sem);
683 	nvmet_ana_group_enabled[ns->anagrpid]--;
684 	up_write(&nvmet_ana_sem);
685 
686 	kfree(ns->device_path);
687 	kfree(ns);
688 }
689 
690 struct nvmet_ns *nvmet_ns_alloc(struct nvmet_subsys *subsys, u32 nsid)
691 {
692 	struct nvmet_ns *ns;
693 
694 	mutex_lock(&subsys->lock);
695 
696 	if (subsys->nr_namespaces == NVMET_MAX_NAMESPACES)
697 		goto out_unlock;
698 
699 	ns = kzalloc(sizeof(*ns), GFP_KERNEL);
700 	if (!ns)
701 		goto out_unlock;
702 
703 	init_completion(&ns->disable_done);
704 
705 	ns->nsid = nsid;
706 	ns->subsys = subsys;
707 
708 	if (percpu_ref_init(&ns->ref, nvmet_destroy_namespace, 0, GFP_KERNEL))
709 		goto out_free;
710 
711 	if (ns->nsid > subsys->max_nsid)
712 		subsys->max_nsid = nsid;
713 
714 	if (xa_insert(&subsys->namespaces, ns->nsid, ns, GFP_KERNEL))
715 		goto out_exit;
716 
717 	subsys->nr_namespaces++;
718 
719 	mutex_unlock(&subsys->lock);
720 
721 	down_write(&nvmet_ana_sem);
722 	ns->anagrpid = NVMET_DEFAULT_ANA_GRPID;
723 	nvmet_ana_group_enabled[ns->anagrpid]++;
724 	up_write(&nvmet_ana_sem);
725 
726 	uuid_gen(&ns->uuid);
727 	ns->buffered_io = false;
728 	ns->csi = NVME_CSI_NVM;
729 
730 	return ns;
731 out_exit:
732 	subsys->max_nsid = nvmet_max_nsid(subsys);
733 	percpu_ref_exit(&ns->ref);
734 out_free:
735 	kfree(ns);
736 out_unlock:
737 	mutex_unlock(&subsys->lock);
738 	return NULL;
739 }
740 
741 static void nvmet_update_sq_head(struct nvmet_req *req)
742 {
743 	if (req->sq->size) {
744 		u32 old_sqhd, new_sqhd;
745 
746 		old_sqhd = READ_ONCE(req->sq->sqhd);
747 		do {
748 			new_sqhd = (old_sqhd + 1) % req->sq->size;
749 		} while (!try_cmpxchg(&req->sq->sqhd, &old_sqhd, new_sqhd));
750 	}
751 	req->cqe->sq_head = cpu_to_le16(req->sq->sqhd & 0x0000FFFF);
752 }
753 
754 static void nvmet_set_error(struct nvmet_req *req, u16 status)
755 {
756 	struct nvmet_ctrl *ctrl = req->sq->ctrl;
757 	struct nvme_error_slot *new_error_slot;
758 	unsigned long flags;
759 
760 	req->cqe->status = cpu_to_le16(status << 1);
761 
762 	if (!ctrl || req->error_loc == NVMET_NO_ERROR_LOC)
763 		return;
764 
765 	spin_lock_irqsave(&ctrl->error_lock, flags);
766 	ctrl->err_counter++;
767 	new_error_slot =
768 		&ctrl->slots[ctrl->err_counter % NVMET_ERROR_LOG_SLOTS];
769 
770 	new_error_slot->error_count = cpu_to_le64(ctrl->err_counter);
771 	new_error_slot->sqid = cpu_to_le16(req->sq->qid);
772 	new_error_slot->cmdid = cpu_to_le16(req->cmd->common.command_id);
773 	new_error_slot->status_field = cpu_to_le16(status << 1);
774 	new_error_slot->param_error_location = cpu_to_le16(req->error_loc);
775 	new_error_slot->lba = cpu_to_le64(req->error_slba);
776 	new_error_slot->nsid = req->cmd->common.nsid;
777 	spin_unlock_irqrestore(&ctrl->error_lock, flags);
778 
779 	/* set the more bit for this request */
780 	req->cqe->status |= cpu_to_le16(1 << 14);
781 }
782 
783 static void __nvmet_req_complete(struct nvmet_req *req, u16 status)
784 {
785 	struct nvmet_ns *ns = req->ns;
786 	struct nvmet_pr_per_ctrl_ref *pc_ref = req->pc_ref;
787 
788 	if (!req->sq->sqhd_disabled)
789 		nvmet_update_sq_head(req);
790 	req->cqe->sq_id = cpu_to_le16(req->sq->qid);
791 	req->cqe->command_id = req->cmd->common.command_id;
792 
793 	if (unlikely(status))
794 		nvmet_set_error(req, status);
795 
796 	trace_nvmet_req_complete(req);
797 
798 	req->ops->queue_response(req);
799 
800 	if (pc_ref)
801 		nvmet_pr_put_ns_pc_ref(pc_ref);
802 	if (ns)
803 		nvmet_put_namespace(ns);
804 }
805 
806 void nvmet_req_complete(struct nvmet_req *req, u16 status)
807 {
808 	struct nvmet_sq *sq = req->sq;
809 
810 	__nvmet_req_complete(req, status);
811 	percpu_ref_put(&sq->ref);
812 }
813 EXPORT_SYMBOL_GPL(nvmet_req_complete);
814 
815 void nvmet_cq_setup(struct nvmet_ctrl *ctrl, struct nvmet_cq *cq,
816 		u16 qid, u16 size)
817 {
818 	cq->qid = qid;
819 	cq->size = size;
820 }
821 
822 void nvmet_sq_setup(struct nvmet_ctrl *ctrl, struct nvmet_sq *sq,
823 		u16 qid, u16 size)
824 {
825 	sq->sqhd = 0;
826 	sq->qid = qid;
827 	sq->size = size;
828 
829 	ctrl->sqs[qid] = sq;
830 }
831 
832 static void nvmet_confirm_sq(struct percpu_ref *ref)
833 {
834 	struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);
835 
836 	complete(&sq->confirm_done);
837 }
838 
839 u16 nvmet_check_cqid(struct nvmet_ctrl *ctrl, u16 cqid)
840 {
841 	if (!ctrl->sqs)
842 		return NVME_SC_INTERNAL | NVME_STATUS_DNR;
843 
844 	if (cqid > ctrl->subsys->max_qid)
845 		return NVME_SC_QID_INVALID | NVME_STATUS_DNR;
846 
847 	/*
848 	 * Note: For PCI controllers, the NVMe specifications allows multiple
849 	 * SQs to share a single CQ. However, we do not support this yet, so
850 	 * check that there is no SQ defined for a CQ. If one exist, then the
851 	 * CQ ID is invalid for creation as well as when the CQ is being
852 	 * deleted (as that would mean that the SQ was not deleted before the
853 	 * CQ).
854 	 */
855 	if (ctrl->sqs[cqid])
856 		return NVME_SC_QID_INVALID | NVME_STATUS_DNR;
857 
858 	return NVME_SC_SUCCESS;
859 }
860 
861 u16 nvmet_cq_create(struct nvmet_ctrl *ctrl, struct nvmet_cq *cq,
862 		    u16 qid, u16 size)
863 {
864 	u16 status;
865 
866 	status = nvmet_check_cqid(ctrl, qid);
867 	if (status != NVME_SC_SUCCESS)
868 		return status;
869 
870 	nvmet_cq_setup(ctrl, cq, qid, size);
871 
872 	return NVME_SC_SUCCESS;
873 }
874 EXPORT_SYMBOL_GPL(nvmet_cq_create);
875 
876 u16 nvmet_check_sqid(struct nvmet_ctrl *ctrl, u16 sqid,
877 		     bool create)
878 {
879 	if (!ctrl->sqs)
880 		return NVME_SC_INTERNAL | NVME_STATUS_DNR;
881 
882 	if (sqid > ctrl->subsys->max_qid)
883 		return NVME_SC_QID_INVALID | NVME_STATUS_DNR;
884 
885 	if ((create && ctrl->sqs[sqid]) ||
886 	    (!create && !ctrl->sqs[sqid]))
887 		return NVME_SC_QID_INVALID | NVME_STATUS_DNR;
888 
889 	return NVME_SC_SUCCESS;
890 }
891 
892 u16 nvmet_sq_create(struct nvmet_ctrl *ctrl, struct nvmet_sq *sq,
893 		    u16 sqid, u16 size)
894 {
895 	u16 status;
896 	int ret;
897 
898 	if (!kref_get_unless_zero(&ctrl->ref))
899 		return NVME_SC_INTERNAL | NVME_STATUS_DNR;
900 
901 	status = nvmet_check_sqid(ctrl, sqid, true);
902 	if (status != NVME_SC_SUCCESS)
903 		return status;
904 
905 	ret = nvmet_sq_init(sq);
906 	if (ret) {
907 		status = NVME_SC_INTERNAL | NVME_STATUS_DNR;
908 		goto ctrl_put;
909 	}
910 
911 	nvmet_sq_setup(ctrl, sq, sqid, size);
912 	sq->ctrl = ctrl;
913 
914 	return NVME_SC_SUCCESS;
915 
916 ctrl_put:
917 	nvmet_ctrl_put(ctrl);
918 	return status;
919 }
920 EXPORT_SYMBOL_GPL(nvmet_sq_create);
921 
922 void nvmet_sq_destroy(struct nvmet_sq *sq)
923 {
924 	struct nvmet_ctrl *ctrl = sq->ctrl;
925 
926 	/*
927 	 * If this is the admin queue, complete all AERs so that our
928 	 * queue doesn't have outstanding requests on it.
929 	 */
930 	if (ctrl && ctrl->sqs && ctrl->sqs[0] == sq)
931 		nvmet_async_events_failall(ctrl);
932 	percpu_ref_kill_and_confirm(&sq->ref, nvmet_confirm_sq);
933 	wait_for_completion(&sq->confirm_done);
934 	wait_for_completion(&sq->free_done);
935 	percpu_ref_exit(&sq->ref);
936 	nvmet_auth_sq_free(sq);
937 
938 	/*
939 	 * we must reference the ctrl again after waiting for inflight IO
940 	 * to complete. Because admin connect may have sneaked in after we
941 	 * store sq->ctrl locally, but before we killed the percpu_ref. the
942 	 * admin connect allocates and assigns sq->ctrl, which now needs a
943 	 * final ref put, as this ctrl is going away.
944 	 */
945 	ctrl = sq->ctrl;
946 
947 	if (ctrl) {
948 		/*
949 		 * The teardown flow may take some time, and the host may not
950 		 * send us keep-alive during this period, hence reset the
951 		 * traffic based keep-alive timer so we don't trigger a
952 		 * controller teardown as a result of a keep-alive expiration.
953 		 */
954 		ctrl->reset_tbkas = true;
955 		sq->ctrl->sqs[sq->qid] = NULL;
956 		nvmet_ctrl_put(ctrl);
957 		sq->ctrl = NULL; /* allows reusing the queue later */
958 	}
959 }
960 EXPORT_SYMBOL_GPL(nvmet_sq_destroy);
961 
962 static void nvmet_sq_free(struct percpu_ref *ref)
963 {
964 	struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);
965 
966 	complete(&sq->free_done);
967 }
968 
969 int nvmet_sq_init(struct nvmet_sq *sq)
970 {
971 	int ret;
972 
973 	ret = percpu_ref_init(&sq->ref, nvmet_sq_free, 0, GFP_KERNEL);
974 	if (ret) {
975 		pr_err("percpu_ref init failed!\n");
976 		return ret;
977 	}
978 	init_completion(&sq->free_done);
979 	init_completion(&sq->confirm_done);
980 	nvmet_auth_sq_init(sq);
981 
982 	return 0;
983 }
984 EXPORT_SYMBOL_GPL(nvmet_sq_init);
985 
986 static inline u16 nvmet_check_ana_state(struct nvmet_port *port,
987 		struct nvmet_ns *ns)
988 {
989 	enum nvme_ana_state state = port->ana_state[ns->anagrpid];
990 
991 	if (unlikely(state == NVME_ANA_INACCESSIBLE))
992 		return NVME_SC_ANA_INACCESSIBLE;
993 	if (unlikely(state == NVME_ANA_PERSISTENT_LOSS))
994 		return NVME_SC_ANA_PERSISTENT_LOSS;
995 	if (unlikely(state == NVME_ANA_CHANGE))
996 		return NVME_SC_ANA_TRANSITION;
997 	return 0;
998 }
999 
1000 static inline u16 nvmet_io_cmd_check_access(struct nvmet_req *req)
1001 {
1002 	if (unlikely(req->ns->readonly)) {
1003 		switch (req->cmd->common.opcode) {
1004 		case nvme_cmd_read:
1005 		case nvme_cmd_flush:
1006 			break;
1007 		default:
1008 			return NVME_SC_NS_WRITE_PROTECTED;
1009 		}
1010 	}
1011 
1012 	return 0;
1013 }
1014 
1015 static u32 nvmet_io_cmd_transfer_len(struct nvmet_req *req)
1016 {
1017 	struct nvme_command *cmd = req->cmd;
1018 	u32 metadata_len = 0;
1019 
1020 	if (nvme_is_fabrics(cmd))
1021 		return nvmet_fabrics_io_cmd_data_len(req);
1022 
1023 	if (!req->ns)
1024 		return 0;
1025 
1026 	switch (req->cmd->common.opcode) {
1027 	case nvme_cmd_read:
1028 	case nvme_cmd_write:
1029 	case nvme_cmd_zone_append:
1030 		if (req->sq->ctrl->pi_support && nvmet_ns_has_pi(req->ns))
1031 			metadata_len = nvmet_rw_metadata_len(req);
1032 		return nvmet_rw_data_len(req) + metadata_len;
1033 	case nvme_cmd_dsm:
1034 		return nvmet_dsm_len(req);
1035 	case nvme_cmd_zone_mgmt_recv:
1036 		return (le32_to_cpu(req->cmd->zmr.numd) + 1) << 2;
1037 	default:
1038 		return 0;
1039 	}
1040 }
1041 
1042 static u16 nvmet_parse_io_cmd(struct nvmet_req *req)
1043 {
1044 	struct nvme_command *cmd = req->cmd;
1045 	u16 ret;
1046 
1047 	if (nvme_is_fabrics(cmd))
1048 		return nvmet_parse_fabrics_io_cmd(req);
1049 
1050 	if (unlikely(!nvmet_check_auth_status(req)))
1051 		return NVME_SC_AUTH_REQUIRED | NVME_STATUS_DNR;
1052 
1053 	ret = nvmet_check_ctrl_status(req);
1054 	if (unlikely(ret))
1055 		return ret;
1056 
1057 	if (nvmet_is_passthru_req(req))
1058 		return nvmet_parse_passthru_io_cmd(req);
1059 
1060 	ret = nvmet_req_find_ns(req);
1061 	if (unlikely(ret))
1062 		return ret;
1063 
1064 	ret = nvmet_check_ana_state(req->port, req->ns);
1065 	if (unlikely(ret)) {
1066 		req->error_loc = offsetof(struct nvme_common_command, nsid);
1067 		return ret;
1068 	}
1069 	ret = nvmet_io_cmd_check_access(req);
1070 	if (unlikely(ret)) {
1071 		req->error_loc = offsetof(struct nvme_common_command, nsid);
1072 		return ret;
1073 	}
1074 
1075 	if (req->ns->pr.enable) {
1076 		ret = nvmet_parse_pr_cmd(req);
1077 		if (!ret)
1078 			return ret;
1079 	}
1080 
1081 	switch (req->ns->csi) {
1082 	case NVME_CSI_NVM:
1083 		if (req->ns->file)
1084 			ret = nvmet_file_parse_io_cmd(req);
1085 		else
1086 			ret = nvmet_bdev_parse_io_cmd(req);
1087 		break;
1088 	case NVME_CSI_ZNS:
1089 		if (IS_ENABLED(CONFIG_BLK_DEV_ZONED))
1090 			ret = nvmet_bdev_zns_parse_io_cmd(req);
1091 		else
1092 			ret = NVME_SC_INVALID_IO_CMD_SET;
1093 		break;
1094 	default:
1095 		ret = NVME_SC_INVALID_IO_CMD_SET;
1096 	}
1097 	if (ret)
1098 		return ret;
1099 
1100 	if (req->ns->pr.enable) {
1101 		ret = nvmet_pr_check_cmd_access(req);
1102 		if (ret)
1103 			return ret;
1104 
1105 		ret = nvmet_pr_get_ns_pc_ref(req);
1106 	}
1107 	return ret;
1108 }
1109 
1110 bool nvmet_req_init(struct nvmet_req *req, struct nvmet_cq *cq,
1111 		struct nvmet_sq *sq, const struct nvmet_fabrics_ops *ops)
1112 {
1113 	u8 flags = req->cmd->common.flags;
1114 	u16 status;
1115 
1116 	req->cq = cq;
1117 	req->sq = sq;
1118 	req->ops = ops;
1119 	req->sg = NULL;
1120 	req->metadata_sg = NULL;
1121 	req->sg_cnt = 0;
1122 	req->metadata_sg_cnt = 0;
1123 	req->transfer_len = 0;
1124 	req->metadata_len = 0;
1125 	req->cqe->result.u64 = 0;
1126 	req->cqe->status = 0;
1127 	req->cqe->sq_head = 0;
1128 	req->ns = NULL;
1129 	req->error_loc = NVMET_NO_ERROR_LOC;
1130 	req->error_slba = 0;
1131 	req->pc_ref = NULL;
1132 
1133 	/* no support for fused commands yet */
1134 	if (unlikely(flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND))) {
1135 		req->error_loc = offsetof(struct nvme_common_command, flags);
1136 		status = NVME_SC_INVALID_FIELD | NVME_STATUS_DNR;
1137 		goto fail;
1138 	}
1139 
1140 	/*
1141 	 * For fabrics, PSDT field shall describe metadata pointer (MPTR) that
1142 	 * contains an address of a single contiguous physical buffer that is
1143 	 * byte aligned. For PCI controllers, this is optional so not enforced.
1144 	 */
1145 	if (unlikely((flags & NVME_CMD_SGL_ALL) != NVME_CMD_SGL_METABUF)) {
1146 		if (!req->sq->ctrl || !nvmet_is_pci_ctrl(req->sq->ctrl)) {
1147 			req->error_loc =
1148 				offsetof(struct nvme_common_command, flags);
1149 			status = NVME_SC_INVALID_FIELD | NVME_STATUS_DNR;
1150 			goto fail;
1151 		}
1152 	}
1153 
1154 	if (unlikely(!req->sq->ctrl))
1155 		/* will return an error for any non-connect command: */
1156 		status = nvmet_parse_connect_cmd(req);
1157 	else if (likely(req->sq->qid != 0))
1158 		status = nvmet_parse_io_cmd(req);
1159 	else
1160 		status = nvmet_parse_admin_cmd(req);
1161 
1162 	if (status)
1163 		goto fail;
1164 
1165 	trace_nvmet_req_init(req, req->cmd);
1166 
1167 	if (unlikely(!percpu_ref_tryget_live(&sq->ref))) {
1168 		status = NVME_SC_INVALID_FIELD | NVME_STATUS_DNR;
1169 		goto fail;
1170 	}
1171 
1172 	if (sq->ctrl)
1173 		sq->ctrl->reset_tbkas = true;
1174 
1175 	return true;
1176 
1177 fail:
1178 	__nvmet_req_complete(req, status);
1179 	return false;
1180 }
1181 EXPORT_SYMBOL_GPL(nvmet_req_init);
1182 
1183 void nvmet_req_uninit(struct nvmet_req *req)
1184 {
1185 	percpu_ref_put(&req->sq->ref);
1186 	if (req->pc_ref)
1187 		nvmet_pr_put_ns_pc_ref(req->pc_ref);
1188 	if (req->ns)
1189 		nvmet_put_namespace(req->ns);
1190 }
1191 EXPORT_SYMBOL_GPL(nvmet_req_uninit);
1192 
1193 size_t nvmet_req_transfer_len(struct nvmet_req *req)
1194 {
1195 	if (likely(req->sq->qid != 0))
1196 		return nvmet_io_cmd_transfer_len(req);
1197 	if (unlikely(!req->sq->ctrl))
1198 		return nvmet_connect_cmd_data_len(req);
1199 	return nvmet_admin_cmd_data_len(req);
1200 }
1201 EXPORT_SYMBOL_GPL(nvmet_req_transfer_len);
1202 
1203 bool nvmet_check_transfer_len(struct nvmet_req *req, size_t len)
1204 {
1205 	if (unlikely(len != req->transfer_len)) {
1206 		u16 status;
1207 
1208 		req->error_loc = offsetof(struct nvme_common_command, dptr);
1209 		if (req->cmd->common.flags & NVME_CMD_SGL_ALL)
1210 			status = NVME_SC_SGL_INVALID_DATA;
1211 		else
1212 			status = NVME_SC_INVALID_FIELD;
1213 		nvmet_req_complete(req, status | NVME_STATUS_DNR);
1214 		return false;
1215 	}
1216 
1217 	return true;
1218 }
1219 EXPORT_SYMBOL_GPL(nvmet_check_transfer_len);
1220 
1221 bool nvmet_check_data_len_lte(struct nvmet_req *req, size_t data_len)
1222 {
1223 	if (unlikely(data_len > req->transfer_len)) {
1224 		u16 status;
1225 
1226 		req->error_loc = offsetof(struct nvme_common_command, dptr);
1227 		if (req->cmd->common.flags & NVME_CMD_SGL_ALL)
1228 			status = NVME_SC_SGL_INVALID_DATA;
1229 		else
1230 			status = NVME_SC_INVALID_FIELD;
1231 		nvmet_req_complete(req, status | NVME_STATUS_DNR);
1232 		return false;
1233 	}
1234 
1235 	return true;
1236 }
1237 
1238 static unsigned int nvmet_data_transfer_len(struct nvmet_req *req)
1239 {
1240 	return req->transfer_len - req->metadata_len;
1241 }
1242 
1243 static int nvmet_req_alloc_p2pmem_sgls(struct pci_dev *p2p_dev,
1244 		struct nvmet_req *req)
1245 {
1246 	req->sg = pci_p2pmem_alloc_sgl(p2p_dev, &req->sg_cnt,
1247 			nvmet_data_transfer_len(req));
1248 	if (!req->sg)
1249 		goto out_err;
1250 
1251 	if (req->metadata_len) {
1252 		req->metadata_sg = pci_p2pmem_alloc_sgl(p2p_dev,
1253 				&req->metadata_sg_cnt, req->metadata_len);
1254 		if (!req->metadata_sg)
1255 			goto out_free_sg;
1256 	}
1257 
1258 	req->p2p_dev = p2p_dev;
1259 
1260 	return 0;
1261 out_free_sg:
1262 	pci_p2pmem_free_sgl(req->p2p_dev, req->sg);
1263 out_err:
1264 	return -ENOMEM;
1265 }
1266 
1267 static struct pci_dev *nvmet_req_find_p2p_dev(struct nvmet_req *req)
1268 {
1269 	if (!IS_ENABLED(CONFIG_PCI_P2PDMA) ||
1270 	    !req->sq->ctrl || !req->sq->qid || !req->ns)
1271 		return NULL;
1272 	return radix_tree_lookup(&req->sq->ctrl->p2p_ns_map, req->ns->nsid);
1273 }
1274 
1275 int nvmet_req_alloc_sgls(struct nvmet_req *req)
1276 {
1277 	struct pci_dev *p2p_dev = nvmet_req_find_p2p_dev(req);
1278 
1279 	if (p2p_dev && !nvmet_req_alloc_p2pmem_sgls(p2p_dev, req))
1280 		return 0;
1281 
1282 	req->sg = sgl_alloc(nvmet_data_transfer_len(req), GFP_KERNEL,
1283 			    &req->sg_cnt);
1284 	if (unlikely(!req->sg))
1285 		goto out;
1286 
1287 	if (req->metadata_len) {
1288 		req->metadata_sg = sgl_alloc(req->metadata_len, GFP_KERNEL,
1289 					     &req->metadata_sg_cnt);
1290 		if (unlikely(!req->metadata_sg))
1291 			goto out_free;
1292 	}
1293 
1294 	return 0;
1295 out_free:
1296 	sgl_free(req->sg);
1297 out:
1298 	return -ENOMEM;
1299 }
1300 EXPORT_SYMBOL_GPL(nvmet_req_alloc_sgls);
1301 
1302 void nvmet_req_free_sgls(struct nvmet_req *req)
1303 {
1304 	if (req->p2p_dev) {
1305 		pci_p2pmem_free_sgl(req->p2p_dev, req->sg);
1306 		if (req->metadata_sg)
1307 			pci_p2pmem_free_sgl(req->p2p_dev, req->metadata_sg);
1308 		req->p2p_dev = NULL;
1309 	} else {
1310 		sgl_free(req->sg);
1311 		if (req->metadata_sg)
1312 			sgl_free(req->metadata_sg);
1313 	}
1314 
1315 	req->sg = NULL;
1316 	req->metadata_sg = NULL;
1317 	req->sg_cnt = 0;
1318 	req->metadata_sg_cnt = 0;
1319 }
1320 EXPORT_SYMBOL_GPL(nvmet_req_free_sgls);
1321 
1322 static inline bool nvmet_css_supported(u8 cc_css)
1323 {
1324 	switch (cc_css << NVME_CC_CSS_SHIFT) {
1325 	case NVME_CC_CSS_NVM:
1326 	case NVME_CC_CSS_CSI:
1327 		return true;
1328 	default:
1329 		return false;
1330 	}
1331 }
1332 
1333 static void nvmet_start_ctrl(struct nvmet_ctrl *ctrl)
1334 {
1335 	lockdep_assert_held(&ctrl->lock);
1336 
1337 	/*
1338 	 * Only I/O controllers should verify iosqes,iocqes.
1339 	 * Strictly speaking, the spec says a discovery controller
1340 	 * should verify iosqes,iocqes are zeroed, however that
1341 	 * would break backwards compatibility, so don't enforce it.
1342 	 */
1343 	if (!nvmet_is_disc_subsys(ctrl->subsys) &&
1344 	    (nvmet_cc_iosqes(ctrl->cc) != NVME_NVM_IOSQES ||
1345 	     nvmet_cc_iocqes(ctrl->cc) != NVME_NVM_IOCQES)) {
1346 		ctrl->csts = NVME_CSTS_CFS;
1347 		return;
1348 	}
1349 
1350 	if (nvmet_cc_mps(ctrl->cc) != 0 ||
1351 	    nvmet_cc_ams(ctrl->cc) != 0 ||
1352 	    !nvmet_css_supported(nvmet_cc_css(ctrl->cc))) {
1353 		ctrl->csts = NVME_CSTS_CFS;
1354 		return;
1355 	}
1356 
1357 	ctrl->csts = NVME_CSTS_RDY;
1358 
1359 	/*
1360 	 * Controllers that are not yet enabled should not really enforce the
1361 	 * keep alive timeout, but we still want to track a timeout and cleanup
1362 	 * in case a host died before it enabled the controller.  Hence, simply
1363 	 * reset the keep alive timer when the controller is enabled.
1364 	 */
1365 	if (ctrl->kato)
1366 		mod_delayed_work(nvmet_wq, &ctrl->ka_work, ctrl->kato * HZ);
1367 }
1368 
1369 static void nvmet_clear_ctrl(struct nvmet_ctrl *ctrl)
1370 {
1371 	lockdep_assert_held(&ctrl->lock);
1372 
1373 	/* XXX: tear down queues? */
1374 	ctrl->csts &= ~NVME_CSTS_RDY;
1375 	ctrl->cc = 0;
1376 }
1377 
1378 void nvmet_update_cc(struct nvmet_ctrl *ctrl, u32 new)
1379 {
1380 	u32 old;
1381 
1382 	mutex_lock(&ctrl->lock);
1383 	old = ctrl->cc;
1384 	ctrl->cc = new;
1385 
1386 	if (nvmet_cc_en(new) && !nvmet_cc_en(old))
1387 		nvmet_start_ctrl(ctrl);
1388 	if (!nvmet_cc_en(new) && nvmet_cc_en(old))
1389 		nvmet_clear_ctrl(ctrl);
1390 	if (nvmet_cc_shn(new) && !nvmet_cc_shn(old)) {
1391 		nvmet_clear_ctrl(ctrl);
1392 		ctrl->csts |= NVME_CSTS_SHST_CMPLT;
1393 	}
1394 	if (!nvmet_cc_shn(new) && nvmet_cc_shn(old))
1395 		ctrl->csts &= ~NVME_CSTS_SHST_CMPLT;
1396 	mutex_unlock(&ctrl->lock);
1397 }
1398 EXPORT_SYMBOL_GPL(nvmet_update_cc);
1399 
1400 static void nvmet_init_cap(struct nvmet_ctrl *ctrl)
1401 {
1402 	/* command sets supported: NVMe command set: */
1403 	ctrl->cap = (1ULL << 37);
1404 	/* Controller supports one or more I/O Command Sets */
1405 	ctrl->cap |= (1ULL << 43);
1406 	/* CC.EN timeout in 500msec units: */
1407 	ctrl->cap |= (15ULL << 24);
1408 	/* maximum queue entries supported: */
1409 	if (ctrl->ops->get_max_queue_size)
1410 		ctrl->cap |= min_t(u16, ctrl->ops->get_max_queue_size(ctrl),
1411 				   ctrl->port->max_queue_size) - 1;
1412 	else
1413 		ctrl->cap |= ctrl->port->max_queue_size - 1;
1414 
1415 	if (nvmet_is_passthru_subsys(ctrl->subsys))
1416 		nvmet_passthrough_override_cap(ctrl);
1417 }
1418 
1419 struct nvmet_ctrl *nvmet_ctrl_find_get(const char *subsysnqn,
1420 				       const char *hostnqn, u16 cntlid,
1421 				       struct nvmet_req *req)
1422 {
1423 	struct nvmet_ctrl *ctrl = NULL;
1424 	struct nvmet_subsys *subsys;
1425 
1426 	subsys = nvmet_find_get_subsys(req->port, subsysnqn);
1427 	if (!subsys) {
1428 		pr_warn("connect request for invalid subsystem %s!\n",
1429 			subsysnqn);
1430 		req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn);
1431 		goto out;
1432 	}
1433 
1434 	mutex_lock(&subsys->lock);
1435 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
1436 		if (ctrl->cntlid == cntlid) {
1437 			if (strncmp(hostnqn, ctrl->hostnqn, NVMF_NQN_SIZE)) {
1438 				pr_warn("hostnqn mismatch.\n");
1439 				continue;
1440 			}
1441 			if (!kref_get_unless_zero(&ctrl->ref))
1442 				continue;
1443 
1444 			/* ctrl found */
1445 			goto found;
1446 		}
1447 	}
1448 
1449 	ctrl = NULL; /* ctrl not found */
1450 	pr_warn("could not find controller %d for subsys %s / host %s\n",
1451 		cntlid, subsysnqn, hostnqn);
1452 	req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(cntlid);
1453 
1454 found:
1455 	mutex_unlock(&subsys->lock);
1456 	nvmet_subsys_put(subsys);
1457 out:
1458 	return ctrl;
1459 }
1460 
1461 u16 nvmet_check_ctrl_status(struct nvmet_req *req)
1462 {
1463 	if (unlikely(!(req->sq->ctrl->cc & NVME_CC_ENABLE))) {
1464 		pr_err("got cmd %d while CC.EN == 0 on qid = %d\n",
1465 		       req->cmd->common.opcode, req->sq->qid);
1466 		return NVME_SC_CMD_SEQ_ERROR | NVME_STATUS_DNR;
1467 	}
1468 
1469 	if (unlikely(!(req->sq->ctrl->csts & NVME_CSTS_RDY))) {
1470 		pr_err("got cmd %d while CSTS.RDY == 0 on qid = %d\n",
1471 		       req->cmd->common.opcode, req->sq->qid);
1472 		return NVME_SC_CMD_SEQ_ERROR | NVME_STATUS_DNR;
1473 	}
1474 
1475 	if (unlikely(!nvmet_check_auth_status(req))) {
1476 		pr_warn("qid %d not authenticated\n", req->sq->qid);
1477 		return NVME_SC_AUTH_REQUIRED | NVME_STATUS_DNR;
1478 	}
1479 	return 0;
1480 }
1481 
1482 bool nvmet_host_allowed(struct nvmet_subsys *subsys, const char *hostnqn)
1483 {
1484 	struct nvmet_host_link *p;
1485 
1486 	lockdep_assert_held(&nvmet_config_sem);
1487 
1488 	if (subsys->allow_any_host)
1489 		return true;
1490 
1491 	if (nvmet_is_disc_subsys(subsys)) /* allow all access to disc subsys */
1492 		return true;
1493 
1494 	list_for_each_entry(p, &subsys->hosts, entry) {
1495 		if (!strcmp(nvmet_host_name(p->host), hostnqn))
1496 			return true;
1497 	}
1498 
1499 	return false;
1500 }
1501 
1502 /*
1503  * Note: ctrl->subsys->lock should be held when calling this function
1504  */
1505 static void nvmet_setup_p2p_ns_map(struct nvmet_ctrl *ctrl,
1506 		struct device *p2p_client)
1507 {
1508 	struct nvmet_ns *ns;
1509 	unsigned long idx;
1510 
1511 	if (!p2p_client)
1512 		return;
1513 
1514 	ctrl->p2p_client = get_device(p2p_client);
1515 
1516 	nvmet_for_each_enabled_ns(&ctrl->subsys->namespaces, idx, ns)
1517 		nvmet_p2pmem_ns_add_p2p(ctrl, ns);
1518 }
1519 
1520 /*
1521  * Note: ctrl->subsys->lock should be held when calling this function
1522  */
1523 static void nvmet_release_p2p_ns_map(struct nvmet_ctrl *ctrl)
1524 {
1525 	struct radix_tree_iter iter;
1526 	void __rcu **slot;
1527 
1528 	radix_tree_for_each_slot(slot, &ctrl->p2p_ns_map, &iter, 0)
1529 		pci_dev_put(radix_tree_deref_slot(slot));
1530 
1531 	put_device(ctrl->p2p_client);
1532 }
1533 
1534 static void nvmet_fatal_error_handler(struct work_struct *work)
1535 {
1536 	struct nvmet_ctrl *ctrl =
1537 			container_of(work, struct nvmet_ctrl, fatal_err_work);
1538 
1539 	pr_err("ctrl %d fatal error occurred!\n", ctrl->cntlid);
1540 	ctrl->ops->delete_ctrl(ctrl);
1541 }
1542 
1543 struct nvmet_ctrl *nvmet_alloc_ctrl(struct nvmet_alloc_ctrl_args *args)
1544 {
1545 	struct nvmet_subsys *subsys;
1546 	struct nvmet_ctrl *ctrl;
1547 	u32 kato = args->kato;
1548 	u8 dhchap_status;
1549 	int ret;
1550 
1551 	args->status = NVME_SC_CONNECT_INVALID_PARAM | NVME_STATUS_DNR;
1552 	subsys = nvmet_find_get_subsys(args->port, args->subsysnqn);
1553 	if (!subsys) {
1554 		pr_warn("connect request for invalid subsystem %s!\n",
1555 			args->subsysnqn);
1556 		args->result = IPO_IATTR_CONNECT_DATA(subsysnqn);
1557 		args->error_loc = offsetof(struct nvme_common_command, dptr);
1558 		return NULL;
1559 	}
1560 
1561 	down_read(&nvmet_config_sem);
1562 	if (!nvmet_host_allowed(subsys, args->hostnqn)) {
1563 		pr_info("connect by host %s for subsystem %s not allowed\n",
1564 			args->hostnqn, args->subsysnqn);
1565 		args->result = IPO_IATTR_CONNECT_DATA(hostnqn);
1566 		up_read(&nvmet_config_sem);
1567 		args->status = NVME_SC_CONNECT_INVALID_HOST | NVME_STATUS_DNR;
1568 		args->error_loc = offsetof(struct nvme_common_command, dptr);
1569 		goto out_put_subsystem;
1570 	}
1571 	up_read(&nvmet_config_sem);
1572 
1573 	args->status = NVME_SC_INTERNAL;
1574 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1575 	if (!ctrl)
1576 		goto out_put_subsystem;
1577 	mutex_init(&ctrl->lock);
1578 
1579 	ctrl->port = args->port;
1580 	ctrl->ops = args->ops;
1581 
1582 #ifdef CONFIG_NVME_TARGET_PASSTHRU
1583 	/* By default, set loop targets to clear IDS by default */
1584 	if (ctrl->port->disc_addr.trtype == NVMF_TRTYPE_LOOP)
1585 		subsys->clear_ids = 1;
1586 #endif
1587 
1588 	INIT_WORK(&ctrl->async_event_work, nvmet_async_event_work);
1589 	INIT_LIST_HEAD(&ctrl->async_events);
1590 	INIT_RADIX_TREE(&ctrl->p2p_ns_map, GFP_KERNEL);
1591 	INIT_WORK(&ctrl->fatal_err_work, nvmet_fatal_error_handler);
1592 	INIT_DELAYED_WORK(&ctrl->ka_work, nvmet_keep_alive_timer);
1593 
1594 	memcpy(ctrl->subsysnqn, args->subsysnqn, NVMF_NQN_SIZE);
1595 	memcpy(ctrl->hostnqn, args->hostnqn, NVMF_NQN_SIZE);
1596 
1597 	kref_init(&ctrl->ref);
1598 	ctrl->subsys = subsys;
1599 	ctrl->pi_support = ctrl->port->pi_enable && ctrl->subsys->pi_support;
1600 	nvmet_init_cap(ctrl);
1601 	WRITE_ONCE(ctrl->aen_enabled, NVMET_AEN_CFG_OPTIONAL);
1602 
1603 	ctrl->changed_ns_list = kmalloc_array(NVME_MAX_CHANGED_NAMESPACES,
1604 			sizeof(__le32), GFP_KERNEL);
1605 	if (!ctrl->changed_ns_list)
1606 		goto out_free_ctrl;
1607 
1608 	ctrl->sqs = kcalloc(subsys->max_qid + 1,
1609 			sizeof(struct nvmet_sq *),
1610 			GFP_KERNEL);
1611 	if (!ctrl->sqs)
1612 		goto out_free_changed_ns_list;
1613 
1614 	ret = ida_alloc_range(&cntlid_ida,
1615 			     subsys->cntlid_min, subsys->cntlid_max,
1616 			     GFP_KERNEL);
1617 	if (ret < 0) {
1618 		args->status = NVME_SC_CONNECT_CTRL_BUSY | NVME_STATUS_DNR;
1619 		goto out_free_sqs;
1620 	}
1621 	ctrl->cntlid = ret;
1622 
1623 	uuid_copy(&ctrl->hostid, args->hostid);
1624 
1625 	/*
1626 	 * Discovery controllers may use some arbitrary high value
1627 	 * in order to cleanup stale discovery sessions
1628 	 */
1629 	if (nvmet_is_disc_subsys(ctrl->subsys) && !kato)
1630 		kato = NVMET_DISC_KATO_MS;
1631 
1632 	/* keep-alive timeout in seconds */
1633 	ctrl->kato = DIV_ROUND_UP(kato, 1000);
1634 
1635 	ctrl->err_counter = 0;
1636 	spin_lock_init(&ctrl->error_lock);
1637 
1638 	nvmet_start_keep_alive_timer(ctrl);
1639 
1640 	mutex_lock(&subsys->lock);
1641 	ret = nvmet_ctrl_init_pr(ctrl);
1642 	if (ret)
1643 		goto init_pr_fail;
1644 	list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
1645 	nvmet_setup_p2p_ns_map(ctrl, args->p2p_client);
1646 	nvmet_debugfs_ctrl_setup(ctrl);
1647 	mutex_unlock(&subsys->lock);
1648 
1649 	if (args->hostid)
1650 		uuid_copy(&ctrl->hostid, args->hostid);
1651 
1652 	dhchap_status = nvmet_setup_auth(ctrl);
1653 	if (dhchap_status) {
1654 		pr_err("Failed to setup authentication, dhchap status %u\n",
1655 		       dhchap_status);
1656 		nvmet_ctrl_put(ctrl);
1657 		if (dhchap_status == NVME_AUTH_DHCHAP_FAILURE_FAILED)
1658 			args->status =
1659 				NVME_SC_CONNECT_INVALID_HOST | NVME_STATUS_DNR;
1660 		else
1661 			args->status = NVME_SC_INTERNAL;
1662 		return NULL;
1663 	}
1664 
1665 	args->status = NVME_SC_SUCCESS;
1666 
1667 	pr_info("Created %s controller %d for subsystem %s for NQN %s%s%s.\n",
1668 		nvmet_is_disc_subsys(ctrl->subsys) ? "discovery" : "nvm",
1669 		ctrl->cntlid, ctrl->subsys->subsysnqn, ctrl->hostnqn,
1670 		ctrl->pi_support ? " T10-PI is enabled" : "",
1671 		nvmet_has_auth(ctrl) ? " with DH-HMAC-CHAP" : "");
1672 
1673 	return ctrl;
1674 
1675 init_pr_fail:
1676 	mutex_unlock(&subsys->lock);
1677 	nvmet_stop_keep_alive_timer(ctrl);
1678 	ida_free(&cntlid_ida, ctrl->cntlid);
1679 out_free_sqs:
1680 	kfree(ctrl->sqs);
1681 out_free_changed_ns_list:
1682 	kfree(ctrl->changed_ns_list);
1683 out_free_ctrl:
1684 	kfree(ctrl);
1685 out_put_subsystem:
1686 	nvmet_subsys_put(subsys);
1687 	return NULL;
1688 }
1689 EXPORT_SYMBOL_GPL(nvmet_alloc_ctrl);
1690 
1691 static void nvmet_ctrl_free(struct kref *ref)
1692 {
1693 	struct nvmet_ctrl *ctrl = container_of(ref, struct nvmet_ctrl, ref);
1694 	struct nvmet_subsys *subsys = ctrl->subsys;
1695 
1696 	mutex_lock(&subsys->lock);
1697 	nvmet_ctrl_destroy_pr(ctrl);
1698 	nvmet_release_p2p_ns_map(ctrl);
1699 	list_del(&ctrl->subsys_entry);
1700 	mutex_unlock(&subsys->lock);
1701 
1702 	nvmet_stop_keep_alive_timer(ctrl);
1703 
1704 	flush_work(&ctrl->async_event_work);
1705 	cancel_work_sync(&ctrl->fatal_err_work);
1706 
1707 	nvmet_destroy_auth(ctrl);
1708 
1709 	nvmet_debugfs_ctrl_free(ctrl);
1710 
1711 	ida_free(&cntlid_ida, ctrl->cntlid);
1712 
1713 	nvmet_async_events_free(ctrl);
1714 	kfree(ctrl->sqs);
1715 	kfree(ctrl->changed_ns_list);
1716 	kfree(ctrl);
1717 
1718 	nvmet_subsys_put(subsys);
1719 }
1720 
1721 void nvmet_ctrl_put(struct nvmet_ctrl *ctrl)
1722 {
1723 	kref_put(&ctrl->ref, nvmet_ctrl_free);
1724 }
1725 EXPORT_SYMBOL_GPL(nvmet_ctrl_put);
1726 
1727 void nvmet_ctrl_fatal_error(struct nvmet_ctrl *ctrl)
1728 {
1729 	mutex_lock(&ctrl->lock);
1730 	if (!(ctrl->csts & NVME_CSTS_CFS)) {
1731 		ctrl->csts |= NVME_CSTS_CFS;
1732 		queue_work(nvmet_wq, &ctrl->fatal_err_work);
1733 	}
1734 	mutex_unlock(&ctrl->lock);
1735 }
1736 EXPORT_SYMBOL_GPL(nvmet_ctrl_fatal_error);
1737 
1738 ssize_t nvmet_ctrl_host_traddr(struct nvmet_ctrl *ctrl,
1739 		char *traddr, size_t traddr_len)
1740 {
1741 	if (!ctrl->ops->host_traddr)
1742 		return -EOPNOTSUPP;
1743 	return ctrl->ops->host_traddr(ctrl, traddr, traddr_len);
1744 }
1745 
1746 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
1747 		const char *subsysnqn)
1748 {
1749 	struct nvmet_subsys_link *p;
1750 
1751 	if (!port)
1752 		return NULL;
1753 
1754 	if (!strcmp(NVME_DISC_SUBSYS_NAME, subsysnqn)) {
1755 		if (!kref_get_unless_zero(&nvmet_disc_subsys->ref))
1756 			return NULL;
1757 		return nvmet_disc_subsys;
1758 	}
1759 
1760 	down_read(&nvmet_config_sem);
1761 	if (!strncmp(nvmet_disc_subsys->subsysnqn, subsysnqn,
1762 				NVMF_NQN_SIZE)) {
1763 		if (kref_get_unless_zero(&nvmet_disc_subsys->ref)) {
1764 			up_read(&nvmet_config_sem);
1765 			return nvmet_disc_subsys;
1766 		}
1767 	}
1768 	list_for_each_entry(p, &port->subsystems, entry) {
1769 		if (!strncmp(p->subsys->subsysnqn, subsysnqn,
1770 				NVMF_NQN_SIZE)) {
1771 			if (!kref_get_unless_zero(&p->subsys->ref))
1772 				break;
1773 			up_read(&nvmet_config_sem);
1774 			return p->subsys;
1775 		}
1776 	}
1777 	up_read(&nvmet_config_sem);
1778 	return NULL;
1779 }
1780 
1781 struct nvmet_subsys *nvmet_subsys_alloc(const char *subsysnqn,
1782 		enum nvme_subsys_type type)
1783 {
1784 	struct nvmet_subsys *subsys;
1785 	char serial[NVMET_SN_MAX_SIZE / 2];
1786 	int ret;
1787 
1788 	subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
1789 	if (!subsys)
1790 		return ERR_PTR(-ENOMEM);
1791 
1792 	subsys->ver = NVMET_DEFAULT_VS;
1793 	/* generate a random serial number as our controllers are ephemeral: */
1794 	get_random_bytes(&serial, sizeof(serial));
1795 	bin2hex(subsys->serial, &serial, sizeof(serial));
1796 
1797 	subsys->model_number = kstrdup(NVMET_DEFAULT_CTRL_MODEL, GFP_KERNEL);
1798 	if (!subsys->model_number) {
1799 		ret = -ENOMEM;
1800 		goto free_subsys;
1801 	}
1802 
1803 	subsys->ieee_oui = 0;
1804 
1805 	subsys->firmware_rev = kstrndup(UTS_RELEASE, NVMET_FR_MAX_SIZE, GFP_KERNEL);
1806 	if (!subsys->firmware_rev) {
1807 		ret = -ENOMEM;
1808 		goto free_mn;
1809 	}
1810 
1811 	switch (type) {
1812 	case NVME_NQN_NVME:
1813 		subsys->max_qid = NVMET_NR_QUEUES;
1814 		break;
1815 	case NVME_NQN_DISC:
1816 	case NVME_NQN_CURR:
1817 		subsys->max_qid = 0;
1818 		break;
1819 	default:
1820 		pr_err("%s: Unknown Subsystem type - %d\n", __func__, type);
1821 		ret = -EINVAL;
1822 		goto free_fr;
1823 	}
1824 	subsys->type = type;
1825 	subsys->subsysnqn = kstrndup(subsysnqn, NVMF_NQN_SIZE,
1826 			GFP_KERNEL);
1827 	if (!subsys->subsysnqn) {
1828 		ret = -ENOMEM;
1829 		goto free_fr;
1830 	}
1831 	subsys->cntlid_min = NVME_CNTLID_MIN;
1832 	subsys->cntlid_max = NVME_CNTLID_MAX;
1833 	kref_init(&subsys->ref);
1834 
1835 	mutex_init(&subsys->lock);
1836 	xa_init(&subsys->namespaces);
1837 	INIT_LIST_HEAD(&subsys->ctrls);
1838 	INIT_LIST_HEAD(&subsys->hosts);
1839 
1840 	ret = nvmet_debugfs_subsys_setup(subsys);
1841 	if (ret)
1842 		goto free_subsysnqn;
1843 
1844 	return subsys;
1845 
1846 free_subsysnqn:
1847 	kfree(subsys->subsysnqn);
1848 free_fr:
1849 	kfree(subsys->firmware_rev);
1850 free_mn:
1851 	kfree(subsys->model_number);
1852 free_subsys:
1853 	kfree(subsys);
1854 	return ERR_PTR(ret);
1855 }
1856 
1857 static void nvmet_subsys_free(struct kref *ref)
1858 {
1859 	struct nvmet_subsys *subsys =
1860 		container_of(ref, struct nvmet_subsys, ref);
1861 
1862 	WARN_ON_ONCE(!xa_empty(&subsys->namespaces));
1863 
1864 	nvmet_debugfs_subsys_free(subsys);
1865 
1866 	xa_destroy(&subsys->namespaces);
1867 	nvmet_passthru_subsys_free(subsys);
1868 
1869 	kfree(subsys->subsysnqn);
1870 	kfree(subsys->model_number);
1871 	kfree(subsys->firmware_rev);
1872 	kfree(subsys);
1873 }
1874 
1875 void nvmet_subsys_del_ctrls(struct nvmet_subsys *subsys)
1876 {
1877 	struct nvmet_ctrl *ctrl;
1878 
1879 	mutex_lock(&subsys->lock);
1880 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
1881 		ctrl->ops->delete_ctrl(ctrl);
1882 	mutex_unlock(&subsys->lock);
1883 }
1884 
1885 void nvmet_subsys_put(struct nvmet_subsys *subsys)
1886 {
1887 	kref_put(&subsys->ref, nvmet_subsys_free);
1888 }
1889 
1890 static int __init nvmet_init(void)
1891 {
1892 	int error = -ENOMEM;
1893 
1894 	nvmet_ana_group_enabled[NVMET_DEFAULT_ANA_GRPID] = 1;
1895 
1896 	nvmet_bvec_cache = kmem_cache_create("nvmet-bvec",
1897 			NVMET_MAX_MPOOL_BVEC * sizeof(struct bio_vec), 0,
1898 			SLAB_HWCACHE_ALIGN, NULL);
1899 	if (!nvmet_bvec_cache)
1900 		return -ENOMEM;
1901 
1902 	zbd_wq = alloc_workqueue("nvmet-zbd-wq", WQ_MEM_RECLAIM, 0);
1903 	if (!zbd_wq)
1904 		goto out_destroy_bvec_cache;
1905 
1906 	buffered_io_wq = alloc_workqueue("nvmet-buffered-io-wq",
1907 			WQ_MEM_RECLAIM, 0);
1908 	if (!buffered_io_wq)
1909 		goto out_free_zbd_work_queue;
1910 
1911 	nvmet_wq = alloc_workqueue("nvmet-wq",
1912 			WQ_MEM_RECLAIM | WQ_UNBOUND | WQ_SYSFS, 0);
1913 	if (!nvmet_wq)
1914 		goto out_free_buffered_work_queue;
1915 
1916 	error = nvmet_init_discovery();
1917 	if (error)
1918 		goto out_free_nvmet_work_queue;
1919 
1920 	error = nvmet_init_debugfs();
1921 	if (error)
1922 		goto out_exit_discovery;
1923 
1924 	error = nvmet_init_configfs();
1925 	if (error)
1926 		goto out_exit_debugfs;
1927 
1928 	return 0;
1929 
1930 out_exit_debugfs:
1931 	nvmet_exit_debugfs();
1932 out_exit_discovery:
1933 	nvmet_exit_discovery();
1934 out_free_nvmet_work_queue:
1935 	destroy_workqueue(nvmet_wq);
1936 out_free_buffered_work_queue:
1937 	destroy_workqueue(buffered_io_wq);
1938 out_free_zbd_work_queue:
1939 	destroy_workqueue(zbd_wq);
1940 out_destroy_bvec_cache:
1941 	kmem_cache_destroy(nvmet_bvec_cache);
1942 	return error;
1943 }
1944 
1945 static void __exit nvmet_exit(void)
1946 {
1947 	nvmet_exit_configfs();
1948 	nvmet_exit_debugfs();
1949 	nvmet_exit_discovery();
1950 	ida_destroy(&cntlid_ida);
1951 	destroy_workqueue(nvmet_wq);
1952 	destroy_workqueue(buffered_io_wq);
1953 	destroy_workqueue(zbd_wq);
1954 	kmem_cache_destroy(nvmet_bvec_cache);
1955 
1956 	BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_entry) != 1024);
1957 	BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_hdr) != 1024);
1958 }
1959 
1960 module_init(nvmet_init);
1961 module_exit(nvmet_exit);
1962 
1963 MODULE_DESCRIPTION("NVMe target core framework");
1964 MODULE_LICENSE("GPL v2");
1965