1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Common code for the NVMe target. 4 * Copyright (c) 2015-2016 HGST, a Western Digital Company. 5 */ 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 #include <linux/module.h> 8 #include <linux/random.h> 9 #include <linux/rculist.h> 10 #include <linux/pci-p2pdma.h> 11 #include <linux/scatterlist.h> 12 13 #include <generated/utsrelease.h> 14 15 #define CREATE_TRACE_POINTS 16 #include "trace.h" 17 18 #include "nvmet.h" 19 #include "debugfs.h" 20 21 struct kmem_cache *nvmet_bvec_cache; 22 struct workqueue_struct *buffered_io_wq; 23 struct workqueue_struct *zbd_wq; 24 static const struct nvmet_fabrics_ops *nvmet_transports[NVMF_TRTYPE_MAX]; 25 static DEFINE_IDA(cntlid_ida); 26 27 struct workqueue_struct *nvmet_wq; 28 EXPORT_SYMBOL_GPL(nvmet_wq); 29 30 /* 31 * This read/write semaphore is used to synchronize access to configuration 32 * information on a target system that will result in discovery log page 33 * information change for at least one host. 34 * The full list of resources to protected by this semaphore is: 35 * 36 * - subsystems list 37 * - per-subsystem allowed hosts list 38 * - allow_any_host subsystem attribute 39 * - nvmet_genctr 40 * - the nvmet_transports array 41 * 42 * When updating any of those lists/structures write lock should be obtained, 43 * while when reading (popolating discovery log page or checking host-subsystem 44 * link) read lock is obtained to allow concurrent reads. 45 */ 46 DECLARE_RWSEM(nvmet_config_sem); 47 48 u32 nvmet_ana_group_enabled[NVMET_MAX_ANAGRPS + 1]; 49 u64 nvmet_ana_chgcnt; 50 DECLARE_RWSEM(nvmet_ana_sem); 51 52 inline u16 errno_to_nvme_status(struct nvmet_req *req, int errno) 53 { 54 switch (errno) { 55 case 0: 56 return NVME_SC_SUCCESS; 57 case -ENOSPC: 58 req->error_loc = offsetof(struct nvme_rw_command, length); 59 return NVME_SC_CAP_EXCEEDED | NVME_STATUS_DNR; 60 case -EREMOTEIO: 61 req->error_loc = offsetof(struct nvme_rw_command, slba); 62 return NVME_SC_LBA_RANGE | NVME_STATUS_DNR; 63 case -EOPNOTSUPP: 64 req->error_loc = offsetof(struct nvme_common_command, opcode); 65 switch (req->cmd->common.opcode) { 66 case nvme_cmd_dsm: 67 case nvme_cmd_write_zeroes: 68 return NVME_SC_ONCS_NOT_SUPPORTED | NVME_STATUS_DNR; 69 default: 70 return NVME_SC_INVALID_OPCODE | NVME_STATUS_DNR; 71 } 72 break; 73 case -ENODATA: 74 req->error_loc = offsetof(struct nvme_rw_command, nsid); 75 return NVME_SC_ACCESS_DENIED; 76 case -EIO: 77 fallthrough; 78 default: 79 req->error_loc = offsetof(struct nvme_common_command, opcode); 80 return NVME_SC_INTERNAL | NVME_STATUS_DNR; 81 } 82 } 83 84 u16 nvmet_report_invalid_opcode(struct nvmet_req *req) 85 { 86 pr_debug("unhandled cmd %d on qid %d\n", req->cmd->common.opcode, 87 req->sq->qid); 88 89 req->error_loc = offsetof(struct nvme_common_command, opcode); 90 return NVME_SC_INVALID_OPCODE | NVME_STATUS_DNR; 91 } 92 93 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port, 94 const char *subsysnqn); 95 96 u16 nvmet_copy_to_sgl(struct nvmet_req *req, off_t off, const void *buf, 97 size_t len) 98 { 99 if (sg_pcopy_from_buffer(req->sg, req->sg_cnt, buf, len, off) != len) { 100 req->error_loc = offsetof(struct nvme_common_command, dptr); 101 return NVME_SC_SGL_INVALID_DATA | NVME_STATUS_DNR; 102 } 103 return 0; 104 } 105 106 u16 nvmet_copy_from_sgl(struct nvmet_req *req, off_t off, void *buf, size_t len) 107 { 108 if (sg_pcopy_to_buffer(req->sg, req->sg_cnt, buf, len, off) != len) { 109 req->error_loc = offsetof(struct nvme_common_command, dptr); 110 return NVME_SC_SGL_INVALID_DATA | NVME_STATUS_DNR; 111 } 112 return 0; 113 } 114 115 u16 nvmet_zero_sgl(struct nvmet_req *req, off_t off, size_t len) 116 { 117 if (sg_zero_buffer(req->sg, req->sg_cnt, len, off) != len) { 118 req->error_loc = offsetof(struct nvme_common_command, dptr); 119 return NVME_SC_SGL_INVALID_DATA | NVME_STATUS_DNR; 120 } 121 return 0; 122 } 123 124 static u32 nvmet_max_nsid(struct nvmet_subsys *subsys) 125 { 126 struct nvmet_ns *cur; 127 unsigned long idx; 128 u32 nsid = 0; 129 130 nvmet_for_each_enabled_ns(&subsys->namespaces, idx, cur) 131 nsid = cur->nsid; 132 133 return nsid; 134 } 135 136 static u32 nvmet_async_event_result(struct nvmet_async_event *aen) 137 { 138 return aen->event_type | (aen->event_info << 8) | (aen->log_page << 16); 139 } 140 141 static void nvmet_async_events_failall(struct nvmet_ctrl *ctrl) 142 { 143 struct nvmet_req *req; 144 145 mutex_lock(&ctrl->lock); 146 while (ctrl->nr_async_event_cmds) { 147 req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds]; 148 mutex_unlock(&ctrl->lock); 149 nvmet_req_complete(req, NVME_SC_INTERNAL | NVME_STATUS_DNR); 150 mutex_lock(&ctrl->lock); 151 } 152 mutex_unlock(&ctrl->lock); 153 } 154 155 static void nvmet_async_events_process(struct nvmet_ctrl *ctrl) 156 { 157 struct nvmet_async_event *aen; 158 struct nvmet_req *req; 159 160 mutex_lock(&ctrl->lock); 161 while (ctrl->nr_async_event_cmds && !list_empty(&ctrl->async_events)) { 162 aen = list_first_entry(&ctrl->async_events, 163 struct nvmet_async_event, entry); 164 req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds]; 165 nvmet_set_result(req, nvmet_async_event_result(aen)); 166 167 list_del(&aen->entry); 168 kfree(aen); 169 170 mutex_unlock(&ctrl->lock); 171 trace_nvmet_async_event(ctrl, req->cqe->result.u32); 172 nvmet_req_complete(req, 0); 173 mutex_lock(&ctrl->lock); 174 } 175 mutex_unlock(&ctrl->lock); 176 } 177 178 static void nvmet_async_events_free(struct nvmet_ctrl *ctrl) 179 { 180 struct nvmet_async_event *aen, *tmp; 181 182 mutex_lock(&ctrl->lock); 183 list_for_each_entry_safe(aen, tmp, &ctrl->async_events, entry) { 184 list_del(&aen->entry); 185 kfree(aen); 186 } 187 mutex_unlock(&ctrl->lock); 188 } 189 190 static void nvmet_async_event_work(struct work_struct *work) 191 { 192 struct nvmet_ctrl *ctrl = 193 container_of(work, struct nvmet_ctrl, async_event_work); 194 195 nvmet_async_events_process(ctrl); 196 } 197 198 void nvmet_add_async_event(struct nvmet_ctrl *ctrl, u8 event_type, 199 u8 event_info, u8 log_page) 200 { 201 struct nvmet_async_event *aen; 202 203 aen = kmalloc(sizeof(*aen), GFP_KERNEL); 204 if (!aen) 205 return; 206 207 aen->event_type = event_type; 208 aen->event_info = event_info; 209 aen->log_page = log_page; 210 211 mutex_lock(&ctrl->lock); 212 list_add_tail(&aen->entry, &ctrl->async_events); 213 mutex_unlock(&ctrl->lock); 214 215 queue_work(nvmet_wq, &ctrl->async_event_work); 216 } 217 218 static void nvmet_add_to_changed_ns_log(struct nvmet_ctrl *ctrl, __le32 nsid) 219 { 220 u32 i; 221 222 mutex_lock(&ctrl->lock); 223 if (ctrl->nr_changed_ns > NVME_MAX_CHANGED_NAMESPACES) 224 goto out_unlock; 225 226 for (i = 0; i < ctrl->nr_changed_ns; i++) { 227 if (ctrl->changed_ns_list[i] == nsid) 228 goto out_unlock; 229 } 230 231 if (ctrl->nr_changed_ns == NVME_MAX_CHANGED_NAMESPACES) { 232 ctrl->changed_ns_list[0] = cpu_to_le32(0xffffffff); 233 ctrl->nr_changed_ns = U32_MAX; 234 goto out_unlock; 235 } 236 237 ctrl->changed_ns_list[ctrl->nr_changed_ns++] = nsid; 238 out_unlock: 239 mutex_unlock(&ctrl->lock); 240 } 241 242 void nvmet_ns_changed(struct nvmet_subsys *subsys, u32 nsid) 243 { 244 struct nvmet_ctrl *ctrl; 245 246 lockdep_assert_held(&subsys->lock); 247 248 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) { 249 nvmet_add_to_changed_ns_log(ctrl, cpu_to_le32(nsid)); 250 if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_NS_ATTR)) 251 continue; 252 nvmet_add_async_event(ctrl, NVME_AER_NOTICE, 253 NVME_AER_NOTICE_NS_CHANGED, 254 NVME_LOG_CHANGED_NS); 255 } 256 } 257 258 void nvmet_send_ana_event(struct nvmet_subsys *subsys, 259 struct nvmet_port *port) 260 { 261 struct nvmet_ctrl *ctrl; 262 263 mutex_lock(&subsys->lock); 264 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) { 265 if (port && ctrl->port != port) 266 continue; 267 if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_ANA_CHANGE)) 268 continue; 269 nvmet_add_async_event(ctrl, NVME_AER_NOTICE, 270 NVME_AER_NOTICE_ANA, NVME_LOG_ANA); 271 } 272 mutex_unlock(&subsys->lock); 273 } 274 275 void nvmet_port_send_ana_event(struct nvmet_port *port) 276 { 277 struct nvmet_subsys_link *p; 278 279 down_read(&nvmet_config_sem); 280 list_for_each_entry(p, &port->subsystems, entry) 281 nvmet_send_ana_event(p->subsys, port); 282 up_read(&nvmet_config_sem); 283 } 284 285 int nvmet_register_transport(const struct nvmet_fabrics_ops *ops) 286 { 287 int ret = 0; 288 289 down_write(&nvmet_config_sem); 290 if (nvmet_transports[ops->type]) 291 ret = -EINVAL; 292 else 293 nvmet_transports[ops->type] = ops; 294 up_write(&nvmet_config_sem); 295 296 return ret; 297 } 298 EXPORT_SYMBOL_GPL(nvmet_register_transport); 299 300 void nvmet_unregister_transport(const struct nvmet_fabrics_ops *ops) 301 { 302 down_write(&nvmet_config_sem); 303 nvmet_transports[ops->type] = NULL; 304 up_write(&nvmet_config_sem); 305 } 306 EXPORT_SYMBOL_GPL(nvmet_unregister_transport); 307 308 void nvmet_port_del_ctrls(struct nvmet_port *port, struct nvmet_subsys *subsys) 309 { 310 struct nvmet_ctrl *ctrl; 311 312 mutex_lock(&subsys->lock); 313 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) { 314 if (ctrl->port == port) 315 ctrl->ops->delete_ctrl(ctrl); 316 } 317 mutex_unlock(&subsys->lock); 318 } 319 320 int nvmet_enable_port(struct nvmet_port *port) 321 { 322 const struct nvmet_fabrics_ops *ops; 323 int ret; 324 325 lockdep_assert_held(&nvmet_config_sem); 326 327 ops = nvmet_transports[port->disc_addr.trtype]; 328 if (!ops) { 329 up_write(&nvmet_config_sem); 330 request_module("nvmet-transport-%d", port->disc_addr.trtype); 331 down_write(&nvmet_config_sem); 332 ops = nvmet_transports[port->disc_addr.trtype]; 333 if (!ops) { 334 pr_err("transport type %d not supported\n", 335 port->disc_addr.trtype); 336 return -EINVAL; 337 } 338 } 339 340 if (!try_module_get(ops->owner)) 341 return -EINVAL; 342 343 /* 344 * If the user requested PI support and the transport isn't pi capable, 345 * don't enable the port. 346 */ 347 if (port->pi_enable && !(ops->flags & NVMF_METADATA_SUPPORTED)) { 348 pr_err("T10-PI is not supported by transport type %d\n", 349 port->disc_addr.trtype); 350 ret = -EINVAL; 351 goto out_put; 352 } 353 354 ret = ops->add_port(port); 355 if (ret) 356 goto out_put; 357 358 /* If the transport didn't set inline_data_size, then disable it. */ 359 if (port->inline_data_size < 0) 360 port->inline_data_size = 0; 361 362 /* 363 * If the transport didn't set the max_queue_size properly, then clamp 364 * it to the target limits. Also set default values in case the 365 * transport didn't set it at all. 366 */ 367 if (port->max_queue_size < 0) 368 port->max_queue_size = NVMET_MAX_QUEUE_SIZE; 369 else 370 port->max_queue_size = clamp_t(int, port->max_queue_size, 371 NVMET_MIN_QUEUE_SIZE, 372 NVMET_MAX_QUEUE_SIZE); 373 374 port->enabled = true; 375 port->tr_ops = ops; 376 return 0; 377 378 out_put: 379 module_put(ops->owner); 380 return ret; 381 } 382 383 void nvmet_disable_port(struct nvmet_port *port) 384 { 385 const struct nvmet_fabrics_ops *ops; 386 387 lockdep_assert_held(&nvmet_config_sem); 388 389 port->enabled = false; 390 port->tr_ops = NULL; 391 392 ops = nvmet_transports[port->disc_addr.trtype]; 393 ops->remove_port(port); 394 module_put(ops->owner); 395 } 396 397 static void nvmet_keep_alive_timer(struct work_struct *work) 398 { 399 struct nvmet_ctrl *ctrl = container_of(to_delayed_work(work), 400 struct nvmet_ctrl, ka_work); 401 bool reset_tbkas = ctrl->reset_tbkas; 402 403 ctrl->reset_tbkas = false; 404 if (reset_tbkas) { 405 pr_debug("ctrl %d reschedule traffic based keep-alive timer\n", 406 ctrl->cntlid); 407 queue_delayed_work(nvmet_wq, &ctrl->ka_work, ctrl->kato * HZ); 408 return; 409 } 410 411 pr_err("ctrl %d keep-alive timer (%d seconds) expired!\n", 412 ctrl->cntlid, ctrl->kato); 413 414 nvmet_ctrl_fatal_error(ctrl); 415 } 416 417 void nvmet_start_keep_alive_timer(struct nvmet_ctrl *ctrl) 418 { 419 if (unlikely(ctrl->kato == 0)) 420 return; 421 422 pr_debug("ctrl %d start keep-alive timer for %d secs\n", 423 ctrl->cntlid, ctrl->kato); 424 425 queue_delayed_work(nvmet_wq, &ctrl->ka_work, ctrl->kato * HZ); 426 } 427 428 void nvmet_stop_keep_alive_timer(struct nvmet_ctrl *ctrl) 429 { 430 if (unlikely(ctrl->kato == 0)) 431 return; 432 433 pr_debug("ctrl %d stop keep-alive\n", ctrl->cntlid); 434 435 cancel_delayed_work_sync(&ctrl->ka_work); 436 } 437 438 u16 nvmet_req_find_ns(struct nvmet_req *req) 439 { 440 u32 nsid = le32_to_cpu(req->cmd->common.nsid); 441 struct nvmet_subsys *subsys = nvmet_req_subsys(req); 442 443 req->ns = xa_load(&subsys->namespaces, nsid); 444 if (unlikely(!req->ns || !req->ns->enabled)) { 445 req->error_loc = offsetof(struct nvme_common_command, nsid); 446 if (!req->ns) /* ns doesn't exist! */ 447 return NVME_SC_INVALID_NS | NVME_STATUS_DNR; 448 449 /* ns exists but it's disabled */ 450 req->ns = NULL; 451 return NVME_SC_INTERNAL_PATH_ERROR; 452 } 453 454 percpu_ref_get(&req->ns->ref); 455 return NVME_SC_SUCCESS; 456 } 457 458 static void nvmet_destroy_namespace(struct percpu_ref *ref) 459 { 460 struct nvmet_ns *ns = container_of(ref, struct nvmet_ns, ref); 461 462 complete(&ns->disable_done); 463 } 464 465 void nvmet_put_namespace(struct nvmet_ns *ns) 466 { 467 percpu_ref_put(&ns->ref); 468 } 469 470 static void nvmet_ns_dev_disable(struct nvmet_ns *ns) 471 { 472 nvmet_bdev_ns_disable(ns); 473 nvmet_file_ns_disable(ns); 474 } 475 476 static int nvmet_p2pmem_ns_enable(struct nvmet_ns *ns) 477 { 478 int ret; 479 struct pci_dev *p2p_dev; 480 481 if (!ns->use_p2pmem) 482 return 0; 483 484 if (!ns->bdev) { 485 pr_err("peer-to-peer DMA is not supported by non-block device namespaces\n"); 486 return -EINVAL; 487 } 488 489 if (!blk_queue_pci_p2pdma(ns->bdev->bd_disk->queue)) { 490 pr_err("peer-to-peer DMA is not supported by the driver of %s\n", 491 ns->device_path); 492 return -EINVAL; 493 } 494 495 if (ns->p2p_dev) { 496 ret = pci_p2pdma_distance(ns->p2p_dev, nvmet_ns_dev(ns), true); 497 if (ret < 0) 498 return -EINVAL; 499 } else { 500 /* 501 * Right now we just check that there is p2pmem available so 502 * we can report an error to the user right away if there 503 * is not. We'll find the actual device to use once we 504 * setup the controller when the port's device is available. 505 */ 506 507 p2p_dev = pci_p2pmem_find(nvmet_ns_dev(ns)); 508 if (!p2p_dev) { 509 pr_err("no peer-to-peer memory is available for %s\n", 510 ns->device_path); 511 return -EINVAL; 512 } 513 514 pci_dev_put(p2p_dev); 515 } 516 517 return 0; 518 } 519 520 /* 521 * Note: ctrl->subsys->lock should be held when calling this function 522 */ 523 static void nvmet_p2pmem_ns_add_p2p(struct nvmet_ctrl *ctrl, 524 struct nvmet_ns *ns) 525 { 526 struct device *clients[2]; 527 struct pci_dev *p2p_dev; 528 int ret; 529 530 if (!ctrl->p2p_client || !ns->use_p2pmem) 531 return; 532 533 if (ns->p2p_dev) { 534 ret = pci_p2pdma_distance(ns->p2p_dev, ctrl->p2p_client, true); 535 if (ret < 0) 536 return; 537 538 p2p_dev = pci_dev_get(ns->p2p_dev); 539 } else { 540 clients[0] = ctrl->p2p_client; 541 clients[1] = nvmet_ns_dev(ns); 542 543 p2p_dev = pci_p2pmem_find_many(clients, ARRAY_SIZE(clients)); 544 if (!p2p_dev) { 545 pr_err("no peer-to-peer memory is available that's supported by %s and %s\n", 546 dev_name(ctrl->p2p_client), ns->device_path); 547 return; 548 } 549 } 550 551 ret = radix_tree_insert(&ctrl->p2p_ns_map, ns->nsid, p2p_dev); 552 if (ret < 0) 553 pci_dev_put(p2p_dev); 554 555 pr_info("using p2pmem on %s for nsid %d\n", pci_name(p2p_dev), 556 ns->nsid); 557 } 558 559 bool nvmet_ns_revalidate(struct nvmet_ns *ns) 560 { 561 loff_t oldsize = ns->size; 562 563 if (ns->bdev) 564 nvmet_bdev_ns_revalidate(ns); 565 else 566 nvmet_file_ns_revalidate(ns); 567 568 return oldsize != ns->size; 569 } 570 571 int nvmet_ns_enable(struct nvmet_ns *ns) 572 { 573 struct nvmet_subsys *subsys = ns->subsys; 574 struct nvmet_ctrl *ctrl; 575 int ret; 576 577 mutex_lock(&subsys->lock); 578 ret = 0; 579 580 if (nvmet_is_passthru_subsys(subsys)) { 581 pr_info("cannot enable both passthru and regular namespaces for a single subsystem"); 582 goto out_unlock; 583 } 584 585 if (ns->enabled) 586 goto out_unlock; 587 588 ret = -EMFILE; 589 590 ret = nvmet_bdev_ns_enable(ns); 591 if (ret == -ENOTBLK) 592 ret = nvmet_file_ns_enable(ns); 593 if (ret) 594 goto out_unlock; 595 596 ret = nvmet_p2pmem_ns_enable(ns); 597 if (ret) 598 goto out_dev_disable; 599 600 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) 601 nvmet_p2pmem_ns_add_p2p(ctrl, ns); 602 603 if (ns->pr.enable) { 604 ret = nvmet_pr_init_ns(ns); 605 if (ret) 606 goto out_dev_put; 607 } 608 609 nvmet_ns_changed(subsys, ns->nsid); 610 ns->enabled = true; 611 xa_set_mark(&subsys->namespaces, ns->nsid, NVMET_NS_ENABLED); 612 ret = 0; 613 out_unlock: 614 mutex_unlock(&subsys->lock); 615 return ret; 616 out_dev_put: 617 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) 618 pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid)); 619 out_dev_disable: 620 nvmet_ns_dev_disable(ns); 621 goto out_unlock; 622 } 623 624 void nvmet_ns_disable(struct nvmet_ns *ns) 625 { 626 struct nvmet_subsys *subsys = ns->subsys; 627 struct nvmet_ctrl *ctrl; 628 629 mutex_lock(&subsys->lock); 630 if (!ns->enabled) 631 goto out_unlock; 632 633 ns->enabled = false; 634 xa_clear_mark(&subsys->namespaces, ns->nsid, NVMET_NS_ENABLED); 635 636 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) 637 pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid)); 638 639 mutex_unlock(&subsys->lock); 640 641 if (ns->pr.enable) 642 nvmet_pr_exit_ns(ns); 643 644 mutex_lock(&subsys->lock); 645 nvmet_ns_changed(subsys, ns->nsid); 646 nvmet_ns_dev_disable(ns); 647 out_unlock: 648 mutex_unlock(&subsys->lock); 649 } 650 651 void nvmet_ns_free(struct nvmet_ns *ns) 652 { 653 struct nvmet_subsys *subsys = ns->subsys; 654 655 nvmet_ns_disable(ns); 656 657 mutex_lock(&subsys->lock); 658 659 xa_erase(&subsys->namespaces, ns->nsid); 660 if (ns->nsid == subsys->max_nsid) 661 subsys->max_nsid = nvmet_max_nsid(subsys); 662 663 mutex_unlock(&subsys->lock); 664 665 /* 666 * Now that we removed the namespaces from the lookup list, we 667 * can kill the per_cpu ref and wait for any remaining references 668 * to be dropped, as well as a RCU grace period for anyone only 669 * using the namepace under rcu_read_lock(). Note that we can't 670 * use call_rcu here as we need to ensure the namespaces have 671 * been fully destroyed before unloading the module. 672 */ 673 percpu_ref_kill(&ns->ref); 674 synchronize_rcu(); 675 wait_for_completion(&ns->disable_done); 676 percpu_ref_exit(&ns->ref); 677 678 mutex_lock(&subsys->lock); 679 subsys->nr_namespaces--; 680 mutex_unlock(&subsys->lock); 681 682 down_write(&nvmet_ana_sem); 683 nvmet_ana_group_enabled[ns->anagrpid]--; 684 up_write(&nvmet_ana_sem); 685 686 kfree(ns->device_path); 687 kfree(ns); 688 } 689 690 struct nvmet_ns *nvmet_ns_alloc(struct nvmet_subsys *subsys, u32 nsid) 691 { 692 struct nvmet_ns *ns; 693 694 mutex_lock(&subsys->lock); 695 696 if (subsys->nr_namespaces == NVMET_MAX_NAMESPACES) 697 goto out_unlock; 698 699 ns = kzalloc(sizeof(*ns), GFP_KERNEL); 700 if (!ns) 701 goto out_unlock; 702 703 init_completion(&ns->disable_done); 704 705 ns->nsid = nsid; 706 ns->subsys = subsys; 707 708 if (percpu_ref_init(&ns->ref, nvmet_destroy_namespace, 0, GFP_KERNEL)) 709 goto out_free; 710 711 if (ns->nsid > subsys->max_nsid) 712 subsys->max_nsid = nsid; 713 714 if (xa_insert(&subsys->namespaces, ns->nsid, ns, GFP_KERNEL)) 715 goto out_exit; 716 717 subsys->nr_namespaces++; 718 719 mutex_unlock(&subsys->lock); 720 721 down_write(&nvmet_ana_sem); 722 ns->anagrpid = NVMET_DEFAULT_ANA_GRPID; 723 nvmet_ana_group_enabled[ns->anagrpid]++; 724 up_write(&nvmet_ana_sem); 725 726 uuid_gen(&ns->uuid); 727 ns->buffered_io = false; 728 ns->csi = NVME_CSI_NVM; 729 730 return ns; 731 out_exit: 732 subsys->max_nsid = nvmet_max_nsid(subsys); 733 percpu_ref_exit(&ns->ref); 734 out_free: 735 kfree(ns); 736 out_unlock: 737 mutex_unlock(&subsys->lock); 738 return NULL; 739 } 740 741 static void nvmet_update_sq_head(struct nvmet_req *req) 742 { 743 if (req->sq->size) { 744 u32 old_sqhd, new_sqhd; 745 746 old_sqhd = READ_ONCE(req->sq->sqhd); 747 do { 748 new_sqhd = (old_sqhd + 1) % req->sq->size; 749 } while (!try_cmpxchg(&req->sq->sqhd, &old_sqhd, new_sqhd)); 750 } 751 req->cqe->sq_head = cpu_to_le16(req->sq->sqhd & 0x0000FFFF); 752 } 753 754 static void nvmet_set_error(struct nvmet_req *req, u16 status) 755 { 756 struct nvmet_ctrl *ctrl = req->sq->ctrl; 757 struct nvme_error_slot *new_error_slot; 758 unsigned long flags; 759 760 req->cqe->status = cpu_to_le16(status << 1); 761 762 if (!ctrl || req->error_loc == NVMET_NO_ERROR_LOC) 763 return; 764 765 spin_lock_irqsave(&ctrl->error_lock, flags); 766 ctrl->err_counter++; 767 new_error_slot = 768 &ctrl->slots[ctrl->err_counter % NVMET_ERROR_LOG_SLOTS]; 769 770 new_error_slot->error_count = cpu_to_le64(ctrl->err_counter); 771 new_error_slot->sqid = cpu_to_le16(req->sq->qid); 772 new_error_slot->cmdid = cpu_to_le16(req->cmd->common.command_id); 773 new_error_slot->status_field = cpu_to_le16(status << 1); 774 new_error_slot->param_error_location = cpu_to_le16(req->error_loc); 775 new_error_slot->lba = cpu_to_le64(req->error_slba); 776 new_error_slot->nsid = req->cmd->common.nsid; 777 spin_unlock_irqrestore(&ctrl->error_lock, flags); 778 779 /* set the more bit for this request */ 780 req->cqe->status |= cpu_to_le16(1 << 14); 781 } 782 783 static void __nvmet_req_complete(struct nvmet_req *req, u16 status) 784 { 785 struct nvmet_ns *ns = req->ns; 786 struct nvmet_pr_per_ctrl_ref *pc_ref = req->pc_ref; 787 788 if (!req->sq->sqhd_disabled) 789 nvmet_update_sq_head(req); 790 req->cqe->sq_id = cpu_to_le16(req->sq->qid); 791 req->cqe->command_id = req->cmd->common.command_id; 792 793 if (unlikely(status)) 794 nvmet_set_error(req, status); 795 796 trace_nvmet_req_complete(req); 797 798 req->ops->queue_response(req); 799 800 if (pc_ref) 801 nvmet_pr_put_ns_pc_ref(pc_ref); 802 if (ns) 803 nvmet_put_namespace(ns); 804 } 805 806 void nvmet_req_complete(struct nvmet_req *req, u16 status) 807 { 808 struct nvmet_sq *sq = req->sq; 809 810 __nvmet_req_complete(req, status); 811 percpu_ref_put(&sq->ref); 812 } 813 EXPORT_SYMBOL_GPL(nvmet_req_complete); 814 815 void nvmet_cq_setup(struct nvmet_ctrl *ctrl, struct nvmet_cq *cq, 816 u16 qid, u16 size) 817 { 818 cq->qid = qid; 819 cq->size = size; 820 } 821 822 void nvmet_sq_setup(struct nvmet_ctrl *ctrl, struct nvmet_sq *sq, 823 u16 qid, u16 size) 824 { 825 sq->sqhd = 0; 826 sq->qid = qid; 827 sq->size = size; 828 829 ctrl->sqs[qid] = sq; 830 } 831 832 static void nvmet_confirm_sq(struct percpu_ref *ref) 833 { 834 struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref); 835 836 complete(&sq->confirm_done); 837 } 838 839 void nvmet_sq_destroy(struct nvmet_sq *sq) 840 { 841 struct nvmet_ctrl *ctrl = sq->ctrl; 842 843 /* 844 * If this is the admin queue, complete all AERs so that our 845 * queue doesn't have outstanding requests on it. 846 */ 847 if (ctrl && ctrl->sqs && ctrl->sqs[0] == sq) 848 nvmet_async_events_failall(ctrl); 849 percpu_ref_kill_and_confirm(&sq->ref, nvmet_confirm_sq); 850 wait_for_completion(&sq->confirm_done); 851 wait_for_completion(&sq->free_done); 852 percpu_ref_exit(&sq->ref); 853 nvmet_auth_sq_free(sq); 854 855 /* 856 * we must reference the ctrl again after waiting for inflight IO 857 * to complete. Because admin connect may have sneaked in after we 858 * store sq->ctrl locally, but before we killed the percpu_ref. the 859 * admin connect allocates and assigns sq->ctrl, which now needs a 860 * final ref put, as this ctrl is going away. 861 */ 862 ctrl = sq->ctrl; 863 864 if (ctrl) { 865 /* 866 * The teardown flow may take some time, and the host may not 867 * send us keep-alive during this period, hence reset the 868 * traffic based keep-alive timer so we don't trigger a 869 * controller teardown as a result of a keep-alive expiration. 870 */ 871 ctrl->reset_tbkas = true; 872 sq->ctrl->sqs[sq->qid] = NULL; 873 nvmet_ctrl_put(ctrl); 874 sq->ctrl = NULL; /* allows reusing the queue later */ 875 } 876 } 877 EXPORT_SYMBOL_GPL(nvmet_sq_destroy); 878 879 static void nvmet_sq_free(struct percpu_ref *ref) 880 { 881 struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref); 882 883 complete(&sq->free_done); 884 } 885 886 int nvmet_sq_init(struct nvmet_sq *sq) 887 { 888 int ret; 889 890 ret = percpu_ref_init(&sq->ref, nvmet_sq_free, 0, GFP_KERNEL); 891 if (ret) { 892 pr_err("percpu_ref init failed!\n"); 893 return ret; 894 } 895 init_completion(&sq->free_done); 896 init_completion(&sq->confirm_done); 897 nvmet_auth_sq_init(sq); 898 899 return 0; 900 } 901 EXPORT_SYMBOL_GPL(nvmet_sq_init); 902 903 static inline u16 nvmet_check_ana_state(struct nvmet_port *port, 904 struct nvmet_ns *ns) 905 { 906 enum nvme_ana_state state = port->ana_state[ns->anagrpid]; 907 908 if (unlikely(state == NVME_ANA_INACCESSIBLE)) 909 return NVME_SC_ANA_INACCESSIBLE; 910 if (unlikely(state == NVME_ANA_PERSISTENT_LOSS)) 911 return NVME_SC_ANA_PERSISTENT_LOSS; 912 if (unlikely(state == NVME_ANA_CHANGE)) 913 return NVME_SC_ANA_TRANSITION; 914 return 0; 915 } 916 917 static inline u16 nvmet_io_cmd_check_access(struct nvmet_req *req) 918 { 919 if (unlikely(req->ns->readonly)) { 920 switch (req->cmd->common.opcode) { 921 case nvme_cmd_read: 922 case nvme_cmd_flush: 923 break; 924 default: 925 return NVME_SC_NS_WRITE_PROTECTED; 926 } 927 } 928 929 return 0; 930 } 931 932 static u16 nvmet_parse_io_cmd(struct nvmet_req *req) 933 { 934 struct nvme_command *cmd = req->cmd; 935 u16 ret; 936 937 if (nvme_is_fabrics(cmd)) 938 return nvmet_parse_fabrics_io_cmd(req); 939 940 if (unlikely(!nvmet_check_auth_status(req))) 941 return NVME_SC_AUTH_REQUIRED | NVME_STATUS_DNR; 942 943 ret = nvmet_check_ctrl_status(req); 944 if (unlikely(ret)) 945 return ret; 946 947 if (nvmet_is_passthru_req(req)) 948 return nvmet_parse_passthru_io_cmd(req); 949 950 ret = nvmet_req_find_ns(req); 951 if (unlikely(ret)) 952 return ret; 953 954 ret = nvmet_check_ana_state(req->port, req->ns); 955 if (unlikely(ret)) { 956 req->error_loc = offsetof(struct nvme_common_command, nsid); 957 return ret; 958 } 959 ret = nvmet_io_cmd_check_access(req); 960 if (unlikely(ret)) { 961 req->error_loc = offsetof(struct nvme_common_command, nsid); 962 return ret; 963 } 964 965 if (req->ns->pr.enable) { 966 ret = nvmet_parse_pr_cmd(req); 967 if (!ret) 968 return ret; 969 } 970 971 switch (req->ns->csi) { 972 case NVME_CSI_NVM: 973 if (req->ns->file) 974 ret = nvmet_file_parse_io_cmd(req); 975 else 976 ret = nvmet_bdev_parse_io_cmd(req); 977 break; 978 case NVME_CSI_ZNS: 979 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED)) 980 ret = nvmet_bdev_zns_parse_io_cmd(req); 981 else 982 ret = NVME_SC_INVALID_IO_CMD_SET; 983 break; 984 default: 985 ret = NVME_SC_INVALID_IO_CMD_SET; 986 } 987 if (ret) 988 return ret; 989 990 if (req->ns->pr.enable) { 991 ret = nvmet_pr_check_cmd_access(req); 992 if (ret) 993 return ret; 994 995 ret = nvmet_pr_get_ns_pc_ref(req); 996 } 997 return ret; 998 } 999 1000 bool nvmet_req_init(struct nvmet_req *req, struct nvmet_cq *cq, 1001 struct nvmet_sq *sq, const struct nvmet_fabrics_ops *ops) 1002 { 1003 u8 flags = req->cmd->common.flags; 1004 u16 status; 1005 1006 req->cq = cq; 1007 req->sq = sq; 1008 req->ops = ops; 1009 req->sg = NULL; 1010 req->metadata_sg = NULL; 1011 req->sg_cnt = 0; 1012 req->metadata_sg_cnt = 0; 1013 req->transfer_len = 0; 1014 req->metadata_len = 0; 1015 req->cqe->result.u64 = 0; 1016 req->cqe->status = 0; 1017 req->cqe->sq_head = 0; 1018 req->ns = NULL; 1019 req->error_loc = NVMET_NO_ERROR_LOC; 1020 req->error_slba = 0; 1021 req->pc_ref = NULL; 1022 1023 /* no support for fused commands yet */ 1024 if (unlikely(flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND))) { 1025 req->error_loc = offsetof(struct nvme_common_command, flags); 1026 status = NVME_SC_INVALID_FIELD | NVME_STATUS_DNR; 1027 goto fail; 1028 } 1029 1030 /* 1031 * For fabrics, PSDT field shall describe metadata pointer (MPTR) that 1032 * contains an address of a single contiguous physical buffer that is 1033 * byte aligned. 1034 */ 1035 if (unlikely((flags & NVME_CMD_SGL_ALL) != NVME_CMD_SGL_METABUF)) { 1036 req->error_loc = offsetof(struct nvme_common_command, flags); 1037 status = NVME_SC_INVALID_FIELD | NVME_STATUS_DNR; 1038 goto fail; 1039 } 1040 1041 if (unlikely(!req->sq->ctrl)) 1042 /* will return an error for any non-connect command: */ 1043 status = nvmet_parse_connect_cmd(req); 1044 else if (likely(req->sq->qid != 0)) 1045 status = nvmet_parse_io_cmd(req); 1046 else 1047 status = nvmet_parse_admin_cmd(req); 1048 1049 if (status) 1050 goto fail; 1051 1052 trace_nvmet_req_init(req, req->cmd); 1053 1054 if (unlikely(!percpu_ref_tryget_live(&sq->ref))) { 1055 status = NVME_SC_INVALID_FIELD | NVME_STATUS_DNR; 1056 goto fail; 1057 } 1058 1059 if (sq->ctrl) 1060 sq->ctrl->reset_tbkas = true; 1061 1062 return true; 1063 1064 fail: 1065 __nvmet_req_complete(req, status); 1066 return false; 1067 } 1068 EXPORT_SYMBOL_GPL(nvmet_req_init); 1069 1070 void nvmet_req_uninit(struct nvmet_req *req) 1071 { 1072 percpu_ref_put(&req->sq->ref); 1073 if (req->pc_ref) 1074 nvmet_pr_put_ns_pc_ref(req->pc_ref); 1075 if (req->ns) 1076 nvmet_put_namespace(req->ns); 1077 } 1078 EXPORT_SYMBOL_GPL(nvmet_req_uninit); 1079 1080 bool nvmet_check_transfer_len(struct nvmet_req *req, size_t len) 1081 { 1082 if (unlikely(len != req->transfer_len)) { 1083 req->error_loc = offsetof(struct nvme_common_command, dptr); 1084 nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_STATUS_DNR); 1085 return false; 1086 } 1087 1088 return true; 1089 } 1090 EXPORT_SYMBOL_GPL(nvmet_check_transfer_len); 1091 1092 bool nvmet_check_data_len_lte(struct nvmet_req *req, size_t data_len) 1093 { 1094 if (unlikely(data_len > req->transfer_len)) { 1095 req->error_loc = offsetof(struct nvme_common_command, dptr); 1096 nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_STATUS_DNR); 1097 return false; 1098 } 1099 1100 return true; 1101 } 1102 1103 static unsigned int nvmet_data_transfer_len(struct nvmet_req *req) 1104 { 1105 return req->transfer_len - req->metadata_len; 1106 } 1107 1108 static int nvmet_req_alloc_p2pmem_sgls(struct pci_dev *p2p_dev, 1109 struct nvmet_req *req) 1110 { 1111 req->sg = pci_p2pmem_alloc_sgl(p2p_dev, &req->sg_cnt, 1112 nvmet_data_transfer_len(req)); 1113 if (!req->sg) 1114 goto out_err; 1115 1116 if (req->metadata_len) { 1117 req->metadata_sg = pci_p2pmem_alloc_sgl(p2p_dev, 1118 &req->metadata_sg_cnt, req->metadata_len); 1119 if (!req->metadata_sg) 1120 goto out_free_sg; 1121 } 1122 1123 req->p2p_dev = p2p_dev; 1124 1125 return 0; 1126 out_free_sg: 1127 pci_p2pmem_free_sgl(req->p2p_dev, req->sg); 1128 out_err: 1129 return -ENOMEM; 1130 } 1131 1132 static struct pci_dev *nvmet_req_find_p2p_dev(struct nvmet_req *req) 1133 { 1134 if (!IS_ENABLED(CONFIG_PCI_P2PDMA) || 1135 !req->sq->ctrl || !req->sq->qid || !req->ns) 1136 return NULL; 1137 return radix_tree_lookup(&req->sq->ctrl->p2p_ns_map, req->ns->nsid); 1138 } 1139 1140 int nvmet_req_alloc_sgls(struct nvmet_req *req) 1141 { 1142 struct pci_dev *p2p_dev = nvmet_req_find_p2p_dev(req); 1143 1144 if (p2p_dev && !nvmet_req_alloc_p2pmem_sgls(p2p_dev, req)) 1145 return 0; 1146 1147 req->sg = sgl_alloc(nvmet_data_transfer_len(req), GFP_KERNEL, 1148 &req->sg_cnt); 1149 if (unlikely(!req->sg)) 1150 goto out; 1151 1152 if (req->metadata_len) { 1153 req->metadata_sg = sgl_alloc(req->metadata_len, GFP_KERNEL, 1154 &req->metadata_sg_cnt); 1155 if (unlikely(!req->metadata_sg)) 1156 goto out_free; 1157 } 1158 1159 return 0; 1160 out_free: 1161 sgl_free(req->sg); 1162 out: 1163 return -ENOMEM; 1164 } 1165 EXPORT_SYMBOL_GPL(nvmet_req_alloc_sgls); 1166 1167 void nvmet_req_free_sgls(struct nvmet_req *req) 1168 { 1169 if (req->p2p_dev) { 1170 pci_p2pmem_free_sgl(req->p2p_dev, req->sg); 1171 if (req->metadata_sg) 1172 pci_p2pmem_free_sgl(req->p2p_dev, req->metadata_sg); 1173 req->p2p_dev = NULL; 1174 } else { 1175 sgl_free(req->sg); 1176 if (req->metadata_sg) 1177 sgl_free(req->metadata_sg); 1178 } 1179 1180 req->sg = NULL; 1181 req->metadata_sg = NULL; 1182 req->sg_cnt = 0; 1183 req->metadata_sg_cnt = 0; 1184 } 1185 EXPORT_SYMBOL_GPL(nvmet_req_free_sgls); 1186 1187 static inline bool nvmet_cc_en(u32 cc) 1188 { 1189 return (cc >> NVME_CC_EN_SHIFT) & 0x1; 1190 } 1191 1192 static inline u8 nvmet_cc_css(u32 cc) 1193 { 1194 return (cc >> NVME_CC_CSS_SHIFT) & 0x7; 1195 } 1196 1197 static inline u8 nvmet_cc_mps(u32 cc) 1198 { 1199 return (cc >> NVME_CC_MPS_SHIFT) & 0xf; 1200 } 1201 1202 static inline u8 nvmet_cc_ams(u32 cc) 1203 { 1204 return (cc >> NVME_CC_AMS_SHIFT) & 0x7; 1205 } 1206 1207 static inline u8 nvmet_cc_shn(u32 cc) 1208 { 1209 return (cc >> NVME_CC_SHN_SHIFT) & 0x3; 1210 } 1211 1212 static inline u8 nvmet_cc_iosqes(u32 cc) 1213 { 1214 return (cc >> NVME_CC_IOSQES_SHIFT) & 0xf; 1215 } 1216 1217 static inline u8 nvmet_cc_iocqes(u32 cc) 1218 { 1219 return (cc >> NVME_CC_IOCQES_SHIFT) & 0xf; 1220 } 1221 1222 static inline bool nvmet_css_supported(u8 cc_css) 1223 { 1224 switch (cc_css << NVME_CC_CSS_SHIFT) { 1225 case NVME_CC_CSS_NVM: 1226 case NVME_CC_CSS_CSI: 1227 return true; 1228 default: 1229 return false; 1230 } 1231 } 1232 1233 static void nvmet_start_ctrl(struct nvmet_ctrl *ctrl) 1234 { 1235 lockdep_assert_held(&ctrl->lock); 1236 1237 /* 1238 * Only I/O controllers should verify iosqes,iocqes. 1239 * Strictly speaking, the spec says a discovery controller 1240 * should verify iosqes,iocqes are zeroed, however that 1241 * would break backwards compatibility, so don't enforce it. 1242 */ 1243 if (!nvmet_is_disc_subsys(ctrl->subsys) && 1244 (nvmet_cc_iosqes(ctrl->cc) != NVME_NVM_IOSQES || 1245 nvmet_cc_iocqes(ctrl->cc) != NVME_NVM_IOCQES)) { 1246 ctrl->csts = NVME_CSTS_CFS; 1247 return; 1248 } 1249 1250 if (nvmet_cc_mps(ctrl->cc) != 0 || 1251 nvmet_cc_ams(ctrl->cc) != 0 || 1252 !nvmet_css_supported(nvmet_cc_css(ctrl->cc))) { 1253 ctrl->csts = NVME_CSTS_CFS; 1254 return; 1255 } 1256 1257 ctrl->csts = NVME_CSTS_RDY; 1258 1259 /* 1260 * Controllers that are not yet enabled should not really enforce the 1261 * keep alive timeout, but we still want to track a timeout and cleanup 1262 * in case a host died before it enabled the controller. Hence, simply 1263 * reset the keep alive timer when the controller is enabled. 1264 */ 1265 if (ctrl->kato) 1266 mod_delayed_work(nvmet_wq, &ctrl->ka_work, ctrl->kato * HZ); 1267 } 1268 1269 static void nvmet_clear_ctrl(struct nvmet_ctrl *ctrl) 1270 { 1271 lockdep_assert_held(&ctrl->lock); 1272 1273 /* XXX: tear down queues? */ 1274 ctrl->csts &= ~NVME_CSTS_RDY; 1275 ctrl->cc = 0; 1276 } 1277 1278 void nvmet_update_cc(struct nvmet_ctrl *ctrl, u32 new) 1279 { 1280 u32 old; 1281 1282 mutex_lock(&ctrl->lock); 1283 old = ctrl->cc; 1284 ctrl->cc = new; 1285 1286 if (nvmet_cc_en(new) && !nvmet_cc_en(old)) 1287 nvmet_start_ctrl(ctrl); 1288 if (!nvmet_cc_en(new) && nvmet_cc_en(old)) 1289 nvmet_clear_ctrl(ctrl); 1290 if (nvmet_cc_shn(new) && !nvmet_cc_shn(old)) { 1291 nvmet_clear_ctrl(ctrl); 1292 ctrl->csts |= NVME_CSTS_SHST_CMPLT; 1293 } 1294 if (!nvmet_cc_shn(new) && nvmet_cc_shn(old)) 1295 ctrl->csts &= ~NVME_CSTS_SHST_CMPLT; 1296 mutex_unlock(&ctrl->lock); 1297 } 1298 1299 static void nvmet_init_cap(struct nvmet_ctrl *ctrl) 1300 { 1301 /* command sets supported: NVMe command set: */ 1302 ctrl->cap = (1ULL << 37); 1303 /* Controller supports one or more I/O Command Sets */ 1304 ctrl->cap |= (1ULL << 43); 1305 /* CC.EN timeout in 500msec units: */ 1306 ctrl->cap |= (15ULL << 24); 1307 /* maximum queue entries supported: */ 1308 if (ctrl->ops->get_max_queue_size) 1309 ctrl->cap |= min_t(u16, ctrl->ops->get_max_queue_size(ctrl), 1310 ctrl->port->max_queue_size) - 1; 1311 else 1312 ctrl->cap |= ctrl->port->max_queue_size - 1; 1313 1314 if (nvmet_is_passthru_subsys(ctrl->subsys)) 1315 nvmet_passthrough_override_cap(ctrl); 1316 } 1317 1318 struct nvmet_ctrl *nvmet_ctrl_find_get(const char *subsysnqn, 1319 const char *hostnqn, u16 cntlid, 1320 struct nvmet_req *req) 1321 { 1322 struct nvmet_ctrl *ctrl = NULL; 1323 struct nvmet_subsys *subsys; 1324 1325 subsys = nvmet_find_get_subsys(req->port, subsysnqn); 1326 if (!subsys) { 1327 pr_warn("connect request for invalid subsystem %s!\n", 1328 subsysnqn); 1329 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn); 1330 goto out; 1331 } 1332 1333 mutex_lock(&subsys->lock); 1334 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) { 1335 if (ctrl->cntlid == cntlid) { 1336 if (strncmp(hostnqn, ctrl->hostnqn, NVMF_NQN_SIZE)) { 1337 pr_warn("hostnqn mismatch.\n"); 1338 continue; 1339 } 1340 if (!kref_get_unless_zero(&ctrl->ref)) 1341 continue; 1342 1343 /* ctrl found */ 1344 goto found; 1345 } 1346 } 1347 1348 ctrl = NULL; /* ctrl not found */ 1349 pr_warn("could not find controller %d for subsys %s / host %s\n", 1350 cntlid, subsysnqn, hostnqn); 1351 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(cntlid); 1352 1353 found: 1354 mutex_unlock(&subsys->lock); 1355 nvmet_subsys_put(subsys); 1356 out: 1357 return ctrl; 1358 } 1359 1360 u16 nvmet_check_ctrl_status(struct nvmet_req *req) 1361 { 1362 if (unlikely(!(req->sq->ctrl->cc & NVME_CC_ENABLE))) { 1363 pr_err("got cmd %d while CC.EN == 0 on qid = %d\n", 1364 req->cmd->common.opcode, req->sq->qid); 1365 return NVME_SC_CMD_SEQ_ERROR | NVME_STATUS_DNR; 1366 } 1367 1368 if (unlikely(!(req->sq->ctrl->csts & NVME_CSTS_RDY))) { 1369 pr_err("got cmd %d while CSTS.RDY == 0 on qid = %d\n", 1370 req->cmd->common.opcode, req->sq->qid); 1371 return NVME_SC_CMD_SEQ_ERROR | NVME_STATUS_DNR; 1372 } 1373 1374 if (unlikely(!nvmet_check_auth_status(req))) { 1375 pr_warn("qid %d not authenticated\n", req->sq->qid); 1376 return NVME_SC_AUTH_REQUIRED | NVME_STATUS_DNR; 1377 } 1378 return 0; 1379 } 1380 1381 bool nvmet_host_allowed(struct nvmet_subsys *subsys, const char *hostnqn) 1382 { 1383 struct nvmet_host_link *p; 1384 1385 lockdep_assert_held(&nvmet_config_sem); 1386 1387 if (subsys->allow_any_host) 1388 return true; 1389 1390 if (nvmet_is_disc_subsys(subsys)) /* allow all access to disc subsys */ 1391 return true; 1392 1393 list_for_each_entry(p, &subsys->hosts, entry) { 1394 if (!strcmp(nvmet_host_name(p->host), hostnqn)) 1395 return true; 1396 } 1397 1398 return false; 1399 } 1400 1401 /* 1402 * Note: ctrl->subsys->lock should be held when calling this function 1403 */ 1404 static void nvmet_setup_p2p_ns_map(struct nvmet_ctrl *ctrl, 1405 struct nvmet_req *req) 1406 { 1407 struct nvmet_ns *ns; 1408 unsigned long idx; 1409 1410 if (!req->p2p_client) 1411 return; 1412 1413 ctrl->p2p_client = get_device(req->p2p_client); 1414 1415 nvmet_for_each_enabled_ns(&ctrl->subsys->namespaces, idx, ns) 1416 nvmet_p2pmem_ns_add_p2p(ctrl, ns); 1417 } 1418 1419 /* 1420 * Note: ctrl->subsys->lock should be held when calling this function 1421 */ 1422 static void nvmet_release_p2p_ns_map(struct nvmet_ctrl *ctrl) 1423 { 1424 struct radix_tree_iter iter; 1425 void __rcu **slot; 1426 1427 radix_tree_for_each_slot(slot, &ctrl->p2p_ns_map, &iter, 0) 1428 pci_dev_put(radix_tree_deref_slot(slot)); 1429 1430 put_device(ctrl->p2p_client); 1431 } 1432 1433 static void nvmet_fatal_error_handler(struct work_struct *work) 1434 { 1435 struct nvmet_ctrl *ctrl = 1436 container_of(work, struct nvmet_ctrl, fatal_err_work); 1437 1438 pr_err("ctrl %d fatal error occurred!\n", ctrl->cntlid); 1439 ctrl->ops->delete_ctrl(ctrl); 1440 } 1441 1442 u16 nvmet_alloc_ctrl(const char *subsysnqn, const char *hostnqn, 1443 struct nvmet_req *req, u32 kato, struct nvmet_ctrl **ctrlp, 1444 uuid_t *hostid) 1445 { 1446 struct nvmet_subsys *subsys; 1447 struct nvmet_ctrl *ctrl; 1448 int ret; 1449 u16 status; 1450 1451 status = NVME_SC_CONNECT_INVALID_PARAM | NVME_STATUS_DNR; 1452 subsys = nvmet_find_get_subsys(req->port, subsysnqn); 1453 if (!subsys) { 1454 pr_warn("connect request for invalid subsystem %s!\n", 1455 subsysnqn); 1456 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn); 1457 req->error_loc = offsetof(struct nvme_common_command, dptr); 1458 goto out; 1459 } 1460 1461 down_read(&nvmet_config_sem); 1462 if (!nvmet_host_allowed(subsys, hostnqn)) { 1463 pr_info("connect by host %s for subsystem %s not allowed\n", 1464 hostnqn, subsysnqn); 1465 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(hostnqn); 1466 up_read(&nvmet_config_sem); 1467 status = NVME_SC_CONNECT_INVALID_HOST | NVME_STATUS_DNR; 1468 req->error_loc = offsetof(struct nvme_common_command, dptr); 1469 goto out_put_subsystem; 1470 } 1471 up_read(&nvmet_config_sem); 1472 1473 status = NVME_SC_INTERNAL; 1474 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 1475 if (!ctrl) 1476 goto out_put_subsystem; 1477 mutex_init(&ctrl->lock); 1478 1479 ctrl->port = req->port; 1480 ctrl->ops = req->ops; 1481 1482 #ifdef CONFIG_NVME_TARGET_PASSTHRU 1483 /* By default, set loop targets to clear IDS by default */ 1484 if (ctrl->port->disc_addr.trtype == NVMF_TRTYPE_LOOP) 1485 subsys->clear_ids = 1; 1486 #endif 1487 1488 INIT_WORK(&ctrl->async_event_work, nvmet_async_event_work); 1489 INIT_LIST_HEAD(&ctrl->async_events); 1490 INIT_RADIX_TREE(&ctrl->p2p_ns_map, GFP_KERNEL); 1491 INIT_WORK(&ctrl->fatal_err_work, nvmet_fatal_error_handler); 1492 INIT_DELAYED_WORK(&ctrl->ka_work, nvmet_keep_alive_timer); 1493 1494 memcpy(ctrl->subsysnqn, subsysnqn, NVMF_NQN_SIZE); 1495 memcpy(ctrl->hostnqn, hostnqn, NVMF_NQN_SIZE); 1496 1497 kref_init(&ctrl->ref); 1498 ctrl->subsys = subsys; 1499 ctrl->pi_support = ctrl->port->pi_enable && ctrl->subsys->pi_support; 1500 nvmet_init_cap(ctrl); 1501 WRITE_ONCE(ctrl->aen_enabled, NVMET_AEN_CFG_OPTIONAL); 1502 1503 ctrl->changed_ns_list = kmalloc_array(NVME_MAX_CHANGED_NAMESPACES, 1504 sizeof(__le32), GFP_KERNEL); 1505 if (!ctrl->changed_ns_list) 1506 goto out_free_ctrl; 1507 1508 ctrl->sqs = kcalloc(subsys->max_qid + 1, 1509 sizeof(struct nvmet_sq *), 1510 GFP_KERNEL); 1511 if (!ctrl->sqs) 1512 goto out_free_changed_ns_list; 1513 1514 ret = ida_alloc_range(&cntlid_ida, 1515 subsys->cntlid_min, subsys->cntlid_max, 1516 GFP_KERNEL); 1517 if (ret < 0) { 1518 status = NVME_SC_CONNECT_CTRL_BUSY | NVME_STATUS_DNR; 1519 goto out_free_sqs; 1520 } 1521 ctrl->cntlid = ret; 1522 1523 uuid_copy(&ctrl->hostid, hostid); 1524 1525 /* 1526 * Discovery controllers may use some arbitrary high value 1527 * in order to cleanup stale discovery sessions 1528 */ 1529 if (nvmet_is_disc_subsys(ctrl->subsys) && !kato) 1530 kato = NVMET_DISC_KATO_MS; 1531 1532 /* keep-alive timeout in seconds */ 1533 ctrl->kato = DIV_ROUND_UP(kato, 1000); 1534 1535 ctrl->err_counter = 0; 1536 spin_lock_init(&ctrl->error_lock); 1537 1538 nvmet_start_keep_alive_timer(ctrl); 1539 1540 mutex_lock(&subsys->lock); 1541 ret = nvmet_ctrl_init_pr(ctrl); 1542 if (ret) 1543 goto init_pr_fail; 1544 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls); 1545 nvmet_setup_p2p_ns_map(ctrl, req); 1546 nvmet_debugfs_ctrl_setup(ctrl); 1547 mutex_unlock(&subsys->lock); 1548 1549 *ctrlp = ctrl; 1550 return 0; 1551 1552 init_pr_fail: 1553 mutex_unlock(&subsys->lock); 1554 nvmet_stop_keep_alive_timer(ctrl); 1555 ida_free(&cntlid_ida, ctrl->cntlid); 1556 out_free_sqs: 1557 kfree(ctrl->sqs); 1558 out_free_changed_ns_list: 1559 kfree(ctrl->changed_ns_list); 1560 out_free_ctrl: 1561 kfree(ctrl); 1562 out_put_subsystem: 1563 nvmet_subsys_put(subsys); 1564 out: 1565 return status; 1566 } 1567 1568 static void nvmet_ctrl_free(struct kref *ref) 1569 { 1570 struct nvmet_ctrl *ctrl = container_of(ref, struct nvmet_ctrl, ref); 1571 struct nvmet_subsys *subsys = ctrl->subsys; 1572 1573 mutex_lock(&subsys->lock); 1574 nvmet_ctrl_destroy_pr(ctrl); 1575 nvmet_release_p2p_ns_map(ctrl); 1576 list_del(&ctrl->subsys_entry); 1577 mutex_unlock(&subsys->lock); 1578 1579 nvmet_stop_keep_alive_timer(ctrl); 1580 1581 flush_work(&ctrl->async_event_work); 1582 cancel_work_sync(&ctrl->fatal_err_work); 1583 1584 nvmet_destroy_auth(ctrl); 1585 1586 nvmet_debugfs_ctrl_free(ctrl); 1587 1588 ida_free(&cntlid_ida, ctrl->cntlid); 1589 1590 nvmet_async_events_free(ctrl); 1591 kfree(ctrl->sqs); 1592 kfree(ctrl->changed_ns_list); 1593 kfree(ctrl); 1594 1595 nvmet_subsys_put(subsys); 1596 } 1597 1598 void nvmet_ctrl_put(struct nvmet_ctrl *ctrl) 1599 { 1600 kref_put(&ctrl->ref, nvmet_ctrl_free); 1601 } 1602 1603 void nvmet_ctrl_fatal_error(struct nvmet_ctrl *ctrl) 1604 { 1605 mutex_lock(&ctrl->lock); 1606 if (!(ctrl->csts & NVME_CSTS_CFS)) { 1607 ctrl->csts |= NVME_CSTS_CFS; 1608 queue_work(nvmet_wq, &ctrl->fatal_err_work); 1609 } 1610 mutex_unlock(&ctrl->lock); 1611 } 1612 EXPORT_SYMBOL_GPL(nvmet_ctrl_fatal_error); 1613 1614 ssize_t nvmet_ctrl_host_traddr(struct nvmet_ctrl *ctrl, 1615 char *traddr, size_t traddr_len) 1616 { 1617 if (!ctrl->ops->host_traddr) 1618 return -EOPNOTSUPP; 1619 return ctrl->ops->host_traddr(ctrl, traddr, traddr_len); 1620 } 1621 1622 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port, 1623 const char *subsysnqn) 1624 { 1625 struct nvmet_subsys_link *p; 1626 1627 if (!port) 1628 return NULL; 1629 1630 if (!strcmp(NVME_DISC_SUBSYS_NAME, subsysnqn)) { 1631 if (!kref_get_unless_zero(&nvmet_disc_subsys->ref)) 1632 return NULL; 1633 return nvmet_disc_subsys; 1634 } 1635 1636 down_read(&nvmet_config_sem); 1637 if (!strncmp(nvmet_disc_subsys->subsysnqn, subsysnqn, 1638 NVMF_NQN_SIZE)) { 1639 if (kref_get_unless_zero(&nvmet_disc_subsys->ref)) { 1640 up_read(&nvmet_config_sem); 1641 return nvmet_disc_subsys; 1642 } 1643 } 1644 list_for_each_entry(p, &port->subsystems, entry) { 1645 if (!strncmp(p->subsys->subsysnqn, subsysnqn, 1646 NVMF_NQN_SIZE)) { 1647 if (!kref_get_unless_zero(&p->subsys->ref)) 1648 break; 1649 up_read(&nvmet_config_sem); 1650 return p->subsys; 1651 } 1652 } 1653 up_read(&nvmet_config_sem); 1654 return NULL; 1655 } 1656 1657 struct nvmet_subsys *nvmet_subsys_alloc(const char *subsysnqn, 1658 enum nvme_subsys_type type) 1659 { 1660 struct nvmet_subsys *subsys; 1661 char serial[NVMET_SN_MAX_SIZE / 2]; 1662 int ret; 1663 1664 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL); 1665 if (!subsys) 1666 return ERR_PTR(-ENOMEM); 1667 1668 subsys->ver = NVMET_DEFAULT_VS; 1669 /* generate a random serial number as our controllers are ephemeral: */ 1670 get_random_bytes(&serial, sizeof(serial)); 1671 bin2hex(subsys->serial, &serial, sizeof(serial)); 1672 1673 subsys->model_number = kstrdup(NVMET_DEFAULT_CTRL_MODEL, GFP_KERNEL); 1674 if (!subsys->model_number) { 1675 ret = -ENOMEM; 1676 goto free_subsys; 1677 } 1678 1679 subsys->ieee_oui = 0; 1680 1681 subsys->firmware_rev = kstrndup(UTS_RELEASE, NVMET_FR_MAX_SIZE, GFP_KERNEL); 1682 if (!subsys->firmware_rev) { 1683 ret = -ENOMEM; 1684 goto free_mn; 1685 } 1686 1687 switch (type) { 1688 case NVME_NQN_NVME: 1689 subsys->max_qid = NVMET_NR_QUEUES; 1690 break; 1691 case NVME_NQN_DISC: 1692 case NVME_NQN_CURR: 1693 subsys->max_qid = 0; 1694 break; 1695 default: 1696 pr_err("%s: Unknown Subsystem type - %d\n", __func__, type); 1697 ret = -EINVAL; 1698 goto free_fr; 1699 } 1700 subsys->type = type; 1701 subsys->subsysnqn = kstrndup(subsysnqn, NVMF_NQN_SIZE, 1702 GFP_KERNEL); 1703 if (!subsys->subsysnqn) { 1704 ret = -ENOMEM; 1705 goto free_fr; 1706 } 1707 subsys->cntlid_min = NVME_CNTLID_MIN; 1708 subsys->cntlid_max = NVME_CNTLID_MAX; 1709 kref_init(&subsys->ref); 1710 1711 mutex_init(&subsys->lock); 1712 xa_init(&subsys->namespaces); 1713 INIT_LIST_HEAD(&subsys->ctrls); 1714 INIT_LIST_HEAD(&subsys->hosts); 1715 1716 ret = nvmet_debugfs_subsys_setup(subsys); 1717 if (ret) 1718 goto free_subsysnqn; 1719 1720 return subsys; 1721 1722 free_subsysnqn: 1723 kfree(subsys->subsysnqn); 1724 free_fr: 1725 kfree(subsys->firmware_rev); 1726 free_mn: 1727 kfree(subsys->model_number); 1728 free_subsys: 1729 kfree(subsys); 1730 return ERR_PTR(ret); 1731 } 1732 1733 static void nvmet_subsys_free(struct kref *ref) 1734 { 1735 struct nvmet_subsys *subsys = 1736 container_of(ref, struct nvmet_subsys, ref); 1737 1738 WARN_ON_ONCE(!xa_empty(&subsys->namespaces)); 1739 1740 nvmet_debugfs_subsys_free(subsys); 1741 1742 xa_destroy(&subsys->namespaces); 1743 nvmet_passthru_subsys_free(subsys); 1744 1745 kfree(subsys->subsysnqn); 1746 kfree(subsys->model_number); 1747 kfree(subsys->firmware_rev); 1748 kfree(subsys); 1749 } 1750 1751 void nvmet_subsys_del_ctrls(struct nvmet_subsys *subsys) 1752 { 1753 struct nvmet_ctrl *ctrl; 1754 1755 mutex_lock(&subsys->lock); 1756 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) 1757 ctrl->ops->delete_ctrl(ctrl); 1758 mutex_unlock(&subsys->lock); 1759 } 1760 1761 void nvmet_subsys_put(struct nvmet_subsys *subsys) 1762 { 1763 kref_put(&subsys->ref, nvmet_subsys_free); 1764 } 1765 1766 static int __init nvmet_init(void) 1767 { 1768 int error = -ENOMEM; 1769 1770 nvmet_ana_group_enabled[NVMET_DEFAULT_ANA_GRPID] = 1; 1771 1772 nvmet_bvec_cache = kmem_cache_create("nvmet-bvec", 1773 NVMET_MAX_MPOOL_BVEC * sizeof(struct bio_vec), 0, 1774 SLAB_HWCACHE_ALIGN, NULL); 1775 if (!nvmet_bvec_cache) 1776 return -ENOMEM; 1777 1778 zbd_wq = alloc_workqueue("nvmet-zbd-wq", WQ_MEM_RECLAIM, 0); 1779 if (!zbd_wq) 1780 goto out_destroy_bvec_cache; 1781 1782 buffered_io_wq = alloc_workqueue("nvmet-buffered-io-wq", 1783 WQ_MEM_RECLAIM, 0); 1784 if (!buffered_io_wq) 1785 goto out_free_zbd_work_queue; 1786 1787 nvmet_wq = alloc_workqueue("nvmet-wq", 1788 WQ_MEM_RECLAIM | WQ_UNBOUND | WQ_SYSFS, 0); 1789 if (!nvmet_wq) 1790 goto out_free_buffered_work_queue; 1791 1792 error = nvmet_init_discovery(); 1793 if (error) 1794 goto out_free_nvmet_work_queue; 1795 1796 error = nvmet_init_debugfs(); 1797 if (error) 1798 goto out_exit_discovery; 1799 1800 error = nvmet_init_configfs(); 1801 if (error) 1802 goto out_exit_debugfs; 1803 1804 return 0; 1805 1806 out_exit_debugfs: 1807 nvmet_exit_debugfs(); 1808 out_exit_discovery: 1809 nvmet_exit_discovery(); 1810 out_free_nvmet_work_queue: 1811 destroy_workqueue(nvmet_wq); 1812 out_free_buffered_work_queue: 1813 destroy_workqueue(buffered_io_wq); 1814 out_free_zbd_work_queue: 1815 destroy_workqueue(zbd_wq); 1816 out_destroy_bvec_cache: 1817 kmem_cache_destroy(nvmet_bvec_cache); 1818 return error; 1819 } 1820 1821 static void __exit nvmet_exit(void) 1822 { 1823 nvmet_exit_configfs(); 1824 nvmet_exit_debugfs(); 1825 nvmet_exit_discovery(); 1826 ida_destroy(&cntlid_ida); 1827 destroy_workqueue(nvmet_wq); 1828 destroy_workqueue(buffered_io_wq); 1829 destroy_workqueue(zbd_wq); 1830 kmem_cache_destroy(nvmet_bvec_cache); 1831 1832 BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_entry) != 1024); 1833 BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_hdr) != 1024); 1834 } 1835 1836 module_init(nvmet_init); 1837 module_exit(nvmet_exit); 1838 1839 MODULE_DESCRIPTION("NVMe target core framework"); 1840 MODULE_LICENSE("GPL v2"); 1841