1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Common code for the NVMe target. 4 * Copyright (c) 2015-2016 HGST, a Western Digital Company. 5 */ 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 #include <linux/module.h> 8 #include <linux/random.h> 9 #include <linux/rculist.h> 10 #include <linux/pci-p2pdma.h> 11 #include <linux/scatterlist.h> 12 13 #include <generated/utsrelease.h> 14 15 #define CREATE_TRACE_POINTS 16 #include "trace.h" 17 18 #include "nvmet.h" 19 20 struct kmem_cache *nvmet_bvec_cache; 21 struct workqueue_struct *buffered_io_wq; 22 struct workqueue_struct *zbd_wq; 23 static const struct nvmet_fabrics_ops *nvmet_transports[NVMF_TRTYPE_MAX]; 24 static DEFINE_IDA(cntlid_ida); 25 26 struct workqueue_struct *nvmet_wq; 27 EXPORT_SYMBOL_GPL(nvmet_wq); 28 29 /* 30 * This read/write semaphore is used to synchronize access to configuration 31 * information on a target system that will result in discovery log page 32 * information change for at least one host. 33 * The full list of resources to protected by this semaphore is: 34 * 35 * - subsystems list 36 * - per-subsystem allowed hosts list 37 * - allow_any_host subsystem attribute 38 * - nvmet_genctr 39 * - the nvmet_transports array 40 * 41 * When updating any of those lists/structures write lock should be obtained, 42 * while when reading (popolating discovery log page or checking host-subsystem 43 * link) read lock is obtained to allow concurrent reads. 44 */ 45 DECLARE_RWSEM(nvmet_config_sem); 46 47 u32 nvmet_ana_group_enabled[NVMET_MAX_ANAGRPS + 1]; 48 u64 nvmet_ana_chgcnt; 49 DECLARE_RWSEM(nvmet_ana_sem); 50 51 inline u16 errno_to_nvme_status(struct nvmet_req *req, int errno) 52 { 53 switch (errno) { 54 case 0: 55 return NVME_SC_SUCCESS; 56 case -ENOSPC: 57 req->error_loc = offsetof(struct nvme_rw_command, length); 58 return NVME_SC_CAP_EXCEEDED | NVME_SC_DNR; 59 case -EREMOTEIO: 60 req->error_loc = offsetof(struct nvme_rw_command, slba); 61 return NVME_SC_LBA_RANGE | NVME_SC_DNR; 62 case -EOPNOTSUPP: 63 req->error_loc = offsetof(struct nvme_common_command, opcode); 64 switch (req->cmd->common.opcode) { 65 case nvme_cmd_dsm: 66 case nvme_cmd_write_zeroes: 67 return NVME_SC_ONCS_NOT_SUPPORTED | NVME_SC_DNR; 68 default: 69 return NVME_SC_INVALID_OPCODE | NVME_SC_DNR; 70 } 71 break; 72 case -ENODATA: 73 req->error_loc = offsetof(struct nvme_rw_command, nsid); 74 return NVME_SC_ACCESS_DENIED; 75 case -EIO: 76 fallthrough; 77 default: 78 req->error_loc = offsetof(struct nvme_common_command, opcode); 79 return NVME_SC_INTERNAL | NVME_SC_DNR; 80 } 81 } 82 83 u16 nvmet_report_invalid_opcode(struct nvmet_req *req) 84 { 85 pr_debug("unhandled cmd %d on qid %d\n", req->cmd->common.opcode, 86 req->sq->qid); 87 88 req->error_loc = offsetof(struct nvme_common_command, opcode); 89 return NVME_SC_INVALID_OPCODE | NVME_SC_DNR; 90 } 91 92 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port, 93 const char *subsysnqn); 94 95 u16 nvmet_copy_to_sgl(struct nvmet_req *req, off_t off, const void *buf, 96 size_t len) 97 { 98 if (sg_pcopy_from_buffer(req->sg, req->sg_cnt, buf, len, off) != len) { 99 req->error_loc = offsetof(struct nvme_common_command, dptr); 100 return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR; 101 } 102 return 0; 103 } 104 105 u16 nvmet_copy_from_sgl(struct nvmet_req *req, off_t off, void *buf, size_t len) 106 { 107 if (sg_pcopy_to_buffer(req->sg, req->sg_cnt, buf, len, off) != len) { 108 req->error_loc = offsetof(struct nvme_common_command, dptr); 109 return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR; 110 } 111 return 0; 112 } 113 114 u16 nvmet_zero_sgl(struct nvmet_req *req, off_t off, size_t len) 115 { 116 if (sg_zero_buffer(req->sg, req->sg_cnt, len, off) != len) { 117 req->error_loc = offsetof(struct nvme_common_command, dptr); 118 return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR; 119 } 120 return 0; 121 } 122 123 static u32 nvmet_max_nsid(struct nvmet_subsys *subsys) 124 { 125 struct nvmet_ns *cur; 126 unsigned long idx; 127 u32 nsid = 0; 128 129 xa_for_each(&subsys->namespaces, idx, cur) 130 nsid = cur->nsid; 131 132 return nsid; 133 } 134 135 static u32 nvmet_async_event_result(struct nvmet_async_event *aen) 136 { 137 return aen->event_type | (aen->event_info << 8) | (aen->log_page << 16); 138 } 139 140 static void nvmet_async_events_failall(struct nvmet_ctrl *ctrl) 141 { 142 struct nvmet_req *req; 143 144 mutex_lock(&ctrl->lock); 145 while (ctrl->nr_async_event_cmds) { 146 req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds]; 147 mutex_unlock(&ctrl->lock); 148 nvmet_req_complete(req, NVME_SC_INTERNAL | NVME_SC_DNR); 149 mutex_lock(&ctrl->lock); 150 } 151 mutex_unlock(&ctrl->lock); 152 } 153 154 static void nvmet_async_events_process(struct nvmet_ctrl *ctrl) 155 { 156 struct nvmet_async_event *aen; 157 struct nvmet_req *req; 158 159 mutex_lock(&ctrl->lock); 160 while (ctrl->nr_async_event_cmds && !list_empty(&ctrl->async_events)) { 161 aen = list_first_entry(&ctrl->async_events, 162 struct nvmet_async_event, entry); 163 req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds]; 164 nvmet_set_result(req, nvmet_async_event_result(aen)); 165 166 list_del(&aen->entry); 167 kfree(aen); 168 169 mutex_unlock(&ctrl->lock); 170 trace_nvmet_async_event(ctrl, req->cqe->result.u32); 171 nvmet_req_complete(req, 0); 172 mutex_lock(&ctrl->lock); 173 } 174 mutex_unlock(&ctrl->lock); 175 } 176 177 static void nvmet_async_events_free(struct nvmet_ctrl *ctrl) 178 { 179 struct nvmet_async_event *aen, *tmp; 180 181 mutex_lock(&ctrl->lock); 182 list_for_each_entry_safe(aen, tmp, &ctrl->async_events, entry) { 183 list_del(&aen->entry); 184 kfree(aen); 185 } 186 mutex_unlock(&ctrl->lock); 187 } 188 189 static void nvmet_async_event_work(struct work_struct *work) 190 { 191 struct nvmet_ctrl *ctrl = 192 container_of(work, struct nvmet_ctrl, async_event_work); 193 194 nvmet_async_events_process(ctrl); 195 } 196 197 void nvmet_add_async_event(struct nvmet_ctrl *ctrl, u8 event_type, 198 u8 event_info, u8 log_page) 199 { 200 struct nvmet_async_event *aen; 201 202 aen = kmalloc(sizeof(*aen), GFP_KERNEL); 203 if (!aen) 204 return; 205 206 aen->event_type = event_type; 207 aen->event_info = event_info; 208 aen->log_page = log_page; 209 210 mutex_lock(&ctrl->lock); 211 list_add_tail(&aen->entry, &ctrl->async_events); 212 mutex_unlock(&ctrl->lock); 213 214 queue_work(nvmet_wq, &ctrl->async_event_work); 215 } 216 217 static void nvmet_add_to_changed_ns_log(struct nvmet_ctrl *ctrl, __le32 nsid) 218 { 219 u32 i; 220 221 mutex_lock(&ctrl->lock); 222 if (ctrl->nr_changed_ns > NVME_MAX_CHANGED_NAMESPACES) 223 goto out_unlock; 224 225 for (i = 0; i < ctrl->nr_changed_ns; i++) { 226 if (ctrl->changed_ns_list[i] == nsid) 227 goto out_unlock; 228 } 229 230 if (ctrl->nr_changed_ns == NVME_MAX_CHANGED_NAMESPACES) { 231 ctrl->changed_ns_list[0] = cpu_to_le32(0xffffffff); 232 ctrl->nr_changed_ns = U32_MAX; 233 goto out_unlock; 234 } 235 236 ctrl->changed_ns_list[ctrl->nr_changed_ns++] = nsid; 237 out_unlock: 238 mutex_unlock(&ctrl->lock); 239 } 240 241 void nvmet_ns_changed(struct nvmet_subsys *subsys, u32 nsid) 242 { 243 struct nvmet_ctrl *ctrl; 244 245 lockdep_assert_held(&subsys->lock); 246 247 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) { 248 nvmet_add_to_changed_ns_log(ctrl, cpu_to_le32(nsid)); 249 if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_NS_ATTR)) 250 continue; 251 nvmet_add_async_event(ctrl, NVME_AER_NOTICE, 252 NVME_AER_NOTICE_NS_CHANGED, 253 NVME_LOG_CHANGED_NS); 254 } 255 } 256 257 void nvmet_send_ana_event(struct nvmet_subsys *subsys, 258 struct nvmet_port *port) 259 { 260 struct nvmet_ctrl *ctrl; 261 262 mutex_lock(&subsys->lock); 263 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) { 264 if (port && ctrl->port != port) 265 continue; 266 if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_ANA_CHANGE)) 267 continue; 268 nvmet_add_async_event(ctrl, NVME_AER_NOTICE, 269 NVME_AER_NOTICE_ANA, NVME_LOG_ANA); 270 } 271 mutex_unlock(&subsys->lock); 272 } 273 274 void nvmet_port_send_ana_event(struct nvmet_port *port) 275 { 276 struct nvmet_subsys_link *p; 277 278 down_read(&nvmet_config_sem); 279 list_for_each_entry(p, &port->subsystems, entry) 280 nvmet_send_ana_event(p->subsys, port); 281 up_read(&nvmet_config_sem); 282 } 283 284 int nvmet_register_transport(const struct nvmet_fabrics_ops *ops) 285 { 286 int ret = 0; 287 288 down_write(&nvmet_config_sem); 289 if (nvmet_transports[ops->type]) 290 ret = -EINVAL; 291 else 292 nvmet_transports[ops->type] = ops; 293 up_write(&nvmet_config_sem); 294 295 return ret; 296 } 297 EXPORT_SYMBOL_GPL(nvmet_register_transport); 298 299 void nvmet_unregister_transport(const struct nvmet_fabrics_ops *ops) 300 { 301 down_write(&nvmet_config_sem); 302 nvmet_transports[ops->type] = NULL; 303 up_write(&nvmet_config_sem); 304 } 305 EXPORT_SYMBOL_GPL(nvmet_unregister_transport); 306 307 void nvmet_port_del_ctrls(struct nvmet_port *port, struct nvmet_subsys *subsys) 308 { 309 struct nvmet_ctrl *ctrl; 310 311 mutex_lock(&subsys->lock); 312 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) { 313 if (ctrl->port == port) 314 ctrl->ops->delete_ctrl(ctrl); 315 } 316 mutex_unlock(&subsys->lock); 317 } 318 319 int nvmet_enable_port(struct nvmet_port *port) 320 { 321 const struct nvmet_fabrics_ops *ops; 322 int ret; 323 324 lockdep_assert_held(&nvmet_config_sem); 325 326 ops = nvmet_transports[port->disc_addr.trtype]; 327 if (!ops) { 328 up_write(&nvmet_config_sem); 329 request_module("nvmet-transport-%d", port->disc_addr.trtype); 330 down_write(&nvmet_config_sem); 331 ops = nvmet_transports[port->disc_addr.trtype]; 332 if (!ops) { 333 pr_err("transport type %d not supported\n", 334 port->disc_addr.trtype); 335 return -EINVAL; 336 } 337 } 338 339 if (!try_module_get(ops->owner)) 340 return -EINVAL; 341 342 /* 343 * If the user requested PI support and the transport isn't pi capable, 344 * don't enable the port. 345 */ 346 if (port->pi_enable && !(ops->flags & NVMF_METADATA_SUPPORTED)) { 347 pr_err("T10-PI is not supported by transport type %d\n", 348 port->disc_addr.trtype); 349 ret = -EINVAL; 350 goto out_put; 351 } 352 353 ret = ops->add_port(port); 354 if (ret) 355 goto out_put; 356 357 /* If the transport didn't set inline_data_size, then disable it. */ 358 if (port->inline_data_size < 0) 359 port->inline_data_size = 0; 360 361 /* 362 * If the transport didn't set the max_queue_size properly, then clamp 363 * it to the target limits. Also set default values in case the 364 * transport didn't set it at all. 365 */ 366 if (port->max_queue_size < 0) 367 port->max_queue_size = NVMET_MAX_QUEUE_SIZE; 368 else 369 port->max_queue_size = clamp_t(int, port->max_queue_size, 370 NVMET_MIN_QUEUE_SIZE, 371 NVMET_MAX_QUEUE_SIZE); 372 373 port->enabled = true; 374 port->tr_ops = ops; 375 return 0; 376 377 out_put: 378 module_put(ops->owner); 379 return ret; 380 } 381 382 void nvmet_disable_port(struct nvmet_port *port) 383 { 384 const struct nvmet_fabrics_ops *ops; 385 386 lockdep_assert_held(&nvmet_config_sem); 387 388 port->enabled = false; 389 port->tr_ops = NULL; 390 391 ops = nvmet_transports[port->disc_addr.trtype]; 392 ops->remove_port(port); 393 module_put(ops->owner); 394 } 395 396 static void nvmet_keep_alive_timer(struct work_struct *work) 397 { 398 struct nvmet_ctrl *ctrl = container_of(to_delayed_work(work), 399 struct nvmet_ctrl, ka_work); 400 bool reset_tbkas = ctrl->reset_tbkas; 401 402 ctrl->reset_tbkas = false; 403 if (reset_tbkas) { 404 pr_debug("ctrl %d reschedule traffic based keep-alive timer\n", 405 ctrl->cntlid); 406 queue_delayed_work(nvmet_wq, &ctrl->ka_work, ctrl->kato * HZ); 407 return; 408 } 409 410 pr_err("ctrl %d keep-alive timer (%d seconds) expired!\n", 411 ctrl->cntlid, ctrl->kato); 412 413 nvmet_ctrl_fatal_error(ctrl); 414 } 415 416 void nvmet_start_keep_alive_timer(struct nvmet_ctrl *ctrl) 417 { 418 if (unlikely(ctrl->kato == 0)) 419 return; 420 421 pr_debug("ctrl %d start keep-alive timer for %d secs\n", 422 ctrl->cntlid, ctrl->kato); 423 424 queue_delayed_work(nvmet_wq, &ctrl->ka_work, ctrl->kato * HZ); 425 } 426 427 void nvmet_stop_keep_alive_timer(struct nvmet_ctrl *ctrl) 428 { 429 if (unlikely(ctrl->kato == 0)) 430 return; 431 432 pr_debug("ctrl %d stop keep-alive\n", ctrl->cntlid); 433 434 cancel_delayed_work_sync(&ctrl->ka_work); 435 } 436 437 u16 nvmet_req_find_ns(struct nvmet_req *req) 438 { 439 u32 nsid = le32_to_cpu(req->cmd->common.nsid); 440 struct nvmet_subsys *subsys = nvmet_req_subsys(req); 441 442 req->ns = xa_load(&subsys->namespaces, nsid); 443 if (unlikely(!req->ns)) { 444 req->error_loc = offsetof(struct nvme_common_command, nsid); 445 if (nvmet_subsys_nsid_exists(subsys, nsid)) 446 return NVME_SC_INTERNAL_PATH_ERROR; 447 return NVME_SC_INVALID_NS | NVME_SC_DNR; 448 } 449 450 percpu_ref_get(&req->ns->ref); 451 return NVME_SC_SUCCESS; 452 } 453 454 static void nvmet_destroy_namespace(struct percpu_ref *ref) 455 { 456 struct nvmet_ns *ns = container_of(ref, struct nvmet_ns, ref); 457 458 complete(&ns->disable_done); 459 } 460 461 void nvmet_put_namespace(struct nvmet_ns *ns) 462 { 463 percpu_ref_put(&ns->ref); 464 } 465 466 static void nvmet_ns_dev_disable(struct nvmet_ns *ns) 467 { 468 nvmet_bdev_ns_disable(ns); 469 nvmet_file_ns_disable(ns); 470 } 471 472 static int nvmet_p2pmem_ns_enable(struct nvmet_ns *ns) 473 { 474 int ret; 475 struct pci_dev *p2p_dev; 476 477 if (!ns->use_p2pmem) 478 return 0; 479 480 if (!ns->bdev) { 481 pr_err("peer-to-peer DMA is not supported by non-block device namespaces\n"); 482 return -EINVAL; 483 } 484 485 if (!blk_queue_pci_p2pdma(ns->bdev->bd_disk->queue)) { 486 pr_err("peer-to-peer DMA is not supported by the driver of %s\n", 487 ns->device_path); 488 return -EINVAL; 489 } 490 491 if (ns->p2p_dev) { 492 ret = pci_p2pdma_distance(ns->p2p_dev, nvmet_ns_dev(ns), true); 493 if (ret < 0) 494 return -EINVAL; 495 } else { 496 /* 497 * Right now we just check that there is p2pmem available so 498 * we can report an error to the user right away if there 499 * is not. We'll find the actual device to use once we 500 * setup the controller when the port's device is available. 501 */ 502 503 p2p_dev = pci_p2pmem_find(nvmet_ns_dev(ns)); 504 if (!p2p_dev) { 505 pr_err("no peer-to-peer memory is available for %s\n", 506 ns->device_path); 507 return -EINVAL; 508 } 509 510 pci_dev_put(p2p_dev); 511 } 512 513 return 0; 514 } 515 516 /* 517 * Note: ctrl->subsys->lock should be held when calling this function 518 */ 519 static void nvmet_p2pmem_ns_add_p2p(struct nvmet_ctrl *ctrl, 520 struct nvmet_ns *ns) 521 { 522 struct device *clients[2]; 523 struct pci_dev *p2p_dev; 524 int ret; 525 526 if (!ctrl->p2p_client || !ns->use_p2pmem) 527 return; 528 529 if (ns->p2p_dev) { 530 ret = pci_p2pdma_distance(ns->p2p_dev, ctrl->p2p_client, true); 531 if (ret < 0) 532 return; 533 534 p2p_dev = pci_dev_get(ns->p2p_dev); 535 } else { 536 clients[0] = ctrl->p2p_client; 537 clients[1] = nvmet_ns_dev(ns); 538 539 p2p_dev = pci_p2pmem_find_many(clients, ARRAY_SIZE(clients)); 540 if (!p2p_dev) { 541 pr_err("no peer-to-peer memory is available that's supported by %s and %s\n", 542 dev_name(ctrl->p2p_client), ns->device_path); 543 return; 544 } 545 } 546 547 ret = radix_tree_insert(&ctrl->p2p_ns_map, ns->nsid, p2p_dev); 548 if (ret < 0) 549 pci_dev_put(p2p_dev); 550 551 pr_info("using p2pmem on %s for nsid %d\n", pci_name(p2p_dev), 552 ns->nsid); 553 } 554 555 bool nvmet_ns_revalidate(struct nvmet_ns *ns) 556 { 557 loff_t oldsize = ns->size; 558 559 if (ns->bdev) 560 nvmet_bdev_ns_revalidate(ns); 561 else 562 nvmet_file_ns_revalidate(ns); 563 564 return oldsize != ns->size; 565 } 566 567 int nvmet_ns_enable(struct nvmet_ns *ns) 568 { 569 struct nvmet_subsys *subsys = ns->subsys; 570 struct nvmet_ctrl *ctrl; 571 int ret; 572 573 mutex_lock(&subsys->lock); 574 ret = 0; 575 576 if (nvmet_is_passthru_subsys(subsys)) { 577 pr_info("cannot enable both passthru and regular namespaces for a single subsystem"); 578 goto out_unlock; 579 } 580 581 if (ns->enabled) 582 goto out_unlock; 583 584 ret = -EMFILE; 585 if (subsys->nr_namespaces == NVMET_MAX_NAMESPACES) 586 goto out_unlock; 587 588 ret = nvmet_bdev_ns_enable(ns); 589 if (ret == -ENOTBLK) 590 ret = nvmet_file_ns_enable(ns); 591 if (ret) 592 goto out_unlock; 593 594 ret = nvmet_p2pmem_ns_enable(ns); 595 if (ret) 596 goto out_dev_disable; 597 598 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) 599 nvmet_p2pmem_ns_add_p2p(ctrl, ns); 600 601 ret = percpu_ref_init(&ns->ref, nvmet_destroy_namespace, 602 0, GFP_KERNEL); 603 if (ret) 604 goto out_dev_put; 605 606 if (ns->nsid > subsys->max_nsid) 607 subsys->max_nsid = ns->nsid; 608 609 ret = xa_insert(&subsys->namespaces, ns->nsid, ns, GFP_KERNEL); 610 if (ret) 611 goto out_restore_subsys_maxnsid; 612 613 subsys->nr_namespaces++; 614 615 nvmet_ns_changed(subsys, ns->nsid); 616 ns->enabled = true; 617 ret = 0; 618 out_unlock: 619 mutex_unlock(&subsys->lock); 620 return ret; 621 622 out_restore_subsys_maxnsid: 623 subsys->max_nsid = nvmet_max_nsid(subsys); 624 percpu_ref_exit(&ns->ref); 625 out_dev_put: 626 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) 627 pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid)); 628 out_dev_disable: 629 nvmet_ns_dev_disable(ns); 630 goto out_unlock; 631 } 632 633 void nvmet_ns_disable(struct nvmet_ns *ns) 634 { 635 struct nvmet_subsys *subsys = ns->subsys; 636 struct nvmet_ctrl *ctrl; 637 638 mutex_lock(&subsys->lock); 639 if (!ns->enabled) 640 goto out_unlock; 641 642 ns->enabled = false; 643 xa_erase(&ns->subsys->namespaces, ns->nsid); 644 if (ns->nsid == subsys->max_nsid) 645 subsys->max_nsid = nvmet_max_nsid(subsys); 646 647 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) 648 pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid)); 649 650 mutex_unlock(&subsys->lock); 651 652 /* 653 * Now that we removed the namespaces from the lookup list, we 654 * can kill the per_cpu ref and wait for any remaining references 655 * to be dropped, as well as a RCU grace period for anyone only 656 * using the namepace under rcu_read_lock(). Note that we can't 657 * use call_rcu here as we need to ensure the namespaces have 658 * been fully destroyed before unloading the module. 659 */ 660 percpu_ref_kill(&ns->ref); 661 synchronize_rcu(); 662 wait_for_completion(&ns->disable_done); 663 percpu_ref_exit(&ns->ref); 664 665 mutex_lock(&subsys->lock); 666 667 subsys->nr_namespaces--; 668 nvmet_ns_changed(subsys, ns->nsid); 669 nvmet_ns_dev_disable(ns); 670 out_unlock: 671 mutex_unlock(&subsys->lock); 672 } 673 674 void nvmet_ns_free(struct nvmet_ns *ns) 675 { 676 nvmet_ns_disable(ns); 677 678 down_write(&nvmet_ana_sem); 679 nvmet_ana_group_enabled[ns->anagrpid]--; 680 up_write(&nvmet_ana_sem); 681 682 kfree(ns->device_path); 683 kfree(ns); 684 } 685 686 struct nvmet_ns *nvmet_ns_alloc(struct nvmet_subsys *subsys, u32 nsid) 687 { 688 struct nvmet_ns *ns; 689 690 ns = kzalloc(sizeof(*ns), GFP_KERNEL); 691 if (!ns) 692 return NULL; 693 694 init_completion(&ns->disable_done); 695 696 ns->nsid = nsid; 697 ns->subsys = subsys; 698 699 down_write(&nvmet_ana_sem); 700 ns->anagrpid = NVMET_DEFAULT_ANA_GRPID; 701 nvmet_ana_group_enabled[ns->anagrpid]++; 702 up_write(&nvmet_ana_sem); 703 704 uuid_gen(&ns->uuid); 705 ns->buffered_io = false; 706 ns->csi = NVME_CSI_NVM; 707 708 return ns; 709 } 710 711 static void nvmet_update_sq_head(struct nvmet_req *req) 712 { 713 if (req->sq->size) { 714 u32 old_sqhd, new_sqhd; 715 716 old_sqhd = READ_ONCE(req->sq->sqhd); 717 do { 718 new_sqhd = (old_sqhd + 1) % req->sq->size; 719 } while (!try_cmpxchg(&req->sq->sqhd, &old_sqhd, new_sqhd)); 720 } 721 req->cqe->sq_head = cpu_to_le16(req->sq->sqhd & 0x0000FFFF); 722 } 723 724 static void nvmet_set_error(struct nvmet_req *req, u16 status) 725 { 726 struct nvmet_ctrl *ctrl = req->sq->ctrl; 727 struct nvme_error_slot *new_error_slot; 728 unsigned long flags; 729 730 req->cqe->status = cpu_to_le16(status << 1); 731 732 if (!ctrl || req->error_loc == NVMET_NO_ERROR_LOC) 733 return; 734 735 spin_lock_irqsave(&ctrl->error_lock, flags); 736 ctrl->err_counter++; 737 new_error_slot = 738 &ctrl->slots[ctrl->err_counter % NVMET_ERROR_LOG_SLOTS]; 739 740 new_error_slot->error_count = cpu_to_le64(ctrl->err_counter); 741 new_error_slot->sqid = cpu_to_le16(req->sq->qid); 742 new_error_slot->cmdid = cpu_to_le16(req->cmd->common.command_id); 743 new_error_slot->status_field = cpu_to_le16(status << 1); 744 new_error_slot->param_error_location = cpu_to_le16(req->error_loc); 745 new_error_slot->lba = cpu_to_le64(req->error_slba); 746 new_error_slot->nsid = req->cmd->common.nsid; 747 spin_unlock_irqrestore(&ctrl->error_lock, flags); 748 749 /* set the more bit for this request */ 750 req->cqe->status |= cpu_to_le16(1 << 14); 751 } 752 753 static void __nvmet_req_complete(struct nvmet_req *req, u16 status) 754 { 755 struct nvmet_ns *ns = req->ns; 756 757 if (!req->sq->sqhd_disabled) 758 nvmet_update_sq_head(req); 759 req->cqe->sq_id = cpu_to_le16(req->sq->qid); 760 req->cqe->command_id = req->cmd->common.command_id; 761 762 if (unlikely(status)) 763 nvmet_set_error(req, status); 764 765 trace_nvmet_req_complete(req); 766 767 req->ops->queue_response(req); 768 if (ns) 769 nvmet_put_namespace(ns); 770 } 771 772 void nvmet_req_complete(struct nvmet_req *req, u16 status) 773 { 774 struct nvmet_sq *sq = req->sq; 775 776 __nvmet_req_complete(req, status); 777 percpu_ref_put(&sq->ref); 778 } 779 EXPORT_SYMBOL_GPL(nvmet_req_complete); 780 781 void nvmet_cq_setup(struct nvmet_ctrl *ctrl, struct nvmet_cq *cq, 782 u16 qid, u16 size) 783 { 784 cq->qid = qid; 785 cq->size = size; 786 } 787 788 void nvmet_sq_setup(struct nvmet_ctrl *ctrl, struct nvmet_sq *sq, 789 u16 qid, u16 size) 790 { 791 sq->sqhd = 0; 792 sq->qid = qid; 793 sq->size = size; 794 795 ctrl->sqs[qid] = sq; 796 } 797 798 static void nvmet_confirm_sq(struct percpu_ref *ref) 799 { 800 struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref); 801 802 complete(&sq->confirm_done); 803 } 804 805 void nvmet_sq_destroy(struct nvmet_sq *sq) 806 { 807 struct nvmet_ctrl *ctrl = sq->ctrl; 808 809 /* 810 * If this is the admin queue, complete all AERs so that our 811 * queue doesn't have outstanding requests on it. 812 */ 813 if (ctrl && ctrl->sqs && ctrl->sqs[0] == sq) 814 nvmet_async_events_failall(ctrl); 815 percpu_ref_kill_and_confirm(&sq->ref, nvmet_confirm_sq); 816 wait_for_completion(&sq->confirm_done); 817 wait_for_completion(&sq->free_done); 818 percpu_ref_exit(&sq->ref); 819 nvmet_auth_sq_free(sq); 820 821 /* 822 * we must reference the ctrl again after waiting for inflight IO 823 * to complete. Because admin connect may have sneaked in after we 824 * store sq->ctrl locally, but before we killed the percpu_ref. the 825 * admin connect allocates and assigns sq->ctrl, which now needs a 826 * final ref put, as this ctrl is going away. 827 */ 828 ctrl = sq->ctrl; 829 830 if (ctrl) { 831 /* 832 * The teardown flow may take some time, and the host may not 833 * send us keep-alive during this period, hence reset the 834 * traffic based keep-alive timer so we don't trigger a 835 * controller teardown as a result of a keep-alive expiration. 836 */ 837 ctrl->reset_tbkas = true; 838 sq->ctrl->sqs[sq->qid] = NULL; 839 nvmet_ctrl_put(ctrl); 840 sq->ctrl = NULL; /* allows reusing the queue later */ 841 } 842 } 843 EXPORT_SYMBOL_GPL(nvmet_sq_destroy); 844 845 static void nvmet_sq_free(struct percpu_ref *ref) 846 { 847 struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref); 848 849 complete(&sq->free_done); 850 } 851 852 int nvmet_sq_init(struct nvmet_sq *sq) 853 { 854 int ret; 855 856 ret = percpu_ref_init(&sq->ref, nvmet_sq_free, 0, GFP_KERNEL); 857 if (ret) { 858 pr_err("percpu_ref init failed!\n"); 859 return ret; 860 } 861 init_completion(&sq->free_done); 862 init_completion(&sq->confirm_done); 863 nvmet_auth_sq_init(sq); 864 865 return 0; 866 } 867 EXPORT_SYMBOL_GPL(nvmet_sq_init); 868 869 static inline u16 nvmet_check_ana_state(struct nvmet_port *port, 870 struct nvmet_ns *ns) 871 { 872 enum nvme_ana_state state = port->ana_state[ns->anagrpid]; 873 874 if (unlikely(state == NVME_ANA_INACCESSIBLE)) 875 return NVME_SC_ANA_INACCESSIBLE; 876 if (unlikely(state == NVME_ANA_PERSISTENT_LOSS)) 877 return NVME_SC_ANA_PERSISTENT_LOSS; 878 if (unlikely(state == NVME_ANA_CHANGE)) 879 return NVME_SC_ANA_TRANSITION; 880 return 0; 881 } 882 883 static inline u16 nvmet_io_cmd_check_access(struct nvmet_req *req) 884 { 885 if (unlikely(req->ns->readonly)) { 886 switch (req->cmd->common.opcode) { 887 case nvme_cmd_read: 888 case nvme_cmd_flush: 889 break; 890 default: 891 return NVME_SC_NS_WRITE_PROTECTED; 892 } 893 } 894 895 return 0; 896 } 897 898 static u16 nvmet_parse_io_cmd(struct nvmet_req *req) 899 { 900 struct nvme_command *cmd = req->cmd; 901 u16 ret; 902 903 if (nvme_is_fabrics(cmd)) 904 return nvmet_parse_fabrics_io_cmd(req); 905 906 if (unlikely(!nvmet_check_auth_status(req))) 907 return NVME_SC_AUTH_REQUIRED | NVME_SC_DNR; 908 909 ret = nvmet_check_ctrl_status(req); 910 if (unlikely(ret)) 911 return ret; 912 913 if (nvmet_is_passthru_req(req)) 914 return nvmet_parse_passthru_io_cmd(req); 915 916 ret = nvmet_req_find_ns(req); 917 if (unlikely(ret)) 918 return ret; 919 920 ret = nvmet_check_ana_state(req->port, req->ns); 921 if (unlikely(ret)) { 922 req->error_loc = offsetof(struct nvme_common_command, nsid); 923 return ret; 924 } 925 ret = nvmet_io_cmd_check_access(req); 926 if (unlikely(ret)) { 927 req->error_loc = offsetof(struct nvme_common_command, nsid); 928 return ret; 929 } 930 931 switch (req->ns->csi) { 932 case NVME_CSI_NVM: 933 if (req->ns->file) 934 return nvmet_file_parse_io_cmd(req); 935 return nvmet_bdev_parse_io_cmd(req); 936 case NVME_CSI_ZNS: 937 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED)) 938 return nvmet_bdev_zns_parse_io_cmd(req); 939 return NVME_SC_INVALID_IO_CMD_SET; 940 default: 941 return NVME_SC_INVALID_IO_CMD_SET; 942 } 943 } 944 945 bool nvmet_req_init(struct nvmet_req *req, struct nvmet_cq *cq, 946 struct nvmet_sq *sq, const struct nvmet_fabrics_ops *ops) 947 { 948 u8 flags = req->cmd->common.flags; 949 u16 status; 950 951 req->cq = cq; 952 req->sq = sq; 953 req->ops = ops; 954 req->sg = NULL; 955 req->metadata_sg = NULL; 956 req->sg_cnt = 0; 957 req->metadata_sg_cnt = 0; 958 req->transfer_len = 0; 959 req->metadata_len = 0; 960 req->cqe->status = 0; 961 req->cqe->sq_head = 0; 962 req->ns = NULL; 963 req->error_loc = NVMET_NO_ERROR_LOC; 964 req->error_slba = 0; 965 966 /* no support for fused commands yet */ 967 if (unlikely(flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND))) { 968 req->error_loc = offsetof(struct nvme_common_command, flags); 969 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR; 970 goto fail; 971 } 972 973 /* 974 * For fabrics, PSDT field shall describe metadata pointer (MPTR) that 975 * contains an address of a single contiguous physical buffer that is 976 * byte aligned. 977 */ 978 if (unlikely((flags & NVME_CMD_SGL_ALL) != NVME_CMD_SGL_METABUF)) { 979 req->error_loc = offsetof(struct nvme_common_command, flags); 980 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR; 981 goto fail; 982 } 983 984 if (unlikely(!req->sq->ctrl)) 985 /* will return an error for any non-connect command: */ 986 status = nvmet_parse_connect_cmd(req); 987 else if (likely(req->sq->qid != 0)) 988 status = nvmet_parse_io_cmd(req); 989 else 990 status = nvmet_parse_admin_cmd(req); 991 992 if (status) 993 goto fail; 994 995 trace_nvmet_req_init(req, req->cmd); 996 997 if (unlikely(!percpu_ref_tryget_live(&sq->ref))) { 998 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR; 999 goto fail; 1000 } 1001 1002 if (sq->ctrl) 1003 sq->ctrl->reset_tbkas = true; 1004 1005 return true; 1006 1007 fail: 1008 __nvmet_req_complete(req, status); 1009 return false; 1010 } 1011 EXPORT_SYMBOL_GPL(nvmet_req_init); 1012 1013 void nvmet_req_uninit(struct nvmet_req *req) 1014 { 1015 percpu_ref_put(&req->sq->ref); 1016 if (req->ns) 1017 nvmet_put_namespace(req->ns); 1018 } 1019 EXPORT_SYMBOL_GPL(nvmet_req_uninit); 1020 1021 bool nvmet_check_transfer_len(struct nvmet_req *req, size_t len) 1022 { 1023 if (unlikely(len != req->transfer_len)) { 1024 req->error_loc = offsetof(struct nvme_common_command, dptr); 1025 nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR); 1026 return false; 1027 } 1028 1029 return true; 1030 } 1031 EXPORT_SYMBOL_GPL(nvmet_check_transfer_len); 1032 1033 bool nvmet_check_data_len_lte(struct nvmet_req *req, size_t data_len) 1034 { 1035 if (unlikely(data_len > req->transfer_len)) { 1036 req->error_loc = offsetof(struct nvme_common_command, dptr); 1037 nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR); 1038 return false; 1039 } 1040 1041 return true; 1042 } 1043 1044 static unsigned int nvmet_data_transfer_len(struct nvmet_req *req) 1045 { 1046 return req->transfer_len - req->metadata_len; 1047 } 1048 1049 static int nvmet_req_alloc_p2pmem_sgls(struct pci_dev *p2p_dev, 1050 struct nvmet_req *req) 1051 { 1052 req->sg = pci_p2pmem_alloc_sgl(p2p_dev, &req->sg_cnt, 1053 nvmet_data_transfer_len(req)); 1054 if (!req->sg) 1055 goto out_err; 1056 1057 if (req->metadata_len) { 1058 req->metadata_sg = pci_p2pmem_alloc_sgl(p2p_dev, 1059 &req->metadata_sg_cnt, req->metadata_len); 1060 if (!req->metadata_sg) 1061 goto out_free_sg; 1062 } 1063 1064 req->p2p_dev = p2p_dev; 1065 1066 return 0; 1067 out_free_sg: 1068 pci_p2pmem_free_sgl(req->p2p_dev, req->sg); 1069 out_err: 1070 return -ENOMEM; 1071 } 1072 1073 static struct pci_dev *nvmet_req_find_p2p_dev(struct nvmet_req *req) 1074 { 1075 if (!IS_ENABLED(CONFIG_PCI_P2PDMA) || 1076 !req->sq->ctrl || !req->sq->qid || !req->ns) 1077 return NULL; 1078 return radix_tree_lookup(&req->sq->ctrl->p2p_ns_map, req->ns->nsid); 1079 } 1080 1081 int nvmet_req_alloc_sgls(struct nvmet_req *req) 1082 { 1083 struct pci_dev *p2p_dev = nvmet_req_find_p2p_dev(req); 1084 1085 if (p2p_dev && !nvmet_req_alloc_p2pmem_sgls(p2p_dev, req)) 1086 return 0; 1087 1088 req->sg = sgl_alloc(nvmet_data_transfer_len(req), GFP_KERNEL, 1089 &req->sg_cnt); 1090 if (unlikely(!req->sg)) 1091 goto out; 1092 1093 if (req->metadata_len) { 1094 req->metadata_sg = sgl_alloc(req->metadata_len, GFP_KERNEL, 1095 &req->metadata_sg_cnt); 1096 if (unlikely(!req->metadata_sg)) 1097 goto out_free; 1098 } 1099 1100 return 0; 1101 out_free: 1102 sgl_free(req->sg); 1103 out: 1104 return -ENOMEM; 1105 } 1106 EXPORT_SYMBOL_GPL(nvmet_req_alloc_sgls); 1107 1108 void nvmet_req_free_sgls(struct nvmet_req *req) 1109 { 1110 if (req->p2p_dev) { 1111 pci_p2pmem_free_sgl(req->p2p_dev, req->sg); 1112 if (req->metadata_sg) 1113 pci_p2pmem_free_sgl(req->p2p_dev, req->metadata_sg); 1114 req->p2p_dev = NULL; 1115 } else { 1116 sgl_free(req->sg); 1117 if (req->metadata_sg) 1118 sgl_free(req->metadata_sg); 1119 } 1120 1121 req->sg = NULL; 1122 req->metadata_sg = NULL; 1123 req->sg_cnt = 0; 1124 req->metadata_sg_cnt = 0; 1125 } 1126 EXPORT_SYMBOL_GPL(nvmet_req_free_sgls); 1127 1128 static inline bool nvmet_cc_en(u32 cc) 1129 { 1130 return (cc >> NVME_CC_EN_SHIFT) & 0x1; 1131 } 1132 1133 static inline u8 nvmet_cc_css(u32 cc) 1134 { 1135 return (cc >> NVME_CC_CSS_SHIFT) & 0x7; 1136 } 1137 1138 static inline u8 nvmet_cc_mps(u32 cc) 1139 { 1140 return (cc >> NVME_CC_MPS_SHIFT) & 0xf; 1141 } 1142 1143 static inline u8 nvmet_cc_ams(u32 cc) 1144 { 1145 return (cc >> NVME_CC_AMS_SHIFT) & 0x7; 1146 } 1147 1148 static inline u8 nvmet_cc_shn(u32 cc) 1149 { 1150 return (cc >> NVME_CC_SHN_SHIFT) & 0x3; 1151 } 1152 1153 static inline u8 nvmet_cc_iosqes(u32 cc) 1154 { 1155 return (cc >> NVME_CC_IOSQES_SHIFT) & 0xf; 1156 } 1157 1158 static inline u8 nvmet_cc_iocqes(u32 cc) 1159 { 1160 return (cc >> NVME_CC_IOCQES_SHIFT) & 0xf; 1161 } 1162 1163 static inline bool nvmet_css_supported(u8 cc_css) 1164 { 1165 switch (cc_css << NVME_CC_CSS_SHIFT) { 1166 case NVME_CC_CSS_NVM: 1167 case NVME_CC_CSS_CSI: 1168 return true; 1169 default: 1170 return false; 1171 } 1172 } 1173 1174 static void nvmet_start_ctrl(struct nvmet_ctrl *ctrl) 1175 { 1176 lockdep_assert_held(&ctrl->lock); 1177 1178 /* 1179 * Only I/O controllers should verify iosqes,iocqes. 1180 * Strictly speaking, the spec says a discovery controller 1181 * should verify iosqes,iocqes are zeroed, however that 1182 * would break backwards compatibility, so don't enforce it. 1183 */ 1184 if (!nvmet_is_disc_subsys(ctrl->subsys) && 1185 (nvmet_cc_iosqes(ctrl->cc) != NVME_NVM_IOSQES || 1186 nvmet_cc_iocqes(ctrl->cc) != NVME_NVM_IOCQES)) { 1187 ctrl->csts = NVME_CSTS_CFS; 1188 return; 1189 } 1190 1191 if (nvmet_cc_mps(ctrl->cc) != 0 || 1192 nvmet_cc_ams(ctrl->cc) != 0 || 1193 !nvmet_css_supported(nvmet_cc_css(ctrl->cc))) { 1194 ctrl->csts = NVME_CSTS_CFS; 1195 return; 1196 } 1197 1198 ctrl->csts = NVME_CSTS_RDY; 1199 1200 /* 1201 * Controllers that are not yet enabled should not really enforce the 1202 * keep alive timeout, but we still want to track a timeout and cleanup 1203 * in case a host died before it enabled the controller. Hence, simply 1204 * reset the keep alive timer when the controller is enabled. 1205 */ 1206 if (ctrl->kato) 1207 mod_delayed_work(nvmet_wq, &ctrl->ka_work, ctrl->kato * HZ); 1208 } 1209 1210 static void nvmet_clear_ctrl(struct nvmet_ctrl *ctrl) 1211 { 1212 lockdep_assert_held(&ctrl->lock); 1213 1214 /* XXX: tear down queues? */ 1215 ctrl->csts &= ~NVME_CSTS_RDY; 1216 ctrl->cc = 0; 1217 } 1218 1219 void nvmet_update_cc(struct nvmet_ctrl *ctrl, u32 new) 1220 { 1221 u32 old; 1222 1223 mutex_lock(&ctrl->lock); 1224 old = ctrl->cc; 1225 ctrl->cc = new; 1226 1227 if (nvmet_cc_en(new) && !nvmet_cc_en(old)) 1228 nvmet_start_ctrl(ctrl); 1229 if (!nvmet_cc_en(new) && nvmet_cc_en(old)) 1230 nvmet_clear_ctrl(ctrl); 1231 if (nvmet_cc_shn(new) && !nvmet_cc_shn(old)) { 1232 nvmet_clear_ctrl(ctrl); 1233 ctrl->csts |= NVME_CSTS_SHST_CMPLT; 1234 } 1235 if (!nvmet_cc_shn(new) && nvmet_cc_shn(old)) 1236 ctrl->csts &= ~NVME_CSTS_SHST_CMPLT; 1237 mutex_unlock(&ctrl->lock); 1238 } 1239 1240 static void nvmet_init_cap(struct nvmet_ctrl *ctrl) 1241 { 1242 /* command sets supported: NVMe command set: */ 1243 ctrl->cap = (1ULL << 37); 1244 /* Controller supports one or more I/O Command Sets */ 1245 ctrl->cap |= (1ULL << 43); 1246 /* CC.EN timeout in 500msec units: */ 1247 ctrl->cap |= (15ULL << 24); 1248 /* maximum queue entries supported: */ 1249 if (ctrl->ops->get_max_queue_size) 1250 ctrl->cap |= min_t(u16, ctrl->ops->get_max_queue_size(ctrl), 1251 ctrl->port->max_queue_size) - 1; 1252 else 1253 ctrl->cap |= ctrl->port->max_queue_size - 1; 1254 1255 if (nvmet_is_passthru_subsys(ctrl->subsys)) 1256 nvmet_passthrough_override_cap(ctrl); 1257 } 1258 1259 struct nvmet_ctrl *nvmet_ctrl_find_get(const char *subsysnqn, 1260 const char *hostnqn, u16 cntlid, 1261 struct nvmet_req *req) 1262 { 1263 struct nvmet_ctrl *ctrl = NULL; 1264 struct nvmet_subsys *subsys; 1265 1266 subsys = nvmet_find_get_subsys(req->port, subsysnqn); 1267 if (!subsys) { 1268 pr_warn("connect request for invalid subsystem %s!\n", 1269 subsysnqn); 1270 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn); 1271 goto out; 1272 } 1273 1274 mutex_lock(&subsys->lock); 1275 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) { 1276 if (ctrl->cntlid == cntlid) { 1277 if (strncmp(hostnqn, ctrl->hostnqn, NVMF_NQN_SIZE)) { 1278 pr_warn("hostnqn mismatch.\n"); 1279 continue; 1280 } 1281 if (!kref_get_unless_zero(&ctrl->ref)) 1282 continue; 1283 1284 /* ctrl found */ 1285 goto found; 1286 } 1287 } 1288 1289 ctrl = NULL; /* ctrl not found */ 1290 pr_warn("could not find controller %d for subsys %s / host %s\n", 1291 cntlid, subsysnqn, hostnqn); 1292 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(cntlid); 1293 1294 found: 1295 mutex_unlock(&subsys->lock); 1296 nvmet_subsys_put(subsys); 1297 out: 1298 return ctrl; 1299 } 1300 1301 u16 nvmet_check_ctrl_status(struct nvmet_req *req) 1302 { 1303 if (unlikely(!(req->sq->ctrl->cc & NVME_CC_ENABLE))) { 1304 pr_err("got cmd %d while CC.EN == 0 on qid = %d\n", 1305 req->cmd->common.opcode, req->sq->qid); 1306 return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR; 1307 } 1308 1309 if (unlikely(!(req->sq->ctrl->csts & NVME_CSTS_RDY))) { 1310 pr_err("got cmd %d while CSTS.RDY == 0 on qid = %d\n", 1311 req->cmd->common.opcode, req->sq->qid); 1312 return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR; 1313 } 1314 1315 if (unlikely(!nvmet_check_auth_status(req))) { 1316 pr_warn("qid %d not authenticated\n", req->sq->qid); 1317 return NVME_SC_AUTH_REQUIRED | NVME_SC_DNR; 1318 } 1319 return 0; 1320 } 1321 1322 bool nvmet_host_allowed(struct nvmet_subsys *subsys, const char *hostnqn) 1323 { 1324 struct nvmet_host_link *p; 1325 1326 lockdep_assert_held(&nvmet_config_sem); 1327 1328 if (subsys->allow_any_host) 1329 return true; 1330 1331 if (nvmet_is_disc_subsys(subsys)) /* allow all access to disc subsys */ 1332 return true; 1333 1334 list_for_each_entry(p, &subsys->hosts, entry) { 1335 if (!strcmp(nvmet_host_name(p->host), hostnqn)) 1336 return true; 1337 } 1338 1339 return false; 1340 } 1341 1342 /* 1343 * Note: ctrl->subsys->lock should be held when calling this function 1344 */ 1345 static void nvmet_setup_p2p_ns_map(struct nvmet_ctrl *ctrl, 1346 struct nvmet_req *req) 1347 { 1348 struct nvmet_ns *ns; 1349 unsigned long idx; 1350 1351 if (!req->p2p_client) 1352 return; 1353 1354 ctrl->p2p_client = get_device(req->p2p_client); 1355 1356 xa_for_each(&ctrl->subsys->namespaces, idx, ns) 1357 nvmet_p2pmem_ns_add_p2p(ctrl, ns); 1358 } 1359 1360 /* 1361 * Note: ctrl->subsys->lock should be held when calling this function 1362 */ 1363 static void nvmet_release_p2p_ns_map(struct nvmet_ctrl *ctrl) 1364 { 1365 struct radix_tree_iter iter; 1366 void __rcu **slot; 1367 1368 radix_tree_for_each_slot(slot, &ctrl->p2p_ns_map, &iter, 0) 1369 pci_dev_put(radix_tree_deref_slot(slot)); 1370 1371 put_device(ctrl->p2p_client); 1372 } 1373 1374 static void nvmet_fatal_error_handler(struct work_struct *work) 1375 { 1376 struct nvmet_ctrl *ctrl = 1377 container_of(work, struct nvmet_ctrl, fatal_err_work); 1378 1379 pr_err("ctrl %d fatal error occurred!\n", ctrl->cntlid); 1380 ctrl->ops->delete_ctrl(ctrl); 1381 } 1382 1383 u16 nvmet_alloc_ctrl(const char *subsysnqn, const char *hostnqn, 1384 struct nvmet_req *req, u32 kato, struct nvmet_ctrl **ctrlp) 1385 { 1386 struct nvmet_subsys *subsys; 1387 struct nvmet_ctrl *ctrl; 1388 int ret; 1389 u16 status; 1390 1391 status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR; 1392 subsys = nvmet_find_get_subsys(req->port, subsysnqn); 1393 if (!subsys) { 1394 pr_warn("connect request for invalid subsystem %s!\n", 1395 subsysnqn); 1396 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn); 1397 req->error_loc = offsetof(struct nvme_common_command, dptr); 1398 goto out; 1399 } 1400 1401 down_read(&nvmet_config_sem); 1402 if (!nvmet_host_allowed(subsys, hostnqn)) { 1403 pr_info("connect by host %s for subsystem %s not allowed\n", 1404 hostnqn, subsysnqn); 1405 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(hostnqn); 1406 up_read(&nvmet_config_sem); 1407 status = NVME_SC_CONNECT_INVALID_HOST | NVME_SC_DNR; 1408 req->error_loc = offsetof(struct nvme_common_command, dptr); 1409 goto out_put_subsystem; 1410 } 1411 up_read(&nvmet_config_sem); 1412 1413 status = NVME_SC_INTERNAL; 1414 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 1415 if (!ctrl) 1416 goto out_put_subsystem; 1417 mutex_init(&ctrl->lock); 1418 1419 ctrl->port = req->port; 1420 ctrl->ops = req->ops; 1421 1422 #ifdef CONFIG_NVME_TARGET_PASSTHRU 1423 /* By default, set loop targets to clear IDS by default */ 1424 if (ctrl->port->disc_addr.trtype == NVMF_TRTYPE_LOOP) 1425 subsys->clear_ids = 1; 1426 #endif 1427 1428 INIT_WORK(&ctrl->async_event_work, nvmet_async_event_work); 1429 INIT_LIST_HEAD(&ctrl->async_events); 1430 INIT_RADIX_TREE(&ctrl->p2p_ns_map, GFP_KERNEL); 1431 INIT_WORK(&ctrl->fatal_err_work, nvmet_fatal_error_handler); 1432 INIT_DELAYED_WORK(&ctrl->ka_work, nvmet_keep_alive_timer); 1433 1434 memcpy(ctrl->subsysnqn, subsysnqn, NVMF_NQN_SIZE); 1435 memcpy(ctrl->hostnqn, hostnqn, NVMF_NQN_SIZE); 1436 1437 kref_init(&ctrl->ref); 1438 ctrl->subsys = subsys; 1439 ctrl->pi_support = ctrl->port->pi_enable && ctrl->subsys->pi_support; 1440 nvmet_init_cap(ctrl); 1441 WRITE_ONCE(ctrl->aen_enabled, NVMET_AEN_CFG_OPTIONAL); 1442 1443 ctrl->changed_ns_list = kmalloc_array(NVME_MAX_CHANGED_NAMESPACES, 1444 sizeof(__le32), GFP_KERNEL); 1445 if (!ctrl->changed_ns_list) 1446 goto out_free_ctrl; 1447 1448 ctrl->sqs = kcalloc(subsys->max_qid + 1, 1449 sizeof(struct nvmet_sq *), 1450 GFP_KERNEL); 1451 if (!ctrl->sqs) 1452 goto out_free_changed_ns_list; 1453 1454 ret = ida_alloc_range(&cntlid_ida, 1455 subsys->cntlid_min, subsys->cntlid_max, 1456 GFP_KERNEL); 1457 if (ret < 0) { 1458 status = NVME_SC_CONNECT_CTRL_BUSY | NVME_SC_DNR; 1459 goto out_free_sqs; 1460 } 1461 ctrl->cntlid = ret; 1462 1463 /* 1464 * Discovery controllers may use some arbitrary high value 1465 * in order to cleanup stale discovery sessions 1466 */ 1467 if (nvmet_is_disc_subsys(ctrl->subsys) && !kato) 1468 kato = NVMET_DISC_KATO_MS; 1469 1470 /* keep-alive timeout in seconds */ 1471 ctrl->kato = DIV_ROUND_UP(kato, 1000); 1472 1473 ctrl->err_counter = 0; 1474 spin_lock_init(&ctrl->error_lock); 1475 1476 nvmet_start_keep_alive_timer(ctrl); 1477 1478 mutex_lock(&subsys->lock); 1479 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls); 1480 nvmet_setup_p2p_ns_map(ctrl, req); 1481 mutex_unlock(&subsys->lock); 1482 1483 *ctrlp = ctrl; 1484 return 0; 1485 1486 out_free_sqs: 1487 kfree(ctrl->sqs); 1488 out_free_changed_ns_list: 1489 kfree(ctrl->changed_ns_list); 1490 out_free_ctrl: 1491 kfree(ctrl); 1492 out_put_subsystem: 1493 nvmet_subsys_put(subsys); 1494 out: 1495 return status; 1496 } 1497 1498 static void nvmet_ctrl_free(struct kref *ref) 1499 { 1500 struct nvmet_ctrl *ctrl = container_of(ref, struct nvmet_ctrl, ref); 1501 struct nvmet_subsys *subsys = ctrl->subsys; 1502 1503 mutex_lock(&subsys->lock); 1504 nvmet_release_p2p_ns_map(ctrl); 1505 list_del(&ctrl->subsys_entry); 1506 mutex_unlock(&subsys->lock); 1507 1508 nvmet_stop_keep_alive_timer(ctrl); 1509 1510 flush_work(&ctrl->async_event_work); 1511 cancel_work_sync(&ctrl->fatal_err_work); 1512 1513 nvmet_destroy_auth(ctrl); 1514 1515 ida_free(&cntlid_ida, ctrl->cntlid); 1516 1517 nvmet_async_events_free(ctrl); 1518 kfree(ctrl->sqs); 1519 kfree(ctrl->changed_ns_list); 1520 kfree(ctrl); 1521 1522 nvmet_subsys_put(subsys); 1523 } 1524 1525 void nvmet_ctrl_put(struct nvmet_ctrl *ctrl) 1526 { 1527 kref_put(&ctrl->ref, nvmet_ctrl_free); 1528 } 1529 1530 void nvmet_ctrl_fatal_error(struct nvmet_ctrl *ctrl) 1531 { 1532 mutex_lock(&ctrl->lock); 1533 if (!(ctrl->csts & NVME_CSTS_CFS)) { 1534 ctrl->csts |= NVME_CSTS_CFS; 1535 queue_work(nvmet_wq, &ctrl->fatal_err_work); 1536 } 1537 mutex_unlock(&ctrl->lock); 1538 } 1539 EXPORT_SYMBOL_GPL(nvmet_ctrl_fatal_error); 1540 1541 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port, 1542 const char *subsysnqn) 1543 { 1544 struct nvmet_subsys_link *p; 1545 1546 if (!port) 1547 return NULL; 1548 1549 if (!strcmp(NVME_DISC_SUBSYS_NAME, subsysnqn)) { 1550 if (!kref_get_unless_zero(&nvmet_disc_subsys->ref)) 1551 return NULL; 1552 return nvmet_disc_subsys; 1553 } 1554 1555 down_read(&nvmet_config_sem); 1556 if (!strncmp(nvmet_disc_subsys->subsysnqn, subsysnqn, 1557 NVMF_NQN_SIZE)) { 1558 if (kref_get_unless_zero(&nvmet_disc_subsys->ref)) { 1559 up_read(&nvmet_config_sem); 1560 return nvmet_disc_subsys; 1561 } 1562 } 1563 list_for_each_entry(p, &port->subsystems, entry) { 1564 if (!strncmp(p->subsys->subsysnqn, subsysnqn, 1565 NVMF_NQN_SIZE)) { 1566 if (!kref_get_unless_zero(&p->subsys->ref)) 1567 break; 1568 up_read(&nvmet_config_sem); 1569 return p->subsys; 1570 } 1571 } 1572 up_read(&nvmet_config_sem); 1573 return NULL; 1574 } 1575 1576 struct nvmet_subsys *nvmet_subsys_alloc(const char *subsysnqn, 1577 enum nvme_subsys_type type) 1578 { 1579 struct nvmet_subsys *subsys; 1580 char serial[NVMET_SN_MAX_SIZE / 2]; 1581 int ret; 1582 1583 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL); 1584 if (!subsys) 1585 return ERR_PTR(-ENOMEM); 1586 1587 subsys->ver = NVMET_DEFAULT_VS; 1588 /* generate a random serial number as our controllers are ephemeral: */ 1589 get_random_bytes(&serial, sizeof(serial)); 1590 bin2hex(subsys->serial, &serial, sizeof(serial)); 1591 1592 subsys->model_number = kstrdup(NVMET_DEFAULT_CTRL_MODEL, GFP_KERNEL); 1593 if (!subsys->model_number) { 1594 ret = -ENOMEM; 1595 goto free_subsys; 1596 } 1597 1598 subsys->ieee_oui = 0; 1599 1600 subsys->firmware_rev = kstrndup(UTS_RELEASE, NVMET_FR_MAX_SIZE, GFP_KERNEL); 1601 if (!subsys->firmware_rev) { 1602 ret = -ENOMEM; 1603 goto free_mn; 1604 } 1605 1606 switch (type) { 1607 case NVME_NQN_NVME: 1608 subsys->max_qid = NVMET_NR_QUEUES; 1609 break; 1610 case NVME_NQN_DISC: 1611 case NVME_NQN_CURR: 1612 subsys->max_qid = 0; 1613 break; 1614 default: 1615 pr_err("%s: Unknown Subsystem type - %d\n", __func__, type); 1616 ret = -EINVAL; 1617 goto free_fr; 1618 } 1619 subsys->type = type; 1620 subsys->subsysnqn = kstrndup(subsysnqn, NVMF_NQN_SIZE, 1621 GFP_KERNEL); 1622 if (!subsys->subsysnqn) { 1623 ret = -ENOMEM; 1624 goto free_fr; 1625 } 1626 subsys->cntlid_min = NVME_CNTLID_MIN; 1627 subsys->cntlid_max = NVME_CNTLID_MAX; 1628 kref_init(&subsys->ref); 1629 1630 mutex_init(&subsys->lock); 1631 xa_init(&subsys->namespaces); 1632 INIT_LIST_HEAD(&subsys->ctrls); 1633 INIT_LIST_HEAD(&subsys->hosts); 1634 1635 return subsys; 1636 1637 free_fr: 1638 kfree(subsys->firmware_rev); 1639 free_mn: 1640 kfree(subsys->model_number); 1641 free_subsys: 1642 kfree(subsys); 1643 return ERR_PTR(ret); 1644 } 1645 1646 static void nvmet_subsys_free(struct kref *ref) 1647 { 1648 struct nvmet_subsys *subsys = 1649 container_of(ref, struct nvmet_subsys, ref); 1650 1651 WARN_ON_ONCE(!xa_empty(&subsys->namespaces)); 1652 1653 xa_destroy(&subsys->namespaces); 1654 nvmet_passthru_subsys_free(subsys); 1655 1656 kfree(subsys->subsysnqn); 1657 kfree(subsys->model_number); 1658 kfree(subsys->firmware_rev); 1659 kfree(subsys); 1660 } 1661 1662 void nvmet_subsys_del_ctrls(struct nvmet_subsys *subsys) 1663 { 1664 struct nvmet_ctrl *ctrl; 1665 1666 mutex_lock(&subsys->lock); 1667 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) 1668 ctrl->ops->delete_ctrl(ctrl); 1669 mutex_unlock(&subsys->lock); 1670 } 1671 1672 void nvmet_subsys_put(struct nvmet_subsys *subsys) 1673 { 1674 kref_put(&subsys->ref, nvmet_subsys_free); 1675 } 1676 1677 static int __init nvmet_init(void) 1678 { 1679 int error = -ENOMEM; 1680 1681 nvmet_ana_group_enabled[NVMET_DEFAULT_ANA_GRPID] = 1; 1682 1683 nvmet_bvec_cache = kmem_cache_create("nvmet-bvec", 1684 NVMET_MAX_MPOOL_BVEC * sizeof(struct bio_vec), 0, 1685 SLAB_HWCACHE_ALIGN, NULL); 1686 if (!nvmet_bvec_cache) 1687 return -ENOMEM; 1688 1689 zbd_wq = alloc_workqueue("nvmet-zbd-wq", WQ_MEM_RECLAIM, 0); 1690 if (!zbd_wq) 1691 goto out_destroy_bvec_cache; 1692 1693 buffered_io_wq = alloc_workqueue("nvmet-buffered-io-wq", 1694 WQ_MEM_RECLAIM, 0); 1695 if (!buffered_io_wq) 1696 goto out_free_zbd_work_queue; 1697 1698 nvmet_wq = alloc_workqueue("nvmet-wq", 1699 WQ_MEM_RECLAIM | WQ_UNBOUND, 0); 1700 if (!nvmet_wq) 1701 goto out_free_buffered_work_queue; 1702 1703 error = nvmet_init_discovery(); 1704 if (error) 1705 goto out_free_nvmet_work_queue; 1706 1707 error = nvmet_init_configfs(); 1708 if (error) 1709 goto out_exit_discovery; 1710 return 0; 1711 1712 out_exit_discovery: 1713 nvmet_exit_discovery(); 1714 out_free_nvmet_work_queue: 1715 destroy_workqueue(nvmet_wq); 1716 out_free_buffered_work_queue: 1717 destroy_workqueue(buffered_io_wq); 1718 out_free_zbd_work_queue: 1719 destroy_workqueue(zbd_wq); 1720 out_destroy_bvec_cache: 1721 kmem_cache_destroy(nvmet_bvec_cache); 1722 return error; 1723 } 1724 1725 static void __exit nvmet_exit(void) 1726 { 1727 nvmet_exit_configfs(); 1728 nvmet_exit_discovery(); 1729 ida_destroy(&cntlid_ida); 1730 destroy_workqueue(nvmet_wq); 1731 destroy_workqueue(buffered_io_wq); 1732 destroy_workqueue(zbd_wq); 1733 kmem_cache_destroy(nvmet_bvec_cache); 1734 1735 BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_entry) != 1024); 1736 BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_hdr) != 1024); 1737 } 1738 1739 module_init(nvmet_init); 1740 module_exit(nvmet_exit); 1741 1742 MODULE_DESCRIPTION("NVMe target core framework"); 1743 MODULE_LICENSE("GPL v2"); 1744