1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Common code for the NVMe target. 4 * Copyright (c) 2015-2016 HGST, a Western Digital Company. 5 */ 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 #include <linux/module.h> 8 #include <linux/random.h> 9 #include <linux/rculist.h> 10 #include <linux/pci-p2pdma.h> 11 #include <linux/scatterlist.h> 12 13 #include <generated/utsrelease.h> 14 15 #define CREATE_TRACE_POINTS 16 #include "trace.h" 17 18 #include "nvmet.h" 19 20 struct kmem_cache *nvmet_bvec_cache; 21 struct workqueue_struct *buffered_io_wq; 22 struct workqueue_struct *zbd_wq; 23 static const struct nvmet_fabrics_ops *nvmet_transports[NVMF_TRTYPE_MAX]; 24 static DEFINE_IDA(cntlid_ida); 25 26 struct workqueue_struct *nvmet_wq; 27 EXPORT_SYMBOL_GPL(nvmet_wq); 28 29 /* 30 * This read/write semaphore is used to synchronize access to configuration 31 * information on a target system that will result in discovery log page 32 * information change for at least one host. 33 * The full list of resources to protected by this semaphore is: 34 * 35 * - subsystems list 36 * - per-subsystem allowed hosts list 37 * - allow_any_host subsystem attribute 38 * - nvmet_genctr 39 * - the nvmet_transports array 40 * 41 * When updating any of those lists/structures write lock should be obtained, 42 * while when reading (popolating discovery log page or checking host-subsystem 43 * link) read lock is obtained to allow concurrent reads. 44 */ 45 DECLARE_RWSEM(nvmet_config_sem); 46 47 u32 nvmet_ana_group_enabled[NVMET_MAX_ANAGRPS + 1]; 48 u64 nvmet_ana_chgcnt; 49 DECLARE_RWSEM(nvmet_ana_sem); 50 51 inline u16 errno_to_nvme_status(struct nvmet_req *req, int errno) 52 { 53 switch (errno) { 54 case 0: 55 return NVME_SC_SUCCESS; 56 case -ENOSPC: 57 req->error_loc = offsetof(struct nvme_rw_command, length); 58 return NVME_SC_CAP_EXCEEDED | NVME_SC_DNR; 59 case -EREMOTEIO: 60 req->error_loc = offsetof(struct nvme_rw_command, slba); 61 return NVME_SC_LBA_RANGE | NVME_SC_DNR; 62 case -EOPNOTSUPP: 63 req->error_loc = offsetof(struct nvme_common_command, opcode); 64 switch (req->cmd->common.opcode) { 65 case nvme_cmd_dsm: 66 case nvme_cmd_write_zeroes: 67 return NVME_SC_ONCS_NOT_SUPPORTED | NVME_SC_DNR; 68 default: 69 return NVME_SC_INVALID_OPCODE | NVME_SC_DNR; 70 } 71 break; 72 case -ENODATA: 73 req->error_loc = offsetof(struct nvme_rw_command, nsid); 74 return NVME_SC_ACCESS_DENIED; 75 case -EIO: 76 fallthrough; 77 default: 78 req->error_loc = offsetof(struct nvme_common_command, opcode); 79 return NVME_SC_INTERNAL | NVME_SC_DNR; 80 } 81 } 82 83 u16 nvmet_report_invalid_opcode(struct nvmet_req *req) 84 { 85 pr_debug("unhandled cmd %d on qid %d\n", req->cmd->common.opcode, 86 req->sq->qid); 87 88 req->error_loc = offsetof(struct nvme_common_command, opcode); 89 return NVME_SC_INVALID_OPCODE | NVME_SC_DNR; 90 } 91 92 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port, 93 const char *subsysnqn); 94 95 u16 nvmet_copy_to_sgl(struct nvmet_req *req, off_t off, const void *buf, 96 size_t len) 97 { 98 if (sg_pcopy_from_buffer(req->sg, req->sg_cnt, buf, len, off) != len) { 99 req->error_loc = offsetof(struct nvme_common_command, dptr); 100 return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR; 101 } 102 return 0; 103 } 104 105 u16 nvmet_copy_from_sgl(struct nvmet_req *req, off_t off, void *buf, size_t len) 106 { 107 if (sg_pcopy_to_buffer(req->sg, req->sg_cnt, buf, len, off) != len) { 108 req->error_loc = offsetof(struct nvme_common_command, dptr); 109 return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR; 110 } 111 return 0; 112 } 113 114 u16 nvmet_zero_sgl(struct nvmet_req *req, off_t off, size_t len) 115 { 116 if (sg_zero_buffer(req->sg, req->sg_cnt, len, off) != len) { 117 req->error_loc = offsetof(struct nvme_common_command, dptr); 118 return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR; 119 } 120 return 0; 121 } 122 123 static u32 nvmet_max_nsid(struct nvmet_subsys *subsys) 124 { 125 struct nvmet_ns *cur; 126 unsigned long idx; 127 u32 nsid = 0; 128 129 xa_for_each(&subsys->namespaces, idx, cur) 130 nsid = cur->nsid; 131 132 return nsid; 133 } 134 135 static u32 nvmet_async_event_result(struct nvmet_async_event *aen) 136 { 137 return aen->event_type | (aen->event_info << 8) | (aen->log_page << 16); 138 } 139 140 static void nvmet_async_events_failall(struct nvmet_ctrl *ctrl) 141 { 142 struct nvmet_req *req; 143 144 mutex_lock(&ctrl->lock); 145 while (ctrl->nr_async_event_cmds) { 146 req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds]; 147 mutex_unlock(&ctrl->lock); 148 nvmet_req_complete(req, NVME_SC_INTERNAL | NVME_SC_DNR); 149 mutex_lock(&ctrl->lock); 150 } 151 mutex_unlock(&ctrl->lock); 152 } 153 154 static void nvmet_async_events_process(struct nvmet_ctrl *ctrl) 155 { 156 struct nvmet_async_event *aen; 157 struct nvmet_req *req; 158 159 mutex_lock(&ctrl->lock); 160 while (ctrl->nr_async_event_cmds && !list_empty(&ctrl->async_events)) { 161 aen = list_first_entry(&ctrl->async_events, 162 struct nvmet_async_event, entry); 163 req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds]; 164 nvmet_set_result(req, nvmet_async_event_result(aen)); 165 166 list_del(&aen->entry); 167 kfree(aen); 168 169 mutex_unlock(&ctrl->lock); 170 trace_nvmet_async_event(ctrl, req->cqe->result.u32); 171 nvmet_req_complete(req, 0); 172 mutex_lock(&ctrl->lock); 173 } 174 mutex_unlock(&ctrl->lock); 175 } 176 177 static void nvmet_async_events_free(struct nvmet_ctrl *ctrl) 178 { 179 struct nvmet_async_event *aen, *tmp; 180 181 mutex_lock(&ctrl->lock); 182 list_for_each_entry_safe(aen, tmp, &ctrl->async_events, entry) { 183 list_del(&aen->entry); 184 kfree(aen); 185 } 186 mutex_unlock(&ctrl->lock); 187 } 188 189 static void nvmet_async_event_work(struct work_struct *work) 190 { 191 struct nvmet_ctrl *ctrl = 192 container_of(work, struct nvmet_ctrl, async_event_work); 193 194 nvmet_async_events_process(ctrl); 195 } 196 197 void nvmet_add_async_event(struct nvmet_ctrl *ctrl, u8 event_type, 198 u8 event_info, u8 log_page) 199 { 200 struct nvmet_async_event *aen; 201 202 aen = kmalloc(sizeof(*aen), GFP_KERNEL); 203 if (!aen) 204 return; 205 206 aen->event_type = event_type; 207 aen->event_info = event_info; 208 aen->log_page = log_page; 209 210 mutex_lock(&ctrl->lock); 211 list_add_tail(&aen->entry, &ctrl->async_events); 212 mutex_unlock(&ctrl->lock); 213 214 queue_work(nvmet_wq, &ctrl->async_event_work); 215 } 216 217 static void nvmet_add_to_changed_ns_log(struct nvmet_ctrl *ctrl, __le32 nsid) 218 { 219 u32 i; 220 221 mutex_lock(&ctrl->lock); 222 if (ctrl->nr_changed_ns > NVME_MAX_CHANGED_NAMESPACES) 223 goto out_unlock; 224 225 for (i = 0; i < ctrl->nr_changed_ns; i++) { 226 if (ctrl->changed_ns_list[i] == nsid) 227 goto out_unlock; 228 } 229 230 if (ctrl->nr_changed_ns == NVME_MAX_CHANGED_NAMESPACES) { 231 ctrl->changed_ns_list[0] = cpu_to_le32(0xffffffff); 232 ctrl->nr_changed_ns = U32_MAX; 233 goto out_unlock; 234 } 235 236 ctrl->changed_ns_list[ctrl->nr_changed_ns++] = nsid; 237 out_unlock: 238 mutex_unlock(&ctrl->lock); 239 } 240 241 void nvmet_ns_changed(struct nvmet_subsys *subsys, u32 nsid) 242 { 243 struct nvmet_ctrl *ctrl; 244 245 lockdep_assert_held(&subsys->lock); 246 247 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) { 248 nvmet_add_to_changed_ns_log(ctrl, cpu_to_le32(nsid)); 249 if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_NS_ATTR)) 250 continue; 251 nvmet_add_async_event(ctrl, NVME_AER_NOTICE, 252 NVME_AER_NOTICE_NS_CHANGED, 253 NVME_LOG_CHANGED_NS); 254 } 255 } 256 257 void nvmet_send_ana_event(struct nvmet_subsys *subsys, 258 struct nvmet_port *port) 259 { 260 struct nvmet_ctrl *ctrl; 261 262 mutex_lock(&subsys->lock); 263 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) { 264 if (port && ctrl->port != port) 265 continue; 266 if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_ANA_CHANGE)) 267 continue; 268 nvmet_add_async_event(ctrl, NVME_AER_NOTICE, 269 NVME_AER_NOTICE_ANA, NVME_LOG_ANA); 270 } 271 mutex_unlock(&subsys->lock); 272 } 273 274 void nvmet_port_send_ana_event(struct nvmet_port *port) 275 { 276 struct nvmet_subsys_link *p; 277 278 down_read(&nvmet_config_sem); 279 list_for_each_entry(p, &port->subsystems, entry) 280 nvmet_send_ana_event(p->subsys, port); 281 up_read(&nvmet_config_sem); 282 } 283 284 int nvmet_register_transport(const struct nvmet_fabrics_ops *ops) 285 { 286 int ret = 0; 287 288 down_write(&nvmet_config_sem); 289 if (nvmet_transports[ops->type]) 290 ret = -EINVAL; 291 else 292 nvmet_transports[ops->type] = ops; 293 up_write(&nvmet_config_sem); 294 295 return ret; 296 } 297 EXPORT_SYMBOL_GPL(nvmet_register_transport); 298 299 void nvmet_unregister_transport(const struct nvmet_fabrics_ops *ops) 300 { 301 down_write(&nvmet_config_sem); 302 nvmet_transports[ops->type] = NULL; 303 up_write(&nvmet_config_sem); 304 } 305 EXPORT_SYMBOL_GPL(nvmet_unregister_transport); 306 307 void nvmet_port_del_ctrls(struct nvmet_port *port, struct nvmet_subsys *subsys) 308 { 309 struct nvmet_ctrl *ctrl; 310 311 mutex_lock(&subsys->lock); 312 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) { 313 if (ctrl->port == port) 314 ctrl->ops->delete_ctrl(ctrl); 315 } 316 mutex_unlock(&subsys->lock); 317 } 318 319 int nvmet_enable_port(struct nvmet_port *port) 320 { 321 const struct nvmet_fabrics_ops *ops; 322 int ret; 323 324 lockdep_assert_held(&nvmet_config_sem); 325 326 ops = nvmet_transports[port->disc_addr.trtype]; 327 if (!ops) { 328 up_write(&nvmet_config_sem); 329 request_module("nvmet-transport-%d", port->disc_addr.trtype); 330 down_write(&nvmet_config_sem); 331 ops = nvmet_transports[port->disc_addr.trtype]; 332 if (!ops) { 333 pr_err("transport type %d not supported\n", 334 port->disc_addr.trtype); 335 return -EINVAL; 336 } 337 } 338 339 if (!try_module_get(ops->owner)) 340 return -EINVAL; 341 342 /* 343 * If the user requested PI support and the transport isn't pi capable, 344 * don't enable the port. 345 */ 346 if (port->pi_enable && !(ops->flags & NVMF_METADATA_SUPPORTED)) { 347 pr_err("T10-PI is not supported by transport type %d\n", 348 port->disc_addr.trtype); 349 ret = -EINVAL; 350 goto out_put; 351 } 352 353 ret = ops->add_port(port); 354 if (ret) 355 goto out_put; 356 357 /* If the transport didn't set inline_data_size, then disable it. */ 358 if (port->inline_data_size < 0) 359 port->inline_data_size = 0; 360 361 /* 362 * If the transport didn't set the max_queue_size properly, then clamp 363 * it to the target limits. Also set default values in case the 364 * transport didn't set it at all. 365 */ 366 if (port->max_queue_size < 0) 367 port->max_queue_size = NVMET_MAX_QUEUE_SIZE; 368 else 369 port->max_queue_size = clamp_t(int, port->max_queue_size, 370 NVMET_MIN_QUEUE_SIZE, 371 NVMET_MAX_QUEUE_SIZE); 372 373 port->enabled = true; 374 port->tr_ops = ops; 375 return 0; 376 377 out_put: 378 module_put(ops->owner); 379 return ret; 380 } 381 382 void nvmet_disable_port(struct nvmet_port *port) 383 { 384 const struct nvmet_fabrics_ops *ops; 385 386 lockdep_assert_held(&nvmet_config_sem); 387 388 port->enabled = false; 389 port->tr_ops = NULL; 390 391 ops = nvmet_transports[port->disc_addr.trtype]; 392 ops->remove_port(port); 393 module_put(ops->owner); 394 } 395 396 static void nvmet_keep_alive_timer(struct work_struct *work) 397 { 398 struct nvmet_ctrl *ctrl = container_of(to_delayed_work(work), 399 struct nvmet_ctrl, ka_work); 400 bool reset_tbkas = ctrl->reset_tbkas; 401 402 ctrl->reset_tbkas = false; 403 if (reset_tbkas) { 404 pr_debug("ctrl %d reschedule traffic based keep-alive timer\n", 405 ctrl->cntlid); 406 queue_delayed_work(nvmet_wq, &ctrl->ka_work, ctrl->kato * HZ); 407 return; 408 } 409 410 pr_err("ctrl %d keep-alive timer (%d seconds) expired!\n", 411 ctrl->cntlid, ctrl->kato); 412 413 nvmet_ctrl_fatal_error(ctrl); 414 } 415 416 void nvmet_start_keep_alive_timer(struct nvmet_ctrl *ctrl) 417 { 418 if (unlikely(ctrl->kato == 0)) 419 return; 420 421 pr_debug("ctrl %d start keep-alive timer for %d secs\n", 422 ctrl->cntlid, ctrl->kato); 423 424 queue_delayed_work(nvmet_wq, &ctrl->ka_work, ctrl->kato * HZ); 425 } 426 427 void nvmet_stop_keep_alive_timer(struct nvmet_ctrl *ctrl) 428 { 429 if (unlikely(ctrl->kato == 0)) 430 return; 431 432 pr_debug("ctrl %d stop keep-alive\n", ctrl->cntlid); 433 434 cancel_delayed_work_sync(&ctrl->ka_work); 435 } 436 437 u16 nvmet_req_find_ns(struct nvmet_req *req) 438 { 439 u32 nsid = le32_to_cpu(req->cmd->common.nsid); 440 441 req->ns = xa_load(&nvmet_req_subsys(req)->namespaces, nsid); 442 if (unlikely(!req->ns)) { 443 req->error_loc = offsetof(struct nvme_common_command, nsid); 444 return NVME_SC_INVALID_NS | NVME_SC_DNR; 445 } 446 447 percpu_ref_get(&req->ns->ref); 448 return NVME_SC_SUCCESS; 449 } 450 451 static void nvmet_destroy_namespace(struct percpu_ref *ref) 452 { 453 struct nvmet_ns *ns = container_of(ref, struct nvmet_ns, ref); 454 455 complete(&ns->disable_done); 456 } 457 458 void nvmet_put_namespace(struct nvmet_ns *ns) 459 { 460 percpu_ref_put(&ns->ref); 461 } 462 463 static void nvmet_ns_dev_disable(struct nvmet_ns *ns) 464 { 465 nvmet_bdev_ns_disable(ns); 466 nvmet_file_ns_disable(ns); 467 } 468 469 static int nvmet_p2pmem_ns_enable(struct nvmet_ns *ns) 470 { 471 int ret; 472 struct pci_dev *p2p_dev; 473 474 if (!ns->use_p2pmem) 475 return 0; 476 477 if (!ns->bdev) { 478 pr_err("peer-to-peer DMA is not supported by non-block device namespaces\n"); 479 return -EINVAL; 480 } 481 482 if (!blk_queue_pci_p2pdma(ns->bdev->bd_disk->queue)) { 483 pr_err("peer-to-peer DMA is not supported by the driver of %s\n", 484 ns->device_path); 485 return -EINVAL; 486 } 487 488 if (ns->p2p_dev) { 489 ret = pci_p2pdma_distance(ns->p2p_dev, nvmet_ns_dev(ns), true); 490 if (ret < 0) 491 return -EINVAL; 492 } else { 493 /* 494 * Right now we just check that there is p2pmem available so 495 * we can report an error to the user right away if there 496 * is not. We'll find the actual device to use once we 497 * setup the controller when the port's device is available. 498 */ 499 500 p2p_dev = pci_p2pmem_find(nvmet_ns_dev(ns)); 501 if (!p2p_dev) { 502 pr_err("no peer-to-peer memory is available for %s\n", 503 ns->device_path); 504 return -EINVAL; 505 } 506 507 pci_dev_put(p2p_dev); 508 } 509 510 return 0; 511 } 512 513 /* 514 * Note: ctrl->subsys->lock should be held when calling this function 515 */ 516 static void nvmet_p2pmem_ns_add_p2p(struct nvmet_ctrl *ctrl, 517 struct nvmet_ns *ns) 518 { 519 struct device *clients[2]; 520 struct pci_dev *p2p_dev; 521 int ret; 522 523 if (!ctrl->p2p_client || !ns->use_p2pmem) 524 return; 525 526 if (ns->p2p_dev) { 527 ret = pci_p2pdma_distance(ns->p2p_dev, ctrl->p2p_client, true); 528 if (ret < 0) 529 return; 530 531 p2p_dev = pci_dev_get(ns->p2p_dev); 532 } else { 533 clients[0] = ctrl->p2p_client; 534 clients[1] = nvmet_ns_dev(ns); 535 536 p2p_dev = pci_p2pmem_find_many(clients, ARRAY_SIZE(clients)); 537 if (!p2p_dev) { 538 pr_err("no peer-to-peer memory is available that's supported by %s and %s\n", 539 dev_name(ctrl->p2p_client), ns->device_path); 540 return; 541 } 542 } 543 544 ret = radix_tree_insert(&ctrl->p2p_ns_map, ns->nsid, p2p_dev); 545 if (ret < 0) 546 pci_dev_put(p2p_dev); 547 548 pr_info("using p2pmem on %s for nsid %d\n", pci_name(p2p_dev), 549 ns->nsid); 550 } 551 552 bool nvmet_ns_revalidate(struct nvmet_ns *ns) 553 { 554 loff_t oldsize = ns->size; 555 556 if (ns->bdev) 557 nvmet_bdev_ns_revalidate(ns); 558 else 559 nvmet_file_ns_revalidate(ns); 560 561 return oldsize != ns->size; 562 } 563 564 int nvmet_ns_enable(struct nvmet_ns *ns) 565 { 566 struct nvmet_subsys *subsys = ns->subsys; 567 struct nvmet_ctrl *ctrl; 568 int ret; 569 570 mutex_lock(&subsys->lock); 571 ret = 0; 572 573 if (nvmet_is_passthru_subsys(subsys)) { 574 pr_info("cannot enable both passthru and regular namespaces for a single subsystem"); 575 goto out_unlock; 576 } 577 578 if (ns->enabled) 579 goto out_unlock; 580 581 ret = -EMFILE; 582 if (subsys->nr_namespaces == NVMET_MAX_NAMESPACES) 583 goto out_unlock; 584 585 ret = nvmet_bdev_ns_enable(ns); 586 if (ret == -ENOTBLK) 587 ret = nvmet_file_ns_enable(ns); 588 if (ret) 589 goto out_unlock; 590 591 ret = nvmet_p2pmem_ns_enable(ns); 592 if (ret) 593 goto out_dev_disable; 594 595 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) 596 nvmet_p2pmem_ns_add_p2p(ctrl, ns); 597 598 ret = percpu_ref_init(&ns->ref, nvmet_destroy_namespace, 599 0, GFP_KERNEL); 600 if (ret) 601 goto out_dev_put; 602 603 if (ns->nsid > subsys->max_nsid) 604 subsys->max_nsid = ns->nsid; 605 606 ret = xa_insert(&subsys->namespaces, ns->nsid, ns, GFP_KERNEL); 607 if (ret) 608 goto out_restore_subsys_maxnsid; 609 610 subsys->nr_namespaces++; 611 612 nvmet_ns_changed(subsys, ns->nsid); 613 ns->enabled = true; 614 ret = 0; 615 out_unlock: 616 mutex_unlock(&subsys->lock); 617 return ret; 618 619 out_restore_subsys_maxnsid: 620 subsys->max_nsid = nvmet_max_nsid(subsys); 621 percpu_ref_exit(&ns->ref); 622 out_dev_put: 623 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) 624 pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid)); 625 out_dev_disable: 626 nvmet_ns_dev_disable(ns); 627 goto out_unlock; 628 } 629 630 void nvmet_ns_disable(struct nvmet_ns *ns) 631 { 632 struct nvmet_subsys *subsys = ns->subsys; 633 struct nvmet_ctrl *ctrl; 634 635 mutex_lock(&subsys->lock); 636 if (!ns->enabled) 637 goto out_unlock; 638 639 ns->enabled = false; 640 xa_erase(&ns->subsys->namespaces, ns->nsid); 641 if (ns->nsid == subsys->max_nsid) 642 subsys->max_nsid = nvmet_max_nsid(subsys); 643 644 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) 645 pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid)); 646 647 mutex_unlock(&subsys->lock); 648 649 /* 650 * Now that we removed the namespaces from the lookup list, we 651 * can kill the per_cpu ref and wait for any remaining references 652 * to be dropped, as well as a RCU grace period for anyone only 653 * using the namepace under rcu_read_lock(). Note that we can't 654 * use call_rcu here as we need to ensure the namespaces have 655 * been fully destroyed before unloading the module. 656 */ 657 percpu_ref_kill(&ns->ref); 658 synchronize_rcu(); 659 wait_for_completion(&ns->disable_done); 660 percpu_ref_exit(&ns->ref); 661 662 mutex_lock(&subsys->lock); 663 664 subsys->nr_namespaces--; 665 nvmet_ns_changed(subsys, ns->nsid); 666 nvmet_ns_dev_disable(ns); 667 out_unlock: 668 mutex_unlock(&subsys->lock); 669 } 670 671 void nvmet_ns_free(struct nvmet_ns *ns) 672 { 673 nvmet_ns_disable(ns); 674 675 down_write(&nvmet_ana_sem); 676 nvmet_ana_group_enabled[ns->anagrpid]--; 677 up_write(&nvmet_ana_sem); 678 679 kfree(ns->device_path); 680 kfree(ns); 681 } 682 683 struct nvmet_ns *nvmet_ns_alloc(struct nvmet_subsys *subsys, u32 nsid) 684 { 685 struct nvmet_ns *ns; 686 687 ns = kzalloc(sizeof(*ns), GFP_KERNEL); 688 if (!ns) 689 return NULL; 690 691 init_completion(&ns->disable_done); 692 693 ns->nsid = nsid; 694 ns->subsys = subsys; 695 696 down_write(&nvmet_ana_sem); 697 ns->anagrpid = NVMET_DEFAULT_ANA_GRPID; 698 nvmet_ana_group_enabled[ns->anagrpid]++; 699 up_write(&nvmet_ana_sem); 700 701 uuid_gen(&ns->uuid); 702 ns->buffered_io = false; 703 ns->csi = NVME_CSI_NVM; 704 705 return ns; 706 } 707 708 static void nvmet_update_sq_head(struct nvmet_req *req) 709 { 710 if (req->sq->size) { 711 u32 old_sqhd, new_sqhd; 712 713 old_sqhd = READ_ONCE(req->sq->sqhd); 714 do { 715 new_sqhd = (old_sqhd + 1) % req->sq->size; 716 } while (!try_cmpxchg(&req->sq->sqhd, &old_sqhd, new_sqhd)); 717 } 718 req->cqe->sq_head = cpu_to_le16(req->sq->sqhd & 0x0000FFFF); 719 } 720 721 static void nvmet_set_error(struct nvmet_req *req, u16 status) 722 { 723 struct nvmet_ctrl *ctrl = req->sq->ctrl; 724 struct nvme_error_slot *new_error_slot; 725 unsigned long flags; 726 727 req->cqe->status = cpu_to_le16(status << 1); 728 729 if (!ctrl || req->error_loc == NVMET_NO_ERROR_LOC) 730 return; 731 732 spin_lock_irqsave(&ctrl->error_lock, flags); 733 ctrl->err_counter++; 734 new_error_slot = 735 &ctrl->slots[ctrl->err_counter % NVMET_ERROR_LOG_SLOTS]; 736 737 new_error_slot->error_count = cpu_to_le64(ctrl->err_counter); 738 new_error_slot->sqid = cpu_to_le16(req->sq->qid); 739 new_error_slot->cmdid = cpu_to_le16(req->cmd->common.command_id); 740 new_error_slot->status_field = cpu_to_le16(status << 1); 741 new_error_slot->param_error_location = cpu_to_le16(req->error_loc); 742 new_error_slot->lba = cpu_to_le64(req->error_slba); 743 new_error_slot->nsid = req->cmd->common.nsid; 744 spin_unlock_irqrestore(&ctrl->error_lock, flags); 745 746 /* set the more bit for this request */ 747 req->cqe->status |= cpu_to_le16(1 << 14); 748 } 749 750 static void __nvmet_req_complete(struct nvmet_req *req, u16 status) 751 { 752 struct nvmet_ns *ns = req->ns; 753 754 if (!req->sq->sqhd_disabled) 755 nvmet_update_sq_head(req); 756 req->cqe->sq_id = cpu_to_le16(req->sq->qid); 757 req->cqe->command_id = req->cmd->common.command_id; 758 759 if (unlikely(status)) 760 nvmet_set_error(req, status); 761 762 trace_nvmet_req_complete(req); 763 764 req->ops->queue_response(req); 765 if (ns) 766 nvmet_put_namespace(ns); 767 } 768 769 void nvmet_req_complete(struct nvmet_req *req, u16 status) 770 { 771 struct nvmet_sq *sq = req->sq; 772 773 __nvmet_req_complete(req, status); 774 percpu_ref_put(&sq->ref); 775 } 776 EXPORT_SYMBOL_GPL(nvmet_req_complete); 777 778 void nvmet_cq_setup(struct nvmet_ctrl *ctrl, struct nvmet_cq *cq, 779 u16 qid, u16 size) 780 { 781 cq->qid = qid; 782 cq->size = size; 783 } 784 785 void nvmet_sq_setup(struct nvmet_ctrl *ctrl, struct nvmet_sq *sq, 786 u16 qid, u16 size) 787 { 788 sq->sqhd = 0; 789 sq->qid = qid; 790 sq->size = size; 791 792 ctrl->sqs[qid] = sq; 793 } 794 795 static void nvmet_confirm_sq(struct percpu_ref *ref) 796 { 797 struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref); 798 799 complete(&sq->confirm_done); 800 } 801 802 void nvmet_sq_destroy(struct nvmet_sq *sq) 803 { 804 struct nvmet_ctrl *ctrl = sq->ctrl; 805 806 /* 807 * If this is the admin queue, complete all AERs so that our 808 * queue doesn't have outstanding requests on it. 809 */ 810 if (ctrl && ctrl->sqs && ctrl->sqs[0] == sq) 811 nvmet_async_events_failall(ctrl); 812 percpu_ref_kill_and_confirm(&sq->ref, nvmet_confirm_sq); 813 wait_for_completion(&sq->confirm_done); 814 wait_for_completion(&sq->free_done); 815 percpu_ref_exit(&sq->ref); 816 nvmet_auth_sq_free(sq); 817 818 if (ctrl) { 819 /* 820 * The teardown flow may take some time, and the host may not 821 * send us keep-alive during this period, hence reset the 822 * traffic based keep-alive timer so we don't trigger a 823 * controller teardown as a result of a keep-alive expiration. 824 */ 825 ctrl->reset_tbkas = true; 826 sq->ctrl->sqs[sq->qid] = NULL; 827 nvmet_ctrl_put(ctrl); 828 sq->ctrl = NULL; /* allows reusing the queue later */ 829 } 830 } 831 EXPORT_SYMBOL_GPL(nvmet_sq_destroy); 832 833 static void nvmet_sq_free(struct percpu_ref *ref) 834 { 835 struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref); 836 837 complete(&sq->free_done); 838 } 839 840 int nvmet_sq_init(struct nvmet_sq *sq) 841 { 842 int ret; 843 844 ret = percpu_ref_init(&sq->ref, nvmet_sq_free, 0, GFP_KERNEL); 845 if (ret) { 846 pr_err("percpu_ref init failed!\n"); 847 return ret; 848 } 849 init_completion(&sq->free_done); 850 init_completion(&sq->confirm_done); 851 nvmet_auth_sq_init(sq); 852 853 return 0; 854 } 855 EXPORT_SYMBOL_GPL(nvmet_sq_init); 856 857 static inline u16 nvmet_check_ana_state(struct nvmet_port *port, 858 struct nvmet_ns *ns) 859 { 860 enum nvme_ana_state state = port->ana_state[ns->anagrpid]; 861 862 if (unlikely(state == NVME_ANA_INACCESSIBLE)) 863 return NVME_SC_ANA_INACCESSIBLE; 864 if (unlikely(state == NVME_ANA_PERSISTENT_LOSS)) 865 return NVME_SC_ANA_PERSISTENT_LOSS; 866 if (unlikely(state == NVME_ANA_CHANGE)) 867 return NVME_SC_ANA_TRANSITION; 868 return 0; 869 } 870 871 static inline u16 nvmet_io_cmd_check_access(struct nvmet_req *req) 872 { 873 if (unlikely(req->ns->readonly)) { 874 switch (req->cmd->common.opcode) { 875 case nvme_cmd_read: 876 case nvme_cmd_flush: 877 break; 878 default: 879 return NVME_SC_NS_WRITE_PROTECTED; 880 } 881 } 882 883 return 0; 884 } 885 886 static u16 nvmet_parse_io_cmd(struct nvmet_req *req) 887 { 888 struct nvme_command *cmd = req->cmd; 889 u16 ret; 890 891 if (nvme_is_fabrics(cmd)) 892 return nvmet_parse_fabrics_io_cmd(req); 893 894 if (unlikely(!nvmet_check_auth_status(req))) 895 return NVME_SC_AUTH_REQUIRED | NVME_SC_DNR; 896 897 ret = nvmet_check_ctrl_status(req); 898 if (unlikely(ret)) 899 return ret; 900 901 if (nvmet_is_passthru_req(req)) 902 return nvmet_parse_passthru_io_cmd(req); 903 904 ret = nvmet_req_find_ns(req); 905 if (unlikely(ret)) 906 return ret; 907 908 ret = nvmet_check_ana_state(req->port, req->ns); 909 if (unlikely(ret)) { 910 req->error_loc = offsetof(struct nvme_common_command, nsid); 911 return ret; 912 } 913 ret = nvmet_io_cmd_check_access(req); 914 if (unlikely(ret)) { 915 req->error_loc = offsetof(struct nvme_common_command, nsid); 916 return ret; 917 } 918 919 switch (req->ns->csi) { 920 case NVME_CSI_NVM: 921 if (req->ns->file) 922 return nvmet_file_parse_io_cmd(req); 923 return nvmet_bdev_parse_io_cmd(req); 924 case NVME_CSI_ZNS: 925 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED)) 926 return nvmet_bdev_zns_parse_io_cmd(req); 927 return NVME_SC_INVALID_IO_CMD_SET; 928 default: 929 return NVME_SC_INVALID_IO_CMD_SET; 930 } 931 } 932 933 bool nvmet_req_init(struct nvmet_req *req, struct nvmet_cq *cq, 934 struct nvmet_sq *sq, const struct nvmet_fabrics_ops *ops) 935 { 936 u8 flags = req->cmd->common.flags; 937 u16 status; 938 939 req->cq = cq; 940 req->sq = sq; 941 req->ops = ops; 942 req->sg = NULL; 943 req->metadata_sg = NULL; 944 req->sg_cnt = 0; 945 req->metadata_sg_cnt = 0; 946 req->transfer_len = 0; 947 req->metadata_len = 0; 948 req->cqe->status = 0; 949 req->cqe->sq_head = 0; 950 req->ns = NULL; 951 req->error_loc = NVMET_NO_ERROR_LOC; 952 req->error_slba = 0; 953 954 /* no support for fused commands yet */ 955 if (unlikely(flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND))) { 956 req->error_loc = offsetof(struct nvme_common_command, flags); 957 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR; 958 goto fail; 959 } 960 961 /* 962 * For fabrics, PSDT field shall describe metadata pointer (MPTR) that 963 * contains an address of a single contiguous physical buffer that is 964 * byte aligned. 965 */ 966 if (unlikely((flags & NVME_CMD_SGL_ALL) != NVME_CMD_SGL_METABUF)) { 967 req->error_loc = offsetof(struct nvme_common_command, flags); 968 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR; 969 goto fail; 970 } 971 972 if (unlikely(!req->sq->ctrl)) 973 /* will return an error for any non-connect command: */ 974 status = nvmet_parse_connect_cmd(req); 975 else if (likely(req->sq->qid != 0)) 976 status = nvmet_parse_io_cmd(req); 977 else 978 status = nvmet_parse_admin_cmd(req); 979 980 if (status) 981 goto fail; 982 983 trace_nvmet_req_init(req, req->cmd); 984 985 if (unlikely(!percpu_ref_tryget_live(&sq->ref))) { 986 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR; 987 goto fail; 988 } 989 990 if (sq->ctrl) 991 sq->ctrl->reset_tbkas = true; 992 993 return true; 994 995 fail: 996 __nvmet_req_complete(req, status); 997 return false; 998 } 999 EXPORT_SYMBOL_GPL(nvmet_req_init); 1000 1001 void nvmet_req_uninit(struct nvmet_req *req) 1002 { 1003 percpu_ref_put(&req->sq->ref); 1004 if (req->ns) 1005 nvmet_put_namespace(req->ns); 1006 } 1007 EXPORT_SYMBOL_GPL(nvmet_req_uninit); 1008 1009 bool nvmet_check_transfer_len(struct nvmet_req *req, size_t len) 1010 { 1011 if (unlikely(len != req->transfer_len)) { 1012 req->error_loc = offsetof(struct nvme_common_command, dptr); 1013 nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR); 1014 return false; 1015 } 1016 1017 return true; 1018 } 1019 EXPORT_SYMBOL_GPL(nvmet_check_transfer_len); 1020 1021 bool nvmet_check_data_len_lte(struct nvmet_req *req, size_t data_len) 1022 { 1023 if (unlikely(data_len > req->transfer_len)) { 1024 req->error_loc = offsetof(struct nvme_common_command, dptr); 1025 nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR); 1026 return false; 1027 } 1028 1029 return true; 1030 } 1031 1032 static unsigned int nvmet_data_transfer_len(struct nvmet_req *req) 1033 { 1034 return req->transfer_len - req->metadata_len; 1035 } 1036 1037 static int nvmet_req_alloc_p2pmem_sgls(struct pci_dev *p2p_dev, 1038 struct nvmet_req *req) 1039 { 1040 req->sg = pci_p2pmem_alloc_sgl(p2p_dev, &req->sg_cnt, 1041 nvmet_data_transfer_len(req)); 1042 if (!req->sg) 1043 goto out_err; 1044 1045 if (req->metadata_len) { 1046 req->metadata_sg = pci_p2pmem_alloc_sgl(p2p_dev, 1047 &req->metadata_sg_cnt, req->metadata_len); 1048 if (!req->metadata_sg) 1049 goto out_free_sg; 1050 } 1051 1052 req->p2p_dev = p2p_dev; 1053 1054 return 0; 1055 out_free_sg: 1056 pci_p2pmem_free_sgl(req->p2p_dev, req->sg); 1057 out_err: 1058 return -ENOMEM; 1059 } 1060 1061 static struct pci_dev *nvmet_req_find_p2p_dev(struct nvmet_req *req) 1062 { 1063 if (!IS_ENABLED(CONFIG_PCI_P2PDMA) || 1064 !req->sq->ctrl || !req->sq->qid || !req->ns) 1065 return NULL; 1066 return radix_tree_lookup(&req->sq->ctrl->p2p_ns_map, req->ns->nsid); 1067 } 1068 1069 int nvmet_req_alloc_sgls(struct nvmet_req *req) 1070 { 1071 struct pci_dev *p2p_dev = nvmet_req_find_p2p_dev(req); 1072 1073 if (p2p_dev && !nvmet_req_alloc_p2pmem_sgls(p2p_dev, req)) 1074 return 0; 1075 1076 req->sg = sgl_alloc(nvmet_data_transfer_len(req), GFP_KERNEL, 1077 &req->sg_cnt); 1078 if (unlikely(!req->sg)) 1079 goto out; 1080 1081 if (req->metadata_len) { 1082 req->metadata_sg = sgl_alloc(req->metadata_len, GFP_KERNEL, 1083 &req->metadata_sg_cnt); 1084 if (unlikely(!req->metadata_sg)) 1085 goto out_free; 1086 } 1087 1088 return 0; 1089 out_free: 1090 sgl_free(req->sg); 1091 out: 1092 return -ENOMEM; 1093 } 1094 EXPORT_SYMBOL_GPL(nvmet_req_alloc_sgls); 1095 1096 void nvmet_req_free_sgls(struct nvmet_req *req) 1097 { 1098 if (req->p2p_dev) { 1099 pci_p2pmem_free_sgl(req->p2p_dev, req->sg); 1100 if (req->metadata_sg) 1101 pci_p2pmem_free_sgl(req->p2p_dev, req->metadata_sg); 1102 req->p2p_dev = NULL; 1103 } else { 1104 sgl_free(req->sg); 1105 if (req->metadata_sg) 1106 sgl_free(req->metadata_sg); 1107 } 1108 1109 req->sg = NULL; 1110 req->metadata_sg = NULL; 1111 req->sg_cnt = 0; 1112 req->metadata_sg_cnt = 0; 1113 } 1114 EXPORT_SYMBOL_GPL(nvmet_req_free_sgls); 1115 1116 static inline bool nvmet_cc_en(u32 cc) 1117 { 1118 return (cc >> NVME_CC_EN_SHIFT) & 0x1; 1119 } 1120 1121 static inline u8 nvmet_cc_css(u32 cc) 1122 { 1123 return (cc >> NVME_CC_CSS_SHIFT) & 0x7; 1124 } 1125 1126 static inline u8 nvmet_cc_mps(u32 cc) 1127 { 1128 return (cc >> NVME_CC_MPS_SHIFT) & 0xf; 1129 } 1130 1131 static inline u8 nvmet_cc_ams(u32 cc) 1132 { 1133 return (cc >> NVME_CC_AMS_SHIFT) & 0x7; 1134 } 1135 1136 static inline u8 nvmet_cc_shn(u32 cc) 1137 { 1138 return (cc >> NVME_CC_SHN_SHIFT) & 0x3; 1139 } 1140 1141 static inline u8 nvmet_cc_iosqes(u32 cc) 1142 { 1143 return (cc >> NVME_CC_IOSQES_SHIFT) & 0xf; 1144 } 1145 1146 static inline u8 nvmet_cc_iocqes(u32 cc) 1147 { 1148 return (cc >> NVME_CC_IOCQES_SHIFT) & 0xf; 1149 } 1150 1151 static inline bool nvmet_css_supported(u8 cc_css) 1152 { 1153 switch (cc_css << NVME_CC_CSS_SHIFT) { 1154 case NVME_CC_CSS_NVM: 1155 case NVME_CC_CSS_CSI: 1156 return true; 1157 default: 1158 return false; 1159 } 1160 } 1161 1162 static void nvmet_start_ctrl(struct nvmet_ctrl *ctrl) 1163 { 1164 lockdep_assert_held(&ctrl->lock); 1165 1166 /* 1167 * Only I/O controllers should verify iosqes,iocqes. 1168 * Strictly speaking, the spec says a discovery controller 1169 * should verify iosqes,iocqes are zeroed, however that 1170 * would break backwards compatibility, so don't enforce it. 1171 */ 1172 if (!nvmet_is_disc_subsys(ctrl->subsys) && 1173 (nvmet_cc_iosqes(ctrl->cc) != NVME_NVM_IOSQES || 1174 nvmet_cc_iocqes(ctrl->cc) != NVME_NVM_IOCQES)) { 1175 ctrl->csts = NVME_CSTS_CFS; 1176 return; 1177 } 1178 1179 if (nvmet_cc_mps(ctrl->cc) != 0 || 1180 nvmet_cc_ams(ctrl->cc) != 0 || 1181 !nvmet_css_supported(nvmet_cc_css(ctrl->cc))) { 1182 ctrl->csts = NVME_CSTS_CFS; 1183 return; 1184 } 1185 1186 ctrl->csts = NVME_CSTS_RDY; 1187 1188 /* 1189 * Controllers that are not yet enabled should not really enforce the 1190 * keep alive timeout, but we still want to track a timeout and cleanup 1191 * in case a host died before it enabled the controller. Hence, simply 1192 * reset the keep alive timer when the controller is enabled. 1193 */ 1194 if (ctrl->kato) 1195 mod_delayed_work(nvmet_wq, &ctrl->ka_work, ctrl->kato * HZ); 1196 } 1197 1198 static void nvmet_clear_ctrl(struct nvmet_ctrl *ctrl) 1199 { 1200 lockdep_assert_held(&ctrl->lock); 1201 1202 /* XXX: tear down queues? */ 1203 ctrl->csts &= ~NVME_CSTS_RDY; 1204 ctrl->cc = 0; 1205 } 1206 1207 void nvmet_update_cc(struct nvmet_ctrl *ctrl, u32 new) 1208 { 1209 u32 old; 1210 1211 mutex_lock(&ctrl->lock); 1212 old = ctrl->cc; 1213 ctrl->cc = new; 1214 1215 if (nvmet_cc_en(new) && !nvmet_cc_en(old)) 1216 nvmet_start_ctrl(ctrl); 1217 if (!nvmet_cc_en(new) && nvmet_cc_en(old)) 1218 nvmet_clear_ctrl(ctrl); 1219 if (nvmet_cc_shn(new) && !nvmet_cc_shn(old)) { 1220 nvmet_clear_ctrl(ctrl); 1221 ctrl->csts |= NVME_CSTS_SHST_CMPLT; 1222 } 1223 if (!nvmet_cc_shn(new) && nvmet_cc_shn(old)) 1224 ctrl->csts &= ~NVME_CSTS_SHST_CMPLT; 1225 mutex_unlock(&ctrl->lock); 1226 } 1227 1228 static void nvmet_init_cap(struct nvmet_ctrl *ctrl) 1229 { 1230 /* command sets supported: NVMe command set: */ 1231 ctrl->cap = (1ULL << 37); 1232 /* Controller supports one or more I/O Command Sets */ 1233 ctrl->cap |= (1ULL << 43); 1234 /* CC.EN timeout in 500msec units: */ 1235 ctrl->cap |= (15ULL << 24); 1236 /* maximum queue entries supported: */ 1237 if (ctrl->ops->get_max_queue_size) 1238 ctrl->cap |= min_t(u16, ctrl->ops->get_max_queue_size(ctrl), 1239 ctrl->port->max_queue_size) - 1; 1240 else 1241 ctrl->cap |= ctrl->port->max_queue_size - 1; 1242 1243 if (nvmet_is_passthru_subsys(ctrl->subsys)) 1244 nvmet_passthrough_override_cap(ctrl); 1245 } 1246 1247 struct nvmet_ctrl *nvmet_ctrl_find_get(const char *subsysnqn, 1248 const char *hostnqn, u16 cntlid, 1249 struct nvmet_req *req) 1250 { 1251 struct nvmet_ctrl *ctrl = NULL; 1252 struct nvmet_subsys *subsys; 1253 1254 subsys = nvmet_find_get_subsys(req->port, subsysnqn); 1255 if (!subsys) { 1256 pr_warn("connect request for invalid subsystem %s!\n", 1257 subsysnqn); 1258 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn); 1259 goto out; 1260 } 1261 1262 mutex_lock(&subsys->lock); 1263 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) { 1264 if (ctrl->cntlid == cntlid) { 1265 if (strncmp(hostnqn, ctrl->hostnqn, NVMF_NQN_SIZE)) { 1266 pr_warn("hostnqn mismatch.\n"); 1267 continue; 1268 } 1269 if (!kref_get_unless_zero(&ctrl->ref)) 1270 continue; 1271 1272 /* ctrl found */ 1273 goto found; 1274 } 1275 } 1276 1277 ctrl = NULL; /* ctrl not found */ 1278 pr_warn("could not find controller %d for subsys %s / host %s\n", 1279 cntlid, subsysnqn, hostnqn); 1280 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(cntlid); 1281 1282 found: 1283 mutex_unlock(&subsys->lock); 1284 nvmet_subsys_put(subsys); 1285 out: 1286 return ctrl; 1287 } 1288 1289 u16 nvmet_check_ctrl_status(struct nvmet_req *req) 1290 { 1291 if (unlikely(!(req->sq->ctrl->cc & NVME_CC_ENABLE))) { 1292 pr_err("got cmd %d while CC.EN == 0 on qid = %d\n", 1293 req->cmd->common.opcode, req->sq->qid); 1294 return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR; 1295 } 1296 1297 if (unlikely(!(req->sq->ctrl->csts & NVME_CSTS_RDY))) { 1298 pr_err("got cmd %d while CSTS.RDY == 0 on qid = %d\n", 1299 req->cmd->common.opcode, req->sq->qid); 1300 return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR; 1301 } 1302 1303 if (unlikely(!nvmet_check_auth_status(req))) { 1304 pr_warn("qid %d not authenticated\n", req->sq->qid); 1305 return NVME_SC_AUTH_REQUIRED | NVME_SC_DNR; 1306 } 1307 return 0; 1308 } 1309 1310 bool nvmet_host_allowed(struct nvmet_subsys *subsys, const char *hostnqn) 1311 { 1312 struct nvmet_host_link *p; 1313 1314 lockdep_assert_held(&nvmet_config_sem); 1315 1316 if (subsys->allow_any_host) 1317 return true; 1318 1319 if (nvmet_is_disc_subsys(subsys)) /* allow all access to disc subsys */ 1320 return true; 1321 1322 list_for_each_entry(p, &subsys->hosts, entry) { 1323 if (!strcmp(nvmet_host_name(p->host), hostnqn)) 1324 return true; 1325 } 1326 1327 return false; 1328 } 1329 1330 /* 1331 * Note: ctrl->subsys->lock should be held when calling this function 1332 */ 1333 static void nvmet_setup_p2p_ns_map(struct nvmet_ctrl *ctrl, 1334 struct nvmet_req *req) 1335 { 1336 struct nvmet_ns *ns; 1337 unsigned long idx; 1338 1339 if (!req->p2p_client) 1340 return; 1341 1342 ctrl->p2p_client = get_device(req->p2p_client); 1343 1344 xa_for_each(&ctrl->subsys->namespaces, idx, ns) 1345 nvmet_p2pmem_ns_add_p2p(ctrl, ns); 1346 } 1347 1348 /* 1349 * Note: ctrl->subsys->lock should be held when calling this function 1350 */ 1351 static void nvmet_release_p2p_ns_map(struct nvmet_ctrl *ctrl) 1352 { 1353 struct radix_tree_iter iter; 1354 void __rcu **slot; 1355 1356 radix_tree_for_each_slot(slot, &ctrl->p2p_ns_map, &iter, 0) 1357 pci_dev_put(radix_tree_deref_slot(slot)); 1358 1359 put_device(ctrl->p2p_client); 1360 } 1361 1362 static void nvmet_fatal_error_handler(struct work_struct *work) 1363 { 1364 struct nvmet_ctrl *ctrl = 1365 container_of(work, struct nvmet_ctrl, fatal_err_work); 1366 1367 pr_err("ctrl %d fatal error occurred!\n", ctrl->cntlid); 1368 ctrl->ops->delete_ctrl(ctrl); 1369 } 1370 1371 u16 nvmet_alloc_ctrl(const char *subsysnqn, const char *hostnqn, 1372 struct nvmet_req *req, u32 kato, struct nvmet_ctrl **ctrlp) 1373 { 1374 struct nvmet_subsys *subsys; 1375 struct nvmet_ctrl *ctrl; 1376 int ret; 1377 u16 status; 1378 1379 status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR; 1380 subsys = nvmet_find_get_subsys(req->port, subsysnqn); 1381 if (!subsys) { 1382 pr_warn("connect request for invalid subsystem %s!\n", 1383 subsysnqn); 1384 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn); 1385 req->error_loc = offsetof(struct nvme_common_command, dptr); 1386 goto out; 1387 } 1388 1389 down_read(&nvmet_config_sem); 1390 if (!nvmet_host_allowed(subsys, hostnqn)) { 1391 pr_info("connect by host %s for subsystem %s not allowed\n", 1392 hostnqn, subsysnqn); 1393 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(hostnqn); 1394 up_read(&nvmet_config_sem); 1395 status = NVME_SC_CONNECT_INVALID_HOST | NVME_SC_DNR; 1396 req->error_loc = offsetof(struct nvme_common_command, dptr); 1397 goto out_put_subsystem; 1398 } 1399 up_read(&nvmet_config_sem); 1400 1401 status = NVME_SC_INTERNAL; 1402 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 1403 if (!ctrl) 1404 goto out_put_subsystem; 1405 mutex_init(&ctrl->lock); 1406 1407 ctrl->port = req->port; 1408 ctrl->ops = req->ops; 1409 1410 #ifdef CONFIG_NVME_TARGET_PASSTHRU 1411 /* By default, set loop targets to clear IDS by default */ 1412 if (ctrl->port->disc_addr.trtype == NVMF_TRTYPE_LOOP) 1413 subsys->clear_ids = 1; 1414 #endif 1415 1416 INIT_WORK(&ctrl->async_event_work, nvmet_async_event_work); 1417 INIT_LIST_HEAD(&ctrl->async_events); 1418 INIT_RADIX_TREE(&ctrl->p2p_ns_map, GFP_KERNEL); 1419 INIT_WORK(&ctrl->fatal_err_work, nvmet_fatal_error_handler); 1420 INIT_DELAYED_WORK(&ctrl->ka_work, nvmet_keep_alive_timer); 1421 1422 memcpy(ctrl->subsysnqn, subsysnqn, NVMF_NQN_SIZE); 1423 memcpy(ctrl->hostnqn, hostnqn, NVMF_NQN_SIZE); 1424 1425 kref_init(&ctrl->ref); 1426 ctrl->subsys = subsys; 1427 ctrl->pi_support = ctrl->port->pi_enable && ctrl->subsys->pi_support; 1428 nvmet_init_cap(ctrl); 1429 WRITE_ONCE(ctrl->aen_enabled, NVMET_AEN_CFG_OPTIONAL); 1430 1431 ctrl->changed_ns_list = kmalloc_array(NVME_MAX_CHANGED_NAMESPACES, 1432 sizeof(__le32), GFP_KERNEL); 1433 if (!ctrl->changed_ns_list) 1434 goto out_free_ctrl; 1435 1436 ctrl->sqs = kcalloc(subsys->max_qid + 1, 1437 sizeof(struct nvmet_sq *), 1438 GFP_KERNEL); 1439 if (!ctrl->sqs) 1440 goto out_free_changed_ns_list; 1441 1442 ret = ida_alloc_range(&cntlid_ida, 1443 subsys->cntlid_min, subsys->cntlid_max, 1444 GFP_KERNEL); 1445 if (ret < 0) { 1446 status = NVME_SC_CONNECT_CTRL_BUSY | NVME_SC_DNR; 1447 goto out_free_sqs; 1448 } 1449 ctrl->cntlid = ret; 1450 1451 /* 1452 * Discovery controllers may use some arbitrary high value 1453 * in order to cleanup stale discovery sessions 1454 */ 1455 if (nvmet_is_disc_subsys(ctrl->subsys) && !kato) 1456 kato = NVMET_DISC_KATO_MS; 1457 1458 /* keep-alive timeout in seconds */ 1459 ctrl->kato = DIV_ROUND_UP(kato, 1000); 1460 1461 ctrl->err_counter = 0; 1462 spin_lock_init(&ctrl->error_lock); 1463 1464 nvmet_start_keep_alive_timer(ctrl); 1465 1466 mutex_lock(&subsys->lock); 1467 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls); 1468 nvmet_setup_p2p_ns_map(ctrl, req); 1469 mutex_unlock(&subsys->lock); 1470 1471 *ctrlp = ctrl; 1472 return 0; 1473 1474 out_free_sqs: 1475 kfree(ctrl->sqs); 1476 out_free_changed_ns_list: 1477 kfree(ctrl->changed_ns_list); 1478 out_free_ctrl: 1479 kfree(ctrl); 1480 out_put_subsystem: 1481 nvmet_subsys_put(subsys); 1482 out: 1483 return status; 1484 } 1485 1486 static void nvmet_ctrl_free(struct kref *ref) 1487 { 1488 struct nvmet_ctrl *ctrl = container_of(ref, struct nvmet_ctrl, ref); 1489 struct nvmet_subsys *subsys = ctrl->subsys; 1490 1491 mutex_lock(&subsys->lock); 1492 nvmet_release_p2p_ns_map(ctrl); 1493 list_del(&ctrl->subsys_entry); 1494 mutex_unlock(&subsys->lock); 1495 1496 nvmet_stop_keep_alive_timer(ctrl); 1497 1498 flush_work(&ctrl->async_event_work); 1499 cancel_work_sync(&ctrl->fatal_err_work); 1500 1501 nvmet_destroy_auth(ctrl); 1502 1503 ida_free(&cntlid_ida, ctrl->cntlid); 1504 1505 nvmet_async_events_free(ctrl); 1506 kfree(ctrl->sqs); 1507 kfree(ctrl->changed_ns_list); 1508 kfree(ctrl); 1509 1510 nvmet_subsys_put(subsys); 1511 } 1512 1513 void nvmet_ctrl_put(struct nvmet_ctrl *ctrl) 1514 { 1515 kref_put(&ctrl->ref, nvmet_ctrl_free); 1516 } 1517 1518 void nvmet_ctrl_fatal_error(struct nvmet_ctrl *ctrl) 1519 { 1520 mutex_lock(&ctrl->lock); 1521 if (!(ctrl->csts & NVME_CSTS_CFS)) { 1522 ctrl->csts |= NVME_CSTS_CFS; 1523 queue_work(nvmet_wq, &ctrl->fatal_err_work); 1524 } 1525 mutex_unlock(&ctrl->lock); 1526 } 1527 EXPORT_SYMBOL_GPL(nvmet_ctrl_fatal_error); 1528 1529 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port, 1530 const char *subsysnqn) 1531 { 1532 struct nvmet_subsys_link *p; 1533 1534 if (!port) 1535 return NULL; 1536 1537 if (!strcmp(NVME_DISC_SUBSYS_NAME, subsysnqn)) { 1538 if (!kref_get_unless_zero(&nvmet_disc_subsys->ref)) 1539 return NULL; 1540 return nvmet_disc_subsys; 1541 } 1542 1543 down_read(&nvmet_config_sem); 1544 if (!strncmp(nvmet_disc_subsys->subsysnqn, subsysnqn, 1545 NVMF_NQN_SIZE)) { 1546 if (kref_get_unless_zero(&nvmet_disc_subsys->ref)) { 1547 up_read(&nvmet_config_sem); 1548 return nvmet_disc_subsys; 1549 } 1550 } 1551 list_for_each_entry(p, &port->subsystems, entry) { 1552 if (!strncmp(p->subsys->subsysnqn, subsysnqn, 1553 NVMF_NQN_SIZE)) { 1554 if (!kref_get_unless_zero(&p->subsys->ref)) 1555 break; 1556 up_read(&nvmet_config_sem); 1557 return p->subsys; 1558 } 1559 } 1560 up_read(&nvmet_config_sem); 1561 return NULL; 1562 } 1563 1564 struct nvmet_subsys *nvmet_subsys_alloc(const char *subsysnqn, 1565 enum nvme_subsys_type type) 1566 { 1567 struct nvmet_subsys *subsys; 1568 char serial[NVMET_SN_MAX_SIZE / 2]; 1569 int ret; 1570 1571 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL); 1572 if (!subsys) 1573 return ERR_PTR(-ENOMEM); 1574 1575 subsys->ver = NVMET_DEFAULT_VS; 1576 /* generate a random serial number as our controllers are ephemeral: */ 1577 get_random_bytes(&serial, sizeof(serial)); 1578 bin2hex(subsys->serial, &serial, sizeof(serial)); 1579 1580 subsys->model_number = kstrdup(NVMET_DEFAULT_CTRL_MODEL, GFP_KERNEL); 1581 if (!subsys->model_number) { 1582 ret = -ENOMEM; 1583 goto free_subsys; 1584 } 1585 1586 subsys->ieee_oui = 0; 1587 1588 subsys->firmware_rev = kstrndup(UTS_RELEASE, NVMET_FR_MAX_SIZE, GFP_KERNEL); 1589 if (!subsys->firmware_rev) { 1590 ret = -ENOMEM; 1591 goto free_mn; 1592 } 1593 1594 switch (type) { 1595 case NVME_NQN_NVME: 1596 subsys->max_qid = NVMET_NR_QUEUES; 1597 break; 1598 case NVME_NQN_DISC: 1599 case NVME_NQN_CURR: 1600 subsys->max_qid = 0; 1601 break; 1602 default: 1603 pr_err("%s: Unknown Subsystem type - %d\n", __func__, type); 1604 ret = -EINVAL; 1605 goto free_fr; 1606 } 1607 subsys->type = type; 1608 subsys->subsysnqn = kstrndup(subsysnqn, NVMF_NQN_SIZE, 1609 GFP_KERNEL); 1610 if (!subsys->subsysnqn) { 1611 ret = -ENOMEM; 1612 goto free_fr; 1613 } 1614 subsys->cntlid_min = NVME_CNTLID_MIN; 1615 subsys->cntlid_max = NVME_CNTLID_MAX; 1616 kref_init(&subsys->ref); 1617 1618 mutex_init(&subsys->lock); 1619 xa_init(&subsys->namespaces); 1620 INIT_LIST_HEAD(&subsys->ctrls); 1621 INIT_LIST_HEAD(&subsys->hosts); 1622 1623 return subsys; 1624 1625 free_fr: 1626 kfree(subsys->firmware_rev); 1627 free_mn: 1628 kfree(subsys->model_number); 1629 free_subsys: 1630 kfree(subsys); 1631 return ERR_PTR(ret); 1632 } 1633 1634 static void nvmet_subsys_free(struct kref *ref) 1635 { 1636 struct nvmet_subsys *subsys = 1637 container_of(ref, struct nvmet_subsys, ref); 1638 1639 WARN_ON_ONCE(!xa_empty(&subsys->namespaces)); 1640 1641 xa_destroy(&subsys->namespaces); 1642 nvmet_passthru_subsys_free(subsys); 1643 1644 kfree(subsys->subsysnqn); 1645 kfree(subsys->model_number); 1646 kfree(subsys->firmware_rev); 1647 kfree(subsys); 1648 } 1649 1650 void nvmet_subsys_del_ctrls(struct nvmet_subsys *subsys) 1651 { 1652 struct nvmet_ctrl *ctrl; 1653 1654 mutex_lock(&subsys->lock); 1655 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) 1656 ctrl->ops->delete_ctrl(ctrl); 1657 mutex_unlock(&subsys->lock); 1658 } 1659 1660 void nvmet_subsys_put(struct nvmet_subsys *subsys) 1661 { 1662 kref_put(&subsys->ref, nvmet_subsys_free); 1663 } 1664 1665 static int __init nvmet_init(void) 1666 { 1667 int error = -ENOMEM; 1668 1669 nvmet_ana_group_enabled[NVMET_DEFAULT_ANA_GRPID] = 1; 1670 1671 nvmet_bvec_cache = kmem_cache_create("nvmet-bvec", 1672 NVMET_MAX_MPOOL_BVEC * sizeof(struct bio_vec), 0, 1673 SLAB_HWCACHE_ALIGN, NULL); 1674 if (!nvmet_bvec_cache) 1675 return -ENOMEM; 1676 1677 zbd_wq = alloc_workqueue("nvmet-zbd-wq", WQ_MEM_RECLAIM, 0); 1678 if (!zbd_wq) 1679 goto out_destroy_bvec_cache; 1680 1681 buffered_io_wq = alloc_workqueue("nvmet-buffered-io-wq", 1682 WQ_MEM_RECLAIM, 0); 1683 if (!buffered_io_wq) 1684 goto out_free_zbd_work_queue; 1685 1686 nvmet_wq = alloc_workqueue("nvmet-wq", WQ_MEM_RECLAIM, 0); 1687 if (!nvmet_wq) 1688 goto out_free_buffered_work_queue; 1689 1690 error = nvmet_init_discovery(); 1691 if (error) 1692 goto out_free_nvmet_work_queue; 1693 1694 error = nvmet_init_configfs(); 1695 if (error) 1696 goto out_exit_discovery; 1697 return 0; 1698 1699 out_exit_discovery: 1700 nvmet_exit_discovery(); 1701 out_free_nvmet_work_queue: 1702 destroy_workqueue(nvmet_wq); 1703 out_free_buffered_work_queue: 1704 destroy_workqueue(buffered_io_wq); 1705 out_free_zbd_work_queue: 1706 destroy_workqueue(zbd_wq); 1707 out_destroy_bvec_cache: 1708 kmem_cache_destroy(nvmet_bvec_cache); 1709 return error; 1710 } 1711 1712 static void __exit nvmet_exit(void) 1713 { 1714 nvmet_exit_configfs(); 1715 nvmet_exit_discovery(); 1716 ida_destroy(&cntlid_ida); 1717 destroy_workqueue(nvmet_wq); 1718 destroy_workqueue(buffered_io_wq); 1719 destroy_workqueue(zbd_wq); 1720 kmem_cache_destroy(nvmet_bvec_cache); 1721 1722 BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_entry) != 1024); 1723 BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_hdr) != 1024); 1724 } 1725 1726 module_init(nvmet_init); 1727 module_exit(nvmet_exit); 1728 1729 MODULE_DESCRIPTION("NVMe target core framework"); 1730 MODULE_LICENSE("GPL v2"); 1731