xref: /linux/drivers/nvme/target/core.c (revision 173b0b5b0e865348684c02bd9cb1d22b5d46e458)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Common code for the NVMe target.
4  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/random.h>
9 #include <linux/rculist.h>
10 #include <linux/pci-p2pdma.h>
11 #include <linux/scatterlist.h>
12 
13 #include <generated/utsrelease.h>
14 
15 #define CREATE_TRACE_POINTS
16 #include "trace.h"
17 
18 #include "nvmet.h"
19 
20 struct kmem_cache *nvmet_bvec_cache;
21 struct workqueue_struct *buffered_io_wq;
22 struct workqueue_struct *zbd_wq;
23 static const struct nvmet_fabrics_ops *nvmet_transports[NVMF_TRTYPE_MAX];
24 static DEFINE_IDA(cntlid_ida);
25 
26 struct workqueue_struct *nvmet_wq;
27 EXPORT_SYMBOL_GPL(nvmet_wq);
28 
29 /*
30  * This read/write semaphore is used to synchronize access to configuration
31  * information on a target system that will result in discovery log page
32  * information change for at least one host.
33  * The full list of resources to protected by this semaphore is:
34  *
35  *  - subsystems list
36  *  - per-subsystem allowed hosts list
37  *  - allow_any_host subsystem attribute
38  *  - nvmet_genctr
39  *  - the nvmet_transports array
40  *
41  * When updating any of those lists/structures write lock should be obtained,
42  * while when reading (popolating discovery log page or checking host-subsystem
43  * link) read lock is obtained to allow concurrent reads.
44  */
45 DECLARE_RWSEM(nvmet_config_sem);
46 
47 u32 nvmet_ana_group_enabled[NVMET_MAX_ANAGRPS + 1];
48 u64 nvmet_ana_chgcnt;
49 DECLARE_RWSEM(nvmet_ana_sem);
50 
51 inline u16 errno_to_nvme_status(struct nvmet_req *req, int errno)
52 {
53 	switch (errno) {
54 	case 0:
55 		return NVME_SC_SUCCESS;
56 	case -ENOSPC:
57 		req->error_loc = offsetof(struct nvme_rw_command, length);
58 		return NVME_SC_CAP_EXCEEDED | NVME_SC_DNR;
59 	case -EREMOTEIO:
60 		req->error_loc = offsetof(struct nvme_rw_command, slba);
61 		return  NVME_SC_LBA_RANGE | NVME_SC_DNR;
62 	case -EOPNOTSUPP:
63 		req->error_loc = offsetof(struct nvme_common_command, opcode);
64 		switch (req->cmd->common.opcode) {
65 		case nvme_cmd_dsm:
66 		case nvme_cmd_write_zeroes:
67 			return NVME_SC_ONCS_NOT_SUPPORTED | NVME_SC_DNR;
68 		default:
69 			return NVME_SC_INVALID_OPCODE | NVME_SC_DNR;
70 		}
71 		break;
72 	case -ENODATA:
73 		req->error_loc = offsetof(struct nvme_rw_command, nsid);
74 		return NVME_SC_ACCESS_DENIED;
75 	case -EIO:
76 		fallthrough;
77 	default:
78 		req->error_loc = offsetof(struct nvme_common_command, opcode);
79 		return NVME_SC_INTERNAL | NVME_SC_DNR;
80 	}
81 }
82 
83 u16 nvmet_report_invalid_opcode(struct nvmet_req *req)
84 {
85 	pr_debug("unhandled cmd %d on qid %d\n", req->cmd->common.opcode,
86 		 req->sq->qid);
87 
88 	req->error_loc = offsetof(struct nvme_common_command, opcode);
89 	return NVME_SC_INVALID_OPCODE | NVME_SC_DNR;
90 }
91 
92 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
93 		const char *subsysnqn);
94 
95 u16 nvmet_copy_to_sgl(struct nvmet_req *req, off_t off, const void *buf,
96 		size_t len)
97 {
98 	if (sg_pcopy_from_buffer(req->sg, req->sg_cnt, buf, len, off) != len) {
99 		req->error_loc = offsetof(struct nvme_common_command, dptr);
100 		return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
101 	}
102 	return 0;
103 }
104 
105 u16 nvmet_copy_from_sgl(struct nvmet_req *req, off_t off, void *buf, size_t len)
106 {
107 	if (sg_pcopy_to_buffer(req->sg, req->sg_cnt, buf, len, off) != len) {
108 		req->error_loc = offsetof(struct nvme_common_command, dptr);
109 		return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
110 	}
111 	return 0;
112 }
113 
114 u16 nvmet_zero_sgl(struct nvmet_req *req, off_t off, size_t len)
115 {
116 	if (sg_zero_buffer(req->sg, req->sg_cnt, len, off) != len) {
117 		req->error_loc = offsetof(struct nvme_common_command, dptr);
118 		return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
119 	}
120 	return 0;
121 }
122 
123 static u32 nvmet_max_nsid(struct nvmet_subsys *subsys)
124 {
125 	struct nvmet_ns *cur;
126 	unsigned long idx;
127 	u32 nsid = 0;
128 
129 	xa_for_each(&subsys->namespaces, idx, cur)
130 		nsid = cur->nsid;
131 
132 	return nsid;
133 }
134 
135 static u32 nvmet_async_event_result(struct nvmet_async_event *aen)
136 {
137 	return aen->event_type | (aen->event_info << 8) | (aen->log_page << 16);
138 }
139 
140 static void nvmet_async_events_failall(struct nvmet_ctrl *ctrl)
141 {
142 	struct nvmet_req *req;
143 
144 	mutex_lock(&ctrl->lock);
145 	while (ctrl->nr_async_event_cmds) {
146 		req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds];
147 		mutex_unlock(&ctrl->lock);
148 		nvmet_req_complete(req, NVME_SC_INTERNAL | NVME_SC_DNR);
149 		mutex_lock(&ctrl->lock);
150 	}
151 	mutex_unlock(&ctrl->lock);
152 }
153 
154 static void nvmet_async_events_process(struct nvmet_ctrl *ctrl)
155 {
156 	struct nvmet_async_event *aen;
157 	struct nvmet_req *req;
158 
159 	mutex_lock(&ctrl->lock);
160 	while (ctrl->nr_async_event_cmds && !list_empty(&ctrl->async_events)) {
161 		aen = list_first_entry(&ctrl->async_events,
162 				       struct nvmet_async_event, entry);
163 		req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds];
164 		nvmet_set_result(req, nvmet_async_event_result(aen));
165 
166 		list_del(&aen->entry);
167 		kfree(aen);
168 
169 		mutex_unlock(&ctrl->lock);
170 		trace_nvmet_async_event(ctrl, req->cqe->result.u32);
171 		nvmet_req_complete(req, 0);
172 		mutex_lock(&ctrl->lock);
173 	}
174 	mutex_unlock(&ctrl->lock);
175 }
176 
177 static void nvmet_async_events_free(struct nvmet_ctrl *ctrl)
178 {
179 	struct nvmet_async_event *aen, *tmp;
180 
181 	mutex_lock(&ctrl->lock);
182 	list_for_each_entry_safe(aen, tmp, &ctrl->async_events, entry) {
183 		list_del(&aen->entry);
184 		kfree(aen);
185 	}
186 	mutex_unlock(&ctrl->lock);
187 }
188 
189 static void nvmet_async_event_work(struct work_struct *work)
190 {
191 	struct nvmet_ctrl *ctrl =
192 		container_of(work, struct nvmet_ctrl, async_event_work);
193 
194 	nvmet_async_events_process(ctrl);
195 }
196 
197 void nvmet_add_async_event(struct nvmet_ctrl *ctrl, u8 event_type,
198 		u8 event_info, u8 log_page)
199 {
200 	struct nvmet_async_event *aen;
201 
202 	aen = kmalloc(sizeof(*aen), GFP_KERNEL);
203 	if (!aen)
204 		return;
205 
206 	aen->event_type = event_type;
207 	aen->event_info = event_info;
208 	aen->log_page = log_page;
209 
210 	mutex_lock(&ctrl->lock);
211 	list_add_tail(&aen->entry, &ctrl->async_events);
212 	mutex_unlock(&ctrl->lock);
213 
214 	queue_work(nvmet_wq, &ctrl->async_event_work);
215 }
216 
217 static void nvmet_add_to_changed_ns_log(struct nvmet_ctrl *ctrl, __le32 nsid)
218 {
219 	u32 i;
220 
221 	mutex_lock(&ctrl->lock);
222 	if (ctrl->nr_changed_ns > NVME_MAX_CHANGED_NAMESPACES)
223 		goto out_unlock;
224 
225 	for (i = 0; i < ctrl->nr_changed_ns; i++) {
226 		if (ctrl->changed_ns_list[i] == nsid)
227 			goto out_unlock;
228 	}
229 
230 	if (ctrl->nr_changed_ns == NVME_MAX_CHANGED_NAMESPACES) {
231 		ctrl->changed_ns_list[0] = cpu_to_le32(0xffffffff);
232 		ctrl->nr_changed_ns = U32_MAX;
233 		goto out_unlock;
234 	}
235 
236 	ctrl->changed_ns_list[ctrl->nr_changed_ns++] = nsid;
237 out_unlock:
238 	mutex_unlock(&ctrl->lock);
239 }
240 
241 void nvmet_ns_changed(struct nvmet_subsys *subsys, u32 nsid)
242 {
243 	struct nvmet_ctrl *ctrl;
244 
245 	lockdep_assert_held(&subsys->lock);
246 
247 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
248 		nvmet_add_to_changed_ns_log(ctrl, cpu_to_le32(nsid));
249 		if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_NS_ATTR))
250 			continue;
251 		nvmet_add_async_event(ctrl, NVME_AER_NOTICE,
252 				NVME_AER_NOTICE_NS_CHANGED,
253 				NVME_LOG_CHANGED_NS);
254 	}
255 }
256 
257 void nvmet_send_ana_event(struct nvmet_subsys *subsys,
258 		struct nvmet_port *port)
259 {
260 	struct nvmet_ctrl *ctrl;
261 
262 	mutex_lock(&subsys->lock);
263 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
264 		if (port && ctrl->port != port)
265 			continue;
266 		if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_ANA_CHANGE))
267 			continue;
268 		nvmet_add_async_event(ctrl, NVME_AER_NOTICE,
269 				NVME_AER_NOTICE_ANA, NVME_LOG_ANA);
270 	}
271 	mutex_unlock(&subsys->lock);
272 }
273 
274 void nvmet_port_send_ana_event(struct nvmet_port *port)
275 {
276 	struct nvmet_subsys_link *p;
277 
278 	down_read(&nvmet_config_sem);
279 	list_for_each_entry(p, &port->subsystems, entry)
280 		nvmet_send_ana_event(p->subsys, port);
281 	up_read(&nvmet_config_sem);
282 }
283 
284 int nvmet_register_transport(const struct nvmet_fabrics_ops *ops)
285 {
286 	int ret = 0;
287 
288 	down_write(&nvmet_config_sem);
289 	if (nvmet_transports[ops->type])
290 		ret = -EINVAL;
291 	else
292 		nvmet_transports[ops->type] = ops;
293 	up_write(&nvmet_config_sem);
294 
295 	return ret;
296 }
297 EXPORT_SYMBOL_GPL(nvmet_register_transport);
298 
299 void nvmet_unregister_transport(const struct nvmet_fabrics_ops *ops)
300 {
301 	down_write(&nvmet_config_sem);
302 	nvmet_transports[ops->type] = NULL;
303 	up_write(&nvmet_config_sem);
304 }
305 EXPORT_SYMBOL_GPL(nvmet_unregister_transport);
306 
307 void nvmet_port_del_ctrls(struct nvmet_port *port, struct nvmet_subsys *subsys)
308 {
309 	struct nvmet_ctrl *ctrl;
310 
311 	mutex_lock(&subsys->lock);
312 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
313 		if (ctrl->port == port)
314 			ctrl->ops->delete_ctrl(ctrl);
315 	}
316 	mutex_unlock(&subsys->lock);
317 }
318 
319 int nvmet_enable_port(struct nvmet_port *port)
320 {
321 	const struct nvmet_fabrics_ops *ops;
322 	int ret;
323 
324 	lockdep_assert_held(&nvmet_config_sem);
325 
326 	ops = nvmet_transports[port->disc_addr.trtype];
327 	if (!ops) {
328 		up_write(&nvmet_config_sem);
329 		request_module("nvmet-transport-%d", port->disc_addr.trtype);
330 		down_write(&nvmet_config_sem);
331 		ops = nvmet_transports[port->disc_addr.trtype];
332 		if (!ops) {
333 			pr_err("transport type %d not supported\n",
334 				port->disc_addr.trtype);
335 			return -EINVAL;
336 		}
337 	}
338 
339 	if (!try_module_get(ops->owner))
340 		return -EINVAL;
341 
342 	/*
343 	 * If the user requested PI support and the transport isn't pi capable,
344 	 * don't enable the port.
345 	 */
346 	if (port->pi_enable && !(ops->flags & NVMF_METADATA_SUPPORTED)) {
347 		pr_err("T10-PI is not supported by transport type %d\n",
348 		       port->disc_addr.trtype);
349 		ret = -EINVAL;
350 		goto out_put;
351 	}
352 
353 	ret = ops->add_port(port);
354 	if (ret)
355 		goto out_put;
356 
357 	/* If the transport didn't set inline_data_size, then disable it. */
358 	if (port->inline_data_size < 0)
359 		port->inline_data_size = 0;
360 
361 	/*
362 	 * If the transport didn't set the max_queue_size properly, then clamp
363 	 * it to the target limits. Also set default values in case the
364 	 * transport didn't set it at all.
365 	 */
366 	if (port->max_queue_size < 0)
367 		port->max_queue_size = NVMET_MAX_QUEUE_SIZE;
368 	else
369 		port->max_queue_size = clamp_t(int, port->max_queue_size,
370 					       NVMET_MIN_QUEUE_SIZE,
371 					       NVMET_MAX_QUEUE_SIZE);
372 
373 	port->enabled = true;
374 	port->tr_ops = ops;
375 	return 0;
376 
377 out_put:
378 	module_put(ops->owner);
379 	return ret;
380 }
381 
382 void nvmet_disable_port(struct nvmet_port *port)
383 {
384 	const struct nvmet_fabrics_ops *ops;
385 
386 	lockdep_assert_held(&nvmet_config_sem);
387 
388 	port->enabled = false;
389 	port->tr_ops = NULL;
390 
391 	ops = nvmet_transports[port->disc_addr.trtype];
392 	ops->remove_port(port);
393 	module_put(ops->owner);
394 }
395 
396 static void nvmet_keep_alive_timer(struct work_struct *work)
397 {
398 	struct nvmet_ctrl *ctrl = container_of(to_delayed_work(work),
399 			struct nvmet_ctrl, ka_work);
400 	bool reset_tbkas = ctrl->reset_tbkas;
401 
402 	ctrl->reset_tbkas = false;
403 	if (reset_tbkas) {
404 		pr_debug("ctrl %d reschedule traffic based keep-alive timer\n",
405 			ctrl->cntlid);
406 		queue_delayed_work(nvmet_wq, &ctrl->ka_work, ctrl->kato * HZ);
407 		return;
408 	}
409 
410 	pr_err("ctrl %d keep-alive timer (%d seconds) expired!\n",
411 		ctrl->cntlid, ctrl->kato);
412 
413 	nvmet_ctrl_fatal_error(ctrl);
414 }
415 
416 void nvmet_start_keep_alive_timer(struct nvmet_ctrl *ctrl)
417 {
418 	if (unlikely(ctrl->kato == 0))
419 		return;
420 
421 	pr_debug("ctrl %d start keep-alive timer for %d secs\n",
422 		ctrl->cntlid, ctrl->kato);
423 
424 	queue_delayed_work(nvmet_wq, &ctrl->ka_work, ctrl->kato * HZ);
425 }
426 
427 void nvmet_stop_keep_alive_timer(struct nvmet_ctrl *ctrl)
428 {
429 	if (unlikely(ctrl->kato == 0))
430 		return;
431 
432 	pr_debug("ctrl %d stop keep-alive\n", ctrl->cntlid);
433 
434 	cancel_delayed_work_sync(&ctrl->ka_work);
435 }
436 
437 u16 nvmet_req_find_ns(struct nvmet_req *req)
438 {
439 	u32 nsid = le32_to_cpu(req->cmd->common.nsid);
440 
441 	req->ns = xa_load(&nvmet_req_subsys(req)->namespaces, nsid);
442 	if (unlikely(!req->ns)) {
443 		req->error_loc = offsetof(struct nvme_common_command, nsid);
444 		return NVME_SC_INVALID_NS | NVME_SC_DNR;
445 	}
446 
447 	percpu_ref_get(&req->ns->ref);
448 	return NVME_SC_SUCCESS;
449 }
450 
451 static void nvmet_destroy_namespace(struct percpu_ref *ref)
452 {
453 	struct nvmet_ns *ns = container_of(ref, struct nvmet_ns, ref);
454 
455 	complete(&ns->disable_done);
456 }
457 
458 void nvmet_put_namespace(struct nvmet_ns *ns)
459 {
460 	percpu_ref_put(&ns->ref);
461 }
462 
463 static void nvmet_ns_dev_disable(struct nvmet_ns *ns)
464 {
465 	nvmet_bdev_ns_disable(ns);
466 	nvmet_file_ns_disable(ns);
467 }
468 
469 static int nvmet_p2pmem_ns_enable(struct nvmet_ns *ns)
470 {
471 	int ret;
472 	struct pci_dev *p2p_dev;
473 
474 	if (!ns->use_p2pmem)
475 		return 0;
476 
477 	if (!ns->bdev) {
478 		pr_err("peer-to-peer DMA is not supported by non-block device namespaces\n");
479 		return -EINVAL;
480 	}
481 
482 	if (!blk_queue_pci_p2pdma(ns->bdev->bd_disk->queue)) {
483 		pr_err("peer-to-peer DMA is not supported by the driver of %s\n",
484 		       ns->device_path);
485 		return -EINVAL;
486 	}
487 
488 	if (ns->p2p_dev) {
489 		ret = pci_p2pdma_distance(ns->p2p_dev, nvmet_ns_dev(ns), true);
490 		if (ret < 0)
491 			return -EINVAL;
492 	} else {
493 		/*
494 		 * Right now we just check that there is p2pmem available so
495 		 * we can report an error to the user right away if there
496 		 * is not. We'll find the actual device to use once we
497 		 * setup the controller when the port's device is available.
498 		 */
499 
500 		p2p_dev = pci_p2pmem_find(nvmet_ns_dev(ns));
501 		if (!p2p_dev) {
502 			pr_err("no peer-to-peer memory is available for %s\n",
503 			       ns->device_path);
504 			return -EINVAL;
505 		}
506 
507 		pci_dev_put(p2p_dev);
508 	}
509 
510 	return 0;
511 }
512 
513 /*
514  * Note: ctrl->subsys->lock should be held when calling this function
515  */
516 static void nvmet_p2pmem_ns_add_p2p(struct nvmet_ctrl *ctrl,
517 				    struct nvmet_ns *ns)
518 {
519 	struct device *clients[2];
520 	struct pci_dev *p2p_dev;
521 	int ret;
522 
523 	if (!ctrl->p2p_client || !ns->use_p2pmem)
524 		return;
525 
526 	if (ns->p2p_dev) {
527 		ret = pci_p2pdma_distance(ns->p2p_dev, ctrl->p2p_client, true);
528 		if (ret < 0)
529 			return;
530 
531 		p2p_dev = pci_dev_get(ns->p2p_dev);
532 	} else {
533 		clients[0] = ctrl->p2p_client;
534 		clients[1] = nvmet_ns_dev(ns);
535 
536 		p2p_dev = pci_p2pmem_find_many(clients, ARRAY_SIZE(clients));
537 		if (!p2p_dev) {
538 			pr_err("no peer-to-peer memory is available that's supported by %s and %s\n",
539 			       dev_name(ctrl->p2p_client), ns->device_path);
540 			return;
541 		}
542 	}
543 
544 	ret = radix_tree_insert(&ctrl->p2p_ns_map, ns->nsid, p2p_dev);
545 	if (ret < 0)
546 		pci_dev_put(p2p_dev);
547 
548 	pr_info("using p2pmem on %s for nsid %d\n", pci_name(p2p_dev),
549 		ns->nsid);
550 }
551 
552 bool nvmet_ns_revalidate(struct nvmet_ns *ns)
553 {
554 	loff_t oldsize = ns->size;
555 
556 	if (ns->bdev)
557 		nvmet_bdev_ns_revalidate(ns);
558 	else
559 		nvmet_file_ns_revalidate(ns);
560 
561 	return oldsize != ns->size;
562 }
563 
564 int nvmet_ns_enable(struct nvmet_ns *ns)
565 {
566 	struct nvmet_subsys *subsys = ns->subsys;
567 	struct nvmet_ctrl *ctrl;
568 	int ret;
569 
570 	mutex_lock(&subsys->lock);
571 	ret = 0;
572 
573 	if (nvmet_is_passthru_subsys(subsys)) {
574 		pr_info("cannot enable both passthru and regular namespaces for a single subsystem");
575 		goto out_unlock;
576 	}
577 
578 	if (ns->enabled)
579 		goto out_unlock;
580 
581 	ret = -EMFILE;
582 	if (subsys->nr_namespaces == NVMET_MAX_NAMESPACES)
583 		goto out_unlock;
584 
585 	ret = nvmet_bdev_ns_enable(ns);
586 	if (ret == -ENOTBLK)
587 		ret = nvmet_file_ns_enable(ns);
588 	if (ret)
589 		goto out_unlock;
590 
591 	ret = nvmet_p2pmem_ns_enable(ns);
592 	if (ret)
593 		goto out_dev_disable;
594 
595 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
596 		nvmet_p2pmem_ns_add_p2p(ctrl, ns);
597 
598 	ret = percpu_ref_init(&ns->ref, nvmet_destroy_namespace,
599 				0, GFP_KERNEL);
600 	if (ret)
601 		goto out_dev_put;
602 
603 	if (ns->nsid > subsys->max_nsid)
604 		subsys->max_nsid = ns->nsid;
605 
606 	ret = xa_insert(&subsys->namespaces, ns->nsid, ns, GFP_KERNEL);
607 	if (ret)
608 		goto out_restore_subsys_maxnsid;
609 
610 	subsys->nr_namespaces++;
611 
612 	nvmet_ns_changed(subsys, ns->nsid);
613 	ns->enabled = true;
614 	ret = 0;
615 out_unlock:
616 	mutex_unlock(&subsys->lock);
617 	return ret;
618 
619 out_restore_subsys_maxnsid:
620 	subsys->max_nsid = nvmet_max_nsid(subsys);
621 	percpu_ref_exit(&ns->ref);
622 out_dev_put:
623 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
624 		pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid));
625 out_dev_disable:
626 	nvmet_ns_dev_disable(ns);
627 	goto out_unlock;
628 }
629 
630 void nvmet_ns_disable(struct nvmet_ns *ns)
631 {
632 	struct nvmet_subsys *subsys = ns->subsys;
633 	struct nvmet_ctrl *ctrl;
634 
635 	mutex_lock(&subsys->lock);
636 	if (!ns->enabled)
637 		goto out_unlock;
638 
639 	ns->enabled = false;
640 	xa_erase(&ns->subsys->namespaces, ns->nsid);
641 	if (ns->nsid == subsys->max_nsid)
642 		subsys->max_nsid = nvmet_max_nsid(subsys);
643 
644 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
645 		pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid));
646 
647 	mutex_unlock(&subsys->lock);
648 
649 	/*
650 	 * Now that we removed the namespaces from the lookup list, we
651 	 * can kill the per_cpu ref and wait for any remaining references
652 	 * to be dropped, as well as a RCU grace period for anyone only
653 	 * using the namepace under rcu_read_lock().  Note that we can't
654 	 * use call_rcu here as we need to ensure the namespaces have
655 	 * been fully destroyed before unloading the module.
656 	 */
657 	percpu_ref_kill(&ns->ref);
658 	synchronize_rcu();
659 	wait_for_completion(&ns->disable_done);
660 	percpu_ref_exit(&ns->ref);
661 
662 	mutex_lock(&subsys->lock);
663 
664 	subsys->nr_namespaces--;
665 	nvmet_ns_changed(subsys, ns->nsid);
666 	nvmet_ns_dev_disable(ns);
667 out_unlock:
668 	mutex_unlock(&subsys->lock);
669 }
670 
671 void nvmet_ns_free(struct nvmet_ns *ns)
672 {
673 	nvmet_ns_disable(ns);
674 
675 	down_write(&nvmet_ana_sem);
676 	nvmet_ana_group_enabled[ns->anagrpid]--;
677 	up_write(&nvmet_ana_sem);
678 
679 	kfree(ns->device_path);
680 	kfree(ns);
681 }
682 
683 struct nvmet_ns *nvmet_ns_alloc(struct nvmet_subsys *subsys, u32 nsid)
684 {
685 	struct nvmet_ns *ns;
686 
687 	ns = kzalloc(sizeof(*ns), GFP_KERNEL);
688 	if (!ns)
689 		return NULL;
690 
691 	init_completion(&ns->disable_done);
692 
693 	ns->nsid = nsid;
694 	ns->subsys = subsys;
695 
696 	down_write(&nvmet_ana_sem);
697 	ns->anagrpid = NVMET_DEFAULT_ANA_GRPID;
698 	nvmet_ana_group_enabled[ns->anagrpid]++;
699 	up_write(&nvmet_ana_sem);
700 
701 	uuid_gen(&ns->uuid);
702 	ns->buffered_io = false;
703 	ns->csi = NVME_CSI_NVM;
704 
705 	return ns;
706 }
707 
708 static void nvmet_update_sq_head(struct nvmet_req *req)
709 {
710 	if (req->sq->size) {
711 		u32 old_sqhd, new_sqhd;
712 
713 		old_sqhd = READ_ONCE(req->sq->sqhd);
714 		do {
715 			new_sqhd = (old_sqhd + 1) % req->sq->size;
716 		} while (!try_cmpxchg(&req->sq->sqhd, &old_sqhd, new_sqhd));
717 	}
718 	req->cqe->sq_head = cpu_to_le16(req->sq->sqhd & 0x0000FFFF);
719 }
720 
721 static void nvmet_set_error(struct nvmet_req *req, u16 status)
722 {
723 	struct nvmet_ctrl *ctrl = req->sq->ctrl;
724 	struct nvme_error_slot *new_error_slot;
725 	unsigned long flags;
726 
727 	req->cqe->status = cpu_to_le16(status << 1);
728 
729 	if (!ctrl || req->error_loc == NVMET_NO_ERROR_LOC)
730 		return;
731 
732 	spin_lock_irqsave(&ctrl->error_lock, flags);
733 	ctrl->err_counter++;
734 	new_error_slot =
735 		&ctrl->slots[ctrl->err_counter % NVMET_ERROR_LOG_SLOTS];
736 
737 	new_error_slot->error_count = cpu_to_le64(ctrl->err_counter);
738 	new_error_slot->sqid = cpu_to_le16(req->sq->qid);
739 	new_error_slot->cmdid = cpu_to_le16(req->cmd->common.command_id);
740 	new_error_slot->status_field = cpu_to_le16(status << 1);
741 	new_error_slot->param_error_location = cpu_to_le16(req->error_loc);
742 	new_error_slot->lba = cpu_to_le64(req->error_slba);
743 	new_error_slot->nsid = req->cmd->common.nsid;
744 	spin_unlock_irqrestore(&ctrl->error_lock, flags);
745 
746 	/* set the more bit for this request */
747 	req->cqe->status |= cpu_to_le16(1 << 14);
748 }
749 
750 static void __nvmet_req_complete(struct nvmet_req *req, u16 status)
751 {
752 	struct nvmet_ns *ns = req->ns;
753 
754 	if (!req->sq->sqhd_disabled)
755 		nvmet_update_sq_head(req);
756 	req->cqe->sq_id = cpu_to_le16(req->sq->qid);
757 	req->cqe->command_id = req->cmd->common.command_id;
758 
759 	if (unlikely(status))
760 		nvmet_set_error(req, status);
761 
762 	trace_nvmet_req_complete(req);
763 
764 	req->ops->queue_response(req);
765 	if (ns)
766 		nvmet_put_namespace(ns);
767 }
768 
769 void nvmet_req_complete(struct nvmet_req *req, u16 status)
770 {
771 	struct nvmet_sq *sq = req->sq;
772 
773 	__nvmet_req_complete(req, status);
774 	percpu_ref_put(&sq->ref);
775 }
776 EXPORT_SYMBOL_GPL(nvmet_req_complete);
777 
778 void nvmet_cq_setup(struct nvmet_ctrl *ctrl, struct nvmet_cq *cq,
779 		u16 qid, u16 size)
780 {
781 	cq->qid = qid;
782 	cq->size = size;
783 }
784 
785 void nvmet_sq_setup(struct nvmet_ctrl *ctrl, struct nvmet_sq *sq,
786 		u16 qid, u16 size)
787 {
788 	sq->sqhd = 0;
789 	sq->qid = qid;
790 	sq->size = size;
791 
792 	ctrl->sqs[qid] = sq;
793 }
794 
795 static void nvmet_confirm_sq(struct percpu_ref *ref)
796 {
797 	struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);
798 
799 	complete(&sq->confirm_done);
800 }
801 
802 void nvmet_sq_destroy(struct nvmet_sq *sq)
803 {
804 	struct nvmet_ctrl *ctrl = sq->ctrl;
805 
806 	/*
807 	 * If this is the admin queue, complete all AERs so that our
808 	 * queue doesn't have outstanding requests on it.
809 	 */
810 	if (ctrl && ctrl->sqs && ctrl->sqs[0] == sq)
811 		nvmet_async_events_failall(ctrl);
812 	percpu_ref_kill_and_confirm(&sq->ref, nvmet_confirm_sq);
813 	wait_for_completion(&sq->confirm_done);
814 	wait_for_completion(&sq->free_done);
815 	percpu_ref_exit(&sq->ref);
816 	nvmet_auth_sq_free(sq);
817 
818 	if (ctrl) {
819 		/*
820 		 * The teardown flow may take some time, and the host may not
821 		 * send us keep-alive during this period, hence reset the
822 		 * traffic based keep-alive timer so we don't trigger a
823 		 * controller teardown as a result of a keep-alive expiration.
824 		 */
825 		ctrl->reset_tbkas = true;
826 		sq->ctrl->sqs[sq->qid] = NULL;
827 		nvmet_ctrl_put(ctrl);
828 		sq->ctrl = NULL; /* allows reusing the queue later */
829 	}
830 }
831 EXPORT_SYMBOL_GPL(nvmet_sq_destroy);
832 
833 static void nvmet_sq_free(struct percpu_ref *ref)
834 {
835 	struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);
836 
837 	complete(&sq->free_done);
838 }
839 
840 int nvmet_sq_init(struct nvmet_sq *sq)
841 {
842 	int ret;
843 
844 	ret = percpu_ref_init(&sq->ref, nvmet_sq_free, 0, GFP_KERNEL);
845 	if (ret) {
846 		pr_err("percpu_ref init failed!\n");
847 		return ret;
848 	}
849 	init_completion(&sq->free_done);
850 	init_completion(&sq->confirm_done);
851 	nvmet_auth_sq_init(sq);
852 
853 	return 0;
854 }
855 EXPORT_SYMBOL_GPL(nvmet_sq_init);
856 
857 static inline u16 nvmet_check_ana_state(struct nvmet_port *port,
858 		struct nvmet_ns *ns)
859 {
860 	enum nvme_ana_state state = port->ana_state[ns->anagrpid];
861 
862 	if (unlikely(state == NVME_ANA_INACCESSIBLE))
863 		return NVME_SC_ANA_INACCESSIBLE;
864 	if (unlikely(state == NVME_ANA_PERSISTENT_LOSS))
865 		return NVME_SC_ANA_PERSISTENT_LOSS;
866 	if (unlikely(state == NVME_ANA_CHANGE))
867 		return NVME_SC_ANA_TRANSITION;
868 	return 0;
869 }
870 
871 static inline u16 nvmet_io_cmd_check_access(struct nvmet_req *req)
872 {
873 	if (unlikely(req->ns->readonly)) {
874 		switch (req->cmd->common.opcode) {
875 		case nvme_cmd_read:
876 		case nvme_cmd_flush:
877 			break;
878 		default:
879 			return NVME_SC_NS_WRITE_PROTECTED;
880 		}
881 	}
882 
883 	return 0;
884 }
885 
886 static u16 nvmet_parse_io_cmd(struct nvmet_req *req)
887 {
888 	struct nvme_command *cmd = req->cmd;
889 	u16 ret;
890 
891 	if (nvme_is_fabrics(cmd))
892 		return nvmet_parse_fabrics_io_cmd(req);
893 
894 	if (unlikely(!nvmet_check_auth_status(req)))
895 		return NVME_SC_AUTH_REQUIRED | NVME_SC_DNR;
896 
897 	ret = nvmet_check_ctrl_status(req);
898 	if (unlikely(ret))
899 		return ret;
900 
901 	if (nvmet_is_passthru_req(req))
902 		return nvmet_parse_passthru_io_cmd(req);
903 
904 	ret = nvmet_req_find_ns(req);
905 	if (unlikely(ret))
906 		return ret;
907 
908 	ret = nvmet_check_ana_state(req->port, req->ns);
909 	if (unlikely(ret)) {
910 		req->error_loc = offsetof(struct nvme_common_command, nsid);
911 		return ret;
912 	}
913 	ret = nvmet_io_cmd_check_access(req);
914 	if (unlikely(ret)) {
915 		req->error_loc = offsetof(struct nvme_common_command, nsid);
916 		return ret;
917 	}
918 
919 	switch (req->ns->csi) {
920 	case NVME_CSI_NVM:
921 		if (req->ns->file)
922 			return nvmet_file_parse_io_cmd(req);
923 		return nvmet_bdev_parse_io_cmd(req);
924 	case NVME_CSI_ZNS:
925 		if (IS_ENABLED(CONFIG_BLK_DEV_ZONED))
926 			return nvmet_bdev_zns_parse_io_cmd(req);
927 		return NVME_SC_INVALID_IO_CMD_SET;
928 	default:
929 		return NVME_SC_INVALID_IO_CMD_SET;
930 	}
931 }
932 
933 bool nvmet_req_init(struct nvmet_req *req, struct nvmet_cq *cq,
934 		struct nvmet_sq *sq, const struct nvmet_fabrics_ops *ops)
935 {
936 	u8 flags = req->cmd->common.flags;
937 	u16 status;
938 
939 	req->cq = cq;
940 	req->sq = sq;
941 	req->ops = ops;
942 	req->sg = NULL;
943 	req->metadata_sg = NULL;
944 	req->sg_cnt = 0;
945 	req->metadata_sg_cnt = 0;
946 	req->transfer_len = 0;
947 	req->metadata_len = 0;
948 	req->cqe->status = 0;
949 	req->cqe->sq_head = 0;
950 	req->ns = NULL;
951 	req->error_loc = NVMET_NO_ERROR_LOC;
952 	req->error_slba = 0;
953 
954 	/* no support for fused commands yet */
955 	if (unlikely(flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND))) {
956 		req->error_loc = offsetof(struct nvme_common_command, flags);
957 		status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
958 		goto fail;
959 	}
960 
961 	/*
962 	 * For fabrics, PSDT field shall describe metadata pointer (MPTR) that
963 	 * contains an address of a single contiguous physical buffer that is
964 	 * byte aligned.
965 	 */
966 	if (unlikely((flags & NVME_CMD_SGL_ALL) != NVME_CMD_SGL_METABUF)) {
967 		req->error_loc = offsetof(struct nvme_common_command, flags);
968 		status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
969 		goto fail;
970 	}
971 
972 	if (unlikely(!req->sq->ctrl))
973 		/* will return an error for any non-connect command: */
974 		status = nvmet_parse_connect_cmd(req);
975 	else if (likely(req->sq->qid != 0))
976 		status = nvmet_parse_io_cmd(req);
977 	else
978 		status = nvmet_parse_admin_cmd(req);
979 
980 	if (status)
981 		goto fail;
982 
983 	trace_nvmet_req_init(req, req->cmd);
984 
985 	if (unlikely(!percpu_ref_tryget_live(&sq->ref))) {
986 		status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
987 		goto fail;
988 	}
989 
990 	if (sq->ctrl)
991 		sq->ctrl->reset_tbkas = true;
992 
993 	return true;
994 
995 fail:
996 	__nvmet_req_complete(req, status);
997 	return false;
998 }
999 EXPORT_SYMBOL_GPL(nvmet_req_init);
1000 
1001 void nvmet_req_uninit(struct nvmet_req *req)
1002 {
1003 	percpu_ref_put(&req->sq->ref);
1004 	if (req->ns)
1005 		nvmet_put_namespace(req->ns);
1006 }
1007 EXPORT_SYMBOL_GPL(nvmet_req_uninit);
1008 
1009 bool nvmet_check_transfer_len(struct nvmet_req *req, size_t len)
1010 {
1011 	if (unlikely(len != req->transfer_len)) {
1012 		req->error_loc = offsetof(struct nvme_common_command, dptr);
1013 		nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR);
1014 		return false;
1015 	}
1016 
1017 	return true;
1018 }
1019 EXPORT_SYMBOL_GPL(nvmet_check_transfer_len);
1020 
1021 bool nvmet_check_data_len_lte(struct nvmet_req *req, size_t data_len)
1022 {
1023 	if (unlikely(data_len > req->transfer_len)) {
1024 		req->error_loc = offsetof(struct nvme_common_command, dptr);
1025 		nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR);
1026 		return false;
1027 	}
1028 
1029 	return true;
1030 }
1031 
1032 static unsigned int nvmet_data_transfer_len(struct nvmet_req *req)
1033 {
1034 	return req->transfer_len - req->metadata_len;
1035 }
1036 
1037 static int nvmet_req_alloc_p2pmem_sgls(struct pci_dev *p2p_dev,
1038 		struct nvmet_req *req)
1039 {
1040 	req->sg = pci_p2pmem_alloc_sgl(p2p_dev, &req->sg_cnt,
1041 			nvmet_data_transfer_len(req));
1042 	if (!req->sg)
1043 		goto out_err;
1044 
1045 	if (req->metadata_len) {
1046 		req->metadata_sg = pci_p2pmem_alloc_sgl(p2p_dev,
1047 				&req->metadata_sg_cnt, req->metadata_len);
1048 		if (!req->metadata_sg)
1049 			goto out_free_sg;
1050 	}
1051 
1052 	req->p2p_dev = p2p_dev;
1053 
1054 	return 0;
1055 out_free_sg:
1056 	pci_p2pmem_free_sgl(req->p2p_dev, req->sg);
1057 out_err:
1058 	return -ENOMEM;
1059 }
1060 
1061 static struct pci_dev *nvmet_req_find_p2p_dev(struct nvmet_req *req)
1062 {
1063 	if (!IS_ENABLED(CONFIG_PCI_P2PDMA) ||
1064 	    !req->sq->ctrl || !req->sq->qid || !req->ns)
1065 		return NULL;
1066 	return radix_tree_lookup(&req->sq->ctrl->p2p_ns_map, req->ns->nsid);
1067 }
1068 
1069 int nvmet_req_alloc_sgls(struct nvmet_req *req)
1070 {
1071 	struct pci_dev *p2p_dev = nvmet_req_find_p2p_dev(req);
1072 
1073 	if (p2p_dev && !nvmet_req_alloc_p2pmem_sgls(p2p_dev, req))
1074 		return 0;
1075 
1076 	req->sg = sgl_alloc(nvmet_data_transfer_len(req), GFP_KERNEL,
1077 			    &req->sg_cnt);
1078 	if (unlikely(!req->sg))
1079 		goto out;
1080 
1081 	if (req->metadata_len) {
1082 		req->metadata_sg = sgl_alloc(req->metadata_len, GFP_KERNEL,
1083 					     &req->metadata_sg_cnt);
1084 		if (unlikely(!req->metadata_sg))
1085 			goto out_free;
1086 	}
1087 
1088 	return 0;
1089 out_free:
1090 	sgl_free(req->sg);
1091 out:
1092 	return -ENOMEM;
1093 }
1094 EXPORT_SYMBOL_GPL(nvmet_req_alloc_sgls);
1095 
1096 void nvmet_req_free_sgls(struct nvmet_req *req)
1097 {
1098 	if (req->p2p_dev) {
1099 		pci_p2pmem_free_sgl(req->p2p_dev, req->sg);
1100 		if (req->metadata_sg)
1101 			pci_p2pmem_free_sgl(req->p2p_dev, req->metadata_sg);
1102 		req->p2p_dev = NULL;
1103 	} else {
1104 		sgl_free(req->sg);
1105 		if (req->metadata_sg)
1106 			sgl_free(req->metadata_sg);
1107 	}
1108 
1109 	req->sg = NULL;
1110 	req->metadata_sg = NULL;
1111 	req->sg_cnt = 0;
1112 	req->metadata_sg_cnt = 0;
1113 }
1114 EXPORT_SYMBOL_GPL(nvmet_req_free_sgls);
1115 
1116 static inline bool nvmet_cc_en(u32 cc)
1117 {
1118 	return (cc >> NVME_CC_EN_SHIFT) & 0x1;
1119 }
1120 
1121 static inline u8 nvmet_cc_css(u32 cc)
1122 {
1123 	return (cc >> NVME_CC_CSS_SHIFT) & 0x7;
1124 }
1125 
1126 static inline u8 nvmet_cc_mps(u32 cc)
1127 {
1128 	return (cc >> NVME_CC_MPS_SHIFT) & 0xf;
1129 }
1130 
1131 static inline u8 nvmet_cc_ams(u32 cc)
1132 {
1133 	return (cc >> NVME_CC_AMS_SHIFT) & 0x7;
1134 }
1135 
1136 static inline u8 nvmet_cc_shn(u32 cc)
1137 {
1138 	return (cc >> NVME_CC_SHN_SHIFT) & 0x3;
1139 }
1140 
1141 static inline u8 nvmet_cc_iosqes(u32 cc)
1142 {
1143 	return (cc >> NVME_CC_IOSQES_SHIFT) & 0xf;
1144 }
1145 
1146 static inline u8 nvmet_cc_iocqes(u32 cc)
1147 {
1148 	return (cc >> NVME_CC_IOCQES_SHIFT) & 0xf;
1149 }
1150 
1151 static inline bool nvmet_css_supported(u8 cc_css)
1152 {
1153 	switch (cc_css << NVME_CC_CSS_SHIFT) {
1154 	case NVME_CC_CSS_NVM:
1155 	case NVME_CC_CSS_CSI:
1156 		return true;
1157 	default:
1158 		return false;
1159 	}
1160 }
1161 
1162 static void nvmet_start_ctrl(struct nvmet_ctrl *ctrl)
1163 {
1164 	lockdep_assert_held(&ctrl->lock);
1165 
1166 	/*
1167 	 * Only I/O controllers should verify iosqes,iocqes.
1168 	 * Strictly speaking, the spec says a discovery controller
1169 	 * should verify iosqes,iocqes are zeroed, however that
1170 	 * would break backwards compatibility, so don't enforce it.
1171 	 */
1172 	if (!nvmet_is_disc_subsys(ctrl->subsys) &&
1173 	    (nvmet_cc_iosqes(ctrl->cc) != NVME_NVM_IOSQES ||
1174 	     nvmet_cc_iocqes(ctrl->cc) != NVME_NVM_IOCQES)) {
1175 		ctrl->csts = NVME_CSTS_CFS;
1176 		return;
1177 	}
1178 
1179 	if (nvmet_cc_mps(ctrl->cc) != 0 ||
1180 	    nvmet_cc_ams(ctrl->cc) != 0 ||
1181 	    !nvmet_css_supported(nvmet_cc_css(ctrl->cc))) {
1182 		ctrl->csts = NVME_CSTS_CFS;
1183 		return;
1184 	}
1185 
1186 	ctrl->csts = NVME_CSTS_RDY;
1187 
1188 	/*
1189 	 * Controllers that are not yet enabled should not really enforce the
1190 	 * keep alive timeout, but we still want to track a timeout and cleanup
1191 	 * in case a host died before it enabled the controller.  Hence, simply
1192 	 * reset the keep alive timer when the controller is enabled.
1193 	 */
1194 	if (ctrl->kato)
1195 		mod_delayed_work(nvmet_wq, &ctrl->ka_work, ctrl->kato * HZ);
1196 }
1197 
1198 static void nvmet_clear_ctrl(struct nvmet_ctrl *ctrl)
1199 {
1200 	lockdep_assert_held(&ctrl->lock);
1201 
1202 	/* XXX: tear down queues? */
1203 	ctrl->csts &= ~NVME_CSTS_RDY;
1204 	ctrl->cc = 0;
1205 }
1206 
1207 void nvmet_update_cc(struct nvmet_ctrl *ctrl, u32 new)
1208 {
1209 	u32 old;
1210 
1211 	mutex_lock(&ctrl->lock);
1212 	old = ctrl->cc;
1213 	ctrl->cc = new;
1214 
1215 	if (nvmet_cc_en(new) && !nvmet_cc_en(old))
1216 		nvmet_start_ctrl(ctrl);
1217 	if (!nvmet_cc_en(new) && nvmet_cc_en(old))
1218 		nvmet_clear_ctrl(ctrl);
1219 	if (nvmet_cc_shn(new) && !nvmet_cc_shn(old)) {
1220 		nvmet_clear_ctrl(ctrl);
1221 		ctrl->csts |= NVME_CSTS_SHST_CMPLT;
1222 	}
1223 	if (!nvmet_cc_shn(new) && nvmet_cc_shn(old))
1224 		ctrl->csts &= ~NVME_CSTS_SHST_CMPLT;
1225 	mutex_unlock(&ctrl->lock);
1226 }
1227 
1228 static void nvmet_init_cap(struct nvmet_ctrl *ctrl)
1229 {
1230 	/* command sets supported: NVMe command set: */
1231 	ctrl->cap = (1ULL << 37);
1232 	/* Controller supports one or more I/O Command Sets */
1233 	ctrl->cap |= (1ULL << 43);
1234 	/* CC.EN timeout in 500msec units: */
1235 	ctrl->cap |= (15ULL << 24);
1236 	/* maximum queue entries supported: */
1237 	if (ctrl->ops->get_max_queue_size)
1238 		ctrl->cap |= min_t(u16, ctrl->ops->get_max_queue_size(ctrl),
1239 				   ctrl->port->max_queue_size) - 1;
1240 	else
1241 		ctrl->cap |= ctrl->port->max_queue_size - 1;
1242 
1243 	if (nvmet_is_passthru_subsys(ctrl->subsys))
1244 		nvmet_passthrough_override_cap(ctrl);
1245 }
1246 
1247 struct nvmet_ctrl *nvmet_ctrl_find_get(const char *subsysnqn,
1248 				       const char *hostnqn, u16 cntlid,
1249 				       struct nvmet_req *req)
1250 {
1251 	struct nvmet_ctrl *ctrl = NULL;
1252 	struct nvmet_subsys *subsys;
1253 
1254 	subsys = nvmet_find_get_subsys(req->port, subsysnqn);
1255 	if (!subsys) {
1256 		pr_warn("connect request for invalid subsystem %s!\n",
1257 			subsysnqn);
1258 		req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn);
1259 		goto out;
1260 	}
1261 
1262 	mutex_lock(&subsys->lock);
1263 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
1264 		if (ctrl->cntlid == cntlid) {
1265 			if (strncmp(hostnqn, ctrl->hostnqn, NVMF_NQN_SIZE)) {
1266 				pr_warn("hostnqn mismatch.\n");
1267 				continue;
1268 			}
1269 			if (!kref_get_unless_zero(&ctrl->ref))
1270 				continue;
1271 
1272 			/* ctrl found */
1273 			goto found;
1274 		}
1275 	}
1276 
1277 	ctrl = NULL; /* ctrl not found */
1278 	pr_warn("could not find controller %d for subsys %s / host %s\n",
1279 		cntlid, subsysnqn, hostnqn);
1280 	req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(cntlid);
1281 
1282 found:
1283 	mutex_unlock(&subsys->lock);
1284 	nvmet_subsys_put(subsys);
1285 out:
1286 	return ctrl;
1287 }
1288 
1289 u16 nvmet_check_ctrl_status(struct nvmet_req *req)
1290 {
1291 	if (unlikely(!(req->sq->ctrl->cc & NVME_CC_ENABLE))) {
1292 		pr_err("got cmd %d while CC.EN == 0 on qid = %d\n",
1293 		       req->cmd->common.opcode, req->sq->qid);
1294 		return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR;
1295 	}
1296 
1297 	if (unlikely(!(req->sq->ctrl->csts & NVME_CSTS_RDY))) {
1298 		pr_err("got cmd %d while CSTS.RDY == 0 on qid = %d\n",
1299 		       req->cmd->common.opcode, req->sq->qid);
1300 		return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR;
1301 	}
1302 
1303 	if (unlikely(!nvmet_check_auth_status(req))) {
1304 		pr_warn("qid %d not authenticated\n", req->sq->qid);
1305 		return NVME_SC_AUTH_REQUIRED | NVME_SC_DNR;
1306 	}
1307 	return 0;
1308 }
1309 
1310 bool nvmet_host_allowed(struct nvmet_subsys *subsys, const char *hostnqn)
1311 {
1312 	struct nvmet_host_link *p;
1313 
1314 	lockdep_assert_held(&nvmet_config_sem);
1315 
1316 	if (subsys->allow_any_host)
1317 		return true;
1318 
1319 	if (nvmet_is_disc_subsys(subsys)) /* allow all access to disc subsys */
1320 		return true;
1321 
1322 	list_for_each_entry(p, &subsys->hosts, entry) {
1323 		if (!strcmp(nvmet_host_name(p->host), hostnqn))
1324 			return true;
1325 	}
1326 
1327 	return false;
1328 }
1329 
1330 /*
1331  * Note: ctrl->subsys->lock should be held when calling this function
1332  */
1333 static void nvmet_setup_p2p_ns_map(struct nvmet_ctrl *ctrl,
1334 		struct nvmet_req *req)
1335 {
1336 	struct nvmet_ns *ns;
1337 	unsigned long idx;
1338 
1339 	if (!req->p2p_client)
1340 		return;
1341 
1342 	ctrl->p2p_client = get_device(req->p2p_client);
1343 
1344 	xa_for_each(&ctrl->subsys->namespaces, idx, ns)
1345 		nvmet_p2pmem_ns_add_p2p(ctrl, ns);
1346 }
1347 
1348 /*
1349  * Note: ctrl->subsys->lock should be held when calling this function
1350  */
1351 static void nvmet_release_p2p_ns_map(struct nvmet_ctrl *ctrl)
1352 {
1353 	struct radix_tree_iter iter;
1354 	void __rcu **slot;
1355 
1356 	radix_tree_for_each_slot(slot, &ctrl->p2p_ns_map, &iter, 0)
1357 		pci_dev_put(radix_tree_deref_slot(slot));
1358 
1359 	put_device(ctrl->p2p_client);
1360 }
1361 
1362 static void nvmet_fatal_error_handler(struct work_struct *work)
1363 {
1364 	struct nvmet_ctrl *ctrl =
1365 			container_of(work, struct nvmet_ctrl, fatal_err_work);
1366 
1367 	pr_err("ctrl %d fatal error occurred!\n", ctrl->cntlid);
1368 	ctrl->ops->delete_ctrl(ctrl);
1369 }
1370 
1371 u16 nvmet_alloc_ctrl(const char *subsysnqn, const char *hostnqn,
1372 		struct nvmet_req *req, u32 kato, struct nvmet_ctrl **ctrlp)
1373 {
1374 	struct nvmet_subsys *subsys;
1375 	struct nvmet_ctrl *ctrl;
1376 	int ret;
1377 	u16 status;
1378 
1379 	status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
1380 	subsys = nvmet_find_get_subsys(req->port, subsysnqn);
1381 	if (!subsys) {
1382 		pr_warn("connect request for invalid subsystem %s!\n",
1383 			subsysnqn);
1384 		req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn);
1385 		req->error_loc = offsetof(struct nvme_common_command, dptr);
1386 		goto out;
1387 	}
1388 
1389 	down_read(&nvmet_config_sem);
1390 	if (!nvmet_host_allowed(subsys, hostnqn)) {
1391 		pr_info("connect by host %s for subsystem %s not allowed\n",
1392 			hostnqn, subsysnqn);
1393 		req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(hostnqn);
1394 		up_read(&nvmet_config_sem);
1395 		status = NVME_SC_CONNECT_INVALID_HOST | NVME_SC_DNR;
1396 		req->error_loc = offsetof(struct nvme_common_command, dptr);
1397 		goto out_put_subsystem;
1398 	}
1399 	up_read(&nvmet_config_sem);
1400 
1401 	status = NVME_SC_INTERNAL;
1402 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1403 	if (!ctrl)
1404 		goto out_put_subsystem;
1405 	mutex_init(&ctrl->lock);
1406 
1407 	ctrl->port = req->port;
1408 	ctrl->ops = req->ops;
1409 
1410 #ifdef CONFIG_NVME_TARGET_PASSTHRU
1411 	/* By default, set loop targets to clear IDS by default */
1412 	if (ctrl->port->disc_addr.trtype == NVMF_TRTYPE_LOOP)
1413 		subsys->clear_ids = 1;
1414 #endif
1415 
1416 	INIT_WORK(&ctrl->async_event_work, nvmet_async_event_work);
1417 	INIT_LIST_HEAD(&ctrl->async_events);
1418 	INIT_RADIX_TREE(&ctrl->p2p_ns_map, GFP_KERNEL);
1419 	INIT_WORK(&ctrl->fatal_err_work, nvmet_fatal_error_handler);
1420 	INIT_DELAYED_WORK(&ctrl->ka_work, nvmet_keep_alive_timer);
1421 
1422 	memcpy(ctrl->subsysnqn, subsysnqn, NVMF_NQN_SIZE);
1423 	memcpy(ctrl->hostnqn, hostnqn, NVMF_NQN_SIZE);
1424 
1425 	kref_init(&ctrl->ref);
1426 	ctrl->subsys = subsys;
1427 	ctrl->pi_support = ctrl->port->pi_enable && ctrl->subsys->pi_support;
1428 	nvmet_init_cap(ctrl);
1429 	WRITE_ONCE(ctrl->aen_enabled, NVMET_AEN_CFG_OPTIONAL);
1430 
1431 	ctrl->changed_ns_list = kmalloc_array(NVME_MAX_CHANGED_NAMESPACES,
1432 			sizeof(__le32), GFP_KERNEL);
1433 	if (!ctrl->changed_ns_list)
1434 		goto out_free_ctrl;
1435 
1436 	ctrl->sqs = kcalloc(subsys->max_qid + 1,
1437 			sizeof(struct nvmet_sq *),
1438 			GFP_KERNEL);
1439 	if (!ctrl->sqs)
1440 		goto out_free_changed_ns_list;
1441 
1442 	ret = ida_alloc_range(&cntlid_ida,
1443 			     subsys->cntlid_min, subsys->cntlid_max,
1444 			     GFP_KERNEL);
1445 	if (ret < 0) {
1446 		status = NVME_SC_CONNECT_CTRL_BUSY | NVME_SC_DNR;
1447 		goto out_free_sqs;
1448 	}
1449 	ctrl->cntlid = ret;
1450 
1451 	/*
1452 	 * Discovery controllers may use some arbitrary high value
1453 	 * in order to cleanup stale discovery sessions
1454 	 */
1455 	if (nvmet_is_disc_subsys(ctrl->subsys) && !kato)
1456 		kato = NVMET_DISC_KATO_MS;
1457 
1458 	/* keep-alive timeout in seconds */
1459 	ctrl->kato = DIV_ROUND_UP(kato, 1000);
1460 
1461 	ctrl->err_counter = 0;
1462 	spin_lock_init(&ctrl->error_lock);
1463 
1464 	nvmet_start_keep_alive_timer(ctrl);
1465 
1466 	mutex_lock(&subsys->lock);
1467 	list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
1468 	nvmet_setup_p2p_ns_map(ctrl, req);
1469 	mutex_unlock(&subsys->lock);
1470 
1471 	*ctrlp = ctrl;
1472 	return 0;
1473 
1474 out_free_sqs:
1475 	kfree(ctrl->sqs);
1476 out_free_changed_ns_list:
1477 	kfree(ctrl->changed_ns_list);
1478 out_free_ctrl:
1479 	kfree(ctrl);
1480 out_put_subsystem:
1481 	nvmet_subsys_put(subsys);
1482 out:
1483 	return status;
1484 }
1485 
1486 static void nvmet_ctrl_free(struct kref *ref)
1487 {
1488 	struct nvmet_ctrl *ctrl = container_of(ref, struct nvmet_ctrl, ref);
1489 	struct nvmet_subsys *subsys = ctrl->subsys;
1490 
1491 	mutex_lock(&subsys->lock);
1492 	nvmet_release_p2p_ns_map(ctrl);
1493 	list_del(&ctrl->subsys_entry);
1494 	mutex_unlock(&subsys->lock);
1495 
1496 	nvmet_stop_keep_alive_timer(ctrl);
1497 
1498 	flush_work(&ctrl->async_event_work);
1499 	cancel_work_sync(&ctrl->fatal_err_work);
1500 
1501 	nvmet_destroy_auth(ctrl);
1502 
1503 	ida_free(&cntlid_ida, ctrl->cntlid);
1504 
1505 	nvmet_async_events_free(ctrl);
1506 	kfree(ctrl->sqs);
1507 	kfree(ctrl->changed_ns_list);
1508 	kfree(ctrl);
1509 
1510 	nvmet_subsys_put(subsys);
1511 }
1512 
1513 void nvmet_ctrl_put(struct nvmet_ctrl *ctrl)
1514 {
1515 	kref_put(&ctrl->ref, nvmet_ctrl_free);
1516 }
1517 
1518 void nvmet_ctrl_fatal_error(struct nvmet_ctrl *ctrl)
1519 {
1520 	mutex_lock(&ctrl->lock);
1521 	if (!(ctrl->csts & NVME_CSTS_CFS)) {
1522 		ctrl->csts |= NVME_CSTS_CFS;
1523 		queue_work(nvmet_wq, &ctrl->fatal_err_work);
1524 	}
1525 	mutex_unlock(&ctrl->lock);
1526 }
1527 EXPORT_SYMBOL_GPL(nvmet_ctrl_fatal_error);
1528 
1529 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
1530 		const char *subsysnqn)
1531 {
1532 	struct nvmet_subsys_link *p;
1533 
1534 	if (!port)
1535 		return NULL;
1536 
1537 	if (!strcmp(NVME_DISC_SUBSYS_NAME, subsysnqn)) {
1538 		if (!kref_get_unless_zero(&nvmet_disc_subsys->ref))
1539 			return NULL;
1540 		return nvmet_disc_subsys;
1541 	}
1542 
1543 	down_read(&nvmet_config_sem);
1544 	if (!strncmp(nvmet_disc_subsys->subsysnqn, subsysnqn,
1545 				NVMF_NQN_SIZE)) {
1546 		if (kref_get_unless_zero(&nvmet_disc_subsys->ref)) {
1547 			up_read(&nvmet_config_sem);
1548 			return nvmet_disc_subsys;
1549 		}
1550 	}
1551 	list_for_each_entry(p, &port->subsystems, entry) {
1552 		if (!strncmp(p->subsys->subsysnqn, subsysnqn,
1553 				NVMF_NQN_SIZE)) {
1554 			if (!kref_get_unless_zero(&p->subsys->ref))
1555 				break;
1556 			up_read(&nvmet_config_sem);
1557 			return p->subsys;
1558 		}
1559 	}
1560 	up_read(&nvmet_config_sem);
1561 	return NULL;
1562 }
1563 
1564 struct nvmet_subsys *nvmet_subsys_alloc(const char *subsysnqn,
1565 		enum nvme_subsys_type type)
1566 {
1567 	struct nvmet_subsys *subsys;
1568 	char serial[NVMET_SN_MAX_SIZE / 2];
1569 	int ret;
1570 
1571 	subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
1572 	if (!subsys)
1573 		return ERR_PTR(-ENOMEM);
1574 
1575 	subsys->ver = NVMET_DEFAULT_VS;
1576 	/* generate a random serial number as our controllers are ephemeral: */
1577 	get_random_bytes(&serial, sizeof(serial));
1578 	bin2hex(subsys->serial, &serial, sizeof(serial));
1579 
1580 	subsys->model_number = kstrdup(NVMET_DEFAULT_CTRL_MODEL, GFP_KERNEL);
1581 	if (!subsys->model_number) {
1582 		ret = -ENOMEM;
1583 		goto free_subsys;
1584 	}
1585 
1586 	subsys->ieee_oui = 0;
1587 
1588 	subsys->firmware_rev = kstrndup(UTS_RELEASE, NVMET_FR_MAX_SIZE, GFP_KERNEL);
1589 	if (!subsys->firmware_rev) {
1590 		ret = -ENOMEM;
1591 		goto free_mn;
1592 	}
1593 
1594 	switch (type) {
1595 	case NVME_NQN_NVME:
1596 		subsys->max_qid = NVMET_NR_QUEUES;
1597 		break;
1598 	case NVME_NQN_DISC:
1599 	case NVME_NQN_CURR:
1600 		subsys->max_qid = 0;
1601 		break;
1602 	default:
1603 		pr_err("%s: Unknown Subsystem type - %d\n", __func__, type);
1604 		ret = -EINVAL;
1605 		goto free_fr;
1606 	}
1607 	subsys->type = type;
1608 	subsys->subsysnqn = kstrndup(subsysnqn, NVMF_NQN_SIZE,
1609 			GFP_KERNEL);
1610 	if (!subsys->subsysnqn) {
1611 		ret = -ENOMEM;
1612 		goto free_fr;
1613 	}
1614 	subsys->cntlid_min = NVME_CNTLID_MIN;
1615 	subsys->cntlid_max = NVME_CNTLID_MAX;
1616 	kref_init(&subsys->ref);
1617 
1618 	mutex_init(&subsys->lock);
1619 	xa_init(&subsys->namespaces);
1620 	INIT_LIST_HEAD(&subsys->ctrls);
1621 	INIT_LIST_HEAD(&subsys->hosts);
1622 
1623 	return subsys;
1624 
1625 free_fr:
1626 	kfree(subsys->firmware_rev);
1627 free_mn:
1628 	kfree(subsys->model_number);
1629 free_subsys:
1630 	kfree(subsys);
1631 	return ERR_PTR(ret);
1632 }
1633 
1634 static void nvmet_subsys_free(struct kref *ref)
1635 {
1636 	struct nvmet_subsys *subsys =
1637 		container_of(ref, struct nvmet_subsys, ref);
1638 
1639 	WARN_ON_ONCE(!xa_empty(&subsys->namespaces));
1640 
1641 	xa_destroy(&subsys->namespaces);
1642 	nvmet_passthru_subsys_free(subsys);
1643 
1644 	kfree(subsys->subsysnqn);
1645 	kfree(subsys->model_number);
1646 	kfree(subsys->firmware_rev);
1647 	kfree(subsys);
1648 }
1649 
1650 void nvmet_subsys_del_ctrls(struct nvmet_subsys *subsys)
1651 {
1652 	struct nvmet_ctrl *ctrl;
1653 
1654 	mutex_lock(&subsys->lock);
1655 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
1656 		ctrl->ops->delete_ctrl(ctrl);
1657 	mutex_unlock(&subsys->lock);
1658 }
1659 
1660 void nvmet_subsys_put(struct nvmet_subsys *subsys)
1661 {
1662 	kref_put(&subsys->ref, nvmet_subsys_free);
1663 }
1664 
1665 static int __init nvmet_init(void)
1666 {
1667 	int error = -ENOMEM;
1668 
1669 	nvmet_ana_group_enabled[NVMET_DEFAULT_ANA_GRPID] = 1;
1670 
1671 	nvmet_bvec_cache = kmem_cache_create("nvmet-bvec",
1672 			NVMET_MAX_MPOOL_BVEC * sizeof(struct bio_vec), 0,
1673 			SLAB_HWCACHE_ALIGN, NULL);
1674 	if (!nvmet_bvec_cache)
1675 		return -ENOMEM;
1676 
1677 	zbd_wq = alloc_workqueue("nvmet-zbd-wq", WQ_MEM_RECLAIM, 0);
1678 	if (!zbd_wq)
1679 		goto out_destroy_bvec_cache;
1680 
1681 	buffered_io_wq = alloc_workqueue("nvmet-buffered-io-wq",
1682 			WQ_MEM_RECLAIM, 0);
1683 	if (!buffered_io_wq)
1684 		goto out_free_zbd_work_queue;
1685 
1686 	nvmet_wq = alloc_workqueue("nvmet-wq", WQ_MEM_RECLAIM, 0);
1687 	if (!nvmet_wq)
1688 		goto out_free_buffered_work_queue;
1689 
1690 	error = nvmet_init_discovery();
1691 	if (error)
1692 		goto out_free_nvmet_work_queue;
1693 
1694 	error = nvmet_init_configfs();
1695 	if (error)
1696 		goto out_exit_discovery;
1697 	return 0;
1698 
1699 out_exit_discovery:
1700 	nvmet_exit_discovery();
1701 out_free_nvmet_work_queue:
1702 	destroy_workqueue(nvmet_wq);
1703 out_free_buffered_work_queue:
1704 	destroy_workqueue(buffered_io_wq);
1705 out_free_zbd_work_queue:
1706 	destroy_workqueue(zbd_wq);
1707 out_destroy_bvec_cache:
1708 	kmem_cache_destroy(nvmet_bvec_cache);
1709 	return error;
1710 }
1711 
1712 static void __exit nvmet_exit(void)
1713 {
1714 	nvmet_exit_configfs();
1715 	nvmet_exit_discovery();
1716 	ida_destroy(&cntlid_ida);
1717 	destroy_workqueue(nvmet_wq);
1718 	destroy_workqueue(buffered_io_wq);
1719 	destroy_workqueue(zbd_wq);
1720 	kmem_cache_destroy(nvmet_bvec_cache);
1721 
1722 	BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_entry) != 1024);
1723 	BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_hdr) != 1024);
1724 }
1725 
1726 module_init(nvmet_init);
1727 module_exit(nvmet_exit);
1728 
1729 MODULE_DESCRIPTION("NVMe target core framework");
1730 MODULE_LICENSE("GPL v2");
1731