1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVMe admin command implementation. 4 * Copyright (c) 2015-2016 HGST, a Western Digital Company. 5 */ 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 #include <linux/module.h> 8 #include <linux/rculist.h> 9 #include <linux/part_stat.h> 10 11 #include <generated/utsrelease.h> 12 #include <asm/unaligned.h> 13 #include "nvmet.h" 14 15 u32 nvmet_get_log_page_len(struct nvme_command *cmd) 16 { 17 u32 len = le16_to_cpu(cmd->get_log_page.numdu); 18 19 len <<= 16; 20 len += le16_to_cpu(cmd->get_log_page.numdl); 21 /* NUMD is a 0's based value */ 22 len += 1; 23 len *= sizeof(u32); 24 25 return len; 26 } 27 28 static u32 nvmet_feat_data_len(struct nvmet_req *req, u32 cdw10) 29 { 30 switch (cdw10 & 0xff) { 31 case NVME_FEAT_HOST_ID: 32 return sizeof(req->sq->ctrl->hostid); 33 default: 34 return 0; 35 } 36 } 37 38 u64 nvmet_get_log_page_offset(struct nvme_command *cmd) 39 { 40 return le64_to_cpu(cmd->get_log_page.lpo); 41 } 42 43 static void nvmet_execute_get_log_page_noop(struct nvmet_req *req) 44 { 45 nvmet_req_complete(req, nvmet_zero_sgl(req, 0, req->transfer_len)); 46 } 47 48 static void nvmet_execute_get_log_page_error(struct nvmet_req *req) 49 { 50 struct nvmet_ctrl *ctrl = req->sq->ctrl; 51 unsigned long flags; 52 off_t offset = 0; 53 u64 slot; 54 u64 i; 55 56 spin_lock_irqsave(&ctrl->error_lock, flags); 57 slot = ctrl->err_counter % NVMET_ERROR_LOG_SLOTS; 58 59 for (i = 0; i < NVMET_ERROR_LOG_SLOTS; i++) { 60 if (nvmet_copy_to_sgl(req, offset, &ctrl->slots[slot], 61 sizeof(struct nvme_error_slot))) 62 break; 63 64 if (slot == 0) 65 slot = NVMET_ERROR_LOG_SLOTS - 1; 66 else 67 slot--; 68 offset += sizeof(struct nvme_error_slot); 69 } 70 spin_unlock_irqrestore(&ctrl->error_lock, flags); 71 nvmet_req_complete(req, 0); 72 } 73 74 static u16 nvmet_get_smart_log_nsid(struct nvmet_req *req, 75 struct nvme_smart_log *slog) 76 { 77 u64 host_reads, host_writes, data_units_read, data_units_written; 78 u16 status; 79 80 status = nvmet_req_find_ns(req); 81 if (status) 82 return status; 83 84 /* we don't have the right data for file backed ns */ 85 if (!req->ns->bdev) 86 return NVME_SC_SUCCESS; 87 88 host_reads = part_stat_read(req->ns->bdev, ios[READ]); 89 data_units_read = 90 DIV_ROUND_UP(part_stat_read(req->ns->bdev, sectors[READ]), 1000); 91 host_writes = part_stat_read(req->ns->bdev, ios[WRITE]); 92 data_units_written = 93 DIV_ROUND_UP(part_stat_read(req->ns->bdev, sectors[WRITE]), 1000); 94 95 put_unaligned_le64(host_reads, &slog->host_reads[0]); 96 put_unaligned_le64(data_units_read, &slog->data_units_read[0]); 97 put_unaligned_le64(host_writes, &slog->host_writes[0]); 98 put_unaligned_le64(data_units_written, &slog->data_units_written[0]); 99 100 return NVME_SC_SUCCESS; 101 } 102 103 static u16 nvmet_get_smart_log_all(struct nvmet_req *req, 104 struct nvme_smart_log *slog) 105 { 106 u64 host_reads = 0, host_writes = 0; 107 u64 data_units_read = 0, data_units_written = 0; 108 struct nvmet_ns *ns; 109 struct nvmet_ctrl *ctrl; 110 unsigned long idx; 111 112 ctrl = req->sq->ctrl; 113 xa_for_each(&ctrl->subsys->namespaces, idx, ns) { 114 /* we don't have the right data for file backed ns */ 115 if (!ns->bdev) 116 continue; 117 host_reads += part_stat_read(ns->bdev, ios[READ]); 118 data_units_read += DIV_ROUND_UP( 119 part_stat_read(ns->bdev, sectors[READ]), 1000); 120 host_writes += part_stat_read(ns->bdev, ios[WRITE]); 121 data_units_written += DIV_ROUND_UP( 122 part_stat_read(ns->bdev, sectors[WRITE]), 1000); 123 } 124 125 put_unaligned_le64(host_reads, &slog->host_reads[0]); 126 put_unaligned_le64(data_units_read, &slog->data_units_read[0]); 127 put_unaligned_le64(host_writes, &slog->host_writes[0]); 128 put_unaligned_le64(data_units_written, &slog->data_units_written[0]); 129 130 return NVME_SC_SUCCESS; 131 } 132 133 static void nvmet_execute_get_log_page_smart(struct nvmet_req *req) 134 { 135 struct nvme_smart_log *log; 136 u16 status = NVME_SC_INTERNAL; 137 unsigned long flags; 138 139 if (req->transfer_len != sizeof(*log)) 140 goto out; 141 142 log = kzalloc(sizeof(*log), GFP_KERNEL); 143 if (!log) 144 goto out; 145 146 if (req->cmd->get_log_page.nsid == cpu_to_le32(NVME_NSID_ALL)) 147 status = nvmet_get_smart_log_all(req, log); 148 else 149 status = nvmet_get_smart_log_nsid(req, log); 150 if (status) 151 goto out_free_log; 152 153 spin_lock_irqsave(&req->sq->ctrl->error_lock, flags); 154 put_unaligned_le64(req->sq->ctrl->err_counter, 155 &log->num_err_log_entries); 156 spin_unlock_irqrestore(&req->sq->ctrl->error_lock, flags); 157 158 status = nvmet_copy_to_sgl(req, 0, log, sizeof(*log)); 159 out_free_log: 160 kfree(log); 161 out: 162 nvmet_req_complete(req, status); 163 } 164 165 static void nvmet_execute_get_log_cmd_effects_ns(struct nvmet_req *req) 166 { 167 u16 status = NVME_SC_INTERNAL; 168 struct nvme_effects_log *log; 169 170 log = kzalloc(sizeof(*log), GFP_KERNEL); 171 if (!log) 172 goto out; 173 174 log->acs[nvme_admin_get_log_page] = cpu_to_le32(1 << 0); 175 log->acs[nvme_admin_identify] = cpu_to_le32(1 << 0); 176 log->acs[nvme_admin_abort_cmd] = cpu_to_le32(1 << 0); 177 log->acs[nvme_admin_set_features] = cpu_to_le32(1 << 0); 178 log->acs[nvme_admin_get_features] = cpu_to_le32(1 << 0); 179 log->acs[nvme_admin_async_event] = cpu_to_le32(1 << 0); 180 log->acs[nvme_admin_keep_alive] = cpu_to_le32(1 << 0); 181 182 log->iocs[nvme_cmd_read] = cpu_to_le32(1 << 0); 183 log->iocs[nvme_cmd_write] = cpu_to_le32(1 << 0); 184 log->iocs[nvme_cmd_flush] = cpu_to_le32(1 << 0); 185 log->iocs[nvme_cmd_dsm] = cpu_to_le32(1 << 0); 186 log->iocs[nvme_cmd_write_zeroes] = cpu_to_le32(1 << 0); 187 188 status = nvmet_copy_to_sgl(req, 0, log, sizeof(*log)); 189 190 kfree(log); 191 out: 192 nvmet_req_complete(req, status); 193 } 194 195 static void nvmet_execute_get_log_changed_ns(struct nvmet_req *req) 196 { 197 struct nvmet_ctrl *ctrl = req->sq->ctrl; 198 u16 status = NVME_SC_INTERNAL; 199 size_t len; 200 201 if (req->transfer_len != NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32)) 202 goto out; 203 204 mutex_lock(&ctrl->lock); 205 if (ctrl->nr_changed_ns == U32_MAX) 206 len = sizeof(__le32); 207 else 208 len = ctrl->nr_changed_ns * sizeof(__le32); 209 status = nvmet_copy_to_sgl(req, 0, ctrl->changed_ns_list, len); 210 if (!status) 211 status = nvmet_zero_sgl(req, len, req->transfer_len - len); 212 ctrl->nr_changed_ns = 0; 213 nvmet_clear_aen_bit(req, NVME_AEN_BIT_NS_ATTR); 214 mutex_unlock(&ctrl->lock); 215 out: 216 nvmet_req_complete(req, status); 217 } 218 219 static u32 nvmet_format_ana_group(struct nvmet_req *req, u32 grpid, 220 struct nvme_ana_group_desc *desc) 221 { 222 struct nvmet_ctrl *ctrl = req->sq->ctrl; 223 struct nvmet_ns *ns; 224 unsigned long idx; 225 u32 count = 0; 226 227 if (!(req->cmd->get_log_page.lsp & NVME_ANA_LOG_RGO)) { 228 xa_for_each(&ctrl->subsys->namespaces, idx, ns) 229 if (ns->anagrpid == grpid) 230 desc->nsids[count++] = cpu_to_le32(ns->nsid); 231 } 232 233 desc->grpid = cpu_to_le32(grpid); 234 desc->nnsids = cpu_to_le32(count); 235 desc->chgcnt = cpu_to_le64(nvmet_ana_chgcnt); 236 desc->state = req->port->ana_state[grpid]; 237 memset(desc->rsvd17, 0, sizeof(desc->rsvd17)); 238 return sizeof(struct nvme_ana_group_desc) + count * sizeof(__le32); 239 } 240 241 static void nvmet_execute_get_log_page_ana(struct nvmet_req *req) 242 { 243 struct nvme_ana_rsp_hdr hdr = { 0, }; 244 struct nvme_ana_group_desc *desc; 245 size_t offset = sizeof(struct nvme_ana_rsp_hdr); /* start beyond hdr */ 246 size_t len; 247 u32 grpid; 248 u16 ngrps = 0; 249 u16 status; 250 251 status = NVME_SC_INTERNAL; 252 desc = kmalloc(sizeof(struct nvme_ana_group_desc) + 253 NVMET_MAX_NAMESPACES * sizeof(__le32), GFP_KERNEL); 254 if (!desc) 255 goto out; 256 257 down_read(&nvmet_ana_sem); 258 for (grpid = 1; grpid <= NVMET_MAX_ANAGRPS; grpid++) { 259 if (!nvmet_ana_group_enabled[grpid]) 260 continue; 261 len = nvmet_format_ana_group(req, grpid, desc); 262 status = nvmet_copy_to_sgl(req, offset, desc, len); 263 if (status) 264 break; 265 offset += len; 266 ngrps++; 267 } 268 for ( ; grpid <= NVMET_MAX_ANAGRPS; grpid++) { 269 if (nvmet_ana_group_enabled[grpid]) 270 ngrps++; 271 } 272 273 hdr.chgcnt = cpu_to_le64(nvmet_ana_chgcnt); 274 hdr.ngrps = cpu_to_le16(ngrps); 275 nvmet_clear_aen_bit(req, NVME_AEN_BIT_ANA_CHANGE); 276 up_read(&nvmet_ana_sem); 277 278 kfree(desc); 279 280 /* copy the header last once we know the number of groups */ 281 status = nvmet_copy_to_sgl(req, 0, &hdr, sizeof(hdr)); 282 out: 283 nvmet_req_complete(req, status); 284 } 285 286 static void nvmet_execute_get_log_page(struct nvmet_req *req) 287 { 288 if (!nvmet_check_transfer_len(req, nvmet_get_log_page_len(req->cmd))) 289 return; 290 291 switch (req->cmd->get_log_page.lid) { 292 case NVME_LOG_ERROR: 293 return nvmet_execute_get_log_page_error(req); 294 case NVME_LOG_SMART: 295 return nvmet_execute_get_log_page_smart(req); 296 case NVME_LOG_FW_SLOT: 297 /* 298 * We only support a single firmware slot which always is 299 * active, so we can zero out the whole firmware slot log and 300 * still claim to fully implement this mandatory log page. 301 */ 302 return nvmet_execute_get_log_page_noop(req); 303 case NVME_LOG_CHANGED_NS: 304 return nvmet_execute_get_log_changed_ns(req); 305 case NVME_LOG_CMD_EFFECTS: 306 return nvmet_execute_get_log_cmd_effects_ns(req); 307 case NVME_LOG_ANA: 308 return nvmet_execute_get_log_page_ana(req); 309 } 310 pr_err("unhandled lid %d on qid %d\n", 311 req->cmd->get_log_page.lid, req->sq->qid); 312 req->error_loc = offsetof(struct nvme_get_log_page_command, lid); 313 nvmet_req_complete(req, NVME_SC_INVALID_FIELD | NVME_SC_DNR); 314 } 315 316 static void nvmet_id_set_model_number(struct nvme_id_ctrl *id, 317 struct nvmet_subsys *subsys) 318 { 319 const char *model = NVMET_DEFAULT_CTRL_MODEL; 320 struct nvmet_subsys_model *subsys_model; 321 322 rcu_read_lock(); 323 subsys_model = rcu_dereference(subsys->model); 324 if (subsys_model) 325 model = subsys_model->number; 326 memcpy_and_pad(id->mn, sizeof(id->mn), model, strlen(model), ' '); 327 rcu_read_unlock(); 328 } 329 330 static void nvmet_execute_identify_ctrl(struct nvmet_req *req) 331 { 332 struct nvmet_ctrl *ctrl = req->sq->ctrl; 333 struct nvme_id_ctrl *id; 334 u32 cmd_capsule_size; 335 u16 status = 0; 336 337 id = kzalloc(sizeof(*id), GFP_KERNEL); 338 if (!id) { 339 status = NVME_SC_INTERNAL; 340 goto out; 341 } 342 343 /* XXX: figure out how to assign real vendors IDs. */ 344 id->vid = 0; 345 id->ssvid = 0; 346 347 memset(id->sn, ' ', sizeof(id->sn)); 348 bin2hex(id->sn, &ctrl->subsys->serial, 349 min(sizeof(ctrl->subsys->serial), sizeof(id->sn) / 2)); 350 nvmet_id_set_model_number(id, ctrl->subsys); 351 memcpy_and_pad(id->fr, sizeof(id->fr), 352 UTS_RELEASE, strlen(UTS_RELEASE), ' '); 353 354 id->rab = 6; 355 356 /* 357 * XXX: figure out how we can assign a IEEE OUI, but until then 358 * the safest is to leave it as zeroes. 359 */ 360 361 /* we support multiple ports, multiples hosts and ANA: */ 362 id->cmic = (1 << 0) | (1 << 1) | (1 << 3); 363 364 /* Limit MDTS according to transport capability */ 365 if (ctrl->ops->get_mdts) 366 id->mdts = ctrl->ops->get_mdts(ctrl); 367 else 368 id->mdts = 0; 369 370 id->cntlid = cpu_to_le16(ctrl->cntlid); 371 id->ver = cpu_to_le32(ctrl->subsys->ver); 372 373 /* XXX: figure out what to do about RTD3R/RTD3 */ 374 id->oaes = cpu_to_le32(NVMET_AEN_CFG_OPTIONAL); 375 id->ctratt = cpu_to_le32(NVME_CTRL_ATTR_HID_128_BIT | 376 NVME_CTRL_ATTR_TBKAS); 377 378 id->oacs = 0; 379 380 /* 381 * We don't really have a practical limit on the number of abort 382 * comands. But we don't do anything useful for abort either, so 383 * no point in allowing more abort commands than the spec requires. 384 */ 385 id->acl = 3; 386 387 id->aerl = NVMET_ASYNC_EVENTS - 1; 388 389 /* first slot is read-only, only one slot supported */ 390 id->frmw = (1 << 0) | (1 << 1); 391 id->lpa = (1 << 0) | (1 << 1) | (1 << 2); 392 id->elpe = NVMET_ERROR_LOG_SLOTS - 1; 393 id->npss = 0; 394 395 /* We support keep-alive timeout in granularity of seconds */ 396 id->kas = cpu_to_le16(NVMET_KAS); 397 398 id->sqes = (0x6 << 4) | 0x6; 399 id->cqes = (0x4 << 4) | 0x4; 400 401 /* no enforcement soft-limit for maxcmd - pick arbitrary high value */ 402 id->maxcmd = cpu_to_le16(NVMET_MAX_CMD); 403 404 id->nn = cpu_to_le32(ctrl->subsys->max_nsid); 405 id->mnan = cpu_to_le32(NVMET_MAX_NAMESPACES); 406 id->oncs = cpu_to_le16(NVME_CTRL_ONCS_DSM | 407 NVME_CTRL_ONCS_WRITE_ZEROES); 408 409 /* XXX: don't report vwc if the underlying device is write through */ 410 id->vwc = NVME_CTRL_VWC_PRESENT; 411 412 /* 413 * We can't support atomic writes bigger than a LBA without support 414 * from the backend device. 415 */ 416 id->awun = 0; 417 id->awupf = 0; 418 419 id->sgls = cpu_to_le32(1 << 0); /* we always support SGLs */ 420 if (ctrl->ops->flags & NVMF_KEYED_SGLS) 421 id->sgls |= cpu_to_le32(1 << 2); 422 if (req->port->inline_data_size) 423 id->sgls |= cpu_to_le32(1 << 20); 424 425 strlcpy(id->subnqn, ctrl->subsys->subsysnqn, sizeof(id->subnqn)); 426 427 /* 428 * Max command capsule size is sqe + in-capsule data size. 429 * Disable in-capsule data for Metadata capable controllers. 430 */ 431 cmd_capsule_size = sizeof(struct nvme_command); 432 if (!ctrl->pi_support) 433 cmd_capsule_size += req->port->inline_data_size; 434 id->ioccsz = cpu_to_le32(cmd_capsule_size / 16); 435 436 /* Max response capsule size is cqe */ 437 id->iorcsz = cpu_to_le32(sizeof(struct nvme_completion) / 16); 438 439 id->msdbd = ctrl->ops->msdbd; 440 441 id->anacap = (1 << 0) | (1 << 1) | (1 << 2) | (1 << 3) | (1 << 4); 442 id->anatt = 10; /* random value */ 443 id->anagrpmax = cpu_to_le32(NVMET_MAX_ANAGRPS); 444 id->nanagrpid = cpu_to_le32(NVMET_MAX_ANAGRPS); 445 446 /* 447 * Meh, we don't really support any power state. Fake up the same 448 * values that qemu does. 449 */ 450 id->psd[0].max_power = cpu_to_le16(0x9c4); 451 id->psd[0].entry_lat = cpu_to_le32(0x10); 452 id->psd[0].exit_lat = cpu_to_le32(0x4); 453 454 id->nwpc = 1 << 0; /* write protect and no write protect */ 455 456 status = nvmet_copy_to_sgl(req, 0, id, sizeof(*id)); 457 458 kfree(id); 459 out: 460 nvmet_req_complete(req, status); 461 } 462 463 static void nvmet_execute_identify_ns(struct nvmet_req *req) 464 { 465 struct nvme_id_ns *id; 466 u16 status; 467 468 if (le32_to_cpu(req->cmd->identify.nsid) == NVME_NSID_ALL) { 469 req->error_loc = offsetof(struct nvme_identify, nsid); 470 status = NVME_SC_INVALID_NS | NVME_SC_DNR; 471 goto out; 472 } 473 474 id = kzalloc(sizeof(*id), GFP_KERNEL); 475 if (!id) { 476 status = NVME_SC_INTERNAL; 477 goto out; 478 } 479 480 /* return an all zeroed buffer if we can't find an active namespace */ 481 status = nvmet_req_find_ns(req); 482 if (status) { 483 status = 0; 484 goto done; 485 } 486 487 nvmet_ns_revalidate(req->ns); 488 489 /* 490 * nuse = ncap = nsze isn't always true, but we have no way to find 491 * that out from the underlying device. 492 */ 493 id->ncap = id->nsze = 494 cpu_to_le64(req->ns->size >> req->ns->blksize_shift); 495 switch (req->port->ana_state[req->ns->anagrpid]) { 496 case NVME_ANA_INACCESSIBLE: 497 case NVME_ANA_PERSISTENT_LOSS: 498 break; 499 default: 500 id->nuse = id->nsze; 501 break; 502 } 503 504 if (req->ns->bdev) 505 nvmet_bdev_set_limits(req->ns->bdev, id); 506 507 /* 508 * We just provide a single LBA format that matches what the 509 * underlying device reports. 510 */ 511 id->nlbaf = 0; 512 id->flbas = 0; 513 514 /* 515 * Our namespace might always be shared. Not just with other 516 * controllers, but also with any other user of the block device. 517 */ 518 id->nmic = (1 << 0); 519 id->anagrpid = cpu_to_le32(req->ns->anagrpid); 520 521 memcpy(&id->nguid, &req->ns->nguid, sizeof(id->nguid)); 522 523 id->lbaf[0].ds = req->ns->blksize_shift; 524 525 if (req->sq->ctrl->pi_support && nvmet_ns_has_pi(req->ns)) { 526 id->dpc = NVME_NS_DPC_PI_FIRST | NVME_NS_DPC_PI_LAST | 527 NVME_NS_DPC_PI_TYPE1 | NVME_NS_DPC_PI_TYPE2 | 528 NVME_NS_DPC_PI_TYPE3; 529 id->mc = NVME_MC_EXTENDED_LBA; 530 id->dps = req->ns->pi_type; 531 id->flbas = NVME_NS_FLBAS_META_EXT; 532 id->lbaf[0].ms = cpu_to_le16(req->ns->metadata_size); 533 } 534 535 if (req->ns->readonly) 536 id->nsattr |= (1 << 0); 537 done: 538 if (!status) 539 status = nvmet_copy_to_sgl(req, 0, id, sizeof(*id)); 540 541 kfree(id); 542 out: 543 nvmet_req_complete(req, status); 544 } 545 546 static void nvmet_execute_identify_nslist(struct nvmet_req *req) 547 { 548 static const int buf_size = NVME_IDENTIFY_DATA_SIZE; 549 struct nvmet_ctrl *ctrl = req->sq->ctrl; 550 struct nvmet_ns *ns; 551 unsigned long idx; 552 u32 min_nsid = le32_to_cpu(req->cmd->identify.nsid); 553 __le32 *list; 554 u16 status = 0; 555 int i = 0; 556 557 list = kzalloc(buf_size, GFP_KERNEL); 558 if (!list) { 559 status = NVME_SC_INTERNAL; 560 goto out; 561 } 562 563 xa_for_each(&ctrl->subsys->namespaces, idx, ns) { 564 if (ns->nsid <= min_nsid) 565 continue; 566 list[i++] = cpu_to_le32(ns->nsid); 567 if (i == buf_size / sizeof(__le32)) 568 break; 569 } 570 571 status = nvmet_copy_to_sgl(req, 0, list, buf_size); 572 573 kfree(list); 574 out: 575 nvmet_req_complete(req, status); 576 } 577 578 static u16 nvmet_copy_ns_identifier(struct nvmet_req *req, u8 type, u8 len, 579 void *id, off_t *off) 580 { 581 struct nvme_ns_id_desc desc = { 582 .nidt = type, 583 .nidl = len, 584 }; 585 u16 status; 586 587 status = nvmet_copy_to_sgl(req, *off, &desc, sizeof(desc)); 588 if (status) 589 return status; 590 *off += sizeof(desc); 591 592 status = nvmet_copy_to_sgl(req, *off, id, len); 593 if (status) 594 return status; 595 *off += len; 596 597 return 0; 598 } 599 600 static void nvmet_execute_identify_desclist(struct nvmet_req *req) 601 { 602 off_t off = 0; 603 u16 status; 604 605 status = nvmet_req_find_ns(req); 606 if (status) 607 goto out; 608 609 if (memchr_inv(&req->ns->uuid, 0, sizeof(req->ns->uuid))) { 610 status = nvmet_copy_ns_identifier(req, NVME_NIDT_UUID, 611 NVME_NIDT_UUID_LEN, 612 &req->ns->uuid, &off); 613 if (status) 614 goto out; 615 } 616 if (memchr_inv(req->ns->nguid, 0, sizeof(req->ns->nguid))) { 617 status = nvmet_copy_ns_identifier(req, NVME_NIDT_NGUID, 618 NVME_NIDT_NGUID_LEN, 619 &req->ns->nguid, &off); 620 if (status) 621 goto out; 622 } 623 624 if (sg_zero_buffer(req->sg, req->sg_cnt, NVME_IDENTIFY_DATA_SIZE - off, 625 off) != NVME_IDENTIFY_DATA_SIZE - off) 626 status = NVME_SC_INTERNAL | NVME_SC_DNR; 627 628 out: 629 nvmet_req_complete(req, status); 630 } 631 632 static void nvmet_execute_identify(struct nvmet_req *req) 633 { 634 if (!nvmet_check_transfer_len(req, NVME_IDENTIFY_DATA_SIZE)) 635 return; 636 637 switch (req->cmd->identify.cns) { 638 case NVME_ID_CNS_NS: 639 return nvmet_execute_identify_ns(req); 640 case NVME_ID_CNS_CTRL: 641 return nvmet_execute_identify_ctrl(req); 642 case NVME_ID_CNS_NS_ACTIVE_LIST: 643 return nvmet_execute_identify_nslist(req); 644 case NVME_ID_CNS_NS_DESC_LIST: 645 return nvmet_execute_identify_desclist(req); 646 } 647 648 pr_err("unhandled identify cns %d on qid %d\n", 649 req->cmd->identify.cns, req->sq->qid); 650 req->error_loc = offsetof(struct nvme_identify, cns); 651 nvmet_req_complete(req, NVME_SC_INVALID_FIELD | NVME_SC_DNR); 652 } 653 654 /* 655 * A "minimum viable" abort implementation: the command is mandatory in the 656 * spec, but we are not required to do any useful work. We couldn't really 657 * do a useful abort, so don't bother even with waiting for the command 658 * to be exectuted and return immediately telling the command to abort 659 * wasn't found. 660 */ 661 static void nvmet_execute_abort(struct nvmet_req *req) 662 { 663 if (!nvmet_check_transfer_len(req, 0)) 664 return; 665 nvmet_set_result(req, 1); 666 nvmet_req_complete(req, 0); 667 } 668 669 static u16 nvmet_write_protect_flush_sync(struct nvmet_req *req) 670 { 671 u16 status; 672 673 if (req->ns->file) 674 status = nvmet_file_flush(req); 675 else 676 status = nvmet_bdev_flush(req); 677 678 if (status) 679 pr_err("write protect flush failed nsid: %u\n", req->ns->nsid); 680 return status; 681 } 682 683 static u16 nvmet_set_feat_write_protect(struct nvmet_req *req) 684 { 685 u32 write_protect = le32_to_cpu(req->cmd->common.cdw11); 686 struct nvmet_subsys *subsys = nvmet_req_subsys(req); 687 u16 status; 688 689 status = nvmet_req_find_ns(req); 690 if (status) 691 return status; 692 693 mutex_lock(&subsys->lock); 694 switch (write_protect) { 695 case NVME_NS_WRITE_PROTECT: 696 req->ns->readonly = true; 697 status = nvmet_write_protect_flush_sync(req); 698 if (status) 699 req->ns->readonly = false; 700 break; 701 case NVME_NS_NO_WRITE_PROTECT: 702 req->ns->readonly = false; 703 status = 0; 704 break; 705 default: 706 break; 707 } 708 709 if (!status) 710 nvmet_ns_changed(subsys, req->ns->nsid); 711 mutex_unlock(&subsys->lock); 712 return status; 713 } 714 715 u16 nvmet_set_feat_kato(struct nvmet_req *req) 716 { 717 u32 val32 = le32_to_cpu(req->cmd->common.cdw11); 718 719 nvmet_stop_keep_alive_timer(req->sq->ctrl); 720 req->sq->ctrl->kato = DIV_ROUND_UP(val32, 1000); 721 nvmet_start_keep_alive_timer(req->sq->ctrl); 722 723 nvmet_set_result(req, req->sq->ctrl->kato); 724 725 return 0; 726 } 727 728 u16 nvmet_set_feat_async_event(struct nvmet_req *req, u32 mask) 729 { 730 u32 val32 = le32_to_cpu(req->cmd->common.cdw11); 731 732 if (val32 & ~mask) { 733 req->error_loc = offsetof(struct nvme_common_command, cdw11); 734 return NVME_SC_INVALID_FIELD | NVME_SC_DNR; 735 } 736 737 WRITE_ONCE(req->sq->ctrl->aen_enabled, val32); 738 nvmet_set_result(req, val32); 739 740 return 0; 741 } 742 743 void nvmet_execute_set_features(struct nvmet_req *req) 744 { 745 struct nvmet_subsys *subsys = nvmet_req_subsys(req); 746 u32 cdw10 = le32_to_cpu(req->cmd->common.cdw10); 747 u32 cdw11 = le32_to_cpu(req->cmd->common.cdw11); 748 u16 status = 0; 749 u16 nsqr; 750 u16 ncqr; 751 752 if (!nvmet_check_transfer_len(req, 0)) 753 return; 754 755 switch (cdw10 & 0xff) { 756 case NVME_FEAT_NUM_QUEUES: 757 ncqr = (cdw11 >> 16) & 0xffff; 758 nsqr = cdw11 & 0xffff; 759 if (ncqr == 0xffff || nsqr == 0xffff) { 760 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR; 761 break; 762 } 763 nvmet_set_result(req, 764 (subsys->max_qid - 1) | ((subsys->max_qid - 1) << 16)); 765 break; 766 case NVME_FEAT_KATO: 767 status = nvmet_set_feat_kato(req); 768 break; 769 case NVME_FEAT_ASYNC_EVENT: 770 status = nvmet_set_feat_async_event(req, NVMET_AEN_CFG_ALL); 771 break; 772 case NVME_FEAT_HOST_ID: 773 status = NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR; 774 break; 775 case NVME_FEAT_WRITE_PROTECT: 776 status = nvmet_set_feat_write_protect(req); 777 break; 778 default: 779 req->error_loc = offsetof(struct nvme_common_command, cdw10); 780 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR; 781 break; 782 } 783 784 nvmet_req_complete(req, status); 785 } 786 787 static u16 nvmet_get_feat_write_protect(struct nvmet_req *req) 788 { 789 struct nvmet_subsys *subsys = nvmet_req_subsys(req); 790 u32 result; 791 792 result = nvmet_req_find_ns(req); 793 if (result) 794 return result; 795 796 mutex_lock(&subsys->lock); 797 if (req->ns->readonly == true) 798 result = NVME_NS_WRITE_PROTECT; 799 else 800 result = NVME_NS_NO_WRITE_PROTECT; 801 nvmet_set_result(req, result); 802 mutex_unlock(&subsys->lock); 803 804 return 0; 805 } 806 807 void nvmet_get_feat_kato(struct nvmet_req *req) 808 { 809 nvmet_set_result(req, req->sq->ctrl->kato * 1000); 810 } 811 812 void nvmet_get_feat_async_event(struct nvmet_req *req) 813 { 814 nvmet_set_result(req, READ_ONCE(req->sq->ctrl->aen_enabled)); 815 } 816 817 void nvmet_execute_get_features(struct nvmet_req *req) 818 { 819 struct nvmet_subsys *subsys = nvmet_req_subsys(req); 820 u32 cdw10 = le32_to_cpu(req->cmd->common.cdw10); 821 u16 status = 0; 822 823 if (!nvmet_check_transfer_len(req, nvmet_feat_data_len(req, cdw10))) 824 return; 825 826 switch (cdw10 & 0xff) { 827 /* 828 * These features are mandatory in the spec, but we don't 829 * have a useful way to implement them. We'll eventually 830 * need to come up with some fake values for these. 831 */ 832 #if 0 833 case NVME_FEAT_ARBITRATION: 834 break; 835 case NVME_FEAT_POWER_MGMT: 836 break; 837 case NVME_FEAT_TEMP_THRESH: 838 break; 839 case NVME_FEAT_ERR_RECOVERY: 840 break; 841 case NVME_FEAT_IRQ_COALESCE: 842 break; 843 case NVME_FEAT_IRQ_CONFIG: 844 break; 845 case NVME_FEAT_WRITE_ATOMIC: 846 break; 847 #endif 848 case NVME_FEAT_ASYNC_EVENT: 849 nvmet_get_feat_async_event(req); 850 break; 851 case NVME_FEAT_VOLATILE_WC: 852 nvmet_set_result(req, 1); 853 break; 854 case NVME_FEAT_NUM_QUEUES: 855 nvmet_set_result(req, 856 (subsys->max_qid-1) | ((subsys->max_qid-1) << 16)); 857 break; 858 case NVME_FEAT_KATO: 859 nvmet_get_feat_kato(req); 860 break; 861 case NVME_FEAT_HOST_ID: 862 /* need 128-bit host identifier flag */ 863 if (!(req->cmd->common.cdw11 & cpu_to_le32(1 << 0))) { 864 req->error_loc = 865 offsetof(struct nvme_common_command, cdw11); 866 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR; 867 break; 868 } 869 870 status = nvmet_copy_to_sgl(req, 0, &req->sq->ctrl->hostid, 871 sizeof(req->sq->ctrl->hostid)); 872 break; 873 case NVME_FEAT_WRITE_PROTECT: 874 status = nvmet_get_feat_write_protect(req); 875 break; 876 default: 877 req->error_loc = 878 offsetof(struct nvme_common_command, cdw10); 879 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR; 880 break; 881 } 882 883 nvmet_req_complete(req, status); 884 } 885 886 void nvmet_execute_async_event(struct nvmet_req *req) 887 { 888 struct nvmet_ctrl *ctrl = req->sq->ctrl; 889 890 if (!nvmet_check_transfer_len(req, 0)) 891 return; 892 893 mutex_lock(&ctrl->lock); 894 if (ctrl->nr_async_event_cmds >= NVMET_ASYNC_EVENTS) { 895 mutex_unlock(&ctrl->lock); 896 nvmet_req_complete(req, NVME_SC_ASYNC_LIMIT | NVME_SC_DNR); 897 return; 898 } 899 ctrl->async_event_cmds[ctrl->nr_async_event_cmds++] = req; 900 mutex_unlock(&ctrl->lock); 901 902 schedule_work(&ctrl->async_event_work); 903 } 904 905 void nvmet_execute_keep_alive(struct nvmet_req *req) 906 { 907 struct nvmet_ctrl *ctrl = req->sq->ctrl; 908 909 if (!nvmet_check_transfer_len(req, 0)) 910 return; 911 912 pr_debug("ctrl %d update keep-alive timer for %d secs\n", 913 ctrl->cntlid, ctrl->kato); 914 915 mod_delayed_work(system_wq, &ctrl->ka_work, ctrl->kato * HZ); 916 nvmet_req_complete(req, 0); 917 } 918 919 u16 nvmet_parse_admin_cmd(struct nvmet_req *req) 920 { 921 struct nvme_command *cmd = req->cmd; 922 u16 ret; 923 924 if (nvme_is_fabrics(cmd)) 925 return nvmet_parse_fabrics_cmd(req); 926 if (nvmet_req_subsys(req)->type == NVME_NQN_DISC) 927 return nvmet_parse_discovery_cmd(req); 928 929 ret = nvmet_check_ctrl_status(req, cmd); 930 if (unlikely(ret)) 931 return ret; 932 933 if (nvmet_req_passthru_ctrl(req)) 934 return nvmet_parse_passthru_admin_cmd(req); 935 936 switch (cmd->common.opcode) { 937 case nvme_admin_get_log_page: 938 req->execute = nvmet_execute_get_log_page; 939 return 0; 940 case nvme_admin_identify: 941 req->execute = nvmet_execute_identify; 942 return 0; 943 case nvme_admin_abort_cmd: 944 req->execute = nvmet_execute_abort; 945 return 0; 946 case nvme_admin_set_features: 947 req->execute = nvmet_execute_set_features; 948 return 0; 949 case nvme_admin_get_features: 950 req->execute = nvmet_execute_get_features; 951 return 0; 952 case nvme_admin_async_event: 953 req->execute = nvmet_execute_async_event; 954 return 0; 955 case nvme_admin_keep_alive: 956 req->execute = nvmet_execute_keep_alive; 957 return 0; 958 } 959 960 pr_err("unhandled cmd %d on qid %d\n", cmd->common.opcode, 961 req->sq->qid); 962 req->error_loc = offsetof(struct nvme_common_command, opcode); 963 return NVME_SC_INVALID_OPCODE | NVME_SC_DNR; 964 } 965