xref: /linux/drivers/nvme/host/tcp.c (revision f9aa1fb9f8c0542f5f6e6e620de320995d5622ad)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics TCP host.
4  * Copyright (c) 2018 Lightbits Labs. All rights reserved.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/err.h>
11 #include <linux/key.h>
12 #include <linux/nvme-tcp.h>
13 #include <linux/nvme-keyring.h>
14 #include <net/sock.h>
15 #include <net/tcp.h>
16 #include <net/tls.h>
17 #include <net/tls_prot.h>
18 #include <net/handshake.h>
19 #include <linux/blk-mq.h>
20 #include <crypto/hash.h>
21 #include <net/busy_poll.h>
22 #include <trace/events/sock.h>
23 
24 #include "nvme.h"
25 #include "fabrics.h"
26 
27 struct nvme_tcp_queue;
28 
29 /* Define the socket priority to use for connections were it is desirable
30  * that the NIC consider performing optimized packet processing or filtering.
31  * A non-zero value being sufficient to indicate general consideration of any
32  * possible optimization.  Making it a module param allows for alternative
33  * values that may be unique for some NIC implementations.
34  */
35 static int so_priority;
36 module_param(so_priority, int, 0644);
37 MODULE_PARM_DESC(so_priority, "nvme tcp socket optimize priority");
38 
39 /*
40  * Use the unbound workqueue for nvme_tcp_wq, then we can set the cpu affinity
41  * from sysfs.
42  */
43 static bool wq_unbound;
44 module_param(wq_unbound, bool, 0644);
45 MODULE_PARM_DESC(wq_unbound, "Use unbound workqueue for nvme-tcp IO context (default false)");
46 
47 /*
48  * TLS handshake timeout
49  */
50 static int tls_handshake_timeout = 10;
51 #ifdef CONFIG_NVME_TCP_TLS
52 module_param(tls_handshake_timeout, int, 0644);
53 MODULE_PARM_DESC(tls_handshake_timeout,
54 		 "nvme TLS handshake timeout in seconds (default 10)");
55 #endif
56 
57 #ifdef CONFIG_DEBUG_LOCK_ALLOC
58 /* lockdep can detect a circular dependency of the form
59  *   sk_lock -> mmap_lock (page fault) -> fs locks -> sk_lock
60  * because dependencies are tracked for both nvme-tcp and user contexts. Using
61  * a separate class prevents lockdep from conflating nvme-tcp socket use with
62  * user-space socket API use.
63  */
64 static struct lock_class_key nvme_tcp_sk_key[2];
65 static struct lock_class_key nvme_tcp_slock_key[2];
66 
67 static void nvme_tcp_reclassify_socket(struct socket *sock)
68 {
69 	struct sock *sk = sock->sk;
70 
71 	if (WARN_ON_ONCE(!sock_allow_reclassification(sk)))
72 		return;
73 
74 	switch (sk->sk_family) {
75 	case AF_INET:
76 		sock_lock_init_class_and_name(sk, "slock-AF_INET-NVME",
77 					      &nvme_tcp_slock_key[0],
78 					      "sk_lock-AF_INET-NVME",
79 					      &nvme_tcp_sk_key[0]);
80 		break;
81 	case AF_INET6:
82 		sock_lock_init_class_and_name(sk, "slock-AF_INET6-NVME",
83 					      &nvme_tcp_slock_key[1],
84 					      "sk_lock-AF_INET6-NVME",
85 					      &nvme_tcp_sk_key[1]);
86 		break;
87 	default:
88 		WARN_ON_ONCE(1);
89 	}
90 }
91 #else
92 static void nvme_tcp_reclassify_socket(struct socket *sock) { }
93 #endif
94 
95 enum nvme_tcp_send_state {
96 	NVME_TCP_SEND_CMD_PDU = 0,
97 	NVME_TCP_SEND_H2C_PDU,
98 	NVME_TCP_SEND_DATA,
99 	NVME_TCP_SEND_DDGST,
100 };
101 
102 struct nvme_tcp_request {
103 	struct nvme_request	req;
104 	void			*pdu;
105 	struct nvme_tcp_queue	*queue;
106 	u32			data_len;
107 	u32			pdu_len;
108 	u32			pdu_sent;
109 	u32			h2cdata_left;
110 	u32			h2cdata_offset;
111 	u16			ttag;
112 	__le16			status;
113 	struct list_head	entry;
114 	struct llist_node	lentry;
115 	__le32			ddgst;
116 
117 	struct bio		*curr_bio;
118 	struct iov_iter		iter;
119 
120 	/* send state */
121 	size_t			offset;
122 	size_t			data_sent;
123 	enum nvme_tcp_send_state state;
124 };
125 
126 enum nvme_tcp_queue_flags {
127 	NVME_TCP_Q_ALLOCATED	= 0,
128 	NVME_TCP_Q_LIVE		= 1,
129 	NVME_TCP_Q_POLLING	= 2,
130 };
131 
132 enum nvme_tcp_recv_state {
133 	NVME_TCP_RECV_PDU = 0,
134 	NVME_TCP_RECV_DATA,
135 	NVME_TCP_RECV_DDGST,
136 };
137 
138 struct nvme_tcp_ctrl;
139 struct nvme_tcp_queue {
140 	struct socket		*sock;
141 	struct work_struct	io_work;
142 	int			io_cpu;
143 
144 	struct mutex		queue_lock;
145 	struct mutex		send_mutex;
146 	struct llist_head	req_list;
147 	struct list_head	send_list;
148 
149 	/* recv state */
150 	void			*pdu;
151 	int			pdu_remaining;
152 	int			pdu_offset;
153 	size_t			data_remaining;
154 	size_t			ddgst_remaining;
155 	unsigned int		nr_cqe;
156 
157 	/* send state */
158 	struct nvme_tcp_request *request;
159 
160 	u32			maxh2cdata;
161 	size_t			cmnd_capsule_len;
162 	struct nvme_tcp_ctrl	*ctrl;
163 	unsigned long		flags;
164 	bool			rd_enabled;
165 
166 	bool			hdr_digest;
167 	bool			data_digest;
168 	bool			tls_enabled;
169 	struct ahash_request	*rcv_hash;
170 	struct ahash_request	*snd_hash;
171 	__le32			exp_ddgst;
172 	__le32			recv_ddgst;
173 	struct completion       tls_complete;
174 	int                     tls_err;
175 	struct page_frag_cache	pf_cache;
176 
177 	void (*state_change)(struct sock *);
178 	void (*data_ready)(struct sock *);
179 	void (*write_space)(struct sock *);
180 };
181 
182 struct nvme_tcp_ctrl {
183 	/* read only in the hot path */
184 	struct nvme_tcp_queue	*queues;
185 	struct blk_mq_tag_set	tag_set;
186 
187 	/* other member variables */
188 	struct list_head	list;
189 	struct blk_mq_tag_set	admin_tag_set;
190 	struct sockaddr_storage addr;
191 	struct sockaddr_storage src_addr;
192 	struct nvme_ctrl	ctrl;
193 
194 	struct work_struct	err_work;
195 	struct delayed_work	connect_work;
196 	struct nvme_tcp_request async_req;
197 	u32			io_queues[HCTX_MAX_TYPES];
198 };
199 
200 static LIST_HEAD(nvme_tcp_ctrl_list);
201 static DEFINE_MUTEX(nvme_tcp_ctrl_mutex);
202 static struct workqueue_struct *nvme_tcp_wq;
203 static const struct blk_mq_ops nvme_tcp_mq_ops;
204 static const struct blk_mq_ops nvme_tcp_admin_mq_ops;
205 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue);
206 
207 static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl)
208 {
209 	return container_of(ctrl, struct nvme_tcp_ctrl, ctrl);
210 }
211 
212 static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue)
213 {
214 	return queue - queue->ctrl->queues;
215 }
216 
217 /*
218  * Check if the queue is TLS encrypted
219  */
220 static inline bool nvme_tcp_queue_tls(struct nvme_tcp_queue *queue)
221 {
222 	if (!IS_ENABLED(CONFIG_NVME_TCP_TLS))
223 		return 0;
224 
225 	return queue->tls_enabled;
226 }
227 
228 /*
229  * Check if TLS is configured for the controller.
230  */
231 static inline bool nvme_tcp_tls_configured(struct nvme_ctrl *ctrl)
232 {
233 	if (!IS_ENABLED(CONFIG_NVME_TCP_TLS))
234 		return 0;
235 
236 	return ctrl->opts->tls;
237 }
238 
239 static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue)
240 {
241 	u32 queue_idx = nvme_tcp_queue_id(queue);
242 
243 	if (queue_idx == 0)
244 		return queue->ctrl->admin_tag_set.tags[queue_idx];
245 	return queue->ctrl->tag_set.tags[queue_idx - 1];
246 }
247 
248 static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue)
249 {
250 	return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
251 }
252 
253 static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue)
254 {
255 	return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
256 }
257 
258 static inline void *nvme_tcp_req_cmd_pdu(struct nvme_tcp_request *req)
259 {
260 	return req->pdu;
261 }
262 
263 static inline void *nvme_tcp_req_data_pdu(struct nvme_tcp_request *req)
264 {
265 	/* use the pdu space in the back for the data pdu */
266 	return req->pdu + sizeof(struct nvme_tcp_cmd_pdu) -
267 		sizeof(struct nvme_tcp_data_pdu);
268 }
269 
270 static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_request *req)
271 {
272 	if (nvme_is_fabrics(req->req.cmd))
273 		return NVME_TCP_ADMIN_CCSZ;
274 	return req->queue->cmnd_capsule_len - sizeof(struct nvme_command);
275 }
276 
277 static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req)
278 {
279 	return req == &req->queue->ctrl->async_req;
280 }
281 
282 static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req)
283 {
284 	struct request *rq;
285 
286 	if (unlikely(nvme_tcp_async_req(req)))
287 		return false; /* async events don't have a request */
288 
289 	rq = blk_mq_rq_from_pdu(req);
290 
291 	return rq_data_dir(rq) == WRITE && req->data_len &&
292 		req->data_len <= nvme_tcp_inline_data_size(req);
293 }
294 
295 static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req)
296 {
297 	return req->iter.bvec->bv_page;
298 }
299 
300 static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req)
301 {
302 	return req->iter.bvec->bv_offset + req->iter.iov_offset;
303 }
304 
305 static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req)
306 {
307 	return min_t(size_t, iov_iter_single_seg_count(&req->iter),
308 			req->pdu_len - req->pdu_sent);
309 }
310 
311 static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req)
312 {
313 	return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ?
314 			req->pdu_len - req->pdu_sent : 0;
315 }
316 
317 static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req,
318 		int len)
319 {
320 	return nvme_tcp_pdu_data_left(req) <= len;
321 }
322 
323 static void nvme_tcp_init_iter(struct nvme_tcp_request *req,
324 		unsigned int dir)
325 {
326 	struct request *rq = blk_mq_rq_from_pdu(req);
327 	struct bio_vec *vec;
328 	unsigned int size;
329 	int nr_bvec;
330 	size_t offset;
331 
332 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) {
333 		vec = &rq->special_vec;
334 		nr_bvec = 1;
335 		size = blk_rq_payload_bytes(rq);
336 		offset = 0;
337 	} else {
338 		struct bio *bio = req->curr_bio;
339 		struct bvec_iter bi;
340 		struct bio_vec bv;
341 
342 		vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
343 		nr_bvec = 0;
344 		bio_for_each_bvec(bv, bio, bi) {
345 			nr_bvec++;
346 		}
347 		size = bio->bi_iter.bi_size;
348 		offset = bio->bi_iter.bi_bvec_done;
349 	}
350 
351 	iov_iter_bvec(&req->iter, dir, vec, nr_bvec, size);
352 	req->iter.iov_offset = offset;
353 }
354 
355 static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req,
356 		int len)
357 {
358 	req->data_sent += len;
359 	req->pdu_sent += len;
360 	iov_iter_advance(&req->iter, len);
361 	if (!iov_iter_count(&req->iter) &&
362 	    req->data_sent < req->data_len) {
363 		req->curr_bio = req->curr_bio->bi_next;
364 		nvme_tcp_init_iter(req, ITER_SOURCE);
365 	}
366 }
367 
368 static inline void nvme_tcp_send_all(struct nvme_tcp_queue *queue)
369 {
370 	int ret;
371 
372 	/* drain the send queue as much as we can... */
373 	do {
374 		ret = nvme_tcp_try_send(queue);
375 	} while (ret > 0);
376 }
377 
378 static inline bool nvme_tcp_queue_has_pending(struct nvme_tcp_queue *queue)
379 {
380 	return !list_empty(&queue->send_list) ||
381 		!llist_empty(&queue->req_list);
382 }
383 
384 static inline bool nvme_tcp_queue_more(struct nvme_tcp_queue *queue)
385 {
386 	return !nvme_tcp_queue_tls(queue) &&
387 		nvme_tcp_queue_has_pending(queue);
388 }
389 
390 static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req,
391 		bool sync, bool last)
392 {
393 	struct nvme_tcp_queue *queue = req->queue;
394 	bool empty;
395 
396 	empty = llist_add(&req->lentry, &queue->req_list) &&
397 		list_empty(&queue->send_list) && !queue->request;
398 
399 	/*
400 	 * if we're the first on the send_list and we can try to send
401 	 * directly, otherwise queue io_work. Also, only do that if we
402 	 * are on the same cpu, so we don't introduce contention.
403 	 */
404 	if (queue->io_cpu == raw_smp_processor_id() &&
405 	    sync && empty && mutex_trylock(&queue->send_mutex)) {
406 		nvme_tcp_send_all(queue);
407 		mutex_unlock(&queue->send_mutex);
408 	}
409 
410 	if (last && nvme_tcp_queue_has_pending(queue))
411 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
412 }
413 
414 static void nvme_tcp_process_req_list(struct nvme_tcp_queue *queue)
415 {
416 	struct nvme_tcp_request *req;
417 	struct llist_node *node;
418 
419 	for (node = llist_del_all(&queue->req_list); node; node = node->next) {
420 		req = llist_entry(node, struct nvme_tcp_request, lentry);
421 		list_add(&req->entry, &queue->send_list);
422 	}
423 }
424 
425 static inline struct nvme_tcp_request *
426 nvme_tcp_fetch_request(struct nvme_tcp_queue *queue)
427 {
428 	struct nvme_tcp_request *req;
429 
430 	req = list_first_entry_or_null(&queue->send_list,
431 			struct nvme_tcp_request, entry);
432 	if (!req) {
433 		nvme_tcp_process_req_list(queue);
434 		req = list_first_entry_or_null(&queue->send_list,
435 				struct nvme_tcp_request, entry);
436 		if (unlikely(!req))
437 			return NULL;
438 	}
439 
440 	list_del(&req->entry);
441 	return req;
442 }
443 
444 static inline void nvme_tcp_ddgst_final(struct ahash_request *hash,
445 		__le32 *dgst)
446 {
447 	ahash_request_set_crypt(hash, NULL, (u8 *)dgst, 0);
448 	crypto_ahash_final(hash);
449 }
450 
451 static inline void nvme_tcp_ddgst_update(struct ahash_request *hash,
452 		struct page *page, off_t off, size_t len)
453 {
454 	struct scatterlist sg;
455 
456 	sg_init_table(&sg, 1);
457 	sg_set_page(&sg, page, len, off);
458 	ahash_request_set_crypt(hash, &sg, NULL, len);
459 	crypto_ahash_update(hash);
460 }
461 
462 static inline void nvme_tcp_hdgst(struct ahash_request *hash,
463 		void *pdu, size_t len)
464 {
465 	struct scatterlist sg;
466 
467 	sg_init_one(&sg, pdu, len);
468 	ahash_request_set_crypt(hash, &sg, pdu + len, len);
469 	crypto_ahash_digest(hash);
470 }
471 
472 static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue,
473 		void *pdu, size_t pdu_len)
474 {
475 	struct nvme_tcp_hdr *hdr = pdu;
476 	__le32 recv_digest;
477 	__le32 exp_digest;
478 
479 	if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
480 		dev_err(queue->ctrl->ctrl.device,
481 			"queue %d: header digest flag is cleared\n",
482 			nvme_tcp_queue_id(queue));
483 		return -EPROTO;
484 	}
485 
486 	recv_digest = *(__le32 *)(pdu + hdr->hlen);
487 	nvme_tcp_hdgst(queue->rcv_hash, pdu, pdu_len);
488 	exp_digest = *(__le32 *)(pdu + hdr->hlen);
489 	if (recv_digest != exp_digest) {
490 		dev_err(queue->ctrl->ctrl.device,
491 			"header digest error: recv %#x expected %#x\n",
492 			le32_to_cpu(recv_digest), le32_to_cpu(exp_digest));
493 		return -EIO;
494 	}
495 
496 	return 0;
497 }
498 
499 static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu)
500 {
501 	struct nvme_tcp_hdr *hdr = pdu;
502 	u8 digest_len = nvme_tcp_hdgst_len(queue);
503 	u32 len;
504 
505 	len = le32_to_cpu(hdr->plen) - hdr->hlen -
506 		((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0);
507 
508 	if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
509 		dev_err(queue->ctrl->ctrl.device,
510 			"queue %d: data digest flag is cleared\n",
511 		nvme_tcp_queue_id(queue));
512 		return -EPROTO;
513 	}
514 	crypto_ahash_init(queue->rcv_hash);
515 
516 	return 0;
517 }
518 
519 static void nvme_tcp_exit_request(struct blk_mq_tag_set *set,
520 		struct request *rq, unsigned int hctx_idx)
521 {
522 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
523 
524 	page_frag_free(req->pdu);
525 }
526 
527 static int nvme_tcp_init_request(struct blk_mq_tag_set *set,
528 		struct request *rq, unsigned int hctx_idx,
529 		unsigned int numa_node)
530 {
531 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(set->driver_data);
532 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
533 	struct nvme_tcp_cmd_pdu *pdu;
534 	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
535 	struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx];
536 	u8 hdgst = nvme_tcp_hdgst_len(queue);
537 
538 	req->pdu = page_frag_alloc(&queue->pf_cache,
539 		sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
540 		GFP_KERNEL | __GFP_ZERO);
541 	if (!req->pdu)
542 		return -ENOMEM;
543 
544 	pdu = req->pdu;
545 	req->queue = queue;
546 	nvme_req(rq)->ctrl = &ctrl->ctrl;
547 	nvme_req(rq)->cmd = &pdu->cmd;
548 
549 	return 0;
550 }
551 
552 static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
553 		unsigned int hctx_idx)
554 {
555 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(data);
556 	struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1];
557 
558 	hctx->driver_data = queue;
559 	return 0;
560 }
561 
562 static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
563 		unsigned int hctx_idx)
564 {
565 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(data);
566 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
567 
568 	hctx->driver_data = queue;
569 	return 0;
570 }
571 
572 static enum nvme_tcp_recv_state
573 nvme_tcp_recv_state(struct nvme_tcp_queue *queue)
574 {
575 	return  (queue->pdu_remaining) ? NVME_TCP_RECV_PDU :
576 		(queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST :
577 		NVME_TCP_RECV_DATA;
578 }
579 
580 static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue)
581 {
582 	queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) +
583 				nvme_tcp_hdgst_len(queue);
584 	queue->pdu_offset = 0;
585 	queue->data_remaining = -1;
586 	queue->ddgst_remaining = 0;
587 }
588 
589 static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl)
590 {
591 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
592 		return;
593 
594 	dev_warn(ctrl->device, "starting error recovery\n");
595 	queue_work(nvme_reset_wq, &to_tcp_ctrl(ctrl)->err_work);
596 }
597 
598 static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue,
599 		struct nvme_completion *cqe)
600 {
601 	struct nvme_tcp_request *req;
602 	struct request *rq;
603 
604 	rq = nvme_find_rq(nvme_tcp_tagset(queue), cqe->command_id);
605 	if (!rq) {
606 		dev_err(queue->ctrl->ctrl.device,
607 			"got bad cqe.command_id %#x on queue %d\n",
608 			cqe->command_id, nvme_tcp_queue_id(queue));
609 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
610 		return -EINVAL;
611 	}
612 
613 	req = blk_mq_rq_to_pdu(rq);
614 	if (req->status == cpu_to_le16(NVME_SC_SUCCESS))
615 		req->status = cqe->status;
616 
617 	if (!nvme_try_complete_req(rq, req->status, cqe->result))
618 		nvme_complete_rq(rq);
619 	queue->nr_cqe++;
620 
621 	return 0;
622 }
623 
624 static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue,
625 		struct nvme_tcp_data_pdu *pdu)
626 {
627 	struct request *rq;
628 
629 	rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id);
630 	if (!rq) {
631 		dev_err(queue->ctrl->ctrl.device,
632 			"got bad c2hdata.command_id %#x on queue %d\n",
633 			pdu->command_id, nvme_tcp_queue_id(queue));
634 		return -ENOENT;
635 	}
636 
637 	if (!blk_rq_payload_bytes(rq)) {
638 		dev_err(queue->ctrl->ctrl.device,
639 			"queue %d tag %#x unexpected data\n",
640 			nvme_tcp_queue_id(queue), rq->tag);
641 		return -EIO;
642 	}
643 
644 	queue->data_remaining = le32_to_cpu(pdu->data_length);
645 
646 	if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS &&
647 	    unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) {
648 		dev_err(queue->ctrl->ctrl.device,
649 			"queue %d tag %#x SUCCESS set but not last PDU\n",
650 			nvme_tcp_queue_id(queue), rq->tag);
651 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
652 		return -EPROTO;
653 	}
654 
655 	return 0;
656 }
657 
658 static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue,
659 		struct nvme_tcp_rsp_pdu *pdu)
660 {
661 	struct nvme_completion *cqe = &pdu->cqe;
662 	int ret = 0;
663 
664 	/*
665 	 * AEN requests are special as they don't time out and can
666 	 * survive any kind of queue freeze and often don't respond to
667 	 * aborts.  We don't even bother to allocate a struct request
668 	 * for them but rather special case them here.
669 	 */
670 	if (unlikely(nvme_is_aen_req(nvme_tcp_queue_id(queue),
671 				     cqe->command_id)))
672 		nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
673 				&cqe->result);
674 	else
675 		ret = nvme_tcp_process_nvme_cqe(queue, cqe);
676 
677 	return ret;
678 }
679 
680 static void nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req)
681 {
682 	struct nvme_tcp_data_pdu *data = nvme_tcp_req_data_pdu(req);
683 	struct nvme_tcp_queue *queue = req->queue;
684 	struct request *rq = blk_mq_rq_from_pdu(req);
685 	u32 h2cdata_sent = req->pdu_len;
686 	u8 hdgst = nvme_tcp_hdgst_len(queue);
687 	u8 ddgst = nvme_tcp_ddgst_len(queue);
688 
689 	req->state = NVME_TCP_SEND_H2C_PDU;
690 	req->offset = 0;
691 	req->pdu_len = min(req->h2cdata_left, queue->maxh2cdata);
692 	req->pdu_sent = 0;
693 	req->h2cdata_left -= req->pdu_len;
694 	req->h2cdata_offset += h2cdata_sent;
695 
696 	memset(data, 0, sizeof(*data));
697 	data->hdr.type = nvme_tcp_h2c_data;
698 	if (!req->h2cdata_left)
699 		data->hdr.flags = NVME_TCP_F_DATA_LAST;
700 	if (queue->hdr_digest)
701 		data->hdr.flags |= NVME_TCP_F_HDGST;
702 	if (queue->data_digest)
703 		data->hdr.flags |= NVME_TCP_F_DDGST;
704 	data->hdr.hlen = sizeof(*data);
705 	data->hdr.pdo = data->hdr.hlen + hdgst;
706 	data->hdr.plen =
707 		cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst);
708 	data->ttag = req->ttag;
709 	data->command_id = nvme_cid(rq);
710 	data->data_offset = cpu_to_le32(req->h2cdata_offset);
711 	data->data_length = cpu_to_le32(req->pdu_len);
712 }
713 
714 static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue,
715 		struct nvme_tcp_r2t_pdu *pdu)
716 {
717 	struct nvme_tcp_request *req;
718 	struct request *rq;
719 	u32 r2t_length = le32_to_cpu(pdu->r2t_length);
720 	u32 r2t_offset = le32_to_cpu(pdu->r2t_offset);
721 
722 	rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id);
723 	if (!rq) {
724 		dev_err(queue->ctrl->ctrl.device,
725 			"got bad r2t.command_id %#x on queue %d\n",
726 			pdu->command_id, nvme_tcp_queue_id(queue));
727 		return -ENOENT;
728 	}
729 	req = blk_mq_rq_to_pdu(rq);
730 
731 	if (unlikely(!r2t_length)) {
732 		dev_err(queue->ctrl->ctrl.device,
733 			"req %d r2t len is %u, probably a bug...\n",
734 			rq->tag, r2t_length);
735 		return -EPROTO;
736 	}
737 
738 	if (unlikely(req->data_sent + r2t_length > req->data_len)) {
739 		dev_err(queue->ctrl->ctrl.device,
740 			"req %d r2t len %u exceeded data len %u (%zu sent)\n",
741 			rq->tag, r2t_length, req->data_len, req->data_sent);
742 		return -EPROTO;
743 	}
744 
745 	if (unlikely(r2t_offset < req->data_sent)) {
746 		dev_err(queue->ctrl->ctrl.device,
747 			"req %d unexpected r2t offset %u (expected %zu)\n",
748 			rq->tag, r2t_offset, req->data_sent);
749 		return -EPROTO;
750 	}
751 
752 	req->pdu_len = 0;
753 	req->h2cdata_left = r2t_length;
754 	req->h2cdata_offset = r2t_offset;
755 	req->ttag = pdu->ttag;
756 
757 	nvme_tcp_setup_h2c_data_pdu(req);
758 	nvme_tcp_queue_request(req, false, true);
759 
760 	return 0;
761 }
762 
763 static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb,
764 		unsigned int *offset, size_t *len)
765 {
766 	struct nvme_tcp_hdr *hdr;
767 	char *pdu = queue->pdu;
768 	size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining);
769 	int ret;
770 
771 	ret = skb_copy_bits(skb, *offset,
772 		&pdu[queue->pdu_offset], rcv_len);
773 	if (unlikely(ret))
774 		return ret;
775 
776 	queue->pdu_remaining -= rcv_len;
777 	queue->pdu_offset += rcv_len;
778 	*offset += rcv_len;
779 	*len -= rcv_len;
780 	if (queue->pdu_remaining)
781 		return 0;
782 
783 	hdr = queue->pdu;
784 	if (queue->hdr_digest) {
785 		ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen);
786 		if (unlikely(ret))
787 			return ret;
788 	}
789 
790 
791 	if (queue->data_digest) {
792 		ret = nvme_tcp_check_ddgst(queue, queue->pdu);
793 		if (unlikely(ret))
794 			return ret;
795 	}
796 
797 	switch (hdr->type) {
798 	case nvme_tcp_c2h_data:
799 		return nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu);
800 	case nvme_tcp_rsp:
801 		nvme_tcp_init_recv_ctx(queue);
802 		return nvme_tcp_handle_comp(queue, (void *)queue->pdu);
803 	case nvme_tcp_r2t:
804 		nvme_tcp_init_recv_ctx(queue);
805 		return nvme_tcp_handle_r2t(queue, (void *)queue->pdu);
806 	default:
807 		dev_err(queue->ctrl->ctrl.device,
808 			"unsupported pdu type (%d)\n", hdr->type);
809 		return -EINVAL;
810 	}
811 }
812 
813 static inline void nvme_tcp_end_request(struct request *rq, u16 status)
814 {
815 	union nvme_result res = {};
816 
817 	if (!nvme_try_complete_req(rq, cpu_to_le16(status << 1), res))
818 		nvme_complete_rq(rq);
819 }
820 
821 static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb,
822 			      unsigned int *offset, size_t *len)
823 {
824 	struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
825 	struct request *rq =
826 		nvme_cid_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
827 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
828 
829 	while (true) {
830 		int recv_len, ret;
831 
832 		recv_len = min_t(size_t, *len, queue->data_remaining);
833 		if (!recv_len)
834 			break;
835 
836 		if (!iov_iter_count(&req->iter)) {
837 			req->curr_bio = req->curr_bio->bi_next;
838 
839 			/*
840 			 * If we don`t have any bios it means that controller
841 			 * sent more data than we requested, hence error
842 			 */
843 			if (!req->curr_bio) {
844 				dev_err(queue->ctrl->ctrl.device,
845 					"queue %d no space in request %#x",
846 					nvme_tcp_queue_id(queue), rq->tag);
847 				nvme_tcp_init_recv_ctx(queue);
848 				return -EIO;
849 			}
850 			nvme_tcp_init_iter(req, ITER_DEST);
851 		}
852 
853 		/* we can read only from what is left in this bio */
854 		recv_len = min_t(size_t, recv_len,
855 				iov_iter_count(&req->iter));
856 
857 		if (queue->data_digest)
858 			ret = skb_copy_and_hash_datagram_iter(skb, *offset,
859 				&req->iter, recv_len, queue->rcv_hash);
860 		else
861 			ret = skb_copy_datagram_iter(skb, *offset,
862 					&req->iter, recv_len);
863 		if (ret) {
864 			dev_err(queue->ctrl->ctrl.device,
865 				"queue %d failed to copy request %#x data",
866 				nvme_tcp_queue_id(queue), rq->tag);
867 			return ret;
868 		}
869 
870 		*len -= recv_len;
871 		*offset += recv_len;
872 		queue->data_remaining -= recv_len;
873 	}
874 
875 	if (!queue->data_remaining) {
876 		if (queue->data_digest) {
877 			nvme_tcp_ddgst_final(queue->rcv_hash, &queue->exp_ddgst);
878 			queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH;
879 		} else {
880 			if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
881 				nvme_tcp_end_request(rq,
882 						le16_to_cpu(req->status));
883 				queue->nr_cqe++;
884 			}
885 			nvme_tcp_init_recv_ctx(queue);
886 		}
887 	}
888 
889 	return 0;
890 }
891 
892 static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue,
893 		struct sk_buff *skb, unsigned int *offset, size_t *len)
894 {
895 	struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
896 	char *ddgst = (char *)&queue->recv_ddgst;
897 	size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining);
898 	off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining;
899 	int ret;
900 
901 	ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len);
902 	if (unlikely(ret))
903 		return ret;
904 
905 	queue->ddgst_remaining -= recv_len;
906 	*offset += recv_len;
907 	*len -= recv_len;
908 	if (queue->ddgst_remaining)
909 		return 0;
910 
911 	if (queue->recv_ddgst != queue->exp_ddgst) {
912 		struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue),
913 					pdu->command_id);
914 		struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
915 
916 		req->status = cpu_to_le16(NVME_SC_DATA_XFER_ERROR);
917 
918 		dev_err(queue->ctrl->ctrl.device,
919 			"data digest error: recv %#x expected %#x\n",
920 			le32_to_cpu(queue->recv_ddgst),
921 			le32_to_cpu(queue->exp_ddgst));
922 	}
923 
924 	if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
925 		struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue),
926 					pdu->command_id);
927 		struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
928 
929 		nvme_tcp_end_request(rq, le16_to_cpu(req->status));
930 		queue->nr_cqe++;
931 	}
932 
933 	nvme_tcp_init_recv_ctx(queue);
934 	return 0;
935 }
936 
937 static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb,
938 			     unsigned int offset, size_t len)
939 {
940 	struct nvme_tcp_queue *queue = desc->arg.data;
941 	size_t consumed = len;
942 	int result;
943 
944 	if (unlikely(!queue->rd_enabled))
945 		return -EFAULT;
946 
947 	while (len) {
948 		switch (nvme_tcp_recv_state(queue)) {
949 		case NVME_TCP_RECV_PDU:
950 			result = nvme_tcp_recv_pdu(queue, skb, &offset, &len);
951 			break;
952 		case NVME_TCP_RECV_DATA:
953 			result = nvme_tcp_recv_data(queue, skb, &offset, &len);
954 			break;
955 		case NVME_TCP_RECV_DDGST:
956 			result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len);
957 			break;
958 		default:
959 			result = -EFAULT;
960 		}
961 		if (result) {
962 			dev_err(queue->ctrl->ctrl.device,
963 				"receive failed:  %d\n", result);
964 			queue->rd_enabled = false;
965 			nvme_tcp_error_recovery(&queue->ctrl->ctrl);
966 			return result;
967 		}
968 	}
969 
970 	return consumed;
971 }
972 
973 static void nvme_tcp_data_ready(struct sock *sk)
974 {
975 	struct nvme_tcp_queue *queue;
976 
977 	trace_sk_data_ready(sk);
978 
979 	read_lock_bh(&sk->sk_callback_lock);
980 	queue = sk->sk_user_data;
981 	if (likely(queue && queue->rd_enabled) &&
982 	    !test_bit(NVME_TCP_Q_POLLING, &queue->flags))
983 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
984 	read_unlock_bh(&sk->sk_callback_lock);
985 }
986 
987 static void nvme_tcp_write_space(struct sock *sk)
988 {
989 	struct nvme_tcp_queue *queue;
990 
991 	read_lock_bh(&sk->sk_callback_lock);
992 	queue = sk->sk_user_data;
993 	if (likely(queue && sk_stream_is_writeable(sk))) {
994 		clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
995 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
996 	}
997 	read_unlock_bh(&sk->sk_callback_lock);
998 }
999 
1000 static void nvme_tcp_state_change(struct sock *sk)
1001 {
1002 	struct nvme_tcp_queue *queue;
1003 
1004 	read_lock_bh(&sk->sk_callback_lock);
1005 	queue = sk->sk_user_data;
1006 	if (!queue)
1007 		goto done;
1008 
1009 	switch (sk->sk_state) {
1010 	case TCP_CLOSE:
1011 	case TCP_CLOSE_WAIT:
1012 	case TCP_LAST_ACK:
1013 	case TCP_FIN_WAIT1:
1014 	case TCP_FIN_WAIT2:
1015 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
1016 		break;
1017 	default:
1018 		dev_info(queue->ctrl->ctrl.device,
1019 			"queue %d socket state %d\n",
1020 			nvme_tcp_queue_id(queue), sk->sk_state);
1021 	}
1022 
1023 	queue->state_change(sk);
1024 done:
1025 	read_unlock_bh(&sk->sk_callback_lock);
1026 }
1027 
1028 static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue)
1029 {
1030 	queue->request = NULL;
1031 }
1032 
1033 static void nvme_tcp_fail_request(struct nvme_tcp_request *req)
1034 {
1035 	if (nvme_tcp_async_req(req)) {
1036 		union nvme_result res = {};
1037 
1038 		nvme_complete_async_event(&req->queue->ctrl->ctrl,
1039 				cpu_to_le16(NVME_SC_HOST_PATH_ERROR), &res);
1040 	} else {
1041 		nvme_tcp_end_request(blk_mq_rq_from_pdu(req),
1042 				NVME_SC_HOST_PATH_ERROR);
1043 	}
1044 }
1045 
1046 static int nvme_tcp_try_send_data(struct nvme_tcp_request *req)
1047 {
1048 	struct nvme_tcp_queue *queue = req->queue;
1049 	int req_data_len = req->data_len;
1050 	u32 h2cdata_left = req->h2cdata_left;
1051 
1052 	while (true) {
1053 		struct bio_vec bvec;
1054 		struct msghdr msg = {
1055 			.msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES,
1056 		};
1057 		struct page *page = nvme_tcp_req_cur_page(req);
1058 		size_t offset = nvme_tcp_req_cur_offset(req);
1059 		size_t len = nvme_tcp_req_cur_length(req);
1060 		bool last = nvme_tcp_pdu_last_send(req, len);
1061 		int req_data_sent = req->data_sent;
1062 		int ret;
1063 
1064 		if (last && !queue->data_digest && !nvme_tcp_queue_more(queue))
1065 			msg.msg_flags |= MSG_EOR;
1066 		else
1067 			msg.msg_flags |= MSG_MORE;
1068 
1069 		if (!sendpages_ok(page, len, offset))
1070 			msg.msg_flags &= ~MSG_SPLICE_PAGES;
1071 
1072 		bvec_set_page(&bvec, page, len, offset);
1073 		iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len);
1074 		ret = sock_sendmsg(queue->sock, &msg);
1075 		if (ret <= 0)
1076 			return ret;
1077 
1078 		if (queue->data_digest)
1079 			nvme_tcp_ddgst_update(queue->snd_hash, page,
1080 					offset, ret);
1081 
1082 		/*
1083 		 * update the request iterator except for the last payload send
1084 		 * in the request where we don't want to modify it as we may
1085 		 * compete with the RX path completing the request.
1086 		 */
1087 		if (req_data_sent + ret < req_data_len)
1088 			nvme_tcp_advance_req(req, ret);
1089 
1090 		/* fully successful last send in current PDU */
1091 		if (last && ret == len) {
1092 			if (queue->data_digest) {
1093 				nvme_tcp_ddgst_final(queue->snd_hash,
1094 					&req->ddgst);
1095 				req->state = NVME_TCP_SEND_DDGST;
1096 				req->offset = 0;
1097 			} else {
1098 				if (h2cdata_left)
1099 					nvme_tcp_setup_h2c_data_pdu(req);
1100 				else
1101 					nvme_tcp_done_send_req(queue);
1102 			}
1103 			return 1;
1104 		}
1105 	}
1106 	return -EAGAIN;
1107 }
1108 
1109 static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req)
1110 {
1111 	struct nvme_tcp_queue *queue = req->queue;
1112 	struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req);
1113 	struct bio_vec bvec;
1114 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, };
1115 	bool inline_data = nvme_tcp_has_inline_data(req);
1116 	u8 hdgst = nvme_tcp_hdgst_len(queue);
1117 	int len = sizeof(*pdu) + hdgst - req->offset;
1118 	int ret;
1119 
1120 	if (inline_data || nvme_tcp_queue_more(queue))
1121 		msg.msg_flags |= MSG_MORE;
1122 	else
1123 		msg.msg_flags |= MSG_EOR;
1124 
1125 	if (queue->hdr_digest && !req->offset)
1126 		nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
1127 
1128 	bvec_set_virt(&bvec, (void *)pdu + req->offset, len);
1129 	iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len);
1130 	ret = sock_sendmsg(queue->sock, &msg);
1131 	if (unlikely(ret <= 0))
1132 		return ret;
1133 
1134 	len -= ret;
1135 	if (!len) {
1136 		if (inline_data) {
1137 			req->state = NVME_TCP_SEND_DATA;
1138 			if (queue->data_digest)
1139 				crypto_ahash_init(queue->snd_hash);
1140 		} else {
1141 			nvme_tcp_done_send_req(queue);
1142 		}
1143 		return 1;
1144 	}
1145 	req->offset += ret;
1146 
1147 	return -EAGAIN;
1148 }
1149 
1150 static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req)
1151 {
1152 	struct nvme_tcp_queue *queue = req->queue;
1153 	struct nvme_tcp_data_pdu *pdu = nvme_tcp_req_data_pdu(req);
1154 	struct bio_vec bvec;
1155 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_MORE, };
1156 	u8 hdgst = nvme_tcp_hdgst_len(queue);
1157 	int len = sizeof(*pdu) - req->offset + hdgst;
1158 	int ret;
1159 
1160 	if (queue->hdr_digest && !req->offset)
1161 		nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
1162 
1163 	if (!req->h2cdata_left)
1164 		msg.msg_flags |= MSG_SPLICE_PAGES;
1165 
1166 	bvec_set_virt(&bvec, (void *)pdu + req->offset, len);
1167 	iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len);
1168 	ret = sock_sendmsg(queue->sock, &msg);
1169 	if (unlikely(ret <= 0))
1170 		return ret;
1171 
1172 	len -= ret;
1173 	if (!len) {
1174 		req->state = NVME_TCP_SEND_DATA;
1175 		if (queue->data_digest)
1176 			crypto_ahash_init(queue->snd_hash);
1177 		return 1;
1178 	}
1179 	req->offset += ret;
1180 
1181 	return -EAGAIN;
1182 }
1183 
1184 static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req)
1185 {
1186 	struct nvme_tcp_queue *queue = req->queue;
1187 	size_t offset = req->offset;
1188 	u32 h2cdata_left = req->h2cdata_left;
1189 	int ret;
1190 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1191 	struct kvec iov = {
1192 		.iov_base = (u8 *)&req->ddgst + req->offset,
1193 		.iov_len = NVME_TCP_DIGEST_LENGTH - req->offset
1194 	};
1195 
1196 	if (nvme_tcp_queue_more(queue))
1197 		msg.msg_flags |= MSG_MORE;
1198 	else
1199 		msg.msg_flags |= MSG_EOR;
1200 
1201 	ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1202 	if (unlikely(ret <= 0))
1203 		return ret;
1204 
1205 	if (offset + ret == NVME_TCP_DIGEST_LENGTH) {
1206 		if (h2cdata_left)
1207 			nvme_tcp_setup_h2c_data_pdu(req);
1208 		else
1209 			nvme_tcp_done_send_req(queue);
1210 		return 1;
1211 	}
1212 
1213 	req->offset += ret;
1214 	return -EAGAIN;
1215 }
1216 
1217 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue)
1218 {
1219 	struct nvme_tcp_request *req;
1220 	unsigned int noreclaim_flag;
1221 	int ret = 1;
1222 
1223 	if (!queue->request) {
1224 		queue->request = nvme_tcp_fetch_request(queue);
1225 		if (!queue->request)
1226 			return 0;
1227 	}
1228 	req = queue->request;
1229 
1230 	noreclaim_flag = memalloc_noreclaim_save();
1231 	if (req->state == NVME_TCP_SEND_CMD_PDU) {
1232 		ret = nvme_tcp_try_send_cmd_pdu(req);
1233 		if (ret <= 0)
1234 			goto done;
1235 		if (!nvme_tcp_has_inline_data(req))
1236 			goto out;
1237 	}
1238 
1239 	if (req->state == NVME_TCP_SEND_H2C_PDU) {
1240 		ret = nvme_tcp_try_send_data_pdu(req);
1241 		if (ret <= 0)
1242 			goto done;
1243 	}
1244 
1245 	if (req->state == NVME_TCP_SEND_DATA) {
1246 		ret = nvme_tcp_try_send_data(req);
1247 		if (ret <= 0)
1248 			goto done;
1249 	}
1250 
1251 	if (req->state == NVME_TCP_SEND_DDGST)
1252 		ret = nvme_tcp_try_send_ddgst(req);
1253 done:
1254 	if (ret == -EAGAIN) {
1255 		ret = 0;
1256 	} else if (ret < 0) {
1257 		dev_err(queue->ctrl->ctrl.device,
1258 			"failed to send request %d\n", ret);
1259 		nvme_tcp_fail_request(queue->request);
1260 		nvme_tcp_done_send_req(queue);
1261 	}
1262 out:
1263 	memalloc_noreclaim_restore(noreclaim_flag);
1264 	return ret;
1265 }
1266 
1267 static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue)
1268 {
1269 	struct socket *sock = queue->sock;
1270 	struct sock *sk = sock->sk;
1271 	read_descriptor_t rd_desc;
1272 	int consumed;
1273 
1274 	rd_desc.arg.data = queue;
1275 	rd_desc.count = 1;
1276 	lock_sock(sk);
1277 	queue->nr_cqe = 0;
1278 	consumed = sock->ops->read_sock(sk, &rd_desc, nvme_tcp_recv_skb);
1279 	release_sock(sk);
1280 	return consumed;
1281 }
1282 
1283 static void nvme_tcp_io_work(struct work_struct *w)
1284 {
1285 	struct nvme_tcp_queue *queue =
1286 		container_of(w, struct nvme_tcp_queue, io_work);
1287 	unsigned long deadline = jiffies + msecs_to_jiffies(1);
1288 
1289 	do {
1290 		bool pending = false;
1291 		int result;
1292 
1293 		if (mutex_trylock(&queue->send_mutex)) {
1294 			result = nvme_tcp_try_send(queue);
1295 			mutex_unlock(&queue->send_mutex);
1296 			if (result > 0)
1297 				pending = true;
1298 			else if (unlikely(result < 0))
1299 				break;
1300 		}
1301 
1302 		result = nvme_tcp_try_recv(queue);
1303 		if (result > 0)
1304 			pending = true;
1305 		else if (unlikely(result < 0))
1306 			return;
1307 
1308 		if (!pending || !queue->rd_enabled)
1309 			return;
1310 
1311 	} while (!time_after(jiffies, deadline)); /* quota is exhausted */
1312 
1313 	queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
1314 }
1315 
1316 static void nvme_tcp_free_crypto(struct nvme_tcp_queue *queue)
1317 {
1318 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash);
1319 
1320 	ahash_request_free(queue->rcv_hash);
1321 	ahash_request_free(queue->snd_hash);
1322 	crypto_free_ahash(tfm);
1323 }
1324 
1325 static int nvme_tcp_alloc_crypto(struct nvme_tcp_queue *queue)
1326 {
1327 	struct crypto_ahash *tfm;
1328 
1329 	tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC);
1330 	if (IS_ERR(tfm))
1331 		return PTR_ERR(tfm);
1332 
1333 	queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1334 	if (!queue->snd_hash)
1335 		goto free_tfm;
1336 	ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL);
1337 
1338 	queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1339 	if (!queue->rcv_hash)
1340 		goto free_snd_hash;
1341 	ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL);
1342 
1343 	return 0;
1344 free_snd_hash:
1345 	ahash_request_free(queue->snd_hash);
1346 free_tfm:
1347 	crypto_free_ahash(tfm);
1348 	return -ENOMEM;
1349 }
1350 
1351 static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl)
1352 {
1353 	struct nvme_tcp_request *async = &ctrl->async_req;
1354 
1355 	page_frag_free(async->pdu);
1356 }
1357 
1358 static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl)
1359 {
1360 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
1361 	struct nvme_tcp_request *async = &ctrl->async_req;
1362 	u8 hdgst = nvme_tcp_hdgst_len(queue);
1363 
1364 	async->pdu = page_frag_alloc(&queue->pf_cache,
1365 		sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
1366 		GFP_KERNEL | __GFP_ZERO);
1367 	if (!async->pdu)
1368 		return -ENOMEM;
1369 
1370 	async->queue = &ctrl->queues[0];
1371 	return 0;
1372 }
1373 
1374 static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid)
1375 {
1376 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1377 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1378 	unsigned int noreclaim_flag;
1379 
1380 	if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1381 		return;
1382 
1383 	if (queue->hdr_digest || queue->data_digest)
1384 		nvme_tcp_free_crypto(queue);
1385 
1386 	page_frag_cache_drain(&queue->pf_cache);
1387 
1388 	noreclaim_flag = memalloc_noreclaim_save();
1389 	/* ->sock will be released by fput() */
1390 	fput(queue->sock->file);
1391 	queue->sock = NULL;
1392 	memalloc_noreclaim_restore(noreclaim_flag);
1393 
1394 	kfree(queue->pdu);
1395 	mutex_destroy(&queue->send_mutex);
1396 	mutex_destroy(&queue->queue_lock);
1397 }
1398 
1399 static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue)
1400 {
1401 	struct nvme_tcp_icreq_pdu *icreq;
1402 	struct nvme_tcp_icresp_pdu *icresp;
1403 	char cbuf[CMSG_LEN(sizeof(char))] = {};
1404 	u8 ctype;
1405 	struct msghdr msg = {};
1406 	struct kvec iov;
1407 	bool ctrl_hdgst, ctrl_ddgst;
1408 	u32 maxh2cdata;
1409 	int ret;
1410 
1411 	icreq = kzalloc(sizeof(*icreq), GFP_KERNEL);
1412 	if (!icreq)
1413 		return -ENOMEM;
1414 
1415 	icresp = kzalloc(sizeof(*icresp), GFP_KERNEL);
1416 	if (!icresp) {
1417 		ret = -ENOMEM;
1418 		goto free_icreq;
1419 	}
1420 
1421 	icreq->hdr.type = nvme_tcp_icreq;
1422 	icreq->hdr.hlen = sizeof(*icreq);
1423 	icreq->hdr.pdo = 0;
1424 	icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen);
1425 	icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
1426 	icreq->maxr2t = 0; /* single inflight r2t supported */
1427 	icreq->hpda = 0; /* no alignment constraint */
1428 	if (queue->hdr_digest)
1429 		icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
1430 	if (queue->data_digest)
1431 		icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
1432 
1433 	iov.iov_base = icreq;
1434 	iov.iov_len = sizeof(*icreq);
1435 	ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1436 	if (ret < 0) {
1437 		pr_warn("queue %d: failed to send icreq, error %d\n",
1438 			nvme_tcp_queue_id(queue), ret);
1439 		goto free_icresp;
1440 	}
1441 
1442 	memset(&msg, 0, sizeof(msg));
1443 	iov.iov_base = icresp;
1444 	iov.iov_len = sizeof(*icresp);
1445 	if (nvme_tcp_queue_tls(queue)) {
1446 		msg.msg_control = cbuf;
1447 		msg.msg_controllen = sizeof(cbuf);
1448 	}
1449 	ret = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1450 			iov.iov_len, msg.msg_flags);
1451 	if (ret < 0) {
1452 		pr_warn("queue %d: failed to receive icresp, error %d\n",
1453 			nvme_tcp_queue_id(queue), ret);
1454 		goto free_icresp;
1455 	}
1456 	ret = -ENOTCONN;
1457 	if (nvme_tcp_queue_tls(queue)) {
1458 		ctype = tls_get_record_type(queue->sock->sk,
1459 					    (struct cmsghdr *)cbuf);
1460 		if (ctype != TLS_RECORD_TYPE_DATA) {
1461 			pr_err("queue %d: unhandled TLS record %d\n",
1462 			       nvme_tcp_queue_id(queue), ctype);
1463 			goto free_icresp;
1464 		}
1465 	}
1466 	ret = -EINVAL;
1467 	if (icresp->hdr.type != nvme_tcp_icresp) {
1468 		pr_err("queue %d: bad type returned %d\n",
1469 			nvme_tcp_queue_id(queue), icresp->hdr.type);
1470 		goto free_icresp;
1471 	}
1472 
1473 	if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) {
1474 		pr_err("queue %d: bad pdu length returned %d\n",
1475 			nvme_tcp_queue_id(queue), icresp->hdr.plen);
1476 		goto free_icresp;
1477 	}
1478 
1479 	if (icresp->pfv != NVME_TCP_PFV_1_0) {
1480 		pr_err("queue %d: bad pfv returned %d\n",
1481 			nvme_tcp_queue_id(queue), icresp->pfv);
1482 		goto free_icresp;
1483 	}
1484 
1485 	ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE);
1486 	if ((queue->data_digest && !ctrl_ddgst) ||
1487 	    (!queue->data_digest && ctrl_ddgst)) {
1488 		pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n",
1489 			nvme_tcp_queue_id(queue),
1490 			queue->data_digest ? "enabled" : "disabled",
1491 			ctrl_ddgst ? "enabled" : "disabled");
1492 		goto free_icresp;
1493 	}
1494 
1495 	ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE);
1496 	if ((queue->hdr_digest && !ctrl_hdgst) ||
1497 	    (!queue->hdr_digest && ctrl_hdgst)) {
1498 		pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n",
1499 			nvme_tcp_queue_id(queue),
1500 			queue->hdr_digest ? "enabled" : "disabled",
1501 			ctrl_hdgst ? "enabled" : "disabled");
1502 		goto free_icresp;
1503 	}
1504 
1505 	if (icresp->cpda != 0) {
1506 		pr_err("queue %d: unsupported cpda returned %d\n",
1507 			nvme_tcp_queue_id(queue), icresp->cpda);
1508 		goto free_icresp;
1509 	}
1510 
1511 	maxh2cdata = le32_to_cpu(icresp->maxdata);
1512 	if ((maxh2cdata % 4) || (maxh2cdata < NVME_TCP_MIN_MAXH2CDATA)) {
1513 		pr_err("queue %d: invalid maxh2cdata returned %u\n",
1514 		       nvme_tcp_queue_id(queue), maxh2cdata);
1515 		goto free_icresp;
1516 	}
1517 	queue->maxh2cdata = maxh2cdata;
1518 
1519 	ret = 0;
1520 free_icresp:
1521 	kfree(icresp);
1522 free_icreq:
1523 	kfree(icreq);
1524 	return ret;
1525 }
1526 
1527 static bool nvme_tcp_admin_queue(struct nvme_tcp_queue *queue)
1528 {
1529 	return nvme_tcp_queue_id(queue) == 0;
1530 }
1531 
1532 static bool nvme_tcp_default_queue(struct nvme_tcp_queue *queue)
1533 {
1534 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1535 	int qid = nvme_tcp_queue_id(queue);
1536 
1537 	return !nvme_tcp_admin_queue(queue) &&
1538 		qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT];
1539 }
1540 
1541 static bool nvme_tcp_read_queue(struct nvme_tcp_queue *queue)
1542 {
1543 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1544 	int qid = nvme_tcp_queue_id(queue);
1545 
1546 	return !nvme_tcp_admin_queue(queue) &&
1547 		!nvme_tcp_default_queue(queue) &&
1548 		qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1549 			  ctrl->io_queues[HCTX_TYPE_READ];
1550 }
1551 
1552 static bool nvme_tcp_poll_queue(struct nvme_tcp_queue *queue)
1553 {
1554 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1555 	int qid = nvme_tcp_queue_id(queue);
1556 
1557 	return !nvme_tcp_admin_queue(queue) &&
1558 		!nvme_tcp_default_queue(queue) &&
1559 		!nvme_tcp_read_queue(queue) &&
1560 		qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1561 			  ctrl->io_queues[HCTX_TYPE_READ] +
1562 			  ctrl->io_queues[HCTX_TYPE_POLL];
1563 }
1564 
1565 static void nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue *queue)
1566 {
1567 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1568 	int qid = nvme_tcp_queue_id(queue);
1569 	int n = 0;
1570 
1571 	if (nvme_tcp_default_queue(queue))
1572 		n = qid - 1;
1573 	else if (nvme_tcp_read_queue(queue))
1574 		n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - 1;
1575 	else if (nvme_tcp_poll_queue(queue))
1576 		n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] -
1577 				ctrl->io_queues[HCTX_TYPE_READ] - 1;
1578 	if (wq_unbound)
1579 		queue->io_cpu = WORK_CPU_UNBOUND;
1580 	else
1581 		queue->io_cpu = cpumask_next_wrap(n - 1, cpu_online_mask, -1, false);
1582 }
1583 
1584 static void nvme_tcp_tls_done(void *data, int status, key_serial_t pskid)
1585 {
1586 	struct nvme_tcp_queue *queue = data;
1587 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1588 	int qid = nvme_tcp_queue_id(queue);
1589 	struct key *tls_key;
1590 
1591 	dev_dbg(ctrl->ctrl.device, "queue %d: TLS handshake done, key %x, status %d\n",
1592 		qid, pskid, status);
1593 
1594 	if (status) {
1595 		queue->tls_err = -status;
1596 		goto out_complete;
1597 	}
1598 
1599 	tls_key = nvme_tls_key_lookup(pskid);
1600 	if (IS_ERR(tls_key)) {
1601 		dev_warn(ctrl->ctrl.device, "queue %d: Invalid key %x\n",
1602 			 qid, pskid);
1603 		queue->tls_err = -ENOKEY;
1604 	} else {
1605 		queue->tls_enabled = true;
1606 		if (qid == 0)
1607 			ctrl->ctrl.tls_pskid = key_serial(tls_key);
1608 		key_put(tls_key);
1609 		queue->tls_err = 0;
1610 	}
1611 
1612 out_complete:
1613 	complete(&queue->tls_complete);
1614 }
1615 
1616 static int nvme_tcp_start_tls(struct nvme_ctrl *nctrl,
1617 			      struct nvme_tcp_queue *queue,
1618 			      key_serial_t pskid)
1619 {
1620 	int qid = nvme_tcp_queue_id(queue);
1621 	int ret;
1622 	struct tls_handshake_args args;
1623 	unsigned long tmo = tls_handshake_timeout * HZ;
1624 	key_serial_t keyring = nvme_keyring_id();
1625 
1626 	dev_dbg(nctrl->device, "queue %d: start TLS with key %x\n",
1627 		qid, pskid);
1628 	memset(&args, 0, sizeof(args));
1629 	args.ta_sock = queue->sock;
1630 	args.ta_done = nvme_tcp_tls_done;
1631 	args.ta_data = queue;
1632 	args.ta_my_peerids[0] = pskid;
1633 	args.ta_num_peerids = 1;
1634 	if (nctrl->opts->keyring)
1635 		keyring = key_serial(nctrl->opts->keyring);
1636 	args.ta_keyring = keyring;
1637 	args.ta_timeout_ms = tls_handshake_timeout * 1000;
1638 	queue->tls_err = -EOPNOTSUPP;
1639 	init_completion(&queue->tls_complete);
1640 	ret = tls_client_hello_psk(&args, GFP_KERNEL);
1641 	if (ret) {
1642 		dev_err(nctrl->device, "queue %d: failed to start TLS: %d\n",
1643 			qid, ret);
1644 		return ret;
1645 	}
1646 	ret = wait_for_completion_interruptible_timeout(&queue->tls_complete, tmo);
1647 	if (ret <= 0) {
1648 		if (ret == 0)
1649 			ret = -ETIMEDOUT;
1650 
1651 		dev_err(nctrl->device,
1652 			"queue %d: TLS handshake failed, error %d\n",
1653 			qid, ret);
1654 		tls_handshake_cancel(queue->sock->sk);
1655 	} else {
1656 		dev_dbg(nctrl->device,
1657 			"queue %d: TLS handshake complete, error %d\n",
1658 			qid, queue->tls_err);
1659 		ret = queue->tls_err;
1660 	}
1661 	return ret;
1662 }
1663 
1664 static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl, int qid,
1665 				key_serial_t pskid)
1666 {
1667 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1668 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1669 	int ret, rcv_pdu_size;
1670 	struct file *sock_file;
1671 
1672 	mutex_init(&queue->queue_lock);
1673 	queue->ctrl = ctrl;
1674 	init_llist_head(&queue->req_list);
1675 	INIT_LIST_HEAD(&queue->send_list);
1676 	mutex_init(&queue->send_mutex);
1677 	INIT_WORK(&queue->io_work, nvme_tcp_io_work);
1678 
1679 	if (qid > 0)
1680 		queue->cmnd_capsule_len = nctrl->ioccsz * 16;
1681 	else
1682 		queue->cmnd_capsule_len = sizeof(struct nvme_command) +
1683 						NVME_TCP_ADMIN_CCSZ;
1684 
1685 	ret = sock_create(ctrl->addr.ss_family, SOCK_STREAM,
1686 			IPPROTO_TCP, &queue->sock);
1687 	if (ret) {
1688 		dev_err(nctrl->device,
1689 			"failed to create socket: %d\n", ret);
1690 		goto err_destroy_mutex;
1691 	}
1692 
1693 	sock_file = sock_alloc_file(queue->sock, O_CLOEXEC, NULL);
1694 	if (IS_ERR(sock_file)) {
1695 		ret = PTR_ERR(sock_file);
1696 		goto err_destroy_mutex;
1697 	}
1698 	nvme_tcp_reclassify_socket(queue->sock);
1699 
1700 	/* Single syn retry */
1701 	tcp_sock_set_syncnt(queue->sock->sk, 1);
1702 
1703 	/* Set TCP no delay */
1704 	tcp_sock_set_nodelay(queue->sock->sk);
1705 
1706 	/*
1707 	 * Cleanup whatever is sitting in the TCP transmit queue on socket
1708 	 * close. This is done to prevent stale data from being sent should
1709 	 * the network connection be restored before TCP times out.
1710 	 */
1711 	sock_no_linger(queue->sock->sk);
1712 
1713 	if (so_priority > 0)
1714 		sock_set_priority(queue->sock->sk, so_priority);
1715 
1716 	/* Set socket type of service */
1717 	if (nctrl->opts->tos >= 0)
1718 		ip_sock_set_tos(queue->sock->sk, nctrl->opts->tos);
1719 
1720 	/* Set 10 seconds timeout for icresp recvmsg */
1721 	queue->sock->sk->sk_rcvtimeo = 10 * HZ;
1722 
1723 	queue->sock->sk->sk_allocation = GFP_ATOMIC;
1724 	queue->sock->sk->sk_use_task_frag = false;
1725 	nvme_tcp_set_queue_io_cpu(queue);
1726 	queue->request = NULL;
1727 	queue->data_remaining = 0;
1728 	queue->ddgst_remaining = 0;
1729 	queue->pdu_remaining = 0;
1730 	queue->pdu_offset = 0;
1731 	sk_set_memalloc(queue->sock->sk);
1732 
1733 	if (nctrl->opts->mask & NVMF_OPT_HOST_TRADDR) {
1734 		ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr,
1735 			sizeof(ctrl->src_addr));
1736 		if (ret) {
1737 			dev_err(nctrl->device,
1738 				"failed to bind queue %d socket %d\n",
1739 				qid, ret);
1740 			goto err_sock;
1741 		}
1742 	}
1743 
1744 	if (nctrl->opts->mask & NVMF_OPT_HOST_IFACE) {
1745 		char *iface = nctrl->opts->host_iface;
1746 		sockptr_t optval = KERNEL_SOCKPTR(iface);
1747 
1748 		ret = sock_setsockopt(queue->sock, SOL_SOCKET, SO_BINDTODEVICE,
1749 				      optval, strlen(iface));
1750 		if (ret) {
1751 			dev_err(nctrl->device,
1752 			  "failed to bind to interface %s queue %d err %d\n",
1753 			  iface, qid, ret);
1754 			goto err_sock;
1755 		}
1756 	}
1757 
1758 	queue->hdr_digest = nctrl->opts->hdr_digest;
1759 	queue->data_digest = nctrl->opts->data_digest;
1760 	if (queue->hdr_digest || queue->data_digest) {
1761 		ret = nvme_tcp_alloc_crypto(queue);
1762 		if (ret) {
1763 			dev_err(nctrl->device,
1764 				"failed to allocate queue %d crypto\n", qid);
1765 			goto err_sock;
1766 		}
1767 	}
1768 
1769 	rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) +
1770 			nvme_tcp_hdgst_len(queue);
1771 	queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL);
1772 	if (!queue->pdu) {
1773 		ret = -ENOMEM;
1774 		goto err_crypto;
1775 	}
1776 
1777 	dev_dbg(nctrl->device, "connecting queue %d\n",
1778 			nvme_tcp_queue_id(queue));
1779 
1780 	ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr,
1781 		sizeof(ctrl->addr), 0);
1782 	if (ret) {
1783 		dev_err(nctrl->device,
1784 			"failed to connect socket: %d\n", ret);
1785 		goto err_rcv_pdu;
1786 	}
1787 
1788 	/* If PSKs are configured try to start TLS */
1789 	if (nvme_tcp_tls_configured(nctrl) && pskid) {
1790 		ret = nvme_tcp_start_tls(nctrl, queue, pskid);
1791 		if (ret)
1792 			goto err_init_connect;
1793 	}
1794 
1795 	ret = nvme_tcp_init_connection(queue);
1796 	if (ret)
1797 		goto err_init_connect;
1798 
1799 	set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags);
1800 
1801 	return 0;
1802 
1803 err_init_connect:
1804 	kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1805 err_rcv_pdu:
1806 	kfree(queue->pdu);
1807 err_crypto:
1808 	if (queue->hdr_digest || queue->data_digest)
1809 		nvme_tcp_free_crypto(queue);
1810 err_sock:
1811 	/* ->sock will be released by fput() */
1812 	fput(queue->sock->file);
1813 	queue->sock = NULL;
1814 err_destroy_mutex:
1815 	mutex_destroy(&queue->send_mutex);
1816 	mutex_destroy(&queue->queue_lock);
1817 	return ret;
1818 }
1819 
1820 static void nvme_tcp_restore_sock_ops(struct nvme_tcp_queue *queue)
1821 {
1822 	struct socket *sock = queue->sock;
1823 
1824 	write_lock_bh(&sock->sk->sk_callback_lock);
1825 	sock->sk->sk_user_data  = NULL;
1826 	sock->sk->sk_data_ready = queue->data_ready;
1827 	sock->sk->sk_state_change = queue->state_change;
1828 	sock->sk->sk_write_space  = queue->write_space;
1829 	write_unlock_bh(&sock->sk->sk_callback_lock);
1830 }
1831 
1832 static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue)
1833 {
1834 	kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1835 	nvme_tcp_restore_sock_ops(queue);
1836 	cancel_work_sync(&queue->io_work);
1837 }
1838 
1839 static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid)
1840 {
1841 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1842 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1843 
1844 	if (!test_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1845 		return;
1846 
1847 	mutex_lock(&queue->queue_lock);
1848 	if (test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags))
1849 		__nvme_tcp_stop_queue(queue);
1850 	/* Stopping the queue will disable TLS */
1851 	queue->tls_enabled = false;
1852 	mutex_unlock(&queue->queue_lock);
1853 }
1854 
1855 static void nvme_tcp_setup_sock_ops(struct nvme_tcp_queue *queue)
1856 {
1857 	write_lock_bh(&queue->sock->sk->sk_callback_lock);
1858 	queue->sock->sk->sk_user_data = queue;
1859 	queue->state_change = queue->sock->sk->sk_state_change;
1860 	queue->data_ready = queue->sock->sk->sk_data_ready;
1861 	queue->write_space = queue->sock->sk->sk_write_space;
1862 	queue->sock->sk->sk_data_ready = nvme_tcp_data_ready;
1863 	queue->sock->sk->sk_state_change = nvme_tcp_state_change;
1864 	queue->sock->sk->sk_write_space = nvme_tcp_write_space;
1865 #ifdef CONFIG_NET_RX_BUSY_POLL
1866 	queue->sock->sk->sk_ll_usec = 1;
1867 #endif
1868 	write_unlock_bh(&queue->sock->sk->sk_callback_lock);
1869 }
1870 
1871 static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx)
1872 {
1873 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1874 	struct nvme_tcp_queue *queue = &ctrl->queues[idx];
1875 	int ret;
1876 
1877 	queue->rd_enabled = true;
1878 	nvme_tcp_init_recv_ctx(queue);
1879 	nvme_tcp_setup_sock_ops(queue);
1880 
1881 	if (idx)
1882 		ret = nvmf_connect_io_queue(nctrl, idx);
1883 	else
1884 		ret = nvmf_connect_admin_queue(nctrl);
1885 
1886 	if (!ret) {
1887 		set_bit(NVME_TCP_Q_LIVE, &queue->flags);
1888 	} else {
1889 		if (test_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1890 			__nvme_tcp_stop_queue(queue);
1891 		dev_err(nctrl->device,
1892 			"failed to connect queue: %d ret=%d\n", idx, ret);
1893 	}
1894 	return ret;
1895 }
1896 
1897 static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl)
1898 {
1899 	if (to_tcp_ctrl(ctrl)->async_req.pdu) {
1900 		cancel_work_sync(&ctrl->async_event_work);
1901 		nvme_tcp_free_async_req(to_tcp_ctrl(ctrl));
1902 		to_tcp_ctrl(ctrl)->async_req.pdu = NULL;
1903 	}
1904 
1905 	nvme_tcp_free_queue(ctrl, 0);
1906 }
1907 
1908 static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl)
1909 {
1910 	int i;
1911 
1912 	for (i = 1; i < ctrl->queue_count; i++)
1913 		nvme_tcp_free_queue(ctrl, i);
1914 }
1915 
1916 static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl)
1917 {
1918 	int i;
1919 
1920 	for (i = 1; i < ctrl->queue_count; i++)
1921 		nvme_tcp_stop_queue(ctrl, i);
1922 }
1923 
1924 static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl,
1925 				    int first, int last)
1926 {
1927 	int i, ret;
1928 
1929 	for (i = first; i < last; i++) {
1930 		ret = nvme_tcp_start_queue(ctrl, i);
1931 		if (ret)
1932 			goto out_stop_queues;
1933 	}
1934 
1935 	return 0;
1936 
1937 out_stop_queues:
1938 	for (i--; i >= first; i--)
1939 		nvme_tcp_stop_queue(ctrl, i);
1940 	return ret;
1941 }
1942 
1943 static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl)
1944 {
1945 	int ret;
1946 	key_serial_t pskid = 0;
1947 
1948 	if (nvme_tcp_tls_configured(ctrl)) {
1949 		if (ctrl->opts->tls_key)
1950 			pskid = key_serial(ctrl->opts->tls_key);
1951 		else {
1952 			pskid = nvme_tls_psk_default(ctrl->opts->keyring,
1953 						      ctrl->opts->host->nqn,
1954 						      ctrl->opts->subsysnqn);
1955 			if (!pskid) {
1956 				dev_err(ctrl->device, "no valid PSK found\n");
1957 				return -ENOKEY;
1958 			}
1959 		}
1960 	}
1961 
1962 	ret = nvme_tcp_alloc_queue(ctrl, 0, pskid);
1963 	if (ret)
1964 		return ret;
1965 
1966 	ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl));
1967 	if (ret)
1968 		goto out_free_queue;
1969 
1970 	return 0;
1971 
1972 out_free_queue:
1973 	nvme_tcp_free_queue(ctrl, 0);
1974 	return ret;
1975 }
1976 
1977 static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1978 {
1979 	int i, ret;
1980 
1981 	if (nvme_tcp_tls_configured(ctrl) && !ctrl->tls_pskid) {
1982 		dev_err(ctrl->device, "no PSK negotiated\n");
1983 		return -ENOKEY;
1984 	}
1985 
1986 	for (i = 1; i < ctrl->queue_count; i++) {
1987 		ret = nvme_tcp_alloc_queue(ctrl, i,
1988 				ctrl->tls_pskid);
1989 		if (ret)
1990 			goto out_free_queues;
1991 	}
1992 
1993 	return 0;
1994 
1995 out_free_queues:
1996 	for (i--; i >= 1; i--)
1997 		nvme_tcp_free_queue(ctrl, i);
1998 
1999 	return ret;
2000 }
2001 
2002 static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
2003 {
2004 	unsigned int nr_io_queues;
2005 	int ret;
2006 
2007 	nr_io_queues = nvmf_nr_io_queues(ctrl->opts);
2008 	ret = nvme_set_queue_count(ctrl, &nr_io_queues);
2009 	if (ret)
2010 		return ret;
2011 
2012 	if (nr_io_queues == 0) {
2013 		dev_err(ctrl->device,
2014 			"unable to set any I/O queues\n");
2015 		return -ENOMEM;
2016 	}
2017 
2018 	ctrl->queue_count = nr_io_queues + 1;
2019 	dev_info(ctrl->device,
2020 		"creating %d I/O queues.\n", nr_io_queues);
2021 
2022 	nvmf_set_io_queues(ctrl->opts, nr_io_queues,
2023 			   to_tcp_ctrl(ctrl)->io_queues);
2024 	return __nvme_tcp_alloc_io_queues(ctrl);
2025 }
2026 
2027 static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new)
2028 {
2029 	int ret, nr_queues;
2030 
2031 	ret = nvme_tcp_alloc_io_queues(ctrl);
2032 	if (ret)
2033 		return ret;
2034 
2035 	if (new) {
2036 		ret = nvme_alloc_io_tag_set(ctrl, &to_tcp_ctrl(ctrl)->tag_set,
2037 				&nvme_tcp_mq_ops,
2038 				ctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2,
2039 				sizeof(struct nvme_tcp_request));
2040 		if (ret)
2041 			goto out_free_io_queues;
2042 	}
2043 
2044 	/*
2045 	 * Only start IO queues for which we have allocated the tagset
2046 	 * and limitted it to the available queues. On reconnects, the
2047 	 * queue number might have changed.
2048 	 */
2049 	nr_queues = min(ctrl->tagset->nr_hw_queues + 1, ctrl->queue_count);
2050 	ret = nvme_tcp_start_io_queues(ctrl, 1, nr_queues);
2051 	if (ret)
2052 		goto out_cleanup_connect_q;
2053 
2054 	if (!new) {
2055 		nvme_start_freeze(ctrl);
2056 		nvme_unquiesce_io_queues(ctrl);
2057 		if (!nvme_wait_freeze_timeout(ctrl, NVME_IO_TIMEOUT)) {
2058 			/*
2059 			 * If we timed out waiting for freeze we are likely to
2060 			 * be stuck.  Fail the controller initialization just
2061 			 * to be safe.
2062 			 */
2063 			ret = -ENODEV;
2064 			nvme_unfreeze(ctrl);
2065 			goto out_wait_freeze_timed_out;
2066 		}
2067 		blk_mq_update_nr_hw_queues(ctrl->tagset,
2068 			ctrl->queue_count - 1);
2069 		nvme_unfreeze(ctrl);
2070 	}
2071 
2072 	/*
2073 	 * If the number of queues has increased (reconnect case)
2074 	 * start all new queues now.
2075 	 */
2076 	ret = nvme_tcp_start_io_queues(ctrl, nr_queues,
2077 				       ctrl->tagset->nr_hw_queues + 1);
2078 	if (ret)
2079 		goto out_wait_freeze_timed_out;
2080 
2081 	return 0;
2082 
2083 out_wait_freeze_timed_out:
2084 	nvme_quiesce_io_queues(ctrl);
2085 	nvme_sync_io_queues(ctrl);
2086 	nvme_tcp_stop_io_queues(ctrl);
2087 out_cleanup_connect_q:
2088 	nvme_cancel_tagset(ctrl);
2089 	if (new)
2090 		nvme_remove_io_tag_set(ctrl);
2091 out_free_io_queues:
2092 	nvme_tcp_free_io_queues(ctrl);
2093 	return ret;
2094 }
2095 
2096 static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new)
2097 {
2098 	int error;
2099 
2100 	error = nvme_tcp_alloc_admin_queue(ctrl);
2101 	if (error)
2102 		return error;
2103 
2104 	if (new) {
2105 		error = nvme_alloc_admin_tag_set(ctrl,
2106 				&to_tcp_ctrl(ctrl)->admin_tag_set,
2107 				&nvme_tcp_admin_mq_ops,
2108 				sizeof(struct nvme_tcp_request));
2109 		if (error)
2110 			goto out_free_queue;
2111 	}
2112 
2113 	error = nvme_tcp_start_queue(ctrl, 0);
2114 	if (error)
2115 		goto out_cleanup_tagset;
2116 
2117 	error = nvme_enable_ctrl(ctrl);
2118 	if (error)
2119 		goto out_stop_queue;
2120 
2121 	nvme_unquiesce_admin_queue(ctrl);
2122 
2123 	error = nvme_init_ctrl_finish(ctrl, false);
2124 	if (error)
2125 		goto out_quiesce_queue;
2126 
2127 	return 0;
2128 
2129 out_quiesce_queue:
2130 	nvme_quiesce_admin_queue(ctrl);
2131 	blk_sync_queue(ctrl->admin_q);
2132 out_stop_queue:
2133 	nvme_tcp_stop_queue(ctrl, 0);
2134 	nvme_cancel_admin_tagset(ctrl);
2135 out_cleanup_tagset:
2136 	if (new)
2137 		nvme_remove_admin_tag_set(ctrl);
2138 out_free_queue:
2139 	nvme_tcp_free_admin_queue(ctrl);
2140 	return error;
2141 }
2142 
2143 static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl,
2144 		bool remove)
2145 {
2146 	nvme_quiesce_admin_queue(ctrl);
2147 	blk_sync_queue(ctrl->admin_q);
2148 	nvme_tcp_stop_queue(ctrl, 0);
2149 	nvme_cancel_admin_tagset(ctrl);
2150 	if (remove) {
2151 		nvme_unquiesce_admin_queue(ctrl);
2152 		nvme_remove_admin_tag_set(ctrl);
2153 	}
2154 	nvme_tcp_free_admin_queue(ctrl);
2155 	if (ctrl->tls_pskid) {
2156 		dev_dbg(ctrl->device, "Wipe negotiated TLS_PSK %08x\n",
2157 			ctrl->tls_pskid);
2158 		ctrl->tls_pskid = 0;
2159 	}
2160 }
2161 
2162 static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl,
2163 		bool remove)
2164 {
2165 	if (ctrl->queue_count <= 1)
2166 		return;
2167 	nvme_quiesce_io_queues(ctrl);
2168 	nvme_sync_io_queues(ctrl);
2169 	nvme_tcp_stop_io_queues(ctrl);
2170 	nvme_cancel_tagset(ctrl);
2171 	if (remove) {
2172 		nvme_unquiesce_io_queues(ctrl);
2173 		nvme_remove_io_tag_set(ctrl);
2174 	}
2175 	nvme_tcp_free_io_queues(ctrl);
2176 }
2177 
2178 static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl,
2179 		int status)
2180 {
2181 	enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
2182 
2183 	/* If we are resetting/deleting then do nothing */
2184 	if (state != NVME_CTRL_CONNECTING) {
2185 		WARN_ON_ONCE(state == NVME_CTRL_NEW || state == NVME_CTRL_LIVE);
2186 		return;
2187 	}
2188 
2189 	if (nvmf_should_reconnect(ctrl, status)) {
2190 		dev_info(ctrl->device, "Reconnecting in %d seconds...\n",
2191 			ctrl->opts->reconnect_delay);
2192 		queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work,
2193 				ctrl->opts->reconnect_delay * HZ);
2194 	} else {
2195 		dev_info(ctrl->device, "Removing controller (%d)...\n",
2196 			 status);
2197 		nvme_delete_ctrl(ctrl);
2198 	}
2199 }
2200 
2201 static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new)
2202 {
2203 	struct nvmf_ctrl_options *opts = ctrl->opts;
2204 	int ret;
2205 
2206 	ret = nvme_tcp_configure_admin_queue(ctrl, new);
2207 	if (ret)
2208 		return ret;
2209 
2210 	if (ctrl->icdoff) {
2211 		ret = -EOPNOTSUPP;
2212 		dev_err(ctrl->device, "icdoff is not supported!\n");
2213 		goto destroy_admin;
2214 	}
2215 
2216 	if (!nvme_ctrl_sgl_supported(ctrl)) {
2217 		ret = -EOPNOTSUPP;
2218 		dev_err(ctrl->device, "Mandatory sgls are not supported!\n");
2219 		goto destroy_admin;
2220 	}
2221 
2222 	if (opts->queue_size > ctrl->sqsize + 1)
2223 		dev_warn(ctrl->device,
2224 			"queue_size %zu > ctrl sqsize %u, clamping down\n",
2225 			opts->queue_size, ctrl->sqsize + 1);
2226 
2227 	if (ctrl->sqsize + 1 > ctrl->maxcmd) {
2228 		dev_warn(ctrl->device,
2229 			"sqsize %u > ctrl maxcmd %u, clamping down\n",
2230 			ctrl->sqsize + 1, ctrl->maxcmd);
2231 		ctrl->sqsize = ctrl->maxcmd - 1;
2232 	}
2233 
2234 	if (ctrl->queue_count > 1) {
2235 		ret = nvme_tcp_configure_io_queues(ctrl, new);
2236 		if (ret)
2237 			goto destroy_admin;
2238 	}
2239 
2240 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) {
2241 		/*
2242 		 * state change failure is ok if we started ctrl delete,
2243 		 * unless we're during creation of a new controller to
2244 		 * avoid races with teardown flow.
2245 		 */
2246 		enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
2247 
2248 		WARN_ON_ONCE(state != NVME_CTRL_DELETING &&
2249 			     state != NVME_CTRL_DELETING_NOIO);
2250 		WARN_ON_ONCE(new);
2251 		ret = -EINVAL;
2252 		goto destroy_io;
2253 	}
2254 
2255 	nvme_start_ctrl(ctrl);
2256 	return 0;
2257 
2258 destroy_io:
2259 	if (ctrl->queue_count > 1) {
2260 		nvme_quiesce_io_queues(ctrl);
2261 		nvme_sync_io_queues(ctrl);
2262 		nvme_tcp_stop_io_queues(ctrl);
2263 		nvme_cancel_tagset(ctrl);
2264 		if (new)
2265 			nvme_remove_io_tag_set(ctrl);
2266 		nvme_tcp_free_io_queues(ctrl);
2267 	}
2268 destroy_admin:
2269 	nvme_stop_keep_alive(ctrl);
2270 	nvme_tcp_teardown_admin_queue(ctrl, new);
2271 	return ret;
2272 }
2273 
2274 static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work)
2275 {
2276 	struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work),
2277 			struct nvme_tcp_ctrl, connect_work);
2278 	struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2279 	int ret;
2280 
2281 	++ctrl->nr_reconnects;
2282 
2283 	ret = nvme_tcp_setup_ctrl(ctrl, false);
2284 	if (ret)
2285 		goto requeue;
2286 
2287 	dev_info(ctrl->device, "Successfully reconnected (attempt %d/%d)\n",
2288 		 ctrl->nr_reconnects, ctrl->opts->max_reconnects);
2289 
2290 	ctrl->nr_reconnects = 0;
2291 
2292 	return;
2293 
2294 requeue:
2295 	dev_info(ctrl->device, "Failed reconnect attempt %d/%d\n",
2296 		 ctrl->nr_reconnects, ctrl->opts->max_reconnects);
2297 	nvme_tcp_reconnect_or_remove(ctrl, ret);
2298 }
2299 
2300 static void nvme_tcp_error_recovery_work(struct work_struct *work)
2301 {
2302 	struct nvme_tcp_ctrl *tcp_ctrl = container_of(work,
2303 				struct nvme_tcp_ctrl, err_work);
2304 	struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2305 
2306 	nvme_stop_keep_alive(ctrl);
2307 	flush_work(&ctrl->async_event_work);
2308 	nvme_tcp_teardown_io_queues(ctrl, false);
2309 	/* unquiesce to fail fast pending requests */
2310 	nvme_unquiesce_io_queues(ctrl);
2311 	nvme_tcp_teardown_admin_queue(ctrl, false);
2312 	nvme_unquiesce_admin_queue(ctrl);
2313 	nvme_auth_stop(ctrl);
2314 
2315 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2316 		/* state change failure is ok if we started ctrl delete */
2317 		enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
2318 
2319 		WARN_ON_ONCE(state != NVME_CTRL_DELETING &&
2320 			     state != NVME_CTRL_DELETING_NOIO);
2321 		return;
2322 	}
2323 
2324 	nvme_tcp_reconnect_or_remove(ctrl, 0);
2325 }
2326 
2327 static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
2328 {
2329 	nvme_tcp_teardown_io_queues(ctrl, shutdown);
2330 	nvme_quiesce_admin_queue(ctrl);
2331 	nvme_disable_ctrl(ctrl, shutdown);
2332 	nvme_tcp_teardown_admin_queue(ctrl, shutdown);
2333 }
2334 
2335 static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl)
2336 {
2337 	nvme_tcp_teardown_ctrl(ctrl, true);
2338 }
2339 
2340 static void nvme_reset_ctrl_work(struct work_struct *work)
2341 {
2342 	struct nvme_ctrl *ctrl =
2343 		container_of(work, struct nvme_ctrl, reset_work);
2344 	int ret;
2345 
2346 	nvme_stop_ctrl(ctrl);
2347 	nvme_tcp_teardown_ctrl(ctrl, false);
2348 
2349 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2350 		/* state change failure is ok if we started ctrl delete */
2351 		enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
2352 
2353 		WARN_ON_ONCE(state != NVME_CTRL_DELETING &&
2354 			     state != NVME_CTRL_DELETING_NOIO);
2355 		return;
2356 	}
2357 
2358 	ret = nvme_tcp_setup_ctrl(ctrl, false);
2359 	if (ret)
2360 		goto out_fail;
2361 
2362 	return;
2363 
2364 out_fail:
2365 	++ctrl->nr_reconnects;
2366 	nvme_tcp_reconnect_or_remove(ctrl, ret);
2367 }
2368 
2369 static void nvme_tcp_stop_ctrl(struct nvme_ctrl *ctrl)
2370 {
2371 	flush_work(&to_tcp_ctrl(ctrl)->err_work);
2372 	cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work);
2373 }
2374 
2375 static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl)
2376 {
2377 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
2378 
2379 	if (list_empty(&ctrl->list))
2380 		goto free_ctrl;
2381 
2382 	mutex_lock(&nvme_tcp_ctrl_mutex);
2383 	list_del(&ctrl->list);
2384 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2385 
2386 	nvmf_free_options(nctrl->opts);
2387 free_ctrl:
2388 	kfree(ctrl->queues);
2389 	kfree(ctrl);
2390 }
2391 
2392 static void nvme_tcp_set_sg_null(struct nvme_command *c)
2393 {
2394 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2395 
2396 	sg->addr = 0;
2397 	sg->length = 0;
2398 	sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2399 			NVME_SGL_FMT_TRANSPORT_A;
2400 }
2401 
2402 static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue,
2403 		struct nvme_command *c, u32 data_len)
2404 {
2405 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2406 
2407 	sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
2408 	sg->length = cpu_to_le32(data_len);
2409 	sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
2410 }
2411 
2412 static void nvme_tcp_set_sg_host_data(struct nvme_command *c,
2413 		u32 data_len)
2414 {
2415 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2416 
2417 	sg->addr = 0;
2418 	sg->length = cpu_to_le32(data_len);
2419 	sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2420 			NVME_SGL_FMT_TRANSPORT_A;
2421 }
2422 
2423 static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg)
2424 {
2425 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg);
2426 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
2427 	struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu;
2428 	struct nvme_command *cmd = &pdu->cmd;
2429 	u8 hdgst = nvme_tcp_hdgst_len(queue);
2430 
2431 	memset(pdu, 0, sizeof(*pdu));
2432 	pdu->hdr.type = nvme_tcp_cmd;
2433 	if (queue->hdr_digest)
2434 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
2435 	pdu->hdr.hlen = sizeof(*pdu);
2436 	pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
2437 
2438 	cmd->common.opcode = nvme_admin_async_event;
2439 	cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
2440 	cmd->common.flags |= NVME_CMD_SGL_METABUF;
2441 	nvme_tcp_set_sg_null(cmd);
2442 
2443 	ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU;
2444 	ctrl->async_req.offset = 0;
2445 	ctrl->async_req.curr_bio = NULL;
2446 	ctrl->async_req.data_len = 0;
2447 
2448 	nvme_tcp_queue_request(&ctrl->async_req, true, true);
2449 }
2450 
2451 static void nvme_tcp_complete_timed_out(struct request *rq)
2452 {
2453 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2454 	struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2455 
2456 	nvme_tcp_stop_queue(ctrl, nvme_tcp_queue_id(req->queue));
2457 	nvmf_complete_timed_out_request(rq);
2458 }
2459 
2460 static enum blk_eh_timer_return nvme_tcp_timeout(struct request *rq)
2461 {
2462 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2463 	struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2464 	struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req);
2465 	struct nvme_command *cmd = &pdu->cmd;
2466 	int qid = nvme_tcp_queue_id(req->queue);
2467 
2468 	dev_warn(ctrl->device,
2469 		 "I/O tag %d (%04x) type %d opcode %#x (%s) QID %d timeout\n",
2470 		 rq->tag, nvme_cid(rq), pdu->hdr.type, cmd->common.opcode,
2471 		 nvme_fabrics_opcode_str(qid, cmd), qid);
2472 
2473 	if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE) {
2474 		/*
2475 		 * If we are resetting, connecting or deleting we should
2476 		 * complete immediately because we may block controller
2477 		 * teardown or setup sequence
2478 		 * - ctrl disable/shutdown fabrics requests
2479 		 * - connect requests
2480 		 * - initialization admin requests
2481 		 * - I/O requests that entered after unquiescing and
2482 		 *   the controller stopped responding
2483 		 *
2484 		 * All other requests should be cancelled by the error
2485 		 * recovery work, so it's fine that we fail it here.
2486 		 */
2487 		nvme_tcp_complete_timed_out(rq);
2488 		return BLK_EH_DONE;
2489 	}
2490 
2491 	/*
2492 	 * LIVE state should trigger the normal error recovery which will
2493 	 * handle completing this request.
2494 	 */
2495 	nvme_tcp_error_recovery(ctrl);
2496 	return BLK_EH_RESET_TIMER;
2497 }
2498 
2499 static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue,
2500 			struct request *rq)
2501 {
2502 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2503 	struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req);
2504 	struct nvme_command *c = &pdu->cmd;
2505 
2506 	c->common.flags |= NVME_CMD_SGL_METABUF;
2507 
2508 	if (!blk_rq_nr_phys_segments(rq))
2509 		nvme_tcp_set_sg_null(c);
2510 	else if (rq_data_dir(rq) == WRITE &&
2511 	    req->data_len <= nvme_tcp_inline_data_size(req))
2512 		nvme_tcp_set_sg_inline(queue, c, req->data_len);
2513 	else
2514 		nvme_tcp_set_sg_host_data(c, req->data_len);
2515 
2516 	return 0;
2517 }
2518 
2519 static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns,
2520 		struct request *rq)
2521 {
2522 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2523 	struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req);
2524 	struct nvme_tcp_queue *queue = req->queue;
2525 	u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0;
2526 	blk_status_t ret;
2527 
2528 	ret = nvme_setup_cmd(ns, rq);
2529 	if (ret)
2530 		return ret;
2531 
2532 	req->state = NVME_TCP_SEND_CMD_PDU;
2533 	req->status = cpu_to_le16(NVME_SC_SUCCESS);
2534 	req->offset = 0;
2535 	req->data_sent = 0;
2536 	req->pdu_len = 0;
2537 	req->pdu_sent = 0;
2538 	req->h2cdata_left = 0;
2539 	req->data_len = blk_rq_nr_phys_segments(rq) ?
2540 				blk_rq_payload_bytes(rq) : 0;
2541 	req->curr_bio = rq->bio;
2542 	if (req->curr_bio && req->data_len)
2543 		nvme_tcp_init_iter(req, rq_data_dir(rq));
2544 
2545 	if (rq_data_dir(rq) == WRITE &&
2546 	    req->data_len <= nvme_tcp_inline_data_size(req))
2547 		req->pdu_len = req->data_len;
2548 
2549 	pdu->hdr.type = nvme_tcp_cmd;
2550 	pdu->hdr.flags = 0;
2551 	if (queue->hdr_digest)
2552 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
2553 	if (queue->data_digest && req->pdu_len) {
2554 		pdu->hdr.flags |= NVME_TCP_F_DDGST;
2555 		ddgst = nvme_tcp_ddgst_len(queue);
2556 	}
2557 	pdu->hdr.hlen = sizeof(*pdu);
2558 	pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0;
2559 	pdu->hdr.plen =
2560 		cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst);
2561 
2562 	ret = nvme_tcp_map_data(queue, rq);
2563 	if (unlikely(ret)) {
2564 		nvme_cleanup_cmd(rq);
2565 		dev_err(queue->ctrl->ctrl.device,
2566 			"Failed to map data (%d)\n", ret);
2567 		return ret;
2568 	}
2569 
2570 	return 0;
2571 }
2572 
2573 static void nvme_tcp_commit_rqs(struct blk_mq_hw_ctx *hctx)
2574 {
2575 	struct nvme_tcp_queue *queue = hctx->driver_data;
2576 
2577 	if (!llist_empty(&queue->req_list))
2578 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
2579 }
2580 
2581 static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx,
2582 		const struct blk_mq_queue_data *bd)
2583 {
2584 	struct nvme_ns *ns = hctx->queue->queuedata;
2585 	struct nvme_tcp_queue *queue = hctx->driver_data;
2586 	struct request *rq = bd->rq;
2587 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2588 	bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags);
2589 	blk_status_t ret;
2590 
2591 	if (!nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2592 		return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq);
2593 
2594 	ret = nvme_tcp_setup_cmd_pdu(ns, rq);
2595 	if (unlikely(ret))
2596 		return ret;
2597 
2598 	nvme_start_request(rq);
2599 
2600 	nvme_tcp_queue_request(req, true, bd->last);
2601 
2602 	return BLK_STS_OK;
2603 }
2604 
2605 static void nvme_tcp_map_queues(struct blk_mq_tag_set *set)
2606 {
2607 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(set->driver_data);
2608 
2609 	nvmf_map_queues(set, &ctrl->ctrl, ctrl->io_queues);
2610 }
2611 
2612 static int nvme_tcp_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
2613 {
2614 	struct nvme_tcp_queue *queue = hctx->driver_data;
2615 	struct sock *sk = queue->sock->sk;
2616 
2617 	if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags))
2618 		return 0;
2619 
2620 	set_bit(NVME_TCP_Q_POLLING, &queue->flags);
2621 	if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue))
2622 		sk_busy_loop(sk, true);
2623 	nvme_tcp_try_recv(queue);
2624 	clear_bit(NVME_TCP_Q_POLLING, &queue->flags);
2625 	return queue->nr_cqe;
2626 }
2627 
2628 static int nvme_tcp_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2629 {
2630 	struct nvme_tcp_queue *queue = &to_tcp_ctrl(ctrl)->queues[0];
2631 	struct sockaddr_storage src_addr;
2632 	int ret, len;
2633 
2634 	len = nvmf_get_address(ctrl, buf, size);
2635 
2636 	if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags))
2637 		return len;
2638 
2639 	mutex_lock(&queue->queue_lock);
2640 
2641 	ret = kernel_getsockname(queue->sock, (struct sockaddr *)&src_addr);
2642 	if (ret > 0) {
2643 		if (len > 0)
2644 			len--; /* strip trailing newline */
2645 		len += scnprintf(buf + len, size - len, "%ssrc_addr=%pISc\n",
2646 				(len) ? "," : "", &src_addr);
2647 	}
2648 
2649 	mutex_unlock(&queue->queue_lock);
2650 
2651 	return len;
2652 }
2653 
2654 static const struct blk_mq_ops nvme_tcp_mq_ops = {
2655 	.queue_rq	= nvme_tcp_queue_rq,
2656 	.commit_rqs	= nvme_tcp_commit_rqs,
2657 	.complete	= nvme_complete_rq,
2658 	.init_request	= nvme_tcp_init_request,
2659 	.exit_request	= nvme_tcp_exit_request,
2660 	.init_hctx	= nvme_tcp_init_hctx,
2661 	.timeout	= nvme_tcp_timeout,
2662 	.map_queues	= nvme_tcp_map_queues,
2663 	.poll		= nvme_tcp_poll,
2664 };
2665 
2666 static const struct blk_mq_ops nvme_tcp_admin_mq_ops = {
2667 	.queue_rq	= nvme_tcp_queue_rq,
2668 	.complete	= nvme_complete_rq,
2669 	.init_request	= nvme_tcp_init_request,
2670 	.exit_request	= nvme_tcp_exit_request,
2671 	.init_hctx	= nvme_tcp_init_admin_hctx,
2672 	.timeout	= nvme_tcp_timeout,
2673 };
2674 
2675 static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = {
2676 	.name			= "tcp",
2677 	.module			= THIS_MODULE,
2678 	.flags			= NVME_F_FABRICS | NVME_F_BLOCKING,
2679 	.reg_read32		= nvmf_reg_read32,
2680 	.reg_read64		= nvmf_reg_read64,
2681 	.reg_write32		= nvmf_reg_write32,
2682 	.subsystem_reset	= nvmf_subsystem_reset,
2683 	.free_ctrl		= nvme_tcp_free_ctrl,
2684 	.submit_async_event	= nvme_tcp_submit_async_event,
2685 	.delete_ctrl		= nvme_tcp_delete_ctrl,
2686 	.get_address		= nvme_tcp_get_address,
2687 	.stop_ctrl		= nvme_tcp_stop_ctrl,
2688 };
2689 
2690 static bool
2691 nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts)
2692 {
2693 	struct nvme_tcp_ctrl *ctrl;
2694 	bool found = false;
2695 
2696 	mutex_lock(&nvme_tcp_ctrl_mutex);
2697 	list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) {
2698 		found = nvmf_ip_options_match(&ctrl->ctrl, opts);
2699 		if (found)
2700 			break;
2701 	}
2702 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2703 
2704 	return found;
2705 }
2706 
2707 static struct nvme_tcp_ctrl *nvme_tcp_alloc_ctrl(struct device *dev,
2708 		struct nvmf_ctrl_options *opts)
2709 {
2710 	struct nvme_tcp_ctrl *ctrl;
2711 	int ret;
2712 
2713 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2714 	if (!ctrl)
2715 		return ERR_PTR(-ENOMEM);
2716 
2717 	INIT_LIST_HEAD(&ctrl->list);
2718 	ctrl->ctrl.opts = opts;
2719 	ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2720 				opts->nr_poll_queues + 1;
2721 	ctrl->ctrl.sqsize = opts->queue_size - 1;
2722 	ctrl->ctrl.kato = opts->kato;
2723 
2724 	INIT_DELAYED_WORK(&ctrl->connect_work,
2725 			nvme_tcp_reconnect_ctrl_work);
2726 	INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work);
2727 	INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work);
2728 
2729 	if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2730 		opts->trsvcid =
2731 			kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL);
2732 		if (!opts->trsvcid) {
2733 			ret = -ENOMEM;
2734 			goto out_free_ctrl;
2735 		}
2736 		opts->mask |= NVMF_OPT_TRSVCID;
2737 	}
2738 
2739 	ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2740 			opts->traddr, opts->trsvcid, &ctrl->addr);
2741 	if (ret) {
2742 		pr_err("malformed address passed: %s:%s\n",
2743 			opts->traddr, opts->trsvcid);
2744 		goto out_free_ctrl;
2745 	}
2746 
2747 	if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2748 		ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2749 			opts->host_traddr, NULL, &ctrl->src_addr);
2750 		if (ret) {
2751 			pr_err("malformed src address passed: %s\n",
2752 			       opts->host_traddr);
2753 			goto out_free_ctrl;
2754 		}
2755 	}
2756 
2757 	if (opts->mask & NVMF_OPT_HOST_IFACE) {
2758 		if (!__dev_get_by_name(&init_net, opts->host_iface)) {
2759 			pr_err("invalid interface passed: %s\n",
2760 			       opts->host_iface);
2761 			ret = -ENODEV;
2762 			goto out_free_ctrl;
2763 		}
2764 	}
2765 
2766 	if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) {
2767 		ret = -EALREADY;
2768 		goto out_free_ctrl;
2769 	}
2770 
2771 	ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2772 				GFP_KERNEL);
2773 	if (!ctrl->queues) {
2774 		ret = -ENOMEM;
2775 		goto out_free_ctrl;
2776 	}
2777 
2778 	ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0);
2779 	if (ret)
2780 		goto out_kfree_queues;
2781 
2782 	return ctrl;
2783 out_kfree_queues:
2784 	kfree(ctrl->queues);
2785 out_free_ctrl:
2786 	kfree(ctrl);
2787 	return ERR_PTR(ret);
2788 }
2789 
2790 static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev,
2791 		struct nvmf_ctrl_options *opts)
2792 {
2793 	struct nvme_tcp_ctrl *ctrl;
2794 	int ret;
2795 
2796 	ctrl = nvme_tcp_alloc_ctrl(dev, opts);
2797 	if (IS_ERR(ctrl))
2798 		return ERR_CAST(ctrl);
2799 
2800 	ret = nvme_add_ctrl(&ctrl->ctrl);
2801 	if (ret)
2802 		goto out_put_ctrl;
2803 
2804 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2805 		WARN_ON_ONCE(1);
2806 		ret = -EINTR;
2807 		goto out_uninit_ctrl;
2808 	}
2809 
2810 	ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true);
2811 	if (ret)
2812 		goto out_uninit_ctrl;
2813 
2814 	dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp, hostnqn: %s\n",
2815 		nvmf_ctrl_subsysnqn(&ctrl->ctrl), &ctrl->addr, opts->host->nqn);
2816 
2817 	mutex_lock(&nvme_tcp_ctrl_mutex);
2818 	list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list);
2819 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2820 
2821 	return &ctrl->ctrl;
2822 
2823 out_uninit_ctrl:
2824 	nvme_uninit_ctrl(&ctrl->ctrl);
2825 out_put_ctrl:
2826 	nvme_put_ctrl(&ctrl->ctrl);
2827 	if (ret > 0)
2828 		ret = -EIO;
2829 	return ERR_PTR(ret);
2830 }
2831 
2832 static struct nvmf_transport_ops nvme_tcp_transport = {
2833 	.name		= "tcp",
2834 	.module		= THIS_MODULE,
2835 	.required_opts	= NVMF_OPT_TRADDR,
2836 	.allowed_opts	= NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2837 			  NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2838 			  NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST |
2839 			  NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
2840 			  NVMF_OPT_TOS | NVMF_OPT_HOST_IFACE | NVMF_OPT_TLS |
2841 			  NVMF_OPT_KEYRING | NVMF_OPT_TLS_KEY,
2842 	.create_ctrl	= nvme_tcp_create_ctrl,
2843 };
2844 
2845 static int __init nvme_tcp_init_module(void)
2846 {
2847 	unsigned int wq_flags = WQ_MEM_RECLAIM | WQ_HIGHPRI | WQ_SYSFS;
2848 
2849 	BUILD_BUG_ON(sizeof(struct nvme_tcp_hdr) != 8);
2850 	BUILD_BUG_ON(sizeof(struct nvme_tcp_cmd_pdu) != 72);
2851 	BUILD_BUG_ON(sizeof(struct nvme_tcp_data_pdu) != 24);
2852 	BUILD_BUG_ON(sizeof(struct nvme_tcp_rsp_pdu) != 24);
2853 	BUILD_BUG_ON(sizeof(struct nvme_tcp_r2t_pdu) != 24);
2854 	BUILD_BUG_ON(sizeof(struct nvme_tcp_icreq_pdu) != 128);
2855 	BUILD_BUG_ON(sizeof(struct nvme_tcp_icresp_pdu) != 128);
2856 	BUILD_BUG_ON(sizeof(struct nvme_tcp_term_pdu) != 24);
2857 
2858 	if (wq_unbound)
2859 		wq_flags |= WQ_UNBOUND;
2860 
2861 	nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq", wq_flags, 0);
2862 	if (!nvme_tcp_wq)
2863 		return -ENOMEM;
2864 
2865 	nvmf_register_transport(&nvme_tcp_transport);
2866 	return 0;
2867 }
2868 
2869 static void __exit nvme_tcp_cleanup_module(void)
2870 {
2871 	struct nvme_tcp_ctrl *ctrl;
2872 
2873 	nvmf_unregister_transport(&nvme_tcp_transport);
2874 
2875 	mutex_lock(&nvme_tcp_ctrl_mutex);
2876 	list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list)
2877 		nvme_delete_ctrl(&ctrl->ctrl);
2878 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2879 	flush_workqueue(nvme_delete_wq);
2880 
2881 	destroy_workqueue(nvme_tcp_wq);
2882 }
2883 
2884 module_init(nvme_tcp_init_module);
2885 module_exit(nvme_tcp_cleanup_module);
2886 
2887 MODULE_DESCRIPTION("NVMe host TCP transport driver");
2888 MODULE_LICENSE("GPL v2");
2889