xref: /linux/drivers/nvme/host/tcp.c (revision f96a974170b749e3a56844e25b31d46a7233b6f6)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics TCP host.
4  * Copyright (c) 2018 Lightbits Labs. All rights reserved.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/err.h>
11 #include <linux/key.h>
12 #include <linux/nvme-tcp.h>
13 #include <linux/nvme-keyring.h>
14 #include <net/sock.h>
15 #include <net/tcp.h>
16 #include <net/tls.h>
17 #include <net/tls_prot.h>
18 #include <net/handshake.h>
19 #include <linux/blk-mq.h>
20 #include <crypto/hash.h>
21 #include <net/busy_poll.h>
22 #include <trace/events/sock.h>
23 
24 #include "nvme.h"
25 #include "fabrics.h"
26 
27 struct nvme_tcp_queue;
28 
29 /* Define the socket priority to use for connections were it is desirable
30  * that the NIC consider performing optimized packet processing or filtering.
31  * A non-zero value being sufficient to indicate general consideration of any
32  * possible optimization.  Making it a module param allows for alternative
33  * values that may be unique for some NIC implementations.
34  */
35 static int so_priority;
36 module_param(so_priority, int, 0644);
37 MODULE_PARM_DESC(so_priority, "nvme tcp socket optimize priority");
38 
39 /*
40  * Use the unbound workqueue for nvme_tcp_wq, then we can set the cpu affinity
41  * from sysfs.
42  */
43 static bool wq_unbound;
44 module_param(wq_unbound, bool, 0644);
45 MODULE_PARM_DESC(wq_unbound, "Use unbound workqueue for nvme-tcp IO context (default false)");
46 
47 /*
48  * TLS handshake timeout
49  */
50 static int tls_handshake_timeout = 10;
51 #ifdef CONFIG_NVME_TCP_TLS
52 module_param(tls_handshake_timeout, int, 0644);
53 MODULE_PARM_DESC(tls_handshake_timeout,
54 		 "nvme TLS handshake timeout in seconds (default 10)");
55 #endif
56 
57 static atomic_t nvme_tcp_cpu_queues[NR_CPUS];
58 
59 #ifdef CONFIG_DEBUG_LOCK_ALLOC
60 /* lockdep can detect a circular dependency of the form
61  *   sk_lock -> mmap_lock (page fault) -> fs locks -> sk_lock
62  * because dependencies are tracked for both nvme-tcp and user contexts. Using
63  * a separate class prevents lockdep from conflating nvme-tcp socket use with
64  * user-space socket API use.
65  */
66 static struct lock_class_key nvme_tcp_sk_key[2];
67 static struct lock_class_key nvme_tcp_slock_key[2];
68 
69 static void nvme_tcp_reclassify_socket(struct socket *sock)
70 {
71 	struct sock *sk = sock->sk;
72 
73 	if (WARN_ON_ONCE(!sock_allow_reclassification(sk)))
74 		return;
75 
76 	switch (sk->sk_family) {
77 	case AF_INET:
78 		sock_lock_init_class_and_name(sk, "slock-AF_INET-NVME",
79 					      &nvme_tcp_slock_key[0],
80 					      "sk_lock-AF_INET-NVME",
81 					      &nvme_tcp_sk_key[0]);
82 		break;
83 	case AF_INET6:
84 		sock_lock_init_class_and_name(sk, "slock-AF_INET6-NVME",
85 					      &nvme_tcp_slock_key[1],
86 					      "sk_lock-AF_INET6-NVME",
87 					      &nvme_tcp_sk_key[1]);
88 		break;
89 	default:
90 		WARN_ON_ONCE(1);
91 	}
92 }
93 #else
94 static void nvme_tcp_reclassify_socket(struct socket *sock) { }
95 #endif
96 
97 enum nvme_tcp_send_state {
98 	NVME_TCP_SEND_CMD_PDU = 0,
99 	NVME_TCP_SEND_H2C_PDU,
100 	NVME_TCP_SEND_DATA,
101 	NVME_TCP_SEND_DDGST,
102 };
103 
104 struct nvme_tcp_request {
105 	struct nvme_request	req;
106 	void			*pdu;
107 	struct nvme_tcp_queue	*queue;
108 	u32			data_len;
109 	u32			pdu_len;
110 	u32			pdu_sent;
111 	u32			h2cdata_left;
112 	u32			h2cdata_offset;
113 	u16			ttag;
114 	__le16			status;
115 	struct list_head	entry;
116 	struct llist_node	lentry;
117 	__le32			ddgst;
118 
119 	struct bio		*curr_bio;
120 	struct iov_iter		iter;
121 
122 	/* send state */
123 	size_t			offset;
124 	size_t			data_sent;
125 	enum nvme_tcp_send_state state;
126 };
127 
128 enum nvme_tcp_queue_flags {
129 	NVME_TCP_Q_ALLOCATED	= 0,
130 	NVME_TCP_Q_LIVE		= 1,
131 	NVME_TCP_Q_POLLING	= 2,
132 	NVME_TCP_Q_IO_CPU_SET	= 3,
133 };
134 
135 enum nvme_tcp_recv_state {
136 	NVME_TCP_RECV_PDU = 0,
137 	NVME_TCP_RECV_DATA,
138 	NVME_TCP_RECV_DDGST,
139 };
140 
141 struct nvme_tcp_ctrl;
142 struct nvme_tcp_queue {
143 	struct socket		*sock;
144 	struct work_struct	io_work;
145 	int			io_cpu;
146 
147 	struct mutex		queue_lock;
148 	struct mutex		send_mutex;
149 	struct llist_head	req_list;
150 	struct list_head	send_list;
151 
152 	/* recv state */
153 	void			*pdu;
154 	int			pdu_remaining;
155 	int			pdu_offset;
156 	size_t			data_remaining;
157 	size_t			ddgst_remaining;
158 	unsigned int		nr_cqe;
159 
160 	/* send state */
161 	struct nvme_tcp_request *request;
162 
163 	u32			maxh2cdata;
164 	size_t			cmnd_capsule_len;
165 	struct nvme_tcp_ctrl	*ctrl;
166 	unsigned long		flags;
167 	bool			rd_enabled;
168 
169 	bool			hdr_digest;
170 	bool			data_digest;
171 	bool			tls_enabled;
172 	struct ahash_request	*rcv_hash;
173 	struct ahash_request	*snd_hash;
174 	__le32			exp_ddgst;
175 	__le32			recv_ddgst;
176 	struct completion       tls_complete;
177 	int                     tls_err;
178 	struct page_frag_cache	pf_cache;
179 
180 	void (*state_change)(struct sock *);
181 	void (*data_ready)(struct sock *);
182 	void (*write_space)(struct sock *);
183 };
184 
185 struct nvme_tcp_ctrl {
186 	/* read only in the hot path */
187 	struct nvme_tcp_queue	*queues;
188 	struct blk_mq_tag_set	tag_set;
189 
190 	/* other member variables */
191 	struct list_head	list;
192 	struct blk_mq_tag_set	admin_tag_set;
193 	struct sockaddr_storage addr;
194 	struct sockaddr_storage src_addr;
195 	struct nvme_ctrl	ctrl;
196 
197 	struct work_struct	err_work;
198 	struct delayed_work	connect_work;
199 	struct nvme_tcp_request async_req;
200 	u32			io_queues[HCTX_MAX_TYPES];
201 };
202 
203 static LIST_HEAD(nvme_tcp_ctrl_list);
204 static DEFINE_MUTEX(nvme_tcp_ctrl_mutex);
205 static struct workqueue_struct *nvme_tcp_wq;
206 static const struct blk_mq_ops nvme_tcp_mq_ops;
207 static const struct blk_mq_ops nvme_tcp_admin_mq_ops;
208 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue);
209 
210 static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl)
211 {
212 	return container_of(ctrl, struct nvme_tcp_ctrl, ctrl);
213 }
214 
215 static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue)
216 {
217 	return queue - queue->ctrl->queues;
218 }
219 
220 /*
221  * Check if the queue is TLS encrypted
222  */
223 static inline bool nvme_tcp_queue_tls(struct nvme_tcp_queue *queue)
224 {
225 	if (!IS_ENABLED(CONFIG_NVME_TCP_TLS))
226 		return 0;
227 
228 	return queue->tls_enabled;
229 }
230 
231 /*
232  * Check if TLS is configured for the controller.
233  */
234 static inline bool nvme_tcp_tls_configured(struct nvme_ctrl *ctrl)
235 {
236 	if (!IS_ENABLED(CONFIG_NVME_TCP_TLS))
237 		return 0;
238 
239 	return ctrl->opts->tls;
240 }
241 
242 static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue)
243 {
244 	u32 queue_idx = nvme_tcp_queue_id(queue);
245 
246 	if (queue_idx == 0)
247 		return queue->ctrl->admin_tag_set.tags[queue_idx];
248 	return queue->ctrl->tag_set.tags[queue_idx - 1];
249 }
250 
251 static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue)
252 {
253 	return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
254 }
255 
256 static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue)
257 {
258 	return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
259 }
260 
261 static inline void *nvme_tcp_req_cmd_pdu(struct nvme_tcp_request *req)
262 {
263 	return req->pdu;
264 }
265 
266 static inline void *nvme_tcp_req_data_pdu(struct nvme_tcp_request *req)
267 {
268 	/* use the pdu space in the back for the data pdu */
269 	return req->pdu + sizeof(struct nvme_tcp_cmd_pdu) -
270 		sizeof(struct nvme_tcp_data_pdu);
271 }
272 
273 static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_request *req)
274 {
275 	if (nvme_is_fabrics(req->req.cmd))
276 		return NVME_TCP_ADMIN_CCSZ;
277 	return req->queue->cmnd_capsule_len - sizeof(struct nvme_command);
278 }
279 
280 static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req)
281 {
282 	return req == &req->queue->ctrl->async_req;
283 }
284 
285 static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req)
286 {
287 	struct request *rq;
288 
289 	if (unlikely(nvme_tcp_async_req(req)))
290 		return false; /* async events don't have a request */
291 
292 	rq = blk_mq_rq_from_pdu(req);
293 
294 	return rq_data_dir(rq) == WRITE && req->data_len &&
295 		req->data_len <= nvme_tcp_inline_data_size(req);
296 }
297 
298 static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req)
299 {
300 	return req->iter.bvec->bv_page;
301 }
302 
303 static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req)
304 {
305 	return req->iter.bvec->bv_offset + req->iter.iov_offset;
306 }
307 
308 static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req)
309 {
310 	return min_t(size_t, iov_iter_single_seg_count(&req->iter),
311 			req->pdu_len - req->pdu_sent);
312 }
313 
314 static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req)
315 {
316 	return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ?
317 			req->pdu_len - req->pdu_sent : 0;
318 }
319 
320 static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req,
321 		int len)
322 {
323 	return nvme_tcp_pdu_data_left(req) <= len;
324 }
325 
326 static void nvme_tcp_init_iter(struct nvme_tcp_request *req,
327 		unsigned int dir)
328 {
329 	struct request *rq = blk_mq_rq_from_pdu(req);
330 	struct bio_vec *vec;
331 	unsigned int size;
332 	int nr_bvec;
333 	size_t offset;
334 
335 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) {
336 		vec = &rq->special_vec;
337 		nr_bvec = 1;
338 		size = blk_rq_payload_bytes(rq);
339 		offset = 0;
340 	} else {
341 		struct bio *bio = req->curr_bio;
342 		struct bvec_iter bi;
343 		struct bio_vec bv;
344 
345 		vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
346 		nr_bvec = 0;
347 		bio_for_each_bvec(bv, bio, bi) {
348 			nr_bvec++;
349 		}
350 		size = bio->bi_iter.bi_size;
351 		offset = bio->bi_iter.bi_bvec_done;
352 	}
353 
354 	iov_iter_bvec(&req->iter, dir, vec, nr_bvec, size);
355 	req->iter.iov_offset = offset;
356 }
357 
358 static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req,
359 		int len)
360 {
361 	req->data_sent += len;
362 	req->pdu_sent += len;
363 	iov_iter_advance(&req->iter, len);
364 	if (!iov_iter_count(&req->iter) &&
365 	    req->data_sent < req->data_len) {
366 		req->curr_bio = req->curr_bio->bi_next;
367 		nvme_tcp_init_iter(req, ITER_SOURCE);
368 	}
369 }
370 
371 static inline void nvme_tcp_send_all(struct nvme_tcp_queue *queue)
372 {
373 	int ret;
374 
375 	/* drain the send queue as much as we can... */
376 	do {
377 		ret = nvme_tcp_try_send(queue);
378 	} while (ret > 0);
379 }
380 
381 static inline bool nvme_tcp_queue_has_pending(struct nvme_tcp_queue *queue)
382 {
383 	return !list_empty(&queue->send_list) ||
384 		!llist_empty(&queue->req_list);
385 }
386 
387 static inline bool nvme_tcp_queue_more(struct nvme_tcp_queue *queue)
388 {
389 	return !nvme_tcp_queue_tls(queue) &&
390 		nvme_tcp_queue_has_pending(queue);
391 }
392 
393 static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req,
394 		bool sync, bool last)
395 {
396 	struct nvme_tcp_queue *queue = req->queue;
397 	bool empty;
398 
399 	empty = llist_add(&req->lentry, &queue->req_list) &&
400 		list_empty(&queue->send_list) && !queue->request;
401 
402 	/*
403 	 * if we're the first on the send_list and we can try to send
404 	 * directly, otherwise queue io_work. Also, only do that if we
405 	 * are on the same cpu, so we don't introduce contention.
406 	 */
407 	if (queue->io_cpu == raw_smp_processor_id() &&
408 	    sync && empty && mutex_trylock(&queue->send_mutex)) {
409 		nvme_tcp_send_all(queue);
410 		mutex_unlock(&queue->send_mutex);
411 	}
412 
413 	if (last && nvme_tcp_queue_has_pending(queue))
414 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
415 }
416 
417 static void nvme_tcp_process_req_list(struct nvme_tcp_queue *queue)
418 {
419 	struct nvme_tcp_request *req;
420 	struct llist_node *node;
421 
422 	for (node = llist_del_all(&queue->req_list); node; node = node->next) {
423 		req = llist_entry(node, struct nvme_tcp_request, lentry);
424 		list_add(&req->entry, &queue->send_list);
425 	}
426 }
427 
428 static inline struct nvme_tcp_request *
429 nvme_tcp_fetch_request(struct nvme_tcp_queue *queue)
430 {
431 	struct nvme_tcp_request *req;
432 
433 	req = list_first_entry_or_null(&queue->send_list,
434 			struct nvme_tcp_request, entry);
435 	if (!req) {
436 		nvme_tcp_process_req_list(queue);
437 		req = list_first_entry_or_null(&queue->send_list,
438 				struct nvme_tcp_request, entry);
439 		if (unlikely(!req))
440 			return NULL;
441 	}
442 
443 	list_del(&req->entry);
444 	return req;
445 }
446 
447 static inline void nvme_tcp_ddgst_final(struct ahash_request *hash,
448 		__le32 *dgst)
449 {
450 	ahash_request_set_crypt(hash, NULL, (u8 *)dgst, 0);
451 	crypto_ahash_final(hash);
452 }
453 
454 static inline void nvme_tcp_ddgst_update(struct ahash_request *hash,
455 		struct page *page, off_t off, size_t len)
456 {
457 	struct scatterlist sg;
458 
459 	sg_init_table(&sg, 1);
460 	sg_set_page(&sg, page, len, off);
461 	ahash_request_set_crypt(hash, &sg, NULL, len);
462 	crypto_ahash_update(hash);
463 }
464 
465 static inline void nvme_tcp_hdgst(struct ahash_request *hash,
466 		void *pdu, size_t len)
467 {
468 	struct scatterlist sg;
469 
470 	sg_init_one(&sg, pdu, len);
471 	ahash_request_set_crypt(hash, &sg, pdu + len, len);
472 	crypto_ahash_digest(hash);
473 }
474 
475 static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue,
476 		void *pdu, size_t pdu_len)
477 {
478 	struct nvme_tcp_hdr *hdr = pdu;
479 	__le32 recv_digest;
480 	__le32 exp_digest;
481 
482 	if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
483 		dev_err(queue->ctrl->ctrl.device,
484 			"queue %d: header digest flag is cleared\n",
485 			nvme_tcp_queue_id(queue));
486 		return -EPROTO;
487 	}
488 
489 	recv_digest = *(__le32 *)(pdu + hdr->hlen);
490 	nvme_tcp_hdgst(queue->rcv_hash, pdu, pdu_len);
491 	exp_digest = *(__le32 *)(pdu + hdr->hlen);
492 	if (recv_digest != exp_digest) {
493 		dev_err(queue->ctrl->ctrl.device,
494 			"header digest error: recv %#x expected %#x\n",
495 			le32_to_cpu(recv_digest), le32_to_cpu(exp_digest));
496 		return -EIO;
497 	}
498 
499 	return 0;
500 }
501 
502 static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu)
503 {
504 	struct nvme_tcp_hdr *hdr = pdu;
505 	u8 digest_len = nvme_tcp_hdgst_len(queue);
506 	u32 len;
507 
508 	len = le32_to_cpu(hdr->plen) - hdr->hlen -
509 		((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0);
510 
511 	if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
512 		dev_err(queue->ctrl->ctrl.device,
513 			"queue %d: data digest flag is cleared\n",
514 		nvme_tcp_queue_id(queue));
515 		return -EPROTO;
516 	}
517 	crypto_ahash_init(queue->rcv_hash);
518 
519 	return 0;
520 }
521 
522 static void nvme_tcp_exit_request(struct blk_mq_tag_set *set,
523 		struct request *rq, unsigned int hctx_idx)
524 {
525 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
526 
527 	page_frag_free(req->pdu);
528 }
529 
530 static int nvme_tcp_init_request(struct blk_mq_tag_set *set,
531 		struct request *rq, unsigned int hctx_idx,
532 		unsigned int numa_node)
533 {
534 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(set->driver_data);
535 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
536 	struct nvme_tcp_cmd_pdu *pdu;
537 	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
538 	struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx];
539 	u8 hdgst = nvme_tcp_hdgst_len(queue);
540 
541 	req->pdu = page_frag_alloc(&queue->pf_cache,
542 		sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
543 		GFP_KERNEL | __GFP_ZERO);
544 	if (!req->pdu)
545 		return -ENOMEM;
546 
547 	pdu = req->pdu;
548 	req->queue = queue;
549 	nvme_req(rq)->ctrl = &ctrl->ctrl;
550 	nvme_req(rq)->cmd = &pdu->cmd;
551 
552 	return 0;
553 }
554 
555 static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
556 		unsigned int hctx_idx)
557 {
558 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(data);
559 	struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1];
560 
561 	hctx->driver_data = queue;
562 	return 0;
563 }
564 
565 static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
566 		unsigned int hctx_idx)
567 {
568 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(data);
569 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
570 
571 	hctx->driver_data = queue;
572 	return 0;
573 }
574 
575 static enum nvme_tcp_recv_state
576 nvme_tcp_recv_state(struct nvme_tcp_queue *queue)
577 {
578 	return  (queue->pdu_remaining) ? NVME_TCP_RECV_PDU :
579 		(queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST :
580 		NVME_TCP_RECV_DATA;
581 }
582 
583 static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue)
584 {
585 	queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) +
586 				nvme_tcp_hdgst_len(queue);
587 	queue->pdu_offset = 0;
588 	queue->data_remaining = -1;
589 	queue->ddgst_remaining = 0;
590 }
591 
592 static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl)
593 {
594 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
595 		return;
596 
597 	dev_warn(ctrl->device, "starting error recovery\n");
598 	queue_work(nvme_reset_wq, &to_tcp_ctrl(ctrl)->err_work);
599 }
600 
601 static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue,
602 		struct nvme_completion *cqe)
603 {
604 	struct nvme_tcp_request *req;
605 	struct request *rq;
606 
607 	rq = nvme_find_rq(nvme_tcp_tagset(queue), cqe->command_id);
608 	if (!rq) {
609 		dev_err(queue->ctrl->ctrl.device,
610 			"got bad cqe.command_id %#x on queue %d\n",
611 			cqe->command_id, nvme_tcp_queue_id(queue));
612 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
613 		return -EINVAL;
614 	}
615 
616 	req = blk_mq_rq_to_pdu(rq);
617 	if (req->status == cpu_to_le16(NVME_SC_SUCCESS))
618 		req->status = cqe->status;
619 
620 	if (!nvme_try_complete_req(rq, req->status, cqe->result))
621 		nvme_complete_rq(rq);
622 	queue->nr_cqe++;
623 
624 	return 0;
625 }
626 
627 static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue,
628 		struct nvme_tcp_data_pdu *pdu)
629 {
630 	struct request *rq;
631 
632 	rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id);
633 	if (!rq) {
634 		dev_err(queue->ctrl->ctrl.device,
635 			"got bad c2hdata.command_id %#x on queue %d\n",
636 			pdu->command_id, nvme_tcp_queue_id(queue));
637 		return -ENOENT;
638 	}
639 
640 	if (!blk_rq_payload_bytes(rq)) {
641 		dev_err(queue->ctrl->ctrl.device,
642 			"queue %d tag %#x unexpected data\n",
643 			nvme_tcp_queue_id(queue), rq->tag);
644 		return -EIO;
645 	}
646 
647 	queue->data_remaining = le32_to_cpu(pdu->data_length);
648 
649 	if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS &&
650 	    unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) {
651 		dev_err(queue->ctrl->ctrl.device,
652 			"queue %d tag %#x SUCCESS set but not last PDU\n",
653 			nvme_tcp_queue_id(queue), rq->tag);
654 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
655 		return -EPROTO;
656 	}
657 
658 	return 0;
659 }
660 
661 static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue,
662 		struct nvme_tcp_rsp_pdu *pdu)
663 {
664 	struct nvme_completion *cqe = &pdu->cqe;
665 	int ret = 0;
666 
667 	/*
668 	 * AEN requests are special as they don't time out and can
669 	 * survive any kind of queue freeze and often don't respond to
670 	 * aborts.  We don't even bother to allocate a struct request
671 	 * for them but rather special case them here.
672 	 */
673 	if (unlikely(nvme_is_aen_req(nvme_tcp_queue_id(queue),
674 				     cqe->command_id)))
675 		nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
676 				&cqe->result);
677 	else
678 		ret = nvme_tcp_process_nvme_cqe(queue, cqe);
679 
680 	return ret;
681 }
682 
683 static void nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req)
684 {
685 	struct nvme_tcp_data_pdu *data = nvme_tcp_req_data_pdu(req);
686 	struct nvme_tcp_queue *queue = req->queue;
687 	struct request *rq = blk_mq_rq_from_pdu(req);
688 	u32 h2cdata_sent = req->pdu_len;
689 	u8 hdgst = nvme_tcp_hdgst_len(queue);
690 	u8 ddgst = nvme_tcp_ddgst_len(queue);
691 
692 	req->state = NVME_TCP_SEND_H2C_PDU;
693 	req->offset = 0;
694 	req->pdu_len = min(req->h2cdata_left, queue->maxh2cdata);
695 	req->pdu_sent = 0;
696 	req->h2cdata_left -= req->pdu_len;
697 	req->h2cdata_offset += h2cdata_sent;
698 
699 	memset(data, 0, sizeof(*data));
700 	data->hdr.type = nvme_tcp_h2c_data;
701 	if (!req->h2cdata_left)
702 		data->hdr.flags = NVME_TCP_F_DATA_LAST;
703 	if (queue->hdr_digest)
704 		data->hdr.flags |= NVME_TCP_F_HDGST;
705 	if (queue->data_digest)
706 		data->hdr.flags |= NVME_TCP_F_DDGST;
707 	data->hdr.hlen = sizeof(*data);
708 	data->hdr.pdo = data->hdr.hlen + hdgst;
709 	data->hdr.plen =
710 		cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst);
711 	data->ttag = req->ttag;
712 	data->command_id = nvme_cid(rq);
713 	data->data_offset = cpu_to_le32(req->h2cdata_offset);
714 	data->data_length = cpu_to_le32(req->pdu_len);
715 }
716 
717 static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue,
718 		struct nvme_tcp_r2t_pdu *pdu)
719 {
720 	struct nvme_tcp_request *req;
721 	struct request *rq;
722 	u32 r2t_length = le32_to_cpu(pdu->r2t_length);
723 	u32 r2t_offset = le32_to_cpu(pdu->r2t_offset);
724 
725 	rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id);
726 	if (!rq) {
727 		dev_err(queue->ctrl->ctrl.device,
728 			"got bad r2t.command_id %#x on queue %d\n",
729 			pdu->command_id, nvme_tcp_queue_id(queue));
730 		return -ENOENT;
731 	}
732 	req = blk_mq_rq_to_pdu(rq);
733 
734 	if (unlikely(!r2t_length)) {
735 		dev_err(queue->ctrl->ctrl.device,
736 			"req %d r2t len is %u, probably a bug...\n",
737 			rq->tag, r2t_length);
738 		return -EPROTO;
739 	}
740 
741 	if (unlikely(req->data_sent + r2t_length > req->data_len)) {
742 		dev_err(queue->ctrl->ctrl.device,
743 			"req %d r2t len %u exceeded data len %u (%zu sent)\n",
744 			rq->tag, r2t_length, req->data_len, req->data_sent);
745 		return -EPROTO;
746 	}
747 
748 	if (unlikely(r2t_offset < req->data_sent)) {
749 		dev_err(queue->ctrl->ctrl.device,
750 			"req %d unexpected r2t offset %u (expected %zu)\n",
751 			rq->tag, r2t_offset, req->data_sent);
752 		return -EPROTO;
753 	}
754 
755 	req->pdu_len = 0;
756 	req->h2cdata_left = r2t_length;
757 	req->h2cdata_offset = r2t_offset;
758 	req->ttag = pdu->ttag;
759 
760 	nvme_tcp_setup_h2c_data_pdu(req);
761 	nvme_tcp_queue_request(req, false, true);
762 
763 	return 0;
764 }
765 
766 static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb,
767 		unsigned int *offset, size_t *len)
768 {
769 	struct nvme_tcp_hdr *hdr;
770 	char *pdu = queue->pdu;
771 	size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining);
772 	int ret;
773 
774 	ret = skb_copy_bits(skb, *offset,
775 		&pdu[queue->pdu_offset], rcv_len);
776 	if (unlikely(ret))
777 		return ret;
778 
779 	queue->pdu_remaining -= rcv_len;
780 	queue->pdu_offset += rcv_len;
781 	*offset += rcv_len;
782 	*len -= rcv_len;
783 	if (queue->pdu_remaining)
784 		return 0;
785 
786 	hdr = queue->pdu;
787 	if (queue->hdr_digest) {
788 		ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen);
789 		if (unlikely(ret))
790 			return ret;
791 	}
792 
793 
794 	if (queue->data_digest) {
795 		ret = nvme_tcp_check_ddgst(queue, queue->pdu);
796 		if (unlikely(ret))
797 			return ret;
798 	}
799 
800 	switch (hdr->type) {
801 	case nvme_tcp_c2h_data:
802 		return nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu);
803 	case nvme_tcp_rsp:
804 		nvme_tcp_init_recv_ctx(queue);
805 		return nvme_tcp_handle_comp(queue, (void *)queue->pdu);
806 	case nvme_tcp_r2t:
807 		nvme_tcp_init_recv_ctx(queue);
808 		return nvme_tcp_handle_r2t(queue, (void *)queue->pdu);
809 	default:
810 		dev_err(queue->ctrl->ctrl.device,
811 			"unsupported pdu type (%d)\n", hdr->type);
812 		return -EINVAL;
813 	}
814 }
815 
816 static inline void nvme_tcp_end_request(struct request *rq, u16 status)
817 {
818 	union nvme_result res = {};
819 
820 	if (!nvme_try_complete_req(rq, cpu_to_le16(status << 1), res))
821 		nvme_complete_rq(rq);
822 }
823 
824 static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb,
825 			      unsigned int *offset, size_t *len)
826 {
827 	struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
828 	struct request *rq =
829 		nvme_cid_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
830 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
831 
832 	while (true) {
833 		int recv_len, ret;
834 
835 		recv_len = min_t(size_t, *len, queue->data_remaining);
836 		if (!recv_len)
837 			break;
838 
839 		if (!iov_iter_count(&req->iter)) {
840 			req->curr_bio = req->curr_bio->bi_next;
841 
842 			/*
843 			 * If we don`t have any bios it means that controller
844 			 * sent more data than we requested, hence error
845 			 */
846 			if (!req->curr_bio) {
847 				dev_err(queue->ctrl->ctrl.device,
848 					"queue %d no space in request %#x",
849 					nvme_tcp_queue_id(queue), rq->tag);
850 				nvme_tcp_init_recv_ctx(queue);
851 				return -EIO;
852 			}
853 			nvme_tcp_init_iter(req, ITER_DEST);
854 		}
855 
856 		/* we can read only from what is left in this bio */
857 		recv_len = min_t(size_t, recv_len,
858 				iov_iter_count(&req->iter));
859 
860 		if (queue->data_digest)
861 			ret = skb_copy_and_hash_datagram_iter(skb, *offset,
862 				&req->iter, recv_len, queue->rcv_hash);
863 		else
864 			ret = skb_copy_datagram_iter(skb, *offset,
865 					&req->iter, recv_len);
866 		if (ret) {
867 			dev_err(queue->ctrl->ctrl.device,
868 				"queue %d failed to copy request %#x data",
869 				nvme_tcp_queue_id(queue), rq->tag);
870 			return ret;
871 		}
872 
873 		*len -= recv_len;
874 		*offset += recv_len;
875 		queue->data_remaining -= recv_len;
876 	}
877 
878 	if (!queue->data_remaining) {
879 		if (queue->data_digest) {
880 			nvme_tcp_ddgst_final(queue->rcv_hash, &queue->exp_ddgst);
881 			queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH;
882 		} else {
883 			if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
884 				nvme_tcp_end_request(rq,
885 						le16_to_cpu(req->status));
886 				queue->nr_cqe++;
887 			}
888 			nvme_tcp_init_recv_ctx(queue);
889 		}
890 	}
891 
892 	return 0;
893 }
894 
895 static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue,
896 		struct sk_buff *skb, unsigned int *offset, size_t *len)
897 {
898 	struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
899 	char *ddgst = (char *)&queue->recv_ddgst;
900 	size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining);
901 	off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining;
902 	int ret;
903 
904 	ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len);
905 	if (unlikely(ret))
906 		return ret;
907 
908 	queue->ddgst_remaining -= recv_len;
909 	*offset += recv_len;
910 	*len -= recv_len;
911 	if (queue->ddgst_remaining)
912 		return 0;
913 
914 	if (queue->recv_ddgst != queue->exp_ddgst) {
915 		struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue),
916 					pdu->command_id);
917 		struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
918 
919 		req->status = cpu_to_le16(NVME_SC_DATA_XFER_ERROR);
920 
921 		dev_err(queue->ctrl->ctrl.device,
922 			"data digest error: recv %#x expected %#x\n",
923 			le32_to_cpu(queue->recv_ddgst),
924 			le32_to_cpu(queue->exp_ddgst));
925 	}
926 
927 	if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
928 		struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue),
929 					pdu->command_id);
930 		struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
931 
932 		nvme_tcp_end_request(rq, le16_to_cpu(req->status));
933 		queue->nr_cqe++;
934 	}
935 
936 	nvme_tcp_init_recv_ctx(queue);
937 	return 0;
938 }
939 
940 static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb,
941 			     unsigned int offset, size_t len)
942 {
943 	struct nvme_tcp_queue *queue = desc->arg.data;
944 	size_t consumed = len;
945 	int result;
946 
947 	if (unlikely(!queue->rd_enabled))
948 		return -EFAULT;
949 
950 	while (len) {
951 		switch (nvme_tcp_recv_state(queue)) {
952 		case NVME_TCP_RECV_PDU:
953 			result = nvme_tcp_recv_pdu(queue, skb, &offset, &len);
954 			break;
955 		case NVME_TCP_RECV_DATA:
956 			result = nvme_tcp_recv_data(queue, skb, &offset, &len);
957 			break;
958 		case NVME_TCP_RECV_DDGST:
959 			result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len);
960 			break;
961 		default:
962 			result = -EFAULT;
963 		}
964 		if (result) {
965 			dev_err(queue->ctrl->ctrl.device,
966 				"receive failed:  %d\n", result);
967 			queue->rd_enabled = false;
968 			nvme_tcp_error_recovery(&queue->ctrl->ctrl);
969 			return result;
970 		}
971 	}
972 
973 	return consumed;
974 }
975 
976 static void nvme_tcp_data_ready(struct sock *sk)
977 {
978 	struct nvme_tcp_queue *queue;
979 
980 	trace_sk_data_ready(sk);
981 
982 	read_lock_bh(&sk->sk_callback_lock);
983 	queue = sk->sk_user_data;
984 	if (likely(queue && queue->rd_enabled) &&
985 	    !test_bit(NVME_TCP_Q_POLLING, &queue->flags))
986 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
987 	read_unlock_bh(&sk->sk_callback_lock);
988 }
989 
990 static void nvme_tcp_write_space(struct sock *sk)
991 {
992 	struct nvme_tcp_queue *queue;
993 
994 	read_lock_bh(&sk->sk_callback_lock);
995 	queue = sk->sk_user_data;
996 	if (likely(queue && sk_stream_is_writeable(sk))) {
997 		clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
998 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
999 	}
1000 	read_unlock_bh(&sk->sk_callback_lock);
1001 }
1002 
1003 static void nvme_tcp_state_change(struct sock *sk)
1004 {
1005 	struct nvme_tcp_queue *queue;
1006 
1007 	read_lock_bh(&sk->sk_callback_lock);
1008 	queue = sk->sk_user_data;
1009 	if (!queue)
1010 		goto done;
1011 
1012 	switch (sk->sk_state) {
1013 	case TCP_CLOSE:
1014 	case TCP_CLOSE_WAIT:
1015 	case TCP_LAST_ACK:
1016 	case TCP_FIN_WAIT1:
1017 	case TCP_FIN_WAIT2:
1018 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
1019 		break;
1020 	default:
1021 		dev_info(queue->ctrl->ctrl.device,
1022 			"queue %d socket state %d\n",
1023 			nvme_tcp_queue_id(queue), sk->sk_state);
1024 	}
1025 
1026 	queue->state_change(sk);
1027 done:
1028 	read_unlock_bh(&sk->sk_callback_lock);
1029 }
1030 
1031 static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue)
1032 {
1033 	queue->request = NULL;
1034 }
1035 
1036 static void nvme_tcp_fail_request(struct nvme_tcp_request *req)
1037 {
1038 	if (nvme_tcp_async_req(req)) {
1039 		union nvme_result res = {};
1040 
1041 		nvme_complete_async_event(&req->queue->ctrl->ctrl,
1042 				cpu_to_le16(NVME_SC_HOST_PATH_ERROR), &res);
1043 	} else {
1044 		nvme_tcp_end_request(blk_mq_rq_from_pdu(req),
1045 				NVME_SC_HOST_PATH_ERROR);
1046 	}
1047 }
1048 
1049 static int nvme_tcp_try_send_data(struct nvme_tcp_request *req)
1050 {
1051 	struct nvme_tcp_queue *queue = req->queue;
1052 	int req_data_len = req->data_len;
1053 	u32 h2cdata_left = req->h2cdata_left;
1054 
1055 	while (true) {
1056 		struct bio_vec bvec;
1057 		struct msghdr msg = {
1058 			.msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES,
1059 		};
1060 		struct page *page = nvme_tcp_req_cur_page(req);
1061 		size_t offset = nvme_tcp_req_cur_offset(req);
1062 		size_t len = nvme_tcp_req_cur_length(req);
1063 		bool last = nvme_tcp_pdu_last_send(req, len);
1064 		int req_data_sent = req->data_sent;
1065 		int ret;
1066 
1067 		if (last && !queue->data_digest && !nvme_tcp_queue_more(queue))
1068 			msg.msg_flags |= MSG_EOR;
1069 		else
1070 			msg.msg_flags |= MSG_MORE;
1071 
1072 		if (!sendpages_ok(page, len, offset))
1073 			msg.msg_flags &= ~MSG_SPLICE_PAGES;
1074 
1075 		bvec_set_page(&bvec, page, len, offset);
1076 		iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len);
1077 		ret = sock_sendmsg(queue->sock, &msg);
1078 		if (ret <= 0)
1079 			return ret;
1080 
1081 		if (queue->data_digest)
1082 			nvme_tcp_ddgst_update(queue->snd_hash, page,
1083 					offset, ret);
1084 
1085 		/*
1086 		 * update the request iterator except for the last payload send
1087 		 * in the request where we don't want to modify it as we may
1088 		 * compete with the RX path completing the request.
1089 		 */
1090 		if (req_data_sent + ret < req_data_len)
1091 			nvme_tcp_advance_req(req, ret);
1092 
1093 		/* fully successful last send in current PDU */
1094 		if (last && ret == len) {
1095 			if (queue->data_digest) {
1096 				nvme_tcp_ddgst_final(queue->snd_hash,
1097 					&req->ddgst);
1098 				req->state = NVME_TCP_SEND_DDGST;
1099 				req->offset = 0;
1100 			} else {
1101 				if (h2cdata_left)
1102 					nvme_tcp_setup_h2c_data_pdu(req);
1103 				else
1104 					nvme_tcp_done_send_req(queue);
1105 			}
1106 			return 1;
1107 		}
1108 	}
1109 	return -EAGAIN;
1110 }
1111 
1112 static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req)
1113 {
1114 	struct nvme_tcp_queue *queue = req->queue;
1115 	struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req);
1116 	struct bio_vec bvec;
1117 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, };
1118 	bool inline_data = nvme_tcp_has_inline_data(req);
1119 	u8 hdgst = nvme_tcp_hdgst_len(queue);
1120 	int len = sizeof(*pdu) + hdgst - req->offset;
1121 	int ret;
1122 
1123 	if (inline_data || nvme_tcp_queue_more(queue))
1124 		msg.msg_flags |= MSG_MORE;
1125 	else
1126 		msg.msg_flags |= MSG_EOR;
1127 
1128 	if (queue->hdr_digest && !req->offset)
1129 		nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
1130 
1131 	bvec_set_virt(&bvec, (void *)pdu + req->offset, len);
1132 	iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len);
1133 	ret = sock_sendmsg(queue->sock, &msg);
1134 	if (unlikely(ret <= 0))
1135 		return ret;
1136 
1137 	len -= ret;
1138 	if (!len) {
1139 		if (inline_data) {
1140 			req->state = NVME_TCP_SEND_DATA;
1141 			if (queue->data_digest)
1142 				crypto_ahash_init(queue->snd_hash);
1143 		} else {
1144 			nvme_tcp_done_send_req(queue);
1145 		}
1146 		return 1;
1147 	}
1148 	req->offset += ret;
1149 
1150 	return -EAGAIN;
1151 }
1152 
1153 static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req)
1154 {
1155 	struct nvme_tcp_queue *queue = req->queue;
1156 	struct nvme_tcp_data_pdu *pdu = nvme_tcp_req_data_pdu(req);
1157 	struct bio_vec bvec;
1158 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_MORE, };
1159 	u8 hdgst = nvme_tcp_hdgst_len(queue);
1160 	int len = sizeof(*pdu) - req->offset + hdgst;
1161 	int ret;
1162 
1163 	if (queue->hdr_digest && !req->offset)
1164 		nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
1165 
1166 	if (!req->h2cdata_left)
1167 		msg.msg_flags |= MSG_SPLICE_PAGES;
1168 
1169 	bvec_set_virt(&bvec, (void *)pdu + req->offset, len);
1170 	iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len);
1171 	ret = sock_sendmsg(queue->sock, &msg);
1172 	if (unlikely(ret <= 0))
1173 		return ret;
1174 
1175 	len -= ret;
1176 	if (!len) {
1177 		req->state = NVME_TCP_SEND_DATA;
1178 		if (queue->data_digest)
1179 			crypto_ahash_init(queue->snd_hash);
1180 		return 1;
1181 	}
1182 	req->offset += ret;
1183 
1184 	return -EAGAIN;
1185 }
1186 
1187 static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req)
1188 {
1189 	struct nvme_tcp_queue *queue = req->queue;
1190 	size_t offset = req->offset;
1191 	u32 h2cdata_left = req->h2cdata_left;
1192 	int ret;
1193 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1194 	struct kvec iov = {
1195 		.iov_base = (u8 *)&req->ddgst + req->offset,
1196 		.iov_len = NVME_TCP_DIGEST_LENGTH - req->offset
1197 	};
1198 
1199 	if (nvme_tcp_queue_more(queue))
1200 		msg.msg_flags |= MSG_MORE;
1201 	else
1202 		msg.msg_flags |= MSG_EOR;
1203 
1204 	ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1205 	if (unlikely(ret <= 0))
1206 		return ret;
1207 
1208 	if (offset + ret == NVME_TCP_DIGEST_LENGTH) {
1209 		if (h2cdata_left)
1210 			nvme_tcp_setup_h2c_data_pdu(req);
1211 		else
1212 			nvme_tcp_done_send_req(queue);
1213 		return 1;
1214 	}
1215 
1216 	req->offset += ret;
1217 	return -EAGAIN;
1218 }
1219 
1220 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue)
1221 {
1222 	struct nvme_tcp_request *req;
1223 	unsigned int noreclaim_flag;
1224 	int ret = 1;
1225 
1226 	if (!queue->request) {
1227 		queue->request = nvme_tcp_fetch_request(queue);
1228 		if (!queue->request)
1229 			return 0;
1230 	}
1231 	req = queue->request;
1232 
1233 	noreclaim_flag = memalloc_noreclaim_save();
1234 	if (req->state == NVME_TCP_SEND_CMD_PDU) {
1235 		ret = nvme_tcp_try_send_cmd_pdu(req);
1236 		if (ret <= 0)
1237 			goto done;
1238 		if (!nvme_tcp_has_inline_data(req))
1239 			goto out;
1240 	}
1241 
1242 	if (req->state == NVME_TCP_SEND_H2C_PDU) {
1243 		ret = nvme_tcp_try_send_data_pdu(req);
1244 		if (ret <= 0)
1245 			goto done;
1246 	}
1247 
1248 	if (req->state == NVME_TCP_SEND_DATA) {
1249 		ret = nvme_tcp_try_send_data(req);
1250 		if (ret <= 0)
1251 			goto done;
1252 	}
1253 
1254 	if (req->state == NVME_TCP_SEND_DDGST)
1255 		ret = nvme_tcp_try_send_ddgst(req);
1256 done:
1257 	if (ret == -EAGAIN) {
1258 		ret = 0;
1259 	} else if (ret < 0) {
1260 		dev_err(queue->ctrl->ctrl.device,
1261 			"failed to send request %d\n", ret);
1262 		nvme_tcp_fail_request(queue->request);
1263 		nvme_tcp_done_send_req(queue);
1264 	}
1265 out:
1266 	memalloc_noreclaim_restore(noreclaim_flag);
1267 	return ret;
1268 }
1269 
1270 static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue)
1271 {
1272 	struct socket *sock = queue->sock;
1273 	struct sock *sk = sock->sk;
1274 	read_descriptor_t rd_desc;
1275 	int consumed;
1276 
1277 	rd_desc.arg.data = queue;
1278 	rd_desc.count = 1;
1279 	lock_sock(sk);
1280 	queue->nr_cqe = 0;
1281 	consumed = sock->ops->read_sock(sk, &rd_desc, nvme_tcp_recv_skb);
1282 	release_sock(sk);
1283 	return consumed;
1284 }
1285 
1286 static void nvme_tcp_io_work(struct work_struct *w)
1287 {
1288 	struct nvme_tcp_queue *queue =
1289 		container_of(w, struct nvme_tcp_queue, io_work);
1290 	unsigned long deadline = jiffies + msecs_to_jiffies(1);
1291 
1292 	do {
1293 		bool pending = false;
1294 		int result;
1295 
1296 		if (mutex_trylock(&queue->send_mutex)) {
1297 			result = nvme_tcp_try_send(queue);
1298 			mutex_unlock(&queue->send_mutex);
1299 			if (result > 0)
1300 				pending = true;
1301 			else if (unlikely(result < 0))
1302 				break;
1303 		}
1304 
1305 		result = nvme_tcp_try_recv(queue);
1306 		if (result > 0)
1307 			pending = true;
1308 		else if (unlikely(result < 0))
1309 			return;
1310 
1311 		if (!pending || !queue->rd_enabled)
1312 			return;
1313 
1314 	} while (!time_after(jiffies, deadline)); /* quota is exhausted */
1315 
1316 	queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
1317 }
1318 
1319 static void nvme_tcp_free_crypto(struct nvme_tcp_queue *queue)
1320 {
1321 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash);
1322 
1323 	ahash_request_free(queue->rcv_hash);
1324 	ahash_request_free(queue->snd_hash);
1325 	crypto_free_ahash(tfm);
1326 }
1327 
1328 static int nvme_tcp_alloc_crypto(struct nvme_tcp_queue *queue)
1329 {
1330 	struct crypto_ahash *tfm;
1331 
1332 	tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC);
1333 	if (IS_ERR(tfm))
1334 		return PTR_ERR(tfm);
1335 
1336 	queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1337 	if (!queue->snd_hash)
1338 		goto free_tfm;
1339 	ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL);
1340 
1341 	queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1342 	if (!queue->rcv_hash)
1343 		goto free_snd_hash;
1344 	ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL);
1345 
1346 	return 0;
1347 free_snd_hash:
1348 	ahash_request_free(queue->snd_hash);
1349 free_tfm:
1350 	crypto_free_ahash(tfm);
1351 	return -ENOMEM;
1352 }
1353 
1354 static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl)
1355 {
1356 	struct nvme_tcp_request *async = &ctrl->async_req;
1357 
1358 	page_frag_free(async->pdu);
1359 }
1360 
1361 static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl)
1362 {
1363 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
1364 	struct nvme_tcp_request *async = &ctrl->async_req;
1365 	u8 hdgst = nvme_tcp_hdgst_len(queue);
1366 
1367 	async->pdu = page_frag_alloc(&queue->pf_cache,
1368 		sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
1369 		GFP_KERNEL | __GFP_ZERO);
1370 	if (!async->pdu)
1371 		return -ENOMEM;
1372 
1373 	async->queue = &ctrl->queues[0];
1374 	return 0;
1375 }
1376 
1377 static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid)
1378 {
1379 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1380 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1381 	unsigned int noreclaim_flag;
1382 
1383 	if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1384 		return;
1385 
1386 	if (queue->hdr_digest || queue->data_digest)
1387 		nvme_tcp_free_crypto(queue);
1388 
1389 	page_frag_cache_drain(&queue->pf_cache);
1390 
1391 	noreclaim_flag = memalloc_noreclaim_save();
1392 	/* ->sock will be released by fput() */
1393 	fput(queue->sock->file);
1394 	queue->sock = NULL;
1395 	memalloc_noreclaim_restore(noreclaim_flag);
1396 
1397 	kfree(queue->pdu);
1398 	mutex_destroy(&queue->send_mutex);
1399 	mutex_destroy(&queue->queue_lock);
1400 }
1401 
1402 static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue)
1403 {
1404 	struct nvme_tcp_icreq_pdu *icreq;
1405 	struct nvme_tcp_icresp_pdu *icresp;
1406 	char cbuf[CMSG_LEN(sizeof(char))] = {};
1407 	u8 ctype;
1408 	struct msghdr msg = {};
1409 	struct kvec iov;
1410 	bool ctrl_hdgst, ctrl_ddgst;
1411 	u32 maxh2cdata;
1412 	int ret;
1413 
1414 	icreq = kzalloc(sizeof(*icreq), GFP_KERNEL);
1415 	if (!icreq)
1416 		return -ENOMEM;
1417 
1418 	icresp = kzalloc(sizeof(*icresp), GFP_KERNEL);
1419 	if (!icresp) {
1420 		ret = -ENOMEM;
1421 		goto free_icreq;
1422 	}
1423 
1424 	icreq->hdr.type = nvme_tcp_icreq;
1425 	icreq->hdr.hlen = sizeof(*icreq);
1426 	icreq->hdr.pdo = 0;
1427 	icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen);
1428 	icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
1429 	icreq->maxr2t = 0; /* single inflight r2t supported */
1430 	icreq->hpda = 0; /* no alignment constraint */
1431 	if (queue->hdr_digest)
1432 		icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
1433 	if (queue->data_digest)
1434 		icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
1435 
1436 	iov.iov_base = icreq;
1437 	iov.iov_len = sizeof(*icreq);
1438 	ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1439 	if (ret < 0) {
1440 		pr_warn("queue %d: failed to send icreq, error %d\n",
1441 			nvme_tcp_queue_id(queue), ret);
1442 		goto free_icresp;
1443 	}
1444 
1445 	memset(&msg, 0, sizeof(msg));
1446 	iov.iov_base = icresp;
1447 	iov.iov_len = sizeof(*icresp);
1448 	if (nvme_tcp_queue_tls(queue)) {
1449 		msg.msg_control = cbuf;
1450 		msg.msg_controllen = sizeof(cbuf);
1451 	}
1452 	ret = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1453 			iov.iov_len, msg.msg_flags);
1454 	if (ret < 0) {
1455 		pr_warn("queue %d: failed to receive icresp, error %d\n",
1456 			nvme_tcp_queue_id(queue), ret);
1457 		goto free_icresp;
1458 	}
1459 	ret = -ENOTCONN;
1460 	if (nvme_tcp_queue_tls(queue)) {
1461 		ctype = tls_get_record_type(queue->sock->sk,
1462 					    (struct cmsghdr *)cbuf);
1463 		if (ctype != TLS_RECORD_TYPE_DATA) {
1464 			pr_err("queue %d: unhandled TLS record %d\n",
1465 			       nvme_tcp_queue_id(queue), ctype);
1466 			goto free_icresp;
1467 		}
1468 	}
1469 	ret = -EINVAL;
1470 	if (icresp->hdr.type != nvme_tcp_icresp) {
1471 		pr_err("queue %d: bad type returned %d\n",
1472 			nvme_tcp_queue_id(queue), icresp->hdr.type);
1473 		goto free_icresp;
1474 	}
1475 
1476 	if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) {
1477 		pr_err("queue %d: bad pdu length returned %d\n",
1478 			nvme_tcp_queue_id(queue), icresp->hdr.plen);
1479 		goto free_icresp;
1480 	}
1481 
1482 	if (icresp->pfv != NVME_TCP_PFV_1_0) {
1483 		pr_err("queue %d: bad pfv returned %d\n",
1484 			nvme_tcp_queue_id(queue), icresp->pfv);
1485 		goto free_icresp;
1486 	}
1487 
1488 	ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE);
1489 	if ((queue->data_digest && !ctrl_ddgst) ||
1490 	    (!queue->data_digest && ctrl_ddgst)) {
1491 		pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n",
1492 			nvme_tcp_queue_id(queue),
1493 			queue->data_digest ? "enabled" : "disabled",
1494 			ctrl_ddgst ? "enabled" : "disabled");
1495 		goto free_icresp;
1496 	}
1497 
1498 	ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE);
1499 	if ((queue->hdr_digest && !ctrl_hdgst) ||
1500 	    (!queue->hdr_digest && ctrl_hdgst)) {
1501 		pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n",
1502 			nvme_tcp_queue_id(queue),
1503 			queue->hdr_digest ? "enabled" : "disabled",
1504 			ctrl_hdgst ? "enabled" : "disabled");
1505 		goto free_icresp;
1506 	}
1507 
1508 	if (icresp->cpda != 0) {
1509 		pr_err("queue %d: unsupported cpda returned %d\n",
1510 			nvme_tcp_queue_id(queue), icresp->cpda);
1511 		goto free_icresp;
1512 	}
1513 
1514 	maxh2cdata = le32_to_cpu(icresp->maxdata);
1515 	if ((maxh2cdata % 4) || (maxh2cdata < NVME_TCP_MIN_MAXH2CDATA)) {
1516 		pr_err("queue %d: invalid maxh2cdata returned %u\n",
1517 		       nvme_tcp_queue_id(queue), maxh2cdata);
1518 		goto free_icresp;
1519 	}
1520 	queue->maxh2cdata = maxh2cdata;
1521 
1522 	ret = 0;
1523 free_icresp:
1524 	kfree(icresp);
1525 free_icreq:
1526 	kfree(icreq);
1527 	return ret;
1528 }
1529 
1530 static bool nvme_tcp_admin_queue(struct nvme_tcp_queue *queue)
1531 {
1532 	return nvme_tcp_queue_id(queue) == 0;
1533 }
1534 
1535 static bool nvme_tcp_default_queue(struct nvme_tcp_queue *queue)
1536 {
1537 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1538 	int qid = nvme_tcp_queue_id(queue);
1539 
1540 	return !nvme_tcp_admin_queue(queue) &&
1541 		qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT];
1542 }
1543 
1544 static bool nvme_tcp_read_queue(struct nvme_tcp_queue *queue)
1545 {
1546 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1547 	int qid = nvme_tcp_queue_id(queue);
1548 
1549 	return !nvme_tcp_admin_queue(queue) &&
1550 		!nvme_tcp_default_queue(queue) &&
1551 		qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1552 			  ctrl->io_queues[HCTX_TYPE_READ];
1553 }
1554 
1555 static bool nvme_tcp_poll_queue(struct nvme_tcp_queue *queue)
1556 {
1557 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1558 	int qid = nvme_tcp_queue_id(queue);
1559 
1560 	return !nvme_tcp_admin_queue(queue) &&
1561 		!nvme_tcp_default_queue(queue) &&
1562 		!nvme_tcp_read_queue(queue) &&
1563 		qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1564 			  ctrl->io_queues[HCTX_TYPE_READ] +
1565 			  ctrl->io_queues[HCTX_TYPE_POLL];
1566 }
1567 
1568 /**
1569  * Track the number of queues assigned to each cpu using a global per-cpu
1570  * counter and select the least used cpu from the mq_map. Our goal is to spread
1571  * different controllers I/O threads across different cpu cores.
1572  *
1573  * Note that the accounting is not 100% perfect, but we don't need to be, we're
1574  * simply putting our best effort to select the best candidate cpu core that we
1575  * find at any given point.
1576  */
1577 static void nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue *queue)
1578 {
1579 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1580 	struct blk_mq_tag_set *set = &ctrl->tag_set;
1581 	int qid = nvme_tcp_queue_id(queue) - 1;
1582 	unsigned int *mq_map = NULL;
1583 	int cpu, min_queues = INT_MAX, io_cpu;
1584 
1585 	if (wq_unbound)
1586 		goto out;
1587 
1588 	if (nvme_tcp_default_queue(queue))
1589 		mq_map = set->map[HCTX_TYPE_DEFAULT].mq_map;
1590 	else if (nvme_tcp_read_queue(queue))
1591 		mq_map = set->map[HCTX_TYPE_READ].mq_map;
1592 	else if (nvme_tcp_poll_queue(queue))
1593 		mq_map = set->map[HCTX_TYPE_POLL].mq_map;
1594 
1595 	if (WARN_ON(!mq_map))
1596 		goto out;
1597 
1598 	/* Search for the least used cpu from the mq_map */
1599 	io_cpu = WORK_CPU_UNBOUND;
1600 	for_each_online_cpu(cpu) {
1601 		int num_queues = atomic_read(&nvme_tcp_cpu_queues[cpu]);
1602 
1603 		if (mq_map[cpu] != qid)
1604 			continue;
1605 		if (num_queues < min_queues) {
1606 			io_cpu = cpu;
1607 			min_queues = num_queues;
1608 		}
1609 	}
1610 	if (io_cpu != WORK_CPU_UNBOUND) {
1611 		queue->io_cpu = io_cpu;
1612 		atomic_inc(&nvme_tcp_cpu_queues[io_cpu]);
1613 		set_bit(NVME_TCP_Q_IO_CPU_SET, &queue->flags);
1614 	}
1615 out:
1616 	dev_dbg(ctrl->ctrl.device, "queue %d: using cpu %d\n",
1617 		qid, queue->io_cpu);
1618 }
1619 
1620 static void nvme_tcp_tls_done(void *data, int status, key_serial_t pskid)
1621 {
1622 	struct nvme_tcp_queue *queue = data;
1623 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1624 	int qid = nvme_tcp_queue_id(queue);
1625 	struct key *tls_key;
1626 
1627 	dev_dbg(ctrl->ctrl.device, "queue %d: TLS handshake done, key %x, status %d\n",
1628 		qid, pskid, status);
1629 
1630 	if (status) {
1631 		queue->tls_err = -status;
1632 		goto out_complete;
1633 	}
1634 
1635 	tls_key = nvme_tls_key_lookup(pskid);
1636 	if (IS_ERR(tls_key)) {
1637 		dev_warn(ctrl->ctrl.device, "queue %d: Invalid key %x\n",
1638 			 qid, pskid);
1639 		queue->tls_err = -ENOKEY;
1640 	} else {
1641 		queue->tls_enabled = true;
1642 		if (qid == 0)
1643 			ctrl->ctrl.tls_pskid = key_serial(tls_key);
1644 		key_put(tls_key);
1645 		queue->tls_err = 0;
1646 	}
1647 
1648 out_complete:
1649 	complete(&queue->tls_complete);
1650 }
1651 
1652 static int nvme_tcp_start_tls(struct nvme_ctrl *nctrl,
1653 			      struct nvme_tcp_queue *queue,
1654 			      key_serial_t pskid)
1655 {
1656 	int qid = nvme_tcp_queue_id(queue);
1657 	int ret;
1658 	struct tls_handshake_args args;
1659 	unsigned long tmo = tls_handshake_timeout * HZ;
1660 	key_serial_t keyring = nvme_keyring_id();
1661 
1662 	dev_dbg(nctrl->device, "queue %d: start TLS with key %x\n",
1663 		qid, pskid);
1664 	memset(&args, 0, sizeof(args));
1665 	args.ta_sock = queue->sock;
1666 	args.ta_done = nvme_tcp_tls_done;
1667 	args.ta_data = queue;
1668 	args.ta_my_peerids[0] = pskid;
1669 	args.ta_num_peerids = 1;
1670 	if (nctrl->opts->keyring)
1671 		keyring = key_serial(nctrl->opts->keyring);
1672 	args.ta_keyring = keyring;
1673 	args.ta_timeout_ms = tls_handshake_timeout * 1000;
1674 	queue->tls_err = -EOPNOTSUPP;
1675 	init_completion(&queue->tls_complete);
1676 	ret = tls_client_hello_psk(&args, GFP_KERNEL);
1677 	if (ret) {
1678 		dev_err(nctrl->device, "queue %d: failed to start TLS: %d\n",
1679 			qid, ret);
1680 		return ret;
1681 	}
1682 	ret = wait_for_completion_interruptible_timeout(&queue->tls_complete, tmo);
1683 	if (ret <= 0) {
1684 		if (ret == 0)
1685 			ret = -ETIMEDOUT;
1686 
1687 		dev_err(nctrl->device,
1688 			"queue %d: TLS handshake failed, error %d\n",
1689 			qid, ret);
1690 		tls_handshake_cancel(queue->sock->sk);
1691 	} else {
1692 		dev_dbg(nctrl->device,
1693 			"queue %d: TLS handshake complete, error %d\n",
1694 			qid, queue->tls_err);
1695 		ret = queue->tls_err;
1696 	}
1697 	return ret;
1698 }
1699 
1700 static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl, int qid,
1701 				key_serial_t pskid)
1702 {
1703 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1704 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1705 	int ret, rcv_pdu_size;
1706 	struct file *sock_file;
1707 
1708 	mutex_init(&queue->queue_lock);
1709 	queue->ctrl = ctrl;
1710 	init_llist_head(&queue->req_list);
1711 	INIT_LIST_HEAD(&queue->send_list);
1712 	mutex_init(&queue->send_mutex);
1713 	INIT_WORK(&queue->io_work, nvme_tcp_io_work);
1714 
1715 	if (qid > 0)
1716 		queue->cmnd_capsule_len = nctrl->ioccsz * 16;
1717 	else
1718 		queue->cmnd_capsule_len = sizeof(struct nvme_command) +
1719 						NVME_TCP_ADMIN_CCSZ;
1720 
1721 	ret = sock_create(ctrl->addr.ss_family, SOCK_STREAM,
1722 			IPPROTO_TCP, &queue->sock);
1723 	if (ret) {
1724 		dev_err(nctrl->device,
1725 			"failed to create socket: %d\n", ret);
1726 		goto err_destroy_mutex;
1727 	}
1728 
1729 	sock_file = sock_alloc_file(queue->sock, O_CLOEXEC, NULL);
1730 	if (IS_ERR(sock_file)) {
1731 		ret = PTR_ERR(sock_file);
1732 		goto err_destroy_mutex;
1733 	}
1734 	nvme_tcp_reclassify_socket(queue->sock);
1735 
1736 	/* Single syn retry */
1737 	tcp_sock_set_syncnt(queue->sock->sk, 1);
1738 
1739 	/* Set TCP no delay */
1740 	tcp_sock_set_nodelay(queue->sock->sk);
1741 
1742 	/*
1743 	 * Cleanup whatever is sitting in the TCP transmit queue on socket
1744 	 * close. This is done to prevent stale data from being sent should
1745 	 * the network connection be restored before TCP times out.
1746 	 */
1747 	sock_no_linger(queue->sock->sk);
1748 
1749 	if (so_priority > 0)
1750 		sock_set_priority(queue->sock->sk, so_priority);
1751 
1752 	/* Set socket type of service */
1753 	if (nctrl->opts->tos >= 0)
1754 		ip_sock_set_tos(queue->sock->sk, nctrl->opts->tos);
1755 
1756 	/* Set 10 seconds timeout for icresp recvmsg */
1757 	queue->sock->sk->sk_rcvtimeo = 10 * HZ;
1758 
1759 	queue->sock->sk->sk_allocation = GFP_ATOMIC;
1760 	queue->sock->sk->sk_use_task_frag = false;
1761 	queue->io_cpu = WORK_CPU_UNBOUND;
1762 	queue->request = NULL;
1763 	queue->data_remaining = 0;
1764 	queue->ddgst_remaining = 0;
1765 	queue->pdu_remaining = 0;
1766 	queue->pdu_offset = 0;
1767 	sk_set_memalloc(queue->sock->sk);
1768 
1769 	if (nctrl->opts->mask & NVMF_OPT_HOST_TRADDR) {
1770 		ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr,
1771 			sizeof(ctrl->src_addr));
1772 		if (ret) {
1773 			dev_err(nctrl->device,
1774 				"failed to bind queue %d socket %d\n",
1775 				qid, ret);
1776 			goto err_sock;
1777 		}
1778 	}
1779 
1780 	if (nctrl->opts->mask & NVMF_OPT_HOST_IFACE) {
1781 		char *iface = nctrl->opts->host_iface;
1782 		sockptr_t optval = KERNEL_SOCKPTR(iface);
1783 
1784 		ret = sock_setsockopt(queue->sock, SOL_SOCKET, SO_BINDTODEVICE,
1785 				      optval, strlen(iface));
1786 		if (ret) {
1787 			dev_err(nctrl->device,
1788 			  "failed to bind to interface %s queue %d err %d\n",
1789 			  iface, qid, ret);
1790 			goto err_sock;
1791 		}
1792 	}
1793 
1794 	queue->hdr_digest = nctrl->opts->hdr_digest;
1795 	queue->data_digest = nctrl->opts->data_digest;
1796 	if (queue->hdr_digest || queue->data_digest) {
1797 		ret = nvme_tcp_alloc_crypto(queue);
1798 		if (ret) {
1799 			dev_err(nctrl->device,
1800 				"failed to allocate queue %d crypto\n", qid);
1801 			goto err_sock;
1802 		}
1803 	}
1804 
1805 	rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) +
1806 			nvme_tcp_hdgst_len(queue);
1807 	queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL);
1808 	if (!queue->pdu) {
1809 		ret = -ENOMEM;
1810 		goto err_crypto;
1811 	}
1812 
1813 	dev_dbg(nctrl->device, "connecting queue %d\n",
1814 			nvme_tcp_queue_id(queue));
1815 
1816 	ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr,
1817 		sizeof(ctrl->addr), 0);
1818 	if (ret) {
1819 		dev_err(nctrl->device,
1820 			"failed to connect socket: %d\n", ret);
1821 		goto err_rcv_pdu;
1822 	}
1823 
1824 	/* If PSKs are configured try to start TLS */
1825 	if (nvme_tcp_tls_configured(nctrl) && pskid) {
1826 		ret = nvme_tcp_start_tls(nctrl, queue, pskid);
1827 		if (ret)
1828 			goto err_init_connect;
1829 	}
1830 
1831 	ret = nvme_tcp_init_connection(queue);
1832 	if (ret)
1833 		goto err_init_connect;
1834 
1835 	set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags);
1836 
1837 	return 0;
1838 
1839 err_init_connect:
1840 	kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1841 err_rcv_pdu:
1842 	kfree(queue->pdu);
1843 err_crypto:
1844 	if (queue->hdr_digest || queue->data_digest)
1845 		nvme_tcp_free_crypto(queue);
1846 err_sock:
1847 	/* ->sock will be released by fput() */
1848 	fput(queue->sock->file);
1849 	queue->sock = NULL;
1850 err_destroy_mutex:
1851 	mutex_destroy(&queue->send_mutex);
1852 	mutex_destroy(&queue->queue_lock);
1853 	return ret;
1854 }
1855 
1856 static void nvme_tcp_restore_sock_ops(struct nvme_tcp_queue *queue)
1857 {
1858 	struct socket *sock = queue->sock;
1859 
1860 	write_lock_bh(&sock->sk->sk_callback_lock);
1861 	sock->sk->sk_user_data  = NULL;
1862 	sock->sk->sk_data_ready = queue->data_ready;
1863 	sock->sk->sk_state_change = queue->state_change;
1864 	sock->sk->sk_write_space  = queue->write_space;
1865 	write_unlock_bh(&sock->sk->sk_callback_lock);
1866 }
1867 
1868 static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue)
1869 {
1870 	kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1871 	nvme_tcp_restore_sock_ops(queue);
1872 	cancel_work_sync(&queue->io_work);
1873 }
1874 
1875 static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid)
1876 {
1877 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1878 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1879 
1880 	if (!test_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1881 		return;
1882 
1883 	if (test_and_clear_bit(NVME_TCP_Q_IO_CPU_SET, &queue->flags))
1884 		atomic_dec(&nvme_tcp_cpu_queues[queue->io_cpu]);
1885 
1886 	mutex_lock(&queue->queue_lock);
1887 	if (test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags))
1888 		__nvme_tcp_stop_queue(queue);
1889 	/* Stopping the queue will disable TLS */
1890 	queue->tls_enabled = false;
1891 	mutex_unlock(&queue->queue_lock);
1892 }
1893 
1894 static void nvme_tcp_setup_sock_ops(struct nvme_tcp_queue *queue)
1895 {
1896 	write_lock_bh(&queue->sock->sk->sk_callback_lock);
1897 	queue->sock->sk->sk_user_data = queue;
1898 	queue->state_change = queue->sock->sk->sk_state_change;
1899 	queue->data_ready = queue->sock->sk->sk_data_ready;
1900 	queue->write_space = queue->sock->sk->sk_write_space;
1901 	queue->sock->sk->sk_data_ready = nvme_tcp_data_ready;
1902 	queue->sock->sk->sk_state_change = nvme_tcp_state_change;
1903 	queue->sock->sk->sk_write_space = nvme_tcp_write_space;
1904 #ifdef CONFIG_NET_RX_BUSY_POLL
1905 	queue->sock->sk->sk_ll_usec = 1;
1906 #endif
1907 	write_unlock_bh(&queue->sock->sk->sk_callback_lock);
1908 }
1909 
1910 static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx)
1911 {
1912 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1913 	struct nvme_tcp_queue *queue = &ctrl->queues[idx];
1914 	int ret;
1915 
1916 	queue->rd_enabled = true;
1917 	nvme_tcp_init_recv_ctx(queue);
1918 	nvme_tcp_setup_sock_ops(queue);
1919 
1920 	if (idx) {
1921 		nvme_tcp_set_queue_io_cpu(queue);
1922 		ret = nvmf_connect_io_queue(nctrl, idx);
1923 	} else
1924 		ret = nvmf_connect_admin_queue(nctrl);
1925 
1926 	if (!ret) {
1927 		set_bit(NVME_TCP_Q_LIVE, &queue->flags);
1928 	} else {
1929 		if (test_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1930 			__nvme_tcp_stop_queue(queue);
1931 		dev_err(nctrl->device,
1932 			"failed to connect queue: %d ret=%d\n", idx, ret);
1933 	}
1934 	return ret;
1935 }
1936 
1937 static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl)
1938 {
1939 	if (to_tcp_ctrl(ctrl)->async_req.pdu) {
1940 		cancel_work_sync(&ctrl->async_event_work);
1941 		nvme_tcp_free_async_req(to_tcp_ctrl(ctrl));
1942 		to_tcp_ctrl(ctrl)->async_req.pdu = NULL;
1943 	}
1944 
1945 	nvme_tcp_free_queue(ctrl, 0);
1946 }
1947 
1948 static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl)
1949 {
1950 	int i;
1951 
1952 	for (i = 1; i < ctrl->queue_count; i++)
1953 		nvme_tcp_free_queue(ctrl, i);
1954 }
1955 
1956 static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl)
1957 {
1958 	int i;
1959 
1960 	for (i = 1; i < ctrl->queue_count; i++)
1961 		nvme_tcp_stop_queue(ctrl, i);
1962 }
1963 
1964 static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl,
1965 				    int first, int last)
1966 {
1967 	int i, ret;
1968 
1969 	for (i = first; i < last; i++) {
1970 		ret = nvme_tcp_start_queue(ctrl, i);
1971 		if (ret)
1972 			goto out_stop_queues;
1973 	}
1974 
1975 	return 0;
1976 
1977 out_stop_queues:
1978 	for (i--; i >= first; i--)
1979 		nvme_tcp_stop_queue(ctrl, i);
1980 	return ret;
1981 }
1982 
1983 static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl)
1984 {
1985 	int ret;
1986 	key_serial_t pskid = 0;
1987 
1988 	if (nvme_tcp_tls_configured(ctrl)) {
1989 		if (ctrl->opts->tls_key)
1990 			pskid = key_serial(ctrl->opts->tls_key);
1991 		else {
1992 			pskid = nvme_tls_psk_default(ctrl->opts->keyring,
1993 						      ctrl->opts->host->nqn,
1994 						      ctrl->opts->subsysnqn);
1995 			if (!pskid) {
1996 				dev_err(ctrl->device, "no valid PSK found\n");
1997 				return -ENOKEY;
1998 			}
1999 		}
2000 	}
2001 
2002 	ret = nvme_tcp_alloc_queue(ctrl, 0, pskid);
2003 	if (ret)
2004 		return ret;
2005 
2006 	ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl));
2007 	if (ret)
2008 		goto out_free_queue;
2009 
2010 	return 0;
2011 
2012 out_free_queue:
2013 	nvme_tcp_free_queue(ctrl, 0);
2014 	return ret;
2015 }
2016 
2017 static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
2018 {
2019 	int i, ret;
2020 
2021 	if (nvme_tcp_tls_configured(ctrl) && !ctrl->tls_pskid) {
2022 		dev_err(ctrl->device, "no PSK negotiated\n");
2023 		return -ENOKEY;
2024 	}
2025 
2026 	for (i = 1; i < ctrl->queue_count; i++) {
2027 		ret = nvme_tcp_alloc_queue(ctrl, i,
2028 				ctrl->tls_pskid);
2029 		if (ret)
2030 			goto out_free_queues;
2031 	}
2032 
2033 	return 0;
2034 
2035 out_free_queues:
2036 	for (i--; i >= 1; i--)
2037 		nvme_tcp_free_queue(ctrl, i);
2038 
2039 	return ret;
2040 }
2041 
2042 static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
2043 {
2044 	unsigned int nr_io_queues;
2045 	int ret;
2046 
2047 	nr_io_queues = nvmf_nr_io_queues(ctrl->opts);
2048 	ret = nvme_set_queue_count(ctrl, &nr_io_queues);
2049 	if (ret)
2050 		return ret;
2051 
2052 	if (nr_io_queues == 0) {
2053 		dev_err(ctrl->device,
2054 			"unable to set any I/O queues\n");
2055 		return -ENOMEM;
2056 	}
2057 
2058 	ctrl->queue_count = nr_io_queues + 1;
2059 	dev_info(ctrl->device,
2060 		"creating %d I/O queues.\n", nr_io_queues);
2061 
2062 	nvmf_set_io_queues(ctrl->opts, nr_io_queues,
2063 			   to_tcp_ctrl(ctrl)->io_queues);
2064 	return __nvme_tcp_alloc_io_queues(ctrl);
2065 }
2066 
2067 static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new)
2068 {
2069 	int ret, nr_queues;
2070 
2071 	ret = nvme_tcp_alloc_io_queues(ctrl);
2072 	if (ret)
2073 		return ret;
2074 
2075 	if (new) {
2076 		ret = nvme_alloc_io_tag_set(ctrl, &to_tcp_ctrl(ctrl)->tag_set,
2077 				&nvme_tcp_mq_ops,
2078 				ctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2,
2079 				sizeof(struct nvme_tcp_request));
2080 		if (ret)
2081 			goto out_free_io_queues;
2082 	}
2083 
2084 	/*
2085 	 * Only start IO queues for which we have allocated the tagset
2086 	 * and limitted it to the available queues. On reconnects, the
2087 	 * queue number might have changed.
2088 	 */
2089 	nr_queues = min(ctrl->tagset->nr_hw_queues + 1, ctrl->queue_count);
2090 	ret = nvme_tcp_start_io_queues(ctrl, 1, nr_queues);
2091 	if (ret)
2092 		goto out_cleanup_connect_q;
2093 
2094 	if (!new) {
2095 		nvme_start_freeze(ctrl);
2096 		nvme_unquiesce_io_queues(ctrl);
2097 		if (!nvme_wait_freeze_timeout(ctrl, NVME_IO_TIMEOUT)) {
2098 			/*
2099 			 * If we timed out waiting for freeze we are likely to
2100 			 * be stuck.  Fail the controller initialization just
2101 			 * to be safe.
2102 			 */
2103 			ret = -ENODEV;
2104 			nvme_unfreeze(ctrl);
2105 			goto out_wait_freeze_timed_out;
2106 		}
2107 		blk_mq_update_nr_hw_queues(ctrl->tagset,
2108 			ctrl->queue_count - 1);
2109 		nvme_unfreeze(ctrl);
2110 	}
2111 
2112 	/*
2113 	 * If the number of queues has increased (reconnect case)
2114 	 * start all new queues now.
2115 	 */
2116 	ret = nvme_tcp_start_io_queues(ctrl, nr_queues,
2117 				       ctrl->tagset->nr_hw_queues + 1);
2118 	if (ret)
2119 		goto out_wait_freeze_timed_out;
2120 
2121 	return 0;
2122 
2123 out_wait_freeze_timed_out:
2124 	nvme_quiesce_io_queues(ctrl);
2125 	nvme_sync_io_queues(ctrl);
2126 	nvme_tcp_stop_io_queues(ctrl);
2127 out_cleanup_connect_q:
2128 	nvme_cancel_tagset(ctrl);
2129 	if (new)
2130 		nvme_remove_io_tag_set(ctrl);
2131 out_free_io_queues:
2132 	nvme_tcp_free_io_queues(ctrl);
2133 	return ret;
2134 }
2135 
2136 static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new)
2137 {
2138 	int error;
2139 
2140 	error = nvme_tcp_alloc_admin_queue(ctrl);
2141 	if (error)
2142 		return error;
2143 
2144 	if (new) {
2145 		error = nvme_alloc_admin_tag_set(ctrl,
2146 				&to_tcp_ctrl(ctrl)->admin_tag_set,
2147 				&nvme_tcp_admin_mq_ops,
2148 				sizeof(struct nvme_tcp_request));
2149 		if (error)
2150 			goto out_free_queue;
2151 	}
2152 
2153 	error = nvme_tcp_start_queue(ctrl, 0);
2154 	if (error)
2155 		goto out_cleanup_tagset;
2156 
2157 	error = nvme_enable_ctrl(ctrl);
2158 	if (error)
2159 		goto out_stop_queue;
2160 
2161 	nvme_unquiesce_admin_queue(ctrl);
2162 
2163 	error = nvme_init_ctrl_finish(ctrl, false);
2164 	if (error)
2165 		goto out_quiesce_queue;
2166 
2167 	return 0;
2168 
2169 out_quiesce_queue:
2170 	nvme_quiesce_admin_queue(ctrl);
2171 	blk_sync_queue(ctrl->admin_q);
2172 out_stop_queue:
2173 	nvme_tcp_stop_queue(ctrl, 0);
2174 	nvme_cancel_admin_tagset(ctrl);
2175 out_cleanup_tagset:
2176 	if (new)
2177 		nvme_remove_admin_tag_set(ctrl);
2178 out_free_queue:
2179 	nvme_tcp_free_admin_queue(ctrl);
2180 	return error;
2181 }
2182 
2183 static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl,
2184 		bool remove)
2185 {
2186 	nvme_quiesce_admin_queue(ctrl);
2187 	blk_sync_queue(ctrl->admin_q);
2188 	nvme_tcp_stop_queue(ctrl, 0);
2189 	nvme_cancel_admin_tagset(ctrl);
2190 	if (remove) {
2191 		nvme_unquiesce_admin_queue(ctrl);
2192 		nvme_remove_admin_tag_set(ctrl);
2193 	}
2194 	nvme_tcp_free_admin_queue(ctrl);
2195 	if (ctrl->tls_pskid) {
2196 		dev_dbg(ctrl->device, "Wipe negotiated TLS_PSK %08x\n",
2197 			ctrl->tls_pskid);
2198 		ctrl->tls_pskid = 0;
2199 	}
2200 }
2201 
2202 static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl,
2203 		bool remove)
2204 {
2205 	if (ctrl->queue_count <= 1)
2206 		return;
2207 	nvme_quiesce_io_queues(ctrl);
2208 	nvme_sync_io_queues(ctrl);
2209 	nvme_tcp_stop_io_queues(ctrl);
2210 	nvme_cancel_tagset(ctrl);
2211 	if (remove) {
2212 		nvme_unquiesce_io_queues(ctrl);
2213 		nvme_remove_io_tag_set(ctrl);
2214 	}
2215 	nvme_tcp_free_io_queues(ctrl);
2216 }
2217 
2218 static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl,
2219 		int status)
2220 {
2221 	enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
2222 
2223 	/* If we are resetting/deleting then do nothing */
2224 	if (state != NVME_CTRL_CONNECTING) {
2225 		WARN_ON_ONCE(state == NVME_CTRL_NEW || state == NVME_CTRL_LIVE);
2226 		return;
2227 	}
2228 
2229 	if (nvmf_should_reconnect(ctrl, status)) {
2230 		dev_info(ctrl->device, "Reconnecting in %d seconds...\n",
2231 			ctrl->opts->reconnect_delay);
2232 		queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work,
2233 				ctrl->opts->reconnect_delay * HZ);
2234 	} else {
2235 		dev_info(ctrl->device, "Removing controller (%d)...\n",
2236 			 status);
2237 		nvme_delete_ctrl(ctrl);
2238 	}
2239 }
2240 
2241 static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new)
2242 {
2243 	struct nvmf_ctrl_options *opts = ctrl->opts;
2244 	int ret;
2245 
2246 	ret = nvme_tcp_configure_admin_queue(ctrl, new);
2247 	if (ret)
2248 		return ret;
2249 
2250 	if (ctrl->icdoff) {
2251 		ret = -EOPNOTSUPP;
2252 		dev_err(ctrl->device, "icdoff is not supported!\n");
2253 		goto destroy_admin;
2254 	}
2255 
2256 	if (!nvme_ctrl_sgl_supported(ctrl)) {
2257 		ret = -EOPNOTSUPP;
2258 		dev_err(ctrl->device, "Mandatory sgls are not supported!\n");
2259 		goto destroy_admin;
2260 	}
2261 
2262 	if (opts->queue_size > ctrl->sqsize + 1)
2263 		dev_warn(ctrl->device,
2264 			"queue_size %zu > ctrl sqsize %u, clamping down\n",
2265 			opts->queue_size, ctrl->sqsize + 1);
2266 
2267 	if (ctrl->sqsize + 1 > ctrl->maxcmd) {
2268 		dev_warn(ctrl->device,
2269 			"sqsize %u > ctrl maxcmd %u, clamping down\n",
2270 			ctrl->sqsize + 1, ctrl->maxcmd);
2271 		ctrl->sqsize = ctrl->maxcmd - 1;
2272 	}
2273 
2274 	if (ctrl->queue_count > 1) {
2275 		ret = nvme_tcp_configure_io_queues(ctrl, new);
2276 		if (ret)
2277 			goto destroy_admin;
2278 	}
2279 
2280 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) {
2281 		/*
2282 		 * state change failure is ok if we started ctrl delete,
2283 		 * unless we're during creation of a new controller to
2284 		 * avoid races with teardown flow.
2285 		 */
2286 		enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
2287 
2288 		WARN_ON_ONCE(state != NVME_CTRL_DELETING &&
2289 			     state != NVME_CTRL_DELETING_NOIO);
2290 		WARN_ON_ONCE(new);
2291 		ret = -EINVAL;
2292 		goto destroy_io;
2293 	}
2294 
2295 	nvme_start_ctrl(ctrl);
2296 	return 0;
2297 
2298 destroy_io:
2299 	if (ctrl->queue_count > 1) {
2300 		nvme_quiesce_io_queues(ctrl);
2301 		nvme_sync_io_queues(ctrl);
2302 		nvme_tcp_stop_io_queues(ctrl);
2303 		nvme_cancel_tagset(ctrl);
2304 		if (new)
2305 			nvme_remove_io_tag_set(ctrl);
2306 		nvme_tcp_free_io_queues(ctrl);
2307 	}
2308 destroy_admin:
2309 	nvme_stop_keep_alive(ctrl);
2310 	nvme_tcp_teardown_admin_queue(ctrl, new);
2311 	return ret;
2312 }
2313 
2314 static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work)
2315 {
2316 	struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work),
2317 			struct nvme_tcp_ctrl, connect_work);
2318 	struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2319 	int ret;
2320 
2321 	++ctrl->nr_reconnects;
2322 
2323 	ret = nvme_tcp_setup_ctrl(ctrl, false);
2324 	if (ret)
2325 		goto requeue;
2326 
2327 	dev_info(ctrl->device, "Successfully reconnected (attempt %d/%d)\n",
2328 		 ctrl->nr_reconnects, ctrl->opts->max_reconnects);
2329 
2330 	ctrl->nr_reconnects = 0;
2331 
2332 	return;
2333 
2334 requeue:
2335 	dev_info(ctrl->device, "Failed reconnect attempt %d/%d\n",
2336 		 ctrl->nr_reconnects, ctrl->opts->max_reconnects);
2337 	nvme_tcp_reconnect_or_remove(ctrl, ret);
2338 }
2339 
2340 static void nvme_tcp_error_recovery_work(struct work_struct *work)
2341 {
2342 	struct nvme_tcp_ctrl *tcp_ctrl = container_of(work,
2343 				struct nvme_tcp_ctrl, err_work);
2344 	struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2345 
2346 	nvme_stop_keep_alive(ctrl);
2347 	flush_work(&ctrl->async_event_work);
2348 	nvme_tcp_teardown_io_queues(ctrl, false);
2349 	/* unquiesce to fail fast pending requests */
2350 	nvme_unquiesce_io_queues(ctrl);
2351 	nvme_tcp_teardown_admin_queue(ctrl, false);
2352 	nvme_unquiesce_admin_queue(ctrl);
2353 	nvme_auth_stop(ctrl);
2354 
2355 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2356 		/* state change failure is ok if we started ctrl delete */
2357 		enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
2358 
2359 		WARN_ON_ONCE(state != NVME_CTRL_DELETING &&
2360 			     state != NVME_CTRL_DELETING_NOIO);
2361 		return;
2362 	}
2363 
2364 	nvme_tcp_reconnect_or_remove(ctrl, 0);
2365 }
2366 
2367 static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
2368 {
2369 	nvme_tcp_teardown_io_queues(ctrl, shutdown);
2370 	nvme_quiesce_admin_queue(ctrl);
2371 	nvme_disable_ctrl(ctrl, shutdown);
2372 	nvme_tcp_teardown_admin_queue(ctrl, shutdown);
2373 }
2374 
2375 static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl)
2376 {
2377 	nvme_tcp_teardown_ctrl(ctrl, true);
2378 }
2379 
2380 static void nvme_reset_ctrl_work(struct work_struct *work)
2381 {
2382 	struct nvme_ctrl *ctrl =
2383 		container_of(work, struct nvme_ctrl, reset_work);
2384 	int ret;
2385 
2386 	nvme_stop_ctrl(ctrl);
2387 	nvme_tcp_teardown_ctrl(ctrl, false);
2388 
2389 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2390 		/* state change failure is ok if we started ctrl delete */
2391 		enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
2392 
2393 		WARN_ON_ONCE(state != NVME_CTRL_DELETING &&
2394 			     state != NVME_CTRL_DELETING_NOIO);
2395 		return;
2396 	}
2397 
2398 	ret = nvme_tcp_setup_ctrl(ctrl, false);
2399 	if (ret)
2400 		goto out_fail;
2401 
2402 	return;
2403 
2404 out_fail:
2405 	++ctrl->nr_reconnects;
2406 	nvme_tcp_reconnect_or_remove(ctrl, ret);
2407 }
2408 
2409 static void nvme_tcp_stop_ctrl(struct nvme_ctrl *ctrl)
2410 {
2411 	flush_work(&to_tcp_ctrl(ctrl)->err_work);
2412 	cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work);
2413 }
2414 
2415 static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl)
2416 {
2417 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
2418 
2419 	if (list_empty(&ctrl->list))
2420 		goto free_ctrl;
2421 
2422 	mutex_lock(&nvme_tcp_ctrl_mutex);
2423 	list_del(&ctrl->list);
2424 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2425 
2426 	nvmf_free_options(nctrl->opts);
2427 free_ctrl:
2428 	kfree(ctrl->queues);
2429 	kfree(ctrl);
2430 }
2431 
2432 static void nvme_tcp_set_sg_null(struct nvme_command *c)
2433 {
2434 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2435 
2436 	sg->addr = 0;
2437 	sg->length = 0;
2438 	sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2439 			NVME_SGL_FMT_TRANSPORT_A;
2440 }
2441 
2442 static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue,
2443 		struct nvme_command *c, u32 data_len)
2444 {
2445 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2446 
2447 	sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
2448 	sg->length = cpu_to_le32(data_len);
2449 	sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
2450 }
2451 
2452 static void nvme_tcp_set_sg_host_data(struct nvme_command *c,
2453 		u32 data_len)
2454 {
2455 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2456 
2457 	sg->addr = 0;
2458 	sg->length = cpu_to_le32(data_len);
2459 	sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2460 			NVME_SGL_FMT_TRANSPORT_A;
2461 }
2462 
2463 static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg)
2464 {
2465 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg);
2466 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
2467 	struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu;
2468 	struct nvme_command *cmd = &pdu->cmd;
2469 	u8 hdgst = nvme_tcp_hdgst_len(queue);
2470 
2471 	memset(pdu, 0, sizeof(*pdu));
2472 	pdu->hdr.type = nvme_tcp_cmd;
2473 	if (queue->hdr_digest)
2474 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
2475 	pdu->hdr.hlen = sizeof(*pdu);
2476 	pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
2477 
2478 	cmd->common.opcode = nvme_admin_async_event;
2479 	cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
2480 	cmd->common.flags |= NVME_CMD_SGL_METABUF;
2481 	nvme_tcp_set_sg_null(cmd);
2482 
2483 	ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU;
2484 	ctrl->async_req.offset = 0;
2485 	ctrl->async_req.curr_bio = NULL;
2486 	ctrl->async_req.data_len = 0;
2487 
2488 	nvme_tcp_queue_request(&ctrl->async_req, true, true);
2489 }
2490 
2491 static void nvme_tcp_complete_timed_out(struct request *rq)
2492 {
2493 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2494 	struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2495 
2496 	nvme_tcp_stop_queue(ctrl, nvme_tcp_queue_id(req->queue));
2497 	nvmf_complete_timed_out_request(rq);
2498 }
2499 
2500 static enum blk_eh_timer_return nvme_tcp_timeout(struct request *rq)
2501 {
2502 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2503 	struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2504 	struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req);
2505 	struct nvme_command *cmd = &pdu->cmd;
2506 	int qid = nvme_tcp_queue_id(req->queue);
2507 
2508 	dev_warn(ctrl->device,
2509 		 "I/O tag %d (%04x) type %d opcode %#x (%s) QID %d timeout\n",
2510 		 rq->tag, nvme_cid(rq), pdu->hdr.type, cmd->common.opcode,
2511 		 nvme_fabrics_opcode_str(qid, cmd), qid);
2512 
2513 	if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE) {
2514 		/*
2515 		 * If we are resetting, connecting or deleting we should
2516 		 * complete immediately because we may block controller
2517 		 * teardown or setup sequence
2518 		 * - ctrl disable/shutdown fabrics requests
2519 		 * - connect requests
2520 		 * - initialization admin requests
2521 		 * - I/O requests that entered after unquiescing and
2522 		 *   the controller stopped responding
2523 		 *
2524 		 * All other requests should be cancelled by the error
2525 		 * recovery work, so it's fine that we fail it here.
2526 		 */
2527 		nvme_tcp_complete_timed_out(rq);
2528 		return BLK_EH_DONE;
2529 	}
2530 
2531 	/*
2532 	 * LIVE state should trigger the normal error recovery which will
2533 	 * handle completing this request.
2534 	 */
2535 	nvme_tcp_error_recovery(ctrl);
2536 	return BLK_EH_RESET_TIMER;
2537 }
2538 
2539 static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue,
2540 			struct request *rq)
2541 {
2542 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2543 	struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req);
2544 	struct nvme_command *c = &pdu->cmd;
2545 
2546 	c->common.flags |= NVME_CMD_SGL_METABUF;
2547 
2548 	if (!blk_rq_nr_phys_segments(rq))
2549 		nvme_tcp_set_sg_null(c);
2550 	else if (rq_data_dir(rq) == WRITE &&
2551 	    req->data_len <= nvme_tcp_inline_data_size(req))
2552 		nvme_tcp_set_sg_inline(queue, c, req->data_len);
2553 	else
2554 		nvme_tcp_set_sg_host_data(c, req->data_len);
2555 
2556 	return 0;
2557 }
2558 
2559 static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns,
2560 		struct request *rq)
2561 {
2562 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2563 	struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req);
2564 	struct nvme_tcp_queue *queue = req->queue;
2565 	u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0;
2566 	blk_status_t ret;
2567 
2568 	ret = nvme_setup_cmd(ns, rq);
2569 	if (ret)
2570 		return ret;
2571 
2572 	req->state = NVME_TCP_SEND_CMD_PDU;
2573 	req->status = cpu_to_le16(NVME_SC_SUCCESS);
2574 	req->offset = 0;
2575 	req->data_sent = 0;
2576 	req->pdu_len = 0;
2577 	req->pdu_sent = 0;
2578 	req->h2cdata_left = 0;
2579 	req->data_len = blk_rq_nr_phys_segments(rq) ?
2580 				blk_rq_payload_bytes(rq) : 0;
2581 	req->curr_bio = rq->bio;
2582 	if (req->curr_bio && req->data_len)
2583 		nvme_tcp_init_iter(req, rq_data_dir(rq));
2584 
2585 	if (rq_data_dir(rq) == WRITE &&
2586 	    req->data_len <= nvme_tcp_inline_data_size(req))
2587 		req->pdu_len = req->data_len;
2588 
2589 	pdu->hdr.type = nvme_tcp_cmd;
2590 	pdu->hdr.flags = 0;
2591 	if (queue->hdr_digest)
2592 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
2593 	if (queue->data_digest && req->pdu_len) {
2594 		pdu->hdr.flags |= NVME_TCP_F_DDGST;
2595 		ddgst = nvme_tcp_ddgst_len(queue);
2596 	}
2597 	pdu->hdr.hlen = sizeof(*pdu);
2598 	pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0;
2599 	pdu->hdr.plen =
2600 		cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst);
2601 
2602 	ret = nvme_tcp_map_data(queue, rq);
2603 	if (unlikely(ret)) {
2604 		nvme_cleanup_cmd(rq);
2605 		dev_err(queue->ctrl->ctrl.device,
2606 			"Failed to map data (%d)\n", ret);
2607 		return ret;
2608 	}
2609 
2610 	return 0;
2611 }
2612 
2613 static void nvme_tcp_commit_rqs(struct blk_mq_hw_ctx *hctx)
2614 {
2615 	struct nvme_tcp_queue *queue = hctx->driver_data;
2616 
2617 	if (!llist_empty(&queue->req_list))
2618 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
2619 }
2620 
2621 static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx,
2622 		const struct blk_mq_queue_data *bd)
2623 {
2624 	struct nvme_ns *ns = hctx->queue->queuedata;
2625 	struct nvme_tcp_queue *queue = hctx->driver_data;
2626 	struct request *rq = bd->rq;
2627 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2628 	bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags);
2629 	blk_status_t ret;
2630 
2631 	if (!nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2632 		return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq);
2633 
2634 	ret = nvme_tcp_setup_cmd_pdu(ns, rq);
2635 	if (unlikely(ret))
2636 		return ret;
2637 
2638 	nvme_start_request(rq);
2639 
2640 	nvme_tcp_queue_request(req, true, bd->last);
2641 
2642 	return BLK_STS_OK;
2643 }
2644 
2645 static void nvme_tcp_map_queues(struct blk_mq_tag_set *set)
2646 {
2647 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(set->driver_data);
2648 
2649 	nvmf_map_queues(set, &ctrl->ctrl, ctrl->io_queues);
2650 }
2651 
2652 static int nvme_tcp_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
2653 {
2654 	struct nvme_tcp_queue *queue = hctx->driver_data;
2655 	struct sock *sk = queue->sock->sk;
2656 
2657 	if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags))
2658 		return 0;
2659 
2660 	set_bit(NVME_TCP_Q_POLLING, &queue->flags);
2661 	if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue))
2662 		sk_busy_loop(sk, true);
2663 	nvme_tcp_try_recv(queue);
2664 	clear_bit(NVME_TCP_Q_POLLING, &queue->flags);
2665 	return queue->nr_cqe;
2666 }
2667 
2668 static int nvme_tcp_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2669 {
2670 	struct nvme_tcp_queue *queue = &to_tcp_ctrl(ctrl)->queues[0];
2671 	struct sockaddr_storage src_addr;
2672 	int ret, len;
2673 
2674 	len = nvmf_get_address(ctrl, buf, size);
2675 
2676 	if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags))
2677 		return len;
2678 
2679 	mutex_lock(&queue->queue_lock);
2680 
2681 	ret = kernel_getsockname(queue->sock, (struct sockaddr *)&src_addr);
2682 	if (ret > 0) {
2683 		if (len > 0)
2684 			len--; /* strip trailing newline */
2685 		len += scnprintf(buf + len, size - len, "%ssrc_addr=%pISc\n",
2686 				(len) ? "," : "", &src_addr);
2687 	}
2688 
2689 	mutex_unlock(&queue->queue_lock);
2690 
2691 	return len;
2692 }
2693 
2694 static const struct blk_mq_ops nvme_tcp_mq_ops = {
2695 	.queue_rq	= nvme_tcp_queue_rq,
2696 	.commit_rqs	= nvme_tcp_commit_rqs,
2697 	.complete	= nvme_complete_rq,
2698 	.init_request	= nvme_tcp_init_request,
2699 	.exit_request	= nvme_tcp_exit_request,
2700 	.init_hctx	= nvme_tcp_init_hctx,
2701 	.timeout	= nvme_tcp_timeout,
2702 	.map_queues	= nvme_tcp_map_queues,
2703 	.poll		= nvme_tcp_poll,
2704 };
2705 
2706 static const struct blk_mq_ops nvme_tcp_admin_mq_ops = {
2707 	.queue_rq	= nvme_tcp_queue_rq,
2708 	.complete	= nvme_complete_rq,
2709 	.init_request	= nvme_tcp_init_request,
2710 	.exit_request	= nvme_tcp_exit_request,
2711 	.init_hctx	= nvme_tcp_init_admin_hctx,
2712 	.timeout	= nvme_tcp_timeout,
2713 };
2714 
2715 static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = {
2716 	.name			= "tcp",
2717 	.module			= THIS_MODULE,
2718 	.flags			= NVME_F_FABRICS | NVME_F_BLOCKING,
2719 	.reg_read32		= nvmf_reg_read32,
2720 	.reg_read64		= nvmf_reg_read64,
2721 	.reg_write32		= nvmf_reg_write32,
2722 	.subsystem_reset	= nvmf_subsystem_reset,
2723 	.free_ctrl		= nvme_tcp_free_ctrl,
2724 	.submit_async_event	= nvme_tcp_submit_async_event,
2725 	.delete_ctrl		= nvme_tcp_delete_ctrl,
2726 	.get_address		= nvme_tcp_get_address,
2727 	.stop_ctrl		= nvme_tcp_stop_ctrl,
2728 };
2729 
2730 static bool
2731 nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts)
2732 {
2733 	struct nvme_tcp_ctrl *ctrl;
2734 	bool found = false;
2735 
2736 	mutex_lock(&nvme_tcp_ctrl_mutex);
2737 	list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) {
2738 		found = nvmf_ip_options_match(&ctrl->ctrl, opts);
2739 		if (found)
2740 			break;
2741 	}
2742 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2743 
2744 	return found;
2745 }
2746 
2747 static struct nvme_tcp_ctrl *nvme_tcp_alloc_ctrl(struct device *dev,
2748 		struct nvmf_ctrl_options *opts)
2749 {
2750 	struct nvme_tcp_ctrl *ctrl;
2751 	int ret;
2752 
2753 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2754 	if (!ctrl)
2755 		return ERR_PTR(-ENOMEM);
2756 
2757 	INIT_LIST_HEAD(&ctrl->list);
2758 	ctrl->ctrl.opts = opts;
2759 	ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2760 				opts->nr_poll_queues + 1;
2761 	ctrl->ctrl.sqsize = opts->queue_size - 1;
2762 	ctrl->ctrl.kato = opts->kato;
2763 
2764 	INIT_DELAYED_WORK(&ctrl->connect_work,
2765 			nvme_tcp_reconnect_ctrl_work);
2766 	INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work);
2767 	INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work);
2768 
2769 	if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2770 		opts->trsvcid =
2771 			kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL);
2772 		if (!opts->trsvcid) {
2773 			ret = -ENOMEM;
2774 			goto out_free_ctrl;
2775 		}
2776 		opts->mask |= NVMF_OPT_TRSVCID;
2777 	}
2778 
2779 	ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2780 			opts->traddr, opts->trsvcid, &ctrl->addr);
2781 	if (ret) {
2782 		pr_err("malformed address passed: %s:%s\n",
2783 			opts->traddr, opts->trsvcid);
2784 		goto out_free_ctrl;
2785 	}
2786 
2787 	if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2788 		ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2789 			opts->host_traddr, NULL, &ctrl->src_addr);
2790 		if (ret) {
2791 			pr_err("malformed src address passed: %s\n",
2792 			       opts->host_traddr);
2793 			goto out_free_ctrl;
2794 		}
2795 	}
2796 
2797 	if (opts->mask & NVMF_OPT_HOST_IFACE) {
2798 		if (!__dev_get_by_name(&init_net, opts->host_iface)) {
2799 			pr_err("invalid interface passed: %s\n",
2800 			       opts->host_iface);
2801 			ret = -ENODEV;
2802 			goto out_free_ctrl;
2803 		}
2804 	}
2805 
2806 	if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) {
2807 		ret = -EALREADY;
2808 		goto out_free_ctrl;
2809 	}
2810 
2811 	ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2812 				GFP_KERNEL);
2813 	if (!ctrl->queues) {
2814 		ret = -ENOMEM;
2815 		goto out_free_ctrl;
2816 	}
2817 
2818 	ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0);
2819 	if (ret)
2820 		goto out_kfree_queues;
2821 
2822 	return ctrl;
2823 out_kfree_queues:
2824 	kfree(ctrl->queues);
2825 out_free_ctrl:
2826 	kfree(ctrl);
2827 	return ERR_PTR(ret);
2828 }
2829 
2830 static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev,
2831 		struct nvmf_ctrl_options *opts)
2832 {
2833 	struct nvme_tcp_ctrl *ctrl;
2834 	int ret;
2835 
2836 	ctrl = nvme_tcp_alloc_ctrl(dev, opts);
2837 	if (IS_ERR(ctrl))
2838 		return ERR_CAST(ctrl);
2839 
2840 	ret = nvme_add_ctrl(&ctrl->ctrl);
2841 	if (ret)
2842 		goto out_put_ctrl;
2843 
2844 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2845 		WARN_ON_ONCE(1);
2846 		ret = -EINTR;
2847 		goto out_uninit_ctrl;
2848 	}
2849 
2850 	ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true);
2851 	if (ret)
2852 		goto out_uninit_ctrl;
2853 
2854 	dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp, hostnqn: %s\n",
2855 		nvmf_ctrl_subsysnqn(&ctrl->ctrl), &ctrl->addr, opts->host->nqn);
2856 
2857 	mutex_lock(&nvme_tcp_ctrl_mutex);
2858 	list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list);
2859 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2860 
2861 	return &ctrl->ctrl;
2862 
2863 out_uninit_ctrl:
2864 	nvme_uninit_ctrl(&ctrl->ctrl);
2865 out_put_ctrl:
2866 	nvme_put_ctrl(&ctrl->ctrl);
2867 	if (ret > 0)
2868 		ret = -EIO;
2869 	return ERR_PTR(ret);
2870 }
2871 
2872 static struct nvmf_transport_ops nvme_tcp_transport = {
2873 	.name		= "tcp",
2874 	.module		= THIS_MODULE,
2875 	.required_opts	= NVMF_OPT_TRADDR,
2876 	.allowed_opts	= NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2877 			  NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2878 			  NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST |
2879 			  NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
2880 			  NVMF_OPT_TOS | NVMF_OPT_HOST_IFACE | NVMF_OPT_TLS |
2881 			  NVMF_OPT_KEYRING | NVMF_OPT_TLS_KEY,
2882 	.create_ctrl	= nvme_tcp_create_ctrl,
2883 };
2884 
2885 static int __init nvme_tcp_init_module(void)
2886 {
2887 	unsigned int wq_flags = WQ_MEM_RECLAIM | WQ_HIGHPRI | WQ_SYSFS;
2888 	int cpu;
2889 
2890 	BUILD_BUG_ON(sizeof(struct nvme_tcp_hdr) != 8);
2891 	BUILD_BUG_ON(sizeof(struct nvme_tcp_cmd_pdu) != 72);
2892 	BUILD_BUG_ON(sizeof(struct nvme_tcp_data_pdu) != 24);
2893 	BUILD_BUG_ON(sizeof(struct nvme_tcp_rsp_pdu) != 24);
2894 	BUILD_BUG_ON(sizeof(struct nvme_tcp_r2t_pdu) != 24);
2895 	BUILD_BUG_ON(sizeof(struct nvme_tcp_icreq_pdu) != 128);
2896 	BUILD_BUG_ON(sizeof(struct nvme_tcp_icresp_pdu) != 128);
2897 	BUILD_BUG_ON(sizeof(struct nvme_tcp_term_pdu) != 24);
2898 
2899 	if (wq_unbound)
2900 		wq_flags |= WQ_UNBOUND;
2901 
2902 	nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq", wq_flags, 0);
2903 	if (!nvme_tcp_wq)
2904 		return -ENOMEM;
2905 
2906 	for_each_possible_cpu(cpu)
2907 		atomic_set(&nvme_tcp_cpu_queues[cpu], 0);
2908 
2909 	nvmf_register_transport(&nvme_tcp_transport);
2910 	return 0;
2911 }
2912 
2913 static void __exit nvme_tcp_cleanup_module(void)
2914 {
2915 	struct nvme_tcp_ctrl *ctrl;
2916 
2917 	nvmf_unregister_transport(&nvme_tcp_transport);
2918 
2919 	mutex_lock(&nvme_tcp_ctrl_mutex);
2920 	list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list)
2921 		nvme_delete_ctrl(&ctrl->ctrl);
2922 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2923 	flush_workqueue(nvme_delete_wq);
2924 
2925 	destroy_workqueue(nvme_tcp_wq);
2926 }
2927 
2928 module_init(nvme_tcp_init_module);
2929 module_exit(nvme_tcp_cleanup_module);
2930 
2931 MODULE_DESCRIPTION("NVMe host TCP transport driver");
2932 MODULE_LICENSE("GPL v2");
2933