xref: /linux/drivers/nvme/host/tcp.c (revision f1bc423f56306b24fb15bc4a1612ef6c6ee24603)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics TCP host.
4  * Copyright (c) 2018 Lightbits Labs. All rights reserved.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/err.h>
11 #include <linux/nvme-tcp.h>
12 #include <net/sock.h>
13 #include <net/tcp.h>
14 #include <linux/blk-mq.h>
15 #include <crypto/hash.h>
16 #include <net/busy_poll.h>
17 
18 #include "nvme.h"
19 #include "fabrics.h"
20 
21 struct nvme_tcp_queue;
22 
23 /* Define the socket priority to use for connections were it is desirable
24  * that the NIC consider performing optimized packet processing or filtering.
25  * A non-zero value being sufficient to indicate general consideration of any
26  * possible optimization.  Making it a module param allows for alternative
27  * values that may be unique for some NIC implementations.
28  */
29 static int so_priority;
30 module_param(so_priority, int, 0644);
31 MODULE_PARM_DESC(so_priority, "nvme tcp socket optimize priority");
32 
33 enum nvme_tcp_send_state {
34 	NVME_TCP_SEND_CMD_PDU = 0,
35 	NVME_TCP_SEND_H2C_PDU,
36 	NVME_TCP_SEND_DATA,
37 	NVME_TCP_SEND_DDGST,
38 };
39 
40 struct nvme_tcp_request {
41 	struct nvme_request	req;
42 	void			*pdu;
43 	struct nvme_tcp_queue	*queue;
44 	u32			data_len;
45 	u32			pdu_len;
46 	u32			pdu_sent;
47 	u32			h2cdata_left;
48 	u32			h2cdata_offset;
49 	u16			ttag;
50 	__le16			status;
51 	struct list_head	entry;
52 	struct llist_node	lentry;
53 	__le32			ddgst;
54 
55 	struct bio		*curr_bio;
56 	struct iov_iter		iter;
57 
58 	/* send state */
59 	size_t			offset;
60 	size_t			data_sent;
61 	enum nvme_tcp_send_state state;
62 };
63 
64 enum nvme_tcp_queue_flags {
65 	NVME_TCP_Q_ALLOCATED	= 0,
66 	NVME_TCP_Q_LIVE		= 1,
67 	NVME_TCP_Q_POLLING	= 2,
68 };
69 
70 enum nvme_tcp_recv_state {
71 	NVME_TCP_RECV_PDU = 0,
72 	NVME_TCP_RECV_DATA,
73 	NVME_TCP_RECV_DDGST,
74 };
75 
76 struct nvme_tcp_ctrl;
77 struct nvme_tcp_queue {
78 	struct socket		*sock;
79 	struct work_struct	io_work;
80 	int			io_cpu;
81 
82 	struct mutex		queue_lock;
83 	struct mutex		send_mutex;
84 	struct llist_head	req_list;
85 	struct list_head	send_list;
86 	bool			more_requests;
87 
88 	/* recv state */
89 	void			*pdu;
90 	int			pdu_remaining;
91 	int			pdu_offset;
92 	size_t			data_remaining;
93 	size_t			ddgst_remaining;
94 	unsigned int		nr_cqe;
95 
96 	/* send state */
97 	struct nvme_tcp_request *request;
98 
99 	int			queue_size;
100 	u32			maxh2cdata;
101 	size_t			cmnd_capsule_len;
102 	struct nvme_tcp_ctrl	*ctrl;
103 	unsigned long		flags;
104 	bool			rd_enabled;
105 
106 	bool			hdr_digest;
107 	bool			data_digest;
108 	struct ahash_request	*rcv_hash;
109 	struct ahash_request	*snd_hash;
110 	__le32			exp_ddgst;
111 	__le32			recv_ddgst;
112 
113 	struct page_frag_cache	pf_cache;
114 
115 	void (*state_change)(struct sock *);
116 	void (*data_ready)(struct sock *);
117 	void (*write_space)(struct sock *);
118 };
119 
120 struct nvme_tcp_ctrl {
121 	/* read only in the hot path */
122 	struct nvme_tcp_queue	*queues;
123 	struct blk_mq_tag_set	tag_set;
124 
125 	/* other member variables */
126 	struct list_head	list;
127 	struct blk_mq_tag_set	admin_tag_set;
128 	struct sockaddr_storage addr;
129 	struct sockaddr_storage src_addr;
130 	struct nvme_ctrl	ctrl;
131 
132 	struct work_struct	err_work;
133 	struct delayed_work	connect_work;
134 	struct nvme_tcp_request async_req;
135 	u32			io_queues[HCTX_MAX_TYPES];
136 };
137 
138 static LIST_HEAD(nvme_tcp_ctrl_list);
139 static DEFINE_MUTEX(nvme_tcp_ctrl_mutex);
140 static struct workqueue_struct *nvme_tcp_wq;
141 static const struct blk_mq_ops nvme_tcp_mq_ops;
142 static const struct blk_mq_ops nvme_tcp_admin_mq_ops;
143 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue);
144 
145 static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl)
146 {
147 	return container_of(ctrl, struct nvme_tcp_ctrl, ctrl);
148 }
149 
150 static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue)
151 {
152 	return queue - queue->ctrl->queues;
153 }
154 
155 static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue)
156 {
157 	u32 queue_idx = nvme_tcp_queue_id(queue);
158 
159 	if (queue_idx == 0)
160 		return queue->ctrl->admin_tag_set.tags[queue_idx];
161 	return queue->ctrl->tag_set.tags[queue_idx - 1];
162 }
163 
164 static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue)
165 {
166 	return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
167 }
168 
169 static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue)
170 {
171 	return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
172 }
173 
174 static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_queue *queue)
175 {
176 	return queue->cmnd_capsule_len - sizeof(struct nvme_command);
177 }
178 
179 static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req)
180 {
181 	return req == &req->queue->ctrl->async_req;
182 }
183 
184 static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req)
185 {
186 	struct request *rq;
187 
188 	if (unlikely(nvme_tcp_async_req(req)))
189 		return false; /* async events don't have a request */
190 
191 	rq = blk_mq_rq_from_pdu(req);
192 
193 	return rq_data_dir(rq) == WRITE && req->data_len &&
194 		req->data_len <= nvme_tcp_inline_data_size(req->queue);
195 }
196 
197 static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req)
198 {
199 	return req->iter.bvec->bv_page;
200 }
201 
202 static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req)
203 {
204 	return req->iter.bvec->bv_offset + req->iter.iov_offset;
205 }
206 
207 static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req)
208 {
209 	return min_t(size_t, iov_iter_single_seg_count(&req->iter),
210 			req->pdu_len - req->pdu_sent);
211 }
212 
213 static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req)
214 {
215 	return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ?
216 			req->pdu_len - req->pdu_sent : 0;
217 }
218 
219 static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req,
220 		int len)
221 {
222 	return nvme_tcp_pdu_data_left(req) <= len;
223 }
224 
225 static void nvme_tcp_init_iter(struct nvme_tcp_request *req,
226 		unsigned int dir)
227 {
228 	struct request *rq = blk_mq_rq_from_pdu(req);
229 	struct bio_vec *vec;
230 	unsigned int size;
231 	int nr_bvec;
232 	size_t offset;
233 
234 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) {
235 		vec = &rq->special_vec;
236 		nr_bvec = 1;
237 		size = blk_rq_payload_bytes(rq);
238 		offset = 0;
239 	} else {
240 		struct bio *bio = req->curr_bio;
241 		struct bvec_iter bi;
242 		struct bio_vec bv;
243 
244 		vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
245 		nr_bvec = 0;
246 		bio_for_each_bvec(bv, bio, bi) {
247 			nr_bvec++;
248 		}
249 		size = bio->bi_iter.bi_size;
250 		offset = bio->bi_iter.bi_bvec_done;
251 	}
252 
253 	iov_iter_bvec(&req->iter, dir, vec, nr_bvec, size);
254 	req->iter.iov_offset = offset;
255 }
256 
257 static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req,
258 		int len)
259 {
260 	req->data_sent += len;
261 	req->pdu_sent += len;
262 	iov_iter_advance(&req->iter, len);
263 	if (!iov_iter_count(&req->iter) &&
264 	    req->data_sent < req->data_len) {
265 		req->curr_bio = req->curr_bio->bi_next;
266 		nvme_tcp_init_iter(req, WRITE);
267 	}
268 }
269 
270 static inline void nvme_tcp_send_all(struct nvme_tcp_queue *queue)
271 {
272 	int ret;
273 
274 	/* drain the send queue as much as we can... */
275 	do {
276 		ret = nvme_tcp_try_send(queue);
277 	} while (ret > 0);
278 }
279 
280 static inline bool nvme_tcp_queue_more(struct nvme_tcp_queue *queue)
281 {
282 	return !list_empty(&queue->send_list) ||
283 		!llist_empty(&queue->req_list) || queue->more_requests;
284 }
285 
286 static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req,
287 		bool sync, bool last)
288 {
289 	struct nvme_tcp_queue *queue = req->queue;
290 	bool empty;
291 
292 	empty = llist_add(&req->lentry, &queue->req_list) &&
293 		list_empty(&queue->send_list) && !queue->request;
294 
295 	/*
296 	 * if we're the first on the send_list and we can try to send
297 	 * directly, otherwise queue io_work. Also, only do that if we
298 	 * are on the same cpu, so we don't introduce contention.
299 	 */
300 	if (queue->io_cpu == raw_smp_processor_id() &&
301 	    sync && empty && mutex_trylock(&queue->send_mutex)) {
302 		queue->more_requests = !last;
303 		nvme_tcp_send_all(queue);
304 		queue->more_requests = false;
305 		mutex_unlock(&queue->send_mutex);
306 	}
307 
308 	if (last && nvme_tcp_queue_more(queue))
309 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
310 }
311 
312 static void nvme_tcp_process_req_list(struct nvme_tcp_queue *queue)
313 {
314 	struct nvme_tcp_request *req;
315 	struct llist_node *node;
316 
317 	for (node = llist_del_all(&queue->req_list); node; node = node->next) {
318 		req = llist_entry(node, struct nvme_tcp_request, lentry);
319 		list_add(&req->entry, &queue->send_list);
320 	}
321 }
322 
323 static inline struct nvme_tcp_request *
324 nvme_tcp_fetch_request(struct nvme_tcp_queue *queue)
325 {
326 	struct nvme_tcp_request *req;
327 
328 	req = list_first_entry_or_null(&queue->send_list,
329 			struct nvme_tcp_request, entry);
330 	if (!req) {
331 		nvme_tcp_process_req_list(queue);
332 		req = list_first_entry_or_null(&queue->send_list,
333 				struct nvme_tcp_request, entry);
334 		if (unlikely(!req))
335 			return NULL;
336 	}
337 
338 	list_del(&req->entry);
339 	return req;
340 }
341 
342 static inline void nvme_tcp_ddgst_final(struct ahash_request *hash,
343 		__le32 *dgst)
344 {
345 	ahash_request_set_crypt(hash, NULL, (u8 *)dgst, 0);
346 	crypto_ahash_final(hash);
347 }
348 
349 static inline void nvme_tcp_ddgst_update(struct ahash_request *hash,
350 		struct page *page, off_t off, size_t len)
351 {
352 	struct scatterlist sg;
353 
354 	sg_init_marker(&sg, 1);
355 	sg_set_page(&sg, page, len, off);
356 	ahash_request_set_crypt(hash, &sg, NULL, len);
357 	crypto_ahash_update(hash);
358 }
359 
360 static inline void nvme_tcp_hdgst(struct ahash_request *hash,
361 		void *pdu, size_t len)
362 {
363 	struct scatterlist sg;
364 
365 	sg_init_one(&sg, pdu, len);
366 	ahash_request_set_crypt(hash, &sg, pdu + len, len);
367 	crypto_ahash_digest(hash);
368 }
369 
370 static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue,
371 		void *pdu, size_t pdu_len)
372 {
373 	struct nvme_tcp_hdr *hdr = pdu;
374 	__le32 recv_digest;
375 	__le32 exp_digest;
376 
377 	if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
378 		dev_err(queue->ctrl->ctrl.device,
379 			"queue %d: header digest flag is cleared\n",
380 			nvme_tcp_queue_id(queue));
381 		return -EPROTO;
382 	}
383 
384 	recv_digest = *(__le32 *)(pdu + hdr->hlen);
385 	nvme_tcp_hdgst(queue->rcv_hash, pdu, pdu_len);
386 	exp_digest = *(__le32 *)(pdu + hdr->hlen);
387 	if (recv_digest != exp_digest) {
388 		dev_err(queue->ctrl->ctrl.device,
389 			"header digest error: recv %#x expected %#x\n",
390 			le32_to_cpu(recv_digest), le32_to_cpu(exp_digest));
391 		return -EIO;
392 	}
393 
394 	return 0;
395 }
396 
397 static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu)
398 {
399 	struct nvme_tcp_hdr *hdr = pdu;
400 	u8 digest_len = nvme_tcp_hdgst_len(queue);
401 	u32 len;
402 
403 	len = le32_to_cpu(hdr->plen) - hdr->hlen -
404 		((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0);
405 
406 	if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
407 		dev_err(queue->ctrl->ctrl.device,
408 			"queue %d: data digest flag is cleared\n",
409 		nvme_tcp_queue_id(queue));
410 		return -EPROTO;
411 	}
412 	crypto_ahash_init(queue->rcv_hash);
413 
414 	return 0;
415 }
416 
417 static void nvme_tcp_exit_request(struct blk_mq_tag_set *set,
418 		struct request *rq, unsigned int hctx_idx)
419 {
420 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
421 
422 	page_frag_free(req->pdu);
423 }
424 
425 static int nvme_tcp_init_request(struct blk_mq_tag_set *set,
426 		struct request *rq, unsigned int hctx_idx,
427 		unsigned int numa_node)
428 {
429 	struct nvme_tcp_ctrl *ctrl = set->driver_data;
430 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
431 	struct nvme_tcp_cmd_pdu *pdu;
432 	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
433 	struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx];
434 	u8 hdgst = nvme_tcp_hdgst_len(queue);
435 
436 	req->pdu = page_frag_alloc(&queue->pf_cache,
437 		sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
438 		GFP_KERNEL | __GFP_ZERO);
439 	if (!req->pdu)
440 		return -ENOMEM;
441 
442 	pdu = req->pdu;
443 	req->queue = queue;
444 	nvme_req(rq)->ctrl = &ctrl->ctrl;
445 	nvme_req(rq)->cmd = &pdu->cmd;
446 
447 	return 0;
448 }
449 
450 static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
451 		unsigned int hctx_idx)
452 {
453 	struct nvme_tcp_ctrl *ctrl = data;
454 	struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1];
455 
456 	hctx->driver_data = queue;
457 	return 0;
458 }
459 
460 static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
461 		unsigned int hctx_idx)
462 {
463 	struct nvme_tcp_ctrl *ctrl = data;
464 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
465 
466 	hctx->driver_data = queue;
467 	return 0;
468 }
469 
470 static enum nvme_tcp_recv_state
471 nvme_tcp_recv_state(struct nvme_tcp_queue *queue)
472 {
473 	return  (queue->pdu_remaining) ? NVME_TCP_RECV_PDU :
474 		(queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST :
475 		NVME_TCP_RECV_DATA;
476 }
477 
478 static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue)
479 {
480 	queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) +
481 				nvme_tcp_hdgst_len(queue);
482 	queue->pdu_offset = 0;
483 	queue->data_remaining = -1;
484 	queue->ddgst_remaining = 0;
485 }
486 
487 static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl)
488 {
489 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
490 		return;
491 
492 	dev_warn(ctrl->device, "starting error recovery\n");
493 	queue_work(nvme_reset_wq, &to_tcp_ctrl(ctrl)->err_work);
494 }
495 
496 static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue,
497 		struct nvme_completion *cqe)
498 {
499 	struct nvme_tcp_request *req;
500 	struct request *rq;
501 
502 	rq = nvme_find_rq(nvme_tcp_tagset(queue), cqe->command_id);
503 	if (!rq) {
504 		dev_err(queue->ctrl->ctrl.device,
505 			"got bad cqe.command_id %#x on queue %d\n",
506 			cqe->command_id, nvme_tcp_queue_id(queue));
507 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
508 		return -EINVAL;
509 	}
510 
511 	req = blk_mq_rq_to_pdu(rq);
512 	if (req->status == cpu_to_le16(NVME_SC_SUCCESS))
513 		req->status = cqe->status;
514 
515 	if (!nvme_try_complete_req(rq, req->status, cqe->result))
516 		nvme_complete_rq(rq);
517 	queue->nr_cqe++;
518 
519 	return 0;
520 }
521 
522 static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue,
523 		struct nvme_tcp_data_pdu *pdu)
524 {
525 	struct request *rq;
526 
527 	rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id);
528 	if (!rq) {
529 		dev_err(queue->ctrl->ctrl.device,
530 			"got bad c2hdata.command_id %#x on queue %d\n",
531 			pdu->command_id, nvme_tcp_queue_id(queue));
532 		return -ENOENT;
533 	}
534 
535 	if (!blk_rq_payload_bytes(rq)) {
536 		dev_err(queue->ctrl->ctrl.device,
537 			"queue %d tag %#x unexpected data\n",
538 			nvme_tcp_queue_id(queue), rq->tag);
539 		return -EIO;
540 	}
541 
542 	queue->data_remaining = le32_to_cpu(pdu->data_length);
543 
544 	if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS &&
545 	    unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) {
546 		dev_err(queue->ctrl->ctrl.device,
547 			"queue %d tag %#x SUCCESS set but not last PDU\n",
548 			nvme_tcp_queue_id(queue), rq->tag);
549 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
550 		return -EPROTO;
551 	}
552 
553 	return 0;
554 }
555 
556 static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue,
557 		struct nvme_tcp_rsp_pdu *pdu)
558 {
559 	struct nvme_completion *cqe = &pdu->cqe;
560 	int ret = 0;
561 
562 	/*
563 	 * AEN requests are special as they don't time out and can
564 	 * survive any kind of queue freeze and often don't respond to
565 	 * aborts.  We don't even bother to allocate a struct request
566 	 * for them but rather special case them here.
567 	 */
568 	if (unlikely(nvme_is_aen_req(nvme_tcp_queue_id(queue),
569 				     cqe->command_id)))
570 		nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
571 				&cqe->result);
572 	else
573 		ret = nvme_tcp_process_nvme_cqe(queue, cqe);
574 
575 	return ret;
576 }
577 
578 static void nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req)
579 {
580 	struct nvme_tcp_data_pdu *data = req->pdu;
581 	struct nvme_tcp_queue *queue = req->queue;
582 	struct request *rq = blk_mq_rq_from_pdu(req);
583 	u32 h2cdata_sent = req->pdu_len;
584 	u8 hdgst = nvme_tcp_hdgst_len(queue);
585 	u8 ddgst = nvme_tcp_ddgst_len(queue);
586 
587 	req->state = NVME_TCP_SEND_H2C_PDU;
588 	req->offset = 0;
589 	req->pdu_len = min(req->h2cdata_left, queue->maxh2cdata);
590 	req->pdu_sent = 0;
591 	req->h2cdata_left -= req->pdu_len;
592 	req->h2cdata_offset += h2cdata_sent;
593 
594 	memset(data, 0, sizeof(*data));
595 	data->hdr.type = nvme_tcp_h2c_data;
596 	if (!req->h2cdata_left)
597 		data->hdr.flags = NVME_TCP_F_DATA_LAST;
598 	if (queue->hdr_digest)
599 		data->hdr.flags |= NVME_TCP_F_HDGST;
600 	if (queue->data_digest)
601 		data->hdr.flags |= NVME_TCP_F_DDGST;
602 	data->hdr.hlen = sizeof(*data);
603 	data->hdr.pdo = data->hdr.hlen + hdgst;
604 	data->hdr.plen =
605 		cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst);
606 	data->ttag = req->ttag;
607 	data->command_id = nvme_cid(rq);
608 	data->data_offset = cpu_to_le32(req->h2cdata_offset);
609 	data->data_length = cpu_to_le32(req->pdu_len);
610 }
611 
612 static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue,
613 		struct nvme_tcp_r2t_pdu *pdu)
614 {
615 	struct nvme_tcp_request *req;
616 	struct request *rq;
617 	u32 r2t_length = le32_to_cpu(pdu->r2t_length);
618 	u32 r2t_offset = le32_to_cpu(pdu->r2t_offset);
619 
620 	rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id);
621 	if (!rq) {
622 		dev_err(queue->ctrl->ctrl.device,
623 			"got bad r2t.command_id %#x on queue %d\n",
624 			pdu->command_id, nvme_tcp_queue_id(queue));
625 		return -ENOENT;
626 	}
627 	req = blk_mq_rq_to_pdu(rq);
628 
629 	if (unlikely(!r2t_length)) {
630 		dev_err(queue->ctrl->ctrl.device,
631 			"req %d r2t len is %u, probably a bug...\n",
632 			rq->tag, r2t_length);
633 		return -EPROTO;
634 	}
635 
636 	if (unlikely(req->data_sent + r2t_length > req->data_len)) {
637 		dev_err(queue->ctrl->ctrl.device,
638 			"req %d r2t len %u exceeded data len %u (%zu sent)\n",
639 			rq->tag, r2t_length, req->data_len, req->data_sent);
640 		return -EPROTO;
641 	}
642 
643 	if (unlikely(r2t_offset < req->data_sent)) {
644 		dev_err(queue->ctrl->ctrl.device,
645 			"req %d unexpected r2t offset %u (expected %zu)\n",
646 			rq->tag, r2t_offset, req->data_sent);
647 		return -EPROTO;
648 	}
649 
650 	req->pdu_len = 0;
651 	req->h2cdata_left = r2t_length;
652 	req->h2cdata_offset = r2t_offset;
653 	req->ttag = pdu->ttag;
654 
655 	nvme_tcp_setup_h2c_data_pdu(req);
656 	nvme_tcp_queue_request(req, false, true);
657 
658 	return 0;
659 }
660 
661 static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb,
662 		unsigned int *offset, size_t *len)
663 {
664 	struct nvme_tcp_hdr *hdr;
665 	char *pdu = queue->pdu;
666 	size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining);
667 	int ret;
668 
669 	ret = skb_copy_bits(skb, *offset,
670 		&pdu[queue->pdu_offset], rcv_len);
671 	if (unlikely(ret))
672 		return ret;
673 
674 	queue->pdu_remaining -= rcv_len;
675 	queue->pdu_offset += rcv_len;
676 	*offset += rcv_len;
677 	*len -= rcv_len;
678 	if (queue->pdu_remaining)
679 		return 0;
680 
681 	hdr = queue->pdu;
682 	if (queue->hdr_digest) {
683 		ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen);
684 		if (unlikely(ret))
685 			return ret;
686 	}
687 
688 
689 	if (queue->data_digest) {
690 		ret = nvme_tcp_check_ddgst(queue, queue->pdu);
691 		if (unlikely(ret))
692 			return ret;
693 	}
694 
695 	switch (hdr->type) {
696 	case nvme_tcp_c2h_data:
697 		return nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu);
698 	case nvme_tcp_rsp:
699 		nvme_tcp_init_recv_ctx(queue);
700 		return nvme_tcp_handle_comp(queue, (void *)queue->pdu);
701 	case nvme_tcp_r2t:
702 		nvme_tcp_init_recv_ctx(queue);
703 		return nvme_tcp_handle_r2t(queue, (void *)queue->pdu);
704 	default:
705 		dev_err(queue->ctrl->ctrl.device,
706 			"unsupported pdu type (%d)\n", hdr->type);
707 		return -EINVAL;
708 	}
709 }
710 
711 static inline void nvme_tcp_end_request(struct request *rq, u16 status)
712 {
713 	union nvme_result res = {};
714 
715 	if (!nvme_try_complete_req(rq, cpu_to_le16(status << 1), res))
716 		nvme_complete_rq(rq);
717 }
718 
719 static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb,
720 			      unsigned int *offset, size_t *len)
721 {
722 	struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
723 	struct request *rq =
724 		nvme_cid_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
725 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
726 
727 	while (true) {
728 		int recv_len, ret;
729 
730 		recv_len = min_t(size_t, *len, queue->data_remaining);
731 		if (!recv_len)
732 			break;
733 
734 		if (!iov_iter_count(&req->iter)) {
735 			req->curr_bio = req->curr_bio->bi_next;
736 
737 			/*
738 			 * If we don`t have any bios it means that controller
739 			 * sent more data than we requested, hence error
740 			 */
741 			if (!req->curr_bio) {
742 				dev_err(queue->ctrl->ctrl.device,
743 					"queue %d no space in request %#x",
744 					nvme_tcp_queue_id(queue), rq->tag);
745 				nvme_tcp_init_recv_ctx(queue);
746 				return -EIO;
747 			}
748 			nvme_tcp_init_iter(req, READ);
749 		}
750 
751 		/* we can read only from what is left in this bio */
752 		recv_len = min_t(size_t, recv_len,
753 				iov_iter_count(&req->iter));
754 
755 		if (queue->data_digest)
756 			ret = skb_copy_and_hash_datagram_iter(skb, *offset,
757 				&req->iter, recv_len, queue->rcv_hash);
758 		else
759 			ret = skb_copy_datagram_iter(skb, *offset,
760 					&req->iter, recv_len);
761 		if (ret) {
762 			dev_err(queue->ctrl->ctrl.device,
763 				"queue %d failed to copy request %#x data",
764 				nvme_tcp_queue_id(queue), rq->tag);
765 			return ret;
766 		}
767 
768 		*len -= recv_len;
769 		*offset += recv_len;
770 		queue->data_remaining -= recv_len;
771 	}
772 
773 	if (!queue->data_remaining) {
774 		if (queue->data_digest) {
775 			nvme_tcp_ddgst_final(queue->rcv_hash, &queue->exp_ddgst);
776 			queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH;
777 		} else {
778 			if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
779 				nvme_tcp_end_request(rq,
780 						le16_to_cpu(req->status));
781 				queue->nr_cqe++;
782 			}
783 			nvme_tcp_init_recv_ctx(queue);
784 		}
785 	}
786 
787 	return 0;
788 }
789 
790 static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue,
791 		struct sk_buff *skb, unsigned int *offset, size_t *len)
792 {
793 	struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
794 	char *ddgst = (char *)&queue->recv_ddgst;
795 	size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining);
796 	off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining;
797 	int ret;
798 
799 	ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len);
800 	if (unlikely(ret))
801 		return ret;
802 
803 	queue->ddgst_remaining -= recv_len;
804 	*offset += recv_len;
805 	*len -= recv_len;
806 	if (queue->ddgst_remaining)
807 		return 0;
808 
809 	if (queue->recv_ddgst != queue->exp_ddgst) {
810 		struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue),
811 					pdu->command_id);
812 		struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
813 
814 		req->status = cpu_to_le16(NVME_SC_DATA_XFER_ERROR);
815 
816 		dev_err(queue->ctrl->ctrl.device,
817 			"data digest error: recv %#x expected %#x\n",
818 			le32_to_cpu(queue->recv_ddgst),
819 			le32_to_cpu(queue->exp_ddgst));
820 	}
821 
822 	if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
823 		struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue),
824 					pdu->command_id);
825 		struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
826 
827 		nvme_tcp_end_request(rq, le16_to_cpu(req->status));
828 		queue->nr_cqe++;
829 	}
830 
831 	nvme_tcp_init_recv_ctx(queue);
832 	return 0;
833 }
834 
835 static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb,
836 			     unsigned int offset, size_t len)
837 {
838 	struct nvme_tcp_queue *queue = desc->arg.data;
839 	size_t consumed = len;
840 	int result;
841 
842 	while (len) {
843 		switch (nvme_tcp_recv_state(queue)) {
844 		case NVME_TCP_RECV_PDU:
845 			result = nvme_tcp_recv_pdu(queue, skb, &offset, &len);
846 			break;
847 		case NVME_TCP_RECV_DATA:
848 			result = nvme_tcp_recv_data(queue, skb, &offset, &len);
849 			break;
850 		case NVME_TCP_RECV_DDGST:
851 			result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len);
852 			break;
853 		default:
854 			result = -EFAULT;
855 		}
856 		if (result) {
857 			dev_err(queue->ctrl->ctrl.device,
858 				"receive failed:  %d\n", result);
859 			queue->rd_enabled = false;
860 			nvme_tcp_error_recovery(&queue->ctrl->ctrl);
861 			return result;
862 		}
863 	}
864 
865 	return consumed;
866 }
867 
868 static void nvme_tcp_data_ready(struct sock *sk)
869 {
870 	struct nvme_tcp_queue *queue;
871 
872 	read_lock_bh(&sk->sk_callback_lock);
873 	queue = sk->sk_user_data;
874 	if (likely(queue && queue->rd_enabled) &&
875 	    !test_bit(NVME_TCP_Q_POLLING, &queue->flags))
876 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
877 	read_unlock_bh(&sk->sk_callback_lock);
878 }
879 
880 static void nvme_tcp_write_space(struct sock *sk)
881 {
882 	struct nvme_tcp_queue *queue;
883 
884 	read_lock_bh(&sk->sk_callback_lock);
885 	queue = sk->sk_user_data;
886 	if (likely(queue && sk_stream_is_writeable(sk))) {
887 		clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
888 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
889 	}
890 	read_unlock_bh(&sk->sk_callback_lock);
891 }
892 
893 static void nvme_tcp_state_change(struct sock *sk)
894 {
895 	struct nvme_tcp_queue *queue;
896 
897 	read_lock_bh(&sk->sk_callback_lock);
898 	queue = sk->sk_user_data;
899 	if (!queue)
900 		goto done;
901 
902 	switch (sk->sk_state) {
903 	case TCP_CLOSE:
904 	case TCP_CLOSE_WAIT:
905 	case TCP_LAST_ACK:
906 	case TCP_FIN_WAIT1:
907 	case TCP_FIN_WAIT2:
908 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
909 		break;
910 	default:
911 		dev_info(queue->ctrl->ctrl.device,
912 			"queue %d socket state %d\n",
913 			nvme_tcp_queue_id(queue), sk->sk_state);
914 	}
915 
916 	queue->state_change(sk);
917 done:
918 	read_unlock_bh(&sk->sk_callback_lock);
919 }
920 
921 static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue)
922 {
923 	queue->request = NULL;
924 }
925 
926 static void nvme_tcp_fail_request(struct nvme_tcp_request *req)
927 {
928 	if (nvme_tcp_async_req(req)) {
929 		union nvme_result res = {};
930 
931 		nvme_complete_async_event(&req->queue->ctrl->ctrl,
932 				cpu_to_le16(NVME_SC_HOST_PATH_ERROR), &res);
933 	} else {
934 		nvme_tcp_end_request(blk_mq_rq_from_pdu(req),
935 				NVME_SC_HOST_PATH_ERROR);
936 	}
937 }
938 
939 static int nvme_tcp_try_send_data(struct nvme_tcp_request *req)
940 {
941 	struct nvme_tcp_queue *queue = req->queue;
942 	int req_data_len = req->data_len;
943 	u32 h2cdata_left = req->h2cdata_left;
944 
945 	while (true) {
946 		struct page *page = nvme_tcp_req_cur_page(req);
947 		size_t offset = nvme_tcp_req_cur_offset(req);
948 		size_t len = nvme_tcp_req_cur_length(req);
949 		bool last = nvme_tcp_pdu_last_send(req, len);
950 		int req_data_sent = req->data_sent;
951 		int ret, flags = MSG_DONTWAIT;
952 
953 		if (last && !queue->data_digest && !nvme_tcp_queue_more(queue))
954 			flags |= MSG_EOR;
955 		else
956 			flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
957 
958 		if (sendpage_ok(page)) {
959 			ret = kernel_sendpage(queue->sock, page, offset, len,
960 					flags);
961 		} else {
962 			ret = sock_no_sendpage(queue->sock, page, offset, len,
963 					flags);
964 		}
965 		if (ret <= 0)
966 			return ret;
967 
968 		if (queue->data_digest)
969 			nvme_tcp_ddgst_update(queue->snd_hash, page,
970 					offset, ret);
971 
972 		/*
973 		 * update the request iterator except for the last payload send
974 		 * in the request where we don't want to modify it as we may
975 		 * compete with the RX path completing the request.
976 		 */
977 		if (req_data_sent + ret < req_data_len)
978 			nvme_tcp_advance_req(req, ret);
979 
980 		/* fully successful last send in current PDU */
981 		if (last && ret == len) {
982 			if (queue->data_digest) {
983 				nvme_tcp_ddgst_final(queue->snd_hash,
984 					&req->ddgst);
985 				req->state = NVME_TCP_SEND_DDGST;
986 				req->offset = 0;
987 			} else {
988 				if (h2cdata_left)
989 					nvme_tcp_setup_h2c_data_pdu(req);
990 				else
991 					nvme_tcp_done_send_req(queue);
992 			}
993 			return 1;
994 		}
995 	}
996 	return -EAGAIN;
997 }
998 
999 static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req)
1000 {
1001 	struct nvme_tcp_queue *queue = req->queue;
1002 	struct nvme_tcp_cmd_pdu *pdu = req->pdu;
1003 	bool inline_data = nvme_tcp_has_inline_data(req);
1004 	u8 hdgst = nvme_tcp_hdgst_len(queue);
1005 	int len = sizeof(*pdu) + hdgst - req->offset;
1006 	int flags = MSG_DONTWAIT;
1007 	int ret;
1008 
1009 	if (inline_data || nvme_tcp_queue_more(queue))
1010 		flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
1011 	else
1012 		flags |= MSG_EOR;
1013 
1014 	if (queue->hdr_digest && !req->offset)
1015 		nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
1016 
1017 	ret = kernel_sendpage(queue->sock, virt_to_page(pdu),
1018 			offset_in_page(pdu) + req->offset, len,  flags);
1019 	if (unlikely(ret <= 0))
1020 		return ret;
1021 
1022 	len -= ret;
1023 	if (!len) {
1024 		if (inline_data) {
1025 			req->state = NVME_TCP_SEND_DATA;
1026 			if (queue->data_digest)
1027 				crypto_ahash_init(queue->snd_hash);
1028 		} else {
1029 			nvme_tcp_done_send_req(queue);
1030 		}
1031 		return 1;
1032 	}
1033 	req->offset += ret;
1034 
1035 	return -EAGAIN;
1036 }
1037 
1038 static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req)
1039 {
1040 	struct nvme_tcp_queue *queue = req->queue;
1041 	struct nvme_tcp_data_pdu *pdu = req->pdu;
1042 	u8 hdgst = nvme_tcp_hdgst_len(queue);
1043 	int len = sizeof(*pdu) - req->offset + hdgst;
1044 	int ret;
1045 
1046 	if (queue->hdr_digest && !req->offset)
1047 		nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
1048 
1049 	if (!req->h2cdata_left)
1050 		ret = kernel_sendpage(queue->sock, virt_to_page(pdu),
1051 				offset_in_page(pdu) + req->offset, len,
1052 				MSG_DONTWAIT | MSG_MORE | MSG_SENDPAGE_NOTLAST);
1053 	else
1054 		ret = sock_no_sendpage(queue->sock, virt_to_page(pdu),
1055 				offset_in_page(pdu) + req->offset, len,
1056 				MSG_DONTWAIT | MSG_MORE);
1057 	if (unlikely(ret <= 0))
1058 		return ret;
1059 
1060 	len -= ret;
1061 	if (!len) {
1062 		req->state = NVME_TCP_SEND_DATA;
1063 		if (queue->data_digest)
1064 			crypto_ahash_init(queue->snd_hash);
1065 		return 1;
1066 	}
1067 	req->offset += ret;
1068 
1069 	return -EAGAIN;
1070 }
1071 
1072 static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req)
1073 {
1074 	struct nvme_tcp_queue *queue = req->queue;
1075 	size_t offset = req->offset;
1076 	u32 h2cdata_left = req->h2cdata_left;
1077 	int ret;
1078 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1079 	struct kvec iov = {
1080 		.iov_base = (u8 *)&req->ddgst + req->offset,
1081 		.iov_len = NVME_TCP_DIGEST_LENGTH - req->offset
1082 	};
1083 
1084 	if (nvme_tcp_queue_more(queue))
1085 		msg.msg_flags |= MSG_MORE;
1086 	else
1087 		msg.msg_flags |= MSG_EOR;
1088 
1089 	ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1090 	if (unlikely(ret <= 0))
1091 		return ret;
1092 
1093 	if (offset + ret == NVME_TCP_DIGEST_LENGTH) {
1094 		if (h2cdata_left)
1095 			nvme_tcp_setup_h2c_data_pdu(req);
1096 		else
1097 			nvme_tcp_done_send_req(queue);
1098 		return 1;
1099 	}
1100 
1101 	req->offset += ret;
1102 	return -EAGAIN;
1103 }
1104 
1105 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue)
1106 {
1107 	struct nvme_tcp_request *req;
1108 	int ret = 1;
1109 
1110 	if (!queue->request) {
1111 		queue->request = nvme_tcp_fetch_request(queue);
1112 		if (!queue->request)
1113 			return 0;
1114 	}
1115 	req = queue->request;
1116 
1117 	if (req->state == NVME_TCP_SEND_CMD_PDU) {
1118 		ret = nvme_tcp_try_send_cmd_pdu(req);
1119 		if (ret <= 0)
1120 			goto done;
1121 		if (!nvme_tcp_has_inline_data(req))
1122 			return ret;
1123 	}
1124 
1125 	if (req->state == NVME_TCP_SEND_H2C_PDU) {
1126 		ret = nvme_tcp_try_send_data_pdu(req);
1127 		if (ret <= 0)
1128 			goto done;
1129 	}
1130 
1131 	if (req->state == NVME_TCP_SEND_DATA) {
1132 		ret = nvme_tcp_try_send_data(req);
1133 		if (ret <= 0)
1134 			goto done;
1135 	}
1136 
1137 	if (req->state == NVME_TCP_SEND_DDGST)
1138 		ret = nvme_tcp_try_send_ddgst(req);
1139 done:
1140 	if (ret == -EAGAIN) {
1141 		ret = 0;
1142 	} else if (ret < 0) {
1143 		dev_err(queue->ctrl->ctrl.device,
1144 			"failed to send request %d\n", ret);
1145 		if (ret != -EPIPE && ret != -ECONNRESET)
1146 			nvme_tcp_fail_request(queue->request);
1147 		nvme_tcp_done_send_req(queue);
1148 	}
1149 	return ret;
1150 }
1151 
1152 static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue)
1153 {
1154 	struct socket *sock = queue->sock;
1155 	struct sock *sk = sock->sk;
1156 	read_descriptor_t rd_desc;
1157 	int consumed;
1158 
1159 	rd_desc.arg.data = queue;
1160 	rd_desc.count = 1;
1161 	lock_sock(sk);
1162 	queue->nr_cqe = 0;
1163 	consumed = sock->ops->read_sock(sk, &rd_desc, nvme_tcp_recv_skb);
1164 	release_sock(sk);
1165 	return consumed;
1166 }
1167 
1168 static void nvme_tcp_io_work(struct work_struct *w)
1169 {
1170 	struct nvme_tcp_queue *queue =
1171 		container_of(w, struct nvme_tcp_queue, io_work);
1172 	unsigned long deadline = jiffies + msecs_to_jiffies(1);
1173 
1174 	do {
1175 		bool pending = false;
1176 		int result;
1177 
1178 		if (mutex_trylock(&queue->send_mutex)) {
1179 			result = nvme_tcp_try_send(queue);
1180 			mutex_unlock(&queue->send_mutex);
1181 			if (result > 0)
1182 				pending = true;
1183 			else if (unlikely(result < 0))
1184 				break;
1185 		}
1186 
1187 		result = nvme_tcp_try_recv(queue);
1188 		if (result > 0)
1189 			pending = true;
1190 		else if (unlikely(result < 0))
1191 			return;
1192 
1193 		if (!pending)
1194 			return;
1195 
1196 	} while (!time_after(jiffies, deadline)); /* quota is exhausted */
1197 
1198 	queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
1199 }
1200 
1201 static void nvme_tcp_free_crypto(struct nvme_tcp_queue *queue)
1202 {
1203 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash);
1204 
1205 	ahash_request_free(queue->rcv_hash);
1206 	ahash_request_free(queue->snd_hash);
1207 	crypto_free_ahash(tfm);
1208 }
1209 
1210 static int nvme_tcp_alloc_crypto(struct nvme_tcp_queue *queue)
1211 {
1212 	struct crypto_ahash *tfm;
1213 
1214 	tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC);
1215 	if (IS_ERR(tfm))
1216 		return PTR_ERR(tfm);
1217 
1218 	queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1219 	if (!queue->snd_hash)
1220 		goto free_tfm;
1221 	ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL);
1222 
1223 	queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1224 	if (!queue->rcv_hash)
1225 		goto free_snd_hash;
1226 	ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL);
1227 
1228 	return 0;
1229 free_snd_hash:
1230 	ahash_request_free(queue->snd_hash);
1231 free_tfm:
1232 	crypto_free_ahash(tfm);
1233 	return -ENOMEM;
1234 }
1235 
1236 static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl)
1237 {
1238 	struct nvme_tcp_request *async = &ctrl->async_req;
1239 
1240 	page_frag_free(async->pdu);
1241 }
1242 
1243 static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl)
1244 {
1245 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
1246 	struct nvme_tcp_request *async = &ctrl->async_req;
1247 	u8 hdgst = nvme_tcp_hdgst_len(queue);
1248 
1249 	async->pdu = page_frag_alloc(&queue->pf_cache,
1250 		sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
1251 		GFP_KERNEL | __GFP_ZERO);
1252 	if (!async->pdu)
1253 		return -ENOMEM;
1254 
1255 	async->queue = &ctrl->queues[0];
1256 	return 0;
1257 }
1258 
1259 static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid)
1260 {
1261 	struct page *page;
1262 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1263 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1264 
1265 	if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1266 		return;
1267 
1268 	if (queue->hdr_digest || queue->data_digest)
1269 		nvme_tcp_free_crypto(queue);
1270 
1271 	if (queue->pf_cache.va) {
1272 		page = virt_to_head_page(queue->pf_cache.va);
1273 		__page_frag_cache_drain(page, queue->pf_cache.pagecnt_bias);
1274 		queue->pf_cache.va = NULL;
1275 	}
1276 	sock_release(queue->sock);
1277 	kfree(queue->pdu);
1278 	mutex_destroy(&queue->send_mutex);
1279 	mutex_destroy(&queue->queue_lock);
1280 }
1281 
1282 static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue)
1283 {
1284 	struct nvme_tcp_icreq_pdu *icreq;
1285 	struct nvme_tcp_icresp_pdu *icresp;
1286 	struct msghdr msg = {};
1287 	struct kvec iov;
1288 	bool ctrl_hdgst, ctrl_ddgst;
1289 	u32 maxh2cdata;
1290 	int ret;
1291 
1292 	icreq = kzalloc(sizeof(*icreq), GFP_KERNEL);
1293 	if (!icreq)
1294 		return -ENOMEM;
1295 
1296 	icresp = kzalloc(sizeof(*icresp), GFP_KERNEL);
1297 	if (!icresp) {
1298 		ret = -ENOMEM;
1299 		goto free_icreq;
1300 	}
1301 
1302 	icreq->hdr.type = nvme_tcp_icreq;
1303 	icreq->hdr.hlen = sizeof(*icreq);
1304 	icreq->hdr.pdo = 0;
1305 	icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen);
1306 	icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
1307 	icreq->maxr2t = 0; /* single inflight r2t supported */
1308 	icreq->hpda = 0; /* no alignment constraint */
1309 	if (queue->hdr_digest)
1310 		icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
1311 	if (queue->data_digest)
1312 		icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
1313 
1314 	iov.iov_base = icreq;
1315 	iov.iov_len = sizeof(*icreq);
1316 	ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1317 	if (ret < 0)
1318 		goto free_icresp;
1319 
1320 	memset(&msg, 0, sizeof(msg));
1321 	iov.iov_base = icresp;
1322 	iov.iov_len = sizeof(*icresp);
1323 	ret = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1324 			iov.iov_len, msg.msg_flags);
1325 	if (ret < 0)
1326 		goto free_icresp;
1327 
1328 	ret = -EINVAL;
1329 	if (icresp->hdr.type != nvme_tcp_icresp) {
1330 		pr_err("queue %d: bad type returned %d\n",
1331 			nvme_tcp_queue_id(queue), icresp->hdr.type);
1332 		goto free_icresp;
1333 	}
1334 
1335 	if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) {
1336 		pr_err("queue %d: bad pdu length returned %d\n",
1337 			nvme_tcp_queue_id(queue), icresp->hdr.plen);
1338 		goto free_icresp;
1339 	}
1340 
1341 	if (icresp->pfv != NVME_TCP_PFV_1_0) {
1342 		pr_err("queue %d: bad pfv returned %d\n",
1343 			nvme_tcp_queue_id(queue), icresp->pfv);
1344 		goto free_icresp;
1345 	}
1346 
1347 	ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE);
1348 	if ((queue->data_digest && !ctrl_ddgst) ||
1349 	    (!queue->data_digest && ctrl_ddgst)) {
1350 		pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n",
1351 			nvme_tcp_queue_id(queue),
1352 			queue->data_digest ? "enabled" : "disabled",
1353 			ctrl_ddgst ? "enabled" : "disabled");
1354 		goto free_icresp;
1355 	}
1356 
1357 	ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE);
1358 	if ((queue->hdr_digest && !ctrl_hdgst) ||
1359 	    (!queue->hdr_digest && ctrl_hdgst)) {
1360 		pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n",
1361 			nvme_tcp_queue_id(queue),
1362 			queue->hdr_digest ? "enabled" : "disabled",
1363 			ctrl_hdgst ? "enabled" : "disabled");
1364 		goto free_icresp;
1365 	}
1366 
1367 	if (icresp->cpda != 0) {
1368 		pr_err("queue %d: unsupported cpda returned %d\n",
1369 			nvme_tcp_queue_id(queue), icresp->cpda);
1370 		goto free_icresp;
1371 	}
1372 
1373 	maxh2cdata = le32_to_cpu(icresp->maxdata);
1374 	if ((maxh2cdata % 4) || (maxh2cdata < NVME_TCP_MIN_MAXH2CDATA)) {
1375 		pr_err("queue %d: invalid maxh2cdata returned %u\n",
1376 		       nvme_tcp_queue_id(queue), maxh2cdata);
1377 		goto free_icresp;
1378 	}
1379 	queue->maxh2cdata = maxh2cdata;
1380 
1381 	ret = 0;
1382 free_icresp:
1383 	kfree(icresp);
1384 free_icreq:
1385 	kfree(icreq);
1386 	return ret;
1387 }
1388 
1389 static bool nvme_tcp_admin_queue(struct nvme_tcp_queue *queue)
1390 {
1391 	return nvme_tcp_queue_id(queue) == 0;
1392 }
1393 
1394 static bool nvme_tcp_default_queue(struct nvme_tcp_queue *queue)
1395 {
1396 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1397 	int qid = nvme_tcp_queue_id(queue);
1398 
1399 	return !nvme_tcp_admin_queue(queue) &&
1400 		qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT];
1401 }
1402 
1403 static bool nvme_tcp_read_queue(struct nvme_tcp_queue *queue)
1404 {
1405 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1406 	int qid = nvme_tcp_queue_id(queue);
1407 
1408 	return !nvme_tcp_admin_queue(queue) &&
1409 		!nvme_tcp_default_queue(queue) &&
1410 		qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1411 			  ctrl->io_queues[HCTX_TYPE_READ];
1412 }
1413 
1414 static bool nvme_tcp_poll_queue(struct nvme_tcp_queue *queue)
1415 {
1416 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1417 	int qid = nvme_tcp_queue_id(queue);
1418 
1419 	return !nvme_tcp_admin_queue(queue) &&
1420 		!nvme_tcp_default_queue(queue) &&
1421 		!nvme_tcp_read_queue(queue) &&
1422 		qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1423 			  ctrl->io_queues[HCTX_TYPE_READ] +
1424 			  ctrl->io_queues[HCTX_TYPE_POLL];
1425 }
1426 
1427 static void nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue *queue)
1428 {
1429 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1430 	int qid = nvme_tcp_queue_id(queue);
1431 	int n = 0;
1432 
1433 	if (nvme_tcp_default_queue(queue))
1434 		n = qid - 1;
1435 	else if (nvme_tcp_read_queue(queue))
1436 		n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - 1;
1437 	else if (nvme_tcp_poll_queue(queue))
1438 		n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] -
1439 				ctrl->io_queues[HCTX_TYPE_READ] - 1;
1440 	queue->io_cpu = cpumask_next_wrap(n - 1, cpu_online_mask, -1, false);
1441 }
1442 
1443 static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl,
1444 		int qid, size_t queue_size)
1445 {
1446 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1447 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1448 	int ret, rcv_pdu_size;
1449 
1450 	mutex_init(&queue->queue_lock);
1451 	queue->ctrl = ctrl;
1452 	init_llist_head(&queue->req_list);
1453 	INIT_LIST_HEAD(&queue->send_list);
1454 	mutex_init(&queue->send_mutex);
1455 	INIT_WORK(&queue->io_work, nvme_tcp_io_work);
1456 	queue->queue_size = queue_size;
1457 
1458 	if (qid > 0)
1459 		queue->cmnd_capsule_len = nctrl->ioccsz * 16;
1460 	else
1461 		queue->cmnd_capsule_len = sizeof(struct nvme_command) +
1462 						NVME_TCP_ADMIN_CCSZ;
1463 
1464 	ret = sock_create(ctrl->addr.ss_family, SOCK_STREAM,
1465 			IPPROTO_TCP, &queue->sock);
1466 	if (ret) {
1467 		dev_err(nctrl->device,
1468 			"failed to create socket: %d\n", ret);
1469 		goto err_destroy_mutex;
1470 	}
1471 
1472 	/* Single syn retry */
1473 	tcp_sock_set_syncnt(queue->sock->sk, 1);
1474 
1475 	/* Set TCP no delay */
1476 	tcp_sock_set_nodelay(queue->sock->sk);
1477 
1478 	/*
1479 	 * Cleanup whatever is sitting in the TCP transmit queue on socket
1480 	 * close. This is done to prevent stale data from being sent should
1481 	 * the network connection be restored before TCP times out.
1482 	 */
1483 	sock_no_linger(queue->sock->sk);
1484 
1485 	if (so_priority > 0)
1486 		sock_set_priority(queue->sock->sk, so_priority);
1487 
1488 	/* Set socket type of service */
1489 	if (nctrl->opts->tos >= 0)
1490 		ip_sock_set_tos(queue->sock->sk, nctrl->opts->tos);
1491 
1492 	/* Set 10 seconds timeout for icresp recvmsg */
1493 	queue->sock->sk->sk_rcvtimeo = 10 * HZ;
1494 
1495 	queue->sock->sk->sk_allocation = GFP_ATOMIC;
1496 	nvme_tcp_set_queue_io_cpu(queue);
1497 	queue->request = NULL;
1498 	queue->data_remaining = 0;
1499 	queue->ddgst_remaining = 0;
1500 	queue->pdu_remaining = 0;
1501 	queue->pdu_offset = 0;
1502 	sk_set_memalloc(queue->sock->sk);
1503 
1504 	if (nctrl->opts->mask & NVMF_OPT_HOST_TRADDR) {
1505 		ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr,
1506 			sizeof(ctrl->src_addr));
1507 		if (ret) {
1508 			dev_err(nctrl->device,
1509 				"failed to bind queue %d socket %d\n",
1510 				qid, ret);
1511 			goto err_sock;
1512 		}
1513 	}
1514 
1515 	if (nctrl->opts->mask & NVMF_OPT_HOST_IFACE) {
1516 		char *iface = nctrl->opts->host_iface;
1517 		sockptr_t optval = KERNEL_SOCKPTR(iface);
1518 
1519 		ret = sock_setsockopt(queue->sock, SOL_SOCKET, SO_BINDTODEVICE,
1520 				      optval, strlen(iface));
1521 		if (ret) {
1522 			dev_err(nctrl->device,
1523 			  "failed to bind to interface %s queue %d err %d\n",
1524 			  iface, qid, ret);
1525 			goto err_sock;
1526 		}
1527 	}
1528 
1529 	queue->hdr_digest = nctrl->opts->hdr_digest;
1530 	queue->data_digest = nctrl->opts->data_digest;
1531 	if (queue->hdr_digest || queue->data_digest) {
1532 		ret = nvme_tcp_alloc_crypto(queue);
1533 		if (ret) {
1534 			dev_err(nctrl->device,
1535 				"failed to allocate queue %d crypto\n", qid);
1536 			goto err_sock;
1537 		}
1538 	}
1539 
1540 	rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) +
1541 			nvme_tcp_hdgst_len(queue);
1542 	queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL);
1543 	if (!queue->pdu) {
1544 		ret = -ENOMEM;
1545 		goto err_crypto;
1546 	}
1547 
1548 	dev_dbg(nctrl->device, "connecting queue %d\n",
1549 			nvme_tcp_queue_id(queue));
1550 
1551 	ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr,
1552 		sizeof(ctrl->addr), 0);
1553 	if (ret) {
1554 		dev_err(nctrl->device,
1555 			"failed to connect socket: %d\n", ret);
1556 		goto err_rcv_pdu;
1557 	}
1558 
1559 	ret = nvme_tcp_init_connection(queue);
1560 	if (ret)
1561 		goto err_init_connect;
1562 
1563 	queue->rd_enabled = true;
1564 	set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags);
1565 	nvme_tcp_init_recv_ctx(queue);
1566 
1567 	write_lock_bh(&queue->sock->sk->sk_callback_lock);
1568 	queue->sock->sk->sk_user_data = queue;
1569 	queue->state_change = queue->sock->sk->sk_state_change;
1570 	queue->data_ready = queue->sock->sk->sk_data_ready;
1571 	queue->write_space = queue->sock->sk->sk_write_space;
1572 	queue->sock->sk->sk_data_ready = nvme_tcp_data_ready;
1573 	queue->sock->sk->sk_state_change = nvme_tcp_state_change;
1574 	queue->sock->sk->sk_write_space = nvme_tcp_write_space;
1575 #ifdef CONFIG_NET_RX_BUSY_POLL
1576 	queue->sock->sk->sk_ll_usec = 1;
1577 #endif
1578 	write_unlock_bh(&queue->sock->sk->sk_callback_lock);
1579 
1580 	return 0;
1581 
1582 err_init_connect:
1583 	kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1584 err_rcv_pdu:
1585 	kfree(queue->pdu);
1586 err_crypto:
1587 	if (queue->hdr_digest || queue->data_digest)
1588 		nvme_tcp_free_crypto(queue);
1589 err_sock:
1590 	sock_release(queue->sock);
1591 	queue->sock = NULL;
1592 err_destroy_mutex:
1593 	mutex_destroy(&queue->send_mutex);
1594 	mutex_destroy(&queue->queue_lock);
1595 	return ret;
1596 }
1597 
1598 static void nvme_tcp_restore_sock_calls(struct nvme_tcp_queue *queue)
1599 {
1600 	struct socket *sock = queue->sock;
1601 
1602 	write_lock_bh(&sock->sk->sk_callback_lock);
1603 	sock->sk->sk_user_data  = NULL;
1604 	sock->sk->sk_data_ready = queue->data_ready;
1605 	sock->sk->sk_state_change = queue->state_change;
1606 	sock->sk->sk_write_space  = queue->write_space;
1607 	write_unlock_bh(&sock->sk->sk_callback_lock);
1608 }
1609 
1610 static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue)
1611 {
1612 	kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1613 	nvme_tcp_restore_sock_calls(queue);
1614 	cancel_work_sync(&queue->io_work);
1615 }
1616 
1617 static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid)
1618 {
1619 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1620 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1621 
1622 	mutex_lock(&queue->queue_lock);
1623 	if (test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags))
1624 		__nvme_tcp_stop_queue(queue);
1625 	mutex_unlock(&queue->queue_lock);
1626 }
1627 
1628 static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx)
1629 {
1630 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1631 	int ret;
1632 
1633 	if (idx)
1634 		ret = nvmf_connect_io_queue(nctrl, idx);
1635 	else
1636 		ret = nvmf_connect_admin_queue(nctrl);
1637 
1638 	if (!ret) {
1639 		set_bit(NVME_TCP_Q_LIVE, &ctrl->queues[idx].flags);
1640 	} else {
1641 		if (test_bit(NVME_TCP_Q_ALLOCATED, &ctrl->queues[idx].flags))
1642 			__nvme_tcp_stop_queue(&ctrl->queues[idx]);
1643 		dev_err(nctrl->device,
1644 			"failed to connect queue: %d ret=%d\n", idx, ret);
1645 	}
1646 	return ret;
1647 }
1648 
1649 static struct blk_mq_tag_set *nvme_tcp_alloc_tagset(struct nvme_ctrl *nctrl,
1650 		bool admin)
1651 {
1652 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1653 	struct blk_mq_tag_set *set;
1654 	int ret;
1655 
1656 	if (admin) {
1657 		set = &ctrl->admin_tag_set;
1658 		memset(set, 0, sizeof(*set));
1659 		set->ops = &nvme_tcp_admin_mq_ops;
1660 		set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1661 		set->reserved_tags = NVMF_RESERVED_TAGS;
1662 		set->numa_node = nctrl->numa_node;
1663 		set->flags = BLK_MQ_F_BLOCKING;
1664 		set->cmd_size = sizeof(struct nvme_tcp_request);
1665 		set->driver_data = ctrl;
1666 		set->nr_hw_queues = 1;
1667 		set->timeout = NVME_ADMIN_TIMEOUT;
1668 	} else {
1669 		set = &ctrl->tag_set;
1670 		memset(set, 0, sizeof(*set));
1671 		set->ops = &nvme_tcp_mq_ops;
1672 		set->queue_depth = nctrl->sqsize + 1;
1673 		set->reserved_tags = NVMF_RESERVED_TAGS;
1674 		set->numa_node = nctrl->numa_node;
1675 		set->flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_BLOCKING;
1676 		set->cmd_size = sizeof(struct nvme_tcp_request);
1677 		set->driver_data = ctrl;
1678 		set->nr_hw_queues = nctrl->queue_count - 1;
1679 		set->timeout = NVME_IO_TIMEOUT;
1680 		set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2;
1681 	}
1682 
1683 	ret = blk_mq_alloc_tag_set(set);
1684 	if (ret)
1685 		return ERR_PTR(ret);
1686 
1687 	return set;
1688 }
1689 
1690 static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl)
1691 {
1692 	if (to_tcp_ctrl(ctrl)->async_req.pdu) {
1693 		cancel_work_sync(&ctrl->async_event_work);
1694 		nvme_tcp_free_async_req(to_tcp_ctrl(ctrl));
1695 		to_tcp_ctrl(ctrl)->async_req.pdu = NULL;
1696 	}
1697 
1698 	nvme_tcp_free_queue(ctrl, 0);
1699 }
1700 
1701 static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl)
1702 {
1703 	int i;
1704 
1705 	for (i = 1; i < ctrl->queue_count; i++)
1706 		nvme_tcp_free_queue(ctrl, i);
1707 }
1708 
1709 static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl)
1710 {
1711 	int i;
1712 
1713 	for (i = 1; i < ctrl->queue_count; i++)
1714 		nvme_tcp_stop_queue(ctrl, i);
1715 }
1716 
1717 static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl)
1718 {
1719 	int i, ret = 0;
1720 
1721 	for (i = 1; i < ctrl->queue_count; i++) {
1722 		ret = nvme_tcp_start_queue(ctrl, i);
1723 		if (ret)
1724 			goto out_stop_queues;
1725 	}
1726 
1727 	return 0;
1728 
1729 out_stop_queues:
1730 	for (i--; i >= 1; i--)
1731 		nvme_tcp_stop_queue(ctrl, i);
1732 	return ret;
1733 }
1734 
1735 static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl)
1736 {
1737 	int ret;
1738 
1739 	ret = nvme_tcp_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
1740 	if (ret)
1741 		return ret;
1742 
1743 	ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl));
1744 	if (ret)
1745 		goto out_free_queue;
1746 
1747 	return 0;
1748 
1749 out_free_queue:
1750 	nvme_tcp_free_queue(ctrl, 0);
1751 	return ret;
1752 }
1753 
1754 static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1755 {
1756 	int i, ret;
1757 
1758 	for (i = 1; i < ctrl->queue_count; i++) {
1759 		ret = nvme_tcp_alloc_queue(ctrl, i,
1760 				ctrl->sqsize + 1);
1761 		if (ret)
1762 			goto out_free_queues;
1763 	}
1764 
1765 	return 0;
1766 
1767 out_free_queues:
1768 	for (i--; i >= 1; i--)
1769 		nvme_tcp_free_queue(ctrl, i);
1770 
1771 	return ret;
1772 }
1773 
1774 static unsigned int nvme_tcp_nr_io_queues(struct nvme_ctrl *ctrl)
1775 {
1776 	unsigned int nr_io_queues;
1777 
1778 	nr_io_queues = min(ctrl->opts->nr_io_queues, num_online_cpus());
1779 	nr_io_queues += min(ctrl->opts->nr_write_queues, num_online_cpus());
1780 	nr_io_queues += min(ctrl->opts->nr_poll_queues, num_online_cpus());
1781 
1782 	return nr_io_queues;
1783 }
1784 
1785 static void nvme_tcp_set_io_queues(struct nvme_ctrl *nctrl,
1786 		unsigned int nr_io_queues)
1787 {
1788 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1789 	struct nvmf_ctrl_options *opts = nctrl->opts;
1790 
1791 	if (opts->nr_write_queues && opts->nr_io_queues < nr_io_queues) {
1792 		/*
1793 		 * separate read/write queues
1794 		 * hand out dedicated default queues only after we have
1795 		 * sufficient read queues.
1796 		 */
1797 		ctrl->io_queues[HCTX_TYPE_READ] = opts->nr_io_queues;
1798 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ];
1799 		ctrl->io_queues[HCTX_TYPE_DEFAULT] =
1800 			min(opts->nr_write_queues, nr_io_queues);
1801 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
1802 	} else {
1803 		/*
1804 		 * shared read/write queues
1805 		 * either no write queues were requested, or we don't have
1806 		 * sufficient queue count to have dedicated default queues.
1807 		 */
1808 		ctrl->io_queues[HCTX_TYPE_DEFAULT] =
1809 			min(opts->nr_io_queues, nr_io_queues);
1810 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
1811 	}
1812 
1813 	if (opts->nr_poll_queues && nr_io_queues) {
1814 		/* map dedicated poll queues only if we have queues left */
1815 		ctrl->io_queues[HCTX_TYPE_POLL] =
1816 			min(opts->nr_poll_queues, nr_io_queues);
1817 	}
1818 }
1819 
1820 static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1821 {
1822 	unsigned int nr_io_queues;
1823 	int ret;
1824 
1825 	nr_io_queues = nvme_tcp_nr_io_queues(ctrl);
1826 	ret = nvme_set_queue_count(ctrl, &nr_io_queues);
1827 	if (ret)
1828 		return ret;
1829 
1830 	if (nr_io_queues == 0) {
1831 		dev_err(ctrl->device,
1832 			"unable to set any I/O queues\n");
1833 		return -ENOMEM;
1834 	}
1835 
1836 	ctrl->queue_count = nr_io_queues + 1;
1837 	dev_info(ctrl->device,
1838 		"creating %d I/O queues.\n", nr_io_queues);
1839 
1840 	nvme_tcp_set_io_queues(ctrl, nr_io_queues);
1841 
1842 	return __nvme_tcp_alloc_io_queues(ctrl);
1843 }
1844 
1845 static void nvme_tcp_destroy_io_queues(struct nvme_ctrl *ctrl, bool remove)
1846 {
1847 	nvme_tcp_stop_io_queues(ctrl);
1848 	if (remove) {
1849 		blk_cleanup_queue(ctrl->connect_q);
1850 		blk_mq_free_tag_set(ctrl->tagset);
1851 	}
1852 	nvme_tcp_free_io_queues(ctrl);
1853 }
1854 
1855 static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new)
1856 {
1857 	int ret;
1858 
1859 	ret = nvme_tcp_alloc_io_queues(ctrl);
1860 	if (ret)
1861 		return ret;
1862 
1863 	if (new) {
1864 		ctrl->tagset = nvme_tcp_alloc_tagset(ctrl, false);
1865 		if (IS_ERR(ctrl->tagset)) {
1866 			ret = PTR_ERR(ctrl->tagset);
1867 			goto out_free_io_queues;
1868 		}
1869 
1870 		ctrl->connect_q = blk_mq_init_queue(ctrl->tagset);
1871 		if (IS_ERR(ctrl->connect_q)) {
1872 			ret = PTR_ERR(ctrl->connect_q);
1873 			goto out_free_tag_set;
1874 		}
1875 	}
1876 
1877 	ret = nvme_tcp_start_io_queues(ctrl);
1878 	if (ret)
1879 		goto out_cleanup_connect_q;
1880 
1881 	if (!new) {
1882 		nvme_start_queues(ctrl);
1883 		if (!nvme_wait_freeze_timeout(ctrl, NVME_IO_TIMEOUT)) {
1884 			/*
1885 			 * If we timed out waiting for freeze we are likely to
1886 			 * be stuck.  Fail the controller initialization just
1887 			 * to be safe.
1888 			 */
1889 			ret = -ENODEV;
1890 			goto out_wait_freeze_timed_out;
1891 		}
1892 		blk_mq_update_nr_hw_queues(ctrl->tagset,
1893 			ctrl->queue_count - 1);
1894 		nvme_unfreeze(ctrl);
1895 	}
1896 
1897 	return 0;
1898 
1899 out_wait_freeze_timed_out:
1900 	nvme_stop_queues(ctrl);
1901 	nvme_sync_io_queues(ctrl);
1902 	nvme_tcp_stop_io_queues(ctrl);
1903 out_cleanup_connect_q:
1904 	nvme_cancel_tagset(ctrl);
1905 	if (new)
1906 		blk_cleanup_queue(ctrl->connect_q);
1907 out_free_tag_set:
1908 	if (new)
1909 		blk_mq_free_tag_set(ctrl->tagset);
1910 out_free_io_queues:
1911 	nvme_tcp_free_io_queues(ctrl);
1912 	return ret;
1913 }
1914 
1915 static void nvme_tcp_destroy_admin_queue(struct nvme_ctrl *ctrl, bool remove)
1916 {
1917 	nvme_tcp_stop_queue(ctrl, 0);
1918 	if (remove) {
1919 		blk_cleanup_queue(ctrl->admin_q);
1920 		blk_cleanup_queue(ctrl->fabrics_q);
1921 		blk_mq_free_tag_set(ctrl->admin_tagset);
1922 	}
1923 	nvme_tcp_free_admin_queue(ctrl);
1924 }
1925 
1926 static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new)
1927 {
1928 	int error;
1929 
1930 	error = nvme_tcp_alloc_admin_queue(ctrl);
1931 	if (error)
1932 		return error;
1933 
1934 	if (new) {
1935 		ctrl->admin_tagset = nvme_tcp_alloc_tagset(ctrl, true);
1936 		if (IS_ERR(ctrl->admin_tagset)) {
1937 			error = PTR_ERR(ctrl->admin_tagset);
1938 			goto out_free_queue;
1939 		}
1940 
1941 		ctrl->fabrics_q = blk_mq_init_queue(ctrl->admin_tagset);
1942 		if (IS_ERR(ctrl->fabrics_q)) {
1943 			error = PTR_ERR(ctrl->fabrics_q);
1944 			goto out_free_tagset;
1945 		}
1946 
1947 		ctrl->admin_q = blk_mq_init_queue(ctrl->admin_tagset);
1948 		if (IS_ERR(ctrl->admin_q)) {
1949 			error = PTR_ERR(ctrl->admin_q);
1950 			goto out_cleanup_fabrics_q;
1951 		}
1952 	}
1953 
1954 	error = nvme_tcp_start_queue(ctrl, 0);
1955 	if (error)
1956 		goto out_cleanup_queue;
1957 
1958 	error = nvme_enable_ctrl(ctrl);
1959 	if (error)
1960 		goto out_stop_queue;
1961 
1962 	nvme_start_admin_queue(ctrl);
1963 
1964 	error = nvme_init_ctrl_finish(ctrl);
1965 	if (error)
1966 		goto out_quiesce_queue;
1967 
1968 	return 0;
1969 
1970 out_quiesce_queue:
1971 	nvme_stop_admin_queue(ctrl);
1972 	blk_sync_queue(ctrl->admin_q);
1973 out_stop_queue:
1974 	nvme_tcp_stop_queue(ctrl, 0);
1975 	nvme_cancel_admin_tagset(ctrl);
1976 out_cleanup_queue:
1977 	if (new)
1978 		blk_cleanup_queue(ctrl->admin_q);
1979 out_cleanup_fabrics_q:
1980 	if (new)
1981 		blk_cleanup_queue(ctrl->fabrics_q);
1982 out_free_tagset:
1983 	if (new)
1984 		blk_mq_free_tag_set(ctrl->admin_tagset);
1985 out_free_queue:
1986 	nvme_tcp_free_admin_queue(ctrl);
1987 	return error;
1988 }
1989 
1990 static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl,
1991 		bool remove)
1992 {
1993 	nvme_stop_admin_queue(ctrl);
1994 	blk_sync_queue(ctrl->admin_q);
1995 	nvme_tcp_stop_queue(ctrl, 0);
1996 	nvme_cancel_admin_tagset(ctrl);
1997 	if (remove)
1998 		nvme_start_admin_queue(ctrl);
1999 	nvme_tcp_destroy_admin_queue(ctrl, remove);
2000 }
2001 
2002 static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl,
2003 		bool remove)
2004 {
2005 	if (ctrl->queue_count <= 1)
2006 		return;
2007 	nvme_stop_admin_queue(ctrl);
2008 	nvme_start_freeze(ctrl);
2009 	nvme_stop_queues(ctrl);
2010 	nvme_sync_io_queues(ctrl);
2011 	nvme_tcp_stop_io_queues(ctrl);
2012 	nvme_cancel_tagset(ctrl);
2013 	if (remove)
2014 		nvme_start_queues(ctrl);
2015 	nvme_tcp_destroy_io_queues(ctrl, remove);
2016 }
2017 
2018 static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl)
2019 {
2020 	/* If we are resetting/deleting then do nothing */
2021 	if (ctrl->state != NVME_CTRL_CONNECTING) {
2022 		WARN_ON_ONCE(ctrl->state == NVME_CTRL_NEW ||
2023 			ctrl->state == NVME_CTRL_LIVE);
2024 		return;
2025 	}
2026 
2027 	if (nvmf_should_reconnect(ctrl)) {
2028 		dev_info(ctrl->device, "Reconnecting in %d seconds...\n",
2029 			ctrl->opts->reconnect_delay);
2030 		queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work,
2031 				ctrl->opts->reconnect_delay * HZ);
2032 	} else {
2033 		dev_info(ctrl->device, "Removing controller...\n");
2034 		nvme_delete_ctrl(ctrl);
2035 	}
2036 }
2037 
2038 static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new)
2039 {
2040 	struct nvmf_ctrl_options *opts = ctrl->opts;
2041 	int ret;
2042 
2043 	ret = nvme_tcp_configure_admin_queue(ctrl, new);
2044 	if (ret)
2045 		return ret;
2046 
2047 	if (ctrl->icdoff) {
2048 		ret = -EOPNOTSUPP;
2049 		dev_err(ctrl->device, "icdoff is not supported!\n");
2050 		goto destroy_admin;
2051 	}
2052 
2053 	if (!nvme_ctrl_sgl_supported(ctrl)) {
2054 		ret = -EOPNOTSUPP;
2055 		dev_err(ctrl->device, "Mandatory sgls are not supported!\n");
2056 		goto destroy_admin;
2057 	}
2058 
2059 	if (opts->queue_size > ctrl->sqsize + 1)
2060 		dev_warn(ctrl->device,
2061 			"queue_size %zu > ctrl sqsize %u, clamping down\n",
2062 			opts->queue_size, ctrl->sqsize + 1);
2063 
2064 	if (ctrl->sqsize + 1 > ctrl->maxcmd) {
2065 		dev_warn(ctrl->device,
2066 			"sqsize %u > ctrl maxcmd %u, clamping down\n",
2067 			ctrl->sqsize + 1, ctrl->maxcmd);
2068 		ctrl->sqsize = ctrl->maxcmd - 1;
2069 	}
2070 
2071 	if (ctrl->queue_count > 1) {
2072 		ret = nvme_tcp_configure_io_queues(ctrl, new);
2073 		if (ret)
2074 			goto destroy_admin;
2075 	}
2076 
2077 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) {
2078 		/*
2079 		 * state change failure is ok if we started ctrl delete,
2080 		 * unless we're during creation of a new controller to
2081 		 * avoid races with teardown flow.
2082 		 */
2083 		WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2084 			     ctrl->state != NVME_CTRL_DELETING_NOIO);
2085 		WARN_ON_ONCE(new);
2086 		ret = -EINVAL;
2087 		goto destroy_io;
2088 	}
2089 
2090 	nvme_start_ctrl(ctrl);
2091 	return 0;
2092 
2093 destroy_io:
2094 	if (ctrl->queue_count > 1) {
2095 		nvme_stop_queues(ctrl);
2096 		nvme_sync_io_queues(ctrl);
2097 		nvme_tcp_stop_io_queues(ctrl);
2098 		nvme_cancel_tagset(ctrl);
2099 		nvme_tcp_destroy_io_queues(ctrl, new);
2100 	}
2101 destroy_admin:
2102 	nvme_stop_admin_queue(ctrl);
2103 	blk_sync_queue(ctrl->admin_q);
2104 	nvme_tcp_stop_queue(ctrl, 0);
2105 	nvme_cancel_admin_tagset(ctrl);
2106 	nvme_tcp_destroy_admin_queue(ctrl, new);
2107 	return ret;
2108 }
2109 
2110 static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work)
2111 {
2112 	struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work),
2113 			struct nvme_tcp_ctrl, connect_work);
2114 	struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2115 
2116 	++ctrl->nr_reconnects;
2117 
2118 	if (nvme_tcp_setup_ctrl(ctrl, false))
2119 		goto requeue;
2120 
2121 	dev_info(ctrl->device, "Successfully reconnected (%d attempt)\n",
2122 			ctrl->nr_reconnects);
2123 
2124 	ctrl->nr_reconnects = 0;
2125 
2126 	return;
2127 
2128 requeue:
2129 	dev_info(ctrl->device, "Failed reconnect attempt %d\n",
2130 			ctrl->nr_reconnects);
2131 	nvme_tcp_reconnect_or_remove(ctrl);
2132 }
2133 
2134 static void nvme_tcp_error_recovery_work(struct work_struct *work)
2135 {
2136 	struct nvme_tcp_ctrl *tcp_ctrl = container_of(work,
2137 				struct nvme_tcp_ctrl, err_work);
2138 	struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2139 
2140 	nvme_stop_keep_alive(ctrl);
2141 	flush_work(&ctrl->async_event_work);
2142 	nvme_tcp_teardown_io_queues(ctrl, false);
2143 	/* unquiesce to fail fast pending requests */
2144 	nvme_start_queues(ctrl);
2145 	nvme_tcp_teardown_admin_queue(ctrl, false);
2146 	nvme_start_admin_queue(ctrl);
2147 
2148 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2149 		/* state change failure is ok if we started ctrl delete */
2150 		WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2151 			     ctrl->state != NVME_CTRL_DELETING_NOIO);
2152 		return;
2153 	}
2154 
2155 	nvme_tcp_reconnect_or_remove(ctrl);
2156 }
2157 
2158 static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
2159 {
2160 	cancel_work_sync(&to_tcp_ctrl(ctrl)->err_work);
2161 	cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work);
2162 
2163 	nvme_tcp_teardown_io_queues(ctrl, shutdown);
2164 	nvme_stop_admin_queue(ctrl);
2165 	if (shutdown)
2166 		nvme_shutdown_ctrl(ctrl);
2167 	else
2168 		nvme_disable_ctrl(ctrl);
2169 	nvme_tcp_teardown_admin_queue(ctrl, shutdown);
2170 }
2171 
2172 static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl)
2173 {
2174 	nvme_tcp_teardown_ctrl(ctrl, true);
2175 }
2176 
2177 static void nvme_reset_ctrl_work(struct work_struct *work)
2178 {
2179 	struct nvme_ctrl *ctrl =
2180 		container_of(work, struct nvme_ctrl, reset_work);
2181 
2182 	nvme_stop_ctrl(ctrl);
2183 	nvme_tcp_teardown_ctrl(ctrl, false);
2184 
2185 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2186 		/* state change failure is ok if we started ctrl delete */
2187 		WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2188 			     ctrl->state != NVME_CTRL_DELETING_NOIO);
2189 		return;
2190 	}
2191 
2192 	if (nvme_tcp_setup_ctrl(ctrl, false))
2193 		goto out_fail;
2194 
2195 	return;
2196 
2197 out_fail:
2198 	++ctrl->nr_reconnects;
2199 	nvme_tcp_reconnect_or_remove(ctrl);
2200 }
2201 
2202 static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl)
2203 {
2204 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
2205 
2206 	if (list_empty(&ctrl->list))
2207 		goto free_ctrl;
2208 
2209 	mutex_lock(&nvme_tcp_ctrl_mutex);
2210 	list_del(&ctrl->list);
2211 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2212 
2213 	nvmf_free_options(nctrl->opts);
2214 free_ctrl:
2215 	kfree(ctrl->queues);
2216 	kfree(ctrl);
2217 }
2218 
2219 static void nvme_tcp_set_sg_null(struct nvme_command *c)
2220 {
2221 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2222 
2223 	sg->addr = 0;
2224 	sg->length = 0;
2225 	sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2226 			NVME_SGL_FMT_TRANSPORT_A;
2227 }
2228 
2229 static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue,
2230 		struct nvme_command *c, u32 data_len)
2231 {
2232 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2233 
2234 	sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
2235 	sg->length = cpu_to_le32(data_len);
2236 	sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
2237 }
2238 
2239 static void nvme_tcp_set_sg_host_data(struct nvme_command *c,
2240 		u32 data_len)
2241 {
2242 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2243 
2244 	sg->addr = 0;
2245 	sg->length = cpu_to_le32(data_len);
2246 	sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2247 			NVME_SGL_FMT_TRANSPORT_A;
2248 }
2249 
2250 static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg)
2251 {
2252 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg);
2253 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
2254 	struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu;
2255 	struct nvme_command *cmd = &pdu->cmd;
2256 	u8 hdgst = nvme_tcp_hdgst_len(queue);
2257 
2258 	memset(pdu, 0, sizeof(*pdu));
2259 	pdu->hdr.type = nvme_tcp_cmd;
2260 	if (queue->hdr_digest)
2261 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
2262 	pdu->hdr.hlen = sizeof(*pdu);
2263 	pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
2264 
2265 	cmd->common.opcode = nvme_admin_async_event;
2266 	cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
2267 	cmd->common.flags |= NVME_CMD_SGL_METABUF;
2268 	nvme_tcp_set_sg_null(cmd);
2269 
2270 	ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU;
2271 	ctrl->async_req.offset = 0;
2272 	ctrl->async_req.curr_bio = NULL;
2273 	ctrl->async_req.data_len = 0;
2274 
2275 	nvme_tcp_queue_request(&ctrl->async_req, true, true);
2276 }
2277 
2278 static void nvme_tcp_complete_timed_out(struct request *rq)
2279 {
2280 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2281 	struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2282 
2283 	nvme_tcp_stop_queue(ctrl, nvme_tcp_queue_id(req->queue));
2284 	if (blk_mq_request_started(rq) && !blk_mq_request_completed(rq)) {
2285 		nvme_req(rq)->status = NVME_SC_HOST_ABORTED_CMD;
2286 		blk_mq_complete_request(rq);
2287 	}
2288 }
2289 
2290 static enum blk_eh_timer_return
2291 nvme_tcp_timeout(struct request *rq, bool reserved)
2292 {
2293 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2294 	struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2295 	struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2296 
2297 	dev_warn(ctrl->device,
2298 		"queue %d: timeout request %#x type %d\n",
2299 		nvme_tcp_queue_id(req->queue), rq->tag, pdu->hdr.type);
2300 
2301 	if (ctrl->state != NVME_CTRL_LIVE) {
2302 		/*
2303 		 * If we are resetting, connecting or deleting we should
2304 		 * complete immediately because we may block controller
2305 		 * teardown or setup sequence
2306 		 * - ctrl disable/shutdown fabrics requests
2307 		 * - connect requests
2308 		 * - initialization admin requests
2309 		 * - I/O requests that entered after unquiescing and
2310 		 *   the controller stopped responding
2311 		 *
2312 		 * All other requests should be cancelled by the error
2313 		 * recovery work, so it's fine that we fail it here.
2314 		 */
2315 		nvme_tcp_complete_timed_out(rq);
2316 		return BLK_EH_DONE;
2317 	}
2318 
2319 	/*
2320 	 * LIVE state should trigger the normal error recovery which will
2321 	 * handle completing this request.
2322 	 */
2323 	nvme_tcp_error_recovery(ctrl);
2324 	return BLK_EH_RESET_TIMER;
2325 }
2326 
2327 static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue,
2328 			struct request *rq)
2329 {
2330 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2331 	struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2332 	struct nvme_command *c = &pdu->cmd;
2333 
2334 	c->common.flags |= NVME_CMD_SGL_METABUF;
2335 
2336 	if (!blk_rq_nr_phys_segments(rq))
2337 		nvme_tcp_set_sg_null(c);
2338 	else if (rq_data_dir(rq) == WRITE &&
2339 	    req->data_len <= nvme_tcp_inline_data_size(queue))
2340 		nvme_tcp_set_sg_inline(queue, c, req->data_len);
2341 	else
2342 		nvme_tcp_set_sg_host_data(c, req->data_len);
2343 
2344 	return 0;
2345 }
2346 
2347 static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns,
2348 		struct request *rq)
2349 {
2350 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2351 	struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2352 	struct nvme_tcp_queue *queue = req->queue;
2353 	u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0;
2354 	blk_status_t ret;
2355 
2356 	ret = nvme_setup_cmd(ns, rq);
2357 	if (ret)
2358 		return ret;
2359 
2360 	req->state = NVME_TCP_SEND_CMD_PDU;
2361 	req->status = cpu_to_le16(NVME_SC_SUCCESS);
2362 	req->offset = 0;
2363 	req->data_sent = 0;
2364 	req->pdu_len = 0;
2365 	req->pdu_sent = 0;
2366 	req->h2cdata_left = 0;
2367 	req->data_len = blk_rq_nr_phys_segments(rq) ?
2368 				blk_rq_payload_bytes(rq) : 0;
2369 	req->curr_bio = rq->bio;
2370 	if (req->curr_bio && req->data_len)
2371 		nvme_tcp_init_iter(req, rq_data_dir(rq));
2372 
2373 	if (rq_data_dir(rq) == WRITE &&
2374 	    req->data_len <= nvme_tcp_inline_data_size(queue))
2375 		req->pdu_len = req->data_len;
2376 
2377 	pdu->hdr.type = nvme_tcp_cmd;
2378 	pdu->hdr.flags = 0;
2379 	if (queue->hdr_digest)
2380 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
2381 	if (queue->data_digest && req->pdu_len) {
2382 		pdu->hdr.flags |= NVME_TCP_F_DDGST;
2383 		ddgst = nvme_tcp_ddgst_len(queue);
2384 	}
2385 	pdu->hdr.hlen = sizeof(*pdu);
2386 	pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0;
2387 	pdu->hdr.plen =
2388 		cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst);
2389 
2390 	ret = nvme_tcp_map_data(queue, rq);
2391 	if (unlikely(ret)) {
2392 		nvme_cleanup_cmd(rq);
2393 		dev_err(queue->ctrl->ctrl.device,
2394 			"Failed to map data (%d)\n", ret);
2395 		return ret;
2396 	}
2397 
2398 	return 0;
2399 }
2400 
2401 static void nvme_tcp_commit_rqs(struct blk_mq_hw_ctx *hctx)
2402 {
2403 	struct nvme_tcp_queue *queue = hctx->driver_data;
2404 
2405 	if (!llist_empty(&queue->req_list))
2406 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
2407 }
2408 
2409 static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx,
2410 		const struct blk_mq_queue_data *bd)
2411 {
2412 	struct nvme_ns *ns = hctx->queue->queuedata;
2413 	struct nvme_tcp_queue *queue = hctx->driver_data;
2414 	struct request *rq = bd->rq;
2415 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2416 	bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags);
2417 	blk_status_t ret;
2418 
2419 	if (!nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2420 		return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq);
2421 
2422 	ret = nvme_tcp_setup_cmd_pdu(ns, rq);
2423 	if (unlikely(ret))
2424 		return ret;
2425 
2426 	blk_mq_start_request(rq);
2427 
2428 	nvme_tcp_queue_request(req, true, bd->last);
2429 
2430 	return BLK_STS_OK;
2431 }
2432 
2433 static int nvme_tcp_map_queues(struct blk_mq_tag_set *set)
2434 {
2435 	struct nvme_tcp_ctrl *ctrl = set->driver_data;
2436 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2437 
2438 	if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) {
2439 		/* separate read/write queues */
2440 		set->map[HCTX_TYPE_DEFAULT].nr_queues =
2441 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2442 		set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2443 		set->map[HCTX_TYPE_READ].nr_queues =
2444 			ctrl->io_queues[HCTX_TYPE_READ];
2445 		set->map[HCTX_TYPE_READ].queue_offset =
2446 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2447 	} else {
2448 		/* shared read/write queues */
2449 		set->map[HCTX_TYPE_DEFAULT].nr_queues =
2450 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2451 		set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2452 		set->map[HCTX_TYPE_READ].nr_queues =
2453 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2454 		set->map[HCTX_TYPE_READ].queue_offset = 0;
2455 	}
2456 	blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
2457 	blk_mq_map_queues(&set->map[HCTX_TYPE_READ]);
2458 
2459 	if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) {
2460 		/* map dedicated poll queues only if we have queues left */
2461 		set->map[HCTX_TYPE_POLL].nr_queues =
2462 				ctrl->io_queues[HCTX_TYPE_POLL];
2463 		set->map[HCTX_TYPE_POLL].queue_offset =
2464 			ctrl->io_queues[HCTX_TYPE_DEFAULT] +
2465 			ctrl->io_queues[HCTX_TYPE_READ];
2466 		blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]);
2467 	}
2468 
2469 	dev_info(ctrl->ctrl.device,
2470 		"mapped %d/%d/%d default/read/poll queues.\n",
2471 		ctrl->io_queues[HCTX_TYPE_DEFAULT],
2472 		ctrl->io_queues[HCTX_TYPE_READ],
2473 		ctrl->io_queues[HCTX_TYPE_POLL]);
2474 
2475 	return 0;
2476 }
2477 
2478 static int nvme_tcp_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
2479 {
2480 	struct nvme_tcp_queue *queue = hctx->driver_data;
2481 	struct sock *sk = queue->sock->sk;
2482 
2483 	if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags))
2484 		return 0;
2485 
2486 	set_bit(NVME_TCP_Q_POLLING, &queue->flags);
2487 	if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue))
2488 		sk_busy_loop(sk, true);
2489 	nvme_tcp_try_recv(queue);
2490 	clear_bit(NVME_TCP_Q_POLLING, &queue->flags);
2491 	return queue->nr_cqe;
2492 }
2493 
2494 static const struct blk_mq_ops nvme_tcp_mq_ops = {
2495 	.queue_rq	= nvme_tcp_queue_rq,
2496 	.commit_rqs	= nvme_tcp_commit_rqs,
2497 	.complete	= nvme_complete_rq,
2498 	.init_request	= nvme_tcp_init_request,
2499 	.exit_request	= nvme_tcp_exit_request,
2500 	.init_hctx	= nvme_tcp_init_hctx,
2501 	.timeout	= nvme_tcp_timeout,
2502 	.map_queues	= nvme_tcp_map_queues,
2503 	.poll		= nvme_tcp_poll,
2504 };
2505 
2506 static const struct blk_mq_ops nvme_tcp_admin_mq_ops = {
2507 	.queue_rq	= nvme_tcp_queue_rq,
2508 	.complete	= nvme_complete_rq,
2509 	.init_request	= nvme_tcp_init_request,
2510 	.exit_request	= nvme_tcp_exit_request,
2511 	.init_hctx	= nvme_tcp_init_admin_hctx,
2512 	.timeout	= nvme_tcp_timeout,
2513 };
2514 
2515 static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = {
2516 	.name			= "tcp",
2517 	.module			= THIS_MODULE,
2518 	.flags			= NVME_F_FABRICS,
2519 	.reg_read32		= nvmf_reg_read32,
2520 	.reg_read64		= nvmf_reg_read64,
2521 	.reg_write32		= nvmf_reg_write32,
2522 	.free_ctrl		= nvme_tcp_free_ctrl,
2523 	.submit_async_event	= nvme_tcp_submit_async_event,
2524 	.delete_ctrl		= nvme_tcp_delete_ctrl,
2525 	.get_address		= nvmf_get_address,
2526 };
2527 
2528 static bool
2529 nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts)
2530 {
2531 	struct nvme_tcp_ctrl *ctrl;
2532 	bool found = false;
2533 
2534 	mutex_lock(&nvme_tcp_ctrl_mutex);
2535 	list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) {
2536 		found = nvmf_ip_options_match(&ctrl->ctrl, opts);
2537 		if (found)
2538 			break;
2539 	}
2540 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2541 
2542 	return found;
2543 }
2544 
2545 static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev,
2546 		struct nvmf_ctrl_options *opts)
2547 {
2548 	struct nvme_tcp_ctrl *ctrl;
2549 	int ret;
2550 
2551 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2552 	if (!ctrl)
2553 		return ERR_PTR(-ENOMEM);
2554 
2555 	INIT_LIST_HEAD(&ctrl->list);
2556 	ctrl->ctrl.opts = opts;
2557 	ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2558 				opts->nr_poll_queues + 1;
2559 	ctrl->ctrl.sqsize = opts->queue_size - 1;
2560 	ctrl->ctrl.kato = opts->kato;
2561 
2562 	INIT_DELAYED_WORK(&ctrl->connect_work,
2563 			nvme_tcp_reconnect_ctrl_work);
2564 	INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work);
2565 	INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work);
2566 
2567 	if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2568 		opts->trsvcid =
2569 			kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL);
2570 		if (!opts->trsvcid) {
2571 			ret = -ENOMEM;
2572 			goto out_free_ctrl;
2573 		}
2574 		opts->mask |= NVMF_OPT_TRSVCID;
2575 	}
2576 
2577 	ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2578 			opts->traddr, opts->trsvcid, &ctrl->addr);
2579 	if (ret) {
2580 		pr_err("malformed address passed: %s:%s\n",
2581 			opts->traddr, opts->trsvcid);
2582 		goto out_free_ctrl;
2583 	}
2584 
2585 	if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2586 		ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2587 			opts->host_traddr, NULL, &ctrl->src_addr);
2588 		if (ret) {
2589 			pr_err("malformed src address passed: %s\n",
2590 			       opts->host_traddr);
2591 			goto out_free_ctrl;
2592 		}
2593 	}
2594 
2595 	if (opts->mask & NVMF_OPT_HOST_IFACE) {
2596 		if (!__dev_get_by_name(&init_net, opts->host_iface)) {
2597 			pr_err("invalid interface passed: %s\n",
2598 			       opts->host_iface);
2599 			ret = -ENODEV;
2600 			goto out_free_ctrl;
2601 		}
2602 	}
2603 
2604 	if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) {
2605 		ret = -EALREADY;
2606 		goto out_free_ctrl;
2607 	}
2608 
2609 	ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2610 				GFP_KERNEL);
2611 	if (!ctrl->queues) {
2612 		ret = -ENOMEM;
2613 		goto out_free_ctrl;
2614 	}
2615 
2616 	ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0);
2617 	if (ret)
2618 		goto out_kfree_queues;
2619 
2620 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2621 		WARN_ON_ONCE(1);
2622 		ret = -EINTR;
2623 		goto out_uninit_ctrl;
2624 	}
2625 
2626 	ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true);
2627 	if (ret)
2628 		goto out_uninit_ctrl;
2629 
2630 	dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n",
2631 		nvmf_ctrl_subsysnqn(&ctrl->ctrl), &ctrl->addr);
2632 
2633 	mutex_lock(&nvme_tcp_ctrl_mutex);
2634 	list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list);
2635 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2636 
2637 	return &ctrl->ctrl;
2638 
2639 out_uninit_ctrl:
2640 	nvme_uninit_ctrl(&ctrl->ctrl);
2641 	nvme_put_ctrl(&ctrl->ctrl);
2642 	if (ret > 0)
2643 		ret = -EIO;
2644 	return ERR_PTR(ret);
2645 out_kfree_queues:
2646 	kfree(ctrl->queues);
2647 out_free_ctrl:
2648 	kfree(ctrl);
2649 	return ERR_PTR(ret);
2650 }
2651 
2652 static struct nvmf_transport_ops nvme_tcp_transport = {
2653 	.name		= "tcp",
2654 	.module		= THIS_MODULE,
2655 	.required_opts	= NVMF_OPT_TRADDR,
2656 	.allowed_opts	= NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2657 			  NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2658 			  NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST |
2659 			  NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
2660 			  NVMF_OPT_TOS | NVMF_OPT_HOST_IFACE,
2661 	.create_ctrl	= nvme_tcp_create_ctrl,
2662 };
2663 
2664 static int __init nvme_tcp_init_module(void)
2665 {
2666 	nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq",
2667 			WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2668 	if (!nvme_tcp_wq)
2669 		return -ENOMEM;
2670 
2671 	nvmf_register_transport(&nvme_tcp_transport);
2672 	return 0;
2673 }
2674 
2675 static void __exit nvme_tcp_cleanup_module(void)
2676 {
2677 	struct nvme_tcp_ctrl *ctrl;
2678 
2679 	nvmf_unregister_transport(&nvme_tcp_transport);
2680 
2681 	mutex_lock(&nvme_tcp_ctrl_mutex);
2682 	list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list)
2683 		nvme_delete_ctrl(&ctrl->ctrl);
2684 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2685 	flush_workqueue(nvme_delete_wq);
2686 
2687 	destroy_workqueue(nvme_tcp_wq);
2688 }
2689 
2690 module_init(nvme_tcp_init_module);
2691 module_exit(nvme_tcp_cleanup_module);
2692 
2693 MODULE_LICENSE("GPL v2");
2694