1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVMe over Fabrics TCP host. 4 * Copyright (c) 2018 Lightbits Labs. All rights reserved. 5 */ 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 #include <linux/module.h> 8 #include <linux/init.h> 9 #include <linux/slab.h> 10 #include <linux/err.h> 11 #include <linux/nvme-tcp.h> 12 #include <net/sock.h> 13 #include <net/tcp.h> 14 #include <linux/blk-mq.h> 15 #include <crypto/hash.h> 16 #include <net/busy_poll.h> 17 18 #include "nvme.h" 19 #include "fabrics.h" 20 21 struct nvme_tcp_queue; 22 23 /* Define the socket priority to use for connections were it is desirable 24 * that the NIC consider performing optimized packet processing or filtering. 25 * A non-zero value being sufficient to indicate general consideration of any 26 * possible optimization. Making it a module param allows for alternative 27 * values that may be unique for some NIC implementations. 28 */ 29 static int so_priority; 30 module_param(so_priority, int, 0644); 31 MODULE_PARM_DESC(so_priority, "nvme tcp socket optimize priority"); 32 33 enum nvme_tcp_send_state { 34 NVME_TCP_SEND_CMD_PDU = 0, 35 NVME_TCP_SEND_H2C_PDU, 36 NVME_TCP_SEND_DATA, 37 NVME_TCP_SEND_DDGST, 38 }; 39 40 struct nvme_tcp_request { 41 struct nvme_request req; 42 void *pdu; 43 struct nvme_tcp_queue *queue; 44 u32 data_len; 45 u32 pdu_len; 46 u32 pdu_sent; 47 u16 ttag; 48 struct list_head entry; 49 struct llist_node lentry; 50 __le32 ddgst; 51 52 struct bio *curr_bio; 53 struct iov_iter iter; 54 55 /* send state */ 56 size_t offset; 57 size_t data_sent; 58 enum nvme_tcp_send_state state; 59 }; 60 61 enum nvme_tcp_queue_flags { 62 NVME_TCP_Q_ALLOCATED = 0, 63 NVME_TCP_Q_LIVE = 1, 64 NVME_TCP_Q_POLLING = 2, 65 }; 66 67 enum nvme_tcp_recv_state { 68 NVME_TCP_RECV_PDU = 0, 69 NVME_TCP_RECV_DATA, 70 NVME_TCP_RECV_DDGST, 71 }; 72 73 struct nvme_tcp_ctrl; 74 struct nvme_tcp_queue { 75 struct socket *sock; 76 struct work_struct io_work; 77 int io_cpu; 78 79 struct mutex queue_lock; 80 struct mutex send_mutex; 81 struct llist_head req_list; 82 struct list_head send_list; 83 bool more_requests; 84 85 /* recv state */ 86 void *pdu; 87 int pdu_remaining; 88 int pdu_offset; 89 size_t data_remaining; 90 size_t ddgst_remaining; 91 unsigned int nr_cqe; 92 93 /* send state */ 94 struct nvme_tcp_request *request; 95 96 int queue_size; 97 size_t cmnd_capsule_len; 98 struct nvme_tcp_ctrl *ctrl; 99 unsigned long flags; 100 bool rd_enabled; 101 102 bool hdr_digest; 103 bool data_digest; 104 struct ahash_request *rcv_hash; 105 struct ahash_request *snd_hash; 106 __le32 exp_ddgst; 107 __le32 recv_ddgst; 108 109 struct page_frag_cache pf_cache; 110 111 void (*state_change)(struct sock *); 112 void (*data_ready)(struct sock *); 113 void (*write_space)(struct sock *); 114 }; 115 116 struct nvme_tcp_ctrl { 117 /* read only in the hot path */ 118 struct nvme_tcp_queue *queues; 119 struct blk_mq_tag_set tag_set; 120 121 /* other member variables */ 122 struct list_head list; 123 struct blk_mq_tag_set admin_tag_set; 124 struct sockaddr_storage addr; 125 struct sockaddr_storage src_addr; 126 struct nvme_ctrl ctrl; 127 128 struct work_struct err_work; 129 struct delayed_work connect_work; 130 struct nvme_tcp_request async_req; 131 u32 io_queues[HCTX_MAX_TYPES]; 132 }; 133 134 static LIST_HEAD(nvme_tcp_ctrl_list); 135 static DEFINE_MUTEX(nvme_tcp_ctrl_mutex); 136 static struct workqueue_struct *nvme_tcp_wq; 137 static const struct blk_mq_ops nvme_tcp_mq_ops; 138 static const struct blk_mq_ops nvme_tcp_admin_mq_ops; 139 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue); 140 141 static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl) 142 { 143 return container_of(ctrl, struct nvme_tcp_ctrl, ctrl); 144 } 145 146 static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue) 147 { 148 return queue - queue->ctrl->queues; 149 } 150 151 static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue) 152 { 153 u32 queue_idx = nvme_tcp_queue_id(queue); 154 155 if (queue_idx == 0) 156 return queue->ctrl->admin_tag_set.tags[queue_idx]; 157 return queue->ctrl->tag_set.tags[queue_idx - 1]; 158 } 159 160 static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue) 161 { 162 return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0; 163 } 164 165 static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue) 166 { 167 return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0; 168 } 169 170 static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_queue *queue) 171 { 172 return queue->cmnd_capsule_len - sizeof(struct nvme_command); 173 } 174 175 static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req) 176 { 177 return req == &req->queue->ctrl->async_req; 178 } 179 180 static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req) 181 { 182 struct request *rq; 183 184 if (unlikely(nvme_tcp_async_req(req))) 185 return false; /* async events don't have a request */ 186 187 rq = blk_mq_rq_from_pdu(req); 188 189 return rq_data_dir(rq) == WRITE && req->data_len && 190 req->data_len <= nvme_tcp_inline_data_size(req->queue); 191 } 192 193 static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req) 194 { 195 return req->iter.bvec->bv_page; 196 } 197 198 static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req) 199 { 200 return req->iter.bvec->bv_offset + req->iter.iov_offset; 201 } 202 203 static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req) 204 { 205 return min_t(size_t, iov_iter_single_seg_count(&req->iter), 206 req->pdu_len - req->pdu_sent); 207 } 208 209 static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req) 210 { 211 return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ? 212 req->pdu_len - req->pdu_sent : 0; 213 } 214 215 static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req, 216 int len) 217 { 218 return nvme_tcp_pdu_data_left(req) <= len; 219 } 220 221 static void nvme_tcp_init_iter(struct nvme_tcp_request *req, 222 unsigned int dir) 223 { 224 struct request *rq = blk_mq_rq_from_pdu(req); 225 struct bio_vec *vec; 226 unsigned int size; 227 int nr_bvec; 228 size_t offset; 229 230 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) { 231 vec = &rq->special_vec; 232 nr_bvec = 1; 233 size = blk_rq_payload_bytes(rq); 234 offset = 0; 235 } else { 236 struct bio *bio = req->curr_bio; 237 struct bvec_iter bi; 238 struct bio_vec bv; 239 240 vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); 241 nr_bvec = 0; 242 bio_for_each_bvec(bv, bio, bi) { 243 nr_bvec++; 244 } 245 size = bio->bi_iter.bi_size; 246 offset = bio->bi_iter.bi_bvec_done; 247 } 248 249 iov_iter_bvec(&req->iter, dir, vec, nr_bvec, size); 250 req->iter.iov_offset = offset; 251 } 252 253 static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req, 254 int len) 255 { 256 req->data_sent += len; 257 req->pdu_sent += len; 258 iov_iter_advance(&req->iter, len); 259 if (!iov_iter_count(&req->iter) && 260 req->data_sent < req->data_len) { 261 req->curr_bio = req->curr_bio->bi_next; 262 nvme_tcp_init_iter(req, WRITE); 263 } 264 } 265 266 static inline void nvme_tcp_send_all(struct nvme_tcp_queue *queue) 267 { 268 int ret; 269 270 /* drain the send queue as much as we can... */ 271 do { 272 ret = nvme_tcp_try_send(queue); 273 } while (ret > 0); 274 } 275 276 static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req, 277 bool sync, bool last) 278 { 279 struct nvme_tcp_queue *queue = req->queue; 280 bool empty; 281 282 empty = llist_add(&req->lentry, &queue->req_list) && 283 list_empty(&queue->send_list) && !queue->request; 284 285 /* 286 * if we're the first on the send_list and we can try to send 287 * directly, otherwise queue io_work. Also, only do that if we 288 * are on the same cpu, so we don't introduce contention. 289 */ 290 if (queue->io_cpu == __smp_processor_id() && 291 sync && empty && mutex_trylock(&queue->send_mutex)) { 292 queue->more_requests = !last; 293 nvme_tcp_send_all(queue); 294 queue->more_requests = false; 295 mutex_unlock(&queue->send_mutex); 296 } else if (last) { 297 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 298 } 299 } 300 301 static void nvme_tcp_process_req_list(struct nvme_tcp_queue *queue) 302 { 303 struct nvme_tcp_request *req; 304 struct llist_node *node; 305 306 for (node = llist_del_all(&queue->req_list); node; node = node->next) { 307 req = llist_entry(node, struct nvme_tcp_request, lentry); 308 list_add(&req->entry, &queue->send_list); 309 } 310 } 311 312 static inline struct nvme_tcp_request * 313 nvme_tcp_fetch_request(struct nvme_tcp_queue *queue) 314 { 315 struct nvme_tcp_request *req; 316 317 req = list_first_entry_or_null(&queue->send_list, 318 struct nvme_tcp_request, entry); 319 if (!req) { 320 nvme_tcp_process_req_list(queue); 321 req = list_first_entry_or_null(&queue->send_list, 322 struct nvme_tcp_request, entry); 323 if (unlikely(!req)) 324 return NULL; 325 } 326 327 list_del(&req->entry); 328 return req; 329 } 330 331 static inline void nvme_tcp_ddgst_final(struct ahash_request *hash, 332 __le32 *dgst) 333 { 334 ahash_request_set_crypt(hash, NULL, (u8 *)dgst, 0); 335 crypto_ahash_final(hash); 336 } 337 338 static inline void nvme_tcp_ddgst_update(struct ahash_request *hash, 339 struct page *page, off_t off, size_t len) 340 { 341 struct scatterlist sg; 342 343 sg_init_marker(&sg, 1); 344 sg_set_page(&sg, page, len, off); 345 ahash_request_set_crypt(hash, &sg, NULL, len); 346 crypto_ahash_update(hash); 347 } 348 349 static inline void nvme_tcp_hdgst(struct ahash_request *hash, 350 void *pdu, size_t len) 351 { 352 struct scatterlist sg; 353 354 sg_init_one(&sg, pdu, len); 355 ahash_request_set_crypt(hash, &sg, pdu + len, len); 356 crypto_ahash_digest(hash); 357 } 358 359 static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue, 360 void *pdu, size_t pdu_len) 361 { 362 struct nvme_tcp_hdr *hdr = pdu; 363 __le32 recv_digest; 364 __le32 exp_digest; 365 366 if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) { 367 dev_err(queue->ctrl->ctrl.device, 368 "queue %d: header digest flag is cleared\n", 369 nvme_tcp_queue_id(queue)); 370 return -EPROTO; 371 } 372 373 recv_digest = *(__le32 *)(pdu + hdr->hlen); 374 nvme_tcp_hdgst(queue->rcv_hash, pdu, pdu_len); 375 exp_digest = *(__le32 *)(pdu + hdr->hlen); 376 if (recv_digest != exp_digest) { 377 dev_err(queue->ctrl->ctrl.device, 378 "header digest error: recv %#x expected %#x\n", 379 le32_to_cpu(recv_digest), le32_to_cpu(exp_digest)); 380 return -EIO; 381 } 382 383 return 0; 384 } 385 386 static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu) 387 { 388 struct nvme_tcp_hdr *hdr = pdu; 389 u8 digest_len = nvme_tcp_hdgst_len(queue); 390 u32 len; 391 392 len = le32_to_cpu(hdr->plen) - hdr->hlen - 393 ((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0); 394 395 if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) { 396 dev_err(queue->ctrl->ctrl.device, 397 "queue %d: data digest flag is cleared\n", 398 nvme_tcp_queue_id(queue)); 399 return -EPROTO; 400 } 401 crypto_ahash_init(queue->rcv_hash); 402 403 return 0; 404 } 405 406 static void nvme_tcp_exit_request(struct blk_mq_tag_set *set, 407 struct request *rq, unsigned int hctx_idx) 408 { 409 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 410 411 page_frag_free(req->pdu); 412 } 413 414 static int nvme_tcp_init_request(struct blk_mq_tag_set *set, 415 struct request *rq, unsigned int hctx_idx, 416 unsigned int numa_node) 417 { 418 struct nvme_tcp_ctrl *ctrl = set->driver_data; 419 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 420 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; 421 struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx]; 422 u8 hdgst = nvme_tcp_hdgst_len(queue); 423 424 req->pdu = page_frag_alloc(&queue->pf_cache, 425 sizeof(struct nvme_tcp_cmd_pdu) + hdgst, 426 GFP_KERNEL | __GFP_ZERO); 427 if (!req->pdu) 428 return -ENOMEM; 429 430 req->queue = queue; 431 nvme_req(rq)->ctrl = &ctrl->ctrl; 432 433 return 0; 434 } 435 436 static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 437 unsigned int hctx_idx) 438 { 439 struct nvme_tcp_ctrl *ctrl = data; 440 struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1]; 441 442 hctx->driver_data = queue; 443 return 0; 444 } 445 446 static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, 447 unsigned int hctx_idx) 448 { 449 struct nvme_tcp_ctrl *ctrl = data; 450 struct nvme_tcp_queue *queue = &ctrl->queues[0]; 451 452 hctx->driver_data = queue; 453 return 0; 454 } 455 456 static enum nvme_tcp_recv_state 457 nvme_tcp_recv_state(struct nvme_tcp_queue *queue) 458 { 459 return (queue->pdu_remaining) ? NVME_TCP_RECV_PDU : 460 (queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST : 461 NVME_TCP_RECV_DATA; 462 } 463 464 static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue) 465 { 466 queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) + 467 nvme_tcp_hdgst_len(queue); 468 queue->pdu_offset = 0; 469 queue->data_remaining = -1; 470 queue->ddgst_remaining = 0; 471 } 472 473 static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl) 474 { 475 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 476 return; 477 478 dev_warn(ctrl->device, "starting error recovery\n"); 479 queue_work(nvme_reset_wq, &to_tcp_ctrl(ctrl)->err_work); 480 } 481 482 static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue, 483 struct nvme_completion *cqe) 484 { 485 struct request *rq; 486 487 rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), cqe->command_id); 488 if (!rq) { 489 dev_err(queue->ctrl->ctrl.device, 490 "queue %d tag 0x%x not found\n", 491 nvme_tcp_queue_id(queue), cqe->command_id); 492 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 493 return -EINVAL; 494 } 495 496 if (!nvme_try_complete_req(rq, cqe->status, cqe->result)) 497 nvme_complete_rq(rq); 498 queue->nr_cqe++; 499 500 return 0; 501 } 502 503 static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue, 504 struct nvme_tcp_data_pdu *pdu) 505 { 506 struct request *rq; 507 508 rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id); 509 if (!rq) { 510 dev_err(queue->ctrl->ctrl.device, 511 "queue %d tag %#x not found\n", 512 nvme_tcp_queue_id(queue), pdu->command_id); 513 return -ENOENT; 514 } 515 516 if (!blk_rq_payload_bytes(rq)) { 517 dev_err(queue->ctrl->ctrl.device, 518 "queue %d tag %#x unexpected data\n", 519 nvme_tcp_queue_id(queue), rq->tag); 520 return -EIO; 521 } 522 523 queue->data_remaining = le32_to_cpu(pdu->data_length); 524 525 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS && 526 unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) { 527 dev_err(queue->ctrl->ctrl.device, 528 "queue %d tag %#x SUCCESS set but not last PDU\n", 529 nvme_tcp_queue_id(queue), rq->tag); 530 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 531 return -EPROTO; 532 } 533 534 return 0; 535 } 536 537 static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue, 538 struct nvme_tcp_rsp_pdu *pdu) 539 { 540 struct nvme_completion *cqe = &pdu->cqe; 541 int ret = 0; 542 543 /* 544 * AEN requests are special as they don't time out and can 545 * survive any kind of queue freeze and often don't respond to 546 * aborts. We don't even bother to allocate a struct request 547 * for them but rather special case them here. 548 */ 549 if (unlikely(nvme_is_aen_req(nvme_tcp_queue_id(queue), 550 cqe->command_id))) 551 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status, 552 &cqe->result); 553 else 554 ret = nvme_tcp_process_nvme_cqe(queue, cqe); 555 556 return ret; 557 } 558 559 static int nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req, 560 struct nvme_tcp_r2t_pdu *pdu) 561 { 562 struct nvme_tcp_data_pdu *data = req->pdu; 563 struct nvme_tcp_queue *queue = req->queue; 564 struct request *rq = blk_mq_rq_from_pdu(req); 565 u8 hdgst = nvme_tcp_hdgst_len(queue); 566 u8 ddgst = nvme_tcp_ddgst_len(queue); 567 568 req->pdu_len = le32_to_cpu(pdu->r2t_length); 569 req->pdu_sent = 0; 570 571 if (unlikely(req->data_sent + req->pdu_len > req->data_len)) { 572 dev_err(queue->ctrl->ctrl.device, 573 "req %d r2t len %u exceeded data len %u (%zu sent)\n", 574 rq->tag, req->pdu_len, req->data_len, 575 req->data_sent); 576 return -EPROTO; 577 } 578 579 if (unlikely(le32_to_cpu(pdu->r2t_offset) < req->data_sent)) { 580 dev_err(queue->ctrl->ctrl.device, 581 "req %d unexpected r2t offset %u (expected %zu)\n", 582 rq->tag, le32_to_cpu(pdu->r2t_offset), 583 req->data_sent); 584 return -EPROTO; 585 } 586 587 memset(data, 0, sizeof(*data)); 588 data->hdr.type = nvme_tcp_h2c_data; 589 data->hdr.flags = NVME_TCP_F_DATA_LAST; 590 if (queue->hdr_digest) 591 data->hdr.flags |= NVME_TCP_F_HDGST; 592 if (queue->data_digest) 593 data->hdr.flags |= NVME_TCP_F_DDGST; 594 data->hdr.hlen = sizeof(*data); 595 data->hdr.pdo = data->hdr.hlen + hdgst; 596 data->hdr.plen = 597 cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst); 598 data->ttag = pdu->ttag; 599 data->command_id = rq->tag; 600 data->data_offset = cpu_to_le32(req->data_sent); 601 data->data_length = cpu_to_le32(req->pdu_len); 602 return 0; 603 } 604 605 static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue, 606 struct nvme_tcp_r2t_pdu *pdu) 607 { 608 struct nvme_tcp_request *req; 609 struct request *rq; 610 int ret; 611 612 rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id); 613 if (!rq) { 614 dev_err(queue->ctrl->ctrl.device, 615 "queue %d tag %#x not found\n", 616 nvme_tcp_queue_id(queue), pdu->command_id); 617 return -ENOENT; 618 } 619 req = blk_mq_rq_to_pdu(rq); 620 621 ret = nvme_tcp_setup_h2c_data_pdu(req, pdu); 622 if (unlikely(ret)) 623 return ret; 624 625 req->state = NVME_TCP_SEND_H2C_PDU; 626 req->offset = 0; 627 628 nvme_tcp_queue_request(req, false, true); 629 630 return 0; 631 } 632 633 static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb, 634 unsigned int *offset, size_t *len) 635 { 636 struct nvme_tcp_hdr *hdr; 637 char *pdu = queue->pdu; 638 size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining); 639 int ret; 640 641 ret = skb_copy_bits(skb, *offset, 642 &pdu[queue->pdu_offset], rcv_len); 643 if (unlikely(ret)) 644 return ret; 645 646 queue->pdu_remaining -= rcv_len; 647 queue->pdu_offset += rcv_len; 648 *offset += rcv_len; 649 *len -= rcv_len; 650 if (queue->pdu_remaining) 651 return 0; 652 653 hdr = queue->pdu; 654 if (queue->hdr_digest) { 655 ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen); 656 if (unlikely(ret)) 657 return ret; 658 } 659 660 661 if (queue->data_digest) { 662 ret = nvme_tcp_check_ddgst(queue, queue->pdu); 663 if (unlikely(ret)) 664 return ret; 665 } 666 667 switch (hdr->type) { 668 case nvme_tcp_c2h_data: 669 return nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu); 670 case nvme_tcp_rsp: 671 nvme_tcp_init_recv_ctx(queue); 672 return nvme_tcp_handle_comp(queue, (void *)queue->pdu); 673 case nvme_tcp_r2t: 674 nvme_tcp_init_recv_ctx(queue); 675 return nvme_tcp_handle_r2t(queue, (void *)queue->pdu); 676 default: 677 dev_err(queue->ctrl->ctrl.device, 678 "unsupported pdu type (%d)\n", hdr->type); 679 return -EINVAL; 680 } 681 } 682 683 static inline void nvme_tcp_end_request(struct request *rq, u16 status) 684 { 685 union nvme_result res = {}; 686 687 if (!nvme_try_complete_req(rq, cpu_to_le16(status << 1), res)) 688 nvme_complete_rq(rq); 689 } 690 691 static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb, 692 unsigned int *offset, size_t *len) 693 { 694 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu; 695 struct nvme_tcp_request *req; 696 struct request *rq; 697 698 rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id); 699 if (!rq) { 700 dev_err(queue->ctrl->ctrl.device, 701 "queue %d tag %#x not found\n", 702 nvme_tcp_queue_id(queue), pdu->command_id); 703 return -ENOENT; 704 } 705 req = blk_mq_rq_to_pdu(rq); 706 707 while (true) { 708 int recv_len, ret; 709 710 recv_len = min_t(size_t, *len, queue->data_remaining); 711 if (!recv_len) 712 break; 713 714 if (!iov_iter_count(&req->iter)) { 715 req->curr_bio = req->curr_bio->bi_next; 716 717 /* 718 * If we don`t have any bios it means that controller 719 * sent more data than we requested, hence error 720 */ 721 if (!req->curr_bio) { 722 dev_err(queue->ctrl->ctrl.device, 723 "queue %d no space in request %#x", 724 nvme_tcp_queue_id(queue), rq->tag); 725 nvme_tcp_init_recv_ctx(queue); 726 return -EIO; 727 } 728 nvme_tcp_init_iter(req, READ); 729 } 730 731 /* we can read only from what is left in this bio */ 732 recv_len = min_t(size_t, recv_len, 733 iov_iter_count(&req->iter)); 734 735 if (queue->data_digest) 736 ret = skb_copy_and_hash_datagram_iter(skb, *offset, 737 &req->iter, recv_len, queue->rcv_hash); 738 else 739 ret = skb_copy_datagram_iter(skb, *offset, 740 &req->iter, recv_len); 741 if (ret) { 742 dev_err(queue->ctrl->ctrl.device, 743 "queue %d failed to copy request %#x data", 744 nvme_tcp_queue_id(queue), rq->tag); 745 return ret; 746 } 747 748 *len -= recv_len; 749 *offset += recv_len; 750 queue->data_remaining -= recv_len; 751 } 752 753 if (!queue->data_remaining) { 754 if (queue->data_digest) { 755 nvme_tcp_ddgst_final(queue->rcv_hash, &queue->exp_ddgst); 756 queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH; 757 } else { 758 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) { 759 nvme_tcp_end_request(rq, NVME_SC_SUCCESS); 760 queue->nr_cqe++; 761 } 762 nvme_tcp_init_recv_ctx(queue); 763 } 764 } 765 766 return 0; 767 } 768 769 static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue, 770 struct sk_buff *skb, unsigned int *offset, size_t *len) 771 { 772 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu; 773 char *ddgst = (char *)&queue->recv_ddgst; 774 size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining); 775 off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining; 776 int ret; 777 778 ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len); 779 if (unlikely(ret)) 780 return ret; 781 782 queue->ddgst_remaining -= recv_len; 783 *offset += recv_len; 784 *len -= recv_len; 785 if (queue->ddgst_remaining) 786 return 0; 787 788 if (queue->recv_ddgst != queue->exp_ddgst) { 789 dev_err(queue->ctrl->ctrl.device, 790 "data digest error: recv %#x expected %#x\n", 791 le32_to_cpu(queue->recv_ddgst), 792 le32_to_cpu(queue->exp_ddgst)); 793 return -EIO; 794 } 795 796 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) { 797 struct request *rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), 798 pdu->command_id); 799 800 nvme_tcp_end_request(rq, NVME_SC_SUCCESS); 801 queue->nr_cqe++; 802 } 803 804 nvme_tcp_init_recv_ctx(queue); 805 return 0; 806 } 807 808 static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb, 809 unsigned int offset, size_t len) 810 { 811 struct nvme_tcp_queue *queue = desc->arg.data; 812 size_t consumed = len; 813 int result; 814 815 while (len) { 816 switch (nvme_tcp_recv_state(queue)) { 817 case NVME_TCP_RECV_PDU: 818 result = nvme_tcp_recv_pdu(queue, skb, &offset, &len); 819 break; 820 case NVME_TCP_RECV_DATA: 821 result = nvme_tcp_recv_data(queue, skb, &offset, &len); 822 break; 823 case NVME_TCP_RECV_DDGST: 824 result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len); 825 break; 826 default: 827 result = -EFAULT; 828 } 829 if (result) { 830 dev_err(queue->ctrl->ctrl.device, 831 "receive failed: %d\n", result); 832 queue->rd_enabled = false; 833 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 834 return result; 835 } 836 } 837 838 return consumed; 839 } 840 841 static void nvme_tcp_data_ready(struct sock *sk) 842 { 843 struct nvme_tcp_queue *queue; 844 845 read_lock_bh(&sk->sk_callback_lock); 846 queue = sk->sk_user_data; 847 if (likely(queue && queue->rd_enabled) && 848 !test_bit(NVME_TCP_Q_POLLING, &queue->flags)) 849 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 850 read_unlock_bh(&sk->sk_callback_lock); 851 } 852 853 static void nvme_tcp_write_space(struct sock *sk) 854 { 855 struct nvme_tcp_queue *queue; 856 857 read_lock_bh(&sk->sk_callback_lock); 858 queue = sk->sk_user_data; 859 if (likely(queue && sk_stream_is_writeable(sk))) { 860 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 861 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 862 } 863 read_unlock_bh(&sk->sk_callback_lock); 864 } 865 866 static void nvme_tcp_state_change(struct sock *sk) 867 { 868 struct nvme_tcp_queue *queue; 869 870 read_lock(&sk->sk_callback_lock); 871 queue = sk->sk_user_data; 872 if (!queue) 873 goto done; 874 875 switch (sk->sk_state) { 876 case TCP_CLOSE: 877 case TCP_CLOSE_WAIT: 878 case TCP_LAST_ACK: 879 case TCP_FIN_WAIT1: 880 case TCP_FIN_WAIT2: 881 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 882 break; 883 default: 884 dev_info(queue->ctrl->ctrl.device, 885 "queue %d socket state %d\n", 886 nvme_tcp_queue_id(queue), sk->sk_state); 887 } 888 889 queue->state_change(sk); 890 done: 891 read_unlock(&sk->sk_callback_lock); 892 } 893 894 static inline bool nvme_tcp_queue_more(struct nvme_tcp_queue *queue) 895 { 896 return !list_empty(&queue->send_list) || 897 !llist_empty(&queue->req_list) || queue->more_requests; 898 } 899 900 static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue) 901 { 902 queue->request = NULL; 903 } 904 905 static void nvme_tcp_fail_request(struct nvme_tcp_request *req) 906 { 907 nvme_tcp_end_request(blk_mq_rq_from_pdu(req), NVME_SC_HOST_PATH_ERROR); 908 } 909 910 static int nvme_tcp_try_send_data(struct nvme_tcp_request *req) 911 { 912 struct nvme_tcp_queue *queue = req->queue; 913 914 while (true) { 915 struct page *page = nvme_tcp_req_cur_page(req); 916 size_t offset = nvme_tcp_req_cur_offset(req); 917 size_t len = nvme_tcp_req_cur_length(req); 918 bool last = nvme_tcp_pdu_last_send(req, len); 919 int ret, flags = MSG_DONTWAIT; 920 921 if (last && !queue->data_digest && !nvme_tcp_queue_more(queue)) 922 flags |= MSG_EOR; 923 else 924 flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST; 925 926 if (sendpage_ok(page)) { 927 ret = kernel_sendpage(queue->sock, page, offset, len, 928 flags); 929 } else { 930 ret = sock_no_sendpage(queue->sock, page, offset, len, 931 flags); 932 } 933 if (ret <= 0) 934 return ret; 935 936 nvme_tcp_advance_req(req, ret); 937 if (queue->data_digest) 938 nvme_tcp_ddgst_update(queue->snd_hash, page, 939 offset, ret); 940 941 /* fully successful last write*/ 942 if (last && ret == len) { 943 if (queue->data_digest) { 944 nvme_tcp_ddgst_final(queue->snd_hash, 945 &req->ddgst); 946 req->state = NVME_TCP_SEND_DDGST; 947 req->offset = 0; 948 } else { 949 nvme_tcp_done_send_req(queue); 950 } 951 return 1; 952 } 953 } 954 return -EAGAIN; 955 } 956 957 static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req) 958 { 959 struct nvme_tcp_queue *queue = req->queue; 960 struct nvme_tcp_cmd_pdu *pdu = req->pdu; 961 bool inline_data = nvme_tcp_has_inline_data(req); 962 u8 hdgst = nvme_tcp_hdgst_len(queue); 963 int len = sizeof(*pdu) + hdgst - req->offset; 964 int flags = MSG_DONTWAIT; 965 int ret; 966 967 if (inline_data || nvme_tcp_queue_more(queue)) 968 flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST; 969 else 970 flags |= MSG_EOR; 971 972 if (queue->hdr_digest && !req->offset) 973 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); 974 975 ret = kernel_sendpage(queue->sock, virt_to_page(pdu), 976 offset_in_page(pdu) + req->offset, len, flags); 977 if (unlikely(ret <= 0)) 978 return ret; 979 980 len -= ret; 981 if (!len) { 982 if (inline_data) { 983 req->state = NVME_TCP_SEND_DATA; 984 if (queue->data_digest) 985 crypto_ahash_init(queue->snd_hash); 986 } else { 987 nvme_tcp_done_send_req(queue); 988 } 989 return 1; 990 } 991 req->offset += ret; 992 993 return -EAGAIN; 994 } 995 996 static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req) 997 { 998 struct nvme_tcp_queue *queue = req->queue; 999 struct nvme_tcp_data_pdu *pdu = req->pdu; 1000 u8 hdgst = nvme_tcp_hdgst_len(queue); 1001 int len = sizeof(*pdu) - req->offset + hdgst; 1002 int ret; 1003 1004 if (queue->hdr_digest && !req->offset) 1005 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); 1006 1007 ret = kernel_sendpage(queue->sock, virt_to_page(pdu), 1008 offset_in_page(pdu) + req->offset, len, 1009 MSG_DONTWAIT | MSG_MORE | MSG_SENDPAGE_NOTLAST); 1010 if (unlikely(ret <= 0)) 1011 return ret; 1012 1013 len -= ret; 1014 if (!len) { 1015 req->state = NVME_TCP_SEND_DATA; 1016 if (queue->data_digest) 1017 crypto_ahash_init(queue->snd_hash); 1018 return 1; 1019 } 1020 req->offset += ret; 1021 1022 return -EAGAIN; 1023 } 1024 1025 static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req) 1026 { 1027 struct nvme_tcp_queue *queue = req->queue; 1028 int ret; 1029 struct msghdr msg = { .msg_flags = MSG_DONTWAIT }; 1030 struct kvec iov = { 1031 .iov_base = &req->ddgst + req->offset, 1032 .iov_len = NVME_TCP_DIGEST_LENGTH - req->offset 1033 }; 1034 1035 if (nvme_tcp_queue_more(queue)) 1036 msg.msg_flags |= MSG_MORE; 1037 else 1038 msg.msg_flags |= MSG_EOR; 1039 1040 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len); 1041 if (unlikely(ret <= 0)) 1042 return ret; 1043 1044 if (req->offset + ret == NVME_TCP_DIGEST_LENGTH) { 1045 nvme_tcp_done_send_req(queue); 1046 return 1; 1047 } 1048 1049 req->offset += ret; 1050 return -EAGAIN; 1051 } 1052 1053 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue) 1054 { 1055 struct nvme_tcp_request *req; 1056 int ret = 1; 1057 1058 if (!queue->request) { 1059 queue->request = nvme_tcp_fetch_request(queue); 1060 if (!queue->request) 1061 return 0; 1062 } 1063 req = queue->request; 1064 1065 if (req->state == NVME_TCP_SEND_CMD_PDU) { 1066 ret = nvme_tcp_try_send_cmd_pdu(req); 1067 if (ret <= 0) 1068 goto done; 1069 if (!nvme_tcp_has_inline_data(req)) 1070 return ret; 1071 } 1072 1073 if (req->state == NVME_TCP_SEND_H2C_PDU) { 1074 ret = nvme_tcp_try_send_data_pdu(req); 1075 if (ret <= 0) 1076 goto done; 1077 } 1078 1079 if (req->state == NVME_TCP_SEND_DATA) { 1080 ret = nvme_tcp_try_send_data(req); 1081 if (ret <= 0) 1082 goto done; 1083 } 1084 1085 if (req->state == NVME_TCP_SEND_DDGST) 1086 ret = nvme_tcp_try_send_ddgst(req); 1087 done: 1088 if (ret == -EAGAIN) { 1089 ret = 0; 1090 } else if (ret < 0) { 1091 dev_err(queue->ctrl->ctrl.device, 1092 "failed to send request %d\n", ret); 1093 if (ret != -EPIPE && ret != -ECONNRESET) 1094 nvme_tcp_fail_request(queue->request); 1095 nvme_tcp_done_send_req(queue); 1096 } 1097 return ret; 1098 } 1099 1100 static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue) 1101 { 1102 struct socket *sock = queue->sock; 1103 struct sock *sk = sock->sk; 1104 read_descriptor_t rd_desc; 1105 int consumed; 1106 1107 rd_desc.arg.data = queue; 1108 rd_desc.count = 1; 1109 lock_sock(sk); 1110 queue->nr_cqe = 0; 1111 consumed = sock->ops->read_sock(sk, &rd_desc, nvme_tcp_recv_skb); 1112 release_sock(sk); 1113 return consumed; 1114 } 1115 1116 static void nvme_tcp_io_work(struct work_struct *w) 1117 { 1118 struct nvme_tcp_queue *queue = 1119 container_of(w, struct nvme_tcp_queue, io_work); 1120 unsigned long deadline = jiffies + msecs_to_jiffies(1); 1121 1122 do { 1123 bool pending = false; 1124 int result; 1125 1126 if (mutex_trylock(&queue->send_mutex)) { 1127 result = nvme_tcp_try_send(queue); 1128 mutex_unlock(&queue->send_mutex); 1129 if (result > 0) 1130 pending = true; 1131 else if (unlikely(result < 0)) 1132 break; 1133 } 1134 1135 result = nvme_tcp_try_recv(queue); 1136 if (result > 0) 1137 pending = true; 1138 else if (unlikely(result < 0)) 1139 return; 1140 1141 if (!pending) 1142 return; 1143 1144 } while (!time_after(jiffies, deadline)); /* quota is exhausted */ 1145 1146 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 1147 } 1148 1149 static void nvme_tcp_free_crypto(struct nvme_tcp_queue *queue) 1150 { 1151 struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash); 1152 1153 ahash_request_free(queue->rcv_hash); 1154 ahash_request_free(queue->snd_hash); 1155 crypto_free_ahash(tfm); 1156 } 1157 1158 static int nvme_tcp_alloc_crypto(struct nvme_tcp_queue *queue) 1159 { 1160 struct crypto_ahash *tfm; 1161 1162 tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC); 1163 if (IS_ERR(tfm)) 1164 return PTR_ERR(tfm); 1165 1166 queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL); 1167 if (!queue->snd_hash) 1168 goto free_tfm; 1169 ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL); 1170 1171 queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL); 1172 if (!queue->rcv_hash) 1173 goto free_snd_hash; 1174 ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL); 1175 1176 return 0; 1177 free_snd_hash: 1178 ahash_request_free(queue->snd_hash); 1179 free_tfm: 1180 crypto_free_ahash(tfm); 1181 return -ENOMEM; 1182 } 1183 1184 static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl) 1185 { 1186 struct nvme_tcp_request *async = &ctrl->async_req; 1187 1188 page_frag_free(async->pdu); 1189 } 1190 1191 static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl) 1192 { 1193 struct nvme_tcp_queue *queue = &ctrl->queues[0]; 1194 struct nvme_tcp_request *async = &ctrl->async_req; 1195 u8 hdgst = nvme_tcp_hdgst_len(queue); 1196 1197 async->pdu = page_frag_alloc(&queue->pf_cache, 1198 sizeof(struct nvme_tcp_cmd_pdu) + hdgst, 1199 GFP_KERNEL | __GFP_ZERO); 1200 if (!async->pdu) 1201 return -ENOMEM; 1202 1203 async->queue = &ctrl->queues[0]; 1204 return 0; 1205 } 1206 1207 static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid) 1208 { 1209 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1210 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1211 1212 if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags)) 1213 return; 1214 1215 if (queue->hdr_digest || queue->data_digest) 1216 nvme_tcp_free_crypto(queue); 1217 1218 sock_release(queue->sock); 1219 kfree(queue->pdu); 1220 mutex_destroy(&queue->queue_lock); 1221 } 1222 1223 static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue) 1224 { 1225 struct nvme_tcp_icreq_pdu *icreq; 1226 struct nvme_tcp_icresp_pdu *icresp; 1227 struct msghdr msg = {}; 1228 struct kvec iov; 1229 bool ctrl_hdgst, ctrl_ddgst; 1230 int ret; 1231 1232 icreq = kzalloc(sizeof(*icreq), GFP_KERNEL); 1233 if (!icreq) 1234 return -ENOMEM; 1235 1236 icresp = kzalloc(sizeof(*icresp), GFP_KERNEL); 1237 if (!icresp) { 1238 ret = -ENOMEM; 1239 goto free_icreq; 1240 } 1241 1242 icreq->hdr.type = nvme_tcp_icreq; 1243 icreq->hdr.hlen = sizeof(*icreq); 1244 icreq->hdr.pdo = 0; 1245 icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen); 1246 icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0); 1247 icreq->maxr2t = 0; /* single inflight r2t supported */ 1248 icreq->hpda = 0; /* no alignment constraint */ 1249 if (queue->hdr_digest) 1250 icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE; 1251 if (queue->data_digest) 1252 icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE; 1253 1254 iov.iov_base = icreq; 1255 iov.iov_len = sizeof(*icreq); 1256 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len); 1257 if (ret < 0) 1258 goto free_icresp; 1259 1260 memset(&msg, 0, sizeof(msg)); 1261 iov.iov_base = icresp; 1262 iov.iov_len = sizeof(*icresp); 1263 ret = kernel_recvmsg(queue->sock, &msg, &iov, 1, 1264 iov.iov_len, msg.msg_flags); 1265 if (ret < 0) 1266 goto free_icresp; 1267 1268 ret = -EINVAL; 1269 if (icresp->hdr.type != nvme_tcp_icresp) { 1270 pr_err("queue %d: bad type returned %d\n", 1271 nvme_tcp_queue_id(queue), icresp->hdr.type); 1272 goto free_icresp; 1273 } 1274 1275 if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) { 1276 pr_err("queue %d: bad pdu length returned %d\n", 1277 nvme_tcp_queue_id(queue), icresp->hdr.plen); 1278 goto free_icresp; 1279 } 1280 1281 if (icresp->pfv != NVME_TCP_PFV_1_0) { 1282 pr_err("queue %d: bad pfv returned %d\n", 1283 nvme_tcp_queue_id(queue), icresp->pfv); 1284 goto free_icresp; 1285 } 1286 1287 ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE); 1288 if ((queue->data_digest && !ctrl_ddgst) || 1289 (!queue->data_digest && ctrl_ddgst)) { 1290 pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n", 1291 nvme_tcp_queue_id(queue), 1292 queue->data_digest ? "enabled" : "disabled", 1293 ctrl_ddgst ? "enabled" : "disabled"); 1294 goto free_icresp; 1295 } 1296 1297 ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE); 1298 if ((queue->hdr_digest && !ctrl_hdgst) || 1299 (!queue->hdr_digest && ctrl_hdgst)) { 1300 pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n", 1301 nvme_tcp_queue_id(queue), 1302 queue->hdr_digest ? "enabled" : "disabled", 1303 ctrl_hdgst ? "enabled" : "disabled"); 1304 goto free_icresp; 1305 } 1306 1307 if (icresp->cpda != 0) { 1308 pr_err("queue %d: unsupported cpda returned %d\n", 1309 nvme_tcp_queue_id(queue), icresp->cpda); 1310 goto free_icresp; 1311 } 1312 1313 ret = 0; 1314 free_icresp: 1315 kfree(icresp); 1316 free_icreq: 1317 kfree(icreq); 1318 return ret; 1319 } 1320 1321 static bool nvme_tcp_admin_queue(struct nvme_tcp_queue *queue) 1322 { 1323 return nvme_tcp_queue_id(queue) == 0; 1324 } 1325 1326 static bool nvme_tcp_default_queue(struct nvme_tcp_queue *queue) 1327 { 1328 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1329 int qid = nvme_tcp_queue_id(queue); 1330 1331 return !nvme_tcp_admin_queue(queue) && 1332 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT]; 1333 } 1334 1335 static bool nvme_tcp_read_queue(struct nvme_tcp_queue *queue) 1336 { 1337 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1338 int qid = nvme_tcp_queue_id(queue); 1339 1340 return !nvme_tcp_admin_queue(queue) && 1341 !nvme_tcp_default_queue(queue) && 1342 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] + 1343 ctrl->io_queues[HCTX_TYPE_READ]; 1344 } 1345 1346 static bool nvme_tcp_poll_queue(struct nvme_tcp_queue *queue) 1347 { 1348 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1349 int qid = nvme_tcp_queue_id(queue); 1350 1351 return !nvme_tcp_admin_queue(queue) && 1352 !nvme_tcp_default_queue(queue) && 1353 !nvme_tcp_read_queue(queue) && 1354 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] + 1355 ctrl->io_queues[HCTX_TYPE_READ] + 1356 ctrl->io_queues[HCTX_TYPE_POLL]; 1357 } 1358 1359 static void nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue *queue) 1360 { 1361 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1362 int qid = nvme_tcp_queue_id(queue); 1363 int n = 0; 1364 1365 if (nvme_tcp_default_queue(queue)) 1366 n = qid - 1; 1367 else if (nvme_tcp_read_queue(queue)) 1368 n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - 1; 1369 else if (nvme_tcp_poll_queue(queue)) 1370 n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - 1371 ctrl->io_queues[HCTX_TYPE_READ] - 1; 1372 queue->io_cpu = cpumask_next_wrap(n - 1, cpu_online_mask, -1, false); 1373 } 1374 1375 static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl, 1376 int qid, size_t queue_size) 1377 { 1378 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1379 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1380 int ret, rcv_pdu_size; 1381 1382 mutex_init(&queue->queue_lock); 1383 queue->ctrl = ctrl; 1384 init_llist_head(&queue->req_list); 1385 INIT_LIST_HEAD(&queue->send_list); 1386 mutex_init(&queue->send_mutex); 1387 INIT_WORK(&queue->io_work, nvme_tcp_io_work); 1388 queue->queue_size = queue_size; 1389 1390 if (qid > 0) 1391 queue->cmnd_capsule_len = nctrl->ioccsz * 16; 1392 else 1393 queue->cmnd_capsule_len = sizeof(struct nvme_command) + 1394 NVME_TCP_ADMIN_CCSZ; 1395 1396 ret = sock_create(ctrl->addr.ss_family, SOCK_STREAM, 1397 IPPROTO_TCP, &queue->sock); 1398 if (ret) { 1399 dev_err(nctrl->device, 1400 "failed to create socket: %d\n", ret); 1401 goto err_destroy_mutex; 1402 } 1403 1404 /* Single syn retry */ 1405 tcp_sock_set_syncnt(queue->sock->sk, 1); 1406 1407 /* Set TCP no delay */ 1408 tcp_sock_set_nodelay(queue->sock->sk); 1409 1410 /* 1411 * Cleanup whatever is sitting in the TCP transmit queue on socket 1412 * close. This is done to prevent stale data from being sent should 1413 * the network connection be restored before TCP times out. 1414 */ 1415 sock_no_linger(queue->sock->sk); 1416 1417 if (so_priority > 0) 1418 sock_set_priority(queue->sock->sk, so_priority); 1419 1420 /* Set socket type of service */ 1421 if (nctrl->opts->tos >= 0) 1422 ip_sock_set_tos(queue->sock->sk, nctrl->opts->tos); 1423 1424 /* Set 10 seconds timeout for icresp recvmsg */ 1425 queue->sock->sk->sk_rcvtimeo = 10 * HZ; 1426 1427 queue->sock->sk->sk_allocation = GFP_ATOMIC; 1428 nvme_tcp_set_queue_io_cpu(queue); 1429 queue->request = NULL; 1430 queue->data_remaining = 0; 1431 queue->ddgst_remaining = 0; 1432 queue->pdu_remaining = 0; 1433 queue->pdu_offset = 0; 1434 sk_set_memalloc(queue->sock->sk); 1435 1436 if (nctrl->opts->mask & NVMF_OPT_HOST_TRADDR) { 1437 ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr, 1438 sizeof(ctrl->src_addr)); 1439 if (ret) { 1440 dev_err(nctrl->device, 1441 "failed to bind queue %d socket %d\n", 1442 qid, ret); 1443 goto err_sock; 1444 } 1445 } 1446 1447 queue->hdr_digest = nctrl->opts->hdr_digest; 1448 queue->data_digest = nctrl->opts->data_digest; 1449 if (queue->hdr_digest || queue->data_digest) { 1450 ret = nvme_tcp_alloc_crypto(queue); 1451 if (ret) { 1452 dev_err(nctrl->device, 1453 "failed to allocate queue %d crypto\n", qid); 1454 goto err_sock; 1455 } 1456 } 1457 1458 rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) + 1459 nvme_tcp_hdgst_len(queue); 1460 queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL); 1461 if (!queue->pdu) { 1462 ret = -ENOMEM; 1463 goto err_crypto; 1464 } 1465 1466 dev_dbg(nctrl->device, "connecting queue %d\n", 1467 nvme_tcp_queue_id(queue)); 1468 1469 ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr, 1470 sizeof(ctrl->addr), 0); 1471 if (ret) { 1472 dev_err(nctrl->device, 1473 "failed to connect socket: %d\n", ret); 1474 goto err_rcv_pdu; 1475 } 1476 1477 ret = nvme_tcp_init_connection(queue); 1478 if (ret) 1479 goto err_init_connect; 1480 1481 queue->rd_enabled = true; 1482 set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags); 1483 nvme_tcp_init_recv_ctx(queue); 1484 1485 write_lock_bh(&queue->sock->sk->sk_callback_lock); 1486 queue->sock->sk->sk_user_data = queue; 1487 queue->state_change = queue->sock->sk->sk_state_change; 1488 queue->data_ready = queue->sock->sk->sk_data_ready; 1489 queue->write_space = queue->sock->sk->sk_write_space; 1490 queue->sock->sk->sk_data_ready = nvme_tcp_data_ready; 1491 queue->sock->sk->sk_state_change = nvme_tcp_state_change; 1492 queue->sock->sk->sk_write_space = nvme_tcp_write_space; 1493 #ifdef CONFIG_NET_RX_BUSY_POLL 1494 queue->sock->sk->sk_ll_usec = 1; 1495 #endif 1496 write_unlock_bh(&queue->sock->sk->sk_callback_lock); 1497 1498 return 0; 1499 1500 err_init_connect: 1501 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 1502 err_rcv_pdu: 1503 kfree(queue->pdu); 1504 err_crypto: 1505 if (queue->hdr_digest || queue->data_digest) 1506 nvme_tcp_free_crypto(queue); 1507 err_sock: 1508 sock_release(queue->sock); 1509 queue->sock = NULL; 1510 err_destroy_mutex: 1511 mutex_destroy(&queue->queue_lock); 1512 return ret; 1513 } 1514 1515 static void nvme_tcp_restore_sock_calls(struct nvme_tcp_queue *queue) 1516 { 1517 struct socket *sock = queue->sock; 1518 1519 write_lock_bh(&sock->sk->sk_callback_lock); 1520 sock->sk->sk_user_data = NULL; 1521 sock->sk->sk_data_ready = queue->data_ready; 1522 sock->sk->sk_state_change = queue->state_change; 1523 sock->sk->sk_write_space = queue->write_space; 1524 write_unlock_bh(&sock->sk->sk_callback_lock); 1525 } 1526 1527 static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue) 1528 { 1529 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 1530 nvme_tcp_restore_sock_calls(queue); 1531 cancel_work_sync(&queue->io_work); 1532 } 1533 1534 static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid) 1535 { 1536 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1537 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1538 1539 mutex_lock(&queue->queue_lock); 1540 if (test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags)) 1541 __nvme_tcp_stop_queue(queue); 1542 mutex_unlock(&queue->queue_lock); 1543 } 1544 1545 static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx) 1546 { 1547 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1548 int ret; 1549 1550 if (idx) 1551 ret = nvmf_connect_io_queue(nctrl, idx, false); 1552 else 1553 ret = nvmf_connect_admin_queue(nctrl); 1554 1555 if (!ret) { 1556 set_bit(NVME_TCP_Q_LIVE, &ctrl->queues[idx].flags); 1557 } else { 1558 if (test_bit(NVME_TCP_Q_ALLOCATED, &ctrl->queues[idx].flags)) 1559 __nvme_tcp_stop_queue(&ctrl->queues[idx]); 1560 dev_err(nctrl->device, 1561 "failed to connect queue: %d ret=%d\n", idx, ret); 1562 } 1563 return ret; 1564 } 1565 1566 static struct blk_mq_tag_set *nvme_tcp_alloc_tagset(struct nvme_ctrl *nctrl, 1567 bool admin) 1568 { 1569 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1570 struct blk_mq_tag_set *set; 1571 int ret; 1572 1573 if (admin) { 1574 set = &ctrl->admin_tag_set; 1575 memset(set, 0, sizeof(*set)); 1576 set->ops = &nvme_tcp_admin_mq_ops; 1577 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH; 1578 set->reserved_tags = 2; /* connect + keep-alive */ 1579 set->numa_node = nctrl->numa_node; 1580 set->flags = BLK_MQ_F_BLOCKING; 1581 set->cmd_size = sizeof(struct nvme_tcp_request); 1582 set->driver_data = ctrl; 1583 set->nr_hw_queues = 1; 1584 set->timeout = NVME_ADMIN_TIMEOUT; 1585 } else { 1586 set = &ctrl->tag_set; 1587 memset(set, 0, sizeof(*set)); 1588 set->ops = &nvme_tcp_mq_ops; 1589 set->queue_depth = nctrl->sqsize + 1; 1590 set->reserved_tags = 1; /* fabric connect */ 1591 set->numa_node = nctrl->numa_node; 1592 set->flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_BLOCKING; 1593 set->cmd_size = sizeof(struct nvme_tcp_request); 1594 set->driver_data = ctrl; 1595 set->nr_hw_queues = nctrl->queue_count - 1; 1596 set->timeout = NVME_IO_TIMEOUT; 1597 set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2; 1598 } 1599 1600 ret = blk_mq_alloc_tag_set(set); 1601 if (ret) 1602 return ERR_PTR(ret); 1603 1604 return set; 1605 } 1606 1607 static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl) 1608 { 1609 if (to_tcp_ctrl(ctrl)->async_req.pdu) { 1610 cancel_work_sync(&ctrl->async_event_work); 1611 nvme_tcp_free_async_req(to_tcp_ctrl(ctrl)); 1612 to_tcp_ctrl(ctrl)->async_req.pdu = NULL; 1613 } 1614 1615 nvme_tcp_free_queue(ctrl, 0); 1616 } 1617 1618 static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl) 1619 { 1620 int i; 1621 1622 for (i = 1; i < ctrl->queue_count; i++) 1623 nvme_tcp_free_queue(ctrl, i); 1624 } 1625 1626 static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl) 1627 { 1628 int i; 1629 1630 for (i = 1; i < ctrl->queue_count; i++) 1631 nvme_tcp_stop_queue(ctrl, i); 1632 } 1633 1634 static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl) 1635 { 1636 int i, ret = 0; 1637 1638 for (i = 1; i < ctrl->queue_count; i++) { 1639 ret = nvme_tcp_start_queue(ctrl, i); 1640 if (ret) 1641 goto out_stop_queues; 1642 } 1643 1644 return 0; 1645 1646 out_stop_queues: 1647 for (i--; i >= 1; i--) 1648 nvme_tcp_stop_queue(ctrl, i); 1649 return ret; 1650 } 1651 1652 static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl) 1653 { 1654 int ret; 1655 1656 ret = nvme_tcp_alloc_queue(ctrl, 0, NVME_AQ_DEPTH); 1657 if (ret) 1658 return ret; 1659 1660 ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl)); 1661 if (ret) 1662 goto out_free_queue; 1663 1664 return 0; 1665 1666 out_free_queue: 1667 nvme_tcp_free_queue(ctrl, 0); 1668 return ret; 1669 } 1670 1671 static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl) 1672 { 1673 int i, ret; 1674 1675 for (i = 1; i < ctrl->queue_count; i++) { 1676 ret = nvme_tcp_alloc_queue(ctrl, i, 1677 ctrl->sqsize + 1); 1678 if (ret) 1679 goto out_free_queues; 1680 } 1681 1682 return 0; 1683 1684 out_free_queues: 1685 for (i--; i >= 1; i--) 1686 nvme_tcp_free_queue(ctrl, i); 1687 1688 return ret; 1689 } 1690 1691 static unsigned int nvme_tcp_nr_io_queues(struct nvme_ctrl *ctrl) 1692 { 1693 unsigned int nr_io_queues; 1694 1695 nr_io_queues = min(ctrl->opts->nr_io_queues, num_online_cpus()); 1696 nr_io_queues += min(ctrl->opts->nr_write_queues, num_online_cpus()); 1697 nr_io_queues += min(ctrl->opts->nr_poll_queues, num_online_cpus()); 1698 1699 return nr_io_queues; 1700 } 1701 1702 static void nvme_tcp_set_io_queues(struct nvme_ctrl *nctrl, 1703 unsigned int nr_io_queues) 1704 { 1705 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1706 struct nvmf_ctrl_options *opts = nctrl->opts; 1707 1708 if (opts->nr_write_queues && opts->nr_io_queues < nr_io_queues) { 1709 /* 1710 * separate read/write queues 1711 * hand out dedicated default queues only after we have 1712 * sufficient read queues. 1713 */ 1714 ctrl->io_queues[HCTX_TYPE_READ] = opts->nr_io_queues; 1715 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ]; 1716 ctrl->io_queues[HCTX_TYPE_DEFAULT] = 1717 min(opts->nr_write_queues, nr_io_queues); 1718 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT]; 1719 } else { 1720 /* 1721 * shared read/write queues 1722 * either no write queues were requested, or we don't have 1723 * sufficient queue count to have dedicated default queues. 1724 */ 1725 ctrl->io_queues[HCTX_TYPE_DEFAULT] = 1726 min(opts->nr_io_queues, nr_io_queues); 1727 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT]; 1728 } 1729 1730 if (opts->nr_poll_queues && nr_io_queues) { 1731 /* map dedicated poll queues only if we have queues left */ 1732 ctrl->io_queues[HCTX_TYPE_POLL] = 1733 min(opts->nr_poll_queues, nr_io_queues); 1734 } 1735 } 1736 1737 static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl) 1738 { 1739 unsigned int nr_io_queues; 1740 int ret; 1741 1742 nr_io_queues = nvme_tcp_nr_io_queues(ctrl); 1743 ret = nvme_set_queue_count(ctrl, &nr_io_queues); 1744 if (ret) 1745 return ret; 1746 1747 ctrl->queue_count = nr_io_queues + 1; 1748 if (ctrl->queue_count < 2) 1749 return 0; 1750 1751 dev_info(ctrl->device, 1752 "creating %d I/O queues.\n", nr_io_queues); 1753 1754 nvme_tcp_set_io_queues(ctrl, nr_io_queues); 1755 1756 return __nvme_tcp_alloc_io_queues(ctrl); 1757 } 1758 1759 static void nvme_tcp_destroy_io_queues(struct nvme_ctrl *ctrl, bool remove) 1760 { 1761 nvme_tcp_stop_io_queues(ctrl); 1762 if (remove) { 1763 blk_cleanup_queue(ctrl->connect_q); 1764 blk_mq_free_tag_set(ctrl->tagset); 1765 } 1766 nvme_tcp_free_io_queues(ctrl); 1767 } 1768 1769 static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new) 1770 { 1771 int ret; 1772 1773 ret = nvme_tcp_alloc_io_queues(ctrl); 1774 if (ret) 1775 return ret; 1776 1777 if (new) { 1778 ctrl->tagset = nvme_tcp_alloc_tagset(ctrl, false); 1779 if (IS_ERR(ctrl->tagset)) { 1780 ret = PTR_ERR(ctrl->tagset); 1781 goto out_free_io_queues; 1782 } 1783 1784 ctrl->connect_q = blk_mq_init_queue(ctrl->tagset); 1785 if (IS_ERR(ctrl->connect_q)) { 1786 ret = PTR_ERR(ctrl->connect_q); 1787 goto out_free_tag_set; 1788 } 1789 } 1790 1791 ret = nvme_tcp_start_io_queues(ctrl); 1792 if (ret) 1793 goto out_cleanup_connect_q; 1794 1795 if (!new) { 1796 nvme_start_queues(ctrl); 1797 if (!nvme_wait_freeze_timeout(ctrl, NVME_IO_TIMEOUT)) { 1798 /* 1799 * If we timed out waiting for freeze we are likely to 1800 * be stuck. Fail the controller initialization just 1801 * to be safe. 1802 */ 1803 ret = -ENODEV; 1804 goto out_wait_freeze_timed_out; 1805 } 1806 blk_mq_update_nr_hw_queues(ctrl->tagset, 1807 ctrl->queue_count - 1); 1808 nvme_unfreeze(ctrl); 1809 } 1810 1811 return 0; 1812 1813 out_wait_freeze_timed_out: 1814 nvme_stop_queues(ctrl); 1815 nvme_sync_io_queues(ctrl); 1816 nvme_tcp_stop_io_queues(ctrl); 1817 out_cleanup_connect_q: 1818 nvme_cancel_tagset(ctrl); 1819 if (new) 1820 blk_cleanup_queue(ctrl->connect_q); 1821 out_free_tag_set: 1822 if (new) 1823 blk_mq_free_tag_set(ctrl->tagset); 1824 out_free_io_queues: 1825 nvme_tcp_free_io_queues(ctrl); 1826 return ret; 1827 } 1828 1829 static void nvme_tcp_destroy_admin_queue(struct nvme_ctrl *ctrl, bool remove) 1830 { 1831 nvme_tcp_stop_queue(ctrl, 0); 1832 if (remove) { 1833 blk_cleanup_queue(ctrl->admin_q); 1834 blk_cleanup_queue(ctrl->fabrics_q); 1835 blk_mq_free_tag_set(ctrl->admin_tagset); 1836 } 1837 nvme_tcp_free_admin_queue(ctrl); 1838 } 1839 1840 static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new) 1841 { 1842 int error; 1843 1844 error = nvme_tcp_alloc_admin_queue(ctrl); 1845 if (error) 1846 return error; 1847 1848 if (new) { 1849 ctrl->admin_tagset = nvme_tcp_alloc_tagset(ctrl, true); 1850 if (IS_ERR(ctrl->admin_tagset)) { 1851 error = PTR_ERR(ctrl->admin_tagset); 1852 goto out_free_queue; 1853 } 1854 1855 ctrl->fabrics_q = blk_mq_init_queue(ctrl->admin_tagset); 1856 if (IS_ERR(ctrl->fabrics_q)) { 1857 error = PTR_ERR(ctrl->fabrics_q); 1858 goto out_free_tagset; 1859 } 1860 1861 ctrl->admin_q = blk_mq_init_queue(ctrl->admin_tagset); 1862 if (IS_ERR(ctrl->admin_q)) { 1863 error = PTR_ERR(ctrl->admin_q); 1864 goto out_cleanup_fabrics_q; 1865 } 1866 } 1867 1868 error = nvme_tcp_start_queue(ctrl, 0); 1869 if (error) 1870 goto out_cleanup_queue; 1871 1872 error = nvme_enable_ctrl(ctrl); 1873 if (error) 1874 goto out_stop_queue; 1875 1876 blk_mq_unquiesce_queue(ctrl->admin_q); 1877 1878 error = nvme_init_identify(ctrl); 1879 if (error) 1880 goto out_quiesce_queue; 1881 1882 return 0; 1883 1884 out_quiesce_queue: 1885 blk_mq_quiesce_queue(ctrl->admin_q); 1886 blk_sync_queue(ctrl->admin_q); 1887 out_stop_queue: 1888 nvme_tcp_stop_queue(ctrl, 0); 1889 nvme_cancel_admin_tagset(ctrl); 1890 out_cleanup_queue: 1891 if (new) 1892 blk_cleanup_queue(ctrl->admin_q); 1893 out_cleanup_fabrics_q: 1894 if (new) 1895 blk_cleanup_queue(ctrl->fabrics_q); 1896 out_free_tagset: 1897 if (new) 1898 blk_mq_free_tag_set(ctrl->admin_tagset); 1899 out_free_queue: 1900 nvme_tcp_free_admin_queue(ctrl); 1901 return error; 1902 } 1903 1904 static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl, 1905 bool remove) 1906 { 1907 blk_mq_quiesce_queue(ctrl->admin_q); 1908 blk_sync_queue(ctrl->admin_q); 1909 nvme_tcp_stop_queue(ctrl, 0); 1910 nvme_cancel_admin_tagset(ctrl); 1911 if (remove) 1912 blk_mq_unquiesce_queue(ctrl->admin_q); 1913 nvme_tcp_destroy_admin_queue(ctrl, remove); 1914 } 1915 1916 static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl, 1917 bool remove) 1918 { 1919 if (ctrl->queue_count <= 1) 1920 return; 1921 blk_mq_quiesce_queue(ctrl->admin_q); 1922 nvme_start_freeze(ctrl); 1923 nvme_stop_queues(ctrl); 1924 nvme_sync_io_queues(ctrl); 1925 nvme_tcp_stop_io_queues(ctrl); 1926 nvme_cancel_tagset(ctrl); 1927 if (remove) 1928 nvme_start_queues(ctrl); 1929 nvme_tcp_destroy_io_queues(ctrl, remove); 1930 } 1931 1932 static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl) 1933 { 1934 /* If we are resetting/deleting then do nothing */ 1935 if (ctrl->state != NVME_CTRL_CONNECTING) { 1936 WARN_ON_ONCE(ctrl->state == NVME_CTRL_NEW || 1937 ctrl->state == NVME_CTRL_LIVE); 1938 return; 1939 } 1940 1941 if (nvmf_should_reconnect(ctrl)) { 1942 dev_info(ctrl->device, "Reconnecting in %d seconds...\n", 1943 ctrl->opts->reconnect_delay); 1944 queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work, 1945 ctrl->opts->reconnect_delay * HZ); 1946 } else { 1947 dev_info(ctrl->device, "Removing controller...\n"); 1948 nvme_delete_ctrl(ctrl); 1949 } 1950 } 1951 1952 static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new) 1953 { 1954 struct nvmf_ctrl_options *opts = ctrl->opts; 1955 int ret; 1956 1957 ret = nvme_tcp_configure_admin_queue(ctrl, new); 1958 if (ret) 1959 return ret; 1960 1961 if (ctrl->icdoff) { 1962 dev_err(ctrl->device, "icdoff is not supported!\n"); 1963 goto destroy_admin; 1964 } 1965 1966 if (opts->queue_size > ctrl->sqsize + 1) 1967 dev_warn(ctrl->device, 1968 "queue_size %zu > ctrl sqsize %u, clamping down\n", 1969 opts->queue_size, ctrl->sqsize + 1); 1970 1971 if (ctrl->sqsize + 1 > ctrl->maxcmd) { 1972 dev_warn(ctrl->device, 1973 "sqsize %u > ctrl maxcmd %u, clamping down\n", 1974 ctrl->sqsize + 1, ctrl->maxcmd); 1975 ctrl->sqsize = ctrl->maxcmd - 1; 1976 } 1977 1978 if (ctrl->queue_count > 1) { 1979 ret = nvme_tcp_configure_io_queues(ctrl, new); 1980 if (ret) 1981 goto destroy_admin; 1982 } 1983 1984 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) { 1985 /* 1986 * state change failure is ok if we started ctrl delete, 1987 * unless we're during creation of a new controller to 1988 * avoid races with teardown flow. 1989 */ 1990 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING && 1991 ctrl->state != NVME_CTRL_DELETING_NOIO); 1992 WARN_ON_ONCE(new); 1993 ret = -EINVAL; 1994 goto destroy_io; 1995 } 1996 1997 nvme_start_ctrl(ctrl); 1998 return 0; 1999 2000 destroy_io: 2001 if (ctrl->queue_count > 1) { 2002 nvme_stop_queues(ctrl); 2003 nvme_sync_io_queues(ctrl); 2004 nvme_tcp_stop_io_queues(ctrl); 2005 nvme_cancel_tagset(ctrl); 2006 nvme_tcp_destroy_io_queues(ctrl, new); 2007 } 2008 destroy_admin: 2009 blk_mq_quiesce_queue(ctrl->admin_q); 2010 blk_sync_queue(ctrl->admin_q); 2011 nvme_tcp_stop_queue(ctrl, 0); 2012 nvme_cancel_admin_tagset(ctrl); 2013 nvme_tcp_destroy_admin_queue(ctrl, new); 2014 return ret; 2015 } 2016 2017 static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work) 2018 { 2019 struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work), 2020 struct nvme_tcp_ctrl, connect_work); 2021 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl; 2022 2023 ++ctrl->nr_reconnects; 2024 2025 if (nvme_tcp_setup_ctrl(ctrl, false)) 2026 goto requeue; 2027 2028 dev_info(ctrl->device, "Successfully reconnected (%d attempt)\n", 2029 ctrl->nr_reconnects); 2030 2031 ctrl->nr_reconnects = 0; 2032 2033 return; 2034 2035 requeue: 2036 dev_info(ctrl->device, "Failed reconnect attempt %d\n", 2037 ctrl->nr_reconnects); 2038 nvme_tcp_reconnect_or_remove(ctrl); 2039 } 2040 2041 static void nvme_tcp_error_recovery_work(struct work_struct *work) 2042 { 2043 struct nvme_tcp_ctrl *tcp_ctrl = container_of(work, 2044 struct nvme_tcp_ctrl, err_work); 2045 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl; 2046 2047 nvme_stop_keep_alive(ctrl); 2048 nvme_tcp_teardown_io_queues(ctrl, false); 2049 /* unquiesce to fail fast pending requests */ 2050 nvme_start_queues(ctrl); 2051 nvme_tcp_teardown_admin_queue(ctrl, false); 2052 blk_mq_unquiesce_queue(ctrl->admin_q); 2053 2054 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) { 2055 /* state change failure is ok if we started ctrl delete */ 2056 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING && 2057 ctrl->state != NVME_CTRL_DELETING_NOIO); 2058 return; 2059 } 2060 2061 nvme_tcp_reconnect_or_remove(ctrl); 2062 } 2063 2064 static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown) 2065 { 2066 cancel_work_sync(&to_tcp_ctrl(ctrl)->err_work); 2067 cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work); 2068 2069 nvme_tcp_teardown_io_queues(ctrl, shutdown); 2070 blk_mq_quiesce_queue(ctrl->admin_q); 2071 if (shutdown) 2072 nvme_shutdown_ctrl(ctrl); 2073 else 2074 nvme_disable_ctrl(ctrl); 2075 nvme_tcp_teardown_admin_queue(ctrl, shutdown); 2076 } 2077 2078 static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl) 2079 { 2080 nvme_tcp_teardown_ctrl(ctrl, true); 2081 } 2082 2083 static void nvme_reset_ctrl_work(struct work_struct *work) 2084 { 2085 struct nvme_ctrl *ctrl = 2086 container_of(work, struct nvme_ctrl, reset_work); 2087 2088 nvme_stop_ctrl(ctrl); 2089 nvme_tcp_teardown_ctrl(ctrl, false); 2090 2091 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) { 2092 /* state change failure is ok if we started ctrl delete */ 2093 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING && 2094 ctrl->state != NVME_CTRL_DELETING_NOIO); 2095 return; 2096 } 2097 2098 if (nvme_tcp_setup_ctrl(ctrl, false)) 2099 goto out_fail; 2100 2101 return; 2102 2103 out_fail: 2104 ++ctrl->nr_reconnects; 2105 nvme_tcp_reconnect_or_remove(ctrl); 2106 } 2107 2108 static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl) 2109 { 2110 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 2111 2112 if (list_empty(&ctrl->list)) 2113 goto free_ctrl; 2114 2115 mutex_lock(&nvme_tcp_ctrl_mutex); 2116 list_del(&ctrl->list); 2117 mutex_unlock(&nvme_tcp_ctrl_mutex); 2118 2119 nvmf_free_options(nctrl->opts); 2120 free_ctrl: 2121 kfree(ctrl->queues); 2122 kfree(ctrl); 2123 } 2124 2125 static void nvme_tcp_set_sg_null(struct nvme_command *c) 2126 { 2127 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 2128 2129 sg->addr = 0; 2130 sg->length = 0; 2131 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) | 2132 NVME_SGL_FMT_TRANSPORT_A; 2133 } 2134 2135 static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue, 2136 struct nvme_command *c, u32 data_len) 2137 { 2138 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 2139 2140 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff); 2141 sg->length = cpu_to_le32(data_len); 2142 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET; 2143 } 2144 2145 static void nvme_tcp_set_sg_host_data(struct nvme_command *c, 2146 u32 data_len) 2147 { 2148 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 2149 2150 sg->addr = 0; 2151 sg->length = cpu_to_le32(data_len); 2152 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) | 2153 NVME_SGL_FMT_TRANSPORT_A; 2154 } 2155 2156 static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg) 2157 { 2158 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg); 2159 struct nvme_tcp_queue *queue = &ctrl->queues[0]; 2160 struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu; 2161 struct nvme_command *cmd = &pdu->cmd; 2162 u8 hdgst = nvme_tcp_hdgst_len(queue); 2163 2164 memset(pdu, 0, sizeof(*pdu)); 2165 pdu->hdr.type = nvme_tcp_cmd; 2166 if (queue->hdr_digest) 2167 pdu->hdr.flags |= NVME_TCP_F_HDGST; 2168 pdu->hdr.hlen = sizeof(*pdu); 2169 pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst); 2170 2171 cmd->common.opcode = nvme_admin_async_event; 2172 cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH; 2173 cmd->common.flags |= NVME_CMD_SGL_METABUF; 2174 nvme_tcp_set_sg_null(cmd); 2175 2176 ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU; 2177 ctrl->async_req.offset = 0; 2178 ctrl->async_req.curr_bio = NULL; 2179 ctrl->async_req.data_len = 0; 2180 2181 nvme_tcp_queue_request(&ctrl->async_req, true, true); 2182 } 2183 2184 static void nvme_tcp_complete_timed_out(struct request *rq) 2185 { 2186 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2187 struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl; 2188 2189 nvme_tcp_stop_queue(ctrl, nvme_tcp_queue_id(req->queue)); 2190 if (blk_mq_request_started(rq) && !blk_mq_request_completed(rq)) { 2191 nvme_req(rq)->status = NVME_SC_HOST_ABORTED_CMD; 2192 blk_mq_complete_request(rq); 2193 } 2194 } 2195 2196 static enum blk_eh_timer_return 2197 nvme_tcp_timeout(struct request *rq, bool reserved) 2198 { 2199 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2200 struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl; 2201 struct nvme_tcp_cmd_pdu *pdu = req->pdu; 2202 2203 dev_warn(ctrl->device, 2204 "queue %d: timeout request %#x type %d\n", 2205 nvme_tcp_queue_id(req->queue), rq->tag, pdu->hdr.type); 2206 2207 if (ctrl->state != NVME_CTRL_LIVE) { 2208 /* 2209 * If we are resetting, connecting or deleting we should 2210 * complete immediately because we may block controller 2211 * teardown or setup sequence 2212 * - ctrl disable/shutdown fabrics requests 2213 * - connect requests 2214 * - initialization admin requests 2215 * - I/O requests that entered after unquiescing and 2216 * the controller stopped responding 2217 * 2218 * All other requests should be cancelled by the error 2219 * recovery work, so it's fine that we fail it here. 2220 */ 2221 nvme_tcp_complete_timed_out(rq); 2222 return BLK_EH_DONE; 2223 } 2224 2225 /* 2226 * LIVE state should trigger the normal error recovery which will 2227 * handle completing this request. 2228 */ 2229 nvme_tcp_error_recovery(ctrl); 2230 return BLK_EH_RESET_TIMER; 2231 } 2232 2233 static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue, 2234 struct request *rq) 2235 { 2236 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2237 struct nvme_tcp_cmd_pdu *pdu = req->pdu; 2238 struct nvme_command *c = &pdu->cmd; 2239 2240 c->common.flags |= NVME_CMD_SGL_METABUF; 2241 2242 if (!blk_rq_nr_phys_segments(rq)) 2243 nvme_tcp_set_sg_null(c); 2244 else if (rq_data_dir(rq) == WRITE && 2245 req->data_len <= nvme_tcp_inline_data_size(queue)) 2246 nvme_tcp_set_sg_inline(queue, c, req->data_len); 2247 else 2248 nvme_tcp_set_sg_host_data(c, req->data_len); 2249 2250 return 0; 2251 } 2252 2253 static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns, 2254 struct request *rq) 2255 { 2256 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2257 struct nvme_tcp_cmd_pdu *pdu = req->pdu; 2258 struct nvme_tcp_queue *queue = req->queue; 2259 u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0; 2260 blk_status_t ret; 2261 2262 ret = nvme_setup_cmd(ns, rq, &pdu->cmd); 2263 if (ret) 2264 return ret; 2265 2266 req->state = NVME_TCP_SEND_CMD_PDU; 2267 req->offset = 0; 2268 req->data_sent = 0; 2269 req->pdu_len = 0; 2270 req->pdu_sent = 0; 2271 req->data_len = blk_rq_nr_phys_segments(rq) ? 2272 blk_rq_payload_bytes(rq) : 0; 2273 req->curr_bio = rq->bio; 2274 if (req->curr_bio && req->data_len) 2275 nvme_tcp_init_iter(req, rq_data_dir(rq)); 2276 2277 if (rq_data_dir(rq) == WRITE && 2278 req->data_len <= nvme_tcp_inline_data_size(queue)) 2279 req->pdu_len = req->data_len; 2280 2281 pdu->hdr.type = nvme_tcp_cmd; 2282 pdu->hdr.flags = 0; 2283 if (queue->hdr_digest) 2284 pdu->hdr.flags |= NVME_TCP_F_HDGST; 2285 if (queue->data_digest && req->pdu_len) { 2286 pdu->hdr.flags |= NVME_TCP_F_DDGST; 2287 ddgst = nvme_tcp_ddgst_len(queue); 2288 } 2289 pdu->hdr.hlen = sizeof(*pdu); 2290 pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0; 2291 pdu->hdr.plen = 2292 cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst); 2293 2294 ret = nvme_tcp_map_data(queue, rq); 2295 if (unlikely(ret)) { 2296 nvme_cleanup_cmd(rq); 2297 dev_err(queue->ctrl->ctrl.device, 2298 "Failed to map data (%d)\n", ret); 2299 return ret; 2300 } 2301 2302 return 0; 2303 } 2304 2305 static void nvme_tcp_commit_rqs(struct blk_mq_hw_ctx *hctx) 2306 { 2307 struct nvme_tcp_queue *queue = hctx->driver_data; 2308 2309 if (!llist_empty(&queue->req_list)) 2310 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 2311 } 2312 2313 static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx, 2314 const struct blk_mq_queue_data *bd) 2315 { 2316 struct nvme_ns *ns = hctx->queue->queuedata; 2317 struct nvme_tcp_queue *queue = hctx->driver_data; 2318 struct request *rq = bd->rq; 2319 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2320 bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags); 2321 blk_status_t ret; 2322 2323 if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready)) 2324 return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq); 2325 2326 ret = nvme_tcp_setup_cmd_pdu(ns, rq); 2327 if (unlikely(ret)) 2328 return ret; 2329 2330 blk_mq_start_request(rq); 2331 2332 nvme_tcp_queue_request(req, true, bd->last); 2333 2334 return BLK_STS_OK; 2335 } 2336 2337 static int nvme_tcp_map_queues(struct blk_mq_tag_set *set) 2338 { 2339 struct nvme_tcp_ctrl *ctrl = set->driver_data; 2340 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 2341 2342 if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) { 2343 /* separate read/write queues */ 2344 set->map[HCTX_TYPE_DEFAULT].nr_queues = 2345 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2346 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0; 2347 set->map[HCTX_TYPE_READ].nr_queues = 2348 ctrl->io_queues[HCTX_TYPE_READ]; 2349 set->map[HCTX_TYPE_READ].queue_offset = 2350 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2351 } else { 2352 /* shared read/write queues */ 2353 set->map[HCTX_TYPE_DEFAULT].nr_queues = 2354 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2355 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0; 2356 set->map[HCTX_TYPE_READ].nr_queues = 2357 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2358 set->map[HCTX_TYPE_READ].queue_offset = 0; 2359 } 2360 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 2361 blk_mq_map_queues(&set->map[HCTX_TYPE_READ]); 2362 2363 if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) { 2364 /* map dedicated poll queues only if we have queues left */ 2365 set->map[HCTX_TYPE_POLL].nr_queues = 2366 ctrl->io_queues[HCTX_TYPE_POLL]; 2367 set->map[HCTX_TYPE_POLL].queue_offset = 2368 ctrl->io_queues[HCTX_TYPE_DEFAULT] + 2369 ctrl->io_queues[HCTX_TYPE_READ]; 2370 blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]); 2371 } 2372 2373 dev_info(ctrl->ctrl.device, 2374 "mapped %d/%d/%d default/read/poll queues.\n", 2375 ctrl->io_queues[HCTX_TYPE_DEFAULT], 2376 ctrl->io_queues[HCTX_TYPE_READ], 2377 ctrl->io_queues[HCTX_TYPE_POLL]); 2378 2379 return 0; 2380 } 2381 2382 static int nvme_tcp_poll(struct blk_mq_hw_ctx *hctx) 2383 { 2384 struct nvme_tcp_queue *queue = hctx->driver_data; 2385 struct sock *sk = queue->sock->sk; 2386 2387 if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags)) 2388 return 0; 2389 2390 set_bit(NVME_TCP_Q_POLLING, &queue->flags); 2391 if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue)) 2392 sk_busy_loop(sk, true); 2393 nvme_tcp_try_recv(queue); 2394 clear_bit(NVME_TCP_Q_POLLING, &queue->flags); 2395 return queue->nr_cqe; 2396 } 2397 2398 static const struct blk_mq_ops nvme_tcp_mq_ops = { 2399 .queue_rq = nvme_tcp_queue_rq, 2400 .commit_rqs = nvme_tcp_commit_rqs, 2401 .complete = nvme_complete_rq, 2402 .init_request = nvme_tcp_init_request, 2403 .exit_request = nvme_tcp_exit_request, 2404 .init_hctx = nvme_tcp_init_hctx, 2405 .timeout = nvme_tcp_timeout, 2406 .map_queues = nvme_tcp_map_queues, 2407 .poll = nvme_tcp_poll, 2408 }; 2409 2410 static const struct blk_mq_ops nvme_tcp_admin_mq_ops = { 2411 .queue_rq = nvme_tcp_queue_rq, 2412 .complete = nvme_complete_rq, 2413 .init_request = nvme_tcp_init_request, 2414 .exit_request = nvme_tcp_exit_request, 2415 .init_hctx = nvme_tcp_init_admin_hctx, 2416 .timeout = nvme_tcp_timeout, 2417 }; 2418 2419 static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = { 2420 .name = "tcp", 2421 .module = THIS_MODULE, 2422 .flags = NVME_F_FABRICS, 2423 .reg_read32 = nvmf_reg_read32, 2424 .reg_read64 = nvmf_reg_read64, 2425 .reg_write32 = nvmf_reg_write32, 2426 .free_ctrl = nvme_tcp_free_ctrl, 2427 .submit_async_event = nvme_tcp_submit_async_event, 2428 .delete_ctrl = nvme_tcp_delete_ctrl, 2429 .get_address = nvmf_get_address, 2430 }; 2431 2432 static bool 2433 nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts) 2434 { 2435 struct nvme_tcp_ctrl *ctrl; 2436 bool found = false; 2437 2438 mutex_lock(&nvme_tcp_ctrl_mutex); 2439 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) { 2440 found = nvmf_ip_options_match(&ctrl->ctrl, opts); 2441 if (found) 2442 break; 2443 } 2444 mutex_unlock(&nvme_tcp_ctrl_mutex); 2445 2446 return found; 2447 } 2448 2449 static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev, 2450 struct nvmf_ctrl_options *opts) 2451 { 2452 struct nvme_tcp_ctrl *ctrl; 2453 int ret; 2454 2455 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 2456 if (!ctrl) 2457 return ERR_PTR(-ENOMEM); 2458 2459 INIT_LIST_HEAD(&ctrl->list); 2460 ctrl->ctrl.opts = opts; 2461 ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues + 2462 opts->nr_poll_queues + 1; 2463 ctrl->ctrl.sqsize = opts->queue_size - 1; 2464 ctrl->ctrl.kato = opts->kato; 2465 2466 INIT_DELAYED_WORK(&ctrl->connect_work, 2467 nvme_tcp_reconnect_ctrl_work); 2468 INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work); 2469 INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work); 2470 2471 if (!(opts->mask & NVMF_OPT_TRSVCID)) { 2472 opts->trsvcid = 2473 kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL); 2474 if (!opts->trsvcid) { 2475 ret = -ENOMEM; 2476 goto out_free_ctrl; 2477 } 2478 opts->mask |= NVMF_OPT_TRSVCID; 2479 } 2480 2481 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 2482 opts->traddr, opts->trsvcid, &ctrl->addr); 2483 if (ret) { 2484 pr_err("malformed address passed: %s:%s\n", 2485 opts->traddr, opts->trsvcid); 2486 goto out_free_ctrl; 2487 } 2488 2489 if (opts->mask & NVMF_OPT_HOST_TRADDR) { 2490 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 2491 opts->host_traddr, NULL, &ctrl->src_addr); 2492 if (ret) { 2493 pr_err("malformed src address passed: %s\n", 2494 opts->host_traddr); 2495 goto out_free_ctrl; 2496 } 2497 } 2498 2499 if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) { 2500 ret = -EALREADY; 2501 goto out_free_ctrl; 2502 } 2503 2504 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues), 2505 GFP_KERNEL); 2506 if (!ctrl->queues) { 2507 ret = -ENOMEM; 2508 goto out_free_ctrl; 2509 } 2510 2511 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0); 2512 if (ret) 2513 goto out_kfree_queues; 2514 2515 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) { 2516 WARN_ON_ONCE(1); 2517 ret = -EINTR; 2518 goto out_uninit_ctrl; 2519 } 2520 2521 ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true); 2522 if (ret) 2523 goto out_uninit_ctrl; 2524 2525 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n", 2526 ctrl->ctrl.opts->subsysnqn, &ctrl->addr); 2527 2528 mutex_lock(&nvme_tcp_ctrl_mutex); 2529 list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list); 2530 mutex_unlock(&nvme_tcp_ctrl_mutex); 2531 2532 return &ctrl->ctrl; 2533 2534 out_uninit_ctrl: 2535 nvme_uninit_ctrl(&ctrl->ctrl); 2536 nvme_put_ctrl(&ctrl->ctrl); 2537 if (ret > 0) 2538 ret = -EIO; 2539 return ERR_PTR(ret); 2540 out_kfree_queues: 2541 kfree(ctrl->queues); 2542 out_free_ctrl: 2543 kfree(ctrl); 2544 return ERR_PTR(ret); 2545 } 2546 2547 static struct nvmf_transport_ops nvme_tcp_transport = { 2548 .name = "tcp", 2549 .module = THIS_MODULE, 2550 .required_opts = NVMF_OPT_TRADDR, 2551 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY | 2552 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO | 2553 NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST | 2554 NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES | 2555 NVMF_OPT_TOS, 2556 .create_ctrl = nvme_tcp_create_ctrl, 2557 }; 2558 2559 static int __init nvme_tcp_init_module(void) 2560 { 2561 nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq", 2562 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 2563 if (!nvme_tcp_wq) 2564 return -ENOMEM; 2565 2566 nvmf_register_transport(&nvme_tcp_transport); 2567 return 0; 2568 } 2569 2570 static void __exit nvme_tcp_cleanup_module(void) 2571 { 2572 struct nvme_tcp_ctrl *ctrl; 2573 2574 nvmf_unregister_transport(&nvme_tcp_transport); 2575 2576 mutex_lock(&nvme_tcp_ctrl_mutex); 2577 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) 2578 nvme_delete_ctrl(&ctrl->ctrl); 2579 mutex_unlock(&nvme_tcp_ctrl_mutex); 2580 flush_workqueue(nvme_delete_wq); 2581 2582 destroy_workqueue(nvme_tcp_wq); 2583 } 2584 2585 module_init(nvme_tcp_init_module); 2586 module_exit(nvme_tcp_cleanup_module); 2587 2588 MODULE_LICENSE("GPL v2"); 2589