xref: /linux/drivers/nvme/host/tcp.c (revision d1e879ec600f9b3bdd253167533959facfefb17b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics TCP host.
4  * Copyright (c) 2018 Lightbits Labs. All rights reserved.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/err.h>
11 #include <linux/key.h>
12 #include <linux/nvme-tcp.h>
13 #include <linux/nvme-keyring.h>
14 #include <net/sock.h>
15 #include <net/tcp.h>
16 #include <net/tls.h>
17 #include <net/tls_prot.h>
18 #include <net/handshake.h>
19 #include <linux/blk-mq.h>
20 #include <crypto/hash.h>
21 #include <net/busy_poll.h>
22 #include <trace/events/sock.h>
23 
24 #include "nvme.h"
25 #include "fabrics.h"
26 
27 struct nvme_tcp_queue;
28 
29 /* Define the socket priority to use for connections were it is desirable
30  * that the NIC consider performing optimized packet processing or filtering.
31  * A non-zero value being sufficient to indicate general consideration of any
32  * possible optimization.  Making it a module param allows for alternative
33  * values that may be unique for some NIC implementations.
34  */
35 static int so_priority;
36 module_param(so_priority, int, 0644);
37 MODULE_PARM_DESC(so_priority, "nvme tcp socket optimize priority");
38 
39 /*
40  * Use the unbound workqueue for nvme_tcp_wq, then we can set the cpu affinity
41  * from sysfs.
42  */
43 static bool wq_unbound;
44 module_param(wq_unbound, bool, 0644);
45 MODULE_PARM_DESC(wq_unbound, "Use unbound workqueue for nvme-tcp IO context (default false)");
46 
47 /*
48  * TLS handshake timeout
49  */
50 static int tls_handshake_timeout = 10;
51 #ifdef CONFIG_NVME_TCP_TLS
52 module_param(tls_handshake_timeout, int, 0644);
53 MODULE_PARM_DESC(tls_handshake_timeout,
54 		 "nvme TLS handshake timeout in seconds (default 10)");
55 #endif
56 
57 static atomic_t nvme_tcp_cpu_queues[NR_CPUS];
58 
59 #ifdef CONFIG_DEBUG_LOCK_ALLOC
60 /* lockdep can detect a circular dependency of the form
61  *   sk_lock -> mmap_lock (page fault) -> fs locks -> sk_lock
62  * because dependencies are tracked for both nvme-tcp and user contexts. Using
63  * a separate class prevents lockdep from conflating nvme-tcp socket use with
64  * user-space socket API use.
65  */
66 static struct lock_class_key nvme_tcp_sk_key[2];
67 static struct lock_class_key nvme_tcp_slock_key[2];
68 
69 static void nvme_tcp_reclassify_socket(struct socket *sock)
70 {
71 	struct sock *sk = sock->sk;
72 
73 	if (WARN_ON_ONCE(!sock_allow_reclassification(sk)))
74 		return;
75 
76 	switch (sk->sk_family) {
77 	case AF_INET:
78 		sock_lock_init_class_and_name(sk, "slock-AF_INET-NVME",
79 					      &nvme_tcp_slock_key[0],
80 					      "sk_lock-AF_INET-NVME",
81 					      &nvme_tcp_sk_key[0]);
82 		break;
83 	case AF_INET6:
84 		sock_lock_init_class_and_name(sk, "slock-AF_INET6-NVME",
85 					      &nvme_tcp_slock_key[1],
86 					      "sk_lock-AF_INET6-NVME",
87 					      &nvme_tcp_sk_key[1]);
88 		break;
89 	default:
90 		WARN_ON_ONCE(1);
91 	}
92 }
93 #else
94 static void nvme_tcp_reclassify_socket(struct socket *sock) { }
95 #endif
96 
97 enum nvme_tcp_send_state {
98 	NVME_TCP_SEND_CMD_PDU = 0,
99 	NVME_TCP_SEND_H2C_PDU,
100 	NVME_TCP_SEND_DATA,
101 	NVME_TCP_SEND_DDGST,
102 };
103 
104 struct nvme_tcp_request {
105 	struct nvme_request	req;
106 	void			*pdu;
107 	struct nvme_tcp_queue	*queue;
108 	u32			data_len;
109 	u32			pdu_len;
110 	u32			pdu_sent;
111 	u32			h2cdata_left;
112 	u32			h2cdata_offset;
113 	u16			ttag;
114 	__le16			status;
115 	struct list_head	entry;
116 	struct llist_node	lentry;
117 	__le32			ddgst;
118 
119 	struct bio		*curr_bio;
120 	struct iov_iter		iter;
121 
122 	/* send state */
123 	size_t			offset;
124 	size_t			data_sent;
125 	enum nvme_tcp_send_state state;
126 };
127 
128 enum nvme_tcp_queue_flags {
129 	NVME_TCP_Q_ALLOCATED	= 0,
130 	NVME_TCP_Q_LIVE		= 1,
131 	NVME_TCP_Q_POLLING	= 2,
132 	NVME_TCP_Q_IO_CPU_SET	= 3,
133 };
134 
135 enum nvme_tcp_recv_state {
136 	NVME_TCP_RECV_PDU = 0,
137 	NVME_TCP_RECV_DATA,
138 	NVME_TCP_RECV_DDGST,
139 };
140 
141 struct nvme_tcp_ctrl;
142 struct nvme_tcp_queue {
143 	struct socket		*sock;
144 	struct work_struct	io_work;
145 	int			io_cpu;
146 
147 	struct mutex		queue_lock;
148 	struct mutex		send_mutex;
149 	struct llist_head	req_list;
150 	struct list_head	send_list;
151 
152 	/* recv state */
153 	void			*pdu;
154 	int			pdu_remaining;
155 	int			pdu_offset;
156 	size_t			data_remaining;
157 	size_t			ddgst_remaining;
158 	unsigned int		nr_cqe;
159 
160 	/* send state */
161 	struct nvme_tcp_request *request;
162 
163 	u32			maxh2cdata;
164 	size_t			cmnd_capsule_len;
165 	struct nvme_tcp_ctrl	*ctrl;
166 	unsigned long		flags;
167 	bool			rd_enabled;
168 
169 	bool			hdr_digest;
170 	bool			data_digest;
171 	bool			tls_enabled;
172 	struct ahash_request	*rcv_hash;
173 	struct ahash_request	*snd_hash;
174 	__le32			exp_ddgst;
175 	__le32			recv_ddgst;
176 	struct completion       tls_complete;
177 	int                     tls_err;
178 	struct page_frag_cache	pf_cache;
179 
180 	void (*state_change)(struct sock *);
181 	void (*data_ready)(struct sock *);
182 	void (*write_space)(struct sock *);
183 };
184 
185 struct nvme_tcp_ctrl {
186 	/* read only in the hot path */
187 	struct nvme_tcp_queue	*queues;
188 	struct blk_mq_tag_set	tag_set;
189 
190 	/* other member variables */
191 	struct list_head	list;
192 	struct blk_mq_tag_set	admin_tag_set;
193 	struct sockaddr_storage addr;
194 	struct sockaddr_storage src_addr;
195 	struct nvme_ctrl	ctrl;
196 
197 	struct work_struct	err_work;
198 	struct delayed_work	connect_work;
199 	struct nvme_tcp_request async_req;
200 	u32			io_queues[HCTX_MAX_TYPES];
201 };
202 
203 static LIST_HEAD(nvme_tcp_ctrl_list);
204 static DEFINE_MUTEX(nvme_tcp_ctrl_mutex);
205 static struct workqueue_struct *nvme_tcp_wq;
206 static const struct blk_mq_ops nvme_tcp_mq_ops;
207 static const struct blk_mq_ops nvme_tcp_admin_mq_ops;
208 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue);
209 
210 static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl)
211 {
212 	return container_of(ctrl, struct nvme_tcp_ctrl, ctrl);
213 }
214 
215 static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue)
216 {
217 	return queue - queue->ctrl->queues;
218 }
219 
220 /*
221  * Check if the queue is TLS encrypted
222  */
223 static inline bool nvme_tcp_queue_tls(struct nvme_tcp_queue *queue)
224 {
225 	if (!IS_ENABLED(CONFIG_NVME_TCP_TLS))
226 		return 0;
227 
228 	return queue->tls_enabled;
229 }
230 
231 /*
232  * Check if TLS is configured for the controller.
233  */
234 static inline bool nvme_tcp_tls_configured(struct nvme_ctrl *ctrl)
235 {
236 	if (!IS_ENABLED(CONFIG_NVME_TCP_TLS))
237 		return 0;
238 
239 	return ctrl->opts->tls;
240 }
241 
242 static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue)
243 {
244 	u32 queue_idx = nvme_tcp_queue_id(queue);
245 
246 	if (queue_idx == 0)
247 		return queue->ctrl->admin_tag_set.tags[queue_idx];
248 	return queue->ctrl->tag_set.tags[queue_idx - 1];
249 }
250 
251 static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue)
252 {
253 	return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
254 }
255 
256 static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue)
257 {
258 	return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
259 }
260 
261 static inline void *nvme_tcp_req_cmd_pdu(struct nvme_tcp_request *req)
262 {
263 	return req->pdu;
264 }
265 
266 static inline void *nvme_tcp_req_data_pdu(struct nvme_tcp_request *req)
267 {
268 	/* use the pdu space in the back for the data pdu */
269 	return req->pdu + sizeof(struct nvme_tcp_cmd_pdu) -
270 		sizeof(struct nvme_tcp_data_pdu);
271 }
272 
273 static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_request *req)
274 {
275 	if (nvme_is_fabrics(req->req.cmd))
276 		return NVME_TCP_ADMIN_CCSZ;
277 	return req->queue->cmnd_capsule_len - sizeof(struct nvme_command);
278 }
279 
280 static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req)
281 {
282 	return req == &req->queue->ctrl->async_req;
283 }
284 
285 static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req)
286 {
287 	struct request *rq;
288 
289 	if (unlikely(nvme_tcp_async_req(req)))
290 		return false; /* async events don't have a request */
291 
292 	rq = blk_mq_rq_from_pdu(req);
293 
294 	return rq_data_dir(rq) == WRITE && req->data_len &&
295 		req->data_len <= nvme_tcp_inline_data_size(req);
296 }
297 
298 static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req)
299 {
300 	return req->iter.bvec->bv_page;
301 }
302 
303 static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req)
304 {
305 	return req->iter.bvec->bv_offset + req->iter.iov_offset;
306 }
307 
308 static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req)
309 {
310 	return min_t(size_t, iov_iter_single_seg_count(&req->iter),
311 			req->pdu_len - req->pdu_sent);
312 }
313 
314 static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req)
315 {
316 	return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ?
317 			req->pdu_len - req->pdu_sent : 0;
318 }
319 
320 static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req,
321 		int len)
322 {
323 	return nvme_tcp_pdu_data_left(req) <= len;
324 }
325 
326 static void nvme_tcp_init_iter(struct nvme_tcp_request *req,
327 		unsigned int dir)
328 {
329 	struct request *rq = blk_mq_rq_from_pdu(req);
330 	struct bio_vec *vec;
331 	unsigned int size;
332 	int nr_bvec;
333 	size_t offset;
334 
335 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) {
336 		vec = &rq->special_vec;
337 		nr_bvec = 1;
338 		size = blk_rq_payload_bytes(rq);
339 		offset = 0;
340 	} else {
341 		struct bio *bio = req->curr_bio;
342 		struct bvec_iter bi;
343 		struct bio_vec bv;
344 
345 		vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
346 		nr_bvec = 0;
347 		bio_for_each_bvec(bv, bio, bi) {
348 			nr_bvec++;
349 		}
350 		size = bio->bi_iter.bi_size;
351 		offset = bio->bi_iter.bi_bvec_done;
352 	}
353 
354 	iov_iter_bvec(&req->iter, dir, vec, nr_bvec, size);
355 	req->iter.iov_offset = offset;
356 }
357 
358 static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req,
359 		int len)
360 {
361 	req->data_sent += len;
362 	req->pdu_sent += len;
363 	iov_iter_advance(&req->iter, len);
364 	if (!iov_iter_count(&req->iter) &&
365 	    req->data_sent < req->data_len) {
366 		req->curr_bio = req->curr_bio->bi_next;
367 		nvme_tcp_init_iter(req, ITER_SOURCE);
368 	}
369 }
370 
371 static inline void nvme_tcp_send_all(struct nvme_tcp_queue *queue)
372 {
373 	int ret;
374 
375 	/* drain the send queue as much as we can... */
376 	do {
377 		ret = nvme_tcp_try_send(queue);
378 	} while (ret > 0);
379 }
380 
381 static inline bool nvme_tcp_queue_has_pending(struct nvme_tcp_queue *queue)
382 {
383 	return !list_empty(&queue->send_list) ||
384 		!llist_empty(&queue->req_list);
385 }
386 
387 static inline bool nvme_tcp_queue_more(struct nvme_tcp_queue *queue)
388 {
389 	return !nvme_tcp_queue_tls(queue) &&
390 		nvme_tcp_queue_has_pending(queue);
391 }
392 
393 static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req,
394 		bool sync, bool last)
395 {
396 	struct nvme_tcp_queue *queue = req->queue;
397 	bool empty;
398 
399 	empty = llist_add(&req->lentry, &queue->req_list) &&
400 		list_empty(&queue->send_list) && !queue->request;
401 
402 	/*
403 	 * if we're the first on the send_list and we can try to send
404 	 * directly, otherwise queue io_work. Also, only do that if we
405 	 * are on the same cpu, so we don't introduce contention.
406 	 */
407 	if (queue->io_cpu == raw_smp_processor_id() &&
408 	    sync && empty && mutex_trylock(&queue->send_mutex)) {
409 		nvme_tcp_send_all(queue);
410 		mutex_unlock(&queue->send_mutex);
411 	}
412 
413 	if (last && nvme_tcp_queue_has_pending(queue))
414 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
415 }
416 
417 static void nvme_tcp_process_req_list(struct nvme_tcp_queue *queue)
418 {
419 	struct nvme_tcp_request *req;
420 	struct llist_node *node;
421 
422 	for (node = llist_del_all(&queue->req_list); node; node = node->next) {
423 		req = llist_entry(node, struct nvme_tcp_request, lentry);
424 		list_add(&req->entry, &queue->send_list);
425 	}
426 }
427 
428 static inline struct nvme_tcp_request *
429 nvme_tcp_fetch_request(struct nvme_tcp_queue *queue)
430 {
431 	struct nvme_tcp_request *req;
432 
433 	req = list_first_entry_or_null(&queue->send_list,
434 			struct nvme_tcp_request, entry);
435 	if (!req) {
436 		nvme_tcp_process_req_list(queue);
437 		req = list_first_entry_or_null(&queue->send_list,
438 				struct nvme_tcp_request, entry);
439 		if (unlikely(!req))
440 			return NULL;
441 	}
442 
443 	list_del(&req->entry);
444 	return req;
445 }
446 
447 static inline void nvme_tcp_ddgst_final(struct ahash_request *hash,
448 		__le32 *dgst)
449 {
450 	ahash_request_set_crypt(hash, NULL, (u8 *)dgst, 0);
451 	crypto_ahash_final(hash);
452 }
453 
454 static inline void nvme_tcp_ddgst_update(struct ahash_request *hash,
455 		struct page *page, off_t off, size_t len)
456 {
457 	struct scatterlist sg;
458 
459 	sg_init_table(&sg, 1);
460 	sg_set_page(&sg, page, len, off);
461 	ahash_request_set_crypt(hash, &sg, NULL, len);
462 	crypto_ahash_update(hash);
463 }
464 
465 static inline void nvme_tcp_hdgst(struct ahash_request *hash,
466 		void *pdu, size_t len)
467 {
468 	struct scatterlist sg;
469 
470 	sg_init_one(&sg, pdu, len);
471 	ahash_request_set_crypt(hash, &sg, pdu + len, len);
472 	crypto_ahash_digest(hash);
473 }
474 
475 static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue,
476 		void *pdu, size_t pdu_len)
477 {
478 	struct nvme_tcp_hdr *hdr = pdu;
479 	__le32 recv_digest;
480 	__le32 exp_digest;
481 
482 	if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
483 		dev_err(queue->ctrl->ctrl.device,
484 			"queue %d: header digest flag is cleared\n",
485 			nvme_tcp_queue_id(queue));
486 		return -EPROTO;
487 	}
488 
489 	recv_digest = *(__le32 *)(pdu + hdr->hlen);
490 	nvme_tcp_hdgst(queue->rcv_hash, pdu, pdu_len);
491 	exp_digest = *(__le32 *)(pdu + hdr->hlen);
492 	if (recv_digest != exp_digest) {
493 		dev_err(queue->ctrl->ctrl.device,
494 			"header digest error: recv %#x expected %#x\n",
495 			le32_to_cpu(recv_digest), le32_to_cpu(exp_digest));
496 		return -EIO;
497 	}
498 
499 	return 0;
500 }
501 
502 static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu)
503 {
504 	struct nvme_tcp_hdr *hdr = pdu;
505 	u8 digest_len = nvme_tcp_hdgst_len(queue);
506 	u32 len;
507 
508 	len = le32_to_cpu(hdr->plen) - hdr->hlen -
509 		((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0);
510 
511 	if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
512 		dev_err(queue->ctrl->ctrl.device,
513 			"queue %d: data digest flag is cleared\n",
514 		nvme_tcp_queue_id(queue));
515 		return -EPROTO;
516 	}
517 	crypto_ahash_init(queue->rcv_hash);
518 
519 	return 0;
520 }
521 
522 static void nvme_tcp_exit_request(struct blk_mq_tag_set *set,
523 		struct request *rq, unsigned int hctx_idx)
524 {
525 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
526 
527 	page_frag_free(req->pdu);
528 }
529 
530 static int nvme_tcp_init_request(struct blk_mq_tag_set *set,
531 		struct request *rq, unsigned int hctx_idx,
532 		unsigned int numa_node)
533 {
534 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(set->driver_data);
535 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
536 	struct nvme_tcp_cmd_pdu *pdu;
537 	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
538 	struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx];
539 	u8 hdgst = nvme_tcp_hdgst_len(queue);
540 
541 	req->pdu = page_frag_alloc(&queue->pf_cache,
542 		sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
543 		GFP_KERNEL | __GFP_ZERO);
544 	if (!req->pdu)
545 		return -ENOMEM;
546 
547 	pdu = req->pdu;
548 	req->queue = queue;
549 	nvme_req(rq)->ctrl = &ctrl->ctrl;
550 	nvme_req(rq)->cmd = &pdu->cmd;
551 
552 	return 0;
553 }
554 
555 static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
556 		unsigned int hctx_idx)
557 {
558 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(data);
559 	struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1];
560 
561 	hctx->driver_data = queue;
562 	return 0;
563 }
564 
565 static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
566 		unsigned int hctx_idx)
567 {
568 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(data);
569 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
570 
571 	hctx->driver_data = queue;
572 	return 0;
573 }
574 
575 static enum nvme_tcp_recv_state
576 nvme_tcp_recv_state(struct nvme_tcp_queue *queue)
577 {
578 	return  (queue->pdu_remaining) ? NVME_TCP_RECV_PDU :
579 		(queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST :
580 		NVME_TCP_RECV_DATA;
581 }
582 
583 static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue)
584 {
585 	queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) +
586 				nvme_tcp_hdgst_len(queue);
587 	queue->pdu_offset = 0;
588 	queue->data_remaining = -1;
589 	queue->ddgst_remaining = 0;
590 }
591 
592 static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl)
593 {
594 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
595 		return;
596 
597 	dev_warn(ctrl->device, "starting error recovery\n");
598 	queue_work(nvme_reset_wq, &to_tcp_ctrl(ctrl)->err_work);
599 }
600 
601 static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue,
602 		struct nvme_completion *cqe)
603 {
604 	struct nvme_tcp_request *req;
605 	struct request *rq;
606 
607 	rq = nvme_find_rq(nvme_tcp_tagset(queue), cqe->command_id);
608 	if (!rq) {
609 		dev_err(queue->ctrl->ctrl.device,
610 			"got bad cqe.command_id %#x on queue %d\n",
611 			cqe->command_id, nvme_tcp_queue_id(queue));
612 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
613 		return -EINVAL;
614 	}
615 
616 	req = blk_mq_rq_to_pdu(rq);
617 	if (req->status == cpu_to_le16(NVME_SC_SUCCESS))
618 		req->status = cqe->status;
619 
620 	if (!nvme_try_complete_req(rq, req->status, cqe->result))
621 		nvme_complete_rq(rq);
622 	queue->nr_cqe++;
623 
624 	return 0;
625 }
626 
627 static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue,
628 		struct nvme_tcp_data_pdu *pdu)
629 {
630 	struct request *rq;
631 
632 	rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id);
633 	if (!rq) {
634 		dev_err(queue->ctrl->ctrl.device,
635 			"got bad c2hdata.command_id %#x on queue %d\n",
636 			pdu->command_id, nvme_tcp_queue_id(queue));
637 		return -ENOENT;
638 	}
639 
640 	if (!blk_rq_payload_bytes(rq)) {
641 		dev_err(queue->ctrl->ctrl.device,
642 			"queue %d tag %#x unexpected data\n",
643 			nvme_tcp_queue_id(queue), rq->tag);
644 		return -EIO;
645 	}
646 
647 	queue->data_remaining = le32_to_cpu(pdu->data_length);
648 
649 	if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS &&
650 	    unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) {
651 		dev_err(queue->ctrl->ctrl.device,
652 			"queue %d tag %#x SUCCESS set but not last PDU\n",
653 			nvme_tcp_queue_id(queue), rq->tag);
654 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
655 		return -EPROTO;
656 	}
657 
658 	return 0;
659 }
660 
661 static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue,
662 		struct nvme_tcp_rsp_pdu *pdu)
663 {
664 	struct nvme_completion *cqe = &pdu->cqe;
665 	int ret = 0;
666 
667 	/*
668 	 * AEN requests are special as they don't time out and can
669 	 * survive any kind of queue freeze and often don't respond to
670 	 * aborts.  We don't even bother to allocate a struct request
671 	 * for them but rather special case them here.
672 	 */
673 	if (unlikely(nvme_is_aen_req(nvme_tcp_queue_id(queue),
674 				     cqe->command_id)))
675 		nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
676 				&cqe->result);
677 	else
678 		ret = nvme_tcp_process_nvme_cqe(queue, cqe);
679 
680 	return ret;
681 }
682 
683 static void nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req)
684 {
685 	struct nvme_tcp_data_pdu *data = nvme_tcp_req_data_pdu(req);
686 	struct nvme_tcp_queue *queue = req->queue;
687 	struct request *rq = blk_mq_rq_from_pdu(req);
688 	u32 h2cdata_sent = req->pdu_len;
689 	u8 hdgst = nvme_tcp_hdgst_len(queue);
690 	u8 ddgst = nvme_tcp_ddgst_len(queue);
691 
692 	req->state = NVME_TCP_SEND_H2C_PDU;
693 	req->offset = 0;
694 	req->pdu_len = min(req->h2cdata_left, queue->maxh2cdata);
695 	req->pdu_sent = 0;
696 	req->h2cdata_left -= req->pdu_len;
697 	req->h2cdata_offset += h2cdata_sent;
698 
699 	memset(data, 0, sizeof(*data));
700 	data->hdr.type = nvme_tcp_h2c_data;
701 	if (!req->h2cdata_left)
702 		data->hdr.flags = NVME_TCP_F_DATA_LAST;
703 	if (queue->hdr_digest)
704 		data->hdr.flags |= NVME_TCP_F_HDGST;
705 	if (queue->data_digest)
706 		data->hdr.flags |= NVME_TCP_F_DDGST;
707 	data->hdr.hlen = sizeof(*data);
708 	data->hdr.pdo = data->hdr.hlen + hdgst;
709 	data->hdr.plen =
710 		cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst);
711 	data->ttag = req->ttag;
712 	data->command_id = nvme_cid(rq);
713 	data->data_offset = cpu_to_le32(req->h2cdata_offset);
714 	data->data_length = cpu_to_le32(req->pdu_len);
715 }
716 
717 static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue,
718 		struct nvme_tcp_r2t_pdu *pdu)
719 {
720 	struct nvme_tcp_request *req;
721 	struct request *rq;
722 	u32 r2t_length = le32_to_cpu(pdu->r2t_length);
723 	u32 r2t_offset = le32_to_cpu(pdu->r2t_offset);
724 
725 	rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id);
726 	if (!rq) {
727 		dev_err(queue->ctrl->ctrl.device,
728 			"got bad r2t.command_id %#x on queue %d\n",
729 			pdu->command_id, nvme_tcp_queue_id(queue));
730 		return -ENOENT;
731 	}
732 	req = blk_mq_rq_to_pdu(rq);
733 
734 	if (unlikely(!r2t_length)) {
735 		dev_err(queue->ctrl->ctrl.device,
736 			"req %d r2t len is %u, probably a bug...\n",
737 			rq->tag, r2t_length);
738 		return -EPROTO;
739 	}
740 
741 	if (unlikely(req->data_sent + r2t_length > req->data_len)) {
742 		dev_err(queue->ctrl->ctrl.device,
743 			"req %d r2t len %u exceeded data len %u (%zu sent)\n",
744 			rq->tag, r2t_length, req->data_len, req->data_sent);
745 		return -EPROTO;
746 	}
747 
748 	if (unlikely(r2t_offset < req->data_sent)) {
749 		dev_err(queue->ctrl->ctrl.device,
750 			"req %d unexpected r2t offset %u (expected %zu)\n",
751 			rq->tag, r2t_offset, req->data_sent);
752 		return -EPROTO;
753 	}
754 
755 	req->pdu_len = 0;
756 	req->h2cdata_left = r2t_length;
757 	req->h2cdata_offset = r2t_offset;
758 	req->ttag = pdu->ttag;
759 
760 	nvme_tcp_setup_h2c_data_pdu(req);
761 	nvme_tcp_queue_request(req, false, true);
762 
763 	return 0;
764 }
765 
766 static void nvme_tcp_handle_c2h_term(struct nvme_tcp_queue *queue,
767 		struct nvme_tcp_term_pdu *pdu)
768 {
769 	u16 fes;
770 	const char *msg;
771 	u32 plen = le32_to_cpu(pdu->hdr.plen);
772 
773 	static const char * const msg_table[] = {
774 		[NVME_TCP_FES_INVALID_PDU_HDR] = "Invalid PDU Header Field",
775 		[NVME_TCP_FES_PDU_SEQ_ERR] = "PDU Sequence Error",
776 		[NVME_TCP_FES_HDR_DIGEST_ERR] = "Header Digest Error",
777 		[NVME_TCP_FES_DATA_OUT_OF_RANGE] = "Data Transfer Out Of Range",
778 		[NVME_TCP_FES_R2T_LIMIT_EXCEEDED] = "R2T Limit Exceeded",
779 		[NVME_TCP_FES_UNSUPPORTED_PARAM] = "Unsupported Parameter",
780 	};
781 
782 	if (plen < NVME_TCP_MIN_C2HTERM_PLEN ||
783 	    plen > NVME_TCP_MAX_C2HTERM_PLEN) {
784 		dev_err(queue->ctrl->ctrl.device,
785 			"Received a malformed C2HTermReq PDU (plen = %u)\n",
786 			plen);
787 		return;
788 	}
789 
790 	fes = le16_to_cpu(pdu->fes);
791 	if (fes && fes < ARRAY_SIZE(msg_table))
792 		msg = msg_table[fes];
793 	else
794 		msg = "Unknown";
795 
796 	dev_err(queue->ctrl->ctrl.device,
797 		"Received C2HTermReq (FES = %s)\n", msg);
798 }
799 
800 static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb,
801 		unsigned int *offset, size_t *len)
802 {
803 	struct nvme_tcp_hdr *hdr;
804 	char *pdu = queue->pdu;
805 	size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining);
806 	int ret;
807 
808 	ret = skb_copy_bits(skb, *offset,
809 		&pdu[queue->pdu_offset], rcv_len);
810 	if (unlikely(ret))
811 		return ret;
812 
813 	queue->pdu_remaining -= rcv_len;
814 	queue->pdu_offset += rcv_len;
815 	*offset += rcv_len;
816 	*len -= rcv_len;
817 	if (queue->pdu_remaining)
818 		return 0;
819 
820 	hdr = queue->pdu;
821 	if (unlikely(hdr->type == nvme_tcp_c2h_term)) {
822 		/*
823 		 * C2HTermReq never includes Header or Data digests.
824 		 * Skip the checks.
825 		 */
826 		nvme_tcp_handle_c2h_term(queue, (void *)queue->pdu);
827 		return -EINVAL;
828 	}
829 
830 	if (queue->hdr_digest) {
831 		ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen);
832 		if (unlikely(ret))
833 			return ret;
834 	}
835 
836 
837 	if (queue->data_digest) {
838 		ret = nvme_tcp_check_ddgst(queue, queue->pdu);
839 		if (unlikely(ret))
840 			return ret;
841 	}
842 
843 	switch (hdr->type) {
844 	case nvme_tcp_c2h_data:
845 		return nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu);
846 	case nvme_tcp_rsp:
847 		nvme_tcp_init_recv_ctx(queue);
848 		return nvme_tcp_handle_comp(queue, (void *)queue->pdu);
849 	case nvme_tcp_r2t:
850 		nvme_tcp_init_recv_ctx(queue);
851 		return nvme_tcp_handle_r2t(queue, (void *)queue->pdu);
852 	default:
853 		dev_err(queue->ctrl->ctrl.device,
854 			"unsupported pdu type (%d)\n", hdr->type);
855 		return -EINVAL;
856 	}
857 }
858 
859 static inline void nvme_tcp_end_request(struct request *rq, u16 status)
860 {
861 	union nvme_result res = {};
862 
863 	if (!nvme_try_complete_req(rq, cpu_to_le16(status << 1), res))
864 		nvme_complete_rq(rq);
865 }
866 
867 static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb,
868 			      unsigned int *offset, size_t *len)
869 {
870 	struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
871 	struct request *rq =
872 		nvme_cid_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
873 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
874 
875 	while (true) {
876 		int recv_len, ret;
877 
878 		recv_len = min_t(size_t, *len, queue->data_remaining);
879 		if (!recv_len)
880 			break;
881 
882 		if (!iov_iter_count(&req->iter)) {
883 			req->curr_bio = req->curr_bio->bi_next;
884 
885 			/*
886 			 * If we don`t have any bios it means that controller
887 			 * sent more data than we requested, hence error
888 			 */
889 			if (!req->curr_bio) {
890 				dev_err(queue->ctrl->ctrl.device,
891 					"queue %d no space in request %#x",
892 					nvme_tcp_queue_id(queue), rq->tag);
893 				nvme_tcp_init_recv_ctx(queue);
894 				return -EIO;
895 			}
896 			nvme_tcp_init_iter(req, ITER_DEST);
897 		}
898 
899 		/* we can read only from what is left in this bio */
900 		recv_len = min_t(size_t, recv_len,
901 				iov_iter_count(&req->iter));
902 
903 		if (queue->data_digest)
904 			ret = skb_copy_and_hash_datagram_iter(skb, *offset,
905 				&req->iter, recv_len, queue->rcv_hash);
906 		else
907 			ret = skb_copy_datagram_iter(skb, *offset,
908 					&req->iter, recv_len);
909 		if (ret) {
910 			dev_err(queue->ctrl->ctrl.device,
911 				"queue %d failed to copy request %#x data",
912 				nvme_tcp_queue_id(queue), rq->tag);
913 			return ret;
914 		}
915 
916 		*len -= recv_len;
917 		*offset += recv_len;
918 		queue->data_remaining -= recv_len;
919 	}
920 
921 	if (!queue->data_remaining) {
922 		if (queue->data_digest) {
923 			nvme_tcp_ddgst_final(queue->rcv_hash, &queue->exp_ddgst);
924 			queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH;
925 		} else {
926 			if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
927 				nvme_tcp_end_request(rq,
928 						le16_to_cpu(req->status));
929 				queue->nr_cqe++;
930 			}
931 			nvme_tcp_init_recv_ctx(queue);
932 		}
933 	}
934 
935 	return 0;
936 }
937 
938 static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue,
939 		struct sk_buff *skb, unsigned int *offset, size_t *len)
940 {
941 	struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
942 	char *ddgst = (char *)&queue->recv_ddgst;
943 	size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining);
944 	off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining;
945 	int ret;
946 
947 	ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len);
948 	if (unlikely(ret))
949 		return ret;
950 
951 	queue->ddgst_remaining -= recv_len;
952 	*offset += recv_len;
953 	*len -= recv_len;
954 	if (queue->ddgst_remaining)
955 		return 0;
956 
957 	if (queue->recv_ddgst != queue->exp_ddgst) {
958 		struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue),
959 					pdu->command_id);
960 		struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
961 
962 		req->status = cpu_to_le16(NVME_SC_DATA_XFER_ERROR);
963 
964 		dev_err(queue->ctrl->ctrl.device,
965 			"data digest error: recv %#x expected %#x\n",
966 			le32_to_cpu(queue->recv_ddgst),
967 			le32_to_cpu(queue->exp_ddgst));
968 	}
969 
970 	if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
971 		struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue),
972 					pdu->command_id);
973 		struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
974 
975 		nvme_tcp_end_request(rq, le16_to_cpu(req->status));
976 		queue->nr_cqe++;
977 	}
978 
979 	nvme_tcp_init_recv_ctx(queue);
980 	return 0;
981 }
982 
983 static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb,
984 			     unsigned int offset, size_t len)
985 {
986 	struct nvme_tcp_queue *queue = desc->arg.data;
987 	size_t consumed = len;
988 	int result;
989 
990 	if (unlikely(!queue->rd_enabled))
991 		return -EFAULT;
992 
993 	while (len) {
994 		switch (nvme_tcp_recv_state(queue)) {
995 		case NVME_TCP_RECV_PDU:
996 			result = nvme_tcp_recv_pdu(queue, skb, &offset, &len);
997 			break;
998 		case NVME_TCP_RECV_DATA:
999 			result = nvme_tcp_recv_data(queue, skb, &offset, &len);
1000 			break;
1001 		case NVME_TCP_RECV_DDGST:
1002 			result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len);
1003 			break;
1004 		default:
1005 			result = -EFAULT;
1006 		}
1007 		if (result) {
1008 			dev_err(queue->ctrl->ctrl.device,
1009 				"receive failed:  %d\n", result);
1010 			queue->rd_enabled = false;
1011 			nvme_tcp_error_recovery(&queue->ctrl->ctrl);
1012 			return result;
1013 		}
1014 	}
1015 
1016 	return consumed;
1017 }
1018 
1019 static void nvme_tcp_data_ready(struct sock *sk)
1020 {
1021 	struct nvme_tcp_queue *queue;
1022 
1023 	trace_sk_data_ready(sk);
1024 
1025 	read_lock_bh(&sk->sk_callback_lock);
1026 	queue = sk->sk_user_data;
1027 	if (likely(queue && queue->rd_enabled) &&
1028 	    !test_bit(NVME_TCP_Q_POLLING, &queue->flags))
1029 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
1030 	read_unlock_bh(&sk->sk_callback_lock);
1031 }
1032 
1033 static void nvme_tcp_write_space(struct sock *sk)
1034 {
1035 	struct nvme_tcp_queue *queue;
1036 
1037 	read_lock_bh(&sk->sk_callback_lock);
1038 	queue = sk->sk_user_data;
1039 	if (likely(queue && sk_stream_is_writeable(sk))) {
1040 		clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1041 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
1042 	}
1043 	read_unlock_bh(&sk->sk_callback_lock);
1044 }
1045 
1046 static void nvme_tcp_state_change(struct sock *sk)
1047 {
1048 	struct nvme_tcp_queue *queue;
1049 
1050 	read_lock_bh(&sk->sk_callback_lock);
1051 	queue = sk->sk_user_data;
1052 	if (!queue)
1053 		goto done;
1054 
1055 	switch (sk->sk_state) {
1056 	case TCP_CLOSE:
1057 	case TCP_CLOSE_WAIT:
1058 	case TCP_LAST_ACK:
1059 	case TCP_FIN_WAIT1:
1060 	case TCP_FIN_WAIT2:
1061 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
1062 		break;
1063 	default:
1064 		dev_info(queue->ctrl->ctrl.device,
1065 			"queue %d socket state %d\n",
1066 			nvme_tcp_queue_id(queue), sk->sk_state);
1067 	}
1068 
1069 	queue->state_change(sk);
1070 done:
1071 	read_unlock_bh(&sk->sk_callback_lock);
1072 }
1073 
1074 static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue)
1075 {
1076 	queue->request = NULL;
1077 }
1078 
1079 static void nvme_tcp_fail_request(struct nvme_tcp_request *req)
1080 {
1081 	if (nvme_tcp_async_req(req)) {
1082 		union nvme_result res = {};
1083 
1084 		nvme_complete_async_event(&req->queue->ctrl->ctrl,
1085 				cpu_to_le16(NVME_SC_HOST_PATH_ERROR), &res);
1086 	} else {
1087 		nvme_tcp_end_request(blk_mq_rq_from_pdu(req),
1088 				NVME_SC_HOST_PATH_ERROR);
1089 	}
1090 }
1091 
1092 static int nvme_tcp_try_send_data(struct nvme_tcp_request *req)
1093 {
1094 	struct nvme_tcp_queue *queue = req->queue;
1095 	int req_data_len = req->data_len;
1096 	u32 h2cdata_left = req->h2cdata_left;
1097 
1098 	while (true) {
1099 		struct bio_vec bvec;
1100 		struct msghdr msg = {
1101 			.msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES,
1102 		};
1103 		struct page *page = nvme_tcp_req_cur_page(req);
1104 		size_t offset = nvme_tcp_req_cur_offset(req);
1105 		size_t len = nvme_tcp_req_cur_length(req);
1106 		bool last = nvme_tcp_pdu_last_send(req, len);
1107 		int req_data_sent = req->data_sent;
1108 		int ret;
1109 
1110 		if (last && !queue->data_digest && !nvme_tcp_queue_more(queue))
1111 			msg.msg_flags |= MSG_EOR;
1112 		else
1113 			msg.msg_flags |= MSG_MORE;
1114 
1115 		if (!sendpages_ok(page, len, offset))
1116 			msg.msg_flags &= ~MSG_SPLICE_PAGES;
1117 
1118 		bvec_set_page(&bvec, page, len, offset);
1119 		iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len);
1120 		ret = sock_sendmsg(queue->sock, &msg);
1121 		if (ret <= 0)
1122 			return ret;
1123 
1124 		if (queue->data_digest)
1125 			nvme_tcp_ddgst_update(queue->snd_hash, page,
1126 					offset, ret);
1127 
1128 		/*
1129 		 * update the request iterator except for the last payload send
1130 		 * in the request where we don't want to modify it as we may
1131 		 * compete with the RX path completing the request.
1132 		 */
1133 		if (req_data_sent + ret < req_data_len)
1134 			nvme_tcp_advance_req(req, ret);
1135 
1136 		/* fully successful last send in current PDU */
1137 		if (last && ret == len) {
1138 			if (queue->data_digest) {
1139 				nvme_tcp_ddgst_final(queue->snd_hash,
1140 					&req->ddgst);
1141 				req->state = NVME_TCP_SEND_DDGST;
1142 				req->offset = 0;
1143 			} else {
1144 				if (h2cdata_left)
1145 					nvme_tcp_setup_h2c_data_pdu(req);
1146 				else
1147 					nvme_tcp_done_send_req(queue);
1148 			}
1149 			return 1;
1150 		}
1151 	}
1152 	return -EAGAIN;
1153 }
1154 
1155 static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req)
1156 {
1157 	struct nvme_tcp_queue *queue = req->queue;
1158 	struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req);
1159 	struct bio_vec bvec;
1160 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, };
1161 	bool inline_data = nvme_tcp_has_inline_data(req);
1162 	u8 hdgst = nvme_tcp_hdgst_len(queue);
1163 	int len = sizeof(*pdu) + hdgst - req->offset;
1164 	int ret;
1165 
1166 	if (inline_data || nvme_tcp_queue_more(queue))
1167 		msg.msg_flags |= MSG_MORE;
1168 	else
1169 		msg.msg_flags |= MSG_EOR;
1170 
1171 	if (queue->hdr_digest && !req->offset)
1172 		nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
1173 
1174 	bvec_set_virt(&bvec, (void *)pdu + req->offset, len);
1175 	iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len);
1176 	ret = sock_sendmsg(queue->sock, &msg);
1177 	if (unlikely(ret <= 0))
1178 		return ret;
1179 
1180 	len -= ret;
1181 	if (!len) {
1182 		if (inline_data) {
1183 			req->state = NVME_TCP_SEND_DATA;
1184 			if (queue->data_digest)
1185 				crypto_ahash_init(queue->snd_hash);
1186 		} else {
1187 			nvme_tcp_done_send_req(queue);
1188 		}
1189 		return 1;
1190 	}
1191 	req->offset += ret;
1192 
1193 	return -EAGAIN;
1194 }
1195 
1196 static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req)
1197 {
1198 	struct nvme_tcp_queue *queue = req->queue;
1199 	struct nvme_tcp_data_pdu *pdu = nvme_tcp_req_data_pdu(req);
1200 	struct bio_vec bvec;
1201 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_MORE, };
1202 	u8 hdgst = nvme_tcp_hdgst_len(queue);
1203 	int len = sizeof(*pdu) - req->offset + hdgst;
1204 	int ret;
1205 
1206 	if (queue->hdr_digest && !req->offset)
1207 		nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
1208 
1209 	if (!req->h2cdata_left)
1210 		msg.msg_flags |= MSG_SPLICE_PAGES;
1211 
1212 	bvec_set_virt(&bvec, (void *)pdu + req->offset, len);
1213 	iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len);
1214 	ret = sock_sendmsg(queue->sock, &msg);
1215 	if (unlikely(ret <= 0))
1216 		return ret;
1217 
1218 	len -= ret;
1219 	if (!len) {
1220 		req->state = NVME_TCP_SEND_DATA;
1221 		if (queue->data_digest)
1222 			crypto_ahash_init(queue->snd_hash);
1223 		return 1;
1224 	}
1225 	req->offset += ret;
1226 
1227 	return -EAGAIN;
1228 }
1229 
1230 static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req)
1231 {
1232 	struct nvme_tcp_queue *queue = req->queue;
1233 	size_t offset = req->offset;
1234 	u32 h2cdata_left = req->h2cdata_left;
1235 	int ret;
1236 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1237 	struct kvec iov = {
1238 		.iov_base = (u8 *)&req->ddgst + req->offset,
1239 		.iov_len = NVME_TCP_DIGEST_LENGTH - req->offset
1240 	};
1241 
1242 	if (nvme_tcp_queue_more(queue))
1243 		msg.msg_flags |= MSG_MORE;
1244 	else
1245 		msg.msg_flags |= MSG_EOR;
1246 
1247 	ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1248 	if (unlikely(ret <= 0))
1249 		return ret;
1250 
1251 	if (offset + ret == NVME_TCP_DIGEST_LENGTH) {
1252 		if (h2cdata_left)
1253 			nvme_tcp_setup_h2c_data_pdu(req);
1254 		else
1255 			nvme_tcp_done_send_req(queue);
1256 		return 1;
1257 	}
1258 
1259 	req->offset += ret;
1260 	return -EAGAIN;
1261 }
1262 
1263 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue)
1264 {
1265 	struct nvme_tcp_request *req;
1266 	unsigned int noreclaim_flag;
1267 	int ret = 1;
1268 
1269 	if (!queue->request) {
1270 		queue->request = nvme_tcp_fetch_request(queue);
1271 		if (!queue->request)
1272 			return 0;
1273 	}
1274 	req = queue->request;
1275 
1276 	noreclaim_flag = memalloc_noreclaim_save();
1277 	if (req->state == NVME_TCP_SEND_CMD_PDU) {
1278 		ret = nvme_tcp_try_send_cmd_pdu(req);
1279 		if (ret <= 0)
1280 			goto done;
1281 		if (!nvme_tcp_has_inline_data(req))
1282 			goto out;
1283 	}
1284 
1285 	if (req->state == NVME_TCP_SEND_H2C_PDU) {
1286 		ret = nvme_tcp_try_send_data_pdu(req);
1287 		if (ret <= 0)
1288 			goto done;
1289 	}
1290 
1291 	if (req->state == NVME_TCP_SEND_DATA) {
1292 		ret = nvme_tcp_try_send_data(req);
1293 		if (ret <= 0)
1294 			goto done;
1295 	}
1296 
1297 	if (req->state == NVME_TCP_SEND_DDGST)
1298 		ret = nvme_tcp_try_send_ddgst(req);
1299 done:
1300 	if (ret == -EAGAIN) {
1301 		ret = 0;
1302 	} else if (ret < 0) {
1303 		dev_err(queue->ctrl->ctrl.device,
1304 			"failed to send request %d\n", ret);
1305 		nvme_tcp_fail_request(queue->request);
1306 		nvme_tcp_done_send_req(queue);
1307 	}
1308 out:
1309 	memalloc_noreclaim_restore(noreclaim_flag);
1310 	return ret;
1311 }
1312 
1313 static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue)
1314 {
1315 	struct socket *sock = queue->sock;
1316 	struct sock *sk = sock->sk;
1317 	read_descriptor_t rd_desc;
1318 	int consumed;
1319 
1320 	rd_desc.arg.data = queue;
1321 	rd_desc.count = 1;
1322 	lock_sock(sk);
1323 	queue->nr_cqe = 0;
1324 	consumed = sock->ops->read_sock(sk, &rd_desc, nvme_tcp_recv_skb);
1325 	release_sock(sk);
1326 	return consumed;
1327 }
1328 
1329 static void nvme_tcp_io_work(struct work_struct *w)
1330 {
1331 	struct nvme_tcp_queue *queue =
1332 		container_of(w, struct nvme_tcp_queue, io_work);
1333 	unsigned long deadline = jiffies + msecs_to_jiffies(1);
1334 
1335 	do {
1336 		bool pending = false;
1337 		int result;
1338 
1339 		if (mutex_trylock(&queue->send_mutex)) {
1340 			result = nvme_tcp_try_send(queue);
1341 			mutex_unlock(&queue->send_mutex);
1342 			if (result > 0)
1343 				pending = true;
1344 			else if (unlikely(result < 0))
1345 				break;
1346 		}
1347 
1348 		result = nvme_tcp_try_recv(queue);
1349 		if (result > 0)
1350 			pending = true;
1351 		else if (unlikely(result < 0))
1352 			return;
1353 
1354 		if (!pending || !queue->rd_enabled)
1355 			return;
1356 
1357 	} while (!time_after(jiffies, deadline)); /* quota is exhausted */
1358 
1359 	queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
1360 }
1361 
1362 static void nvme_tcp_free_crypto(struct nvme_tcp_queue *queue)
1363 {
1364 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash);
1365 
1366 	ahash_request_free(queue->rcv_hash);
1367 	ahash_request_free(queue->snd_hash);
1368 	crypto_free_ahash(tfm);
1369 }
1370 
1371 static int nvme_tcp_alloc_crypto(struct nvme_tcp_queue *queue)
1372 {
1373 	struct crypto_ahash *tfm;
1374 
1375 	tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC);
1376 	if (IS_ERR(tfm))
1377 		return PTR_ERR(tfm);
1378 
1379 	queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1380 	if (!queue->snd_hash)
1381 		goto free_tfm;
1382 	ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL);
1383 
1384 	queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1385 	if (!queue->rcv_hash)
1386 		goto free_snd_hash;
1387 	ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL);
1388 
1389 	return 0;
1390 free_snd_hash:
1391 	ahash_request_free(queue->snd_hash);
1392 free_tfm:
1393 	crypto_free_ahash(tfm);
1394 	return -ENOMEM;
1395 }
1396 
1397 static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl)
1398 {
1399 	struct nvme_tcp_request *async = &ctrl->async_req;
1400 
1401 	page_frag_free(async->pdu);
1402 }
1403 
1404 static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl)
1405 {
1406 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
1407 	struct nvme_tcp_request *async = &ctrl->async_req;
1408 	u8 hdgst = nvme_tcp_hdgst_len(queue);
1409 
1410 	async->pdu = page_frag_alloc(&queue->pf_cache,
1411 		sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
1412 		GFP_KERNEL | __GFP_ZERO);
1413 	if (!async->pdu)
1414 		return -ENOMEM;
1415 
1416 	async->queue = &ctrl->queues[0];
1417 	return 0;
1418 }
1419 
1420 static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid)
1421 {
1422 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1423 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1424 	unsigned int noreclaim_flag;
1425 
1426 	if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1427 		return;
1428 
1429 	if (queue->hdr_digest || queue->data_digest)
1430 		nvme_tcp_free_crypto(queue);
1431 
1432 	page_frag_cache_drain(&queue->pf_cache);
1433 
1434 	noreclaim_flag = memalloc_noreclaim_save();
1435 	/* ->sock will be released by fput() */
1436 	fput(queue->sock->file);
1437 	queue->sock = NULL;
1438 	memalloc_noreclaim_restore(noreclaim_flag);
1439 
1440 	kfree(queue->pdu);
1441 	mutex_destroy(&queue->send_mutex);
1442 	mutex_destroy(&queue->queue_lock);
1443 }
1444 
1445 static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue)
1446 {
1447 	struct nvme_tcp_icreq_pdu *icreq;
1448 	struct nvme_tcp_icresp_pdu *icresp;
1449 	char cbuf[CMSG_LEN(sizeof(char))] = {};
1450 	u8 ctype;
1451 	struct msghdr msg = {};
1452 	struct kvec iov;
1453 	bool ctrl_hdgst, ctrl_ddgst;
1454 	u32 maxh2cdata;
1455 	int ret;
1456 
1457 	icreq = kzalloc(sizeof(*icreq), GFP_KERNEL);
1458 	if (!icreq)
1459 		return -ENOMEM;
1460 
1461 	icresp = kzalloc(sizeof(*icresp), GFP_KERNEL);
1462 	if (!icresp) {
1463 		ret = -ENOMEM;
1464 		goto free_icreq;
1465 	}
1466 
1467 	icreq->hdr.type = nvme_tcp_icreq;
1468 	icreq->hdr.hlen = sizeof(*icreq);
1469 	icreq->hdr.pdo = 0;
1470 	icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen);
1471 	icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
1472 	icreq->maxr2t = 0; /* single inflight r2t supported */
1473 	icreq->hpda = 0; /* no alignment constraint */
1474 	if (queue->hdr_digest)
1475 		icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
1476 	if (queue->data_digest)
1477 		icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
1478 
1479 	iov.iov_base = icreq;
1480 	iov.iov_len = sizeof(*icreq);
1481 	ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1482 	if (ret < 0) {
1483 		pr_warn("queue %d: failed to send icreq, error %d\n",
1484 			nvme_tcp_queue_id(queue), ret);
1485 		goto free_icresp;
1486 	}
1487 
1488 	memset(&msg, 0, sizeof(msg));
1489 	iov.iov_base = icresp;
1490 	iov.iov_len = sizeof(*icresp);
1491 	if (nvme_tcp_queue_tls(queue)) {
1492 		msg.msg_control = cbuf;
1493 		msg.msg_controllen = sizeof(cbuf);
1494 	}
1495 	msg.msg_flags = MSG_WAITALL;
1496 	ret = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1497 			iov.iov_len, msg.msg_flags);
1498 	if (ret < sizeof(*icresp)) {
1499 		pr_warn("queue %d: failed to receive icresp, error %d\n",
1500 			nvme_tcp_queue_id(queue), ret);
1501 		if (ret >= 0)
1502 			ret = -ECONNRESET;
1503 		goto free_icresp;
1504 	}
1505 	ret = -ENOTCONN;
1506 	if (nvme_tcp_queue_tls(queue)) {
1507 		ctype = tls_get_record_type(queue->sock->sk,
1508 					    (struct cmsghdr *)cbuf);
1509 		if (ctype != TLS_RECORD_TYPE_DATA) {
1510 			pr_err("queue %d: unhandled TLS record %d\n",
1511 			       nvme_tcp_queue_id(queue), ctype);
1512 			goto free_icresp;
1513 		}
1514 	}
1515 	ret = -EINVAL;
1516 	if (icresp->hdr.type != nvme_tcp_icresp) {
1517 		pr_err("queue %d: bad type returned %d\n",
1518 			nvme_tcp_queue_id(queue), icresp->hdr.type);
1519 		goto free_icresp;
1520 	}
1521 
1522 	if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) {
1523 		pr_err("queue %d: bad pdu length returned %d\n",
1524 			nvme_tcp_queue_id(queue), icresp->hdr.plen);
1525 		goto free_icresp;
1526 	}
1527 
1528 	if (icresp->pfv != NVME_TCP_PFV_1_0) {
1529 		pr_err("queue %d: bad pfv returned %d\n",
1530 			nvme_tcp_queue_id(queue), icresp->pfv);
1531 		goto free_icresp;
1532 	}
1533 
1534 	ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE);
1535 	if ((queue->data_digest && !ctrl_ddgst) ||
1536 	    (!queue->data_digest && ctrl_ddgst)) {
1537 		pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n",
1538 			nvme_tcp_queue_id(queue),
1539 			queue->data_digest ? "enabled" : "disabled",
1540 			ctrl_ddgst ? "enabled" : "disabled");
1541 		goto free_icresp;
1542 	}
1543 
1544 	ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE);
1545 	if ((queue->hdr_digest && !ctrl_hdgst) ||
1546 	    (!queue->hdr_digest && ctrl_hdgst)) {
1547 		pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n",
1548 			nvme_tcp_queue_id(queue),
1549 			queue->hdr_digest ? "enabled" : "disabled",
1550 			ctrl_hdgst ? "enabled" : "disabled");
1551 		goto free_icresp;
1552 	}
1553 
1554 	if (icresp->cpda != 0) {
1555 		pr_err("queue %d: unsupported cpda returned %d\n",
1556 			nvme_tcp_queue_id(queue), icresp->cpda);
1557 		goto free_icresp;
1558 	}
1559 
1560 	maxh2cdata = le32_to_cpu(icresp->maxdata);
1561 	if ((maxh2cdata % 4) || (maxh2cdata < NVME_TCP_MIN_MAXH2CDATA)) {
1562 		pr_err("queue %d: invalid maxh2cdata returned %u\n",
1563 		       nvme_tcp_queue_id(queue), maxh2cdata);
1564 		goto free_icresp;
1565 	}
1566 	queue->maxh2cdata = maxh2cdata;
1567 
1568 	ret = 0;
1569 free_icresp:
1570 	kfree(icresp);
1571 free_icreq:
1572 	kfree(icreq);
1573 	return ret;
1574 }
1575 
1576 static bool nvme_tcp_admin_queue(struct nvme_tcp_queue *queue)
1577 {
1578 	return nvme_tcp_queue_id(queue) == 0;
1579 }
1580 
1581 static bool nvme_tcp_default_queue(struct nvme_tcp_queue *queue)
1582 {
1583 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1584 	int qid = nvme_tcp_queue_id(queue);
1585 
1586 	return !nvme_tcp_admin_queue(queue) &&
1587 		qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT];
1588 }
1589 
1590 static bool nvme_tcp_read_queue(struct nvme_tcp_queue *queue)
1591 {
1592 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1593 	int qid = nvme_tcp_queue_id(queue);
1594 
1595 	return !nvme_tcp_admin_queue(queue) &&
1596 		!nvme_tcp_default_queue(queue) &&
1597 		qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1598 			  ctrl->io_queues[HCTX_TYPE_READ];
1599 }
1600 
1601 static bool nvme_tcp_poll_queue(struct nvme_tcp_queue *queue)
1602 {
1603 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1604 	int qid = nvme_tcp_queue_id(queue);
1605 
1606 	return !nvme_tcp_admin_queue(queue) &&
1607 		!nvme_tcp_default_queue(queue) &&
1608 		!nvme_tcp_read_queue(queue) &&
1609 		qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1610 			  ctrl->io_queues[HCTX_TYPE_READ] +
1611 			  ctrl->io_queues[HCTX_TYPE_POLL];
1612 }
1613 
1614 /*
1615  * Track the number of queues assigned to each cpu using a global per-cpu
1616  * counter and select the least used cpu from the mq_map. Our goal is to spread
1617  * different controllers I/O threads across different cpu cores.
1618  *
1619  * Note that the accounting is not 100% perfect, but we don't need to be, we're
1620  * simply putting our best effort to select the best candidate cpu core that we
1621  * find at any given point.
1622  */
1623 static void nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue *queue)
1624 {
1625 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1626 	struct blk_mq_tag_set *set = &ctrl->tag_set;
1627 	int qid = nvme_tcp_queue_id(queue) - 1;
1628 	unsigned int *mq_map = NULL;
1629 	int cpu, min_queues = INT_MAX, io_cpu;
1630 
1631 	if (wq_unbound)
1632 		goto out;
1633 
1634 	if (nvme_tcp_default_queue(queue))
1635 		mq_map = set->map[HCTX_TYPE_DEFAULT].mq_map;
1636 	else if (nvme_tcp_read_queue(queue))
1637 		mq_map = set->map[HCTX_TYPE_READ].mq_map;
1638 	else if (nvme_tcp_poll_queue(queue))
1639 		mq_map = set->map[HCTX_TYPE_POLL].mq_map;
1640 
1641 	if (WARN_ON(!mq_map))
1642 		goto out;
1643 
1644 	/* Search for the least used cpu from the mq_map */
1645 	io_cpu = WORK_CPU_UNBOUND;
1646 	for_each_online_cpu(cpu) {
1647 		int num_queues = atomic_read(&nvme_tcp_cpu_queues[cpu]);
1648 
1649 		if (mq_map[cpu] != qid)
1650 			continue;
1651 		if (num_queues < min_queues) {
1652 			io_cpu = cpu;
1653 			min_queues = num_queues;
1654 		}
1655 	}
1656 	if (io_cpu != WORK_CPU_UNBOUND) {
1657 		queue->io_cpu = io_cpu;
1658 		atomic_inc(&nvme_tcp_cpu_queues[io_cpu]);
1659 		set_bit(NVME_TCP_Q_IO_CPU_SET, &queue->flags);
1660 	}
1661 out:
1662 	dev_dbg(ctrl->ctrl.device, "queue %d: using cpu %d\n",
1663 		qid, queue->io_cpu);
1664 }
1665 
1666 static void nvme_tcp_tls_done(void *data, int status, key_serial_t pskid)
1667 {
1668 	struct nvme_tcp_queue *queue = data;
1669 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1670 	int qid = nvme_tcp_queue_id(queue);
1671 	struct key *tls_key;
1672 
1673 	dev_dbg(ctrl->ctrl.device, "queue %d: TLS handshake done, key %x, status %d\n",
1674 		qid, pskid, status);
1675 
1676 	if (status) {
1677 		queue->tls_err = -status;
1678 		goto out_complete;
1679 	}
1680 
1681 	tls_key = nvme_tls_key_lookup(pskid);
1682 	if (IS_ERR(tls_key)) {
1683 		dev_warn(ctrl->ctrl.device, "queue %d: Invalid key %x\n",
1684 			 qid, pskid);
1685 		queue->tls_err = -ENOKEY;
1686 	} else {
1687 		queue->tls_enabled = true;
1688 		if (qid == 0)
1689 			ctrl->ctrl.tls_pskid = key_serial(tls_key);
1690 		key_put(tls_key);
1691 		queue->tls_err = 0;
1692 	}
1693 
1694 out_complete:
1695 	complete(&queue->tls_complete);
1696 }
1697 
1698 static int nvme_tcp_start_tls(struct nvme_ctrl *nctrl,
1699 			      struct nvme_tcp_queue *queue,
1700 			      key_serial_t pskid)
1701 {
1702 	int qid = nvme_tcp_queue_id(queue);
1703 	int ret;
1704 	struct tls_handshake_args args;
1705 	unsigned long tmo = tls_handshake_timeout * HZ;
1706 	key_serial_t keyring = nvme_keyring_id();
1707 
1708 	dev_dbg(nctrl->device, "queue %d: start TLS with key %x\n",
1709 		qid, pskid);
1710 	memset(&args, 0, sizeof(args));
1711 	args.ta_sock = queue->sock;
1712 	args.ta_done = nvme_tcp_tls_done;
1713 	args.ta_data = queue;
1714 	args.ta_my_peerids[0] = pskid;
1715 	args.ta_num_peerids = 1;
1716 	if (nctrl->opts->keyring)
1717 		keyring = key_serial(nctrl->opts->keyring);
1718 	args.ta_keyring = keyring;
1719 	args.ta_timeout_ms = tls_handshake_timeout * 1000;
1720 	queue->tls_err = -EOPNOTSUPP;
1721 	init_completion(&queue->tls_complete);
1722 	ret = tls_client_hello_psk(&args, GFP_KERNEL);
1723 	if (ret) {
1724 		dev_err(nctrl->device, "queue %d: failed to start TLS: %d\n",
1725 			qid, ret);
1726 		return ret;
1727 	}
1728 	ret = wait_for_completion_interruptible_timeout(&queue->tls_complete, tmo);
1729 	if (ret <= 0) {
1730 		if (ret == 0)
1731 			ret = -ETIMEDOUT;
1732 
1733 		dev_err(nctrl->device,
1734 			"queue %d: TLS handshake failed, error %d\n",
1735 			qid, ret);
1736 		tls_handshake_cancel(queue->sock->sk);
1737 	} else {
1738 		dev_dbg(nctrl->device,
1739 			"queue %d: TLS handshake complete, error %d\n",
1740 			qid, queue->tls_err);
1741 		ret = queue->tls_err;
1742 	}
1743 	return ret;
1744 }
1745 
1746 static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl, int qid,
1747 				key_serial_t pskid)
1748 {
1749 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1750 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1751 	int ret, rcv_pdu_size;
1752 	struct file *sock_file;
1753 
1754 	mutex_init(&queue->queue_lock);
1755 	queue->ctrl = ctrl;
1756 	init_llist_head(&queue->req_list);
1757 	INIT_LIST_HEAD(&queue->send_list);
1758 	mutex_init(&queue->send_mutex);
1759 	INIT_WORK(&queue->io_work, nvme_tcp_io_work);
1760 
1761 	if (qid > 0)
1762 		queue->cmnd_capsule_len = nctrl->ioccsz * 16;
1763 	else
1764 		queue->cmnd_capsule_len = sizeof(struct nvme_command) +
1765 						NVME_TCP_ADMIN_CCSZ;
1766 
1767 	ret = sock_create(ctrl->addr.ss_family, SOCK_STREAM,
1768 			IPPROTO_TCP, &queue->sock);
1769 	if (ret) {
1770 		dev_err(nctrl->device,
1771 			"failed to create socket: %d\n", ret);
1772 		goto err_destroy_mutex;
1773 	}
1774 
1775 	sock_file = sock_alloc_file(queue->sock, O_CLOEXEC, NULL);
1776 	if (IS_ERR(sock_file)) {
1777 		ret = PTR_ERR(sock_file);
1778 		goto err_destroy_mutex;
1779 	}
1780 	nvme_tcp_reclassify_socket(queue->sock);
1781 
1782 	/* Single syn retry */
1783 	tcp_sock_set_syncnt(queue->sock->sk, 1);
1784 
1785 	/* Set TCP no delay */
1786 	tcp_sock_set_nodelay(queue->sock->sk);
1787 
1788 	/*
1789 	 * Cleanup whatever is sitting in the TCP transmit queue on socket
1790 	 * close. This is done to prevent stale data from being sent should
1791 	 * the network connection be restored before TCP times out.
1792 	 */
1793 	sock_no_linger(queue->sock->sk);
1794 
1795 	if (so_priority > 0)
1796 		sock_set_priority(queue->sock->sk, so_priority);
1797 
1798 	/* Set socket type of service */
1799 	if (nctrl->opts->tos >= 0)
1800 		ip_sock_set_tos(queue->sock->sk, nctrl->opts->tos);
1801 
1802 	/* Set 10 seconds timeout for icresp recvmsg */
1803 	queue->sock->sk->sk_rcvtimeo = 10 * HZ;
1804 
1805 	queue->sock->sk->sk_allocation = GFP_ATOMIC;
1806 	queue->sock->sk->sk_use_task_frag = false;
1807 	queue->io_cpu = WORK_CPU_UNBOUND;
1808 	queue->request = NULL;
1809 	queue->data_remaining = 0;
1810 	queue->ddgst_remaining = 0;
1811 	queue->pdu_remaining = 0;
1812 	queue->pdu_offset = 0;
1813 	sk_set_memalloc(queue->sock->sk);
1814 
1815 	if (nctrl->opts->mask & NVMF_OPT_HOST_TRADDR) {
1816 		ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr,
1817 			sizeof(ctrl->src_addr));
1818 		if (ret) {
1819 			dev_err(nctrl->device,
1820 				"failed to bind queue %d socket %d\n",
1821 				qid, ret);
1822 			goto err_sock;
1823 		}
1824 	}
1825 
1826 	if (nctrl->opts->mask & NVMF_OPT_HOST_IFACE) {
1827 		char *iface = nctrl->opts->host_iface;
1828 		sockptr_t optval = KERNEL_SOCKPTR(iface);
1829 
1830 		ret = sock_setsockopt(queue->sock, SOL_SOCKET, SO_BINDTODEVICE,
1831 				      optval, strlen(iface));
1832 		if (ret) {
1833 			dev_err(nctrl->device,
1834 			  "failed to bind to interface %s queue %d err %d\n",
1835 			  iface, qid, ret);
1836 			goto err_sock;
1837 		}
1838 	}
1839 
1840 	queue->hdr_digest = nctrl->opts->hdr_digest;
1841 	queue->data_digest = nctrl->opts->data_digest;
1842 	if (queue->hdr_digest || queue->data_digest) {
1843 		ret = nvme_tcp_alloc_crypto(queue);
1844 		if (ret) {
1845 			dev_err(nctrl->device,
1846 				"failed to allocate queue %d crypto\n", qid);
1847 			goto err_sock;
1848 		}
1849 	}
1850 
1851 	rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) +
1852 			nvme_tcp_hdgst_len(queue);
1853 	queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL);
1854 	if (!queue->pdu) {
1855 		ret = -ENOMEM;
1856 		goto err_crypto;
1857 	}
1858 
1859 	dev_dbg(nctrl->device, "connecting queue %d\n",
1860 			nvme_tcp_queue_id(queue));
1861 
1862 	ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr,
1863 		sizeof(ctrl->addr), 0);
1864 	if (ret) {
1865 		dev_err(nctrl->device,
1866 			"failed to connect socket: %d\n", ret);
1867 		goto err_rcv_pdu;
1868 	}
1869 
1870 	/* If PSKs are configured try to start TLS */
1871 	if (nvme_tcp_tls_configured(nctrl) && pskid) {
1872 		ret = nvme_tcp_start_tls(nctrl, queue, pskid);
1873 		if (ret)
1874 			goto err_init_connect;
1875 	}
1876 
1877 	ret = nvme_tcp_init_connection(queue);
1878 	if (ret)
1879 		goto err_init_connect;
1880 
1881 	set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags);
1882 
1883 	return 0;
1884 
1885 err_init_connect:
1886 	kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1887 err_rcv_pdu:
1888 	kfree(queue->pdu);
1889 err_crypto:
1890 	if (queue->hdr_digest || queue->data_digest)
1891 		nvme_tcp_free_crypto(queue);
1892 err_sock:
1893 	/* ->sock will be released by fput() */
1894 	fput(queue->sock->file);
1895 	queue->sock = NULL;
1896 err_destroy_mutex:
1897 	mutex_destroy(&queue->send_mutex);
1898 	mutex_destroy(&queue->queue_lock);
1899 	return ret;
1900 }
1901 
1902 static void nvme_tcp_restore_sock_ops(struct nvme_tcp_queue *queue)
1903 {
1904 	struct socket *sock = queue->sock;
1905 
1906 	write_lock_bh(&sock->sk->sk_callback_lock);
1907 	sock->sk->sk_user_data  = NULL;
1908 	sock->sk->sk_data_ready = queue->data_ready;
1909 	sock->sk->sk_state_change = queue->state_change;
1910 	sock->sk->sk_write_space  = queue->write_space;
1911 	write_unlock_bh(&sock->sk->sk_callback_lock);
1912 }
1913 
1914 static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue)
1915 {
1916 	kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1917 	nvme_tcp_restore_sock_ops(queue);
1918 	cancel_work_sync(&queue->io_work);
1919 }
1920 
1921 static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid)
1922 {
1923 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1924 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1925 
1926 	if (!test_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1927 		return;
1928 
1929 	if (test_and_clear_bit(NVME_TCP_Q_IO_CPU_SET, &queue->flags))
1930 		atomic_dec(&nvme_tcp_cpu_queues[queue->io_cpu]);
1931 
1932 	mutex_lock(&queue->queue_lock);
1933 	if (test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags))
1934 		__nvme_tcp_stop_queue(queue);
1935 	/* Stopping the queue will disable TLS */
1936 	queue->tls_enabled = false;
1937 	mutex_unlock(&queue->queue_lock);
1938 }
1939 
1940 static void nvme_tcp_setup_sock_ops(struct nvme_tcp_queue *queue)
1941 {
1942 	write_lock_bh(&queue->sock->sk->sk_callback_lock);
1943 	queue->sock->sk->sk_user_data = queue;
1944 	queue->state_change = queue->sock->sk->sk_state_change;
1945 	queue->data_ready = queue->sock->sk->sk_data_ready;
1946 	queue->write_space = queue->sock->sk->sk_write_space;
1947 	queue->sock->sk->sk_data_ready = nvme_tcp_data_ready;
1948 	queue->sock->sk->sk_state_change = nvme_tcp_state_change;
1949 	queue->sock->sk->sk_write_space = nvme_tcp_write_space;
1950 #ifdef CONFIG_NET_RX_BUSY_POLL
1951 	queue->sock->sk->sk_ll_usec = 1;
1952 #endif
1953 	write_unlock_bh(&queue->sock->sk->sk_callback_lock);
1954 }
1955 
1956 static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx)
1957 {
1958 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1959 	struct nvme_tcp_queue *queue = &ctrl->queues[idx];
1960 	int ret;
1961 
1962 	queue->rd_enabled = true;
1963 	nvme_tcp_init_recv_ctx(queue);
1964 	nvme_tcp_setup_sock_ops(queue);
1965 
1966 	if (idx) {
1967 		nvme_tcp_set_queue_io_cpu(queue);
1968 		ret = nvmf_connect_io_queue(nctrl, idx);
1969 	} else
1970 		ret = nvmf_connect_admin_queue(nctrl);
1971 
1972 	if (!ret) {
1973 		set_bit(NVME_TCP_Q_LIVE, &queue->flags);
1974 	} else {
1975 		if (test_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1976 			__nvme_tcp_stop_queue(queue);
1977 		dev_err(nctrl->device,
1978 			"failed to connect queue: %d ret=%d\n", idx, ret);
1979 	}
1980 	return ret;
1981 }
1982 
1983 static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl)
1984 {
1985 	if (to_tcp_ctrl(ctrl)->async_req.pdu) {
1986 		cancel_work_sync(&ctrl->async_event_work);
1987 		nvme_tcp_free_async_req(to_tcp_ctrl(ctrl));
1988 		to_tcp_ctrl(ctrl)->async_req.pdu = NULL;
1989 	}
1990 
1991 	nvme_tcp_free_queue(ctrl, 0);
1992 }
1993 
1994 static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl)
1995 {
1996 	int i;
1997 
1998 	for (i = 1; i < ctrl->queue_count; i++)
1999 		nvme_tcp_free_queue(ctrl, i);
2000 }
2001 
2002 static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl)
2003 {
2004 	int i;
2005 
2006 	for (i = 1; i < ctrl->queue_count; i++)
2007 		nvme_tcp_stop_queue(ctrl, i);
2008 }
2009 
2010 static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl,
2011 				    int first, int last)
2012 {
2013 	int i, ret;
2014 
2015 	for (i = first; i < last; i++) {
2016 		ret = nvme_tcp_start_queue(ctrl, i);
2017 		if (ret)
2018 			goto out_stop_queues;
2019 	}
2020 
2021 	return 0;
2022 
2023 out_stop_queues:
2024 	for (i--; i >= first; i--)
2025 		nvme_tcp_stop_queue(ctrl, i);
2026 	return ret;
2027 }
2028 
2029 static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl)
2030 {
2031 	int ret;
2032 	key_serial_t pskid = 0;
2033 
2034 	if (nvme_tcp_tls_configured(ctrl)) {
2035 		if (ctrl->opts->tls_key)
2036 			pskid = key_serial(ctrl->opts->tls_key);
2037 		else {
2038 			pskid = nvme_tls_psk_default(ctrl->opts->keyring,
2039 						      ctrl->opts->host->nqn,
2040 						      ctrl->opts->subsysnqn);
2041 			if (!pskid) {
2042 				dev_err(ctrl->device, "no valid PSK found\n");
2043 				return -ENOKEY;
2044 			}
2045 		}
2046 	}
2047 
2048 	ret = nvme_tcp_alloc_queue(ctrl, 0, pskid);
2049 	if (ret)
2050 		return ret;
2051 
2052 	ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl));
2053 	if (ret)
2054 		goto out_free_queue;
2055 
2056 	return 0;
2057 
2058 out_free_queue:
2059 	nvme_tcp_free_queue(ctrl, 0);
2060 	return ret;
2061 }
2062 
2063 static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
2064 {
2065 	int i, ret;
2066 
2067 	if (nvme_tcp_tls_configured(ctrl) && !ctrl->tls_pskid) {
2068 		dev_err(ctrl->device, "no PSK negotiated\n");
2069 		return -ENOKEY;
2070 	}
2071 
2072 	for (i = 1; i < ctrl->queue_count; i++) {
2073 		ret = nvme_tcp_alloc_queue(ctrl, i,
2074 				ctrl->tls_pskid);
2075 		if (ret)
2076 			goto out_free_queues;
2077 	}
2078 
2079 	return 0;
2080 
2081 out_free_queues:
2082 	for (i--; i >= 1; i--)
2083 		nvme_tcp_free_queue(ctrl, i);
2084 
2085 	return ret;
2086 }
2087 
2088 static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
2089 {
2090 	unsigned int nr_io_queues;
2091 	int ret;
2092 
2093 	nr_io_queues = nvmf_nr_io_queues(ctrl->opts);
2094 	ret = nvme_set_queue_count(ctrl, &nr_io_queues);
2095 	if (ret)
2096 		return ret;
2097 
2098 	if (nr_io_queues == 0) {
2099 		dev_err(ctrl->device,
2100 			"unable to set any I/O queues\n");
2101 		return -ENOMEM;
2102 	}
2103 
2104 	ctrl->queue_count = nr_io_queues + 1;
2105 	dev_info(ctrl->device,
2106 		"creating %d I/O queues.\n", nr_io_queues);
2107 
2108 	nvmf_set_io_queues(ctrl->opts, nr_io_queues,
2109 			   to_tcp_ctrl(ctrl)->io_queues);
2110 	return __nvme_tcp_alloc_io_queues(ctrl);
2111 }
2112 
2113 static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new)
2114 {
2115 	int ret, nr_queues;
2116 
2117 	ret = nvme_tcp_alloc_io_queues(ctrl);
2118 	if (ret)
2119 		return ret;
2120 
2121 	if (new) {
2122 		ret = nvme_alloc_io_tag_set(ctrl, &to_tcp_ctrl(ctrl)->tag_set,
2123 				&nvme_tcp_mq_ops,
2124 				ctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2,
2125 				sizeof(struct nvme_tcp_request));
2126 		if (ret)
2127 			goto out_free_io_queues;
2128 	}
2129 
2130 	/*
2131 	 * Only start IO queues for which we have allocated the tagset
2132 	 * and limitted it to the available queues. On reconnects, the
2133 	 * queue number might have changed.
2134 	 */
2135 	nr_queues = min(ctrl->tagset->nr_hw_queues + 1, ctrl->queue_count);
2136 	ret = nvme_tcp_start_io_queues(ctrl, 1, nr_queues);
2137 	if (ret)
2138 		goto out_cleanup_connect_q;
2139 
2140 	if (!new) {
2141 		nvme_start_freeze(ctrl);
2142 		nvme_unquiesce_io_queues(ctrl);
2143 		if (!nvme_wait_freeze_timeout(ctrl, NVME_IO_TIMEOUT)) {
2144 			/*
2145 			 * If we timed out waiting for freeze we are likely to
2146 			 * be stuck.  Fail the controller initialization just
2147 			 * to be safe.
2148 			 */
2149 			ret = -ENODEV;
2150 			nvme_unfreeze(ctrl);
2151 			goto out_wait_freeze_timed_out;
2152 		}
2153 		blk_mq_update_nr_hw_queues(ctrl->tagset,
2154 			ctrl->queue_count - 1);
2155 		nvme_unfreeze(ctrl);
2156 	}
2157 
2158 	/*
2159 	 * If the number of queues has increased (reconnect case)
2160 	 * start all new queues now.
2161 	 */
2162 	ret = nvme_tcp_start_io_queues(ctrl, nr_queues,
2163 				       ctrl->tagset->nr_hw_queues + 1);
2164 	if (ret)
2165 		goto out_wait_freeze_timed_out;
2166 
2167 	return 0;
2168 
2169 out_wait_freeze_timed_out:
2170 	nvme_quiesce_io_queues(ctrl);
2171 	nvme_sync_io_queues(ctrl);
2172 	nvme_tcp_stop_io_queues(ctrl);
2173 out_cleanup_connect_q:
2174 	nvme_cancel_tagset(ctrl);
2175 	if (new)
2176 		nvme_remove_io_tag_set(ctrl);
2177 out_free_io_queues:
2178 	nvme_tcp_free_io_queues(ctrl);
2179 	return ret;
2180 }
2181 
2182 static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new)
2183 {
2184 	int error;
2185 
2186 	error = nvme_tcp_alloc_admin_queue(ctrl);
2187 	if (error)
2188 		return error;
2189 
2190 	if (new) {
2191 		error = nvme_alloc_admin_tag_set(ctrl,
2192 				&to_tcp_ctrl(ctrl)->admin_tag_set,
2193 				&nvme_tcp_admin_mq_ops,
2194 				sizeof(struct nvme_tcp_request));
2195 		if (error)
2196 			goto out_free_queue;
2197 	}
2198 
2199 	error = nvme_tcp_start_queue(ctrl, 0);
2200 	if (error)
2201 		goto out_cleanup_tagset;
2202 
2203 	error = nvme_enable_ctrl(ctrl);
2204 	if (error)
2205 		goto out_stop_queue;
2206 
2207 	nvme_unquiesce_admin_queue(ctrl);
2208 
2209 	error = nvme_init_ctrl_finish(ctrl, false);
2210 	if (error)
2211 		goto out_quiesce_queue;
2212 
2213 	return 0;
2214 
2215 out_quiesce_queue:
2216 	nvme_quiesce_admin_queue(ctrl);
2217 	blk_sync_queue(ctrl->admin_q);
2218 out_stop_queue:
2219 	nvme_tcp_stop_queue(ctrl, 0);
2220 	nvme_cancel_admin_tagset(ctrl);
2221 out_cleanup_tagset:
2222 	if (new)
2223 		nvme_remove_admin_tag_set(ctrl);
2224 out_free_queue:
2225 	nvme_tcp_free_admin_queue(ctrl);
2226 	return error;
2227 }
2228 
2229 static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl,
2230 		bool remove)
2231 {
2232 	nvme_quiesce_admin_queue(ctrl);
2233 	blk_sync_queue(ctrl->admin_q);
2234 	nvme_tcp_stop_queue(ctrl, 0);
2235 	nvme_cancel_admin_tagset(ctrl);
2236 	if (remove) {
2237 		nvme_unquiesce_admin_queue(ctrl);
2238 		nvme_remove_admin_tag_set(ctrl);
2239 	}
2240 	nvme_tcp_free_admin_queue(ctrl);
2241 	if (ctrl->tls_pskid) {
2242 		dev_dbg(ctrl->device, "Wipe negotiated TLS_PSK %08x\n",
2243 			ctrl->tls_pskid);
2244 		ctrl->tls_pskid = 0;
2245 	}
2246 }
2247 
2248 static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl,
2249 		bool remove)
2250 {
2251 	if (ctrl->queue_count <= 1)
2252 		return;
2253 	nvme_quiesce_io_queues(ctrl);
2254 	nvme_sync_io_queues(ctrl);
2255 	nvme_tcp_stop_io_queues(ctrl);
2256 	nvme_cancel_tagset(ctrl);
2257 	if (remove) {
2258 		nvme_unquiesce_io_queues(ctrl);
2259 		nvme_remove_io_tag_set(ctrl);
2260 	}
2261 	nvme_tcp_free_io_queues(ctrl);
2262 }
2263 
2264 static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl,
2265 		int status)
2266 {
2267 	enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
2268 
2269 	/* If we are resetting/deleting then do nothing */
2270 	if (state != NVME_CTRL_CONNECTING) {
2271 		WARN_ON_ONCE(state == NVME_CTRL_NEW || state == NVME_CTRL_LIVE);
2272 		return;
2273 	}
2274 
2275 	if (nvmf_should_reconnect(ctrl, status)) {
2276 		dev_info(ctrl->device, "Reconnecting in %d seconds...\n",
2277 			ctrl->opts->reconnect_delay);
2278 		queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work,
2279 				ctrl->opts->reconnect_delay * HZ);
2280 	} else {
2281 		dev_info(ctrl->device, "Removing controller (%d)...\n",
2282 			 status);
2283 		nvme_delete_ctrl(ctrl);
2284 	}
2285 }
2286 
2287 static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new)
2288 {
2289 	struct nvmf_ctrl_options *opts = ctrl->opts;
2290 	int ret;
2291 
2292 	ret = nvme_tcp_configure_admin_queue(ctrl, new);
2293 	if (ret)
2294 		return ret;
2295 
2296 	if (ctrl->icdoff) {
2297 		ret = -EOPNOTSUPP;
2298 		dev_err(ctrl->device, "icdoff is not supported!\n");
2299 		goto destroy_admin;
2300 	}
2301 
2302 	if (!nvme_ctrl_sgl_supported(ctrl)) {
2303 		ret = -EOPNOTSUPP;
2304 		dev_err(ctrl->device, "Mandatory sgls are not supported!\n");
2305 		goto destroy_admin;
2306 	}
2307 
2308 	if (opts->queue_size > ctrl->sqsize + 1)
2309 		dev_warn(ctrl->device,
2310 			"queue_size %zu > ctrl sqsize %u, clamping down\n",
2311 			opts->queue_size, ctrl->sqsize + 1);
2312 
2313 	if (ctrl->sqsize + 1 > ctrl->maxcmd) {
2314 		dev_warn(ctrl->device,
2315 			"sqsize %u > ctrl maxcmd %u, clamping down\n",
2316 			ctrl->sqsize + 1, ctrl->maxcmd);
2317 		ctrl->sqsize = ctrl->maxcmd - 1;
2318 	}
2319 
2320 	if (ctrl->queue_count > 1) {
2321 		ret = nvme_tcp_configure_io_queues(ctrl, new);
2322 		if (ret)
2323 			goto destroy_admin;
2324 	}
2325 
2326 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) {
2327 		/*
2328 		 * state change failure is ok if we started ctrl delete,
2329 		 * unless we're during creation of a new controller to
2330 		 * avoid races with teardown flow.
2331 		 */
2332 		enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
2333 
2334 		WARN_ON_ONCE(state != NVME_CTRL_DELETING &&
2335 			     state != NVME_CTRL_DELETING_NOIO);
2336 		WARN_ON_ONCE(new);
2337 		ret = -EINVAL;
2338 		goto destroy_io;
2339 	}
2340 
2341 	nvme_start_ctrl(ctrl);
2342 	return 0;
2343 
2344 destroy_io:
2345 	if (ctrl->queue_count > 1) {
2346 		nvme_quiesce_io_queues(ctrl);
2347 		nvme_sync_io_queues(ctrl);
2348 		nvme_tcp_stop_io_queues(ctrl);
2349 		nvme_cancel_tagset(ctrl);
2350 		if (new)
2351 			nvme_remove_io_tag_set(ctrl);
2352 		nvme_tcp_free_io_queues(ctrl);
2353 	}
2354 destroy_admin:
2355 	nvme_stop_keep_alive(ctrl);
2356 	nvme_tcp_teardown_admin_queue(ctrl, new);
2357 	return ret;
2358 }
2359 
2360 static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work)
2361 {
2362 	struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work),
2363 			struct nvme_tcp_ctrl, connect_work);
2364 	struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2365 	int ret;
2366 
2367 	++ctrl->nr_reconnects;
2368 
2369 	ret = nvme_tcp_setup_ctrl(ctrl, false);
2370 	if (ret)
2371 		goto requeue;
2372 
2373 	dev_info(ctrl->device, "Successfully reconnected (attempt %d/%d)\n",
2374 		 ctrl->nr_reconnects, ctrl->opts->max_reconnects);
2375 
2376 	ctrl->nr_reconnects = 0;
2377 
2378 	return;
2379 
2380 requeue:
2381 	dev_info(ctrl->device, "Failed reconnect attempt %d/%d\n",
2382 		 ctrl->nr_reconnects, ctrl->opts->max_reconnects);
2383 	nvme_tcp_reconnect_or_remove(ctrl, ret);
2384 }
2385 
2386 static void nvme_tcp_error_recovery_work(struct work_struct *work)
2387 {
2388 	struct nvme_tcp_ctrl *tcp_ctrl = container_of(work,
2389 				struct nvme_tcp_ctrl, err_work);
2390 	struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2391 
2392 	nvme_stop_keep_alive(ctrl);
2393 	flush_work(&ctrl->async_event_work);
2394 	nvme_tcp_teardown_io_queues(ctrl, false);
2395 	/* unquiesce to fail fast pending requests */
2396 	nvme_unquiesce_io_queues(ctrl);
2397 	nvme_tcp_teardown_admin_queue(ctrl, false);
2398 	nvme_unquiesce_admin_queue(ctrl);
2399 	nvme_auth_stop(ctrl);
2400 
2401 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2402 		/* state change failure is ok if we started ctrl delete */
2403 		enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
2404 
2405 		WARN_ON_ONCE(state != NVME_CTRL_DELETING &&
2406 			     state != NVME_CTRL_DELETING_NOIO);
2407 		return;
2408 	}
2409 
2410 	nvme_tcp_reconnect_or_remove(ctrl, 0);
2411 }
2412 
2413 static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
2414 {
2415 	nvme_tcp_teardown_io_queues(ctrl, shutdown);
2416 	nvme_quiesce_admin_queue(ctrl);
2417 	nvme_disable_ctrl(ctrl, shutdown);
2418 	nvme_tcp_teardown_admin_queue(ctrl, shutdown);
2419 }
2420 
2421 static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl)
2422 {
2423 	nvme_tcp_teardown_ctrl(ctrl, true);
2424 }
2425 
2426 static void nvme_reset_ctrl_work(struct work_struct *work)
2427 {
2428 	struct nvme_ctrl *ctrl =
2429 		container_of(work, struct nvme_ctrl, reset_work);
2430 	int ret;
2431 
2432 	nvme_stop_ctrl(ctrl);
2433 	nvme_tcp_teardown_ctrl(ctrl, false);
2434 
2435 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2436 		/* state change failure is ok if we started ctrl delete */
2437 		enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
2438 
2439 		WARN_ON_ONCE(state != NVME_CTRL_DELETING &&
2440 			     state != NVME_CTRL_DELETING_NOIO);
2441 		return;
2442 	}
2443 
2444 	ret = nvme_tcp_setup_ctrl(ctrl, false);
2445 	if (ret)
2446 		goto out_fail;
2447 
2448 	return;
2449 
2450 out_fail:
2451 	++ctrl->nr_reconnects;
2452 	nvme_tcp_reconnect_or_remove(ctrl, ret);
2453 }
2454 
2455 static void nvme_tcp_stop_ctrl(struct nvme_ctrl *ctrl)
2456 {
2457 	flush_work(&to_tcp_ctrl(ctrl)->err_work);
2458 	cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work);
2459 }
2460 
2461 static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl)
2462 {
2463 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
2464 
2465 	if (list_empty(&ctrl->list))
2466 		goto free_ctrl;
2467 
2468 	mutex_lock(&nvme_tcp_ctrl_mutex);
2469 	list_del(&ctrl->list);
2470 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2471 
2472 	nvmf_free_options(nctrl->opts);
2473 free_ctrl:
2474 	kfree(ctrl->queues);
2475 	kfree(ctrl);
2476 }
2477 
2478 static void nvme_tcp_set_sg_null(struct nvme_command *c)
2479 {
2480 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2481 
2482 	sg->addr = 0;
2483 	sg->length = 0;
2484 	sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2485 			NVME_SGL_FMT_TRANSPORT_A;
2486 }
2487 
2488 static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue,
2489 		struct nvme_command *c, u32 data_len)
2490 {
2491 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2492 
2493 	sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
2494 	sg->length = cpu_to_le32(data_len);
2495 	sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
2496 }
2497 
2498 static void nvme_tcp_set_sg_host_data(struct nvme_command *c,
2499 		u32 data_len)
2500 {
2501 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2502 
2503 	sg->addr = 0;
2504 	sg->length = cpu_to_le32(data_len);
2505 	sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2506 			NVME_SGL_FMT_TRANSPORT_A;
2507 }
2508 
2509 static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg)
2510 {
2511 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg);
2512 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
2513 	struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu;
2514 	struct nvme_command *cmd = &pdu->cmd;
2515 	u8 hdgst = nvme_tcp_hdgst_len(queue);
2516 
2517 	memset(pdu, 0, sizeof(*pdu));
2518 	pdu->hdr.type = nvme_tcp_cmd;
2519 	if (queue->hdr_digest)
2520 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
2521 	pdu->hdr.hlen = sizeof(*pdu);
2522 	pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
2523 
2524 	cmd->common.opcode = nvme_admin_async_event;
2525 	cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
2526 	cmd->common.flags |= NVME_CMD_SGL_METABUF;
2527 	nvme_tcp_set_sg_null(cmd);
2528 
2529 	ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU;
2530 	ctrl->async_req.offset = 0;
2531 	ctrl->async_req.curr_bio = NULL;
2532 	ctrl->async_req.data_len = 0;
2533 
2534 	nvme_tcp_queue_request(&ctrl->async_req, true, true);
2535 }
2536 
2537 static void nvme_tcp_complete_timed_out(struct request *rq)
2538 {
2539 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2540 	struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2541 
2542 	nvme_tcp_stop_queue(ctrl, nvme_tcp_queue_id(req->queue));
2543 	nvmf_complete_timed_out_request(rq);
2544 }
2545 
2546 static enum blk_eh_timer_return nvme_tcp_timeout(struct request *rq)
2547 {
2548 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2549 	struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2550 	struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req);
2551 	struct nvme_command *cmd = &pdu->cmd;
2552 	int qid = nvme_tcp_queue_id(req->queue);
2553 
2554 	dev_warn(ctrl->device,
2555 		 "I/O tag %d (%04x) type %d opcode %#x (%s) QID %d timeout\n",
2556 		 rq->tag, nvme_cid(rq), pdu->hdr.type, cmd->common.opcode,
2557 		 nvme_fabrics_opcode_str(qid, cmd), qid);
2558 
2559 	if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE) {
2560 		/*
2561 		 * If we are resetting, connecting or deleting we should
2562 		 * complete immediately because we may block controller
2563 		 * teardown or setup sequence
2564 		 * - ctrl disable/shutdown fabrics requests
2565 		 * - connect requests
2566 		 * - initialization admin requests
2567 		 * - I/O requests that entered after unquiescing and
2568 		 *   the controller stopped responding
2569 		 *
2570 		 * All other requests should be cancelled by the error
2571 		 * recovery work, so it's fine that we fail it here.
2572 		 */
2573 		nvme_tcp_complete_timed_out(rq);
2574 		return BLK_EH_DONE;
2575 	}
2576 
2577 	/*
2578 	 * LIVE state should trigger the normal error recovery which will
2579 	 * handle completing this request.
2580 	 */
2581 	nvme_tcp_error_recovery(ctrl);
2582 	return BLK_EH_RESET_TIMER;
2583 }
2584 
2585 static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue,
2586 			struct request *rq)
2587 {
2588 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2589 	struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req);
2590 	struct nvme_command *c = &pdu->cmd;
2591 
2592 	c->common.flags |= NVME_CMD_SGL_METABUF;
2593 
2594 	if (!blk_rq_nr_phys_segments(rq))
2595 		nvme_tcp_set_sg_null(c);
2596 	else if (rq_data_dir(rq) == WRITE &&
2597 	    req->data_len <= nvme_tcp_inline_data_size(req))
2598 		nvme_tcp_set_sg_inline(queue, c, req->data_len);
2599 	else
2600 		nvme_tcp_set_sg_host_data(c, req->data_len);
2601 
2602 	return 0;
2603 }
2604 
2605 static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns,
2606 		struct request *rq)
2607 {
2608 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2609 	struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req);
2610 	struct nvme_tcp_queue *queue = req->queue;
2611 	u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0;
2612 	blk_status_t ret;
2613 
2614 	ret = nvme_setup_cmd(ns, rq);
2615 	if (ret)
2616 		return ret;
2617 
2618 	req->state = NVME_TCP_SEND_CMD_PDU;
2619 	req->status = cpu_to_le16(NVME_SC_SUCCESS);
2620 	req->offset = 0;
2621 	req->data_sent = 0;
2622 	req->pdu_len = 0;
2623 	req->pdu_sent = 0;
2624 	req->h2cdata_left = 0;
2625 	req->data_len = blk_rq_nr_phys_segments(rq) ?
2626 				blk_rq_payload_bytes(rq) : 0;
2627 	req->curr_bio = rq->bio;
2628 	if (req->curr_bio && req->data_len)
2629 		nvme_tcp_init_iter(req, rq_data_dir(rq));
2630 
2631 	if (rq_data_dir(rq) == WRITE &&
2632 	    req->data_len <= nvme_tcp_inline_data_size(req))
2633 		req->pdu_len = req->data_len;
2634 
2635 	pdu->hdr.type = nvme_tcp_cmd;
2636 	pdu->hdr.flags = 0;
2637 	if (queue->hdr_digest)
2638 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
2639 	if (queue->data_digest && req->pdu_len) {
2640 		pdu->hdr.flags |= NVME_TCP_F_DDGST;
2641 		ddgst = nvme_tcp_ddgst_len(queue);
2642 	}
2643 	pdu->hdr.hlen = sizeof(*pdu);
2644 	pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0;
2645 	pdu->hdr.plen =
2646 		cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst);
2647 
2648 	ret = nvme_tcp_map_data(queue, rq);
2649 	if (unlikely(ret)) {
2650 		nvme_cleanup_cmd(rq);
2651 		dev_err(queue->ctrl->ctrl.device,
2652 			"Failed to map data (%d)\n", ret);
2653 		return ret;
2654 	}
2655 
2656 	return 0;
2657 }
2658 
2659 static void nvme_tcp_commit_rqs(struct blk_mq_hw_ctx *hctx)
2660 {
2661 	struct nvme_tcp_queue *queue = hctx->driver_data;
2662 
2663 	if (!llist_empty(&queue->req_list))
2664 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
2665 }
2666 
2667 static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx,
2668 		const struct blk_mq_queue_data *bd)
2669 {
2670 	struct nvme_ns *ns = hctx->queue->queuedata;
2671 	struct nvme_tcp_queue *queue = hctx->driver_data;
2672 	struct request *rq = bd->rq;
2673 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2674 	bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags);
2675 	blk_status_t ret;
2676 
2677 	if (!nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2678 		return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq);
2679 
2680 	ret = nvme_tcp_setup_cmd_pdu(ns, rq);
2681 	if (unlikely(ret))
2682 		return ret;
2683 
2684 	nvme_start_request(rq);
2685 
2686 	nvme_tcp_queue_request(req, true, bd->last);
2687 
2688 	return BLK_STS_OK;
2689 }
2690 
2691 static void nvme_tcp_map_queues(struct blk_mq_tag_set *set)
2692 {
2693 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(set->driver_data);
2694 
2695 	nvmf_map_queues(set, &ctrl->ctrl, ctrl->io_queues);
2696 }
2697 
2698 static int nvme_tcp_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
2699 {
2700 	struct nvme_tcp_queue *queue = hctx->driver_data;
2701 	struct sock *sk = queue->sock->sk;
2702 
2703 	if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags))
2704 		return 0;
2705 
2706 	set_bit(NVME_TCP_Q_POLLING, &queue->flags);
2707 	if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue))
2708 		sk_busy_loop(sk, true);
2709 	nvme_tcp_try_recv(queue);
2710 	clear_bit(NVME_TCP_Q_POLLING, &queue->flags);
2711 	return queue->nr_cqe;
2712 }
2713 
2714 static int nvme_tcp_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2715 {
2716 	struct nvme_tcp_queue *queue = &to_tcp_ctrl(ctrl)->queues[0];
2717 	struct sockaddr_storage src_addr;
2718 	int ret, len;
2719 
2720 	len = nvmf_get_address(ctrl, buf, size);
2721 
2722 	if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags))
2723 		return len;
2724 
2725 	mutex_lock(&queue->queue_lock);
2726 
2727 	ret = kernel_getsockname(queue->sock, (struct sockaddr *)&src_addr);
2728 	if (ret > 0) {
2729 		if (len > 0)
2730 			len--; /* strip trailing newline */
2731 		len += scnprintf(buf + len, size - len, "%ssrc_addr=%pISc\n",
2732 				(len) ? "," : "", &src_addr);
2733 	}
2734 
2735 	mutex_unlock(&queue->queue_lock);
2736 
2737 	return len;
2738 }
2739 
2740 static const struct blk_mq_ops nvme_tcp_mq_ops = {
2741 	.queue_rq	= nvme_tcp_queue_rq,
2742 	.commit_rqs	= nvme_tcp_commit_rqs,
2743 	.complete	= nvme_complete_rq,
2744 	.init_request	= nvme_tcp_init_request,
2745 	.exit_request	= nvme_tcp_exit_request,
2746 	.init_hctx	= nvme_tcp_init_hctx,
2747 	.timeout	= nvme_tcp_timeout,
2748 	.map_queues	= nvme_tcp_map_queues,
2749 	.poll		= nvme_tcp_poll,
2750 };
2751 
2752 static const struct blk_mq_ops nvme_tcp_admin_mq_ops = {
2753 	.queue_rq	= nvme_tcp_queue_rq,
2754 	.complete	= nvme_complete_rq,
2755 	.init_request	= nvme_tcp_init_request,
2756 	.exit_request	= nvme_tcp_exit_request,
2757 	.init_hctx	= nvme_tcp_init_admin_hctx,
2758 	.timeout	= nvme_tcp_timeout,
2759 };
2760 
2761 static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = {
2762 	.name			= "tcp",
2763 	.module			= THIS_MODULE,
2764 	.flags			= NVME_F_FABRICS | NVME_F_BLOCKING,
2765 	.reg_read32		= nvmf_reg_read32,
2766 	.reg_read64		= nvmf_reg_read64,
2767 	.reg_write32		= nvmf_reg_write32,
2768 	.subsystem_reset	= nvmf_subsystem_reset,
2769 	.free_ctrl		= nvme_tcp_free_ctrl,
2770 	.submit_async_event	= nvme_tcp_submit_async_event,
2771 	.delete_ctrl		= nvme_tcp_delete_ctrl,
2772 	.get_address		= nvme_tcp_get_address,
2773 	.stop_ctrl		= nvme_tcp_stop_ctrl,
2774 };
2775 
2776 static bool
2777 nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts)
2778 {
2779 	struct nvme_tcp_ctrl *ctrl;
2780 	bool found = false;
2781 
2782 	mutex_lock(&nvme_tcp_ctrl_mutex);
2783 	list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) {
2784 		found = nvmf_ip_options_match(&ctrl->ctrl, opts);
2785 		if (found)
2786 			break;
2787 	}
2788 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2789 
2790 	return found;
2791 }
2792 
2793 static struct nvme_tcp_ctrl *nvme_tcp_alloc_ctrl(struct device *dev,
2794 		struct nvmf_ctrl_options *opts)
2795 {
2796 	struct nvme_tcp_ctrl *ctrl;
2797 	int ret;
2798 
2799 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2800 	if (!ctrl)
2801 		return ERR_PTR(-ENOMEM);
2802 
2803 	INIT_LIST_HEAD(&ctrl->list);
2804 	ctrl->ctrl.opts = opts;
2805 	ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2806 				opts->nr_poll_queues + 1;
2807 	ctrl->ctrl.sqsize = opts->queue_size - 1;
2808 	ctrl->ctrl.kato = opts->kato;
2809 
2810 	INIT_DELAYED_WORK(&ctrl->connect_work,
2811 			nvme_tcp_reconnect_ctrl_work);
2812 	INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work);
2813 	INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work);
2814 
2815 	if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2816 		opts->trsvcid =
2817 			kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL);
2818 		if (!opts->trsvcid) {
2819 			ret = -ENOMEM;
2820 			goto out_free_ctrl;
2821 		}
2822 		opts->mask |= NVMF_OPT_TRSVCID;
2823 	}
2824 
2825 	ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2826 			opts->traddr, opts->trsvcid, &ctrl->addr);
2827 	if (ret) {
2828 		pr_err("malformed address passed: %s:%s\n",
2829 			opts->traddr, opts->trsvcid);
2830 		goto out_free_ctrl;
2831 	}
2832 
2833 	if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2834 		ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2835 			opts->host_traddr, NULL, &ctrl->src_addr);
2836 		if (ret) {
2837 			pr_err("malformed src address passed: %s\n",
2838 			       opts->host_traddr);
2839 			goto out_free_ctrl;
2840 		}
2841 	}
2842 
2843 	if (opts->mask & NVMF_OPT_HOST_IFACE) {
2844 		if (!__dev_get_by_name(&init_net, opts->host_iface)) {
2845 			pr_err("invalid interface passed: %s\n",
2846 			       opts->host_iface);
2847 			ret = -ENODEV;
2848 			goto out_free_ctrl;
2849 		}
2850 	}
2851 
2852 	if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) {
2853 		ret = -EALREADY;
2854 		goto out_free_ctrl;
2855 	}
2856 
2857 	ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2858 				GFP_KERNEL);
2859 	if (!ctrl->queues) {
2860 		ret = -ENOMEM;
2861 		goto out_free_ctrl;
2862 	}
2863 
2864 	ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0);
2865 	if (ret)
2866 		goto out_kfree_queues;
2867 
2868 	return ctrl;
2869 out_kfree_queues:
2870 	kfree(ctrl->queues);
2871 out_free_ctrl:
2872 	kfree(ctrl);
2873 	return ERR_PTR(ret);
2874 }
2875 
2876 static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev,
2877 		struct nvmf_ctrl_options *opts)
2878 {
2879 	struct nvme_tcp_ctrl *ctrl;
2880 	int ret;
2881 
2882 	ctrl = nvme_tcp_alloc_ctrl(dev, opts);
2883 	if (IS_ERR(ctrl))
2884 		return ERR_CAST(ctrl);
2885 
2886 	ret = nvme_add_ctrl(&ctrl->ctrl);
2887 	if (ret)
2888 		goto out_put_ctrl;
2889 
2890 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2891 		WARN_ON_ONCE(1);
2892 		ret = -EINTR;
2893 		goto out_uninit_ctrl;
2894 	}
2895 
2896 	ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true);
2897 	if (ret)
2898 		goto out_uninit_ctrl;
2899 
2900 	dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp, hostnqn: %s\n",
2901 		nvmf_ctrl_subsysnqn(&ctrl->ctrl), &ctrl->addr, opts->host->nqn);
2902 
2903 	mutex_lock(&nvme_tcp_ctrl_mutex);
2904 	list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list);
2905 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2906 
2907 	return &ctrl->ctrl;
2908 
2909 out_uninit_ctrl:
2910 	nvme_uninit_ctrl(&ctrl->ctrl);
2911 out_put_ctrl:
2912 	nvme_put_ctrl(&ctrl->ctrl);
2913 	if (ret > 0)
2914 		ret = -EIO;
2915 	return ERR_PTR(ret);
2916 }
2917 
2918 static struct nvmf_transport_ops nvme_tcp_transport = {
2919 	.name		= "tcp",
2920 	.module		= THIS_MODULE,
2921 	.required_opts	= NVMF_OPT_TRADDR,
2922 	.allowed_opts	= NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2923 			  NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2924 			  NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST |
2925 			  NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
2926 			  NVMF_OPT_TOS | NVMF_OPT_HOST_IFACE | NVMF_OPT_TLS |
2927 			  NVMF_OPT_KEYRING | NVMF_OPT_TLS_KEY,
2928 	.create_ctrl	= nvme_tcp_create_ctrl,
2929 };
2930 
2931 static int __init nvme_tcp_init_module(void)
2932 {
2933 	unsigned int wq_flags = WQ_MEM_RECLAIM | WQ_HIGHPRI | WQ_SYSFS;
2934 	int cpu;
2935 
2936 	BUILD_BUG_ON(sizeof(struct nvme_tcp_hdr) != 8);
2937 	BUILD_BUG_ON(sizeof(struct nvme_tcp_cmd_pdu) != 72);
2938 	BUILD_BUG_ON(sizeof(struct nvme_tcp_data_pdu) != 24);
2939 	BUILD_BUG_ON(sizeof(struct nvme_tcp_rsp_pdu) != 24);
2940 	BUILD_BUG_ON(sizeof(struct nvme_tcp_r2t_pdu) != 24);
2941 	BUILD_BUG_ON(sizeof(struct nvme_tcp_icreq_pdu) != 128);
2942 	BUILD_BUG_ON(sizeof(struct nvme_tcp_icresp_pdu) != 128);
2943 	BUILD_BUG_ON(sizeof(struct nvme_tcp_term_pdu) != 24);
2944 
2945 	if (wq_unbound)
2946 		wq_flags |= WQ_UNBOUND;
2947 
2948 	nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq", wq_flags, 0);
2949 	if (!nvme_tcp_wq)
2950 		return -ENOMEM;
2951 
2952 	for_each_possible_cpu(cpu)
2953 		atomic_set(&nvme_tcp_cpu_queues[cpu], 0);
2954 
2955 	nvmf_register_transport(&nvme_tcp_transport);
2956 	return 0;
2957 }
2958 
2959 static void __exit nvme_tcp_cleanup_module(void)
2960 {
2961 	struct nvme_tcp_ctrl *ctrl;
2962 
2963 	nvmf_unregister_transport(&nvme_tcp_transport);
2964 
2965 	mutex_lock(&nvme_tcp_ctrl_mutex);
2966 	list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list)
2967 		nvme_delete_ctrl(&ctrl->ctrl);
2968 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2969 	flush_workqueue(nvme_delete_wq);
2970 
2971 	destroy_workqueue(nvme_tcp_wq);
2972 }
2973 
2974 module_init(nvme_tcp_init_module);
2975 module_exit(nvme_tcp_cleanup_module);
2976 
2977 MODULE_DESCRIPTION("NVMe host TCP transport driver");
2978 MODULE_LICENSE("GPL v2");
2979