1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVMe over Fabrics TCP host. 4 * Copyright (c) 2018 Lightbits Labs. All rights reserved. 5 */ 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 #include <linux/module.h> 8 #include <linux/init.h> 9 #include <linux/slab.h> 10 #include <linux/err.h> 11 #include <linux/crc32.h> 12 #include <linux/nvme-tcp.h> 13 #include <linux/nvme-keyring.h> 14 #include <net/sock.h> 15 #include <net/tcp.h> 16 #include <net/tls.h> 17 #include <net/tls_prot.h> 18 #include <net/handshake.h> 19 #include <linux/blk-mq.h> 20 #include <net/busy_poll.h> 21 #include <trace/events/sock.h> 22 23 #include "nvme.h" 24 #include "fabrics.h" 25 26 struct nvme_tcp_queue; 27 28 /* Define the socket priority to use for connections were it is desirable 29 * that the NIC consider performing optimized packet processing or filtering. 30 * A non-zero value being sufficient to indicate general consideration of any 31 * possible optimization. Making it a module param allows for alternative 32 * values that may be unique for some NIC implementations. 33 */ 34 static int so_priority; 35 module_param(so_priority, int, 0644); 36 MODULE_PARM_DESC(so_priority, "nvme tcp socket optimize priority"); 37 38 /* 39 * Use the unbound workqueue for nvme_tcp_wq, then we can set the cpu affinity 40 * from sysfs. 41 */ 42 static bool wq_unbound; 43 module_param(wq_unbound, bool, 0644); 44 MODULE_PARM_DESC(wq_unbound, "Use unbound workqueue for nvme-tcp IO context (default false)"); 45 46 /* 47 * TLS handshake timeout 48 */ 49 static int tls_handshake_timeout = 10; 50 #ifdef CONFIG_NVME_TCP_TLS 51 module_param(tls_handshake_timeout, int, 0644); 52 MODULE_PARM_DESC(tls_handshake_timeout, 53 "nvme TLS handshake timeout in seconds (default 10)"); 54 #endif 55 56 static atomic_t nvme_tcp_cpu_queues[NR_CPUS]; 57 58 #ifdef CONFIG_DEBUG_LOCK_ALLOC 59 /* lockdep can detect a circular dependency of the form 60 * sk_lock -> mmap_lock (page fault) -> fs locks -> sk_lock 61 * because dependencies are tracked for both nvme-tcp and user contexts. Using 62 * a separate class prevents lockdep from conflating nvme-tcp socket use with 63 * user-space socket API use. 64 */ 65 static struct lock_class_key nvme_tcp_sk_key[2]; 66 static struct lock_class_key nvme_tcp_slock_key[2]; 67 68 static void nvme_tcp_reclassify_socket(struct socket *sock) 69 { 70 struct sock *sk = sock->sk; 71 72 if (WARN_ON_ONCE(!sock_allow_reclassification(sk))) 73 return; 74 75 switch (sk->sk_family) { 76 case AF_INET: 77 sock_lock_init_class_and_name(sk, "slock-AF_INET-NVME", 78 &nvme_tcp_slock_key[0], 79 "sk_lock-AF_INET-NVME", 80 &nvme_tcp_sk_key[0]); 81 break; 82 case AF_INET6: 83 sock_lock_init_class_and_name(sk, "slock-AF_INET6-NVME", 84 &nvme_tcp_slock_key[1], 85 "sk_lock-AF_INET6-NVME", 86 &nvme_tcp_sk_key[1]); 87 break; 88 default: 89 WARN_ON_ONCE(1); 90 } 91 } 92 #else 93 static void nvme_tcp_reclassify_socket(struct socket *sock) { } 94 #endif 95 96 enum nvme_tcp_send_state { 97 NVME_TCP_SEND_CMD_PDU = 0, 98 NVME_TCP_SEND_H2C_PDU, 99 NVME_TCP_SEND_DATA, 100 NVME_TCP_SEND_DDGST, 101 }; 102 103 struct nvme_tcp_request { 104 struct nvme_request req; 105 void *pdu; 106 struct nvme_tcp_queue *queue; 107 u32 data_len; 108 u32 pdu_len; 109 u32 pdu_sent; 110 u32 h2cdata_left; 111 u32 h2cdata_offset; 112 u16 ttag; 113 __le16 status; 114 struct list_head entry; 115 struct llist_node lentry; 116 __le32 ddgst; 117 118 struct bio *curr_bio; 119 struct iov_iter iter; 120 121 /* send state */ 122 size_t offset; 123 size_t data_sent; 124 enum nvme_tcp_send_state state; 125 }; 126 127 enum nvme_tcp_queue_flags { 128 NVME_TCP_Q_ALLOCATED = 0, 129 NVME_TCP_Q_LIVE = 1, 130 NVME_TCP_Q_POLLING = 2, 131 NVME_TCP_Q_IO_CPU_SET = 3, 132 }; 133 134 enum nvme_tcp_recv_state { 135 NVME_TCP_RECV_PDU = 0, 136 NVME_TCP_RECV_DATA, 137 NVME_TCP_RECV_DDGST, 138 }; 139 140 struct nvme_tcp_ctrl; 141 struct nvme_tcp_queue { 142 struct socket *sock; 143 struct work_struct io_work; 144 int io_cpu; 145 146 struct mutex queue_lock; 147 struct mutex send_mutex; 148 struct llist_head req_list; 149 struct list_head send_list; 150 151 /* recv state */ 152 void *pdu; 153 int pdu_remaining; 154 int pdu_offset; 155 size_t data_remaining; 156 size_t ddgst_remaining; 157 unsigned int nr_cqe; 158 159 /* send state */ 160 struct nvme_tcp_request *request; 161 162 u32 maxh2cdata; 163 size_t cmnd_capsule_len; 164 struct nvme_tcp_ctrl *ctrl; 165 unsigned long flags; 166 bool rd_enabled; 167 168 bool hdr_digest; 169 bool data_digest; 170 bool tls_enabled; 171 u32 rcv_crc; 172 u32 snd_crc; 173 __le32 exp_ddgst; 174 __le32 recv_ddgst; 175 struct completion tls_complete; 176 int tls_err; 177 struct page_frag_cache pf_cache; 178 179 void (*state_change)(struct sock *); 180 void (*data_ready)(struct sock *); 181 void (*write_space)(struct sock *); 182 }; 183 184 struct nvme_tcp_ctrl { 185 /* read only in the hot path */ 186 struct nvme_tcp_queue *queues; 187 struct blk_mq_tag_set tag_set; 188 189 /* other member variables */ 190 struct list_head list; 191 struct blk_mq_tag_set admin_tag_set; 192 struct sockaddr_storage addr; 193 struct sockaddr_storage src_addr; 194 struct nvme_ctrl ctrl; 195 196 struct work_struct err_work; 197 struct delayed_work connect_work; 198 struct nvme_tcp_request async_req; 199 u32 io_queues[HCTX_MAX_TYPES]; 200 }; 201 202 static LIST_HEAD(nvme_tcp_ctrl_list); 203 static DEFINE_MUTEX(nvme_tcp_ctrl_mutex); 204 static struct workqueue_struct *nvme_tcp_wq; 205 static const struct blk_mq_ops nvme_tcp_mq_ops; 206 static const struct blk_mq_ops nvme_tcp_admin_mq_ops; 207 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue); 208 209 static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl) 210 { 211 return container_of(ctrl, struct nvme_tcp_ctrl, ctrl); 212 } 213 214 static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue) 215 { 216 return queue - queue->ctrl->queues; 217 } 218 219 static inline bool nvme_tcp_recv_pdu_supported(enum nvme_tcp_pdu_type type) 220 { 221 switch (type) { 222 case nvme_tcp_c2h_term: 223 case nvme_tcp_c2h_data: 224 case nvme_tcp_r2t: 225 case nvme_tcp_rsp: 226 return true; 227 default: 228 return false; 229 } 230 } 231 232 /* 233 * Check if the queue is TLS encrypted 234 */ 235 static inline bool nvme_tcp_queue_tls(struct nvme_tcp_queue *queue) 236 { 237 if (!IS_ENABLED(CONFIG_NVME_TCP_TLS)) 238 return 0; 239 240 return queue->tls_enabled; 241 } 242 243 /* 244 * Check if TLS is configured for the controller. 245 */ 246 static inline bool nvme_tcp_tls_configured(struct nvme_ctrl *ctrl) 247 { 248 if (!IS_ENABLED(CONFIG_NVME_TCP_TLS)) 249 return 0; 250 251 return ctrl->opts->tls || ctrl->opts->concat; 252 } 253 254 static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue) 255 { 256 u32 queue_idx = nvme_tcp_queue_id(queue); 257 258 if (queue_idx == 0) 259 return queue->ctrl->admin_tag_set.tags[queue_idx]; 260 return queue->ctrl->tag_set.tags[queue_idx - 1]; 261 } 262 263 static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue) 264 { 265 return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0; 266 } 267 268 static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue) 269 { 270 return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0; 271 } 272 273 static inline void *nvme_tcp_req_cmd_pdu(struct nvme_tcp_request *req) 274 { 275 return req->pdu; 276 } 277 278 static inline void *nvme_tcp_req_data_pdu(struct nvme_tcp_request *req) 279 { 280 /* use the pdu space in the back for the data pdu */ 281 return req->pdu + sizeof(struct nvme_tcp_cmd_pdu) - 282 sizeof(struct nvme_tcp_data_pdu); 283 } 284 285 static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_request *req) 286 { 287 if (nvme_is_fabrics(req->req.cmd)) 288 return NVME_TCP_ADMIN_CCSZ; 289 return req->queue->cmnd_capsule_len - sizeof(struct nvme_command); 290 } 291 292 static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req) 293 { 294 return req == &req->queue->ctrl->async_req; 295 } 296 297 static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req) 298 { 299 struct request *rq; 300 301 if (unlikely(nvme_tcp_async_req(req))) 302 return false; /* async events don't have a request */ 303 304 rq = blk_mq_rq_from_pdu(req); 305 306 return rq_data_dir(rq) == WRITE && req->data_len && 307 req->data_len <= nvme_tcp_inline_data_size(req); 308 } 309 310 static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req) 311 { 312 return req->iter.bvec->bv_page; 313 } 314 315 static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req) 316 { 317 return req->iter.bvec->bv_offset + req->iter.iov_offset; 318 } 319 320 static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req) 321 { 322 return min_t(size_t, iov_iter_single_seg_count(&req->iter), 323 req->pdu_len - req->pdu_sent); 324 } 325 326 static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req) 327 { 328 return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ? 329 req->pdu_len - req->pdu_sent : 0; 330 } 331 332 static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req, 333 int len) 334 { 335 return nvme_tcp_pdu_data_left(req) <= len; 336 } 337 338 static void nvme_tcp_init_iter(struct nvme_tcp_request *req, 339 unsigned int dir) 340 { 341 struct request *rq = blk_mq_rq_from_pdu(req); 342 struct bio_vec *vec; 343 unsigned int size; 344 int nr_bvec; 345 size_t offset; 346 347 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) { 348 vec = &rq->special_vec; 349 nr_bvec = 1; 350 size = blk_rq_payload_bytes(rq); 351 offset = 0; 352 } else { 353 struct bio *bio = req->curr_bio; 354 struct bvec_iter bi; 355 struct bio_vec bv; 356 357 vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); 358 nr_bvec = 0; 359 bio_for_each_bvec(bv, bio, bi) { 360 nr_bvec++; 361 } 362 size = bio->bi_iter.bi_size; 363 offset = bio->bi_iter.bi_bvec_done; 364 } 365 366 iov_iter_bvec(&req->iter, dir, vec, nr_bvec, size); 367 req->iter.iov_offset = offset; 368 } 369 370 static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req, 371 int len) 372 { 373 req->data_sent += len; 374 req->pdu_sent += len; 375 iov_iter_advance(&req->iter, len); 376 if (!iov_iter_count(&req->iter) && 377 req->data_sent < req->data_len) { 378 req->curr_bio = req->curr_bio->bi_next; 379 nvme_tcp_init_iter(req, ITER_SOURCE); 380 } 381 } 382 383 static inline void nvme_tcp_send_all(struct nvme_tcp_queue *queue) 384 { 385 int ret; 386 387 /* drain the send queue as much as we can... */ 388 do { 389 ret = nvme_tcp_try_send(queue); 390 } while (ret > 0); 391 } 392 393 static inline bool nvme_tcp_queue_has_pending(struct nvme_tcp_queue *queue) 394 { 395 return !list_empty(&queue->send_list) || 396 !llist_empty(&queue->req_list); 397 } 398 399 static inline bool nvme_tcp_queue_more(struct nvme_tcp_queue *queue) 400 { 401 return !nvme_tcp_queue_tls(queue) && 402 nvme_tcp_queue_has_pending(queue); 403 } 404 405 static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req, 406 bool last) 407 { 408 struct nvme_tcp_queue *queue = req->queue; 409 bool empty; 410 411 empty = llist_add(&req->lentry, &queue->req_list) && 412 list_empty(&queue->send_list) && !queue->request; 413 414 /* 415 * if we're the first on the send_list and we can try to send 416 * directly, otherwise queue io_work. Also, only do that if we 417 * are on the same cpu, so we don't introduce contention. 418 */ 419 if (queue->io_cpu == raw_smp_processor_id() && 420 empty && mutex_trylock(&queue->send_mutex)) { 421 nvme_tcp_send_all(queue); 422 mutex_unlock(&queue->send_mutex); 423 } 424 425 if (last && nvme_tcp_queue_has_pending(queue)) 426 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 427 } 428 429 static void nvme_tcp_process_req_list(struct nvme_tcp_queue *queue) 430 { 431 struct nvme_tcp_request *req; 432 struct llist_node *node; 433 434 for (node = llist_del_all(&queue->req_list); node; node = node->next) { 435 req = llist_entry(node, struct nvme_tcp_request, lentry); 436 list_add(&req->entry, &queue->send_list); 437 } 438 } 439 440 static inline struct nvme_tcp_request * 441 nvme_tcp_fetch_request(struct nvme_tcp_queue *queue) 442 { 443 struct nvme_tcp_request *req; 444 445 req = list_first_entry_or_null(&queue->send_list, 446 struct nvme_tcp_request, entry); 447 if (!req) { 448 nvme_tcp_process_req_list(queue); 449 req = list_first_entry_or_null(&queue->send_list, 450 struct nvme_tcp_request, entry); 451 if (unlikely(!req)) 452 return NULL; 453 } 454 455 list_del(&req->entry); 456 return req; 457 } 458 459 #define NVME_TCP_CRC_SEED (~0) 460 461 static inline void nvme_tcp_ddgst_update(u32 *crcp, 462 struct page *page, size_t off, size_t len) 463 { 464 page += off / PAGE_SIZE; 465 off %= PAGE_SIZE; 466 while (len) { 467 const void *vaddr = kmap_local_page(page); 468 size_t n = min(len, (size_t)PAGE_SIZE - off); 469 470 *crcp = crc32c(*crcp, vaddr + off, n); 471 kunmap_local(vaddr); 472 page++; 473 off = 0; 474 len -= n; 475 } 476 } 477 478 static inline __le32 nvme_tcp_ddgst_final(u32 crc) 479 { 480 return cpu_to_le32(~crc); 481 } 482 483 static inline __le32 nvme_tcp_hdgst(const void *pdu, size_t len) 484 { 485 return cpu_to_le32(~crc32c(NVME_TCP_CRC_SEED, pdu, len)); 486 } 487 488 static inline void nvme_tcp_set_hdgst(void *pdu, size_t len) 489 { 490 *(__le32 *)(pdu + len) = nvme_tcp_hdgst(pdu, len); 491 } 492 493 static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue, 494 void *pdu, size_t pdu_len) 495 { 496 struct nvme_tcp_hdr *hdr = pdu; 497 __le32 recv_digest; 498 __le32 exp_digest; 499 500 if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) { 501 dev_err(queue->ctrl->ctrl.device, 502 "queue %d: header digest flag is cleared\n", 503 nvme_tcp_queue_id(queue)); 504 return -EPROTO; 505 } 506 507 recv_digest = *(__le32 *)(pdu + hdr->hlen); 508 exp_digest = nvme_tcp_hdgst(pdu, pdu_len); 509 if (recv_digest != exp_digest) { 510 dev_err(queue->ctrl->ctrl.device, 511 "header digest error: recv %#x expected %#x\n", 512 le32_to_cpu(recv_digest), le32_to_cpu(exp_digest)); 513 return -EIO; 514 } 515 516 return 0; 517 } 518 519 static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu) 520 { 521 struct nvme_tcp_hdr *hdr = pdu; 522 u8 digest_len = nvme_tcp_hdgst_len(queue); 523 u32 len; 524 525 len = le32_to_cpu(hdr->plen) - hdr->hlen - 526 ((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0); 527 528 if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) { 529 dev_err(queue->ctrl->ctrl.device, 530 "queue %d: data digest flag is cleared\n", 531 nvme_tcp_queue_id(queue)); 532 return -EPROTO; 533 } 534 queue->rcv_crc = NVME_TCP_CRC_SEED; 535 536 return 0; 537 } 538 539 static void nvme_tcp_exit_request(struct blk_mq_tag_set *set, 540 struct request *rq, unsigned int hctx_idx) 541 { 542 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 543 544 page_frag_free(req->pdu); 545 } 546 547 static int nvme_tcp_init_request(struct blk_mq_tag_set *set, 548 struct request *rq, unsigned int hctx_idx, 549 unsigned int numa_node) 550 { 551 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(set->driver_data); 552 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 553 struct nvme_tcp_cmd_pdu *pdu; 554 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; 555 struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx]; 556 u8 hdgst = nvme_tcp_hdgst_len(queue); 557 558 req->pdu = page_frag_alloc(&queue->pf_cache, 559 sizeof(struct nvme_tcp_cmd_pdu) + hdgst, 560 GFP_KERNEL | __GFP_ZERO); 561 if (!req->pdu) 562 return -ENOMEM; 563 564 pdu = req->pdu; 565 req->queue = queue; 566 nvme_req(rq)->ctrl = &ctrl->ctrl; 567 nvme_req(rq)->cmd = &pdu->cmd; 568 569 return 0; 570 } 571 572 static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 573 unsigned int hctx_idx) 574 { 575 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(data); 576 struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1]; 577 578 hctx->driver_data = queue; 579 return 0; 580 } 581 582 static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, 583 unsigned int hctx_idx) 584 { 585 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(data); 586 struct nvme_tcp_queue *queue = &ctrl->queues[0]; 587 588 hctx->driver_data = queue; 589 return 0; 590 } 591 592 static enum nvme_tcp_recv_state 593 nvme_tcp_recv_state(struct nvme_tcp_queue *queue) 594 { 595 return (queue->pdu_remaining) ? NVME_TCP_RECV_PDU : 596 (queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST : 597 NVME_TCP_RECV_DATA; 598 } 599 600 static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue) 601 { 602 queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) + 603 nvme_tcp_hdgst_len(queue); 604 queue->pdu_offset = 0; 605 queue->data_remaining = -1; 606 queue->ddgst_remaining = 0; 607 } 608 609 static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl) 610 { 611 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 612 return; 613 614 dev_warn(ctrl->device, "starting error recovery\n"); 615 queue_work(nvme_reset_wq, &to_tcp_ctrl(ctrl)->err_work); 616 } 617 618 static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue, 619 struct nvme_completion *cqe) 620 { 621 struct nvme_tcp_request *req; 622 struct request *rq; 623 624 rq = nvme_find_rq(nvme_tcp_tagset(queue), cqe->command_id); 625 if (!rq) { 626 dev_err(queue->ctrl->ctrl.device, 627 "got bad cqe.command_id %#x on queue %d\n", 628 cqe->command_id, nvme_tcp_queue_id(queue)); 629 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 630 return -EINVAL; 631 } 632 633 req = blk_mq_rq_to_pdu(rq); 634 if (req->status == cpu_to_le16(NVME_SC_SUCCESS)) 635 req->status = cqe->status; 636 637 if (!nvme_try_complete_req(rq, req->status, cqe->result)) 638 nvme_complete_rq(rq); 639 queue->nr_cqe++; 640 641 return 0; 642 } 643 644 static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue, 645 struct nvme_tcp_data_pdu *pdu) 646 { 647 struct request *rq; 648 649 rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id); 650 if (!rq) { 651 dev_err(queue->ctrl->ctrl.device, 652 "got bad c2hdata.command_id %#x on queue %d\n", 653 pdu->command_id, nvme_tcp_queue_id(queue)); 654 return -ENOENT; 655 } 656 657 if (!blk_rq_payload_bytes(rq)) { 658 dev_err(queue->ctrl->ctrl.device, 659 "queue %d tag %#x unexpected data\n", 660 nvme_tcp_queue_id(queue), rq->tag); 661 return -EIO; 662 } 663 664 queue->data_remaining = le32_to_cpu(pdu->data_length); 665 666 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS && 667 unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) { 668 dev_err(queue->ctrl->ctrl.device, 669 "queue %d tag %#x SUCCESS set but not last PDU\n", 670 nvme_tcp_queue_id(queue), rq->tag); 671 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 672 return -EPROTO; 673 } 674 675 return 0; 676 } 677 678 static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue, 679 struct nvme_tcp_rsp_pdu *pdu) 680 { 681 struct nvme_completion *cqe = &pdu->cqe; 682 int ret = 0; 683 684 /* 685 * AEN requests are special as they don't time out and can 686 * survive any kind of queue freeze and often don't respond to 687 * aborts. We don't even bother to allocate a struct request 688 * for them but rather special case them here. 689 */ 690 if (unlikely(nvme_is_aen_req(nvme_tcp_queue_id(queue), 691 cqe->command_id))) 692 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status, 693 &cqe->result); 694 else 695 ret = nvme_tcp_process_nvme_cqe(queue, cqe); 696 697 return ret; 698 } 699 700 static void nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req) 701 { 702 struct nvme_tcp_data_pdu *data = nvme_tcp_req_data_pdu(req); 703 struct nvme_tcp_queue *queue = req->queue; 704 struct request *rq = blk_mq_rq_from_pdu(req); 705 u32 h2cdata_sent = req->pdu_len; 706 u8 hdgst = nvme_tcp_hdgst_len(queue); 707 u8 ddgst = nvme_tcp_ddgst_len(queue); 708 709 req->state = NVME_TCP_SEND_H2C_PDU; 710 req->offset = 0; 711 req->pdu_len = min(req->h2cdata_left, queue->maxh2cdata); 712 req->pdu_sent = 0; 713 req->h2cdata_left -= req->pdu_len; 714 req->h2cdata_offset += h2cdata_sent; 715 716 memset(data, 0, sizeof(*data)); 717 data->hdr.type = nvme_tcp_h2c_data; 718 if (!req->h2cdata_left) 719 data->hdr.flags = NVME_TCP_F_DATA_LAST; 720 if (queue->hdr_digest) 721 data->hdr.flags |= NVME_TCP_F_HDGST; 722 if (queue->data_digest) 723 data->hdr.flags |= NVME_TCP_F_DDGST; 724 data->hdr.hlen = sizeof(*data); 725 data->hdr.pdo = data->hdr.hlen + hdgst; 726 data->hdr.plen = 727 cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst); 728 data->ttag = req->ttag; 729 data->command_id = nvme_cid(rq); 730 data->data_offset = cpu_to_le32(req->h2cdata_offset); 731 data->data_length = cpu_to_le32(req->pdu_len); 732 } 733 734 static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue, 735 struct nvme_tcp_r2t_pdu *pdu) 736 { 737 struct nvme_tcp_request *req; 738 struct request *rq; 739 u32 r2t_length = le32_to_cpu(pdu->r2t_length); 740 u32 r2t_offset = le32_to_cpu(pdu->r2t_offset); 741 742 rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id); 743 if (!rq) { 744 dev_err(queue->ctrl->ctrl.device, 745 "got bad r2t.command_id %#x on queue %d\n", 746 pdu->command_id, nvme_tcp_queue_id(queue)); 747 return -ENOENT; 748 } 749 req = blk_mq_rq_to_pdu(rq); 750 751 if (unlikely(!r2t_length)) { 752 dev_err(queue->ctrl->ctrl.device, 753 "req %d r2t len is %u, probably a bug...\n", 754 rq->tag, r2t_length); 755 return -EPROTO; 756 } 757 758 if (unlikely(req->data_sent + r2t_length > req->data_len)) { 759 dev_err(queue->ctrl->ctrl.device, 760 "req %d r2t len %u exceeded data len %u (%zu sent)\n", 761 rq->tag, r2t_length, req->data_len, req->data_sent); 762 return -EPROTO; 763 } 764 765 if (unlikely(r2t_offset < req->data_sent)) { 766 dev_err(queue->ctrl->ctrl.device, 767 "req %d unexpected r2t offset %u (expected %zu)\n", 768 rq->tag, r2t_offset, req->data_sent); 769 return -EPROTO; 770 } 771 772 req->pdu_len = 0; 773 req->h2cdata_left = r2t_length; 774 req->h2cdata_offset = r2t_offset; 775 req->ttag = pdu->ttag; 776 777 nvme_tcp_setup_h2c_data_pdu(req); 778 779 llist_add(&req->lentry, &queue->req_list); 780 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 781 782 return 0; 783 } 784 785 static void nvme_tcp_handle_c2h_term(struct nvme_tcp_queue *queue, 786 struct nvme_tcp_term_pdu *pdu) 787 { 788 u16 fes; 789 const char *msg; 790 u32 plen = le32_to_cpu(pdu->hdr.plen); 791 792 static const char * const msg_table[] = { 793 [NVME_TCP_FES_INVALID_PDU_HDR] = "Invalid PDU Header Field", 794 [NVME_TCP_FES_PDU_SEQ_ERR] = "PDU Sequence Error", 795 [NVME_TCP_FES_HDR_DIGEST_ERR] = "Header Digest Error", 796 [NVME_TCP_FES_DATA_OUT_OF_RANGE] = "Data Transfer Out Of Range", 797 [NVME_TCP_FES_DATA_LIMIT_EXCEEDED] = "Data Transfer Limit Exceeded", 798 [NVME_TCP_FES_UNSUPPORTED_PARAM] = "Unsupported Parameter", 799 }; 800 801 if (plen < NVME_TCP_MIN_C2HTERM_PLEN || 802 plen > NVME_TCP_MAX_C2HTERM_PLEN) { 803 dev_err(queue->ctrl->ctrl.device, 804 "Received a malformed C2HTermReq PDU (plen = %u)\n", 805 plen); 806 return; 807 } 808 809 fes = le16_to_cpu(pdu->fes); 810 if (fes && fes < ARRAY_SIZE(msg_table)) 811 msg = msg_table[fes]; 812 else 813 msg = "Unknown"; 814 815 dev_err(queue->ctrl->ctrl.device, 816 "Received C2HTermReq (FES = %s)\n", msg); 817 } 818 819 static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb, 820 unsigned int *offset, size_t *len) 821 { 822 struct nvme_tcp_hdr *hdr; 823 char *pdu = queue->pdu; 824 size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining); 825 int ret; 826 827 ret = skb_copy_bits(skb, *offset, 828 &pdu[queue->pdu_offset], rcv_len); 829 if (unlikely(ret)) 830 return ret; 831 832 queue->pdu_remaining -= rcv_len; 833 queue->pdu_offset += rcv_len; 834 *offset += rcv_len; 835 *len -= rcv_len; 836 if (queue->pdu_remaining) 837 return 0; 838 839 hdr = queue->pdu; 840 if (unlikely(hdr->hlen != sizeof(struct nvme_tcp_rsp_pdu))) { 841 if (!nvme_tcp_recv_pdu_supported(hdr->type)) 842 goto unsupported_pdu; 843 844 dev_err(queue->ctrl->ctrl.device, 845 "pdu type %d has unexpected header length (%d)\n", 846 hdr->type, hdr->hlen); 847 return -EPROTO; 848 } 849 850 if (unlikely(hdr->type == nvme_tcp_c2h_term)) { 851 /* 852 * C2HTermReq never includes Header or Data digests. 853 * Skip the checks. 854 */ 855 nvme_tcp_handle_c2h_term(queue, (void *)queue->pdu); 856 return -EINVAL; 857 } 858 859 if (queue->hdr_digest) { 860 ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen); 861 if (unlikely(ret)) 862 return ret; 863 } 864 865 866 if (queue->data_digest) { 867 ret = nvme_tcp_check_ddgst(queue, queue->pdu); 868 if (unlikely(ret)) 869 return ret; 870 } 871 872 switch (hdr->type) { 873 case nvme_tcp_c2h_data: 874 return nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu); 875 case nvme_tcp_rsp: 876 nvme_tcp_init_recv_ctx(queue); 877 return nvme_tcp_handle_comp(queue, (void *)queue->pdu); 878 case nvme_tcp_r2t: 879 nvme_tcp_init_recv_ctx(queue); 880 return nvme_tcp_handle_r2t(queue, (void *)queue->pdu); 881 default: 882 goto unsupported_pdu; 883 } 884 885 unsupported_pdu: 886 dev_err(queue->ctrl->ctrl.device, 887 "unsupported pdu type (%d)\n", hdr->type); 888 return -EINVAL; 889 } 890 891 static inline void nvme_tcp_end_request(struct request *rq, u16 status) 892 { 893 union nvme_result res = {}; 894 895 if (!nvme_try_complete_req(rq, cpu_to_le16(status << 1), res)) 896 nvme_complete_rq(rq); 897 } 898 899 static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb, 900 unsigned int *offset, size_t *len) 901 { 902 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu; 903 struct request *rq = 904 nvme_cid_to_rq(nvme_tcp_tagset(queue), pdu->command_id); 905 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 906 907 while (true) { 908 int recv_len, ret; 909 910 recv_len = min_t(size_t, *len, queue->data_remaining); 911 if (!recv_len) 912 break; 913 914 if (!iov_iter_count(&req->iter)) { 915 req->curr_bio = req->curr_bio->bi_next; 916 917 /* 918 * If we don`t have any bios it means that controller 919 * sent more data than we requested, hence error 920 */ 921 if (!req->curr_bio) { 922 dev_err(queue->ctrl->ctrl.device, 923 "queue %d no space in request %#x", 924 nvme_tcp_queue_id(queue), rq->tag); 925 nvme_tcp_init_recv_ctx(queue); 926 return -EIO; 927 } 928 nvme_tcp_init_iter(req, ITER_DEST); 929 } 930 931 /* we can read only from what is left in this bio */ 932 recv_len = min_t(size_t, recv_len, 933 iov_iter_count(&req->iter)); 934 935 if (queue->data_digest) 936 ret = skb_copy_and_crc32c_datagram_iter(skb, *offset, 937 &req->iter, recv_len, &queue->rcv_crc); 938 else 939 ret = skb_copy_datagram_iter(skb, *offset, 940 &req->iter, recv_len); 941 if (ret) { 942 dev_err(queue->ctrl->ctrl.device, 943 "queue %d failed to copy request %#x data", 944 nvme_tcp_queue_id(queue), rq->tag); 945 return ret; 946 } 947 948 *len -= recv_len; 949 *offset += recv_len; 950 queue->data_remaining -= recv_len; 951 } 952 953 if (!queue->data_remaining) { 954 if (queue->data_digest) { 955 queue->exp_ddgst = nvme_tcp_ddgst_final(queue->rcv_crc); 956 queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH; 957 } else { 958 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) { 959 nvme_tcp_end_request(rq, 960 le16_to_cpu(req->status)); 961 queue->nr_cqe++; 962 } 963 nvme_tcp_init_recv_ctx(queue); 964 } 965 } 966 967 return 0; 968 } 969 970 static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue, 971 struct sk_buff *skb, unsigned int *offset, size_t *len) 972 { 973 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu; 974 char *ddgst = (char *)&queue->recv_ddgst; 975 size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining); 976 off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining; 977 int ret; 978 979 ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len); 980 if (unlikely(ret)) 981 return ret; 982 983 queue->ddgst_remaining -= recv_len; 984 *offset += recv_len; 985 *len -= recv_len; 986 if (queue->ddgst_remaining) 987 return 0; 988 989 if (queue->recv_ddgst != queue->exp_ddgst) { 990 struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue), 991 pdu->command_id); 992 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 993 994 req->status = cpu_to_le16(NVME_SC_DATA_XFER_ERROR); 995 996 dev_err(queue->ctrl->ctrl.device, 997 "data digest error: recv %#x expected %#x\n", 998 le32_to_cpu(queue->recv_ddgst), 999 le32_to_cpu(queue->exp_ddgst)); 1000 } 1001 1002 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) { 1003 struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue), 1004 pdu->command_id); 1005 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 1006 1007 nvme_tcp_end_request(rq, le16_to_cpu(req->status)); 1008 queue->nr_cqe++; 1009 } 1010 1011 nvme_tcp_init_recv_ctx(queue); 1012 return 0; 1013 } 1014 1015 static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb, 1016 unsigned int offset, size_t len) 1017 { 1018 struct nvme_tcp_queue *queue = desc->arg.data; 1019 size_t consumed = len; 1020 int result; 1021 1022 if (unlikely(!queue->rd_enabled)) 1023 return -EFAULT; 1024 1025 while (len) { 1026 switch (nvme_tcp_recv_state(queue)) { 1027 case NVME_TCP_RECV_PDU: 1028 result = nvme_tcp_recv_pdu(queue, skb, &offset, &len); 1029 break; 1030 case NVME_TCP_RECV_DATA: 1031 result = nvme_tcp_recv_data(queue, skb, &offset, &len); 1032 break; 1033 case NVME_TCP_RECV_DDGST: 1034 result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len); 1035 break; 1036 default: 1037 result = -EFAULT; 1038 } 1039 if (result) { 1040 dev_err(queue->ctrl->ctrl.device, 1041 "receive failed: %d\n", result); 1042 queue->rd_enabled = false; 1043 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 1044 return result; 1045 } 1046 } 1047 1048 return consumed; 1049 } 1050 1051 static void nvme_tcp_data_ready(struct sock *sk) 1052 { 1053 struct nvme_tcp_queue *queue; 1054 1055 trace_sk_data_ready(sk); 1056 1057 read_lock_bh(&sk->sk_callback_lock); 1058 queue = sk->sk_user_data; 1059 if (likely(queue && queue->rd_enabled) && 1060 !test_bit(NVME_TCP_Q_POLLING, &queue->flags)) 1061 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 1062 read_unlock_bh(&sk->sk_callback_lock); 1063 } 1064 1065 static void nvme_tcp_write_space(struct sock *sk) 1066 { 1067 struct nvme_tcp_queue *queue; 1068 1069 read_lock_bh(&sk->sk_callback_lock); 1070 queue = sk->sk_user_data; 1071 if (likely(queue && sk_stream_is_writeable(sk))) { 1072 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1073 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 1074 } 1075 read_unlock_bh(&sk->sk_callback_lock); 1076 } 1077 1078 static void nvme_tcp_state_change(struct sock *sk) 1079 { 1080 struct nvme_tcp_queue *queue; 1081 1082 read_lock_bh(&sk->sk_callback_lock); 1083 queue = sk->sk_user_data; 1084 if (!queue) 1085 goto done; 1086 1087 switch (sk->sk_state) { 1088 case TCP_CLOSE: 1089 case TCP_CLOSE_WAIT: 1090 case TCP_LAST_ACK: 1091 case TCP_FIN_WAIT1: 1092 case TCP_FIN_WAIT2: 1093 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 1094 break; 1095 default: 1096 dev_info(queue->ctrl->ctrl.device, 1097 "queue %d socket state %d\n", 1098 nvme_tcp_queue_id(queue), sk->sk_state); 1099 } 1100 1101 queue->state_change(sk); 1102 done: 1103 read_unlock_bh(&sk->sk_callback_lock); 1104 } 1105 1106 static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue) 1107 { 1108 queue->request = NULL; 1109 } 1110 1111 static void nvme_tcp_fail_request(struct nvme_tcp_request *req) 1112 { 1113 if (nvme_tcp_async_req(req)) { 1114 union nvme_result res = {}; 1115 1116 nvme_complete_async_event(&req->queue->ctrl->ctrl, 1117 cpu_to_le16(NVME_SC_HOST_PATH_ERROR), &res); 1118 } else { 1119 nvme_tcp_end_request(blk_mq_rq_from_pdu(req), 1120 NVME_SC_HOST_PATH_ERROR); 1121 } 1122 } 1123 1124 static int nvme_tcp_try_send_data(struct nvme_tcp_request *req) 1125 { 1126 struct nvme_tcp_queue *queue = req->queue; 1127 int req_data_len = req->data_len; 1128 u32 h2cdata_left = req->h2cdata_left; 1129 1130 while (true) { 1131 struct bio_vec bvec; 1132 struct msghdr msg = { 1133 .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, 1134 }; 1135 struct page *page = nvme_tcp_req_cur_page(req); 1136 size_t offset = nvme_tcp_req_cur_offset(req); 1137 size_t len = nvme_tcp_req_cur_length(req); 1138 bool last = nvme_tcp_pdu_last_send(req, len); 1139 int req_data_sent = req->data_sent; 1140 int ret; 1141 1142 if (last && !queue->data_digest && !nvme_tcp_queue_more(queue)) 1143 msg.msg_flags |= MSG_EOR; 1144 else 1145 msg.msg_flags |= MSG_MORE; 1146 1147 if (!sendpages_ok(page, len, offset)) 1148 msg.msg_flags &= ~MSG_SPLICE_PAGES; 1149 1150 bvec_set_page(&bvec, page, len, offset); 1151 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len); 1152 ret = sock_sendmsg(queue->sock, &msg); 1153 if (ret <= 0) 1154 return ret; 1155 1156 if (queue->data_digest) 1157 nvme_tcp_ddgst_update(&queue->snd_crc, page, 1158 offset, ret); 1159 1160 /* 1161 * update the request iterator except for the last payload send 1162 * in the request where we don't want to modify it as we may 1163 * compete with the RX path completing the request. 1164 */ 1165 if (req_data_sent + ret < req_data_len) 1166 nvme_tcp_advance_req(req, ret); 1167 1168 /* fully successful last send in current PDU */ 1169 if (last && ret == len) { 1170 if (queue->data_digest) { 1171 req->ddgst = 1172 nvme_tcp_ddgst_final(queue->snd_crc); 1173 req->state = NVME_TCP_SEND_DDGST; 1174 req->offset = 0; 1175 } else { 1176 if (h2cdata_left) 1177 nvme_tcp_setup_h2c_data_pdu(req); 1178 else 1179 nvme_tcp_done_send_req(queue); 1180 } 1181 return 1; 1182 } 1183 } 1184 return -EAGAIN; 1185 } 1186 1187 static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req) 1188 { 1189 struct nvme_tcp_queue *queue = req->queue; 1190 struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req); 1191 struct bio_vec bvec; 1192 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, }; 1193 bool inline_data = nvme_tcp_has_inline_data(req); 1194 u8 hdgst = nvme_tcp_hdgst_len(queue); 1195 int len = sizeof(*pdu) + hdgst - req->offset; 1196 int ret; 1197 1198 if (inline_data || nvme_tcp_queue_more(queue)) 1199 msg.msg_flags |= MSG_MORE; 1200 else 1201 msg.msg_flags |= MSG_EOR; 1202 1203 if (queue->hdr_digest && !req->offset) 1204 nvme_tcp_set_hdgst(pdu, sizeof(*pdu)); 1205 1206 bvec_set_virt(&bvec, (void *)pdu + req->offset, len); 1207 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len); 1208 ret = sock_sendmsg(queue->sock, &msg); 1209 if (unlikely(ret <= 0)) 1210 return ret; 1211 1212 len -= ret; 1213 if (!len) { 1214 if (inline_data) { 1215 req->state = NVME_TCP_SEND_DATA; 1216 if (queue->data_digest) 1217 queue->snd_crc = NVME_TCP_CRC_SEED; 1218 } else { 1219 nvme_tcp_done_send_req(queue); 1220 } 1221 return 1; 1222 } 1223 req->offset += ret; 1224 1225 return -EAGAIN; 1226 } 1227 1228 static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req) 1229 { 1230 struct nvme_tcp_queue *queue = req->queue; 1231 struct nvme_tcp_data_pdu *pdu = nvme_tcp_req_data_pdu(req); 1232 struct bio_vec bvec; 1233 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_MORE, }; 1234 u8 hdgst = nvme_tcp_hdgst_len(queue); 1235 int len = sizeof(*pdu) - req->offset + hdgst; 1236 int ret; 1237 1238 if (queue->hdr_digest && !req->offset) 1239 nvme_tcp_set_hdgst(pdu, sizeof(*pdu)); 1240 1241 if (!req->h2cdata_left) 1242 msg.msg_flags |= MSG_SPLICE_PAGES; 1243 1244 bvec_set_virt(&bvec, (void *)pdu + req->offset, len); 1245 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len); 1246 ret = sock_sendmsg(queue->sock, &msg); 1247 if (unlikely(ret <= 0)) 1248 return ret; 1249 1250 len -= ret; 1251 if (!len) { 1252 req->state = NVME_TCP_SEND_DATA; 1253 if (queue->data_digest) 1254 queue->snd_crc = NVME_TCP_CRC_SEED; 1255 return 1; 1256 } 1257 req->offset += ret; 1258 1259 return -EAGAIN; 1260 } 1261 1262 static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req) 1263 { 1264 struct nvme_tcp_queue *queue = req->queue; 1265 size_t offset = req->offset; 1266 u32 h2cdata_left = req->h2cdata_left; 1267 int ret; 1268 struct msghdr msg = { .msg_flags = MSG_DONTWAIT }; 1269 struct kvec iov = { 1270 .iov_base = (u8 *)&req->ddgst + req->offset, 1271 .iov_len = NVME_TCP_DIGEST_LENGTH - req->offset 1272 }; 1273 1274 if (nvme_tcp_queue_more(queue)) 1275 msg.msg_flags |= MSG_MORE; 1276 else 1277 msg.msg_flags |= MSG_EOR; 1278 1279 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len); 1280 if (unlikely(ret <= 0)) 1281 return ret; 1282 1283 if (offset + ret == NVME_TCP_DIGEST_LENGTH) { 1284 if (h2cdata_left) 1285 nvme_tcp_setup_h2c_data_pdu(req); 1286 else 1287 nvme_tcp_done_send_req(queue); 1288 return 1; 1289 } 1290 1291 req->offset += ret; 1292 return -EAGAIN; 1293 } 1294 1295 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue) 1296 { 1297 struct nvme_tcp_request *req; 1298 unsigned int noreclaim_flag; 1299 int ret = 1; 1300 1301 if (!queue->request) { 1302 queue->request = nvme_tcp_fetch_request(queue); 1303 if (!queue->request) 1304 return 0; 1305 } 1306 req = queue->request; 1307 1308 noreclaim_flag = memalloc_noreclaim_save(); 1309 if (req->state == NVME_TCP_SEND_CMD_PDU) { 1310 ret = nvme_tcp_try_send_cmd_pdu(req); 1311 if (ret <= 0) 1312 goto done; 1313 if (!nvme_tcp_has_inline_data(req)) 1314 goto out; 1315 } 1316 1317 if (req->state == NVME_TCP_SEND_H2C_PDU) { 1318 ret = nvme_tcp_try_send_data_pdu(req); 1319 if (ret <= 0) 1320 goto done; 1321 } 1322 1323 if (req->state == NVME_TCP_SEND_DATA) { 1324 ret = nvme_tcp_try_send_data(req); 1325 if (ret <= 0) 1326 goto done; 1327 } 1328 1329 if (req->state == NVME_TCP_SEND_DDGST) 1330 ret = nvme_tcp_try_send_ddgst(req); 1331 done: 1332 if (ret == -EAGAIN) { 1333 ret = 0; 1334 } else if (ret < 0) { 1335 dev_err(queue->ctrl->ctrl.device, 1336 "failed to send request %d\n", ret); 1337 nvme_tcp_fail_request(queue->request); 1338 nvme_tcp_done_send_req(queue); 1339 } 1340 out: 1341 memalloc_noreclaim_restore(noreclaim_flag); 1342 return ret; 1343 } 1344 1345 static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue) 1346 { 1347 struct socket *sock = queue->sock; 1348 struct sock *sk = sock->sk; 1349 read_descriptor_t rd_desc; 1350 int consumed; 1351 1352 rd_desc.arg.data = queue; 1353 rd_desc.count = 1; 1354 lock_sock(sk); 1355 queue->nr_cqe = 0; 1356 consumed = sock->ops->read_sock(sk, &rd_desc, nvme_tcp_recv_skb); 1357 release_sock(sk); 1358 return consumed; 1359 } 1360 1361 static void nvme_tcp_io_work(struct work_struct *w) 1362 { 1363 struct nvme_tcp_queue *queue = 1364 container_of(w, struct nvme_tcp_queue, io_work); 1365 unsigned long deadline = jiffies + msecs_to_jiffies(1); 1366 1367 do { 1368 bool pending = false; 1369 int result; 1370 1371 if (mutex_trylock(&queue->send_mutex)) { 1372 result = nvme_tcp_try_send(queue); 1373 mutex_unlock(&queue->send_mutex); 1374 if (result > 0) 1375 pending = true; 1376 else if (unlikely(result < 0)) 1377 break; 1378 } 1379 1380 result = nvme_tcp_try_recv(queue); 1381 if (result > 0) 1382 pending = true; 1383 else if (unlikely(result < 0)) 1384 return; 1385 1386 if (!pending || !queue->rd_enabled) 1387 return; 1388 1389 } while (!time_after(jiffies, deadline)); /* quota is exhausted */ 1390 1391 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 1392 } 1393 1394 static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl) 1395 { 1396 struct nvme_tcp_request *async = &ctrl->async_req; 1397 1398 page_frag_free(async->pdu); 1399 } 1400 1401 static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl) 1402 { 1403 struct nvme_tcp_queue *queue = &ctrl->queues[0]; 1404 struct nvme_tcp_request *async = &ctrl->async_req; 1405 u8 hdgst = nvme_tcp_hdgst_len(queue); 1406 1407 async->pdu = page_frag_alloc(&queue->pf_cache, 1408 sizeof(struct nvme_tcp_cmd_pdu) + hdgst, 1409 GFP_KERNEL | __GFP_ZERO); 1410 if (!async->pdu) 1411 return -ENOMEM; 1412 1413 async->queue = &ctrl->queues[0]; 1414 return 0; 1415 } 1416 1417 static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid) 1418 { 1419 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1420 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1421 unsigned int noreclaim_flag; 1422 1423 if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags)) 1424 return; 1425 1426 page_frag_cache_drain(&queue->pf_cache); 1427 1428 noreclaim_flag = memalloc_noreclaim_save(); 1429 /* ->sock will be released by fput() */ 1430 fput(queue->sock->file); 1431 queue->sock = NULL; 1432 memalloc_noreclaim_restore(noreclaim_flag); 1433 1434 kfree(queue->pdu); 1435 mutex_destroy(&queue->send_mutex); 1436 mutex_destroy(&queue->queue_lock); 1437 } 1438 1439 static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue) 1440 { 1441 struct nvme_tcp_icreq_pdu *icreq; 1442 struct nvme_tcp_icresp_pdu *icresp; 1443 char cbuf[CMSG_LEN(sizeof(char))] = {}; 1444 u8 ctype; 1445 struct msghdr msg = {}; 1446 struct kvec iov; 1447 bool ctrl_hdgst, ctrl_ddgst; 1448 u32 maxh2cdata; 1449 int ret; 1450 1451 icreq = kzalloc(sizeof(*icreq), GFP_KERNEL); 1452 if (!icreq) 1453 return -ENOMEM; 1454 1455 icresp = kzalloc(sizeof(*icresp), GFP_KERNEL); 1456 if (!icresp) { 1457 ret = -ENOMEM; 1458 goto free_icreq; 1459 } 1460 1461 icreq->hdr.type = nvme_tcp_icreq; 1462 icreq->hdr.hlen = sizeof(*icreq); 1463 icreq->hdr.pdo = 0; 1464 icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen); 1465 icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0); 1466 icreq->maxr2t = 0; /* single inflight r2t supported */ 1467 icreq->hpda = 0; /* no alignment constraint */ 1468 if (queue->hdr_digest) 1469 icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE; 1470 if (queue->data_digest) 1471 icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE; 1472 1473 iov.iov_base = icreq; 1474 iov.iov_len = sizeof(*icreq); 1475 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len); 1476 if (ret < 0) { 1477 pr_warn("queue %d: failed to send icreq, error %d\n", 1478 nvme_tcp_queue_id(queue), ret); 1479 goto free_icresp; 1480 } 1481 1482 memset(&msg, 0, sizeof(msg)); 1483 iov.iov_base = icresp; 1484 iov.iov_len = sizeof(*icresp); 1485 if (nvme_tcp_queue_tls(queue)) { 1486 msg.msg_control = cbuf; 1487 msg.msg_controllen = sizeof(cbuf); 1488 } 1489 msg.msg_flags = MSG_WAITALL; 1490 ret = kernel_recvmsg(queue->sock, &msg, &iov, 1, 1491 iov.iov_len, msg.msg_flags); 1492 if (ret >= 0 && ret < sizeof(*icresp)) 1493 ret = -ECONNRESET; 1494 if (ret < 0) { 1495 pr_warn("queue %d: failed to receive icresp, error %d\n", 1496 nvme_tcp_queue_id(queue), ret); 1497 goto free_icresp; 1498 } 1499 ret = -ENOTCONN; 1500 if (nvme_tcp_queue_tls(queue)) { 1501 ctype = tls_get_record_type(queue->sock->sk, 1502 (struct cmsghdr *)cbuf); 1503 if (ctype != TLS_RECORD_TYPE_DATA) { 1504 pr_err("queue %d: unhandled TLS record %d\n", 1505 nvme_tcp_queue_id(queue), ctype); 1506 goto free_icresp; 1507 } 1508 } 1509 ret = -EINVAL; 1510 if (icresp->hdr.type != nvme_tcp_icresp) { 1511 pr_err("queue %d: bad type returned %d\n", 1512 nvme_tcp_queue_id(queue), icresp->hdr.type); 1513 goto free_icresp; 1514 } 1515 1516 if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) { 1517 pr_err("queue %d: bad pdu length returned %d\n", 1518 nvme_tcp_queue_id(queue), icresp->hdr.plen); 1519 goto free_icresp; 1520 } 1521 1522 if (icresp->pfv != NVME_TCP_PFV_1_0) { 1523 pr_err("queue %d: bad pfv returned %d\n", 1524 nvme_tcp_queue_id(queue), icresp->pfv); 1525 goto free_icresp; 1526 } 1527 1528 ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE); 1529 if ((queue->data_digest && !ctrl_ddgst) || 1530 (!queue->data_digest && ctrl_ddgst)) { 1531 pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n", 1532 nvme_tcp_queue_id(queue), 1533 queue->data_digest ? "enabled" : "disabled", 1534 ctrl_ddgst ? "enabled" : "disabled"); 1535 goto free_icresp; 1536 } 1537 1538 ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE); 1539 if ((queue->hdr_digest && !ctrl_hdgst) || 1540 (!queue->hdr_digest && ctrl_hdgst)) { 1541 pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n", 1542 nvme_tcp_queue_id(queue), 1543 queue->hdr_digest ? "enabled" : "disabled", 1544 ctrl_hdgst ? "enabled" : "disabled"); 1545 goto free_icresp; 1546 } 1547 1548 if (icresp->cpda != 0) { 1549 pr_err("queue %d: unsupported cpda returned %d\n", 1550 nvme_tcp_queue_id(queue), icresp->cpda); 1551 goto free_icresp; 1552 } 1553 1554 maxh2cdata = le32_to_cpu(icresp->maxdata); 1555 if ((maxh2cdata % 4) || (maxh2cdata < NVME_TCP_MIN_MAXH2CDATA)) { 1556 pr_err("queue %d: invalid maxh2cdata returned %u\n", 1557 nvme_tcp_queue_id(queue), maxh2cdata); 1558 goto free_icresp; 1559 } 1560 queue->maxh2cdata = maxh2cdata; 1561 1562 ret = 0; 1563 free_icresp: 1564 kfree(icresp); 1565 free_icreq: 1566 kfree(icreq); 1567 return ret; 1568 } 1569 1570 static bool nvme_tcp_admin_queue(struct nvme_tcp_queue *queue) 1571 { 1572 return nvme_tcp_queue_id(queue) == 0; 1573 } 1574 1575 static bool nvme_tcp_default_queue(struct nvme_tcp_queue *queue) 1576 { 1577 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1578 int qid = nvme_tcp_queue_id(queue); 1579 1580 return !nvme_tcp_admin_queue(queue) && 1581 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT]; 1582 } 1583 1584 static bool nvme_tcp_read_queue(struct nvme_tcp_queue *queue) 1585 { 1586 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1587 int qid = nvme_tcp_queue_id(queue); 1588 1589 return !nvme_tcp_admin_queue(queue) && 1590 !nvme_tcp_default_queue(queue) && 1591 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] + 1592 ctrl->io_queues[HCTX_TYPE_READ]; 1593 } 1594 1595 static bool nvme_tcp_poll_queue(struct nvme_tcp_queue *queue) 1596 { 1597 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1598 int qid = nvme_tcp_queue_id(queue); 1599 1600 return !nvme_tcp_admin_queue(queue) && 1601 !nvme_tcp_default_queue(queue) && 1602 !nvme_tcp_read_queue(queue) && 1603 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] + 1604 ctrl->io_queues[HCTX_TYPE_READ] + 1605 ctrl->io_queues[HCTX_TYPE_POLL]; 1606 } 1607 1608 /* 1609 * Track the number of queues assigned to each cpu using a global per-cpu 1610 * counter and select the least used cpu from the mq_map. Our goal is to spread 1611 * different controllers I/O threads across different cpu cores. 1612 * 1613 * Note that the accounting is not 100% perfect, but we don't need to be, we're 1614 * simply putting our best effort to select the best candidate cpu core that we 1615 * find at any given point. 1616 */ 1617 static void nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue *queue) 1618 { 1619 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1620 struct blk_mq_tag_set *set = &ctrl->tag_set; 1621 int qid = nvme_tcp_queue_id(queue) - 1; 1622 unsigned int *mq_map = NULL; 1623 int cpu, min_queues = INT_MAX, io_cpu; 1624 1625 if (wq_unbound) 1626 goto out; 1627 1628 if (nvme_tcp_default_queue(queue)) 1629 mq_map = set->map[HCTX_TYPE_DEFAULT].mq_map; 1630 else if (nvme_tcp_read_queue(queue)) 1631 mq_map = set->map[HCTX_TYPE_READ].mq_map; 1632 else if (nvme_tcp_poll_queue(queue)) 1633 mq_map = set->map[HCTX_TYPE_POLL].mq_map; 1634 1635 if (WARN_ON(!mq_map)) 1636 goto out; 1637 1638 /* Search for the least used cpu from the mq_map */ 1639 io_cpu = WORK_CPU_UNBOUND; 1640 for_each_online_cpu(cpu) { 1641 int num_queues = atomic_read(&nvme_tcp_cpu_queues[cpu]); 1642 1643 if (mq_map[cpu] != qid) 1644 continue; 1645 if (num_queues < min_queues) { 1646 io_cpu = cpu; 1647 min_queues = num_queues; 1648 } 1649 } 1650 if (io_cpu != WORK_CPU_UNBOUND) { 1651 queue->io_cpu = io_cpu; 1652 atomic_inc(&nvme_tcp_cpu_queues[io_cpu]); 1653 set_bit(NVME_TCP_Q_IO_CPU_SET, &queue->flags); 1654 } 1655 out: 1656 dev_dbg(ctrl->ctrl.device, "queue %d: using cpu %d\n", 1657 qid, queue->io_cpu); 1658 } 1659 1660 static void nvme_tcp_tls_done(void *data, int status, key_serial_t pskid) 1661 { 1662 struct nvme_tcp_queue *queue = data; 1663 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1664 int qid = nvme_tcp_queue_id(queue); 1665 struct key *tls_key; 1666 1667 dev_dbg(ctrl->ctrl.device, "queue %d: TLS handshake done, key %x, status %d\n", 1668 qid, pskid, status); 1669 1670 if (status) { 1671 queue->tls_err = -status; 1672 goto out_complete; 1673 } 1674 1675 tls_key = nvme_tls_key_lookup(pskid); 1676 if (IS_ERR(tls_key)) { 1677 dev_warn(ctrl->ctrl.device, "queue %d: Invalid key %x\n", 1678 qid, pskid); 1679 queue->tls_err = -ENOKEY; 1680 } else { 1681 queue->tls_enabled = true; 1682 if (qid == 0) 1683 ctrl->ctrl.tls_pskid = key_serial(tls_key); 1684 key_put(tls_key); 1685 queue->tls_err = 0; 1686 } 1687 1688 out_complete: 1689 complete(&queue->tls_complete); 1690 } 1691 1692 static int nvme_tcp_start_tls(struct nvme_ctrl *nctrl, 1693 struct nvme_tcp_queue *queue, 1694 key_serial_t pskid) 1695 { 1696 int qid = nvme_tcp_queue_id(queue); 1697 int ret; 1698 struct tls_handshake_args args; 1699 unsigned long tmo = tls_handshake_timeout * HZ; 1700 key_serial_t keyring = nvme_keyring_id(); 1701 1702 dev_dbg(nctrl->device, "queue %d: start TLS with key %x\n", 1703 qid, pskid); 1704 memset(&args, 0, sizeof(args)); 1705 args.ta_sock = queue->sock; 1706 args.ta_done = nvme_tcp_tls_done; 1707 args.ta_data = queue; 1708 args.ta_my_peerids[0] = pskid; 1709 args.ta_num_peerids = 1; 1710 if (nctrl->opts->keyring) 1711 keyring = key_serial(nctrl->opts->keyring); 1712 args.ta_keyring = keyring; 1713 args.ta_timeout_ms = tls_handshake_timeout * 1000; 1714 queue->tls_err = -EOPNOTSUPP; 1715 init_completion(&queue->tls_complete); 1716 ret = tls_client_hello_psk(&args, GFP_KERNEL); 1717 if (ret) { 1718 dev_err(nctrl->device, "queue %d: failed to start TLS: %d\n", 1719 qid, ret); 1720 return ret; 1721 } 1722 ret = wait_for_completion_interruptible_timeout(&queue->tls_complete, tmo); 1723 if (ret <= 0) { 1724 if (ret == 0) 1725 ret = -ETIMEDOUT; 1726 1727 dev_err(nctrl->device, 1728 "queue %d: TLS handshake failed, error %d\n", 1729 qid, ret); 1730 tls_handshake_cancel(queue->sock->sk); 1731 } else { 1732 dev_dbg(nctrl->device, 1733 "queue %d: TLS handshake complete, error %d\n", 1734 qid, queue->tls_err); 1735 ret = queue->tls_err; 1736 } 1737 return ret; 1738 } 1739 1740 static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl, int qid, 1741 key_serial_t pskid) 1742 { 1743 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1744 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1745 int ret, rcv_pdu_size; 1746 struct file *sock_file; 1747 1748 mutex_init(&queue->queue_lock); 1749 queue->ctrl = ctrl; 1750 init_llist_head(&queue->req_list); 1751 INIT_LIST_HEAD(&queue->send_list); 1752 mutex_init(&queue->send_mutex); 1753 INIT_WORK(&queue->io_work, nvme_tcp_io_work); 1754 1755 if (qid > 0) 1756 queue->cmnd_capsule_len = nctrl->ioccsz * 16; 1757 else 1758 queue->cmnd_capsule_len = sizeof(struct nvme_command) + 1759 NVME_TCP_ADMIN_CCSZ; 1760 1761 ret = sock_create_kern(current->nsproxy->net_ns, 1762 ctrl->addr.ss_family, SOCK_STREAM, 1763 IPPROTO_TCP, &queue->sock); 1764 if (ret) { 1765 dev_err(nctrl->device, 1766 "failed to create socket: %d\n", ret); 1767 goto err_destroy_mutex; 1768 } 1769 1770 sock_file = sock_alloc_file(queue->sock, O_CLOEXEC, NULL); 1771 if (IS_ERR(sock_file)) { 1772 ret = PTR_ERR(sock_file); 1773 goto err_destroy_mutex; 1774 } 1775 1776 sk_net_refcnt_upgrade(queue->sock->sk); 1777 nvme_tcp_reclassify_socket(queue->sock); 1778 1779 /* Single syn retry */ 1780 tcp_sock_set_syncnt(queue->sock->sk, 1); 1781 1782 /* Set TCP no delay */ 1783 tcp_sock_set_nodelay(queue->sock->sk); 1784 1785 /* 1786 * Cleanup whatever is sitting in the TCP transmit queue on socket 1787 * close. This is done to prevent stale data from being sent should 1788 * the network connection be restored before TCP times out. 1789 */ 1790 sock_no_linger(queue->sock->sk); 1791 1792 if (so_priority > 0) 1793 sock_set_priority(queue->sock->sk, so_priority); 1794 1795 /* Set socket type of service */ 1796 if (nctrl->opts->tos >= 0) 1797 ip_sock_set_tos(queue->sock->sk, nctrl->opts->tos); 1798 1799 /* Set 10 seconds timeout for icresp recvmsg */ 1800 queue->sock->sk->sk_rcvtimeo = 10 * HZ; 1801 1802 queue->sock->sk->sk_allocation = GFP_ATOMIC; 1803 queue->sock->sk->sk_use_task_frag = false; 1804 queue->io_cpu = WORK_CPU_UNBOUND; 1805 queue->request = NULL; 1806 queue->data_remaining = 0; 1807 queue->ddgst_remaining = 0; 1808 queue->pdu_remaining = 0; 1809 queue->pdu_offset = 0; 1810 sk_set_memalloc(queue->sock->sk); 1811 1812 if (nctrl->opts->mask & NVMF_OPT_HOST_TRADDR) { 1813 ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr, 1814 sizeof(ctrl->src_addr)); 1815 if (ret) { 1816 dev_err(nctrl->device, 1817 "failed to bind queue %d socket %d\n", 1818 qid, ret); 1819 goto err_sock; 1820 } 1821 } 1822 1823 if (nctrl->opts->mask & NVMF_OPT_HOST_IFACE) { 1824 char *iface = nctrl->opts->host_iface; 1825 sockptr_t optval = KERNEL_SOCKPTR(iface); 1826 1827 ret = sock_setsockopt(queue->sock, SOL_SOCKET, SO_BINDTODEVICE, 1828 optval, strlen(iface)); 1829 if (ret) { 1830 dev_err(nctrl->device, 1831 "failed to bind to interface %s queue %d err %d\n", 1832 iface, qid, ret); 1833 goto err_sock; 1834 } 1835 } 1836 1837 queue->hdr_digest = nctrl->opts->hdr_digest; 1838 queue->data_digest = nctrl->opts->data_digest; 1839 1840 rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) + 1841 nvme_tcp_hdgst_len(queue); 1842 queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL); 1843 if (!queue->pdu) { 1844 ret = -ENOMEM; 1845 goto err_sock; 1846 } 1847 1848 dev_dbg(nctrl->device, "connecting queue %d\n", 1849 nvme_tcp_queue_id(queue)); 1850 1851 ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr, 1852 sizeof(ctrl->addr), 0); 1853 if (ret) { 1854 dev_err(nctrl->device, 1855 "failed to connect socket: %d\n", ret); 1856 goto err_rcv_pdu; 1857 } 1858 1859 /* If PSKs are configured try to start TLS */ 1860 if (nvme_tcp_tls_configured(nctrl) && pskid) { 1861 ret = nvme_tcp_start_tls(nctrl, queue, pskid); 1862 if (ret) 1863 goto err_init_connect; 1864 } 1865 1866 ret = nvme_tcp_init_connection(queue); 1867 if (ret) 1868 goto err_init_connect; 1869 1870 set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags); 1871 1872 return 0; 1873 1874 err_init_connect: 1875 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 1876 err_rcv_pdu: 1877 kfree(queue->pdu); 1878 err_sock: 1879 /* ->sock will be released by fput() */ 1880 fput(queue->sock->file); 1881 queue->sock = NULL; 1882 err_destroy_mutex: 1883 mutex_destroy(&queue->send_mutex); 1884 mutex_destroy(&queue->queue_lock); 1885 return ret; 1886 } 1887 1888 static void nvme_tcp_restore_sock_ops(struct nvme_tcp_queue *queue) 1889 { 1890 struct socket *sock = queue->sock; 1891 1892 write_lock_bh(&sock->sk->sk_callback_lock); 1893 sock->sk->sk_user_data = NULL; 1894 sock->sk->sk_data_ready = queue->data_ready; 1895 sock->sk->sk_state_change = queue->state_change; 1896 sock->sk->sk_write_space = queue->write_space; 1897 write_unlock_bh(&sock->sk->sk_callback_lock); 1898 } 1899 1900 static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue) 1901 { 1902 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 1903 nvme_tcp_restore_sock_ops(queue); 1904 cancel_work_sync(&queue->io_work); 1905 } 1906 1907 static void nvme_tcp_stop_queue_nowait(struct nvme_ctrl *nctrl, int qid) 1908 { 1909 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1910 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1911 1912 if (!test_bit(NVME_TCP_Q_ALLOCATED, &queue->flags)) 1913 return; 1914 1915 if (test_and_clear_bit(NVME_TCP_Q_IO_CPU_SET, &queue->flags)) 1916 atomic_dec(&nvme_tcp_cpu_queues[queue->io_cpu]); 1917 1918 mutex_lock(&queue->queue_lock); 1919 if (test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags)) 1920 __nvme_tcp_stop_queue(queue); 1921 /* Stopping the queue will disable TLS */ 1922 queue->tls_enabled = false; 1923 mutex_unlock(&queue->queue_lock); 1924 } 1925 1926 static void nvme_tcp_wait_queue(struct nvme_ctrl *nctrl, int qid) 1927 { 1928 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1929 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1930 int timeout = 100; 1931 1932 while (timeout > 0) { 1933 if (!test_bit(NVME_TCP_Q_ALLOCATED, &queue->flags) || 1934 !sk_wmem_alloc_get(queue->sock->sk)) 1935 return; 1936 msleep(2); 1937 timeout -= 2; 1938 } 1939 dev_warn(nctrl->device, 1940 "qid %d: timeout draining sock wmem allocation expired\n", 1941 qid); 1942 } 1943 1944 static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid) 1945 { 1946 nvme_tcp_stop_queue_nowait(nctrl, qid); 1947 nvme_tcp_wait_queue(nctrl, qid); 1948 } 1949 1950 1951 static void nvme_tcp_setup_sock_ops(struct nvme_tcp_queue *queue) 1952 { 1953 write_lock_bh(&queue->sock->sk->sk_callback_lock); 1954 queue->sock->sk->sk_user_data = queue; 1955 queue->state_change = queue->sock->sk->sk_state_change; 1956 queue->data_ready = queue->sock->sk->sk_data_ready; 1957 queue->write_space = queue->sock->sk->sk_write_space; 1958 queue->sock->sk->sk_data_ready = nvme_tcp_data_ready; 1959 queue->sock->sk->sk_state_change = nvme_tcp_state_change; 1960 queue->sock->sk->sk_write_space = nvme_tcp_write_space; 1961 #ifdef CONFIG_NET_RX_BUSY_POLL 1962 queue->sock->sk->sk_ll_usec = 1; 1963 #endif 1964 write_unlock_bh(&queue->sock->sk->sk_callback_lock); 1965 } 1966 1967 static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx) 1968 { 1969 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1970 struct nvme_tcp_queue *queue = &ctrl->queues[idx]; 1971 int ret; 1972 1973 queue->rd_enabled = true; 1974 nvme_tcp_init_recv_ctx(queue); 1975 nvme_tcp_setup_sock_ops(queue); 1976 1977 if (idx) { 1978 nvme_tcp_set_queue_io_cpu(queue); 1979 ret = nvmf_connect_io_queue(nctrl, idx); 1980 } else 1981 ret = nvmf_connect_admin_queue(nctrl); 1982 1983 if (!ret) { 1984 set_bit(NVME_TCP_Q_LIVE, &queue->flags); 1985 } else { 1986 if (test_bit(NVME_TCP_Q_ALLOCATED, &queue->flags)) 1987 __nvme_tcp_stop_queue(queue); 1988 dev_err(nctrl->device, 1989 "failed to connect queue: %d ret=%d\n", idx, ret); 1990 } 1991 return ret; 1992 } 1993 1994 static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl) 1995 { 1996 if (to_tcp_ctrl(ctrl)->async_req.pdu) { 1997 cancel_work_sync(&ctrl->async_event_work); 1998 nvme_tcp_free_async_req(to_tcp_ctrl(ctrl)); 1999 to_tcp_ctrl(ctrl)->async_req.pdu = NULL; 2000 } 2001 2002 nvme_tcp_free_queue(ctrl, 0); 2003 } 2004 2005 static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl) 2006 { 2007 int i; 2008 2009 for (i = 1; i < ctrl->queue_count; i++) 2010 nvme_tcp_free_queue(ctrl, i); 2011 } 2012 2013 static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl) 2014 { 2015 int i; 2016 2017 for (i = 1; i < ctrl->queue_count; i++) 2018 nvme_tcp_stop_queue_nowait(ctrl, i); 2019 for (i = 1; i < ctrl->queue_count; i++) 2020 nvme_tcp_wait_queue(ctrl, i); 2021 } 2022 2023 static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl, 2024 int first, int last) 2025 { 2026 int i, ret; 2027 2028 for (i = first; i < last; i++) { 2029 ret = nvme_tcp_start_queue(ctrl, i); 2030 if (ret) 2031 goto out_stop_queues; 2032 } 2033 2034 return 0; 2035 2036 out_stop_queues: 2037 for (i--; i >= first; i--) 2038 nvme_tcp_stop_queue(ctrl, i); 2039 return ret; 2040 } 2041 2042 static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl) 2043 { 2044 int ret; 2045 key_serial_t pskid = 0; 2046 2047 if (nvme_tcp_tls_configured(ctrl)) { 2048 if (ctrl->opts->tls_key) 2049 pskid = key_serial(ctrl->opts->tls_key); 2050 else if (ctrl->opts->tls) { 2051 pskid = nvme_tls_psk_default(ctrl->opts->keyring, 2052 ctrl->opts->host->nqn, 2053 ctrl->opts->subsysnqn); 2054 if (!pskid) { 2055 dev_err(ctrl->device, "no valid PSK found\n"); 2056 return -ENOKEY; 2057 } 2058 } 2059 } 2060 2061 ret = nvme_tcp_alloc_queue(ctrl, 0, pskid); 2062 if (ret) 2063 return ret; 2064 2065 ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl)); 2066 if (ret) 2067 goto out_free_queue; 2068 2069 return 0; 2070 2071 out_free_queue: 2072 nvme_tcp_free_queue(ctrl, 0); 2073 return ret; 2074 } 2075 2076 static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl) 2077 { 2078 int i, ret; 2079 2080 if (nvme_tcp_tls_configured(ctrl)) { 2081 if (ctrl->opts->concat) { 2082 /* 2083 * The generated PSK is stored in the 2084 * fabric options 2085 */ 2086 if (!ctrl->opts->tls_key) { 2087 dev_err(ctrl->device, "no PSK generated\n"); 2088 return -ENOKEY; 2089 } 2090 if (ctrl->tls_pskid && 2091 ctrl->tls_pskid != key_serial(ctrl->opts->tls_key)) { 2092 dev_err(ctrl->device, "Stale PSK id %08x\n", ctrl->tls_pskid); 2093 ctrl->tls_pskid = 0; 2094 } 2095 } else if (!ctrl->tls_pskid) { 2096 dev_err(ctrl->device, "no PSK negotiated\n"); 2097 return -ENOKEY; 2098 } 2099 } 2100 2101 for (i = 1; i < ctrl->queue_count; i++) { 2102 ret = nvme_tcp_alloc_queue(ctrl, i, 2103 ctrl->tls_pskid); 2104 if (ret) 2105 goto out_free_queues; 2106 } 2107 2108 return 0; 2109 2110 out_free_queues: 2111 for (i--; i >= 1; i--) 2112 nvme_tcp_free_queue(ctrl, i); 2113 2114 return ret; 2115 } 2116 2117 static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl) 2118 { 2119 unsigned int nr_io_queues; 2120 int ret; 2121 2122 nr_io_queues = nvmf_nr_io_queues(ctrl->opts); 2123 ret = nvme_set_queue_count(ctrl, &nr_io_queues); 2124 if (ret) 2125 return ret; 2126 2127 if (nr_io_queues == 0) { 2128 dev_err(ctrl->device, 2129 "unable to set any I/O queues\n"); 2130 return -ENOMEM; 2131 } 2132 2133 ctrl->queue_count = nr_io_queues + 1; 2134 dev_info(ctrl->device, 2135 "creating %d I/O queues.\n", nr_io_queues); 2136 2137 nvmf_set_io_queues(ctrl->opts, nr_io_queues, 2138 to_tcp_ctrl(ctrl)->io_queues); 2139 return __nvme_tcp_alloc_io_queues(ctrl); 2140 } 2141 2142 static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new) 2143 { 2144 int ret, nr_queues; 2145 2146 ret = nvme_tcp_alloc_io_queues(ctrl); 2147 if (ret) 2148 return ret; 2149 2150 if (new) { 2151 ret = nvme_alloc_io_tag_set(ctrl, &to_tcp_ctrl(ctrl)->tag_set, 2152 &nvme_tcp_mq_ops, 2153 ctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2, 2154 sizeof(struct nvme_tcp_request)); 2155 if (ret) 2156 goto out_free_io_queues; 2157 } 2158 2159 /* 2160 * Only start IO queues for which we have allocated the tagset 2161 * and limitted it to the available queues. On reconnects, the 2162 * queue number might have changed. 2163 */ 2164 nr_queues = min(ctrl->tagset->nr_hw_queues + 1, ctrl->queue_count); 2165 ret = nvme_tcp_start_io_queues(ctrl, 1, nr_queues); 2166 if (ret) 2167 goto out_cleanup_connect_q; 2168 2169 if (!new) { 2170 nvme_start_freeze(ctrl); 2171 nvme_unquiesce_io_queues(ctrl); 2172 if (!nvme_wait_freeze_timeout(ctrl, NVME_IO_TIMEOUT)) { 2173 /* 2174 * If we timed out waiting for freeze we are likely to 2175 * be stuck. Fail the controller initialization just 2176 * to be safe. 2177 */ 2178 ret = -ENODEV; 2179 nvme_unfreeze(ctrl); 2180 goto out_wait_freeze_timed_out; 2181 } 2182 blk_mq_update_nr_hw_queues(ctrl->tagset, 2183 ctrl->queue_count - 1); 2184 nvme_unfreeze(ctrl); 2185 } 2186 2187 /* 2188 * If the number of queues has increased (reconnect case) 2189 * start all new queues now. 2190 */ 2191 ret = nvme_tcp_start_io_queues(ctrl, nr_queues, 2192 ctrl->tagset->nr_hw_queues + 1); 2193 if (ret) 2194 goto out_wait_freeze_timed_out; 2195 2196 return 0; 2197 2198 out_wait_freeze_timed_out: 2199 nvme_quiesce_io_queues(ctrl); 2200 nvme_sync_io_queues(ctrl); 2201 nvme_tcp_stop_io_queues(ctrl); 2202 out_cleanup_connect_q: 2203 nvme_cancel_tagset(ctrl); 2204 if (new) 2205 nvme_remove_io_tag_set(ctrl); 2206 out_free_io_queues: 2207 nvme_tcp_free_io_queues(ctrl); 2208 return ret; 2209 } 2210 2211 static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new) 2212 { 2213 int error; 2214 2215 error = nvme_tcp_alloc_admin_queue(ctrl); 2216 if (error) 2217 return error; 2218 2219 if (new) { 2220 error = nvme_alloc_admin_tag_set(ctrl, 2221 &to_tcp_ctrl(ctrl)->admin_tag_set, 2222 &nvme_tcp_admin_mq_ops, 2223 sizeof(struct nvme_tcp_request)); 2224 if (error) 2225 goto out_free_queue; 2226 } 2227 2228 error = nvme_tcp_start_queue(ctrl, 0); 2229 if (error) 2230 goto out_cleanup_tagset; 2231 2232 error = nvme_enable_ctrl(ctrl); 2233 if (error) 2234 goto out_stop_queue; 2235 2236 nvme_unquiesce_admin_queue(ctrl); 2237 2238 error = nvme_init_ctrl_finish(ctrl, false); 2239 if (error) 2240 goto out_quiesce_queue; 2241 2242 return 0; 2243 2244 out_quiesce_queue: 2245 nvme_quiesce_admin_queue(ctrl); 2246 blk_sync_queue(ctrl->admin_q); 2247 out_stop_queue: 2248 nvme_tcp_stop_queue(ctrl, 0); 2249 nvme_cancel_admin_tagset(ctrl); 2250 out_cleanup_tagset: 2251 if (new) 2252 nvme_remove_admin_tag_set(ctrl); 2253 out_free_queue: 2254 nvme_tcp_free_admin_queue(ctrl); 2255 return error; 2256 } 2257 2258 static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl, 2259 bool remove) 2260 { 2261 nvme_quiesce_admin_queue(ctrl); 2262 blk_sync_queue(ctrl->admin_q); 2263 nvme_tcp_stop_queue(ctrl, 0); 2264 nvme_cancel_admin_tagset(ctrl); 2265 if (remove) { 2266 nvme_unquiesce_admin_queue(ctrl); 2267 nvme_remove_admin_tag_set(ctrl); 2268 } 2269 nvme_tcp_free_admin_queue(ctrl); 2270 if (ctrl->tls_pskid) { 2271 dev_dbg(ctrl->device, "Wipe negotiated TLS_PSK %08x\n", 2272 ctrl->tls_pskid); 2273 ctrl->tls_pskid = 0; 2274 } 2275 } 2276 2277 static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl, 2278 bool remove) 2279 { 2280 if (ctrl->queue_count <= 1) 2281 return; 2282 nvme_quiesce_io_queues(ctrl); 2283 nvme_sync_io_queues(ctrl); 2284 nvme_tcp_stop_io_queues(ctrl); 2285 nvme_cancel_tagset(ctrl); 2286 if (remove) { 2287 nvme_unquiesce_io_queues(ctrl); 2288 nvme_remove_io_tag_set(ctrl); 2289 } 2290 nvme_tcp_free_io_queues(ctrl); 2291 } 2292 2293 static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl, 2294 int status) 2295 { 2296 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl); 2297 2298 /* If we are resetting/deleting then do nothing */ 2299 if (state != NVME_CTRL_CONNECTING) { 2300 WARN_ON_ONCE(state == NVME_CTRL_NEW || state == NVME_CTRL_LIVE); 2301 return; 2302 } 2303 2304 if (nvmf_should_reconnect(ctrl, status)) { 2305 dev_info(ctrl->device, "Reconnecting in %d seconds...\n", 2306 ctrl->opts->reconnect_delay); 2307 queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work, 2308 ctrl->opts->reconnect_delay * HZ); 2309 } else { 2310 dev_info(ctrl->device, "Removing controller (%d)...\n", 2311 status); 2312 nvme_delete_ctrl(ctrl); 2313 } 2314 } 2315 2316 /* 2317 * The TLS key is set by secure concatenation after negotiation has been 2318 * completed on the admin queue. We need to revoke the key when: 2319 * - concatenation is enabled (otherwise it's a static key set by the user) 2320 * and 2321 * - the generated key is present in ctrl->tls_key (otherwise there's nothing 2322 * to revoke) 2323 * and 2324 * - a valid PSK key ID has been set in ctrl->tls_pskid (otherwise TLS 2325 * negotiation has not run). 2326 * 2327 * We cannot always revoke the key as nvme_tcp_alloc_admin_queue() is called 2328 * twice during secure concatenation, once on a 'normal' connection to run the 2329 * DH-HMAC-CHAP negotiation (which generates the key, so it _must not_ be set), 2330 * and once after the negotiation (which uses the key, so it _must_ be set). 2331 */ 2332 static bool nvme_tcp_key_revoke_needed(struct nvme_ctrl *ctrl) 2333 { 2334 return ctrl->opts->concat && ctrl->opts->tls_key && ctrl->tls_pskid; 2335 } 2336 2337 static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new) 2338 { 2339 struct nvmf_ctrl_options *opts = ctrl->opts; 2340 int ret; 2341 2342 ret = nvme_tcp_configure_admin_queue(ctrl, new); 2343 if (ret) 2344 return ret; 2345 2346 if (ctrl->opts->concat && !ctrl->tls_pskid) { 2347 /* See comments for nvme_tcp_key_revoke_needed() */ 2348 dev_dbg(ctrl->device, "restart admin queue for secure concatenation\n"); 2349 nvme_stop_keep_alive(ctrl); 2350 nvme_tcp_teardown_admin_queue(ctrl, false); 2351 ret = nvme_tcp_configure_admin_queue(ctrl, false); 2352 if (ret) 2353 return ret; 2354 } 2355 2356 if (ctrl->icdoff) { 2357 ret = -EOPNOTSUPP; 2358 dev_err(ctrl->device, "icdoff is not supported!\n"); 2359 goto destroy_admin; 2360 } 2361 2362 if (!nvme_ctrl_sgl_supported(ctrl)) { 2363 ret = -EOPNOTSUPP; 2364 dev_err(ctrl->device, "Mandatory sgls are not supported!\n"); 2365 goto destroy_admin; 2366 } 2367 2368 if (opts->queue_size > ctrl->sqsize + 1) 2369 dev_warn(ctrl->device, 2370 "queue_size %zu > ctrl sqsize %u, clamping down\n", 2371 opts->queue_size, ctrl->sqsize + 1); 2372 2373 if (ctrl->sqsize + 1 > ctrl->maxcmd) { 2374 dev_warn(ctrl->device, 2375 "sqsize %u > ctrl maxcmd %u, clamping down\n", 2376 ctrl->sqsize + 1, ctrl->maxcmd); 2377 ctrl->sqsize = ctrl->maxcmd - 1; 2378 } 2379 2380 if (ctrl->queue_count > 1) { 2381 ret = nvme_tcp_configure_io_queues(ctrl, new); 2382 if (ret) 2383 goto destroy_admin; 2384 } 2385 2386 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) { 2387 /* 2388 * state change failure is ok if we started ctrl delete, 2389 * unless we're during creation of a new controller to 2390 * avoid races with teardown flow. 2391 */ 2392 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl); 2393 2394 WARN_ON_ONCE(state != NVME_CTRL_DELETING && 2395 state != NVME_CTRL_DELETING_NOIO); 2396 WARN_ON_ONCE(new); 2397 ret = -EINVAL; 2398 goto destroy_io; 2399 } 2400 2401 nvme_start_ctrl(ctrl); 2402 return 0; 2403 2404 destroy_io: 2405 if (ctrl->queue_count > 1) { 2406 nvme_quiesce_io_queues(ctrl); 2407 nvme_sync_io_queues(ctrl); 2408 nvme_tcp_stop_io_queues(ctrl); 2409 nvme_cancel_tagset(ctrl); 2410 if (new) 2411 nvme_remove_io_tag_set(ctrl); 2412 nvme_tcp_free_io_queues(ctrl); 2413 } 2414 destroy_admin: 2415 nvme_stop_keep_alive(ctrl); 2416 nvme_tcp_teardown_admin_queue(ctrl, new); 2417 return ret; 2418 } 2419 2420 static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work) 2421 { 2422 struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work), 2423 struct nvme_tcp_ctrl, connect_work); 2424 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl; 2425 int ret; 2426 2427 ++ctrl->nr_reconnects; 2428 2429 ret = nvme_tcp_setup_ctrl(ctrl, false); 2430 if (ret) 2431 goto requeue; 2432 2433 dev_info(ctrl->device, "Successfully reconnected (attempt %d/%d)\n", 2434 ctrl->nr_reconnects, ctrl->opts->max_reconnects); 2435 2436 ctrl->nr_reconnects = 0; 2437 2438 return; 2439 2440 requeue: 2441 dev_info(ctrl->device, "Failed reconnect attempt %d/%d\n", 2442 ctrl->nr_reconnects, ctrl->opts->max_reconnects); 2443 nvme_tcp_reconnect_or_remove(ctrl, ret); 2444 } 2445 2446 static void nvme_tcp_error_recovery_work(struct work_struct *work) 2447 { 2448 struct nvme_tcp_ctrl *tcp_ctrl = container_of(work, 2449 struct nvme_tcp_ctrl, err_work); 2450 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl; 2451 2452 if (nvme_tcp_key_revoke_needed(ctrl)) 2453 nvme_auth_revoke_tls_key(ctrl); 2454 nvme_stop_keep_alive(ctrl); 2455 flush_work(&ctrl->async_event_work); 2456 nvme_tcp_teardown_io_queues(ctrl, false); 2457 /* unquiesce to fail fast pending requests */ 2458 nvme_unquiesce_io_queues(ctrl); 2459 nvme_tcp_teardown_admin_queue(ctrl, false); 2460 nvme_unquiesce_admin_queue(ctrl); 2461 nvme_auth_stop(ctrl); 2462 2463 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) { 2464 /* state change failure is ok if we started ctrl delete */ 2465 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl); 2466 2467 WARN_ON_ONCE(state != NVME_CTRL_DELETING && 2468 state != NVME_CTRL_DELETING_NOIO); 2469 return; 2470 } 2471 2472 nvme_tcp_reconnect_or_remove(ctrl, 0); 2473 } 2474 2475 static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown) 2476 { 2477 nvme_tcp_teardown_io_queues(ctrl, shutdown); 2478 nvme_quiesce_admin_queue(ctrl); 2479 nvme_disable_ctrl(ctrl, shutdown); 2480 nvme_tcp_teardown_admin_queue(ctrl, shutdown); 2481 } 2482 2483 static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl) 2484 { 2485 nvme_tcp_teardown_ctrl(ctrl, true); 2486 } 2487 2488 static void nvme_reset_ctrl_work(struct work_struct *work) 2489 { 2490 struct nvme_ctrl *ctrl = 2491 container_of(work, struct nvme_ctrl, reset_work); 2492 int ret; 2493 2494 if (nvme_tcp_key_revoke_needed(ctrl)) 2495 nvme_auth_revoke_tls_key(ctrl); 2496 nvme_stop_ctrl(ctrl); 2497 nvme_tcp_teardown_ctrl(ctrl, false); 2498 2499 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) { 2500 /* state change failure is ok if we started ctrl delete */ 2501 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl); 2502 2503 WARN_ON_ONCE(state != NVME_CTRL_DELETING && 2504 state != NVME_CTRL_DELETING_NOIO); 2505 return; 2506 } 2507 2508 ret = nvme_tcp_setup_ctrl(ctrl, false); 2509 if (ret) 2510 goto out_fail; 2511 2512 return; 2513 2514 out_fail: 2515 ++ctrl->nr_reconnects; 2516 nvme_tcp_reconnect_or_remove(ctrl, ret); 2517 } 2518 2519 static void nvme_tcp_stop_ctrl(struct nvme_ctrl *ctrl) 2520 { 2521 flush_work(&to_tcp_ctrl(ctrl)->err_work); 2522 cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work); 2523 } 2524 2525 static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl) 2526 { 2527 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 2528 2529 if (list_empty(&ctrl->list)) 2530 goto free_ctrl; 2531 2532 mutex_lock(&nvme_tcp_ctrl_mutex); 2533 list_del(&ctrl->list); 2534 mutex_unlock(&nvme_tcp_ctrl_mutex); 2535 2536 nvmf_free_options(nctrl->opts); 2537 free_ctrl: 2538 kfree(ctrl->queues); 2539 kfree(ctrl); 2540 } 2541 2542 static void nvme_tcp_set_sg_null(struct nvme_command *c) 2543 { 2544 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 2545 2546 sg->addr = 0; 2547 sg->length = 0; 2548 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) | 2549 NVME_SGL_FMT_TRANSPORT_A; 2550 } 2551 2552 static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue, 2553 struct nvme_command *c, u32 data_len) 2554 { 2555 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 2556 2557 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff); 2558 sg->length = cpu_to_le32(data_len); 2559 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET; 2560 } 2561 2562 static void nvme_tcp_set_sg_host_data(struct nvme_command *c, 2563 u32 data_len) 2564 { 2565 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 2566 2567 sg->addr = 0; 2568 sg->length = cpu_to_le32(data_len); 2569 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) | 2570 NVME_SGL_FMT_TRANSPORT_A; 2571 } 2572 2573 static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg) 2574 { 2575 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg); 2576 struct nvme_tcp_queue *queue = &ctrl->queues[0]; 2577 struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu; 2578 struct nvme_command *cmd = &pdu->cmd; 2579 u8 hdgst = nvme_tcp_hdgst_len(queue); 2580 2581 memset(pdu, 0, sizeof(*pdu)); 2582 pdu->hdr.type = nvme_tcp_cmd; 2583 if (queue->hdr_digest) 2584 pdu->hdr.flags |= NVME_TCP_F_HDGST; 2585 pdu->hdr.hlen = sizeof(*pdu); 2586 pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst); 2587 2588 cmd->common.opcode = nvme_admin_async_event; 2589 cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH; 2590 cmd->common.flags |= NVME_CMD_SGL_METABUF; 2591 nvme_tcp_set_sg_null(cmd); 2592 2593 ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU; 2594 ctrl->async_req.offset = 0; 2595 ctrl->async_req.curr_bio = NULL; 2596 ctrl->async_req.data_len = 0; 2597 2598 nvme_tcp_queue_request(&ctrl->async_req, true); 2599 } 2600 2601 static void nvme_tcp_complete_timed_out(struct request *rq) 2602 { 2603 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2604 struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl; 2605 2606 nvme_tcp_stop_queue(ctrl, nvme_tcp_queue_id(req->queue)); 2607 nvmf_complete_timed_out_request(rq); 2608 } 2609 2610 static enum blk_eh_timer_return nvme_tcp_timeout(struct request *rq) 2611 { 2612 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2613 struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl; 2614 struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req); 2615 struct nvme_command *cmd = &pdu->cmd; 2616 int qid = nvme_tcp_queue_id(req->queue); 2617 2618 dev_warn(ctrl->device, 2619 "I/O tag %d (%04x) type %d opcode %#x (%s) QID %d timeout\n", 2620 rq->tag, nvme_cid(rq), pdu->hdr.type, cmd->common.opcode, 2621 nvme_fabrics_opcode_str(qid, cmd), qid); 2622 2623 if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE) { 2624 /* 2625 * If we are resetting, connecting or deleting we should 2626 * complete immediately because we may block controller 2627 * teardown or setup sequence 2628 * - ctrl disable/shutdown fabrics requests 2629 * - connect requests 2630 * - initialization admin requests 2631 * - I/O requests that entered after unquiescing and 2632 * the controller stopped responding 2633 * 2634 * All other requests should be cancelled by the error 2635 * recovery work, so it's fine that we fail it here. 2636 */ 2637 nvme_tcp_complete_timed_out(rq); 2638 return BLK_EH_DONE; 2639 } 2640 2641 /* 2642 * LIVE state should trigger the normal error recovery which will 2643 * handle completing this request. 2644 */ 2645 nvme_tcp_error_recovery(ctrl); 2646 return BLK_EH_RESET_TIMER; 2647 } 2648 2649 static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue, 2650 struct request *rq) 2651 { 2652 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2653 struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req); 2654 struct nvme_command *c = &pdu->cmd; 2655 2656 c->common.flags |= NVME_CMD_SGL_METABUF; 2657 2658 if (!blk_rq_nr_phys_segments(rq)) 2659 nvme_tcp_set_sg_null(c); 2660 else if (rq_data_dir(rq) == WRITE && 2661 req->data_len <= nvme_tcp_inline_data_size(req)) 2662 nvme_tcp_set_sg_inline(queue, c, req->data_len); 2663 else 2664 nvme_tcp_set_sg_host_data(c, req->data_len); 2665 2666 return 0; 2667 } 2668 2669 static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns, 2670 struct request *rq) 2671 { 2672 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2673 struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req); 2674 struct nvme_tcp_queue *queue = req->queue; 2675 u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0; 2676 blk_status_t ret; 2677 2678 ret = nvme_setup_cmd(ns, rq); 2679 if (ret) 2680 return ret; 2681 2682 req->state = NVME_TCP_SEND_CMD_PDU; 2683 req->status = cpu_to_le16(NVME_SC_SUCCESS); 2684 req->offset = 0; 2685 req->data_sent = 0; 2686 req->pdu_len = 0; 2687 req->pdu_sent = 0; 2688 req->h2cdata_left = 0; 2689 req->data_len = blk_rq_nr_phys_segments(rq) ? 2690 blk_rq_payload_bytes(rq) : 0; 2691 req->curr_bio = rq->bio; 2692 if (req->curr_bio && req->data_len) 2693 nvme_tcp_init_iter(req, rq_data_dir(rq)); 2694 2695 if (rq_data_dir(rq) == WRITE && 2696 req->data_len <= nvme_tcp_inline_data_size(req)) 2697 req->pdu_len = req->data_len; 2698 2699 pdu->hdr.type = nvme_tcp_cmd; 2700 pdu->hdr.flags = 0; 2701 if (queue->hdr_digest) 2702 pdu->hdr.flags |= NVME_TCP_F_HDGST; 2703 if (queue->data_digest && req->pdu_len) { 2704 pdu->hdr.flags |= NVME_TCP_F_DDGST; 2705 ddgst = nvme_tcp_ddgst_len(queue); 2706 } 2707 pdu->hdr.hlen = sizeof(*pdu); 2708 pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0; 2709 pdu->hdr.plen = 2710 cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst); 2711 2712 ret = nvme_tcp_map_data(queue, rq); 2713 if (unlikely(ret)) { 2714 nvme_cleanup_cmd(rq); 2715 dev_err(queue->ctrl->ctrl.device, 2716 "Failed to map data (%d)\n", ret); 2717 return ret; 2718 } 2719 2720 return 0; 2721 } 2722 2723 static void nvme_tcp_commit_rqs(struct blk_mq_hw_ctx *hctx) 2724 { 2725 struct nvme_tcp_queue *queue = hctx->driver_data; 2726 2727 if (!llist_empty(&queue->req_list)) 2728 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 2729 } 2730 2731 static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx, 2732 const struct blk_mq_queue_data *bd) 2733 { 2734 struct nvme_ns *ns = hctx->queue->queuedata; 2735 struct nvme_tcp_queue *queue = hctx->driver_data; 2736 struct request *rq = bd->rq; 2737 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2738 bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags); 2739 blk_status_t ret; 2740 2741 if (!nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready)) 2742 return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq); 2743 2744 ret = nvme_tcp_setup_cmd_pdu(ns, rq); 2745 if (unlikely(ret)) 2746 return ret; 2747 2748 nvme_start_request(rq); 2749 2750 nvme_tcp_queue_request(req, bd->last); 2751 2752 return BLK_STS_OK; 2753 } 2754 2755 static void nvme_tcp_map_queues(struct blk_mq_tag_set *set) 2756 { 2757 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(set->driver_data); 2758 2759 nvmf_map_queues(set, &ctrl->ctrl, ctrl->io_queues); 2760 } 2761 2762 static int nvme_tcp_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob) 2763 { 2764 struct nvme_tcp_queue *queue = hctx->driver_data; 2765 struct sock *sk = queue->sock->sk; 2766 int ret; 2767 2768 if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags)) 2769 return 0; 2770 2771 set_bit(NVME_TCP_Q_POLLING, &queue->flags); 2772 if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue)) 2773 sk_busy_loop(sk, true); 2774 ret = nvme_tcp_try_recv(queue); 2775 clear_bit(NVME_TCP_Q_POLLING, &queue->flags); 2776 return ret < 0 ? ret : queue->nr_cqe; 2777 } 2778 2779 static int nvme_tcp_get_address(struct nvme_ctrl *ctrl, char *buf, int size) 2780 { 2781 struct nvme_tcp_queue *queue = &to_tcp_ctrl(ctrl)->queues[0]; 2782 struct sockaddr_storage src_addr; 2783 int ret, len; 2784 2785 len = nvmf_get_address(ctrl, buf, size); 2786 2787 if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags)) 2788 return len; 2789 2790 mutex_lock(&queue->queue_lock); 2791 2792 ret = kernel_getsockname(queue->sock, (struct sockaddr *)&src_addr); 2793 if (ret > 0) { 2794 if (len > 0) 2795 len--; /* strip trailing newline */ 2796 len += scnprintf(buf + len, size - len, "%ssrc_addr=%pISc\n", 2797 (len) ? "," : "", &src_addr); 2798 } 2799 2800 mutex_unlock(&queue->queue_lock); 2801 2802 return len; 2803 } 2804 2805 static const struct blk_mq_ops nvme_tcp_mq_ops = { 2806 .queue_rq = nvme_tcp_queue_rq, 2807 .commit_rqs = nvme_tcp_commit_rqs, 2808 .complete = nvme_complete_rq, 2809 .init_request = nvme_tcp_init_request, 2810 .exit_request = nvme_tcp_exit_request, 2811 .init_hctx = nvme_tcp_init_hctx, 2812 .timeout = nvme_tcp_timeout, 2813 .map_queues = nvme_tcp_map_queues, 2814 .poll = nvme_tcp_poll, 2815 }; 2816 2817 static const struct blk_mq_ops nvme_tcp_admin_mq_ops = { 2818 .queue_rq = nvme_tcp_queue_rq, 2819 .complete = nvme_complete_rq, 2820 .init_request = nvme_tcp_init_request, 2821 .exit_request = nvme_tcp_exit_request, 2822 .init_hctx = nvme_tcp_init_admin_hctx, 2823 .timeout = nvme_tcp_timeout, 2824 }; 2825 2826 static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = { 2827 .name = "tcp", 2828 .module = THIS_MODULE, 2829 .flags = NVME_F_FABRICS | NVME_F_BLOCKING, 2830 .reg_read32 = nvmf_reg_read32, 2831 .reg_read64 = nvmf_reg_read64, 2832 .reg_write32 = nvmf_reg_write32, 2833 .subsystem_reset = nvmf_subsystem_reset, 2834 .free_ctrl = nvme_tcp_free_ctrl, 2835 .submit_async_event = nvme_tcp_submit_async_event, 2836 .delete_ctrl = nvme_tcp_delete_ctrl, 2837 .get_address = nvme_tcp_get_address, 2838 .stop_ctrl = nvme_tcp_stop_ctrl, 2839 }; 2840 2841 static bool 2842 nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts) 2843 { 2844 struct nvme_tcp_ctrl *ctrl; 2845 bool found = false; 2846 2847 mutex_lock(&nvme_tcp_ctrl_mutex); 2848 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) { 2849 found = nvmf_ip_options_match(&ctrl->ctrl, opts); 2850 if (found) 2851 break; 2852 } 2853 mutex_unlock(&nvme_tcp_ctrl_mutex); 2854 2855 return found; 2856 } 2857 2858 static struct nvme_tcp_ctrl *nvme_tcp_alloc_ctrl(struct device *dev, 2859 struct nvmf_ctrl_options *opts) 2860 { 2861 struct nvme_tcp_ctrl *ctrl; 2862 int ret; 2863 2864 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 2865 if (!ctrl) 2866 return ERR_PTR(-ENOMEM); 2867 2868 INIT_LIST_HEAD(&ctrl->list); 2869 ctrl->ctrl.opts = opts; 2870 ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues + 2871 opts->nr_poll_queues + 1; 2872 ctrl->ctrl.sqsize = opts->queue_size - 1; 2873 ctrl->ctrl.kato = opts->kato; 2874 2875 INIT_DELAYED_WORK(&ctrl->connect_work, 2876 nvme_tcp_reconnect_ctrl_work); 2877 INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work); 2878 INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work); 2879 2880 if (!(opts->mask & NVMF_OPT_TRSVCID)) { 2881 opts->trsvcid = 2882 kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL); 2883 if (!opts->trsvcid) { 2884 ret = -ENOMEM; 2885 goto out_free_ctrl; 2886 } 2887 opts->mask |= NVMF_OPT_TRSVCID; 2888 } 2889 2890 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 2891 opts->traddr, opts->trsvcid, &ctrl->addr); 2892 if (ret) { 2893 pr_err("malformed address passed: %s:%s\n", 2894 opts->traddr, opts->trsvcid); 2895 goto out_free_ctrl; 2896 } 2897 2898 if (opts->mask & NVMF_OPT_HOST_TRADDR) { 2899 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 2900 opts->host_traddr, NULL, &ctrl->src_addr); 2901 if (ret) { 2902 pr_err("malformed src address passed: %s\n", 2903 opts->host_traddr); 2904 goto out_free_ctrl; 2905 } 2906 } 2907 2908 if (opts->mask & NVMF_OPT_HOST_IFACE) { 2909 if (!__dev_get_by_name(&init_net, opts->host_iface)) { 2910 pr_err("invalid interface passed: %s\n", 2911 opts->host_iface); 2912 ret = -ENODEV; 2913 goto out_free_ctrl; 2914 } 2915 } 2916 2917 if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) { 2918 ret = -EALREADY; 2919 goto out_free_ctrl; 2920 } 2921 2922 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues), 2923 GFP_KERNEL); 2924 if (!ctrl->queues) { 2925 ret = -ENOMEM; 2926 goto out_free_ctrl; 2927 } 2928 2929 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0); 2930 if (ret) 2931 goto out_kfree_queues; 2932 2933 return ctrl; 2934 out_kfree_queues: 2935 kfree(ctrl->queues); 2936 out_free_ctrl: 2937 kfree(ctrl); 2938 return ERR_PTR(ret); 2939 } 2940 2941 static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev, 2942 struct nvmf_ctrl_options *opts) 2943 { 2944 struct nvme_tcp_ctrl *ctrl; 2945 int ret; 2946 2947 ctrl = nvme_tcp_alloc_ctrl(dev, opts); 2948 if (IS_ERR(ctrl)) 2949 return ERR_CAST(ctrl); 2950 2951 ret = nvme_add_ctrl(&ctrl->ctrl); 2952 if (ret) 2953 goto out_put_ctrl; 2954 2955 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) { 2956 WARN_ON_ONCE(1); 2957 ret = -EINTR; 2958 goto out_uninit_ctrl; 2959 } 2960 2961 ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true); 2962 if (ret) 2963 goto out_uninit_ctrl; 2964 2965 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp, hostnqn: %s\n", 2966 nvmf_ctrl_subsysnqn(&ctrl->ctrl), &ctrl->addr, opts->host->nqn); 2967 2968 mutex_lock(&nvme_tcp_ctrl_mutex); 2969 list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list); 2970 mutex_unlock(&nvme_tcp_ctrl_mutex); 2971 2972 return &ctrl->ctrl; 2973 2974 out_uninit_ctrl: 2975 nvme_uninit_ctrl(&ctrl->ctrl); 2976 out_put_ctrl: 2977 nvme_put_ctrl(&ctrl->ctrl); 2978 if (ret > 0) 2979 ret = -EIO; 2980 return ERR_PTR(ret); 2981 } 2982 2983 static struct nvmf_transport_ops nvme_tcp_transport = { 2984 .name = "tcp", 2985 .module = THIS_MODULE, 2986 .required_opts = NVMF_OPT_TRADDR, 2987 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY | 2988 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO | 2989 NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST | 2990 NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES | 2991 NVMF_OPT_TOS | NVMF_OPT_HOST_IFACE | NVMF_OPT_TLS | 2992 NVMF_OPT_KEYRING | NVMF_OPT_TLS_KEY | NVMF_OPT_CONCAT, 2993 .create_ctrl = nvme_tcp_create_ctrl, 2994 }; 2995 2996 static int __init nvme_tcp_init_module(void) 2997 { 2998 unsigned int wq_flags = WQ_MEM_RECLAIM | WQ_HIGHPRI | WQ_SYSFS; 2999 int cpu; 3000 3001 BUILD_BUG_ON(sizeof(struct nvme_tcp_hdr) != 8); 3002 BUILD_BUG_ON(sizeof(struct nvme_tcp_cmd_pdu) != 72); 3003 BUILD_BUG_ON(sizeof(struct nvme_tcp_data_pdu) != 24); 3004 BUILD_BUG_ON(sizeof(struct nvme_tcp_rsp_pdu) != 24); 3005 BUILD_BUG_ON(sizeof(struct nvme_tcp_r2t_pdu) != 24); 3006 BUILD_BUG_ON(sizeof(struct nvme_tcp_icreq_pdu) != 128); 3007 BUILD_BUG_ON(sizeof(struct nvme_tcp_icresp_pdu) != 128); 3008 BUILD_BUG_ON(sizeof(struct nvme_tcp_term_pdu) != 24); 3009 3010 if (wq_unbound) 3011 wq_flags |= WQ_UNBOUND; 3012 3013 nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq", wq_flags, 0); 3014 if (!nvme_tcp_wq) 3015 return -ENOMEM; 3016 3017 for_each_possible_cpu(cpu) 3018 atomic_set(&nvme_tcp_cpu_queues[cpu], 0); 3019 3020 nvmf_register_transport(&nvme_tcp_transport); 3021 return 0; 3022 } 3023 3024 static void __exit nvme_tcp_cleanup_module(void) 3025 { 3026 struct nvme_tcp_ctrl *ctrl; 3027 3028 nvmf_unregister_transport(&nvme_tcp_transport); 3029 3030 mutex_lock(&nvme_tcp_ctrl_mutex); 3031 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) 3032 nvme_delete_ctrl(&ctrl->ctrl); 3033 mutex_unlock(&nvme_tcp_ctrl_mutex); 3034 flush_workqueue(nvme_delete_wq); 3035 3036 destroy_workqueue(nvme_tcp_wq); 3037 } 3038 3039 module_init(nvme_tcp_init_module); 3040 module_exit(nvme_tcp_cleanup_module); 3041 3042 MODULE_DESCRIPTION("NVMe host TCP transport driver"); 3043 MODULE_LICENSE("GPL v2"); 3044