xref: /linux/drivers/nvme/host/tcp.c (revision b60a5b8dcf49af9f2c60ae82e0383ee8e62a9a52)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics TCP host.
4  * Copyright (c) 2018 Lightbits Labs. All rights reserved.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/err.h>
11 #include <linux/nvme-tcp.h>
12 #include <net/sock.h>
13 #include <net/tcp.h>
14 #include <linux/blk-mq.h>
15 #include <crypto/hash.h>
16 
17 #include "nvme.h"
18 #include "fabrics.h"
19 
20 struct nvme_tcp_queue;
21 
22 enum nvme_tcp_send_state {
23 	NVME_TCP_SEND_CMD_PDU = 0,
24 	NVME_TCP_SEND_H2C_PDU,
25 	NVME_TCP_SEND_DATA,
26 	NVME_TCP_SEND_DDGST,
27 };
28 
29 struct nvme_tcp_request {
30 	struct nvme_request	req;
31 	void			*pdu;
32 	struct nvme_tcp_queue	*queue;
33 	u32			data_len;
34 	u32			pdu_len;
35 	u32			pdu_sent;
36 	u16			ttag;
37 	struct list_head	entry;
38 	__le32			ddgst;
39 
40 	struct bio		*curr_bio;
41 	struct iov_iter		iter;
42 
43 	/* send state */
44 	size_t			offset;
45 	size_t			data_sent;
46 	enum nvme_tcp_send_state state;
47 };
48 
49 enum nvme_tcp_queue_flags {
50 	NVME_TCP_Q_ALLOCATED	= 0,
51 	NVME_TCP_Q_LIVE		= 1,
52 };
53 
54 enum nvme_tcp_recv_state {
55 	NVME_TCP_RECV_PDU = 0,
56 	NVME_TCP_RECV_DATA,
57 	NVME_TCP_RECV_DDGST,
58 };
59 
60 struct nvme_tcp_ctrl;
61 struct nvme_tcp_queue {
62 	struct socket		*sock;
63 	struct work_struct	io_work;
64 	int			io_cpu;
65 
66 	spinlock_t		lock;
67 	struct list_head	send_list;
68 
69 	/* recv state */
70 	void			*pdu;
71 	int			pdu_remaining;
72 	int			pdu_offset;
73 	size_t			data_remaining;
74 	size_t			ddgst_remaining;
75 
76 	/* send state */
77 	struct nvme_tcp_request *request;
78 
79 	int			queue_size;
80 	size_t			cmnd_capsule_len;
81 	struct nvme_tcp_ctrl	*ctrl;
82 	unsigned long		flags;
83 	bool			rd_enabled;
84 
85 	bool			hdr_digest;
86 	bool			data_digest;
87 	struct ahash_request	*rcv_hash;
88 	struct ahash_request	*snd_hash;
89 	__le32			exp_ddgst;
90 	__le32			recv_ddgst;
91 
92 	struct page_frag_cache	pf_cache;
93 
94 	void (*state_change)(struct sock *);
95 	void (*data_ready)(struct sock *);
96 	void (*write_space)(struct sock *);
97 };
98 
99 struct nvme_tcp_ctrl {
100 	/* read only in the hot path */
101 	struct nvme_tcp_queue	*queues;
102 	struct blk_mq_tag_set	tag_set;
103 
104 	/* other member variables */
105 	struct list_head	list;
106 	struct blk_mq_tag_set	admin_tag_set;
107 	struct sockaddr_storage addr;
108 	struct sockaddr_storage src_addr;
109 	struct nvme_ctrl	ctrl;
110 
111 	struct work_struct	err_work;
112 	struct delayed_work	connect_work;
113 	struct nvme_tcp_request async_req;
114 };
115 
116 static LIST_HEAD(nvme_tcp_ctrl_list);
117 static DEFINE_MUTEX(nvme_tcp_ctrl_mutex);
118 static struct workqueue_struct *nvme_tcp_wq;
119 static struct blk_mq_ops nvme_tcp_mq_ops;
120 static struct blk_mq_ops nvme_tcp_admin_mq_ops;
121 
122 static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl)
123 {
124 	return container_of(ctrl, struct nvme_tcp_ctrl, ctrl);
125 }
126 
127 static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue)
128 {
129 	return queue - queue->ctrl->queues;
130 }
131 
132 static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue)
133 {
134 	u32 queue_idx = nvme_tcp_queue_id(queue);
135 
136 	if (queue_idx == 0)
137 		return queue->ctrl->admin_tag_set.tags[queue_idx];
138 	return queue->ctrl->tag_set.tags[queue_idx - 1];
139 }
140 
141 static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue)
142 {
143 	return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
144 }
145 
146 static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue)
147 {
148 	return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
149 }
150 
151 static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_queue *queue)
152 {
153 	return queue->cmnd_capsule_len - sizeof(struct nvme_command);
154 }
155 
156 static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req)
157 {
158 	return req == &req->queue->ctrl->async_req;
159 }
160 
161 static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req)
162 {
163 	struct request *rq;
164 	unsigned int bytes;
165 
166 	if (unlikely(nvme_tcp_async_req(req)))
167 		return false; /* async events don't have a request */
168 
169 	rq = blk_mq_rq_from_pdu(req);
170 	bytes = blk_rq_payload_bytes(rq);
171 
172 	return rq_data_dir(rq) == WRITE && bytes &&
173 		bytes <= nvme_tcp_inline_data_size(req->queue);
174 }
175 
176 static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req)
177 {
178 	return req->iter.bvec->bv_page;
179 }
180 
181 static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req)
182 {
183 	return req->iter.bvec->bv_offset + req->iter.iov_offset;
184 }
185 
186 static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req)
187 {
188 	return min_t(size_t, req->iter.bvec->bv_len - req->iter.iov_offset,
189 			req->pdu_len - req->pdu_sent);
190 }
191 
192 static inline size_t nvme_tcp_req_offset(struct nvme_tcp_request *req)
193 {
194 	return req->iter.iov_offset;
195 }
196 
197 static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req)
198 {
199 	return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ?
200 			req->pdu_len - req->pdu_sent : 0;
201 }
202 
203 static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req,
204 		int len)
205 {
206 	return nvme_tcp_pdu_data_left(req) <= len;
207 }
208 
209 static void nvme_tcp_init_iter(struct nvme_tcp_request *req,
210 		unsigned int dir)
211 {
212 	struct request *rq = blk_mq_rq_from_pdu(req);
213 	struct bio_vec *vec;
214 	unsigned int size;
215 	int nsegs;
216 	size_t offset;
217 
218 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) {
219 		vec = &rq->special_vec;
220 		nsegs = 1;
221 		size = blk_rq_payload_bytes(rq);
222 		offset = 0;
223 	} else {
224 		struct bio *bio = req->curr_bio;
225 
226 		vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
227 		nsegs = bio_segments(bio);
228 		size = bio->bi_iter.bi_size;
229 		offset = bio->bi_iter.bi_bvec_done;
230 	}
231 
232 	iov_iter_bvec(&req->iter, dir, vec, nsegs, size);
233 	req->iter.iov_offset = offset;
234 }
235 
236 static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req,
237 		int len)
238 {
239 	req->data_sent += len;
240 	req->pdu_sent += len;
241 	iov_iter_advance(&req->iter, len);
242 	if (!iov_iter_count(&req->iter) &&
243 	    req->data_sent < req->data_len) {
244 		req->curr_bio = req->curr_bio->bi_next;
245 		nvme_tcp_init_iter(req, WRITE);
246 	}
247 }
248 
249 static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req)
250 {
251 	struct nvme_tcp_queue *queue = req->queue;
252 
253 	spin_lock(&queue->lock);
254 	list_add_tail(&req->entry, &queue->send_list);
255 	spin_unlock(&queue->lock);
256 
257 	queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
258 }
259 
260 static inline struct nvme_tcp_request *
261 nvme_tcp_fetch_request(struct nvme_tcp_queue *queue)
262 {
263 	struct nvme_tcp_request *req;
264 
265 	spin_lock(&queue->lock);
266 	req = list_first_entry_or_null(&queue->send_list,
267 			struct nvme_tcp_request, entry);
268 	if (req)
269 		list_del(&req->entry);
270 	spin_unlock(&queue->lock);
271 
272 	return req;
273 }
274 
275 static inline void nvme_tcp_ddgst_final(struct ahash_request *hash,
276 		__le32 *dgst)
277 {
278 	ahash_request_set_crypt(hash, NULL, (u8 *)dgst, 0);
279 	crypto_ahash_final(hash);
280 }
281 
282 static inline void nvme_tcp_ddgst_update(struct ahash_request *hash,
283 		struct page *page, off_t off, size_t len)
284 {
285 	struct scatterlist sg;
286 
287 	sg_init_marker(&sg, 1);
288 	sg_set_page(&sg, page, len, off);
289 	ahash_request_set_crypt(hash, &sg, NULL, len);
290 	crypto_ahash_update(hash);
291 }
292 
293 static inline void nvme_tcp_hdgst(struct ahash_request *hash,
294 		void *pdu, size_t len)
295 {
296 	struct scatterlist sg;
297 
298 	sg_init_one(&sg, pdu, len);
299 	ahash_request_set_crypt(hash, &sg, pdu + len, len);
300 	crypto_ahash_digest(hash);
301 }
302 
303 static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue,
304 		void *pdu, size_t pdu_len)
305 {
306 	struct nvme_tcp_hdr *hdr = pdu;
307 	__le32 recv_digest;
308 	__le32 exp_digest;
309 
310 	if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
311 		dev_err(queue->ctrl->ctrl.device,
312 			"queue %d: header digest flag is cleared\n",
313 			nvme_tcp_queue_id(queue));
314 		return -EPROTO;
315 	}
316 
317 	recv_digest = *(__le32 *)(pdu + hdr->hlen);
318 	nvme_tcp_hdgst(queue->rcv_hash, pdu, pdu_len);
319 	exp_digest = *(__le32 *)(pdu + hdr->hlen);
320 	if (recv_digest != exp_digest) {
321 		dev_err(queue->ctrl->ctrl.device,
322 			"header digest error: recv %#x expected %#x\n",
323 			le32_to_cpu(recv_digest), le32_to_cpu(exp_digest));
324 		return -EIO;
325 	}
326 
327 	return 0;
328 }
329 
330 static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu)
331 {
332 	struct nvme_tcp_hdr *hdr = pdu;
333 	u8 digest_len = nvme_tcp_hdgst_len(queue);
334 	u32 len;
335 
336 	len = le32_to_cpu(hdr->plen) - hdr->hlen -
337 		((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0);
338 
339 	if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
340 		dev_err(queue->ctrl->ctrl.device,
341 			"queue %d: data digest flag is cleared\n",
342 		nvme_tcp_queue_id(queue));
343 		return -EPROTO;
344 	}
345 	crypto_ahash_init(queue->rcv_hash);
346 
347 	return 0;
348 }
349 
350 static void nvme_tcp_exit_request(struct blk_mq_tag_set *set,
351 		struct request *rq, unsigned int hctx_idx)
352 {
353 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
354 
355 	page_frag_free(req->pdu);
356 }
357 
358 static int nvme_tcp_init_request(struct blk_mq_tag_set *set,
359 		struct request *rq, unsigned int hctx_idx,
360 		unsigned int numa_node)
361 {
362 	struct nvme_tcp_ctrl *ctrl = set->driver_data;
363 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
364 	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
365 	struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx];
366 	u8 hdgst = nvme_tcp_hdgst_len(queue);
367 
368 	req->pdu = page_frag_alloc(&queue->pf_cache,
369 		sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
370 		GFP_KERNEL | __GFP_ZERO);
371 	if (!req->pdu)
372 		return -ENOMEM;
373 
374 	req->queue = queue;
375 	nvme_req(rq)->ctrl = &ctrl->ctrl;
376 
377 	return 0;
378 }
379 
380 static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
381 		unsigned int hctx_idx)
382 {
383 	struct nvme_tcp_ctrl *ctrl = data;
384 	struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1];
385 
386 	hctx->driver_data = queue;
387 	return 0;
388 }
389 
390 static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
391 		unsigned int hctx_idx)
392 {
393 	struct nvme_tcp_ctrl *ctrl = data;
394 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
395 
396 	hctx->driver_data = queue;
397 	return 0;
398 }
399 
400 static enum nvme_tcp_recv_state
401 nvme_tcp_recv_state(struct nvme_tcp_queue *queue)
402 {
403 	return  (queue->pdu_remaining) ? NVME_TCP_RECV_PDU :
404 		(queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST :
405 		NVME_TCP_RECV_DATA;
406 }
407 
408 static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue)
409 {
410 	queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) +
411 				nvme_tcp_hdgst_len(queue);
412 	queue->pdu_offset = 0;
413 	queue->data_remaining = -1;
414 	queue->ddgst_remaining = 0;
415 }
416 
417 static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl)
418 {
419 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
420 		return;
421 
422 	queue_work(nvme_wq, &to_tcp_ctrl(ctrl)->err_work);
423 }
424 
425 static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue,
426 		struct nvme_completion *cqe)
427 {
428 	struct request *rq;
429 
430 	rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), cqe->command_id);
431 	if (!rq) {
432 		dev_err(queue->ctrl->ctrl.device,
433 			"queue %d tag 0x%x not found\n",
434 			nvme_tcp_queue_id(queue), cqe->command_id);
435 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
436 		return -EINVAL;
437 	}
438 
439 	nvme_end_request(rq, cqe->status, cqe->result);
440 
441 	return 0;
442 }
443 
444 static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue,
445 		struct nvme_tcp_data_pdu *pdu)
446 {
447 	struct request *rq;
448 
449 	rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
450 	if (!rq) {
451 		dev_err(queue->ctrl->ctrl.device,
452 			"queue %d tag %#x not found\n",
453 			nvme_tcp_queue_id(queue), pdu->command_id);
454 		return -ENOENT;
455 	}
456 
457 	if (!blk_rq_payload_bytes(rq)) {
458 		dev_err(queue->ctrl->ctrl.device,
459 			"queue %d tag %#x unexpected data\n",
460 			nvme_tcp_queue_id(queue), rq->tag);
461 		return -EIO;
462 	}
463 
464 	queue->data_remaining = le32_to_cpu(pdu->data_length);
465 
466 	if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS &&
467 	    unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) {
468 		dev_err(queue->ctrl->ctrl.device,
469 			"queue %d tag %#x SUCCESS set but not last PDU\n",
470 			nvme_tcp_queue_id(queue), rq->tag);
471 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
472 		return -EPROTO;
473 	}
474 
475 	return 0;
476 
477 }
478 
479 static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue,
480 		struct nvme_tcp_rsp_pdu *pdu)
481 {
482 	struct nvme_completion *cqe = &pdu->cqe;
483 	int ret = 0;
484 
485 	/*
486 	 * AEN requests are special as they don't time out and can
487 	 * survive any kind of queue freeze and often don't respond to
488 	 * aborts.  We don't even bother to allocate a struct request
489 	 * for them but rather special case them here.
490 	 */
491 	if (unlikely(nvme_tcp_queue_id(queue) == 0 &&
492 	    cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH))
493 		nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
494 				&cqe->result);
495 	else
496 		ret = nvme_tcp_process_nvme_cqe(queue, cqe);
497 
498 	return ret;
499 }
500 
501 static int nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req,
502 		struct nvme_tcp_r2t_pdu *pdu)
503 {
504 	struct nvme_tcp_data_pdu *data = req->pdu;
505 	struct nvme_tcp_queue *queue = req->queue;
506 	struct request *rq = blk_mq_rq_from_pdu(req);
507 	u8 hdgst = nvme_tcp_hdgst_len(queue);
508 	u8 ddgst = nvme_tcp_ddgst_len(queue);
509 
510 	req->pdu_len = le32_to_cpu(pdu->r2t_length);
511 	req->pdu_sent = 0;
512 
513 	if (unlikely(req->data_sent + req->pdu_len > req->data_len)) {
514 		dev_err(queue->ctrl->ctrl.device,
515 			"req %d r2t len %u exceeded data len %u (%zu sent)\n",
516 			rq->tag, req->pdu_len, req->data_len,
517 			req->data_sent);
518 		return -EPROTO;
519 	}
520 
521 	if (unlikely(le32_to_cpu(pdu->r2t_offset) < req->data_sent)) {
522 		dev_err(queue->ctrl->ctrl.device,
523 			"req %d unexpected r2t offset %u (expected %zu)\n",
524 			rq->tag, le32_to_cpu(pdu->r2t_offset),
525 			req->data_sent);
526 		return -EPROTO;
527 	}
528 
529 	memset(data, 0, sizeof(*data));
530 	data->hdr.type = nvme_tcp_h2c_data;
531 	data->hdr.flags = NVME_TCP_F_DATA_LAST;
532 	if (queue->hdr_digest)
533 		data->hdr.flags |= NVME_TCP_F_HDGST;
534 	if (queue->data_digest)
535 		data->hdr.flags |= NVME_TCP_F_DDGST;
536 	data->hdr.hlen = sizeof(*data);
537 	data->hdr.pdo = data->hdr.hlen + hdgst;
538 	data->hdr.plen =
539 		cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst);
540 	data->ttag = pdu->ttag;
541 	data->command_id = rq->tag;
542 	data->data_offset = cpu_to_le32(req->data_sent);
543 	data->data_length = cpu_to_le32(req->pdu_len);
544 	return 0;
545 }
546 
547 static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue,
548 		struct nvme_tcp_r2t_pdu *pdu)
549 {
550 	struct nvme_tcp_request *req;
551 	struct request *rq;
552 	int ret;
553 
554 	rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
555 	if (!rq) {
556 		dev_err(queue->ctrl->ctrl.device,
557 			"queue %d tag %#x not found\n",
558 			nvme_tcp_queue_id(queue), pdu->command_id);
559 		return -ENOENT;
560 	}
561 	req = blk_mq_rq_to_pdu(rq);
562 
563 	ret = nvme_tcp_setup_h2c_data_pdu(req, pdu);
564 	if (unlikely(ret))
565 		return ret;
566 
567 	req->state = NVME_TCP_SEND_H2C_PDU;
568 	req->offset = 0;
569 
570 	nvme_tcp_queue_request(req);
571 
572 	return 0;
573 }
574 
575 static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb,
576 		unsigned int *offset, size_t *len)
577 {
578 	struct nvme_tcp_hdr *hdr;
579 	char *pdu = queue->pdu;
580 	size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining);
581 	int ret;
582 
583 	ret = skb_copy_bits(skb, *offset,
584 		&pdu[queue->pdu_offset], rcv_len);
585 	if (unlikely(ret))
586 		return ret;
587 
588 	queue->pdu_remaining -= rcv_len;
589 	queue->pdu_offset += rcv_len;
590 	*offset += rcv_len;
591 	*len -= rcv_len;
592 	if (queue->pdu_remaining)
593 		return 0;
594 
595 	hdr = queue->pdu;
596 	if (queue->hdr_digest) {
597 		ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen);
598 		if (unlikely(ret))
599 			return ret;
600 	}
601 
602 
603 	if (queue->data_digest) {
604 		ret = nvme_tcp_check_ddgst(queue, queue->pdu);
605 		if (unlikely(ret))
606 			return ret;
607 	}
608 
609 	switch (hdr->type) {
610 	case nvme_tcp_c2h_data:
611 		ret = nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu);
612 		break;
613 	case nvme_tcp_rsp:
614 		nvme_tcp_init_recv_ctx(queue);
615 		ret = nvme_tcp_handle_comp(queue, (void *)queue->pdu);
616 		break;
617 	case nvme_tcp_r2t:
618 		nvme_tcp_init_recv_ctx(queue);
619 		ret = nvme_tcp_handle_r2t(queue, (void *)queue->pdu);
620 		break;
621 	default:
622 		dev_err(queue->ctrl->ctrl.device,
623 			"unsupported pdu type (%d)\n", hdr->type);
624 		return -EINVAL;
625 	}
626 
627 	return ret;
628 }
629 
630 static inline void nvme_tcp_end_request(struct request *rq, __le16 status)
631 {
632 	union nvme_result res = {};
633 
634 	nvme_end_request(rq, cpu_to_le16(status << 1), res);
635 }
636 
637 
638 static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb,
639 			      unsigned int *offset, size_t *len)
640 {
641 	struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
642 	struct nvme_tcp_request *req;
643 	struct request *rq;
644 
645 	rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
646 	if (!rq) {
647 		dev_err(queue->ctrl->ctrl.device,
648 			"queue %d tag %#x not found\n",
649 			nvme_tcp_queue_id(queue), pdu->command_id);
650 		return -ENOENT;
651 	}
652 	req = blk_mq_rq_to_pdu(rq);
653 
654 	while (true) {
655 		int recv_len, ret;
656 
657 		recv_len = min_t(size_t, *len, queue->data_remaining);
658 		if (!recv_len)
659 			break;
660 
661 		if (!iov_iter_count(&req->iter)) {
662 			req->curr_bio = req->curr_bio->bi_next;
663 
664 			/*
665 			 * If we don`t have any bios it means that controller
666 			 * sent more data than we requested, hence error
667 			 */
668 			if (!req->curr_bio) {
669 				dev_err(queue->ctrl->ctrl.device,
670 					"queue %d no space in request %#x",
671 					nvme_tcp_queue_id(queue), rq->tag);
672 				nvme_tcp_init_recv_ctx(queue);
673 				return -EIO;
674 			}
675 			nvme_tcp_init_iter(req, READ);
676 		}
677 
678 		/* we can read only from what is left in this bio */
679 		recv_len = min_t(size_t, recv_len,
680 				iov_iter_count(&req->iter));
681 
682 		if (queue->data_digest)
683 			ret = skb_copy_and_hash_datagram_iter(skb, *offset,
684 				&req->iter, recv_len, queue->rcv_hash);
685 		else
686 			ret = skb_copy_datagram_iter(skb, *offset,
687 					&req->iter, recv_len);
688 		if (ret) {
689 			dev_err(queue->ctrl->ctrl.device,
690 				"queue %d failed to copy request %#x data",
691 				nvme_tcp_queue_id(queue), rq->tag);
692 			return ret;
693 		}
694 
695 		*len -= recv_len;
696 		*offset += recv_len;
697 		queue->data_remaining -= recv_len;
698 	}
699 
700 	if (!queue->data_remaining) {
701 		if (queue->data_digest) {
702 			nvme_tcp_ddgst_final(queue->rcv_hash, &queue->exp_ddgst);
703 			queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH;
704 		} else {
705 			if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS)
706 				nvme_tcp_end_request(rq, NVME_SC_SUCCESS);
707 			nvme_tcp_init_recv_ctx(queue);
708 		}
709 	}
710 
711 	return 0;
712 }
713 
714 static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue,
715 		struct sk_buff *skb, unsigned int *offset, size_t *len)
716 {
717 	struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
718 	char *ddgst = (char *)&queue->recv_ddgst;
719 	size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining);
720 	off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining;
721 	int ret;
722 
723 	ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len);
724 	if (unlikely(ret))
725 		return ret;
726 
727 	queue->ddgst_remaining -= recv_len;
728 	*offset += recv_len;
729 	*len -= recv_len;
730 	if (queue->ddgst_remaining)
731 		return 0;
732 
733 	if (queue->recv_ddgst != queue->exp_ddgst) {
734 		dev_err(queue->ctrl->ctrl.device,
735 			"data digest error: recv %#x expected %#x\n",
736 			le32_to_cpu(queue->recv_ddgst),
737 			le32_to_cpu(queue->exp_ddgst));
738 		return -EIO;
739 	}
740 
741 	if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
742 		struct request *rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue),
743 						pdu->command_id);
744 
745 		nvme_tcp_end_request(rq, NVME_SC_SUCCESS);
746 	}
747 
748 	nvme_tcp_init_recv_ctx(queue);
749 	return 0;
750 }
751 
752 static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb,
753 			     unsigned int offset, size_t len)
754 {
755 	struct nvme_tcp_queue *queue = desc->arg.data;
756 	size_t consumed = len;
757 	int result;
758 
759 	while (len) {
760 		switch (nvme_tcp_recv_state(queue)) {
761 		case NVME_TCP_RECV_PDU:
762 			result = nvme_tcp_recv_pdu(queue, skb, &offset, &len);
763 			break;
764 		case NVME_TCP_RECV_DATA:
765 			result = nvme_tcp_recv_data(queue, skb, &offset, &len);
766 			break;
767 		case NVME_TCP_RECV_DDGST:
768 			result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len);
769 			break;
770 		default:
771 			result = -EFAULT;
772 		}
773 		if (result) {
774 			dev_err(queue->ctrl->ctrl.device,
775 				"receive failed:  %d\n", result);
776 			queue->rd_enabled = false;
777 			nvme_tcp_error_recovery(&queue->ctrl->ctrl);
778 			return result;
779 		}
780 	}
781 
782 	return consumed;
783 }
784 
785 static void nvme_tcp_data_ready(struct sock *sk)
786 {
787 	struct nvme_tcp_queue *queue;
788 
789 	read_lock(&sk->sk_callback_lock);
790 	queue = sk->sk_user_data;
791 	if (likely(queue && queue->rd_enabled))
792 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
793 	read_unlock(&sk->sk_callback_lock);
794 }
795 
796 static void nvme_tcp_write_space(struct sock *sk)
797 {
798 	struct nvme_tcp_queue *queue;
799 
800 	read_lock_bh(&sk->sk_callback_lock);
801 	queue = sk->sk_user_data;
802 	if (likely(queue && sk_stream_is_writeable(sk))) {
803 		clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
804 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
805 	}
806 	read_unlock_bh(&sk->sk_callback_lock);
807 }
808 
809 static void nvme_tcp_state_change(struct sock *sk)
810 {
811 	struct nvme_tcp_queue *queue;
812 
813 	read_lock(&sk->sk_callback_lock);
814 	queue = sk->sk_user_data;
815 	if (!queue)
816 		goto done;
817 
818 	switch (sk->sk_state) {
819 	case TCP_CLOSE:
820 	case TCP_CLOSE_WAIT:
821 	case TCP_LAST_ACK:
822 	case TCP_FIN_WAIT1:
823 	case TCP_FIN_WAIT2:
824 		/* fallthrough */
825 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
826 		break;
827 	default:
828 		dev_info(queue->ctrl->ctrl.device,
829 			"queue %d socket state %d\n",
830 			nvme_tcp_queue_id(queue), sk->sk_state);
831 	}
832 
833 	queue->state_change(sk);
834 done:
835 	read_unlock(&sk->sk_callback_lock);
836 }
837 
838 static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue)
839 {
840 	queue->request = NULL;
841 }
842 
843 static void nvme_tcp_fail_request(struct nvme_tcp_request *req)
844 {
845 	nvme_tcp_end_request(blk_mq_rq_from_pdu(req), NVME_SC_DATA_XFER_ERROR);
846 }
847 
848 static int nvme_tcp_try_send_data(struct nvme_tcp_request *req)
849 {
850 	struct nvme_tcp_queue *queue = req->queue;
851 
852 	while (true) {
853 		struct page *page = nvme_tcp_req_cur_page(req);
854 		size_t offset = nvme_tcp_req_cur_offset(req);
855 		size_t len = nvme_tcp_req_cur_length(req);
856 		bool last = nvme_tcp_pdu_last_send(req, len);
857 		int ret, flags = MSG_DONTWAIT;
858 
859 		if (last && !queue->data_digest)
860 			flags |= MSG_EOR;
861 		else
862 			flags |= MSG_MORE;
863 
864 		ret = kernel_sendpage(queue->sock, page, offset, len, flags);
865 		if (ret <= 0)
866 			return ret;
867 
868 		nvme_tcp_advance_req(req, ret);
869 		if (queue->data_digest)
870 			nvme_tcp_ddgst_update(queue->snd_hash, page,
871 					offset, ret);
872 
873 		/* fully successful last write*/
874 		if (last && ret == len) {
875 			if (queue->data_digest) {
876 				nvme_tcp_ddgst_final(queue->snd_hash,
877 					&req->ddgst);
878 				req->state = NVME_TCP_SEND_DDGST;
879 				req->offset = 0;
880 			} else {
881 				nvme_tcp_done_send_req(queue);
882 			}
883 			return 1;
884 		}
885 	}
886 	return -EAGAIN;
887 }
888 
889 static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req)
890 {
891 	struct nvme_tcp_queue *queue = req->queue;
892 	struct nvme_tcp_cmd_pdu *pdu = req->pdu;
893 	bool inline_data = nvme_tcp_has_inline_data(req);
894 	int flags = MSG_DONTWAIT | (inline_data ? MSG_MORE : MSG_EOR);
895 	u8 hdgst = nvme_tcp_hdgst_len(queue);
896 	int len = sizeof(*pdu) + hdgst - req->offset;
897 	int ret;
898 
899 	if (queue->hdr_digest && !req->offset)
900 		nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
901 
902 	ret = kernel_sendpage(queue->sock, virt_to_page(pdu),
903 			offset_in_page(pdu) + req->offset, len,  flags);
904 	if (unlikely(ret <= 0))
905 		return ret;
906 
907 	len -= ret;
908 	if (!len) {
909 		if (inline_data) {
910 			req->state = NVME_TCP_SEND_DATA;
911 			if (queue->data_digest)
912 				crypto_ahash_init(queue->snd_hash);
913 			nvme_tcp_init_iter(req, WRITE);
914 		} else {
915 			nvme_tcp_done_send_req(queue);
916 		}
917 		return 1;
918 	}
919 	req->offset += ret;
920 
921 	return -EAGAIN;
922 }
923 
924 static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req)
925 {
926 	struct nvme_tcp_queue *queue = req->queue;
927 	struct nvme_tcp_data_pdu *pdu = req->pdu;
928 	u8 hdgst = nvme_tcp_hdgst_len(queue);
929 	int len = sizeof(*pdu) - req->offset + hdgst;
930 	int ret;
931 
932 	if (queue->hdr_digest && !req->offset)
933 		nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
934 
935 	ret = kernel_sendpage(queue->sock, virt_to_page(pdu),
936 			offset_in_page(pdu) + req->offset, len,
937 			MSG_DONTWAIT | MSG_MORE);
938 	if (unlikely(ret <= 0))
939 		return ret;
940 
941 	len -= ret;
942 	if (!len) {
943 		req->state = NVME_TCP_SEND_DATA;
944 		if (queue->data_digest)
945 			crypto_ahash_init(queue->snd_hash);
946 		if (!req->data_sent)
947 			nvme_tcp_init_iter(req, WRITE);
948 		return 1;
949 	}
950 	req->offset += ret;
951 
952 	return -EAGAIN;
953 }
954 
955 static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req)
956 {
957 	struct nvme_tcp_queue *queue = req->queue;
958 	int ret;
959 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_EOR };
960 	struct kvec iov = {
961 		.iov_base = &req->ddgst + req->offset,
962 		.iov_len = NVME_TCP_DIGEST_LENGTH - req->offset
963 	};
964 
965 	ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
966 	if (unlikely(ret <= 0))
967 		return ret;
968 
969 	if (req->offset + ret == NVME_TCP_DIGEST_LENGTH) {
970 		nvme_tcp_done_send_req(queue);
971 		return 1;
972 	}
973 
974 	req->offset += ret;
975 	return -EAGAIN;
976 }
977 
978 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue)
979 {
980 	struct nvme_tcp_request *req;
981 	int ret = 1;
982 
983 	if (!queue->request) {
984 		queue->request = nvme_tcp_fetch_request(queue);
985 		if (!queue->request)
986 			return 0;
987 	}
988 	req = queue->request;
989 
990 	if (req->state == NVME_TCP_SEND_CMD_PDU) {
991 		ret = nvme_tcp_try_send_cmd_pdu(req);
992 		if (ret <= 0)
993 			goto done;
994 		if (!nvme_tcp_has_inline_data(req))
995 			return ret;
996 	}
997 
998 	if (req->state == NVME_TCP_SEND_H2C_PDU) {
999 		ret = nvme_tcp_try_send_data_pdu(req);
1000 		if (ret <= 0)
1001 			goto done;
1002 	}
1003 
1004 	if (req->state == NVME_TCP_SEND_DATA) {
1005 		ret = nvme_tcp_try_send_data(req);
1006 		if (ret <= 0)
1007 			goto done;
1008 	}
1009 
1010 	if (req->state == NVME_TCP_SEND_DDGST)
1011 		ret = nvme_tcp_try_send_ddgst(req);
1012 done:
1013 	if (ret == -EAGAIN)
1014 		ret = 0;
1015 	return ret;
1016 }
1017 
1018 static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue)
1019 {
1020 	struct sock *sk = queue->sock->sk;
1021 	read_descriptor_t rd_desc;
1022 	int consumed;
1023 
1024 	rd_desc.arg.data = queue;
1025 	rd_desc.count = 1;
1026 	lock_sock(sk);
1027 	consumed = tcp_read_sock(sk, &rd_desc, nvme_tcp_recv_skb);
1028 	release_sock(sk);
1029 	return consumed;
1030 }
1031 
1032 static void nvme_tcp_io_work(struct work_struct *w)
1033 {
1034 	struct nvme_tcp_queue *queue =
1035 		container_of(w, struct nvme_tcp_queue, io_work);
1036 	unsigned long start = jiffies + msecs_to_jiffies(1);
1037 
1038 	do {
1039 		bool pending = false;
1040 		int result;
1041 
1042 		result = nvme_tcp_try_send(queue);
1043 		if (result > 0) {
1044 			pending = true;
1045 		} else if (unlikely(result < 0)) {
1046 			dev_err(queue->ctrl->ctrl.device,
1047 				"failed to send request %d\n", result);
1048 			if (result != -EPIPE)
1049 				nvme_tcp_fail_request(queue->request);
1050 			nvme_tcp_done_send_req(queue);
1051 			return;
1052 		}
1053 
1054 		result = nvme_tcp_try_recv(queue);
1055 		if (result > 0)
1056 			pending = true;
1057 
1058 		if (!pending)
1059 			return;
1060 
1061 	} while (time_after(jiffies, start)); /* quota is exhausted */
1062 
1063 	queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
1064 }
1065 
1066 static void nvme_tcp_free_crypto(struct nvme_tcp_queue *queue)
1067 {
1068 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash);
1069 
1070 	ahash_request_free(queue->rcv_hash);
1071 	ahash_request_free(queue->snd_hash);
1072 	crypto_free_ahash(tfm);
1073 }
1074 
1075 static int nvme_tcp_alloc_crypto(struct nvme_tcp_queue *queue)
1076 {
1077 	struct crypto_ahash *tfm;
1078 
1079 	tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC);
1080 	if (IS_ERR(tfm))
1081 		return PTR_ERR(tfm);
1082 
1083 	queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1084 	if (!queue->snd_hash)
1085 		goto free_tfm;
1086 	ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL);
1087 
1088 	queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1089 	if (!queue->rcv_hash)
1090 		goto free_snd_hash;
1091 	ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL);
1092 
1093 	return 0;
1094 free_snd_hash:
1095 	ahash_request_free(queue->snd_hash);
1096 free_tfm:
1097 	crypto_free_ahash(tfm);
1098 	return -ENOMEM;
1099 }
1100 
1101 static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl)
1102 {
1103 	struct nvme_tcp_request *async = &ctrl->async_req;
1104 
1105 	page_frag_free(async->pdu);
1106 }
1107 
1108 static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl)
1109 {
1110 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
1111 	struct nvme_tcp_request *async = &ctrl->async_req;
1112 	u8 hdgst = nvme_tcp_hdgst_len(queue);
1113 
1114 	async->pdu = page_frag_alloc(&queue->pf_cache,
1115 		sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
1116 		GFP_KERNEL | __GFP_ZERO);
1117 	if (!async->pdu)
1118 		return -ENOMEM;
1119 
1120 	async->queue = &ctrl->queues[0];
1121 	return 0;
1122 }
1123 
1124 static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid)
1125 {
1126 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1127 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1128 
1129 	if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1130 		return;
1131 
1132 	if (queue->hdr_digest || queue->data_digest)
1133 		nvme_tcp_free_crypto(queue);
1134 
1135 	sock_release(queue->sock);
1136 	kfree(queue->pdu);
1137 }
1138 
1139 static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue)
1140 {
1141 	struct nvme_tcp_icreq_pdu *icreq;
1142 	struct nvme_tcp_icresp_pdu *icresp;
1143 	struct msghdr msg = {};
1144 	struct kvec iov;
1145 	bool ctrl_hdgst, ctrl_ddgst;
1146 	int ret;
1147 
1148 	icreq = kzalloc(sizeof(*icreq), GFP_KERNEL);
1149 	if (!icreq)
1150 		return -ENOMEM;
1151 
1152 	icresp = kzalloc(sizeof(*icresp), GFP_KERNEL);
1153 	if (!icresp) {
1154 		ret = -ENOMEM;
1155 		goto free_icreq;
1156 	}
1157 
1158 	icreq->hdr.type = nvme_tcp_icreq;
1159 	icreq->hdr.hlen = sizeof(*icreq);
1160 	icreq->hdr.pdo = 0;
1161 	icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen);
1162 	icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
1163 	icreq->maxr2t = 0; /* single inflight r2t supported */
1164 	icreq->hpda = 0; /* no alignment constraint */
1165 	if (queue->hdr_digest)
1166 		icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
1167 	if (queue->data_digest)
1168 		icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
1169 
1170 	iov.iov_base = icreq;
1171 	iov.iov_len = sizeof(*icreq);
1172 	ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1173 	if (ret < 0)
1174 		goto free_icresp;
1175 
1176 	memset(&msg, 0, sizeof(msg));
1177 	iov.iov_base = icresp;
1178 	iov.iov_len = sizeof(*icresp);
1179 	ret = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1180 			iov.iov_len, msg.msg_flags);
1181 	if (ret < 0)
1182 		goto free_icresp;
1183 
1184 	ret = -EINVAL;
1185 	if (icresp->hdr.type != nvme_tcp_icresp) {
1186 		pr_err("queue %d: bad type returned %d\n",
1187 			nvme_tcp_queue_id(queue), icresp->hdr.type);
1188 		goto free_icresp;
1189 	}
1190 
1191 	if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) {
1192 		pr_err("queue %d: bad pdu length returned %d\n",
1193 			nvme_tcp_queue_id(queue), icresp->hdr.plen);
1194 		goto free_icresp;
1195 	}
1196 
1197 	if (icresp->pfv != NVME_TCP_PFV_1_0) {
1198 		pr_err("queue %d: bad pfv returned %d\n",
1199 			nvme_tcp_queue_id(queue), icresp->pfv);
1200 		goto free_icresp;
1201 	}
1202 
1203 	ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE);
1204 	if ((queue->data_digest && !ctrl_ddgst) ||
1205 	    (!queue->data_digest && ctrl_ddgst)) {
1206 		pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n",
1207 			nvme_tcp_queue_id(queue),
1208 			queue->data_digest ? "enabled" : "disabled",
1209 			ctrl_ddgst ? "enabled" : "disabled");
1210 		goto free_icresp;
1211 	}
1212 
1213 	ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE);
1214 	if ((queue->hdr_digest && !ctrl_hdgst) ||
1215 	    (!queue->hdr_digest && ctrl_hdgst)) {
1216 		pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n",
1217 			nvme_tcp_queue_id(queue),
1218 			queue->hdr_digest ? "enabled" : "disabled",
1219 			ctrl_hdgst ? "enabled" : "disabled");
1220 		goto free_icresp;
1221 	}
1222 
1223 	if (icresp->cpda != 0) {
1224 		pr_err("queue %d: unsupported cpda returned %d\n",
1225 			nvme_tcp_queue_id(queue), icresp->cpda);
1226 		goto free_icresp;
1227 	}
1228 
1229 	ret = 0;
1230 free_icresp:
1231 	kfree(icresp);
1232 free_icreq:
1233 	kfree(icreq);
1234 	return ret;
1235 }
1236 
1237 static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl,
1238 		int qid, size_t queue_size)
1239 {
1240 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1241 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1242 	struct linger sol = { .l_onoff = 1, .l_linger = 0 };
1243 	int ret, opt, rcv_pdu_size, n;
1244 
1245 	queue->ctrl = ctrl;
1246 	INIT_LIST_HEAD(&queue->send_list);
1247 	spin_lock_init(&queue->lock);
1248 	INIT_WORK(&queue->io_work, nvme_tcp_io_work);
1249 	queue->queue_size = queue_size;
1250 
1251 	if (qid > 0)
1252 		queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
1253 	else
1254 		queue->cmnd_capsule_len = sizeof(struct nvme_command) +
1255 						NVME_TCP_ADMIN_CCSZ;
1256 
1257 	ret = sock_create(ctrl->addr.ss_family, SOCK_STREAM,
1258 			IPPROTO_TCP, &queue->sock);
1259 	if (ret) {
1260 		dev_err(ctrl->ctrl.device,
1261 			"failed to create socket: %d\n", ret);
1262 		return ret;
1263 	}
1264 
1265 	/* Single syn retry */
1266 	opt = 1;
1267 	ret = kernel_setsockopt(queue->sock, IPPROTO_TCP, TCP_SYNCNT,
1268 			(char *)&opt, sizeof(opt));
1269 	if (ret) {
1270 		dev_err(ctrl->ctrl.device,
1271 			"failed to set TCP_SYNCNT sock opt %d\n", ret);
1272 		goto err_sock;
1273 	}
1274 
1275 	/* Set TCP no delay */
1276 	opt = 1;
1277 	ret = kernel_setsockopt(queue->sock, IPPROTO_TCP,
1278 			TCP_NODELAY, (char *)&opt, sizeof(opt));
1279 	if (ret) {
1280 		dev_err(ctrl->ctrl.device,
1281 			"failed to set TCP_NODELAY sock opt %d\n", ret);
1282 		goto err_sock;
1283 	}
1284 
1285 	/*
1286 	 * Cleanup whatever is sitting in the TCP transmit queue on socket
1287 	 * close. This is done to prevent stale data from being sent should
1288 	 * the network connection be restored before TCP times out.
1289 	 */
1290 	ret = kernel_setsockopt(queue->sock, SOL_SOCKET, SO_LINGER,
1291 			(char *)&sol, sizeof(sol));
1292 	if (ret) {
1293 		dev_err(ctrl->ctrl.device,
1294 			"failed to set SO_LINGER sock opt %d\n", ret);
1295 		goto err_sock;
1296 	}
1297 
1298 	queue->sock->sk->sk_allocation = GFP_ATOMIC;
1299 	if (!qid)
1300 		n = 0;
1301 	else
1302 		n = (qid - 1) % num_online_cpus();
1303 	queue->io_cpu = cpumask_next_wrap(n - 1, cpu_online_mask, -1, false);
1304 	queue->request = NULL;
1305 	queue->data_remaining = 0;
1306 	queue->ddgst_remaining = 0;
1307 	queue->pdu_remaining = 0;
1308 	queue->pdu_offset = 0;
1309 	sk_set_memalloc(queue->sock->sk);
1310 
1311 	if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR) {
1312 		ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr,
1313 			sizeof(ctrl->src_addr));
1314 		if (ret) {
1315 			dev_err(ctrl->ctrl.device,
1316 				"failed to bind queue %d socket %d\n",
1317 				qid, ret);
1318 			goto err_sock;
1319 		}
1320 	}
1321 
1322 	queue->hdr_digest = nctrl->opts->hdr_digest;
1323 	queue->data_digest = nctrl->opts->data_digest;
1324 	if (queue->hdr_digest || queue->data_digest) {
1325 		ret = nvme_tcp_alloc_crypto(queue);
1326 		if (ret) {
1327 			dev_err(ctrl->ctrl.device,
1328 				"failed to allocate queue %d crypto\n", qid);
1329 			goto err_sock;
1330 		}
1331 	}
1332 
1333 	rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) +
1334 			nvme_tcp_hdgst_len(queue);
1335 	queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL);
1336 	if (!queue->pdu) {
1337 		ret = -ENOMEM;
1338 		goto err_crypto;
1339 	}
1340 
1341 	dev_dbg(ctrl->ctrl.device, "connecting queue %d\n",
1342 			nvme_tcp_queue_id(queue));
1343 
1344 	ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr,
1345 		sizeof(ctrl->addr), 0);
1346 	if (ret) {
1347 		dev_err(ctrl->ctrl.device,
1348 			"failed to connect socket: %d\n", ret);
1349 		goto err_rcv_pdu;
1350 	}
1351 
1352 	ret = nvme_tcp_init_connection(queue);
1353 	if (ret)
1354 		goto err_init_connect;
1355 
1356 	queue->rd_enabled = true;
1357 	set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags);
1358 	nvme_tcp_init_recv_ctx(queue);
1359 
1360 	write_lock_bh(&queue->sock->sk->sk_callback_lock);
1361 	queue->sock->sk->sk_user_data = queue;
1362 	queue->state_change = queue->sock->sk->sk_state_change;
1363 	queue->data_ready = queue->sock->sk->sk_data_ready;
1364 	queue->write_space = queue->sock->sk->sk_write_space;
1365 	queue->sock->sk->sk_data_ready = nvme_tcp_data_ready;
1366 	queue->sock->sk->sk_state_change = nvme_tcp_state_change;
1367 	queue->sock->sk->sk_write_space = nvme_tcp_write_space;
1368 	write_unlock_bh(&queue->sock->sk->sk_callback_lock);
1369 
1370 	return 0;
1371 
1372 err_init_connect:
1373 	kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1374 err_rcv_pdu:
1375 	kfree(queue->pdu);
1376 err_crypto:
1377 	if (queue->hdr_digest || queue->data_digest)
1378 		nvme_tcp_free_crypto(queue);
1379 err_sock:
1380 	sock_release(queue->sock);
1381 	queue->sock = NULL;
1382 	return ret;
1383 }
1384 
1385 static void nvme_tcp_restore_sock_calls(struct nvme_tcp_queue *queue)
1386 {
1387 	struct socket *sock = queue->sock;
1388 
1389 	write_lock_bh(&sock->sk->sk_callback_lock);
1390 	sock->sk->sk_user_data  = NULL;
1391 	sock->sk->sk_data_ready = queue->data_ready;
1392 	sock->sk->sk_state_change = queue->state_change;
1393 	sock->sk->sk_write_space  = queue->write_space;
1394 	write_unlock_bh(&sock->sk->sk_callback_lock);
1395 }
1396 
1397 static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue)
1398 {
1399 	kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1400 	nvme_tcp_restore_sock_calls(queue);
1401 	cancel_work_sync(&queue->io_work);
1402 }
1403 
1404 static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid)
1405 {
1406 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1407 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1408 
1409 	if (!test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags))
1410 		return;
1411 
1412 	__nvme_tcp_stop_queue(queue);
1413 }
1414 
1415 static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx)
1416 {
1417 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1418 	int ret;
1419 
1420 	if (idx)
1421 		ret = nvmf_connect_io_queue(nctrl, idx, false);
1422 	else
1423 		ret = nvmf_connect_admin_queue(nctrl);
1424 
1425 	if (!ret) {
1426 		set_bit(NVME_TCP_Q_LIVE, &ctrl->queues[idx].flags);
1427 	} else {
1428 		__nvme_tcp_stop_queue(&ctrl->queues[idx]);
1429 		dev_err(nctrl->device,
1430 			"failed to connect queue: %d ret=%d\n", idx, ret);
1431 	}
1432 	return ret;
1433 }
1434 
1435 static struct blk_mq_tag_set *nvme_tcp_alloc_tagset(struct nvme_ctrl *nctrl,
1436 		bool admin)
1437 {
1438 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1439 	struct blk_mq_tag_set *set;
1440 	int ret;
1441 
1442 	if (admin) {
1443 		set = &ctrl->admin_tag_set;
1444 		memset(set, 0, sizeof(*set));
1445 		set->ops = &nvme_tcp_admin_mq_ops;
1446 		set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1447 		set->reserved_tags = 2; /* connect + keep-alive */
1448 		set->numa_node = NUMA_NO_NODE;
1449 		set->cmd_size = sizeof(struct nvme_tcp_request);
1450 		set->driver_data = ctrl;
1451 		set->nr_hw_queues = 1;
1452 		set->timeout = ADMIN_TIMEOUT;
1453 	} else {
1454 		set = &ctrl->tag_set;
1455 		memset(set, 0, sizeof(*set));
1456 		set->ops = &nvme_tcp_mq_ops;
1457 		set->queue_depth = nctrl->sqsize + 1;
1458 		set->reserved_tags = 1; /* fabric connect */
1459 		set->numa_node = NUMA_NO_NODE;
1460 		set->flags = BLK_MQ_F_SHOULD_MERGE;
1461 		set->cmd_size = sizeof(struct nvme_tcp_request);
1462 		set->driver_data = ctrl;
1463 		set->nr_hw_queues = nctrl->queue_count - 1;
1464 		set->timeout = NVME_IO_TIMEOUT;
1465 		set->nr_maps = 2 /* default + read */;
1466 	}
1467 
1468 	ret = blk_mq_alloc_tag_set(set);
1469 	if (ret)
1470 		return ERR_PTR(ret);
1471 
1472 	return set;
1473 }
1474 
1475 static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl)
1476 {
1477 	if (to_tcp_ctrl(ctrl)->async_req.pdu) {
1478 		nvme_tcp_free_async_req(to_tcp_ctrl(ctrl));
1479 		to_tcp_ctrl(ctrl)->async_req.pdu = NULL;
1480 	}
1481 
1482 	nvme_tcp_free_queue(ctrl, 0);
1483 }
1484 
1485 static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl)
1486 {
1487 	int i;
1488 
1489 	for (i = 1; i < ctrl->queue_count; i++)
1490 		nvme_tcp_free_queue(ctrl, i);
1491 }
1492 
1493 static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl)
1494 {
1495 	int i;
1496 
1497 	for (i = 1; i < ctrl->queue_count; i++)
1498 		nvme_tcp_stop_queue(ctrl, i);
1499 }
1500 
1501 static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl)
1502 {
1503 	int i, ret = 0;
1504 
1505 	for (i = 1; i < ctrl->queue_count; i++) {
1506 		ret = nvme_tcp_start_queue(ctrl, i);
1507 		if (ret)
1508 			goto out_stop_queues;
1509 	}
1510 
1511 	return 0;
1512 
1513 out_stop_queues:
1514 	for (i--; i >= 1; i--)
1515 		nvme_tcp_stop_queue(ctrl, i);
1516 	return ret;
1517 }
1518 
1519 static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl)
1520 {
1521 	int ret;
1522 
1523 	ret = nvme_tcp_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
1524 	if (ret)
1525 		return ret;
1526 
1527 	ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl));
1528 	if (ret)
1529 		goto out_free_queue;
1530 
1531 	return 0;
1532 
1533 out_free_queue:
1534 	nvme_tcp_free_queue(ctrl, 0);
1535 	return ret;
1536 }
1537 
1538 static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1539 {
1540 	int i, ret;
1541 
1542 	for (i = 1; i < ctrl->queue_count; i++) {
1543 		ret = nvme_tcp_alloc_queue(ctrl, i,
1544 				ctrl->sqsize + 1);
1545 		if (ret)
1546 			goto out_free_queues;
1547 	}
1548 
1549 	return 0;
1550 
1551 out_free_queues:
1552 	for (i--; i >= 1; i--)
1553 		nvme_tcp_free_queue(ctrl, i);
1554 
1555 	return ret;
1556 }
1557 
1558 static unsigned int nvme_tcp_nr_io_queues(struct nvme_ctrl *ctrl)
1559 {
1560 	unsigned int nr_io_queues;
1561 
1562 	nr_io_queues = min(ctrl->opts->nr_io_queues, num_online_cpus());
1563 	nr_io_queues += min(ctrl->opts->nr_write_queues, num_online_cpus());
1564 
1565 	return nr_io_queues;
1566 }
1567 
1568 static int nvme_alloc_io_queues(struct nvme_ctrl *ctrl)
1569 {
1570 	unsigned int nr_io_queues;
1571 	int ret;
1572 
1573 	nr_io_queues = nvme_tcp_nr_io_queues(ctrl);
1574 	ret = nvme_set_queue_count(ctrl, &nr_io_queues);
1575 	if (ret)
1576 		return ret;
1577 
1578 	ctrl->queue_count = nr_io_queues + 1;
1579 	if (ctrl->queue_count < 2)
1580 		return 0;
1581 
1582 	dev_info(ctrl->device,
1583 		"creating %d I/O queues.\n", nr_io_queues);
1584 
1585 	return nvme_tcp_alloc_io_queues(ctrl);
1586 }
1587 
1588 static void nvme_tcp_destroy_io_queues(struct nvme_ctrl *ctrl, bool remove)
1589 {
1590 	nvme_tcp_stop_io_queues(ctrl);
1591 	if (remove) {
1592 		blk_cleanup_queue(ctrl->connect_q);
1593 		blk_mq_free_tag_set(ctrl->tagset);
1594 	}
1595 	nvme_tcp_free_io_queues(ctrl);
1596 }
1597 
1598 static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new)
1599 {
1600 	int ret;
1601 
1602 	ret = nvme_alloc_io_queues(ctrl);
1603 	if (ret)
1604 		return ret;
1605 
1606 	if (new) {
1607 		ctrl->tagset = nvme_tcp_alloc_tagset(ctrl, false);
1608 		if (IS_ERR(ctrl->tagset)) {
1609 			ret = PTR_ERR(ctrl->tagset);
1610 			goto out_free_io_queues;
1611 		}
1612 
1613 		ctrl->connect_q = blk_mq_init_queue(ctrl->tagset);
1614 		if (IS_ERR(ctrl->connect_q)) {
1615 			ret = PTR_ERR(ctrl->connect_q);
1616 			goto out_free_tag_set;
1617 		}
1618 	} else {
1619 		blk_mq_update_nr_hw_queues(ctrl->tagset,
1620 			ctrl->queue_count - 1);
1621 	}
1622 
1623 	ret = nvme_tcp_start_io_queues(ctrl);
1624 	if (ret)
1625 		goto out_cleanup_connect_q;
1626 
1627 	return 0;
1628 
1629 out_cleanup_connect_q:
1630 	if (new)
1631 		blk_cleanup_queue(ctrl->connect_q);
1632 out_free_tag_set:
1633 	if (new)
1634 		blk_mq_free_tag_set(ctrl->tagset);
1635 out_free_io_queues:
1636 	nvme_tcp_free_io_queues(ctrl);
1637 	return ret;
1638 }
1639 
1640 static void nvme_tcp_destroy_admin_queue(struct nvme_ctrl *ctrl, bool remove)
1641 {
1642 	nvme_tcp_stop_queue(ctrl, 0);
1643 	if (remove) {
1644 		blk_cleanup_queue(ctrl->admin_q);
1645 		blk_mq_free_tag_set(ctrl->admin_tagset);
1646 	}
1647 	nvme_tcp_free_admin_queue(ctrl);
1648 }
1649 
1650 static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new)
1651 {
1652 	int error;
1653 
1654 	error = nvme_tcp_alloc_admin_queue(ctrl);
1655 	if (error)
1656 		return error;
1657 
1658 	if (new) {
1659 		ctrl->admin_tagset = nvme_tcp_alloc_tagset(ctrl, true);
1660 		if (IS_ERR(ctrl->admin_tagset)) {
1661 			error = PTR_ERR(ctrl->admin_tagset);
1662 			goto out_free_queue;
1663 		}
1664 
1665 		ctrl->admin_q = blk_mq_init_queue(ctrl->admin_tagset);
1666 		if (IS_ERR(ctrl->admin_q)) {
1667 			error = PTR_ERR(ctrl->admin_q);
1668 			goto out_free_tagset;
1669 		}
1670 	}
1671 
1672 	error = nvme_tcp_start_queue(ctrl, 0);
1673 	if (error)
1674 		goto out_cleanup_queue;
1675 
1676 	error = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
1677 	if (error) {
1678 		dev_err(ctrl->device,
1679 			"prop_get NVME_REG_CAP failed\n");
1680 		goto out_stop_queue;
1681 	}
1682 
1683 	ctrl->sqsize = min_t(int, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
1684 
1685 	error = nvme_enable_ctrl(ctrl, ctrl->cap);
1686 	if (error)
1687 		goto out_stop_queue;
1688 
1689 	error = nvme_init_identify(ctrl);
1690 	if (error)
1691 		goto out_stop_queue;
1692 
1693 	return 0;
1694 
1695 out_stop_queue:
1696 	nvme_tcp_stop_queue(ctrl, 0);
1697 out_cleanup_queue:
1698 	if (new)
1699 		blk_cleanup_queue(ctrl->admin_q);
1700 out_free_tagset:
1701 	if (new)
1702 		blk_mq_free_tag_set(ctrl->admin_tagset);
1703 out_free_queue:
1704 	nvme_tcp_free_admin_queue(ctrl);
1705 	return error;
1706 }
1707 
1708 static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl,
1709 		bool remove)
1710 {
1711 	blk_mq_quiesce_queue(ctrl->admin_q);
1712 	nvme_tcp_stop_queue(ctrl, 0);
1713 	blk_mq_tagset_busy_iter(ctrl->admin_tagset, nvme_cancel_request, ctrl);
1714 	blk_mq_unquiesce_queue(ctrl->admin_q);
1715 	nvme_tcp_destroy_admin_queue(ctrl, remove);
1716 }
1717 
1718 static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl,
1719 		bool remove)
1720 {
1721 	if (ctrl->queue_count <= 1)
1722 		return;
1723 	nvme_stop_queues(ctrl);
1724 	nvme_tcp_stop_io_queues(ctrl);
1725 	blk_mq_tagset_busy_iter(ctrl->tagset, nvme_cancel_request, ctrl);
1726 	if (remove)
1727 		nvme_start_queues(ctrl);
1728 	nvme_tcp_destroy_io_queues(ctrl, remove);
1729 }
1730 
1731 static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl)
1732 {
1733 	/* If we are resetting/deleting then do nothing */
1734 	if (ctrl->state != NVME_CTRL_CONNECTING) {
1735 		WARN_ON_ONCE(ctrl->state == NVME_CTRL_NEW ||
1736 			ctrl->state == NVME_CTRL_LIVE);
1737 		return;
1738 	}
1739 
1740 	if (nvmf_should_reconnect(ctrl)) {
1741 		dev_info(ctrl->device, "Reconnecting in %d seconds...\n",
1742 			ctrl->opts->reconnect_delay);
1743 		queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work,
1744 				ctrl->opts->reconnect_delay * HZ);
1745 	} else {
1746 		dev_info(ctrl->device, "Removing controller...\n");
1747 		nvme_delete_ctrl(ctrl);
1748 	}
1749 }
1750 
1751 static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new)
1752 {
1753 	struct nvmf_ctrl_options *opts = ctrl->opts;
1754 	int ret = -EINVAL;
1755 
1756 	ret = nvme_tcp_configure_admin_queue(ctrl, new);
1757 	if (ret)
1758 		return ret;
1759 
1760 	if (ctrl->icdoff) {
1761 		dev_err(ctrl->device, "icdoff is not supported!\n");
1762 		goto destroy_admin;
1763 	}
1764 
1765 	if (opts->queue_size > ctrl->sqsize + 1)
1766 		dev_warn(ctrl->device,
1767 			"queue_size %zu > ctrl sqsize %u, clamping down\n",
1768 			opts->queue_size, ctrl->sqsize + 1);
1769 
1770 	if (ctrl->sqsize + 1 > ctrl->maxcmd) {
1771 		dev_warn(ctrl->device,
1772 			"sqsize %u > ctrl maxcmd %u, clamping down\n",
1773 			ctrl->sqsize + 1, ctrl->maxcmd);
1774 		ctrl->sqsize = ctrl->maxcmd - 1;
1775 	}
1776 
1777 	if (ctrl->queue_count > 1) {
1778 		ret = nvme_tcp_configure_io_queues(ctrl, new);
1779 		if (ret)
1780 			goto destroy_admin;
1781 	}
1782 
1783 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) {
1784 		/* state change failure is ok if we're in DELETING state */
1785 		WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING);
1786 		ret = -EINVAL;
1787 		goto destroy_io;
1788 	}
1789 
1790 	nvme_start_ctrl(ctrl);
1791 	return 0;
1792 
1793 destroy_io:
1794 	if (ctrl->queue_count > 1)
1795 		nvme_tcp_destroy_io_queues(ctrl, new);
1796 destroy_admin:
1797 	nvme_tcp_stop_queue(ctrl, 0);
1798 	nvme_tcp_destroy_admin_queue(ctrl, new);
1799 	return ret;
1800 }
1801 
1802 static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work)
1803 {
1804 	struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work),
1805 			struct nvme_tcp_ctrl, connect_work);
1806 	struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
1807 
1808 	++ctrl->nr_reconnects;
1809 
1810 	if (nvme_tcp_setup_ctrl(ctrl, false))
1811 		goto requeue;
1812 
1813 	dev_info(ctrl->device, "Successfully reconnected (%d attempt)\n",
1814 			ctrl->nr_reconnects);
1815 
1816 	ctrl->nr_reconnects = 0;
1817 
1818 	return;
1819 
1820 requeue:
1821 	dev_info(ctrl->device, "Failed reconnect attempt %d\n",
1822 			ctrl->nr_reconnects);
1823 	nvme_tcp_reconnect_or_remove(ctrl);
1824 }
1825 
1826 static void nvme_tcp_error_recovery_work(struct work_struct *work)
1827 {
1828 	struct nvme_tcp_ctrl *tcp_ctrl = container_of(work,
1829 				struct nvme_tcp_ctrl, err_work);
1830 	struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
1831 
1832 	nvme_stop_keep_alive(ctrl);
1833 	nvme_tcp_teardown_io_queues(ctrl, false);
1834 	/* unquiesce to fail fast pending requests */
1835 	nvme_start_queues(ctrl);
1836 	nvme_tcp_teardown_admin_queue(ctrl, false);
1837 
1838 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
1839 		/* state change failure is ok if we're in DELETING state */
1840 		WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING);
1841 		return;
1842 	}
1843 
1844 	nvme_tcp_reconnect_or_remove(ctrl);
1845 }
1846 
1847 static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
1848 {
1849 	cancel_work_sync(&to_tcp_ctrl(ctrl)->err_work);
1850 	cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work);
1851 
1852 	nvme_tcp_teardown_io_queues(ctrl, shutdown);
1853 	if (shutdown)
1854 		nvme_shutdown_ctrl(ctrl);
1855 	else
1856 		nvme_disable_ctrl(ctrl, ctrl->cap);
1857 	nvme_tcp_teardown_admin_queue(ctrl, shutdown);
1858 }
1859 
1860 static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl)
1861 {
1862 	nvme_tcp_teardown_ctrl(ctrl, true);
1863 }
1864 
1865 static void nvme_reset_ctrl_work(struct work_struct *work)
1866 {
1867 	struct nvme_ctrl *ctrl =
1868 		container_of(work, struct nvme_ctrl, reset_work);
1869 
1870 	nvme_stop_ctrl(ctrl);
1871 	nvme_tcp_teardown_ctrl(ctrl, false);
1872 
1873 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
1874 		/* state change failure is ok if we're in DELETING state */
1875 		WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING);
1876 		return;
1877 	}
1878 
1879 	if (nvme_tcp_setup_ctrl(ctrl, false))
1880 		goto out_fail;
1881 
1882 	return;
1883 
1884 out_fail:
1885 	++ctrl->nr_reconnects;
1886 	nvme_tcp_reconnect_or_remove(ctrl);
1887 }
1888 
1889 static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl)
1890 {
1891 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1892 
1893 	if (list_empty(&ctrl->list))
1894 		goto free_ctrl;
1895 
1896 	mutex_lock(&nvme_tcp_ctrl_mutex);
1897 	list_del(&ctrl->list);
1898 	mutex_unlock(&nvme_tcp_ctrl_mutex);
1899 
1900 	nvmf_free_options(nctrl->opts);
1901 free_ctrl:
1902 	kfree(ctrl->queues);
1903 	kfree(ctrl);
1904 }
1905 
1906 static void nvme_tcp_set_sg_null(struct nvme_command *c)
1907 {
1908 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
1909 
1910 	sg->addr = 0;
1911 	sg->length = 0;
1912 	sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
1913 			NVME_SGL_FMT_TRANSPORT_A;
1914 }
1915 
1916 static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue,
1917 		struct nvme_command *c, u32 data_len)
1918 {
1919 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
1920 
1921 	sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
1922 	sg->length = cpu_to_le32(data_len);
1923 	sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
1924 }
1925 
1926 static void nvme_tcp_set_sg_host_data(struct nvme_command *c,
1927 		u32 data_len)
1928 {
1929 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
1930 
1931 	sg->addr = 0;
1932 	sg->length = cpu_to_le32(data_len);
1933 	sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
1934 			NVME_SGL_FMT_TRANSPORT_A;
1935 }
1936 
1937 static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg)
1938 {
1939 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg);
1940 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
1941 	struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu;
1942 	struct nvme_command *cmd = &pdu->cmd;
1943 	u8 hdgst = nvme_tcp_hdgst_len(queue);
1944 
1945 	memset(pdu, 0, sizeof(*pdu));
1946 	pdu->hdr.type = nvme_tcp_cmd;
1947 	if (queue->hdr_digest)
1948 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
1949 	pdu->hdr.hlen = sizeof(*pdu);
1950 	pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
1951 
1952 	cmd->common.opcode = nvme_admin_async_event;
1953 	cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1954 	cmd->common.flags |= NVME_CMD_SGL_METABUF;
1955 	nvme_tcp_set_sg_null(cmd);
1956 
1957 	ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU;
1958 	ctrl->async_req.offset = 0;
1959 	ctrl->async_req.curr_bio = NULL;
1960 	ctrl->async_req.data_len = 0;
1961 
1962 	nvme_tcp_queue_request(&ctrl->async_req);
1963 }
1964 
1965 static enum blk_eh_timer_return
1966 nvme_tcp_timeout(struct request *rq, bool reserved)
1967 {
1968 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
1969 	struct nvme_tcp_ctrl *ctrl = req->queue->ctrl;
1970 	struct nvme_tcp_cmd_pdu *pdu = req->pdu;
1971 
1972 	dev_warn(ctrl->ctrl.device,
1973 		"queue %d: timeout request %#x type %d\n",
1974 		nvme_tcp_queue_id(req->queue), rq->tag, pdu->hdr.type);
1975 
1976 	if (ctrl->ctrl.state != NVME_CTRL_LIVE) {
1977 		/*
1978 		 * Teardown immediately if controller times out while starting
1979 		 * or we are already started error recovery. all outstanding
1980 		 * requests are completed on shutdown, so we return BLK_EH_DONE.
1981 		 */
1982 		flush_work(&ctrl->err_work);
1983 		nvme_tcp_teardown_io_queues(&ctrl->ctrl, false);
1984 		nvme_tcp_teardown_admin_queue(&ctrl->ctrl, false);
1985 		return BLK_EH_DONE;
1986 	}
1987 
1988 	dev_warn(ctrl->ctrl.device, "starting error recovery\n");
1989 	nvme_tcp_error_recovery(&ctrl->ctrl);
1990 
1991 	return BLK_EH_RESET_TIMER;
1992 }
1993 
1994 static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue,
1995 			struct request *rq)
1996 {
1997 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
1998 	struct nvme_tcp_cmd_pdu *pdu = req->pdu;
1999 	struct nvme_command *c = &pdu->cmd;
2000 
2001 	c->common.flags |= NVME_CMD_SGL_METABUF;
2002 
2003 	if (rq_data_dir(rq) == WRITE && req->data_len &&
2004 	    req->data_len <= nvme_tcp_inline_data_size(queue))
2005 		nvme_tcp_set_sg_inline(queue, c, req->data_len);
2006 	else
2007 		nvme_tcp_set_sg_host_data(c, req->data_len);
2008 
2009 	return 0;
2010 }
2011 
2012 static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns,
2013 		struct request *rq)
2014 {
2015 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2016 	struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2017 	struct nvme_tcp_queue *queue = req->queue;
2018 	u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0;
2019 	blk_status_t ret;
2020 
2021 	ret = nvme_setup_cmd(ns, rq, &pdu->cmd);
2022 	if (ret)
2023 		return ret;
2024 
2025 	req->state = NVME_TCP_SEND_CMD_PDU;
2026 	req->offset = 0;
2027 	req->data_sent = 0;
2028 	req->pdu_len = 0;
2029 	req->pdu_sent = 0;
2030 	req->data_len = blk_rq_payload_bytes(rq);
2031 	req->curr_bio = rq->bio;
2032 
2033 	if (rq_data_dir(rq) == WRITE &&
2034 	    req->data_len <= nvme_tcp_inline_data_size(queue))
2035 		req->pdu_len = req->data_len;
2036 	else if (req->curr_bio)
2037 		nvme_tcp_init_iter(req, READ);
2038 
2039 	pdu->hdr.type = nvme_tcp_cmd;
2040 	pdu->hdr.flags = 0;
2041 	if (queue->hdr_digest)
2042 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
2043 	if (queue->data_digest && req->pdu_len) {
2044 		pdu->hdr.flags |= NVME_TCP_F_DDGST;
2045 		ddgst = nvme_tcp_ddgst_len(queue);
2046 	}
2047 	pdu->hdr.hlen = sizeof(*pdu);
2048 	pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0;
2049 	pdu->hdr.plen =
2050 		cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst);
2051 
2052 	ret = nvme_tcp_map_data(queue, rq);
2053 	if (unlikely(ret)) {
2054 		dev_err(queue->ctrl->ctrl.device,
2055 			"Failed to map data (%d)\n", ret);
2056 		return ret;
2057 	}
2058 
2059 	return 0;
2060 }
2061 
2062 static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx,
2063 		const struct blk_mq_queue_data *bd)
2064 {
2065 	struct nvme_ns *ns = hctx->queue->queuedata;
2066 	struct nvme_tcp_queue *queue = hctx->driver_data;
2067 	struct request *rq = bd->rq;
2068 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2069 	bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags);
2070 	blk_status_t ret;
2071 
2072 	if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2073 		return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq);
2074 
2075 	ret = nvme_tcp_setup_cmd_pdu(ns, rq);
2076 	if (unlikely(ret))
2077 		return ret;
2078 
2079 	blk_mq_start_request(rq);
2080 
2081 	nvme_tcp_queue_request(req);
2082 
2083 	return BLK_STS_OK;
2084 }
2085 
2086 static int nvme_tcp_map_queues(struct blk_mq_tag_set *set)
2087 {
2088 	struct nvme_tcp_ctrl *ctrl = set->driver_data;
2089 
2090 	set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2091 	set->map[HCTX_TYPE_READ].nr_queues = ctrl->ctrl.opts->nr_io_queues;
2092 	if (ctrl->ctrl.opts->nr_write_queues) {
2093 		/* separate read/write queues */
2094 		set->map[HCTX_TYPE_DEFAULT].nr_queues =
2095 				ctrl->ctrl.opts->nr_write_queues;
2096 		set->map[HCTX_TYPE_READ].queue_offset =
2097 				ctrl->ctrl.opts->nr_write_queues;
2098 	} else {
2099 		/* mixed read/write queues */
2100 		set->map[HCTX_TYPE_DEFAULT].nr_queues =
2101 				ctrl->ctrl.opts->nr_io_queues;
2102 		set->map[HCTX_TYPE_READ].queue_offset = 0;
2103 	}
2104 	blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
2105 	blk_mq_map_queues(&set->map[HCTX_TYPE_READ]);
2106 	return 0;
2107 }
2108 
2109 static struct blk_mq_ops nvme_tcp_mq_ops = {
2110 	.queue_rq	= nvme_tcp_queue_rq,
2111 	.complete	= nvme_complete_rq,
2112 	.init_request	= nvme_tcp_init_request,
2113 	.exit_request	= nvme_tcp_exit_request,
2114 	.init_hctx	= nvme_tcp_init_hctx,
2115 	.timeout	= nvme_tcp_timeout,
2116 	.map_queues	= nvme_tcp_map_queues,
2117 };
2118 
2119 static struct blk_mq_ops nvme_tcp_admin_mq_ops = {
2120 	.queue_rq	= nvme_tcp_queue_rq,
2121 	.complete	= nvme_complete_rq,
2122 	.init_request	= nvme_tcp_init_request,
2123 	.exit_request	= nvme_tcp_exit_request,
2124 	.init_hctx	= nvme_tcp_init_admin_hctx,
2125 	.timeout	= nvme_tcp_timeout,
2126 };
2127 
2128 static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = {
2129 	.name			= "tcp",
2130 	.module			= THIS_MODULE,
2131 	.flags			= NVME_F_FABRICS,
2132 	.reg_read32		= nvmf_reg_read32,
2133 	.reg_read64		= nvmf_reg_read64,
2134 	.reg_write32		= nvmf_reg_write32,
2135 	.free_ctrl		= nvme_tcp_free_ctrl,
2136 	.submit_async_event	= nvme_tcp_submit_async_event,
2137 	.delete_ctrl		= nvme_tcp_delete_ctrl,
2138 	.get_address		= nvmf_get_address,
2139 };
2140 
2141 static bool
2142 nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts)
2143 {
2144 	struct nvme_tcp_ctrl *ctrl;
2145 	bool found = false;
2146 
2147 	mutex_lock(&nvme_tcp_ctrl_mutex);
2148 	list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) {
2149 		found = nvmf_ip_options_match(&ctrl->ctrl, opts);
2150 		if (found)
2151 			break;
2152 	}
2153 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2154 
2155 	return found;
2156 }
2157 
2158 static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev,
2159 		struct nvmf_ctrl_options *opts)
2160 {
2161 	struct nvme_tcp_ctrl *ctrl;
2162 	int ret;
2163 
2164 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2165 	if (!ctrl)
2166 		return ERR_PTR(-ENOMEM);
2167 
2168 	INIT_LIST_HEAD(&ctrl->list);
2169 	ctrl->ctrl.opts = opts;
2170 	ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues + 1;
2171 	ctrl->ctrl.sqsize = opts->queue_size - 1;
2172 	ctrl->ctrl.kato = opts->kato;
2173 
2174 	INIT_DELAYED_WORK(&ctrl->connect_work,
2175 			nvme_tcp_reconnect_ctrl_work);
2176 	INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work);
2177 	INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work);
2178 
2179 	if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2180 		opts->trsvcid =
2181 			kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL);
2182 		if (!opts->trsvcid) {
2183 			ret = -ENOMEM;
2184 			goto out_free_ctrl;
2185 		}
2186 		opts->mask |= NVMF_OPT_TRSVCID;
2187 	}
2188 
2189 	ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2190 			opts->traddr, opts->trsvcid, &ctrl->addr);
2191 	if (ret) {
2192 		pr_err("malformed address passed: %s:%s\n",
2193 			opts->traddr, opts->trsvcid);
2194 		goto out_free_ctrl;
2195 	}
2196 
2197 	if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2198 		ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2199 			opts->host_traddr, NULL, &ctrl->src_addr);
2200 		if (ret) {
2201 			pr_err("malformed src address passed: %s\n",
2202 			       opts->host_traddr);
2203 			goto out_free_ctrl;
2204 		}
2205 	}
2206 
2207 	if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) {
2208 		ret = -EALREADY;
2209 		goto out_free_ctrl;
2210 	}
2211 
2212 	ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2213 				GFP_KERNEL);
2214 	if (!ctrl->queues) {
2215 		ret = -ENOMEM;
2216 		goto out_free_ctrl;
2217 	}
2218 
2219 	ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0);
2220 	if (ret)
2221 		goto out_kfree_queues;
2222 
2223 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2224 		WARN_ON_ONCE(1);
2225 		ret = -EINTR;
2226 		goto out_uninit_ctrl;
2227 	}
2228 
2229 	ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true);
2230 	if (ret)
2231 		goto out_uninit_ctrl;
2232 
2233 	dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n",
2234 		ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
2235 
2236 	nvme_get_ctrl(&ctrl->ctrl);
2237 
2238 	mutex_lock(&nvme_tcp_ctrl_mutex);
2239 	list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list);
2240 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2241 
2242 	return &ctrl->ctrl;
2243 
2244 out_uninit_ctrl:
2245 	nvme_uninit_ctrl(&ctrl->ctrl);
2246 	nvme_put_ctrl(&ctrl->ctrl);
2247 	if (ret > 0)
2248 		ret = -EIO;
2249 	return ERR_PTR(ret);
2250 out_kfree_queues:
2251 	kfree(ctrl->queues);
2252 out_free_ctrl:
2253 	kfree(ctrl);
2254 	return ERR_PTR(ret);
2255 }
2256 
2257 static struct nvmf_transport_ops nvme_tcp_transport = {
2258 	.name		= "tcp",
2259 	.module		= THIS_MODULE,
2260 	.required_opts	= NVMF_OPT_TRADDR,
2261 	.allowed_opts	= NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2262 			  NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2263 			  NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST |
2264 			  NVMF_OPT_NR_WRITE_QUEUES,
2265 	.create_ctrl	= nvme_tcp_create_ctrl,
2266 };
2267 
2268 static int __init nvme_tcp_init_module(void)
2269 {
2270 	nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq",
2271 			WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2272 	if (!nvme_tcp_wq)
2273 		return -ENOMEM;
2274 
2275 	nvmf_register_transport(&nvme_tcp_transport);
2276 	return 0;
2277 }
2278 
2279 static void __exit nvme_tcp_cleanup_module(void)
2280 {
2281 	struct nvme_tcp_ctrl *ctrl;
2282 
2283 	nvmf_unregister_transport(&nvme_tcp_transport);
2284 
2285 	mutex_lock(&nvme_tcp_ctrl_mutex);
2286 	list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list)
2287 		nvme_delete_ctrl(&ctrl->ctrl);
2288 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2289 	flush_workqueue(nvme_delete_wq);
2290 
2291 	destroy_workqueue(nvme_tcp_wq);
2292 }
2293 
2294 module_init(nvme_tcp_init_module);
2295 module_exit(nvme_tcp_cleanup_module);
2296 
2297 MODULE_LICENSE("GPL v2");
2298