xref: /linux/drivers/nvme/host/tcp.c (revision 8b8eed05a1c650c27e78bc47d07f7d6c9ba779e8)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics TCP host.
4  * Copyright (c) 2018 Lightbits Labs. All rights reserved.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/err.h>
11 #include <linux/key.h>
12 #include <linux/nvme-tcp.h>
13 #include <linux/nvme-keyring.h>
14 #include <net/sock.h>
15 #include <net/tcp.h>
16 #include <net/tls.h>
17 #include <net/tls_prot.h>
18 #include <net/handshake.h>
19 #include <linux/blk-mq.h>
20 #include <crypto/hash.h>
21 #include <net/busy_poll.h>
22 #include <trace/events/sock.h>
23 
24 #include "nvme.h"
25 #include "fabrics.h"
26 
27 struct nvme_tcp_queue;
28 
29 /* Define the socket priority to use for connections were it is desirable
30  * that the NIC consider performing optimized packet processing or filtering.
31  * A non-zero value being sufficient to indicate general consideration of any
32  * possible optimization.  Making it a module param allows for alternative
33  * values that may be unique for some NIC implementations.
34  */
35 static int so_priority;
36 module_param(so_priority, int, 0644);
37 MODULE_PARM_DESC(so_priority, "nvme tcp socket optimize priority");
38 
39 #ifdef CONFIG_NVME_TCP_TLS
40 /*
41  * TLS handshake timeout
42  */
43 static int tls_handshake_timeout = 10;
44 module_param(tls_handshake_timeout, int, 0644);
45 MODULE_PARM_DESC(tls_handshake_timeout,
46 		 "nvme TLS handshake timeout in seconds (default 10)");
47 #endif
48 
49 #ifdef CONFIG_DEBUG_LOCK_ALLOC
50 /* lockdep can detect a circular dependency of the form
51  *   sk_lock -> mmap_lock (page fault) -> fs locks -> sk_lock
52  * because dependencies are tracked for both nvme-tcp and user contexts. Using
53  * a separate class prevents lockdep from conflating nvme-tcp socket use with
54  * user-space socket API use.
55  */
56 static struct lock_class_key nvme_tcp_sk_key[2];
57 static struct lock_class_key nvme_tcp_slock_key[2];
58 
59 static void nvme_tcp_reclassify_socket(struct socket *sock)
60 {
61 	struct sock *sk = sock->sk;
62 
63 	if (WARN_ON_ONCE(!sock_allow_reclassification(sk)))
64 		return;
65 
66 	switch (sk->sk_family) {
67 	case AF_INET:
68 		sock_lock_init_class_and_name(sk, "slock-AF_INET-NVME",
69 					      &nvme_tcp_slock_key[0],
70 					      "sk_lock-AF_INET-NVME",
71 					      &nvme_tcp_sk_key[0]);
72 		break;
73 	case AF_INET6:
74 		sock_lock_init_class_and_name(sk, "slock-AF_INET6-NVME",
75 					      &nvme_tcp_slock_key[1],
76 					      "sk_lock-AF_INET6-NVME",
77 					      &nvme_tcp_sk_key[1]);
78 		break;
79 	default:
80 		WARN_ON_ONCE(1);
81 	}
82 }
83 #else
84 static void nvme_tcp_reclassify_socket(struct socket *sock) { }
85 #endif
86 
87 enum nvme_tcp_send_state {
88 	NVME_TCP_SEND_CMD_PDU = 0,
89 	NVME_TCP_SEND_H2C_PDU,
90 	NVME_TCP_SEND_DATA,
91 	NVME_TCP_SEND_DDGST,
92 };
93 
94 struct nvme_tcp_request {
95 	struct nvme_request	req;
96 	void			*pdu;
97 	struct nvme_tcp_queue	*queue;
98 	u32			data_len;
99 	u32			pdu_len;
100 	u32			pdu_sent;
101 	u32			h2cdata_left;
102 	u32			h2cdata_offset;
103 	u16			ttag;
104 	__le16			status;
105 	struct list_head	entry;
106 	struct llist_node	lentry;
107 	__le32			ddgst;
108 
109 	struct bio		*curr_bio;
110 	struct iov_iter		iter;
111 
112 	/* send state */
113 	size_t			offset;
114 	size_t			data_sent;
115 	enum nvme_tcp_send_state state;
116 };
117 
118 enum nvme_tcp_queue_flags {
119 	NVME_TCP_Q_ALLOCATED	= 0,
120 	NVME_TCP_Q_LIVE		= 1,
121 	NVME_TCP_Q_POLLING	= 2,
122 };
123 
124 enum nvme_tcp_recv_state {
125 	NVME_TCP_RECV_PDU = 0,
126 	NVME_TCP_RECV_DATA,
127 	NVME_TCP_RECV_DDGST,
128 };
129 
130 struct nvme_tcp_ctrl;
131 struct nvme_tcp_queue {
132 	struct socket		*sock;
133 	struct work_struct	io_work;
134 	int			io_cpu;
135 
136 	struct mutex		queue_lock;
137 	struct mutex		send_mutex;
138 	struct llist_head	req_list;
139 	struct list_head	send_list;
140 
141 	/* recv state */
142 	void			*pdu;
143 	int			pdu_remaining;
144 	int			pdu_offset;
145 	size_t			data_remaining;
146 	size_t			ddgst_remaining;
147 	unsigned int		nr_cqe;
148 
149 	/* send state */
150 	struct nvme_tcp_request *request;
151 
152 	u32			maxh2cdata;
153 	size_t			cmnd_capsule_len;
154 	struct nvme_tcp_ctrl	*ctrl;
155 	unsigned long		flags;
156 	bool			rd_enabled;
157 
158 	bool			hdr_digest;
159 	bool			data_digest;
160 	struct ahash_request	*rcv_hash;
161 	struct ahash_request	*snd_hash;
162 	__le32			exp_ddgst;
163 	__le32			recv_ddgst;
164 #ifdef CONFIG_NVME_TCP_TLS
165 	struct completion       tls_complete;
166 	int                     tls_err;
167 #endif
168 	struct page_frag_cache	pf_cache;
169 
170 	void (*state_change)(struct sock *);
171 	void (*data_ready)(struct sock *);
172 	void (*write_space)(struct sock *);
173 };
174 
175 struct nvme_tcp_ctrl {
176 	/* read only in the hot path */
177 	struct nvme_tcp_queue	*queues;
178 	struct blk_mq_tag_set	tag_set;
179 
180 	/* other member variables */
181 	struct list_head	list;
182 	struct blk_mq_tag_set	admin_tag_set;
183 	struct sockaddr_storage addr;
184 	struct sockaddr_storage src_addr;
185 	struct nvme_ctrl	ctrl;
186 
187 	struct work_struct	err_work;
188 	struct delayed_work	connect_work;
189 	struct nvme_tcp_request async_req;
190 	u32			io_queues[HCTX_MAX_TYPES];
191 };
192 
193 static LIST_HEAD(nvme_tcp_ctrl_list);
194 static DEFINE_MUTEX(nvme_tcp_ctrl_mutex);
195 static struct workqueue_struct *nvme_tcp_wq;
196 static const struct blk_mq_ops nvme_tcp_mq_ops;
197 static const struct blk_mq_ops nvme_tcp_admin_mq_ops;
198 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue);
199 
200 static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl)
201 {
202 	return container_of(ctrl, struct nvme_tcp_ctrl, ctrl);
203 }
204 
205 static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue)
206 {
207 	return queue - queue->ctrl->queues;
208 }
209 
210 static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue)
211 {
212 	u32 queue_idx = nvme_tcp_queue_id(queue);
213 
214 	if (queue_idx == 0)
215 		return queue->ctrl->admin_tag_set.tags[queue_idx];
216 	return queue->ctrl->tag_set.tags[queue_idx - 1];
217 }
218 
219 static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue)
220 {
221 	return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
222 }
223 
224 static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue)
225 {
226 	return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
227 }
228 
229 static inline void *nvme_tcp_req_cmd_pdu(struct nvme_tcp_request *req)
230 {
231 	return req->pdu;
232 }
233 
234 static inline void *nvme_tcp_req_data_pdu(struct nvme_tcp_request *req)
235 {
236 	/* use the pdu space in the back for the data pdu */
237 	return req->pdu + sizeof(struct nvme_tcp_cmd_pdu) -
238 		sizeof(struct nvme_tcp_data_pdu);
239 }
240 
241 static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_request *req)
242 {
243 	if (nvme_is_fabrics(req->req.cmd))
244 		return NVME_TCP_ADMIN_CCSZ;
245 	return req->queue->cmnd_capsule_len - sizeof(struct nvme_command);
246 }
247 
248 static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req)
249 {
250 	return req == &req->queue->ctrl->async_req;
251 }
252 
253 static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req)
254 {
255 	struct request *rq;
256 
257 	if (unlikely(nvme_tcp_async_req(req)))
258 		return false; /* async events don't have a request */
259 
260 	rq = blk_mq_rq_from_pdu(req);
261 
262 	return rq_data_dir(rq) == WRITE && req->data_len &&
263 		req->data_len <= nvme_tcp_inline_data_size(req);
264 }
265 
266 static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req)
267 {
268 	return req->iter.bvec->bv_page;
269 }
270 
271 static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req)
272 {
273 	return req->iter.bvec->bv_offset + req->iter.iov_offset;
274 }
275 
276 static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req)
277 {
278 	return min_t(size_t, iov_iter_single_seg_count(&req->iter),
279 			req->pdu_len - req->pdu_sent);
280 }
281 
282 static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req)
283 {
284 	return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ?
285 			req->pdu_len - req->pdu_sent : 0;
286 }
287 
288 static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req,
289 		int len)
290 {
291 	return nvme_tcp_pdu_data_left(req) <= len;
292 }
293 
294 static void nvme_tcp_init_iter(struct nvme_tcp_request *req,
295 		unsigned int dir)
296 {
297 	struct request *rq = blk_mq_rq_from_pdu(req);
298 	struct bio_vec *vec;
299 	unsigned int size;
300 	int nr_bvec;
301 	size_t offset;
302 
303 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) {
304 		vec = &rq->special_vec;
305 		nr_bvec = 1;
306 		size = blk_rq_payload_bytes(rq);
307 		offset = 0;
308 	} else {
309 		struct bio *bio = req->curr_bio;
310 		struct bvec_iter bi;
311 		struct bio_vec bv;
312 
313 		vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
314 		nr_bvec = 0;
315 		bio_for_each_bvec(bv, bio, bi) {
316 			nr_bvec++;
317 		}
318 		size = bio->bi_iter.bi_size;
319 		offset = bio->bi_iter.bi_bvec_done;
320 	}
321 
322 	iov_iter_bvec(&req->iter, dir, vec, nr_bvec, size);
323 	req->iter.iov_offset = offset;
324 }
325 
326 static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req,
327 		int len)
328 {
329 	req->data_sent += len;
330 	req->pdu_sent += len;
331 	iov_iter_advance(&req->iter, len);
332 	if (!iov_iter_count(&req->iter) &&
333 	    req->data_sent < req->data_len) {
334 		req->curr_bio = req->curr_bio->bi_next;
335 		nvme_tcp_init_iter(req, ITER_SOURCE);
336 	}
337 }
338 
339 static inline void nvme_tcp_send_all(struct nvme_tcp_queue *queue)
340 {
341 	int ret;
342 
343 	/* drain the send queue as much as we can... */
344 	do {
345 		ret = nvme_tcp_try_send(queue);
346 	} while (ret > 0);
347 }
348 
349 static inline bool nvme_tcp_queue_more(struct nvme_tcp_queue *queue)
350 {
351 	return !list_empty(&queue->send_list) ||
352 		!llist_empty(&queue->req_list);
353 }
354 
355 static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req,
356 		bool sync, bool last)
357 {
358 	struct nvme_tcp_queue *queue = req->queue;
359 	bool empty;
360 
361 	empty = llist_add(&req->lentry, &queue->req_list) &&
362 		list_empty(&queue->send_list) && !queue->request;
363 
364 	/*
365 	 * if we're the first on the send_list and we can try to send
366 	 * directly, otherwise queue io_work. Also, only do that if we
367 	 * are on the same cpu, so we don't introduce contention.
368 	 */
369 	if (queue->io_cpu == raw_smp_processor_id() &&
370 	    sync && empty && mutex_trylock(&queue->send_mutex)) {
371 		nvme_tcp_send_all(queue);
372 		mutex_unlock(&queue->send_mutex);
373 	}
374 
375 	if (last && nvme_tcp_queue_more(queue))
376 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
377 }
378 
379 static void nvme_tcp_process_req_list(struct nvme_tcp_queue *queue)
380 {
381 	struct nvme_tcp_request *req;
382 	struct llist_node *node;
383 
384 	for (node = llist_del_all(&queue->req_list); node; node = node->next) {
385 		req = llist_entry(node, struct nvme_tcp_request, lentry);
386 		list_add(&req->entry, &queue->send_list);
387 	}
388 }
389 
390 static inline struct nvme_tcp_request *
391 nvme_tcp_fetch_request(struct nvme_tcp_queue *queue)
392 {
393 	struct nvme_tcp_request *req;
394 
395 	req = list_first_entry_or_null(&queue->send_list,
396 			struct nvme_tcp_request, entry);
397 	if (!req) {
398 		nvme_tcp_process_req_list(queue);
399 		req = list_first_entry_or_null(&queue->send_list,
400 				struct nvme_tcp_request, entry);
401 		if (unlikely(!req))
402 			return NULL;
403 	}
404 
405 	list_del(&req->entry);
406 	return req;
407 }
408 
409 static inline void nvme_tcp_ddgst_final(struct ahash_request *hash,
410 		__le32 *dgst)
411 {
412 	ahash_request_set_crypt(hash, NULL, (u8 *)dgst, 0);
413 	crypto_ahash_final(hash);
414 }
415 
416 static inline void nvme_tcp_ddgst_update(struct ahash_request *hash,
417 		struct page *page, off_t off, size_t len)
418 {
419 	struct scatterlist sg;
420 
421 	sg_init_table(&sg, 1);
422 	sg_set_page(&sg, page, len, off);
423 	ahash_request_set_crypt(hash, &sg, NULL, len);
424 	crypto_ahash_update(hash);
425 }
426 
427 static inline void nvme_tcp_hdgst(struct ahash_request *hash,
428 		void *pdu, size_t len)
429 {
430 	struct scatterlist sg;
431 
432 	sg_init_one(&sg, pdu, len);
433 	ahash_request_set_crypt(hash, &sg, pdu + len, len);
434 	crypto_ahash_digest(hash);
435 }
436 
437 static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue,
438 		void *pdu, size_t pdu_len)
439 {
440 	struct nvme_tcp_hdr *hdr = pdu;
441 	__le32 recv_digest;
442 	__le32 exp_digest;
443 
444 	if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
445 		dev_err(queue->ctrl->ctrl.device,
446 			"queue %d: header digest flag is cleared\n",
447 			nvme_tcp_queue_id(queue));
448 		return -EPROTO;
449 	}
450 
451 	recv_digest = *(__le32 *)(pdu + hdr->hlen);
452 	nvme_tcp_hdgst(queue->rcv_hash, pdu, pdu_len);
453 	exp_digest = *(__le32 *)(pdu + hdr->hlen);
454 	if (recv_digest != exp_digest) {
455 		dev_err(queue->ctrl->ctrl.device,
456 			"header digest error: recv %#x expected %#x\n",
457 			le32_to_cpu(recv_digest), le32_to_cpu(exp_digest));
458 		return -EIO;
459 	}
460 
461 	return 0;
462 }
463 
464 static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu)
465 {
466 	struct nvme_tcp_hdr *hdr = pdu;
467 	u8 digest_len = nvme_tcp_hdgst_len(queue);
468 	u32 len;
469 
470 	len = le32_to_cpu(hdr->plen) - hdr->hlen -
471 		((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0);
472 
473 	if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
474 		dev_err(queue->ctrl->ctrl.device,
475 			"queue %d: data digest flag is cleared\n",
476 		nvme_tcp_queue_id(queue));
477 		return -EPROTO;
478 	}
479 	crypto_ahash_init(queue->rcv_hash);
480 
481 	return 0;
482 }
483 
484 static void nvme_tcp_exit_request(struct blk_mq_tag_set *set,
485 		struct request *rq, unsigned int hctx_idx)
486 {
487 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
488 
489 	page_frag_free(req->pdu);
490 }
491 
492 static int nvme_tcp_init_request(struct blk_mq_tag_set *set,
493 		struct request *rq, unsigned int hctx_idx,
494 		unsigned int numa_node)
495 {
496 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(set->driver_data);
497 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
498 	struct nvme_tcp_cmd_pdu *pdu;
499 	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
500 	struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx];
501 	u8 hdgst = nvme_tcp_hdgst_len(queue);
502 
503 	req->pdu = page_frag_alloc(&queue->pf_cache,
504 		sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
505 		GFP_KERNEL | __GFP_ZERO);
506 	if (!req->pdu)
507 		return -ENOMEM;
508 
509 	pdu = req->pdu;
510 	req->queue = queue;
511 	nvme_req(rq)->ctrl = &ctrl->ctrl;
512 	nvme_req(rq)->cmd = &pdu->cmd;
513 
514 	return 0;
515 }
516 
517 static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
518 		unsigned int hctx_idx)
519 {
520 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(data);
521 	struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1];
522 
523 	hctx->driver_data = queue;
524 	return 0;
525 }
526 
527 static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
528 		unsigned int hctx_idx)
529 {
530 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(data);
531 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
532 
533 	hctx->driver_data = queue;
534 	return 0;
535 }
536 
537 static enum nvme_tcp_recv_state
538 nvme_tcp_recv_state(struct nvme_tcp_queue *queue)
539 {
540 	return  (queue->pdu_remaining) ? NVME_TCP_RECV_PDU :
541 		(queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST :
542 		NVME_TCP_RECV_DATA;
543 }
544 
545 static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue)
546 {
547 	queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) +
548 				nvme_tcp_hdgst_len(queue);
549 	queue->pdu_offset = 0;
550 	queue->data_remaining = -1;
551 	queue->ddgst_remaining = 0;
552 }
553 
554 static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl)
555 {
556 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
557 		return;
558 
559 	dev_warn(ctrl->device, "starting error recovery\n");
560 	queue_work(nvme_reset_wq, &to_tcp_ctrl(ctrl)->err_work);
561 }
562 
563 static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue,
564 		struct nvme_completion *cqe)
565 {
566 	struct nvme_tcp_request *req;
567 	struct request *rq;
568 
569 	rq = nvme_find_rq(nvme_tcp_tagset(queue), cqe->command_id);
570 	if (!rq) {
571 		dev_err(queue->ctrl->ctrl.device,
572 			"got bad cqe.command_id %#x on queue %d\n",
573 			cqe->command_id, nvme_tcp_queue_id(queue));
574 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
575 		return -EINVAL;
576 	}
577 
578 	req = blk_mq_rq_to_pdu(rq);
579 	if (req->status == cpu_to_le16(NVME_SC_SUCCESS))
580 		req->status = cqe->status;
581 
582 	if (!nvme_try_complete_req(rq, req->status, cqe->result))
583 		nvme_complete_rq(rq);
584 	queue->nr_cqe++;
585 
586 	return 0;
587 }
588 
589 static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue,
590 		struct nvme_tcp_data_pdu *pdu)
591 {
592 	struct request *rq;
593 
594 	rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id);
595 	if (!rq) {
596 		dev_err(queue->ctrl->ctrl.device,
597 			"got bad c2hdata.command_id %#x on queue %d\n",
598 			pdu->command_id, nvme_tcp_queue_id(queue));
599 		return -ENOENT;
600 	}
601 
602 	if (!blk_rq_payload_bytes(rq)) {
603 		dev_err(queue->ctrl->ctrl.device,
604 			"queue %d tag %#x unexpected data\n",
605 			nvme_tcp_queue_id(queue), rq->tag);
606 		return -EIO;
607 	}
608 
609 	queue->data_remaining = le32_to_cpu(pdu->data_length);
610 
611 	if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS &&
612 	    unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) {
613 		dev_err(queue->ctrl->ctrl.device,
614 			"queue %d tag %#x SUCCESS set but not last PDU\n",
615 			nvme_tcp_queue_id(queue), rq->tag);
616 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
617 		return -EPROTO;
618 	}
619 
620 	return 0;
621 }
622 
623 static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue,
624 		struct nvme_tcp_rsp_pdu *pdu)
625 {
626 	struct nvme_completion *cqe = &pdu->cqe;
627 	int ret = 0;
628 
629 	/*
630 	 * AEN requests are special as they don't time out and can
631 	 * survive any kind of queue freeze and often don't respond to
632 	 * aborts.  We don't even bother to allocate a struct request
633 	 * for them but rather special case them here.
634 	 */
635 	if (unlikely(nvme_is_aen_req(nvme_tcp_queue_id(queue),
636 				     cqe->command_id)))
637 		nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
638 				&cqe->result);
639 	else
640 		ret = nvme_tcp_process_nvme_cqe(queue, cqe);
641 
642 	return ret;
643 }
644 
645 static void nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req)
646 {
647 	struct nvme_tcp_data_pdu *data = nvme_tcp_req_data_pdu(req);
648 	struct nvme_tcp_queue *queue = req->queue;
649 	struct request *rq = blk_mq_rq_from_pdu(req);
650 	u32 h2cdata_sent = req->pdu_len;
651 	u8 hdgst = nvme_tcp_hdgst_len(queue);
652 	u8 ddgst = nvme_tcp_ddgst_len(queue);
653 
654 	req->state = NVME_TCP_SEND_H2C_PDU;
655 	req->offset = 0;
656 	req->pdu_len = min(req->h2cdata_left, queue->maxh2cdata);
657 	req->pdu_sent = 0;
658 	req->h2cdata_left -= req->pdu_len;
659 	req->h2cdata_offset += h2cdata_sent;
660 
661 	memset(data, 0, sizeof(*data));
662 	data->hdr.type = nvme_tcp_h2c_data;
663 	if (!req->h2cdata_left)
664 		data->hdr.flags = NVME_TCP_F_DATA_LAST;
665 	if (queue->hdr_digest)
666 		data->hdr.flags |= NVME_TCP_F_HDGST;
667 	if (queue->data_digest)
668 		data->hdr.flags |= NVME_TCP_F_DDGST;
669 	data->hdr.hlen = sizeof(*data);
670 	data->hdr.pdo = data->hdr.hlen + hdgst;
671 	data->hdr.plen =
672 		cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst);
673 	data->ttag = req->ttag;
674 	data->command_id = nvme_cid(rq);
675 	data->data_offset = cpu_to_le32(req->h2cdata_offset);
676 	data->data_length = cpu_to_le32(req->pdu_len);
677 }
678 
679 static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue,
680 		struct nvme_tcp_r2t_pdu *pdu)
681 {
682 	struct nvme_tcp_request *req;
683 	struct request *rq;
684 	u32 r2t_length = le32_to_cpu(pdu->r2t_length);
685 	u32 r2t_offset = le32_to_cpu(pdu->r2t_offset);
686 
687 	rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id);
688 	if (!rq) {
689 		dev_err(queue->ctrl->ctrl.device,
690 			"got bad r2t.command_id %#x on queue %d\n",
691 			pdu->command_id, nvme_tcp_queue_id(queue));
692 		return -ENOENT;
693 	}
694 	req = blk_mq_rq_to_pdu(rq);
695 
696 	if (unlikely(!r2t_length)) {
697 		dev_err(queue->ctrl->ctrl.device,
698 			"req %d r2t len is %u, probably a bug...\n",
699 			rq->tag, r2t_length);
700 		return -EPROTO;
701 	}
702 
703 	if (unlikely(req->data_sent + r2t_length > req->data_len)) {
704 		dev_err(queue->ctrl->ctrl.device,
705 			"req %d r2t len %u exceeded data len %u (%zu sent)\n",
706 			rq->tag, r2t_length, req->data_len, req->data_sent);
707 		return -EPROTO;
708 	}
709 
710 	if (unlikely(r2t_offset < req->data_sent)) {
711 		dev_err(queue->ctrl->ctrl.device,
712 			"req %d unexpected r2t offset %u (expected %zu)\n",
713 			rq->tag, r2t_offset, req->data_sent);
714 		return -EPROTO;
715 	}
716 
717 	req->pdu_len = 0;
718 	req->h2cdata_left = r2t_length;
719 	req->h2cdata_offset = r2t_offset;
720 	req->ttag = pdu->ttag;
721 
722 	nvme_tcp_setup_h2c_data_pdu(req);
723 	nvme_tcp_queue_request(req, false, true);
724 
725 	return 0;
726 }
727 
728 static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb,
729 		unsigned int *offset, size_t *len)
730 {
731 	struct nvme_tcp_hdr *hdr;
732 	char *pdu = queue->pdu;
733 	size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining);
734 	int ret;
735 
736 	ret = skb_copy_bits(skb, *offset,
737 		&pdu[queue->pdu_offset], rcv_len);
738 	if (unlikely(ret))
739 		return ret;
740 
741 	queue->pdu_remaining -= rcv_len;
742 	queue->pdu_offset += rcv_len;
743 	*offset += rcv_len;
744 	*len -= rcv_len;
745 	if (queue->pdu_remaining)
746 		return 0;
747 
748 	hdr = queue->pdu;
749 	if (queue->hdr_digest) {
750 		ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen);
751 		if (unlikely(ret))
752 			return ret;
753 	}
754 
755 
756 	if (queue->data_digest) {
757 		ret = nvme_tcp_check_ddgst(queue, queue->pdu);
758 		if (unlikely(ret))
759 			return ret;
760 	}
761 
762 	switch (hdr->type) {
763 	case nvme_tcp_c2h_data:
764 		return nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu);
765 	case nvme_tcp_rsp:
766 		nvme_tcp_init_recv_ctx(queue);
767 		return nvme_tcp_handle_comp(queue, (void *)queue->pdu);
768 	case nvme_tcp_r2t:
769 		nvme_tcp_init_recv_ctx(queue);
770 		return nvme_tcp_handle_r2t(queue, (void *)queue->pdu);
771 	default:
772 		dev_err(queue->ctrl->ctrl.device,
773 			"unsupported pdu type (%d)\n", hdr->type);
774 		return -EINVAL;
775 	}
776 }
777 
778 static inline void nvme_tcp_end_request(struct request *rq, u16 status)
779 {
780 	union nvme_result res = {};
781 
782 	if (!nvme_try_complete_req(rq, cpu_to_le16(status << 1), res))
783 		nvme_complete_rq(rq);
784 }
785 
786 static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb,
787 			      unsigned int *offset, size_t *len)
788 {
789 	struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
790 	struct request *rq =
791 		nvme_cid_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
792 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
793 
794 	while (true) {
795 		int recv_len, ret;
796 
797 		recv_len = min_t(size_t, *len, queue->data_remaining);
798 		if (!recv_len)
799 			break;
800 
801 		if (!iov_iter_count(&req->iter)) {
802 			req->curr_bio = req->curr_bio->bi_next;
803 
804 			/*
805 			 * If we don`t have any bios it means that controller
806 			 * sent more data than we requested, hence error
807 			 */
808 			if (!req->curr_bio) {
809 				dev_err(queue->ctrl->ctrl.device,
810 					"queue %d no space in request %#x",
811 					nvme_tcp_queue_id(queue), rq->tag);
812 				nvme_tcp_init_recv_ctx(queue);
813 				return -EIO;
814 			}
815 			nvme_tcp_init_iter(req, ITER_DEST);
816 		}
817 
818 		/* we can read only from what is left in this bio */
819 		recv_len = min_t(size_t, recv_len,
820 				iov_iter_count(&req->iter));
821 
822 		if (queue->data_digest)
823 			ret = skb_copy_and_hash_datagram_iter(skb, *offset,
824 				&req->iter, recv_len, queue->rcv_hash);
825 		else
826 			ret = skb_copy_datagram_iter(skb, *offset,
827 					&req->iter, recv_len);
828 		if (ret) {
829 			dev_err(queue->ctrl->ctrl.device,
830 				"queue %d failed to copy request %#x data",
831 				nvme_tcp_queue_id(queue), rq->tag);
832 			return ret;
833 		}
834 
835 		*len -= recv_len;
836 		*offset += recv_len;
837 		queue->data_remaining -= recv_len;
838 	}
839 
840 	if (!queue->data_remaining) {
841 		if (queue->data_digest) {
842 			nvme_tcp_ddgst_final(queue->rcv_hash, &queue->exp_ddgst);
843 			queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH;
844 		} else {
845 			if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
846 				nvme_tcp_end_request(rq,
847 						le16_to_cpu(req->status));
848 				queue->nr_cqe++;
849 			}
850 			nvme_tcp_init_recv_ctx(queue);
851 		}
852 	}
853 
854 	return 0;
855 }
856 
857 static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue,
858 		struct sk_buff *skb, unsigned int *offset, size_t *len)
859 {
860 	struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
861 	char *ddgst = (char *)&queue->recv_ddgst;
862 	size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining);
863 	off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining;
864 	int ret;
865 
866 	ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len);
867 	if (unlikely(ret))
868 		return ret;
869 
870 	queue->ddgst_remaining -= recv_len;
871 	*offset += recv_len;
872 	*len -= recv_len;
873 	if (queue->ddgst_remaining)
874 		return 0;
875 
876 	if (queue->recv_ddgst != queue->exp_ddgst) {
877 		struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue),
878 					pdu->command_id);
879 		struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
880 
881 		req->status = cpu_to_le16(NVME_SC_DATA_XFER_ERROR);
882 
883 		dev_err(queue->ctrl->ctrl.device,
884 			"data digest error: recv %#x expected %#x\n",
885 			le32_to_cpu(queue->recv_ddgst),
886 			le32_to_cpu(queue->exp_ddgst));
887 	}
888 
889 	if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
890 		struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue),
891 					pdu->command_id);
892 		struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
893 
894 		nvme_tcp_end_request(rq, le16_to_cpu(req->status));
895 		queue->nr_cqe++;
896 	}
897 
898 	nvme_tcp_init_recv_ctx(queue);
899 	return 0;
900 }
901 
902 static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb,
903 			     unsigned int offset, size_t len)
904 {
905 	struct nvme_tcp_queue *queue = desc->arg.data;
906 	size_t consumed = len;
907 	int result;
908 
909 	if (unlikely(!queue->rd_enabled))
910 		return -EFAULT;
911 
912 	while (len) {
913 		switch (nvme_tcp_recv_state(queue)) {
914 		case NVME_TCP_RECV_PDU:
915 			result = nvme_tcp_recv_pdu(queue, skb, &offset, &len);
916 			break;
917 		case NVME_TCP_RECV_DATA:
918 			result = nvme_tcp_recv_data(queue, skb, &offset, &len);
919 			break;
920 		case NVME_TCP_RECV_DDGST:
921 			result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len);
922 			break;
923 		default:
924 			result = -EFAULT;
925 		}
926 		if (result) {
927 			dev_err(queue->ctrl->ctrl.device,
928 				"receive failed:  %d\n", result);
929 			queue->rd_enabled = false;
930 			nvme_tcp_error_recovery(&queue->ctrl->ctrl);
931 			return result;
932 		}
933 	}
934 
935 	return consumed;
936 }
937 
938 static void nvme_tcp_data_ready(struct sock *sk)
939 {
940 	struct nvme_tcp_queue *queue;
941 
942 	trace_sk_data_ready(sk);
943 
944 	read_lock_bh(&sk->sk_callback_lock);
945 	queue = sk->sk_user_data;
946 	if (likely(queue && queue->rd_enabled) &&
947 	    !test_bit(NVME_TCP_Q_POLLING, &queue->flags))
948 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
949 	read_unlock_bh(&sk->sk_callback_lock);
950 }
951 
952 static void nvme_tcp_write_space(struct sock *sk)
953 {
954 	struct nvme_tcp_queue *queue;
955 
956 	read_lock_bh(&sk->sk_callback_lock);
957 	queue = sk->sk_user_data;
958 	if (likely(queue && sk_stream_is_writeable(sk))) {
959 		clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
960 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
961 	}
962 	read_unlock_bh(&sk->sk_callback_lock);
963 }
964 
965 static void nvme_tcp_state_change(struct sock *sk)
966 {
967 	struct nvme_tcp_queue *queue;
968 
969 	read_lock_bh(&sk->sk_callback_lock);
970 	queue = sk->sk_user_data;
971 	if (!queue)
972 		goto done;
973 
974 	switch (sk->sk_state) {
975 	case TCP_CLOSE:
976 	case TCP_CLOSE_WAIT:
977 	case TCP_LAST_ACK:
978 	case TCP_FIN_WAIT1:
979 	case TCP_FIN_WAIT2:
980 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
981 		break;
982 	default:
983 		dev_info(queue->ctrl->ctrl.device,
984 			"queue %d socket state %d\n",
985 			nvme_tcp_queue_id(queue), sk->sk_state);
986 	}
987 
988 	queue->state_change(sk);
989 done:
990 	read_unlock_bh(&sk->sk_callback_lock);
991 }
992 
993 static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue)
994 {
995 	queue->request = NULL;
996 }
997 
998 static void nvme_tcp_fail_request(struct nvme_tcp_request *req)
999 {
1000 	if (nvme_tcp_async_req(req)) {
1001 		union nvme_result res = {};
1002 
1003 		nvme_complete_async_event(&req->queue->ctrl->ctrl,
1004 				cpu_to_le16(NVME_SC_HOST_PATH_ERROR), &res);
1005 	} else {
1006 		nvme_tcp_end_request(blk_mq_rq_from_pdu(req),
1007 				NVME_SC_HOST_PATH_ERROR);
1008 	}
1009 }
1010 
1011 static int nvme_tcp_try_send_data(struct nvme_tcp_request *req)
1012 {
1013 	struct nvme_tcp_queue *queue = req->queue;
1014 	int req_data_len = req->data_len;
1015 	u32 h2cdata_left = req->h2cdata_left;
1016 
1017 	while (true) {
1018 		struct bio_vec bvec;
1019 		struct msghdr msg = {
1020 			.msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES,
1021 		};
1022 		struct page *page = nvme_tcp_req_cur_page(req);
1023 		size_t offset = nvme_tcp_req_cur_offset(req);
1024 		size_t len = nvme_tcp_req_cur_length(req);
1025 		bool last = nvme_tcp_pdu_last_send(req, len);
1026 		int req_data_sent = req->data_sent;
1027 		int ret;
1028 
1029 		if (last && !queue->data_digest && !nvme_tcp_queue_more(queue))
1030 			msg.msg_flags |= MSG_EOR;
1031 		else
1032 			msg.msg_flags |= MSG_MORE;
1033 
1034 		if (!sendpage_ok(page))
1035 			msg.msg_flags &= ~MSG_SPLICE_PAGES;
1036 
1037 		bvec_set_page(&bvec, page, len, offset);
1038 		iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len);
1039 		ret = sock_sendmsg(queue->sock, &msg);
1040 		if (ret <= 0)
1041 			return ret;
1042 
1043 		if (queue->data_digest)
1044 			nvme_tcp_ddgst_update(queue->snd_hash, page,
1045 					offset, ret);
1046 
1047 		/*
1048 		 * update the request iterator except for the last payload send
1049 		 * in the request where we don't want to modify it as we may
1050 		 * compete with the RX path completing the request.
1051 		 */
1052 		if (req_data_sent + ret < req_data_len)
1053 			nvme_tcp_advance_req(req, ret);
1054 
1055 		/* fully successful last send in current PDU */
1056 		if (last && ret == len) {
1057 			if (queue->data_digest) {
1058 				nvme_tcp_ddgst_final(queue->snd_hash,
1059 					&req->ddgst);
1060 				req->state = NVME_TCP_SEND_DDGST;
1061 				req->offset = 0;
1062 			} else {
1063 				if (h2cdata_left)
1064 					nvme_tcp_setup_h2c_data_pdu(req);
1065 				else
1066 					nvme_tcp_done_send_req(queue);
1067 			}
1068 			return 1;
1069 		}
1070 	}
1071 	return -EAGAIN;
1072 }
1073 
1074 static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req)
1075 {
1076 	struct nvme_tcp_queue *queue = req->queue;
1077 	struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req);
1078 	struct bio_vec bvec;
1079 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, };
1080 	bool inline_data = nvme_tcp_has_inline_data(req);
1081 	u8 hdgst = nvme_tcp_hdgst_len(queue);
1082 	int len = sizeof(*pdu) + hdgst - req->offset;
1083 	int ret;
1084 
1085 	if (inline_data || nvme_tcp_queue_more(queue))
1086 		msg.msg_flags |= MSG_MORE;
1087 	else
1088 		msg.msg_flags |= MSG_EOR;
1089 
1090 	if (queue->hdr_digest && !req->offset)
1091 		nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
1092 
1093 	bvec_set_virt(&bvec, (void *)pdu + req->offset, len);
1094 	iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len);
1095 	ret = sock_sendmsg(queue->sock, &msg);
1096 	if (unlikely(ret <= 0))
1097 		return ret;
1098 
1099 	len -= ret;
1100 	if (!len) {
1101 		if (inline_data) {
1102 			req->state = NVME_TCP_SEND_DATA;
1103 			if (queue->data_digest)
1104 				crypto_ahash_init(queue->snd_hash);
1105 		} else {
1106 			nvme_tcp_done_send_req(queue);
1107 		}
1108 		return 1;
1109 	}
1110 	req->offset += ret;
1111 
1112 	return -EAGAIN;
1113 }
1114 
1115 static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req)
1116 {
1117 	struct nvme_tcp_queue *queue = req->queue;
1118 	struct nvme_tcp_data_pdu *pdu = nvme_tcp_req_data_pdu(req);
1119 	struct bio_vec bvec;
1120 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_MORE, };
1121 	u8 hdgst = nvme_tcp_hdgst_len(queue);
1122 	int len = sizeof(*pdu) - req->offset + hdgst;
1123 	int ret;
1124 
1125 	if (queue->hdr_digest && !req->offset)
1126 		nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
1127 
1128 	if (!req->h2cdata_left)
1129 		msg.msg_flags |= MSG_SPLICE_PAGES;
1130 
1131 	bvec_set_virt(&bvec, (void *)pdu + req->offset, len);
1132 	iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len);
1133 	ret = sock_sendmsg(queue->sock, &msg);
1134 	if (unlikely(ret <= 0))
1135 		return ret;
1136 
1137 	len -= ret;
1138 	if (!len) {
1139 		req->state = NVME_TCP_SEND_DATA;
1140 		if (queue->data_digest)
1141 			crypto_ahash_init(queue->snd_hash);
1142 		return 1;
1143 	}
1144 	req->offset += ret;
1145 
1146 	return -EAGAIN;
1147 }
1148 
1149 static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req)
1150 {
1151 	struct nvme_tcp_queue *queue = req->queue;
1152 	size_t offset = req->offset;
1153 	u32 h2cdata_left = req->h2cdata_left;
1154 	int ret;
1155 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1156 	struct kvec iov = {
1157 		.iov_base = (u8 *)&req->ddgst + req->offset,
1158 		.iov_len = NVME_TCP_DIGEST_LENGTH - req->offset
1159 	};
1160 
1161 	if (nvme_tcp_queue_more(queue))
1162 		msg.msg_flags |= MSG_MORE;
1163 	else
1164 		msg.msg_flags |= MSG_EOR;
1165 
1166 	ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1167 	if (unlikely(ret <= 0))
1168 		return ret;
1169 
1170 	if (offset + ret == NVME_TCP_DIGEST_LENGTH) {
1171 		if (h2cdata_left)
1172 			nvme_tcp_setup_h2c_data_pdu(req);
1173 		else
1174 			nvme_tcp_done_send_req(queue);
1175 		return 1;
1176 	}
1177 
1178 	req->offset += ret;
1179 	return -EAGAIN;
1180 }
1181 
1182 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue)
1183 {
1184 	struct nvme_tcp_request *req;
1185 	unsigned int noreclaim_flag;
1186 	int ret = 1;
1187 
1188 	if (!queue->request) {
1189 		queue->request = nvme_tcp_fetch_request(queue);
1190 		if (!queue->request)
1191 			return 0;
1192 	}
1193 	req = queue->request;
1194 
1195 	noreclaim_flag = memalloc_noreclaim_save();
1196 	if (req->state == NVME_TCP_SEND_CMD_PDU) {
1197 		ret = nvme_tcp_try_send_cmd_pdu(req);
1198 		if (ret <= 0)
1199 			goto done;
1200 		if (!nvme_tcp_has_inline_data(req))
1201 			goto out;
1202 	}
1203 
1204 	if (req->state == NVME_TCP_SEND_H2C_PDU) {
1205 		ret = nvme_tcp_try_send_data_pdu(req);
1206 		if (ret <= 0)
1207 			goto done;
1208 	}
1209 
1210 	if (req->state == NVME_TCP_SEND_DATA) {
1211 		ret = nvme_tcp_try_send_data(req);
1212 		if (ret <= 0)
1213 			goto done;
1214 	}
1215 
1216 	if (req->state == NVME_TCP_SEND_DDGST)
1217 		ret = nvme_tcp_try_send_ddgst(req);
1218 done:
1219 	if (ret == -EAGAIN) {
1220 		ret = 0;
1221 	} else if (ret < 0) {
1222 		dev_err(queue->ctrl->ctrl.device,
1223 			"failed to send request %d\n", ret);
1224 		nvme_tcp_fail_request(queue->request);
1225 		nvme_tcp_done_send_req(queue);
1226 	}
1227 out:
1228 	memalloc_noreclaim_restore(noreclaim_flag);
1229 	return ret;
1230 }
1231 
1232 static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue)
1233 {
1234 	struct socket *sock = queue->sock;
1235 	struct sock *sk = sock->sk;
1236 	read_descriptor_t rd_desc;
1237 	int consumed;
1238 
1239 	rd_desc.arg.data = queue;
1240 	rd_desc.count = 1;
1241 	lock_sock(sk);
1242 	queue->nr_cqe = 0;
1243 	consumed = sock->ops->read_sock(sk, &rd_desc, nvme_tcp_recv_skb);
1244 	release_sock(sk);
1245 	return consumed;
1246 }
1247 
1248 static void nvme_tcp_io_work(struct work_struct *w)
1249 {
1250 	struct nvme_tcp_queue *queue =
1251 		container_of(w, struct nvme_tcp_queue, io_work);
1252 	unsigned long deadline = jiffies + msecs_to_jiffies(1);
1253 
1254 	do {
1255 		bool pending = false;
1256 		int result;
1257 
1258 		if (mutex_trylock(&queue->send_mutex)) {
1259 			result = nvme_tcp_try_send(queue);
1260 			mutex_unlock(&queue->send_mutex);
1261 			if (result > 0)
1262 				pending = true;
1263 			else if (unlikely(result < 0))
1264 				break;
1265 		}
1266 
1267 		result = nvme_tcp_try_recv(queue);
1268 		if (result > 0)
1269 			pending = true;
1270 		else if (unlikely(result < 0))
1271 			return;
1272 
1273 		if (!pending || !queue->rd_enabled)
1274 			return;
1275 
1276 	} while (!time_after(jiffies, deadline)); /* quota is exhausted */
1277 
1278 	queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
1279 }
1280 
1281 static void nvme_tcp_free_crypto(struct nvme_tcp_queue *queue)
1282 {
1283 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash);
1284 
1285 	ahash_request_free(queue->rcv_hash);
1286 	ahash_request_free(queue->snd_hash);
1287 	crypto_free_ahash(tfm);
1288 }
1289 
1290 static int nvme_tcp_alloc_crypto(struct nvme_tcp_queue *queue)
1291 {
1292 	struct crypto_ahash *tfm;
1293 
1294 	tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC);
1295 	if (IS_ERR(tfm))
1296 		return PTR_ERR(tfm);
1297 
1298 	queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1299 	if (!queue->snd_hash)
1300 		goto free_tfm;
1301 	ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL);
1302 
1303 	queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1304 	if (!queue->rcv_hash)
1305 		goto free_snd_hash;
1306 	ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL);
1307 
1308 	return 0;
1309 free_snd_hash:
1310 	ahash_request_free(queue->snd_hash);
1311 free_tfm:
1312 	crypto_free_ahash(tfm);
1313 	return -ENOMEM;
1314 }
1315 
1316 static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl)
1317 {
1318 	struct nvme_tcp_request *async = &ctrl->async_req;
1319 
1320 	page_frag_free(async->pdu);
1321 }
1322 
1323 static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl)
1324 {
1325 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
1326 	struct nvme_tcp_request *async = &ctrl->async_req;
1327 	u8 hdgst = nvme_tcp_hdgst_len(queue);
1328 
1329 	async->pdu = page_frag_alloc(&queue->pf_cache,
1330 		sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
1331 		GFP_KERNEL | __GFP_ZERO);
1332 	if (!async->pdu)
1333 		return -ENOMEM;
1334 
1335 	async->queue = &ctrl->queues[0];
1336 	return 0;
1337 }
1338 
1339 static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid)
1340 {
1341 	struct page *page;
1342 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1343 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1344 	unsigned int noreclaim_flag;
1345 
1346 	if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1347 		return;
1348 
1349 	if (queue->hdr_digest || queue->data_digest)
1350 		nvme_tcp_free_crypto(queue);
1351 
1352 	if (queue->pf_cache.va) {
1353 		page = virt_to_head_page(queue->pf_cache.va);
1354 		__page_frag_cache_drain(page, queue->pf_cache.pagecnt_bias);
1355 		queue->pf_cache.va = NULL;
1356 	}
1357 
1358 	noreclaim_flag = memalloc_noreclaim_save();
1359 	/* ->sock will be released by fput() */
1360 	fput(queue->sock->file);
1361 	queue->sock = NULL;
1362 	memalloc_noreclaim_restore(noreclaim_flag);
1363 
1364 	kfree(queue->pdu);
1365 	mutex_destroy(&queue->send_mutex);
1366 	mutex_destroy(&queue->queue_lock);
1367 }
1368 
1369 static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue)
1370 {
1371 	struct nvme_tcp_icreq_pdu *icreq;
1372 	struct nvme_tcp_icresp_pdu *icresp;
1373 	char cbuf[CMSG_LEN(sizeof(char))] = {};
1374 	u8 ctype;
1375 	struct msghdr msg = {};
1376 	struct kvec iov;
1377 	bool ctrl_hdgst, ctrl_ddgst;
1378 	u32 maxh2cdata;
1379 	int ret;
1380 
1381 	icreq = kzalloc(sizeof(*icreq), GFP_KERNEL);
1382 	if (!icreq)
1383 		return -ENOMEM;
1384 
1385 	icresp = kzalloc(sizeof(*icresp), GFP_KERNEL);
1386 	if (!icresp) {
1387 		ret = -ENOMEM;
1388 		goto free_icreq;
1389 	}
1390 
1391 	icreq->hdr.type = nvme_tcp_icreq;
1392 	icreq->hdr.hlen = sizeof(*icreq);
1393 	icreq->hdr.pdo = 0;
1394 	icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen);
1395 	icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
1396 	icreq->maxr2t = 0; /* single inflight r2t supported */
1397 	icreq->hpda = 0; /* no alignment constraint */
1398 	if (queue->hdr_digest)
1399 		icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
1400 	if (queue->data_digest)
1401 		icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
1402 
1403 	iov.iov_base = icreq;
1404 	iov.iov_len = sizeof(*icreq);
1405 	ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1406 	if (ret < 0) {
1407 		pr_warn("queue %d: failed to send icreq, error %d\n",
1408 			nvme_tcp_queue_id(queue), ret);
1409 		goto free_icresp;
1410 	}
1411 
1412 	memset(&msg, 0, sizeof(msg));
1413 	iov.iov_base = icresp;
1414 	iov.iov_len = sizeof(*icresp);
1415 	if (queue->ctrl->ctrl.opts->tls) {
1416 		msg.msg_control = cbuf;
1417 		msg.msg_controllen = sizeof(cbuf);
1418 	}
1419 	ret = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1420 			iov.iov_len, msg.msg_flags);
1421 	if (ret < 0) {
1422 		pr_warn("queue %d: failed to receive icresp, error %d\n",
1423 			nvme_tcp_queue_id(queue), ret);
1424 		goto free_icresp;
1425 	}
1426 	ret = -ENOTCONN;
1427 	if (queue->ctrl->ctrl.opts->tls) {
1428 		ctype = tls_get_record_type(queue->sock->sk,
1429 					    (struct cmsghdr *)cbuf);
1430 		if (ctype != TLS_RECORD_TYPE_DATA) {
1431 			pr_err("queue %d: unhandled TLS record %d\n",
1432 			       nvme_tcp_queue_id(queue), ctype);
1433 			goto free_icresp;
1434 		}
1435 	}
1436 	ret = -EINVAL;
1437 	if (icresp->hdr.type != nvme_tcp_icresp) {
1438 		pr_err("queue %d: bad type returned %d\n",
1439 			nvme_tcp_queue_id(queue), icresp->hdr.type);
1440 		goto free_icresp;
1441 	}
1442 
1443 	if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) {
1444 		pr_err("queue %d: bad pdu length returned %d\n",
1445 			nvme_tcp_queue_id(queue), icresp->hdr.plen);
1446 		goto free_icresp;
1447 	}
1448 
1449 	if (icresp->pfv != NVME_TCP_PFV_1_0) {
1450 		pr_err("queue %d: bad pfv returned %d\n",
1451 			nvme_tcp_queue_id(queue), icresp->pfv);
1452 		goto free_icresp;
1453 	}
1454 
1455 	ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE);
1456 	if ((queue->data_digest && !ctrl_ddgst) ||
1457 	    (!queue->data_digest && ctrl_ddgst)) {
1458 		pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n",
1459 			nvme_tcp_queue_id(queue),
1460 			queue->data_digest ? "enabled" : "disabled",
1461 			ctrl_ddgst ? "enabled" : "disabled");
1462 		goto free_icresp;
1463 	}
1464 
1465 	ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE);
1466 	if ((queue->hdr_digest && !ctrl_hdgst) ||
1467 	    (!queue->hdr_digest && ctrl_hdgst)) {
1468 		pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n",
1469 			nvme_tcp_queue_id(queue),
1470 			queue->hdr_digest ? "enabled" : "disabled",
1471 			ctrl_hdgst ? "enabled" : "disabled");
1472 		goto free_icresp;
1473 	}
1474 
1475 	if (icresp->cpda != 0) {
1476 		pr_err("queue %d: unsupported cpda returned %d\n",
1477 			nvme_tcp_queue_id(queue), icresp->cpda);
1478 		goto free_icresp;
1479 	}
1480 
1481 	maxh2cdata = le32_to_cpu(icresp->maxdata);
1482 	if ((maxh2cdata % 4) || (maxh2cdata < NVME_TCP_MIN_MAXH2CDATA)) {
1483 		pr_err("queue %d: invalid maxh2cdata returned %u\n",
1484 		       nvme_tcp_queue_id(queue), maxh2cdata);
1485 		goto free_icresp;
1486 	}
1487 	queue->maxh2cdata = maxh2cdata;
1488 
1489 	ret = 0;
1490 free_icresp:
1491 	kfree(icresp);
1492 free_icreq:
1493 	kfree(icreq);
1494 	return ret;
1495 }
1496 
1497 static bool nvme_tcp_admin_queue(struct nvme_tcp_queue *queue)
1498 {
1499 	return nvme_tcp_queue_id(queue) == 0;
1500 }
1501 
1502 static bool nvme_tcp_default_queue(struct nvme_tcp_queue *queue)
1503 {
1504 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1505 	int qid = nvme_tcp_queue_id(queue);
1506 
1507 	return !nvme_tcp_admin_queue(queue) &&
1508 		qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT];
1509 }
1510 
1511 static bool nvme_tcp_read_queue(struct nvme_tcp_queue *queue)
1512 {
1513 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1514 	int qid = nvme_tcp_queue_id(queue);
1515 
1516 	return !nvme_tcp_admin_queue(queue) &&
1517 		!nvme_tcp_default_queue(queue) &&
1518 		qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1519 			  ctrl->io_queues[HCTX_TYPE_READ];
1520 }
1521 
1522 static bool nvme_tcp_poll_queue(struct nvme_tcp_queue *queue)
1523 {
1524 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1525 	int qid = nvme_tcp_queue_id(queue);
1526 
1527 	return !nvme_tcp_admin_queue(queue) &&
1528 		!nvme_tcp_default_queue(queue) &&
1529 		!nvme_tcp_read_queue(queue) &&
1530 		qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1531 			  ctrl->io_queues[HCTX_TYPE_READ] +
1532 			  ctrl->io_queues[HCTX_TYPE_POLL];
1533 }
1534 
1535 static void nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue *queue)
1536 {
1537 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1538 	int qid = nvme_tcp_queue_id(queue);
1539 	int n = 0;
1540 
1541 	if (nvme_tcp_default_queue(queue))
1542 		n = qid - 1;
1543 	else if (nvme_tcp_read_queue(queue))
1544 		n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - 1;
1545 	else if (nvme_tcp_poll_queue(queue))
1546 		n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] -
1547 				ctrl->io_queues[HCTX_TYPE_READ] - 1;
1548 	queue->io_cpu = cpumask_next_wrap(n - 1, cpu_online_mask, -1, false);
1549 }
1550 
1551 #ifdef CONFIG_NVME_TCP_TLS
1552 static void nvme_tcp_tls_done(void *data, int status, key_serial_t pskid)
1553 {
1554 	struct nvme_tcp_queue *queue = data;
1555 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1556 	int qid = nvme_tcp_queue_id(queue);
1557 	struct key *tls_key;
1558 
1559 	dev_dbg(ctrl->ctrl.device, "queue %d: TLS handshake done, key %x, status %d\n",
1560 		qid, pskid, status);
1561 
1562 	if (status) {
1563 		queue->tls_err = -status;
1564 		goto out_complete;
1565 	}
1566 
1567 	tls_key = key_lookup(pskid);
1568 	if (IS_ERR(tls_key)) {
1569 		dev_warn(ctrl->ctrl.device, "queue %d: Invalid key %x\n",
1570 			 qid, pskid);
1571 		queue->tls_err = -ENOKEY;
1572 	} else {
1573 		ctrl->ctrl.tls_key = tls_key;
1574 		queue->tls_err = 0;
1575 	}
1576 
1577 out_complete:
1578 	complete(&queue->tls_complete);
1579 }
1580 
1581 static int nvme_tcp_start_tls(struct nvme_ctrl *nctrl,
1582 			      struct nvme_tcp_queue *queue,
1583 			      key_serial_t pskid)
1584 {
1585 	int qid = nvme_tcp_queue_id(queue);
1586 	int ret;
1587 	struct tls_handshake_args args;
1588 	unsigned long tmo = tls_handshake_timeout * HZ;
1589 	key_serial_t keyring = nvme_keyring_id();
1590 
1591 	dev_dbg(nctrl->device, "queue %d: start TLS with key %x\n",
1592 		qid, pskid);
1593 	memset(&args, 0, sizeof(args));
1594 	args.ta_sock = queue->sock;
1595 	args.ta_done = nvme_tcp_tls_done;
1596 	args.ta_data = queue;
1597 	args.ta_my_peerids[0] = pskid;
1598 	args.ta_num_peerids = 1;
1599 	if (nctrl->opts->keyring)
1600 		keyring = key_serial(nctrl->opts->keyring);
1601 	args.ta_keyring = keyring;
1602 	args.ta_timeout_ms = tls_handshake_timeout * 1000;
1603 	queue->tls_err = -EOPNOTSUPP;
1604 	init_completion(&queue->tls_complete);
1605 	ret = tls_client_hello_psk(&args, GFP_KERNEL);
1606 	if (ret) {
1607 		dev_err(nctrl->device, "queue %d: failed to start TLS: %d\n",
1608 			qid, ret);
1609 		return ret;
1610 	}
1611 	ret = wait_for_completion_interruptible_timeout(&queue->tls_complete, tmo);
1612 	if (ret <= 0) {
1613 		if (ret == 0)
1614 			ret = -ETIMEDOUT;
1615 
1616 		dev_err(nctrl->device,
1617 			"queue %d: TLS handshake failed, error %d\n",
1618 			qid, ret);
1619 		tls_handshake_cancel(queue->sock->sk);
1620 	} else {
1621 		dev_dbg(nctrl->device,
1622 			"queue %d: TLS handshake complete, error %d\n",
1623 			qid, queue->tls_err);
1624 		ret = queue->tls_err;
1625 	}
1626 	return ret;
1627 }
1628 #else
1629 static int nvme_tcp_start_tls(struct nvme_ctrl *nctrl,
1630 			      struct nvme_tcp_queue *queue,
1631 			      key_serial_t pskid)
1632 {
1633 	return -EPROTONOSUPPORT;
1634 }
1635 #endif
1636 
1637 static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl, int qid,
1638 				key_serial_t pskid)
1639 {
1640 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1641 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1642 	int ret, rcv_pdu_size;
1643 	struct file *sock_file;
1644 
1645 	mutex_init(&queue->queue_lock);
1646 	queue->ctrl = ctrl;
1647 	init_llist_head(&queue->req_list);
1648 	INIT_LIST_HEAD(&queue->send_list);
1649 	mutex_init(&queue->send_mutex);
1650 	INIT_WORK(&queue->io_work, nvme_tcp_io_work);
1651 
1652 	if (qid > 0)
1653 		queue->cmnd_capsule_len = nctrl->ioccsz * 16;
1654 	else
1655 		queue->cmnd_capsule_len = sizeof(struct nvme_command) +
1656 						NVME_TCP_ADMIN_CCSZ;
1657 
1658 	ret = sock_create(ctrl->addr.ss_family, SOCK_STREAM,
1659 			IPPROTO_TCP, &queue->sock);
1660 	if (ret) {
1661 		dev_err(nctrl->device,
1662 			"failed to create socket: %d\n", ret);
1663 		goto err_destroy_mutex;
1664 	}
1665 
1666 	sock_file = sock_alloc_file(queue->sock, O_CLOEXEC, NULL);
1667 	if (IS_ERR(sock_file)) {
1668 		ret = PTR_ERR(sock_file);
1669 		goto err_destroy_mutex;
1670 	}
1671 	nvme_tcp_reclassify_socket(queue->sock);
1672 
1673 	/* Single syn retry */
1674 	tcp_sock_set_syncnt(queue->sock->sk, 1);
1675 
1676 	/* Set TCP no delay */
1677 	tcp_sock_set_nodelay(queue->sock->sk);
1678 
1679 	/*
1680 	 * Cleanup whatever is sitting in the TCP transmit queue on socket
1681 	 * close. This is done to prevent stale data from being sent should
1682 	 * the network connection be restored before TCP times out.
1683 	 */
1684 	sock_no_linger(queue->sock->sk);
1685 
1686 	if (so_priority > 0)
1687 		sock_set_priority(queue->sock->sk, so_priority);
1688 
1689 	/* Set socket type of service */
1690 	if (nctrl->opts->tos >= 0)
1691 		ip_sock_set_tos(queue->sock->sk, nctrl->opts->tos);
1692 
1693 	/* Set 10 seconds timeout for icresp recvmsg */
1694 	queue->sock->sk->sk_rcvtimeo = 10 * HZ;
1695 
1696 	queue->sock->sk->sk_allocation = GFP_ATOMIC;
1697 	queue->sock->sk->sk_use_task_frag = false;
1698 	nvme_tcp_set_queue_io_cpu(queue);
1699 	queue->request = NULL;
1700 	queue->data_remaining = 0;
1701 	queue->ddgst_remaining = 0;
1702 	queue->pdu_remaining = 0;
1703 	queue->pdu_offset = 0;
1704 	sk_set_memalloc(queue->sock->sk);
1705 
1706 	if (nctrl->opts->mask & NVMF_OPT_HOST_TRADDR) {
1707 		ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr,
1708 			sizeof(ctrl->src_addr));
1709 		if (ret) {
1710 			dev_err(nctrl->device,
1711 				"failed to bind queue %d socket %d\n",
1712 				qid, ret);
1713 			goto err_sock;
1714 		}
1715 	}
1716 
1717 	if (nctrl->opts->mask & NVMF_OPT_HOST_IFACE) {
1718 		char *iface = nctrl->opts->host_iface;
1719 		sockptr_t optval = KERNEL_SOCKPTR(iface);
1720 
1721 		ret = sock_setsockopt(queue->sock, SOL_SOCKET, SO_BINDTODEVICE,
1722 				      optval, strlen(iface));
1723 		if (ret) {
1724 			dev_err(nctrl->device,
1725 			  "failed to bind to interface %s queue %d err %d\n",
1726 			  iface, qid, ret);
1727 			goto err_sock;
1728 		}
1729 	}
1730 
1731 	queue->hdr_digest = nctrl->opts->hdr_digest;
1732 	queue->data_digest = nctrl->opts->data_digest;
1733 	if (queue->hdr_digest || queue->data_digest) {
1734 		ret = nvme_tcp_alloc_crypto(queue);
1735 		if (ret) {
1736 			dev_err(nctrl->device,
1737 				"failed to allocate queue %d crypto\n", qid);
1738 			goto err_sock;
1739 		}
1740 	}
1741 
1742 	rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) +
1743 			nvme_tcp_hdgst_len(queue);
1744 	queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL);
1745 	if (!queue->pdu) {
1746 		ret = -ENOMEM;
1747 		goto err_crypto;
1748 	}
1749 
1750 	dev_dbg(nctrl->device, "connecting queue %d\n",
1751 			nvme_tcp_queue_id(queue));
1752 
1753 	ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr,
1754 		sizeof(ctrl->addr), 0);
1755 	if (ret) {
1756 		dev_err(nctrl->device,
1757 			"failed to connect socket: %d\n", ret);
1758 		goto err_rcv_pdu;
1759 	}
1760 
1761 	/* If PSKs are configured try to start TLS */
1762 	if (pskid) {
1763 		ret = nvme_tcp_start_tls(nctrl, queue, pskid);
1764 		if (ret)
1765 			goto err_init_connect;
1766 	}
1767 
1768 	ret = nvme_tcp_init_connection(queue);
1769 	if (ret)
1770 		goto err_init_connect;
1771 
1772 	set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags);
1773 
1774 	return 0;
1775 
1776 err_init_connect:
1777 	kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1778 err_rcv_pdu:
1779 	kfree(queue->pdu);
1780 err_crypto:
1781 	if (queue->hdr_digest || queue->data_digest)
1782 		nvme_tcp_free_crypto(queue);
1783 err_sock:
1784 	/* ->sock will be released by fput() */
1785 	fput(queue->sock->file);
1786 	queue->sock = NULL;
1787 err_destroy_mutex:
1788 	mutex_destroy(&queue->send_mutex);
1789 	mutex_destroy(&queue->queue_lock);
1790 	return ret;
1791 }
1792 
1793 static void nvme_tcp_restore_sock_ops(struct nvme_tcp_queue *queue)
1794 {
1795 	struct socket *sock = queue->sock;
1796 
1797 	write_lock_bh(&sock->sk->sk_callback_lock);
1798 	sock->sk->sk_user_data  = NULL;
1799 	sock->sk->sk_data_ready = queue->data_ready;
1800 	sock->sk->sk_state_change = queue->state_change;
1801 	sock->sk->sk_write_space  = queue->write_space;
1802 	write_unlock_bh(&sock->sk->sk_callback_lock);
1803 }
1804 
1805 static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue)
1806 {
1807 	kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1808 	nvme_tcp_restore_sock_ops(queue);
1809 	cancel_work_sync(&queue->io_work);
1810 }
1811 
1812 static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid)
1813 {
1814 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1815 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1816 
1817 	if (!test_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1818 		return;
1819 
1820 	mutex_lock(&queue->queue_lock);
1821 	if (test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags))
1822 		__nvme_tcp_stop_queue(queue);
1823 	mutex_unlock(&queue->queue_lock);
1824 }
1825 
1826 static void nvme_tcp_setup_sock_ops(struct nvme_tcp_queue *queue)
1827 {
1828 	write_lock_bh(&queue->sock->sk->sk_callback_lock);
1829 	queue->sock->sk->sk_user_data = queue;
1830 	queue->state_change = queue->sock->sk->sk_state_change;
1831 	queue->data_ready = queue->sock->sk->sk_data_ready;
1832 	queue->write_space = queue->sock->sk->sk_write_space;
1833 	queue->sock->sk->sk_data_ready = nvme_tcp_data_ready;
1834 	queue->sock->sk->sk_state_change = nvme_tcp_state_change;
1835 	queue->sock->sk->sk_write_space = nvme_tcp_write_space;
1836 #ifdef CONFIG_NET_RX_BUSY_POLL
1837 	queue->sock->sk->sk_ll_usec = 1;
1838 #endif
1839 	write_unlock_bh(&queue->sock->sk->sk_callback_lock);
1840 }
1841 
1842 static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx)
1843 {
1844 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1845 	struct nvme_tcp_queue *queue = &ctrl->queues[idx];
1846 	int ret;
1847 
1848 	queue->rd_enabled = true;
1849 	nvme_tcp_init_recv_ctx(queue);
1850 	nvme_tcp_setup_sock_ops(queue);
1851 
1852 	if (idx)
1853 		ret = nvmf_connect_io_queue(nctrl, idx);
1854 	else
1855 		ret = nvmf_connect_admin_queue(nctrl);
1856 
1857 	if (!ret) {
1858 		set_bit(NVME_TCP_Q_LIVE, &queue->flags);
1859 	} else {
1860 		if (test_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1861 			__nvme_tcp_stop_queue(queue);
1862 		dev_err(nctrl->device,
1863 			"failed to connect queue: %d ret=%d\n", idx, ret);
1864 	}
1865 	return ret;
1866 }
1867 
1868 static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl)
1869 {
1870 	if (to_tcp_ctrl(ctrl)->async_req.pdu) {
1871 		cancel_work_sync(&ctrl->async_event_work);
1872 		nvme_tcp_free_async_req(to_tcp_ctrl(ctrl));
1873 		to_tcp_ctrl(ctrl)->async_req.pdu = NULL;
1874 	}
1875 
1876 	nvme_tcp_free_queue(ctrl, 0);
1877 }
1878 
1879 static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl)
1880 {
1881 	int i;
1882 
1883 	for (i = 1; i < ctrl->queue_count; i++)
1884 		nvme_tcp_free_queue(ctrl, i);
1885 }
1886 
1887 static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl)
1888 {
1889 	int i;
1890 
1891 	for (i = 1; i < ctrl->queue_count; i++)
1892 		nvme_tcp_stop_queue(ctrl, i);
1893 }
1894 
1895 static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl,
1896 				    int first, int last)
1897 {
1898 	int i, ret;
1899 
1900 	for (i = first; i < last; i++) {
1901 		ret = nvme_tcp_start_queue(ctrl, i);
1902 		if (ret)
1903 			goto out_stop_queues;
1904 	}
1905 
1906 	return 0;
1907 
1908 out_stop_queues:
1909 	for (i--; i >= first; i--)
1910 		nvme_tcp_stop_queue(ctrl, i);
1911 	return ret;
1912 }
1913 
1914 static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl)
1915 {
1916 	int ret;
1917 	key_serial_t pskid = 0;
1918 
1919 	if (ctrl->opts->tls) {
1920 		if (ctrl->opts->tls_key)
1921 			pskid = key_serial(ctrl->opts->tls_key);
1922 		else
1923 			pskid = nvme_tls_psk_default(ctrl->opts->keyring,
1924 						      ctrl->opts->host->nqn,
1925 						      ctrl->opts->subsysnqn);
1926 		if (!pskid) {
1927 			dev_err(ctrl->device, "no valid PSK found\n");
1928 			ret = -ENOKEY;
1929 			goto out_free_queue;
1930 		}
1931 	}
1932 
1933 	ret = nvme_tcp_alloc_queue(ctrl, 0, pskid);
1934 	if (ret)
1935 		goto out_free_queue;
1936 
1937 	ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl));
1938 	if (ret)
1939 		goto out_free_queue;
1940 
1941 	return 0;
1942 
1943 out_free_queue:
1944 	nvme_tcp_free_queue(ctrl, 0);
1945 	return ret;
1946 }
1947 
1948 static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1949 {
1950 	int i, ret;
1951 
1952 	if (ctrl->opts->tls && !ctrl->tls_key) {
1953 		dev_err(ctrl->device, "no PSK negotiated\n");
1954 		return -ENOKEY;
1955 	}
1956 	for (i = 1; i < ctrl->queue_count; i++) {
1957 		ret = nvme_tcp_alloc_queue(ctrl, i,
1958 				key_serial(ctrl->tls_key));
1959 		if (ret)
1960 			goto out_free_queues;
1961 	}
1962 
1963 	return 0;
1964 
1965 out_free_queues:
1966 	for (i--; i >= 1; i--)
1967 		nvme_tcp_free_queue(ctrl, i);
1968 
1969 	return ret;
1970 }
1971 
1972 static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1973 {
1974 	unsigned int nr_io_queues;
1975 	int ret;
1976 
1977 	nr_io_queues = nvmf_nr_io_queues(ctrl->opts);
1978 	ret = nvme_set_queue_count(ctrl, &nr_io_queues);
1979 	if (ret)
1980 		return ret;
1981 
1982 	if (nr_io_queues == 0) {
1983 		dev_err(ctrl->device,
1984 			"unable to set any I/O queues\n");
1985 		return -ENOMEM;
1986 	}
1987 
1988 	ctrl->queue_count = nr_io_queues + 1;
1989 	dev_info(ctrl->device,
1990 		"creating %d I/O queues.\n", nr_io_queues);
1991 
1992 	nvmf_set_io_queues(ctrl->opts, nr_io_queues,
1993 			   to_tcp_ctrl(ctrl)->io_queues);
1994 	return __nvme_tcp_alloc_io_queues(ctrl);
1995 }
1996 
1997 static void nvme_tcp_destroy_io_queues(struct nvme_ctrl *ctrl, bool remove)
1998 {
1999 	nvme_tcp_stop_io_queues(ctrl);
2000 	if (remove)
2001 		nvme_remove_io_tag_set(ctrl);
2002 	nvme_tcp_free_io_queues(ctrl);
2003 }
2004 
2005 static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new)
2006 {
2007 	int ret, nr_queues;
2008 
2009 	ret = nvme_tcp_alloc_io_queues(ctrl);
2010 	if (ret)
2011 		return ret;
2012 
2013 	if (new) {
2014 		ret = nvme_alloc_io_tag_set(ctrl, &to_tcp_ctrl(ctrl)->tag_set,
2015 				&nvme_tcp_mq_ops,
2016 				ctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2,
2017 				sizeof(struct nvme_tcp_request));
2018 		if (ret)
2019 			goto out_free_io_queues;
2020 	}
2021 
2022 	/*
2023 	 * Only start IO queues for which we have allocated the tagset
2024 	 * and limitted it to the available queues. On reconnects, the
2025 	 * queue number might have changed.
2026 	 */
2027 	nr_queues = min(ctrl->tagset->nr_hw_queues + 1, ctrl->queue_count);
2028 	ret = nvme_tcp_start_io_queues(ctrl, 1, nr_queues);
2029 	if (ret)
2030 		goto out_cleanup_connect_q;
2031 
2032 	if (!new) {
2033 		nvme_start_freeze(ctrl);
2034 		nvme_unquiesce_io_queues(ctrl);
2035 		if (!nvme_wait_freeze_timeout(ctrl, NVME_IO_TIMEOUT)) {
2036 			/*
2037 			 * If we timed out waiting for freeze we are likely to
2038 			 * be stuck.  Fail the controller initialization just
2039 			 * to be safe.
2040 			 */
2041 			ret = -ENODEV;
2042 			nvme_unfreeze(ctrl);
2043 			goto out_wait_freeze_timed_out;
2044 		}
2045 		blk_mq_update_nr_hw_queues(ctrl->tagset,
2046 			ctrl->queue_count - 1);
2047 		nvme_unfreeze(ctrl);
2048 	}
2049 
2050 	/*
2051 	 * If the number of queues has increased (reconnect case)
2052 	 * start all new queues now.
2053 	 */
2054 	ret = nvme_tcp_start_io_queues(ctrl, nr_queues,
2055 				       ctrl->tagset->nr_hw_queues + 1);
2056 	if (ret)
2057 		goto out_wait_freeze_timed_out;
2058 
2059 	return 0;
2060 
2061 out_wait_freeze_timed_out:
2062 	nvme_quiesce_io_queues(ctrl);
2063 	nvme_sync_io_queues(ctrl);
2064 	nvme_tcp_stop_io_queues(ctrl);
2065 out_cleanup_connect_q:
2066 	nvme_cancel_tagset(ctrl);
2067 	if (new)
2068 		nvme_remove_io_tag_set(ctrl);
2069 out_free_io_queues:
2070 	nvme_tcp_free_io_queues(ctrl);
2071 	return ret;
2072 }
2073 
2074 static void nvme_tcp_destroy_admin_queue(struct nvme_ctrl *ctrl, bool remove)
2075 {
2076 	nvme_tcp_stop_queue(ctrl, 0);
2077 	if (remove)
2078 		nvme_remove_admin_tag_set(ctrl);
2079 	nvme_tcp_free_admin_queue(ctrl);
2080 }
2081 
2082 static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new)
2083 {
2084 	int error;
2085 
2086 	error = nvme_tcp_alloc_admin_queue(ctrl);
2087 	if (error)
2088 		return error;
2089 
2090 	if (new) {
2091 		error = nvme_alloc_admin_tag_set(ctrl,
2092 				&to_tcp_ctrl(ctrl)->admin_tag_set,
2093 				&nvme_tcp_admin_mq_ops,
2094 				sizeof(struct nvme_tcp_request));
2095 		if (error)
2096 			goto out_free_queue;
2097 	}
2098 
2099 	error = nvme_tcp_start_queue(ctrl, 0);
2100 	if (error)
2101 		goto out_cleanup_tagset;
2102 
2103 	error = nvme_enable_ctrl(ctrl);
2104 	if (error)
2105 		goto out_stop_queue;
2106 
2107 	nvme_unquiesce_admin_queue(ctrl);
2108 
2109 	error = nvme_init_ctrl_finish(ctrl, false);
2110 	if (error)
2111 		goto out_quiesce_queue;
2112 
2113 	return 0;
2114 
2115 out_quiesce_queue:
2116 	nvme_quiesce_admin_queue(ctrl);
2117 	blk_sync_queue(ctrl->admin_q);
2118 out_stop_queue:
2119 	nvme_tcp_stop_queue(ctrl, 0);
2120 	nvme_cancel_admin_tagset(ctrl);
2121 out_cleanup_tagset:
2122 	if (new)
2123 		nvme_remove_admin_tag_set(ctrl);
2124 out_free_queue:
2125 	nvme_tcp_free_admin_queue(ctrl);
2126 	return error;
2127 }
2128 
2129 static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl,
2130 		bool remove)
2131 {
2132 	nvme_quiesce_admin_queue(ctrl);
2133 	blk_sync_queue(ctrl->admin_q);
2134 	nvme_tcp_stop_queue(ctrl, 0);
2135 	nvme_cancel_admin_tagset(ctrl);
2136 	if (remove)
2137 		nvme_unquiesce_admin_queue(ctrl);
2138 	nvme_tcp_destroy_admin_queue(ctrl, remove);
2139 }
2140 
2141 static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl,
2142 		bool remove)
2143 {
2144 	if (ctrl->queue_count <= 1)
2145 		return;
2146 	nvme_quiesce_admin_queue(ctrl);
2147 	nvme_quiesce_io_queues(ctrl);
2148 	nvme_sync_io_queues(ctrl);
2149 	nvme_tcp_stop_io_queues(ctrl);
2150 	nvme_cancel_tagset(ctrl);
2151 	if (remove)
2152 		nvme_unquiesce_io_queues(ctrl);
2153 	nvme_tcp_destroy_io_queues(ctrl, remove);
2154 }
2155 
2156 static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl)
2157 {
2158 	/* If we are resetting/deleting then do nothing */
2159 	if (ctrl->state != NVME_CTRL_CONNECTING) {
2160 		WARN_ON_ONCE(ctrl->state == NVME_CTRL_NEW ||
2161 			ctrl->state == NVME_CTRL_LIVE);
2162 		return;
2163 	}
2164 
2165 	if (nvmf_should_reconnect(ctrl)) {
2166 		dev_info(ctrl->device, "Reconnecting in %d seconds...\n",
2167 			ctrl->opts->reconnect_delay);
2168 		queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work,
2169 				ctrl->opts->reconnect_delay * HZ);
2170 	} else {
2171 		dev_info(ctrl->device, "Removing controller...\n");
2172 		nvme_delete_ctrl(ctrl);
2173 	}
2174 }
2175 
2176 static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new)
2177 {
2178 	struct nvmf_ctrl_options *opts = ctrl->opts;
2179 	int ret;
2180 
2181 	ret = nvme_tcp_configure_admin_queue(ctrl, new);
2182 	if (ret)
2183 		return ret;
2184 
2185 	if (ctrl->icdoff) {
2186 		ret = -EOPNOTSUPP;
2187 		dev_err(ctrl->device, "icdoff is not supported!\n");
2188 		goto destroy_admin;
2189 	}
2190 
2191 	if (!nvme_ctrl_sgl_supported(ctrl)) {
2192 		ret = -EOPNOTSUPP;
2193 		dev_err(ctrl->device, "Mandatory sgls are not supported!\n");
2194 		goto destroy_admin;
2195 	}
2196 
2197 	if (opts->queue_size > ctrl->sqsize + 1)
2198 		dev_warn(ctrl->device,
2199 			"queue_size %zu > ctrl sqsize %u, clamping down\n",
2200 			opts->queue_size, ctrl->sqsize + 1);
2201 
2202 	if (ctrl->sqsize + 1 > ctrl->maxcmd) {
2203 		dev_warn(ctrl->device,
2204 			"sqsize %u > ctrl maxcmd %u, clamping down\n",
2205 			ctrl->sqsize + 1, ctrl->maxcmd);
2206 		ctrl->sqsize = ctrl->maxcmd - 1;
2207 	}
2208 
2209 	if (ctrl->queue_count > 1) {
2210 		ret = nvme_tcp_configure_io_queues(ctrl, new);
2211 		if (ret)
2212 			goto destroy_admin;
2213 	}
2214 
2215 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) {
2216 		/*
2217 		 * state change failure is ok if we started ctrl delete,
2218 		 * unless we're during creation of a new controller to
2219 		 * avoid races with teardown flow.
2220 		 */
2221 		WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2222 			     ctrl->state != NVME_CTRL_DELETING_NOIO);
2223 		WARN_ON_ONCE(new);
2224 		ret = -EINVAL;
2225 		goto destroy_io;
2226 	}
2227 
2228 	nvme_start_ctrl(ctrl);
2229 	return 0;
2230 
2231 destroy_io:
2232 	if (ctrl->queue_count > 1) {
2233 		nvme_quiesce_io_queues(ctrl);
2234 		nvme_sync_io_queues(ctrl);
2235 		nvme_tcp_stop_io_queues(ctrl);
2236 		nvme_cancel_tagset(ctrl);
2237 		nvme_tcp_destroy_io_queues(ctrl, new);
2238 	}
2239 destroy_admin:
2240 	nvme_tcp_teardown_admin_queue(ctrl, false);
2241 	return ret;
2242 }
2243 
2244 static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work)
2245 {
2246 	struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work),
2247 			struct nvme_tcp_ctrl, connect_work);
2248 	struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2249 
2250 	++ctrl->nr_reconnects;
2251 
2252 	if (nvme_tcp_setup_ctrl(ctrl, false))
2253 		goto requeue;
2254 
2255 	dev_info(ctrl->device, "Successfully reconnected (%d attempt)\n",
2256 			ctrl->nr_reconnects);
2257 
2258 	ctrl->nr_reconnects = 0;
2259 
2260 	return;
2261 
2262 requeue:
2263 	dev_info(ctrl->device, "Failed reconnect attempt %d\n",
2264 			ctrl->nr_reconnects);
2265 	nvme_tcp_reconnect_or_remove(ctrl);
2266 }
2267 
2268 static void nvme_tcp_error_recovery_work(struct work_struct *work)
2269 {
2270 	struct nvme_tcp_ctrl *tcp_ctrl = container_of(work,
2271 				struct nvme_tcp_ctrl, err_work);
2272 	struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2273 
2274 	nvme_stop_keep_alive(ctrl);
2275 	flush_work(&ctrl->async_event_work);
2276 	nvme_tcp_teardown_io_queues(ctrl, false);
2277 	/* unquiesce to fail fast pending requests */
2278 	nvme_unquiesce_io_queues(ctrl);
2279 	nvme_tcp_teardown_admin_queue(ctrl, false);
2280 	nvme_unquiesce_admin_queue(ctrl);
2281 	nvme_auth_stop(ctrl);
2282 
2283 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2284 		/* state change failure is ok if we started ctrl delete */
2285 		WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2286 			     ctrl->state != NVME_CTRL_DELETING_NOIO);
2287 		return;
2288 	}
2289 
2290 	nvme_tcp_reconnect_or_remove(ctrl);
2291 }
2292 
2293 static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
2294 {
2295 	nvme_tcp_teardown_io_queues(ctrl, shutdown);
2296 	nvme_quiesce_admin_queue(ctrl);
2297 	nvme_disable_ctrl(ctrl, shutdown);
2298 	nvme_tcp_teardown_admin_queue(ctrl, shutdown);
2299 }
2300 
2301 static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl)
2302 {
2303 	nvme_tcp_teardown_ctrl(ctrl, true);
2304 }
2305 
2306 static void nvme_reset_ctrl_work(struct work_struct *work)
2307 {
2308 	struct nvme_ctrl *ctrl =
2309 		container_of(work, struct nvme_ctrl, reset_work);
2310 
2311 	nvme_stop_ctrl(ctrl);
2312 	nvme_tcp_teardown_ctrl(ctrl, false);
2313 
2314 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2315 		/* state change failure is ok if we started ctrl delete */
2316 		WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2317 			     ctrl->state != NVME_CTRL_DELETING_NOIO);
2318 		return;
2319 	}
2320 
2321 	if (nvme_tcp_setup_ctrl(ctrl, false))
2322 		goto out_fail;
2323 
2324 	return;
2325 
2326 out_fail:
2327 	++ctrl->nr_reconnects;
2328 	nvme_tcp_reconnect_or_remove(ctrl);
2329 }
2330 
2331 static void nvme_tcp_stop_ctrl(struct nvme_ctrl *ctrl)
2332 {
2333 	flush_work(&to_tcp_ctrl(ctrl)->err_work);
2334 	cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work);
2335 }
2336 
2337 static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl)
2338 {
2339 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
2340 
2341 	if (list_empty(&ctrl->list))
2342 		goto free_ctrl;
2343 
2344 	mutex_lock(&nvme_tcp_ctrl_mutex);
2345 	list_del(&ctrl->list);
2346 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2347 
2348 	nvmf_free_options(nctrl->opts);
2349 free_ctrl:
2350 	kfree(ctrl->queues);
2351 	kfree(ctrl);
2352 }
2353 
2354 static void nvme_tcp_set_sg_null(struct nvme_command *c)
2355 {
2356 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2357 
2358 	sg->addr = 0;
2359 	sg->length = 0;
2360 	sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2361 			NVME_SGL_FMT_TRANSPORT_A;
2362 }
2363 
2364 static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue,
2365 		struct nvme_command *c, u32 data_len)
2366 {
2367 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2368 
2369 	sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
2370 	sg->length = cpu_to_le32(data_len);
2371 	sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
2372 }
2373 
2374 static void nvme_tcp_set_sg_host_data(struct nvme_command *c,
2375 		u32 data_len)
2376 {
2377 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2378 
2379 	sg->addr = 0;
2380 	sg->length = cpu_to_le32(data_len);
2381 	sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2382 			NVME_SGL_FMT_TRANSPORT_A;
2383 }
2384 
2385 static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg)
2386 {
2387 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg);
2388 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
2389 	struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu;
2390 	struct nvme_command *cmd = &pdu->cmd;
2391 	u8 hdgst = nvme_tcp_hdgst_len(queue);
2392 
2393 	memset(pdu, 0, sizeof(*pdu));
2394 	pdu->hdr.type = nvme_tcp_cmd;
2395 	if (queue->hdr_digest)
2396 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
2397 	pdu->hdr.hlen = sizeof(*pdu);
2398 	pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
2399 
2400 	cmd->common.opcode = nvme_admin_async_event;
2401 	cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
2402 	cmd->common.flags |= NVME_CMD_SGL_METABUF;
2403 	nvme_tcp_set_sg_null(cmd);
2404 
2405 	ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU;
2406 	ctrl->async_req.offset = 0;
2407 	ctrl->async_req.curr_bio = NULL;
2408 	ctrl->async_req.data_len = 0;
2409 
2410 	nvme_tcp_queue_request(&ctrl->async_req, true, true);
2411 }
2412 
2413 static void nvme_tcp_complete_timed_out(struct request *rq)
2414 {
2415 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2416 	struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2417 
2418 	nvme_tcp_stop_queue(ctrl, nvme_tcp_queue_id(req->queue));
2419 	nvmf_complete_timed_out_request(rq);
2420 }
2421 
2422 static enum blk_eh_timer_return nvme_tcp_timeout(struct request *rq)
2423 {
2424 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2425 	struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2426 	struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req);
2427 	u8 opc = pdu->cmd.common.opcode, fctype = pdu->cmd.fabrics.fctype;
2428 	int qid = nvme_tcp_queue_id(req->queue);
2429 
2430 	dev_warn(ctrl->device,
2431 		"queue %d: timeout cid %#x type %d opcode %#x (%s)\n",
2432 		nvme_tcp_queue_id(req->queue), nvme_cid(rq), pdu->hdr.type,
2433 		opc, nvme_opcode_str(qid, opc, fctype));
2434 
2435 	if (ctrl->state != NVME_CTRL_LIVE) {
2436 		/*
2437 		 * If we are resetting, connecting or deleting we should
2438 		 * complete immediately because we may block controller
2439 		 * teardown or setup sequence
2440 		 * - ctrl disable/shutdown fabrics requests
2441 		 * - connect requests
2442 		 * - initialization admin requests
2443 		 * - I/O requests that entered after unquiescing and
2444 		 *   the controller stopped responding
2445 		 *
2446 		 * All other requests should be cancelled by the error
2447 		 * recovery work, so it's fine that we fail it here.
2448 		 */
2449 		nvme_tcp_complete_timed_out(rq);
2450 		return BLK_EH_DONE;
2451 	}
2452 
2453 	/*
2454 	 * LIVE state should trigger the normal error recovery which will
2455 	 * handle completing this request.
2456 	 */
2457 	nvme_tcp_error_recovery(ctrl);
2458 	return BLK_EH_RESET_TIMER;
2459 }
2460 
2461 static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue,
2462 			struct request *rq)
2463 {
2464 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2465 	struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req);
2466 	struct nvme_command *c = &pdu->cmd;
2467 
2468 	c->common.flags |= NVME_CMD_SGL_METABUF;
2469 
2470 	if (!blk_rq_nr_phys_segments(rq))
2471 		nvme_tcp_set_sg_null(c);
2472 	else if (rq_data_dir(rq) == WRITE &&
2473 	    req->data_len <= nvme_tcp_inline_data_size(req))
2474 		nvme_tcp_set_sg_inline(queue, c, req->data_len);
2475 	else
2476 		nvme_tcp_set_sg_host_data(c, req->data_len);
2477 
2478 	return 0;
2479 }
2480 
2481 static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns,
2482 		struct request *rq)
2483 {
2484 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2485 	struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req);
2486 	struct nvme_tcp_queue *queue = req->queue;
2487 	u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0;
2488 	blk_status_t ret;
2489 
2490 	ret = nvme_setup_cmd(ns, rq);
2491 	if (ret)
2492 		return ret;
2493 
2494 	req->state = NVME_TCP_SEND_CMD_PDU;
2495 	req->status = cpu_to_le16(NVME_SC_SUCCESS);
2496 	req->offset = 0;
2497 	req->data_sent = 0;
2498 	req->pdu_len = 0;
2499 	req->pdu_sent = 0;
2500 	req->h2cdata_left = 0;
2501 	req->data_len = blk_rq_nr_phys_segments(rq) ?
2502 				blk_rq_payload_bytes(rq) : 0;
2503 	req->curr_bio = rq->bio;
2504 	if (req->curr_bio && req->data_len)
2505 		nvme_tcp_init_iter(req, rq_data_dir(rq));
2506 
2507 	if (rq_data_dir(rq) == WRITE &&
2508 	    req->data_len <= nvme_tcp_inline_data_size(req))
2509 		req->pdu_len = req->data_len;
2510 
2511 	pdu->hdr.type = nvme_tcp_cmd;
2512 	pdu->hdr.flags = 0;
2513 	if (queue->hdr_digest)
2514 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
2515 	if (queue->data_digest && req->pdu_len) {
2516 		pdu->hdr.flags |= NVME_TCP_F_DDGST;
2517 		ddgst = nvme_tcp_ddgst_len(queue);
2518 	}
2519 	pdu->hdr.hlen = sizeof(*pdu);
2520 	pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0;
2521 	pdu->hdr.plen =
2522 		cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst);
2523 
2524 	ret = nvme_tcp_map_data(queue, rq);
2525 	if (unlikely(ret)) {
2526 		nvme_cleanup_cmd(rq);
2527 		dev_err(queue->ctrl->ctrl.device,
2528 			"Failed to map data (%d)\n", ret);
2529 		return ret;
2530 	}
2531 
2532 	return 0;
2533 }
2534 
2535 static void nvme_tcp_commit_rqs(struct blk_mq_hw_ctx *hctx)
2536 {
2537 	struct nvme_tcp_queue *queue = hctx->driver_data;
2538 
2539 	if (!llist_empty(&queue->req_list))
2540 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
2541 }
2542 
2543 static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx,
2544 		const struct blk_mq_queue_data *bd)
2545 {
2546 	struct nvme_ns *ns = hctx->queue->queuedata;
2547 	struct nvme_tcp_queue *queue = hctx->driver_data;
2548 	struct request *rq = bd->rq;
2549 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2550 	bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags);
2551 	blk_status_t ret;
2552 
2553 	if (!nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2554 		return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq);
2555 
2556 	ret = nvme_tcp_setup_cmd_pdu(ns, rq);
2557 	if (unlikely(ret))
2558 		return ret;
2559 
2560 	nvme_start_request(rq);
2561 
2562 	nvme_tcp_queue_request(req, true, bd->last);
2563 
2564 	return BLK_STS_OK;
2565 }
2566 
2567 static void nvme_tcp_map_queues(struct blk_mq_tag_set *set)
2568 {
2569 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(set->driver_data);
2570 
2571 	nvmf_map_queues(set, &ctrl->ctrl, ctrl->io_queues);
2572 }
2573 
2574 static int nvme_tcp_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
2575 {
2576 	struct nvme_tcp_queue *queue = hctx->driver_data;
2577 	struct sock *sk = queue->sock->sk;
2578 
2579 	if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags))
2580 		return 0;
2581 
2582 	set_bit(NVME_TCP_Q_POLLING, &queue->flags);
2583 	if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue))
2584 		sk_busy_loop(sk, true);
2585 	nvme_tcp_try_recv(queue);
2586 	clear_bit(NVME_TCP_Q_POLLING, &queue->flags);
2587 	return queue->nr_cqe;
2588 }
2589 
2590 static int nvme_tcp_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2591 {
2592 	struct nvme_tcp_queue *queue = &to_tcp_ctrl(ctrl)->queues[0];
2593 	struct sockaddr_storage src_addr;
2594 	int ret, len;
2595 
2596 	len = nvmf_get_address(ctrl, buf, size);
2597 
2598 	mutex_lock(&queue->queue_lock);
2599 
2600 	if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags))
2601 		goto done;
2602 	ret = kernel_getsockname(queue->sock, (struct sockaddr *)&src_addr);
2603 	if (ret > 0) {
2604 		if (len > 0)
2605 			len--; /* strip trailing newline */
2606 		len += scnprintf(buf + len, size - len, "%ssrc_addr=%pISc\n",
2607 				(len) ? "," : "", &src_addr);
2608 	}
2609 done:
2610 	mutex_unlock(&queue->queue_lock);
2611 
2612 	return len;
2613 }
2614 
2615 static const struct blk_mq_ops nvme_tcp_mq_ops = {
2616 	.queue_rq	= nvme_tcp_queue_rq,
2617 	.commit_rqs	= nvme_tcp_commit_rqs,
2618 	.complete	= nvme_complete_rq,
2619 	.init_request	= nvme_tcp_init_request,
2620 	.exit_request	= nvme_tcp_exit_request,
2621 	.init_hctx	= nvme_tcp_init_hctx,
2622 	.timeout	= nvme_tcp_timeout,
2623 	.map_queues	= nvme_tcp_map_queues,
2624 	.poll		= nvme_tcp_poll,
2625 };
2626 
2627 static const struct blk_mq_ops nvme_tcp_admin_mq_ops = {
2628 	.queue_rq	= nvme_tcp_queue_rq,
2629 	.complete	= nvme_complete_rq,
2630 	.init_request	= nvme_tcp_init_request,
2631 	.exit_request	= nvme_tcp_exit_request,
2632 	.init_hctx	= nvme_tcp_init_admin_hctx,
2633 	.timeout	= nvme_tcp_timeout,
2634 };
2635 
2636 static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = {
2637 	.name			= "tcp",
2638 	.module			= THIS_MODULE,
2639 	.flags			= NVME_F_FABRICS | NVME_F_BLOCKING,
2640 	.reg_read32		= nvmf_reg_read32,
2641 	.reg_read64		= nvmf_reg_read64,
2642 	.reg_write32		= nvmf_reg_write32,
2643 	.free_ctrl		= nvme_tcp_free_ctrl,
2644 	.submit_async_event	= nvme_tcp_submit_async_event,
2645 	.delete_ctrl		= nvme_tcp_delete_ctrl,
2646 	.get_address		= nvme_tcp_get_address,
2647 	.stop_ctrl		= nvme_tcp_stop_ctrl,
2648 };
2649 
2650 static bool
2651 nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts)
2652 {
2653 	struct nvme_tcp_ctrl *ctrl;
2654 	bool found = false;
2655 
2656 	mutex_lock(&nvme_tcp_ctrl_mutex);
2657 	list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) {
2658 		found = nvmf_ip_options_match(&ctrl->ctrl, opts);
2659 		if (found)
2660 			break;
2661 	}
2662 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2663 
2664 	return found;
2665 }
2666 
2667 static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev,
2668 		struct nvmf_ctrl_options *opts)
2669 {
2670 	struct nvme_tcp_ctrl *ctrl;
2671 	int ret;
2672 
2673 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2674 	if (!ctrl)
2675 		return ERR_PTR(-ENOMEM);
2676 
2677 	INIT_LIST_HEAD(&ctrl->list);
2678 	ctrl->ctrl.opts = opts;
2679 	ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2680 				opts->nr_poll_queues + 1;
2681 	ctrl->ctrl.sqsize = opts->queue_size - 1;
2682 	ctrl->ctrl.kato = opts->kato;
2683 
2684 	INIT_DELAYED_WORK(&ctrl->connect_work,
2685 			nvme_tcp_reconnect_ctrl_work);
2686 	INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work);
2687 	INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work);
2688 
2689 	if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2690 		opts->trsvcid =
2691 			kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL);
2692 		if (!opts->trsvcid) {
2693 			ret = -ENOMEM;
2694 			goto out_free_ctrl;
2695 		}
2696 		opts->mask |= NVMF_OPT_TRSVCID;
2697 	}
2698 
2699 	ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2700 			opts->traddr, opts->trsvcid, &ctrl->addr);
2701 	if (ret) {
2702 		pr_err("malformed address passed: %s:%s\n",
2703 			opts->traddr, opts->trsvcid);
2704 		goto out_free_ctrl;
2705 	}
2706 
2707 	if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2708 		ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2709 			opts->host_traddr, NULL, &ctrl->src_addr);
2710 		if (ret) {
2711 			pr_err("malformed src address passed: %s\n",
2712 			       opts->host_traddr);
2713 			goto out_free_ctrl;
2714 		}
2715 	}
2716 
2717 	if (opts->mask & NVMF_OPT_HOST_IFACE) {
2718 		if (!__dev_get_by_name(&init_net, opts->host_iface)) {
2719 			pr_err("invalid interface passed: %s\n",
2720 			       opts->host_iface);
2721 			ret = -ENODEV;
2722 			goto out_free_ctrl;
2723 		}
2724 	}
2725 
2726 	if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) {
2727 		ret = -EALREADY;
2728 		goto out_free_ctrl;
2729 	}
2730 
2731 	ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2732 				GFP_KERNEL);
2733 	if (!ctrl->queues) {
2734 		ret = -ENOMEM;
2735 		goto out_free_ctrl;
2736 	}
2737 
2738 	ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0);
2739 	if (ret)
2740 		goto out_kfree_queues;
2741 
2742 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2743 		WARN_ON_ONCE(1);
2744 		ret = -EINTR;
2745 		goto out_uninit_ctrl;
2746 	}
2747 
2748 	ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true);
2749 	if (ret)
2750 		goto out_uninit_ctrl;
2751 
2752 	dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n",
2753 		nvmf_ctrl_subsysnqn(&ctrl->ctrl), &ctrl->addr);
2754 
2755 	mutex_lock(&nvme_tcp_ctrl_mutex);
2756 	list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list);
2757 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2758 
2759 	return &ctrl->ctrl;
2760 
2761 out_uninit_ctrl:
2762 	nvme_uninit_ctrl(&ctrl->ctrl);
2763 	nvme_put_ctrl(&ctrl->ctrl);
2764 	if (ret > 0)
2765 		ret = -EIO;
2766 	return ERR_PTR(ret);
2767 out_kfree_queues:
2768 	kfree(ctrl->queues);
2769 out_free_ctrl:
2770 	kfree(ctrl);
2771 	return ERR_PTR(ret);
2772 }
2773 
2774 static struct nvmf_transport_ops nvme_tcp_transport = {
2775 	.name		= "tcp",
2776 	.module		= THIS_MODULE,
2777 	.required_opts	= NVMF_OPT_TRADDR,
2778 	.allowed_opts	= NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2779 			  NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2780 			  NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST |
2781 			  NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
2782 			  NVMF_OPT_TOS | NVMF_OPT_HOST_IFACE | NVMF_OPT_TLS |
2783 			  NVMF_OPT_KEYRING | NVMF_OPT_TLS_KEY,
2784 	.create_ctrl	= nvme_tcp_create_ctrl,
2785 };
2786 
2787 static int __init nvme_tcp_init_module(void)
2788 {
2789 	BUILD_BUG_ON(sizeof(struct nvme_tcp_hdr) != 8);
2790 	BUILD_BUG_ON(sizeof(struct nvme_tcp_cmd_pdu) != 72);
2791 	BUILD_BUG_ON(sizeof(struct nvme_tcp_data_pdu) != 24);
2792 	BUILD_BUG_ON(sizeof(struct nvme_tcp_rsp_pdu) != 24);
2793 	BUILD_BUG_ON(sizeof(struct nvme_tcp_r2t_pdu) != 24);
2794 	BUILD_BUG_ON(sizeof(struct nvme_tcp_icreq_pdu) != 128);
2795 	BUILD_BUG_ON(sizeof(struct nvme_tcp_icresp_pdu) != 128);
2796 	BUILD_BUG_ON(sizeof(struct nvme_tcp_term_pdu) != 24);
2797 
2798 	nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq",
2799 			WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2800 	if (!nvme_tcp_wq)
2801 		return -ENOMEM;
2802 
2803 	nvmf_register_transport(&nvme_tcp_transport);
2804 	return 0;
2805 }
2806 
2807 static void __exit nvme_tcp_cleanup_module(void)
2808 {
2809 	struct nvme_tcp_ctrl *ctrl;
2810 
2811 	nvmf_unregister_transport(&nvme_tcp_transport);
2812 
2813 	mutex_lock(&nvme_tcp_ctrl_mutex);
2814 	list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list)
2815 		nvme_delete_ctrl(&ctrl->ctrl);
2816 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2817 	flush_workqueue(nvme_delete_wq);
2818 
2819 	destroy_workqueue(nvme_tcp_wq);
2820 }
2821 
2822 module_init(nvme_tcp_init_module);
2823 module_exit(nvme_tcp_cleanup_module);
2824 
2825 MODULE_LICENSE("GPL v2");
2826