1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVMe over Fabrics TCP host. 4 * Copyright (c) 2018 Lightbits Labs. All rights reserved. 5 */ 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 #include <linux/module.h> 8 #include <linux/init.h> 9 #include <linux/slab.h> 10 #include <linux/err.h> 11 #include <linux/nvme-tcp.h> 12 #include <net/sock.h> 13 #include <net/tcp.h> 14 #include <linux/blk-mq.h> 15 #include <crypto/hash.h> 16 #include <net/busy_poll.h> 17 18 #include "nvme.h" 19 #include "fabrics.h" 20 21 struct nvme_tcp_queue; 22 23 enum nvme_tcp_send_state { 24 NVME_TCP_SEND_CMD_PDU = 0, 25 NVME_TCP_SEND_H2C_PDU, 26 NVME_TCP_SEND_DATA, 27 NVME_TCP_SEND_DDGST, 28 }; 29 30 struct nvme_tcp_request { 31 struct nvme_request req; 32 void *pdu; 33 struct nvme_tcp_queue *queue; 34 u32 data_len; 35 u32 pdu_len; 36 u32 pdu_sent; 37 u16 ttag; 38 struct list_head entry; 39 __le32 ddgst; 40 41 struct bio *curr_bio; 42 struct iov_iter iter; 43 44 /* send state */ 45 size_t offset; 46 size_t data_sent; 47 enum nvme_tcp_send_state state; 48 }; 49 50 enum nvme_tcp_queue_flags { 51 NVME_TCP_Q_ALLOCATED = 0, 52 NVME_TCP_Q_LIVE = 1, 53 }; 54 55 enum nvme_tcp_recv_state { 56 NVME_TCP_RECV_PDU = 0, 57 NVME_TCP_RECV_DATA, 58 NVME_TCP_RECV_DDGST, 59 }; 60 61 struct nvme_tcp_ctrl; 62 struct nvme_tcp_queue { 63 struct socket *sock; 64 struct work_struct io_work; 65 int io_cpu; 66 67 spinlock_t lock; 68 struct list_head send_list; 69 70 /* recv state */ 71 void *pdu; 72 int pdu_remaining; 73 int pdu_offset; 74 size_t data_remaining; 75 size_t ddgst_remaining; 76 unsigned int nr_cqe; 77 78 /* send state */ 79 struct nvme_tcp_request *request; 80 81 int queue_size; 82 size_t cmnd_capsule_len; 83 struct nvme_tcp_ctrl *ctrl; 84 unsigned long flags; 85 bool rd_enabled; 86 87 bool hdr_digest; 88 bool data_digest; 89 struct ahash_request *rcv_hash; 90 struct ahash_request *snd_hash; 91 __le32 exp_ddgst; 92 __le32 recv_ddgst; 93 94 struct page_frag_cache pf_cache; 95 96 void (*state_change)(struct sock *); 97 void (*data_ready)(struct sock *); 98 void (*write_space)(struct sock *); 99 }; 100 101 struct nvme_tcp_ctrl { 102 /* read only in the hot path */ 103 struct nvme_tcp_queue *queues; 104 struct blk_mq_tag_set tag_set; 105 106 /* other member variables */ 107 struct list_head list; 108 struct blk_mq_tag_set admin_tag_set; 109 struct sockaddr_storage addr; 110 struct sockaddr_storage src_addr; 111 struct nvme_ctrl ctrl; 112 113 struct work_struct err_work; 114 struct delayed_work connect_work; 115 struct nvme_tcp_request async_req; 116 u32 io_queues[HCTX_MAX_TYPES]; 117 }; 118 119 static LIST_HEAD(nvme_tcp_ctrl_list); 120 static DEFINE_MUTEX(nvme_tcp_ctrl_mutex); 121 static struct workqueue_struct *nvme_tcp_wq; 122 static struct blk_mq_ops nvme_tcp_mq_ops; 123 static struct blk_mq_ops nvme_tcp_admin_mq_ops; 124 125 static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl) 126 { 127 return container_of(ctrl, struct nvme_tcp_ctrl, ctrl); 128 } 129 130 static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue) 131 { 132 return queue - queue->ctrl->queues; 133 } 134 135 static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue) 136 { 137 u32 queue_idx = nvme_tcp_queue_id(queue); 138 139 if (queue_idx == 0) 140 return queue->ctrl->admin_tag_set.tags[queue_idx]; 141 return queue->ctrl->tag_set.tags[queue_idx - 1]; 142 } 143 144 static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue) 145 { 146 return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0; 147 } 148 149 static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue) 150 { 151 return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0; 152 } 153 154 static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_queue *queue) 155 { 156 return queue->cmnd_capsule_len - sizeof(struct nvme_command); 157 } 158 159 static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req) 160 { 161 return req == &req->queue->ctrl->async_req; 162 } 163 164 static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req) 165 { 166 struct request *rq; 167 unsigned int bytes; 168 169 if (unlikely(nvme_tcp_async_req(req))) 170 return false; /* async events don't have a request */ 171 172 rq = blk_mq_rq_from_pdu(req); 173 bytes = blk_rq_payload_bytes(rq); 174 175 return rq_data_dir(rq) == WRITE && bytes && 176 bytes <= nvme_tcp_inline_data_size(req->queue); 177 } 178 179 static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req) 180 { 181 return req->iter.bvec->bv_page; 182 } 183 184 static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req) 185 { 186 return req->iter.bvec->bv_offset + req->iter.iov_offset; 187 } 188 189 static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req) 190 { 191 return min_t(size_t, req->iter.bvec->bv_len - req->iter.iov_offset, 192 req->pdu_len - req->pdu_sent); 193 } 194 195 static inline size_t nvme_tcp_req_offset(struct nvme_tcp_request *req) 196 { 197 return req->iter.iov_offset; 198 } 199 200 static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req) 201 { 202 return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ? 203 req->pdu_len - req->pdu_sent : 0; 204 } 205 206 static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req, 207 int len) 208 { 209 return nvme_tcp_pdu_data_left(req) <= len; 210 } 211 212 static void nvme_tcp_init_iter(struct nvme_tcp_request *req, 213 unsigned int dir) 214 { 215 struct request *rq = blk_mq_rq_from_pdu(req); 216 struct bio_vec *vec; 217 unsigned int size; 218 int nsegs; 219 size_t offset; 220 221 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) { 222 vec = &rq->special_vec; 223 nsegs = 1; 224 size = blk_rq_payload_bytes(rq); 225 offset = 0; 226 } else { 227 struct bio *bio = req->curr_bio; 228 229 vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); 230 nsegs = bio_segments(bio); 231 size = bio->bi_iter.bi_size; 232 offset = bio->bi_iter.bi_bvec_done; 233 } 234 235 iov_iter_bvec(&req->iter, dir, vec, nsegs, size); 236 req->iter.iov_offset = offset; 237 } 238 239 static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req, 240 int len) 241 { 242 req->data_sent += len; 243 req->pdu_sent += len; 244 iov_iter_advance(&req->iter, len); 245 if (!iov_iter_count(&req->iter) && 246 req->data_sent < req->data_len) { 247 req->curr_bio = req->curr_bio->bi_next; 248 nvme_tcp_init_iter(req, WRITE); 249 } 250 } 251 252 static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req) 253 { 254 struct nvme_tcp_queue *queue = req->queue; 255 256 spin_lock(&queue->lock); 257 list_add_tail(&req->entry, &queue->send_list); 258 spin_unlock(&queue->lock); 259 260 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 261 } 262 263 static inline struct nvme_tcp_request * 264 nvme_tcp_fetch_request(struct nvme_tcp_queue *queue) 265 { 266 struct nvme_tcp_request *req; 267 268 spin_lock(&queue->lock); 269 req = list_first_entry_or_null(&queue->send_list, 270 struct nvme_tcp_request, entry); 271 if (req) 272 list_del(&req->entry); 273 spin_unlock(&queue->lock); 274 275 return req; 276 } 277 278 static inline void nvme_tcp_ddgst_final(struct ahash_request *hash, 279 __le32 *dgst) 280 { 281 ahash_request_set_crypt(hash, NULL, (u8 *)dgst, 0); 282 crypto_ahash_final(hash); 283 } 284 285 static inline void nvme_tcp_ddgst_update(struct ahash_request *hash, 286 struct page *page, off_t off, size_t len) 287 { 288 struct scatterlist sg; 289 290 sg_init_marker(&sg, 1); 291 sg_set_page(&sg, page, len, off); 292 ahash_request_set_crypt(hash, &sg, NULL, len); 293 crypto_ahash_update(hash); 294 } 295 296 static inline void nvme_tcp_hdgst(struct ahash_request *hash, 297 void *pdu, size_t len) 298 { 299 struct scatterlist sg; 300 301 sg_init_one(&sg, pdu, len); 302 ahash_request_set_crypt(hash, &sg, pdu + len, len); 303 crypto_ahash_digest(hash); 304 } 305 306 static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue, 307 void *pdu, size_t pdu_len) 308 { 309 struct nvme_tcp_hdr *hdr = pdu; 310 __le32 recv_digest; 311 __le32 exp_digest; 312 313 if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) { 314 dev_err(queue->ctrl->ctrl.device, 315 "queue %d: header digest flag is cleared\n", 316 nvme_tcp_queue_id(queue)); 317 return -EPROTO; 318 } 319 320 recv_digest = *(__le32 *)(pdu + hdr->hlen); 321 nvme_tcp_hdgst(queue->rcv_hash, pdu, pdu_len); 322 exp_digest = *(__le32 *)(pdu + hdr->hlen); 323 if (recv_digest != exp_digest) { 324 dev_err(queue->ctrl->ctrl.device, 325 "header digest error: recv %#x expected %#x\n", 326 le32_to_cpu(recv_digest), le32_to_cpu(exp_digest)); 327 return -EIO; 328 } 329 330 return 0; 331 } 332 333 static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu) 334 { 335 struct nvme_tcp_hdr *hdr = pdu; 336 u8 digest_len = nvme_tcp_hdgst_len(queue); 337 u32 len; 338 339 len = le32_to_cpu(hdr->plen) - hdr->hlen - 340 ((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0); 341 342 if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) { 343 dev_err(queue->ctrl->ctrl.device, 344 "queue %d: data digest flag is cleared\n", 345 nvme_tcp_queue_id(queue)); 346 return -EPROTO; 347 } 348 crypto_ahash_init(queue->rcv_hash); 349 350 return 0; 351 } 352 353 static void nvme_tcp_exit_request(struct blk_mq_tag_set *set, 354 struct request *rq, unsigned int hctx_idx) 355 { 356 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 357 358 page_frag_free(req->pdu); 359 } 360 361 static int nvme_tcp_init_request(struct blk_mq_tag_set *set, 362 struct request *rq, unsigned int hctx_idx, 363 unsigned int numa_node) 364 { 365 struct nvme_tcp_ctrl *ctrl = set->driver_data; 366 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 367 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; 368 struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx]; 369 u8 hdgst = nvme_tcp_hdgst_len(queue); 370 371 req->pdu = page_frag_alloc(&queue->pf_cache, 372 sizeof(struct nvme_tcp_cmd_pdu) + hdgst, 373 GFP_KERNEL | __GFP_ZERO); 374 if (!req->pdu) 375 return -ENOMEM; 376 377 req->queue = queue; 378 nvme_req(rq)->ctrl = &ctrl->ctrl; 379 380 return 0; 381 } 382 383 static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 384 unsigned int hctx_idx) 385 { 386 struct nvme_tcp_ctrl *ctrl = data; 387 struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1]; 388 389 hctx->driver_data = queue; 390 return 0; 391 } 392 393 static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, 394 unsigned int hctx_idx) 395 { 396 struct nvme_tcp_ctrl *ctrl = data; 397 struct nvme_tcp_queue *queue = &ctrl->queues[0]; 398 399 hctx->driver_data = queue; 400 return 0; 401 } 402 403 static enum nvme_tcp_recv_state 404 nvme_tcp_recv_state(struct nvme_tcp_queue *queue) 405 { 406 return (queue->pdu_remaining) ? NVME_TCP_RECV_PDU : 407 (queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST : 408 NVME_TCP_RECV_DATA; 409 } 410 411 static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue) 412 { 413 queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) + 414 nvme_tcp_hdgst_len(queue); 415 queue->pdu_offset = 0; 416 queue->data_remaining = -1; 417 queue->ddgst_remaining = 0; 418 } 419 420 static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl) 421 { 422 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 423 return; 424 425 queue_work(nvme_wq, &to_tcp_ctrl(ctrl)->err_work); 426 } 427 428 static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue, 429 struct nvme_completion *cqe) 430 { 431 struct request *rq; 432 433 rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), cqe->command_id); 434 if (!rq) { 435 dev_err(queue->ctrl->ctrl.device, 436 "queue %d tag 0x%x not found\n", 437 nvme_tcp_queue_id(queue), cqe->command_id); 438 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 439 return -EINVAL; 440 } 441 442 nvme_end_request(rq, cqe->status, cqe->result); 443 queue->nr_cqe++; 444 445 return 0; 446 } 447 448 static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue, 449 struct nvme_tcp_data_pdu *pdu) 450 { 451 struct request *rq; 452 453 rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id); 454 if (!rq) { 455 dev_err(queue->ctrl->ctrl.device, 456 "queue %d tag %#x not found\n", 457 nvme_tcp_queue_id(queue), pdu->command_id); 458 return -ENOENT; 459 } 460 461 if (!blk_rq_payload_bytes(rq)) { 462 dev_err(queue->ctrl->ctrl.device, 463 "queue %d tag %#x unexpected data\n", 464 nvme_tcp_queue_id(queue), rq->tag); 465 return -EIO; 466 } 467 468 queue->data_remaining = le32_to_cpu(pdu->data_length); 469 470 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS && 471 unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) { 472 dev_err(queue->ctrl->ctrl.device, 473 "queue %d tag %#x SUCCESS set but not last PDU\n", 474 nvme_tcp_queue_id(queue), rq->tag); 475 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 476 return -EPROTO; 477 } 478 479 return 0; 480 } 481 482 static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue, 483 struct nvme_tcp_rsp_pdu *pdu) 484 { 485 struct nvme_completion *cqe = &pdu->cqe; 486 int ret = 0; 487 488 /* 489 * AEN requests are special as they don't time out and can 490 * survive any kind of queue freeze and often don't respond to 491 * aborts. We don't even bother to allocate a struct request 492 * for them but rather special case them here. 493 */ 494 if (unlikely(nvme_is_aen_req(nvme_tcp_queue_id(queue), 495 cqe->command_id))) 496 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status, 497 &cqe->result); 498 else 499 ret = nvme_tcp_process_nvme_cqe(queue, cqe); 500 501 return ret; 502 } 503 504 static int nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req, 505 struct nvme_tcp_r2t_pdu *pdu) 506 { 507 struct nvme_tcp_data_pdu *data = req->pdu; 508 struct nvme_tcp_queue *queue = req->queue; 509 struct request *rq = blk_mq_rq_from_pdu(req); 510 u8 hdgst = nvme_tcp_hdgst_len(queue); 511 u8 ddgst = nvme_tcp_ddgst_len(queue); 512 513 req->pdu_len = le32_to_cpu(pdu->r2t_length); 514 req->pdu_sent = 0; 515 516 if (unlikely(req->data_sent + req->pdu_len > req->data_len)) { 517 dev_err(queue->ctrl->ctrl.device, 518 "req %d r2t len %u exceeded data len %u (%zu sent)\n", 519 rq->tag, req->pdu_len, req->data_len, 520 req->data_sent); 521 return -EPROTO; 522 } 523 524 if (unlikely(le32_to_cpu(pdu->r2t_offset) < req->data_sent)) { 525 dev_err(queue->ctrl->ctrl.device, 526 "req %d unexpected r2t offset %u (expected %zu)\n", 527 rq->tag, le32_to_cpu(pdu->r2t_offset), 528 req->data_sent); 529 return -EPROTO; 530 } 531 532 memset(data, 0, sizeof(*data)); 533 data->hdr.type = nvme_tcp_h2c_data; 534 data->hdr.flags = NVME_TCP_F_DATA_LAST; 535 if (queue->hdr_digest) 536 data->hdr.flags |= NVME_TCP_F_HDGST; 537 if (queue->data_digest) 538 data->hdr.flags |= NVME_TCP_F_DDGST; 539 data->hdr.hlen = sizeof(*data); 540 data->hdr.pdo = data->hdr.hlen + hdgst; 541 data->hdr.plen = 542 cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst); 543 data->ttag = pdu->ttag; 544 data->command_id = rq->tag; 545 data->data_offset = cpu_to_le32(req->data_sent); 546 data->data_length = cpu_to_le32(req->pdu_len); 547 return 0; 548 } 549 550 static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue, 551 struct nvme_tcp_r2t_pdu *pdu) 552 { 553 struct nvme_tcp_request *req; 554 struct request *rq; 555 int ret; 556 557 rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id); 558 if (!rq) { 559 dev_err(queue->ctrl->ctrl.device, 560 "queue %d tag %#x not found\n", 561 nvme_tcp_queue_id(queue), pdu->command_id); 562 return -ENOENT; 563 } 564 req = blk_mq_rq_to_pdu(rq); 565 566 ret = nvme_tcp_setup_h2c_data_pdu(req, pdu); 567 if (unlikely(ret)) 568 return ret; 569 570 req->state = NVME_TCP_SEND_H2C_PDU; 571 req->offset = 0; 572 573 nvme_tcp_queue_request(req); 574 575 return 0; 576 } 577 578 static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb, 579 unsigned int *offset, size_t *len) 580 { 581 struct nvme_tcp_hdr *hdr; 582 char *pdu = queue->pdu; 583 size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining); 584 int ret; 585 586 ret = skb_copy_bits(skb, *offset, 587 &pdu[queue->pdu_offset], rcv_len); 588 if (unlikely(ret)) 589 return ret; 590 591 queue->pdu_remaining -= rcv_len; 592 queue->pdu_offset += rcv_len; 593 *offset += rcv_len; 594 *len -= rcv_len; 595 if (queue->pdu_remaining) 596 return 0; 597 598 hdr = queue->pdu; 599 if (queue->hdr_digest) { 600 ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen); 601 if (unlikely(ret)) 602 return ret; 603 } 604 605 606 if (queue->data_digest) { 607 ret = nvme_tcp_check_ddgst(queue, queue->pdu); 608 if (unlikely(ret)) 609 return ret; 610 } 611 612 switch (hdr->type) { 613 case nvme_tcp_c2h_data: 614 return nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu); 615 case nvme_tcp_rsp: 616 nvme_tcp_init_recv_ctx(queue); 617 return nvme_tcp_handle_comp(queue, (void *)queue->pdu); 618 case nvme_tcp_r2t: 619 nvme_tcp_init_recv_ctx(queue); 620 return nvme_tcp_handle_r2t(queue, (void *)queue->pdu); 621 default: 622 dev_err(queue->ctrl->ctrl.device, 623 "unsupported pdu type (%d)\n", hdr->type); 624 return -EINVAL; 625 } 626 } 627 628 static inline void nvme_tcp_end_request(struct request *rq, u16 status) 629 { 630 union nvme_result res = {}; 631 632 nvme_end_request(rq, cpu_to_le16(status << 1), res); 633 } 634 635 static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb, 636 unsigned int *offset, size_t *len) 637 { 638 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu; 639 struct nvme_tcp_request *req; 640 struct request *rq; 641 642 rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id); 643 if (!rq) { 644 dev_err(queue->ctrl->ctrl.device, 645 "queue %d tag %#x not found\n", 646 nvme_tcp_queue_id(queue), pdu->command_id); 647 return -ENOENT; 648 } 649 req = blk_mq_rq_to_pdu(rq); 650 651 while (true) { 652 int recv_len, ret; 653 654 recv_len = min_t(size_t, *len, queue->data_remaining); 655 if (!recv_len) 656 break; 657 658 if (!iov_iter_count(&req->iter)) { 659 req->curr_bio = req->curr_bio->bi_next; 660 661 /* 662 * If we don`t have any bios it means that controller 663 * sent more data than we requested, hence error 664 */ 665 if (!req->curr_bio) { 666 dev_err(queue->ctrl->ctrl.device, 667 "queue %d no space in request %#x", 668 nvme_tcp_queue_id(queue), rq->tag); 669 nvme_tcp_init_recv_ctx(queue); 670 return -EIO; 671 } 672 nvme_tcp_init_iter(req, READ); 673 } 674 675 /* we can read only from what is left in this bio */ 676 recv_len = min_t(size_t, recv_len, 677 iov_iter_count(&req->iter)); 678 679 if (queue->data_digest) 680 ret = skb_copy_and_hash_datagram_iter(skb, *offset, 681 &req->iter, recv_len, queue->rcv_hash); 682 else 683 ret = skb_copy_datagram_iter(skb, *offset, 684 &req->iter, recv_len); 685 if (ret) { 686 dev_err(queue->ctrl->ctrl.device, 687 "queue %d failed to copy request %#x data", 688 nvme_tcp_queue_id(queue), rq->tag); 689 return ret; 690 } 691 692 *len -= recv_len; 693 *offset += recv_len; 694 queue->data_remaining -= recv_len; 695 } 696 697 if (!queue->data_remaining) { 698 if (queue->data_digest) { 699 nvme_tcp_ddgst_final(queue->rcv_hash, &queue->exp_ddgst); 700 queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH; 701 } else { 702 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) { 703 nvme_tcp_end_request(rq, NVME_SC_SUCCESS); 704 queue->nr_cqe++; 705 } 706 nvme_tcp_init_recv_ctx(queue); 707 } 708 } 709 710 return 0; 711 } 712 713 static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue, 714 struct sk_buff *skb, unsigned int *offset, size_t *len) 715 { 716 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu; 717 char *ddgst = (char *)&queue->recv_ddgst; 718 size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining); 719 off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining; 720 int ret; 721 722 ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len); 723 if (unlikely(ret)) 724 return ret; 725 726 queue->ddgst_remaining -= recv_len; 727 *offset += recv_len; 728 *len -= recv_len; 729 if (queue->ddgst_remaining) 730 return 0; 731 732 if (queue->recv_ddgst != queue->exp_ddgst) { 733 dev_err(queue->ctrl->ctrl.device, 734 "data digest error: recv %#x expected %#x\n", 735 le32_to_cpu(queue->recv_ddgst), 736 le32_to_cpu(queue->exp_ddgst)); 737 return -EIO; 738 } 739 740 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) { 741 struct request *rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), 742 pdu->command_id); 743 744 nvme_tcp_end_request(rq, NVME_SC_SUCCESS); 745 queue->nr_cqe++; 746 } 747 748 nvme_tcp_init_recv_ctx(queue); 749 return 0; 750 } 751 752 static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb, 753 unsigned int offset, size_t len) 754 { 755 struct nvme_tcp_queue *queue = desc->arg.data; 756 size_t consumed = len; 757 int result; 758 759 while (len) { 760 switch (nvme_tcp_recv_state(queue)) { 761 case NVME_TCP_RECV_PDU: 762 result = nvme_tcp_recv_pdu(queue, skb, &offset, &len); 763 break; 764 case NVME_TCP_RECV_DATA: 765 result = nvme_tcp_recv_data(queue, skb, &offset, &len); 766 break; 767 case NVME_TCP_RECV_DDGST: 768 result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len); 769 break; 770 default: 771 result = -EFAULT; 772 } 773 if (result) { 774 dev_err(queue->ctrl->ctrl.device, 775 "receive failed: %d\n", result); 776 queue->rd_enabled = false; 777 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 778 return result; 779 } 780 } 781 782 return consumed; 783 } 784 785 static void nvme_tcp_data_ready(struct sock *sk) 786 { 787 struct nvme_tcp_queue *queue; 788 789 read_lock(&sk->sk_callback_lock); 790 queue = sk->sk_user_data; 791 if (likely(queue && queue->rd_enabled)) 792 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 793 read_unlock(&sk->sk_callback_lock); 794 } 795 796 static void nvme_tcp_write_space(struct sock *sk) 797 { 798 struct nvme_tcp_queue *queue; 799 800 read_lock_bh(&sk->sk_callback_lock); 801 queue = sk->sk_user_data; 802 if (likely(queue && sk_stream_is_writeable(sk))) { 803 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 804 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 805 } 806 read_unlock_bh(&sk->sk_callback_lock); 807 } 808 809 static void nvme_tcp_state_change(struct sock *sk) 810 { 811 struct nvme_tcp_queue *queue; 812 813 read_lock(&sk->sk_callback_lock); 814 queue = sk->sk_user_data; 815 if (!queue) 816 goto done; 817 818 switch (sk->sk_state) { 819 case TCP_CLOSE: 820 case TCP_CLOSE_WAIT: 821 case TCP_LAST_ACK: 822 case TCP_FIN_WAIT1: 823 case TCP_FIN_WAIT2: 824 /* fallthrough */ 825 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 826 break; 827 default: 828 dev_info(queue->ctrl->ctrl.device, 829 "queue %d socket state %d\n", 830 nvme_tcp_queue_id(queue), sk->sk_state); 831 } 832 833 queue->state_change(sk); 834 done: 835 read_unlock(&sk->sk_callback_lock); 836 } 837 838 static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue) 839 { 840 queue->request = NULL; 841 } 842 843 static void nvme_tcp_fail_request(struct nvme_tcp_request *req) 844 { 845 nvme_tcp_end_request(blk_mq_rq_from_pdu(req), NVME_SC_HOST_PATH_ERROR); 846 } 847 848 static int nvme_tcp_try_send_data(struct nvme_tcp_request *req) 849 { 850 struct nvme_tcp_queue *queue = req->queue; 851 852 while (true) { 853 struct page *page = nvme_tcp_req_cur_page(req); 854 size_t offset = nvme_tcp_req_cur_offset(req); 855 size_t len = nvme_tcp_req_cur_length(req); 856 bool last = nvme_tcp_pdu_last_send(req, len); 857 int ret, flags = MSG_DONTWAIT; 858 859 if (last && !queue->data_digest) 860 flags |= MSG_EOR; 861 else 862 flags |= MSG_MORE; 863 864 /* can't zcopy slab pages */ 865 if (unlikely(PageSlab(page))) { 866 ret = sock_no_sendpage(queue->sock, page, offset, len, 867 flags); 868 } else { 869 ret = kernel_sendpage(queue->sock, page, offset, len, 870 flags); 871 } 872 if (ret <= 0) 873 return ret; 874 875 nvme_tcp_advance_req(req, ret); 876 if (queue->data_digest) 877 nvme_tcp_ddgst_update(queue->snd_hash, page, 878 offset, ret); 879 880 /* fully successful last write*/ 881 if (last && ret == len) { 882 if (queue->data_digest) { 883 nvme_tcp_ddgst_final(queue->snd_hash, 884 &req->ddgst); 885 req->state = NVME_TCP_SEND_DDGST; 886 req->offset = 0; 887 } else { 888 nvme_tcp_done_send_req(queue); 889 } 890 return 1; 891 } 892 } 893 return -EAGAIN; 894 } 895 896 static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req) 897 { 898 struct nvme_tcp_queue *queue = req->queue; 899 struct nvme_tcp_cmd_pdu *pdu = req->pdu; 900 bool inline_data = nvme_tcp_has_inline_data(req); 901 int flags = MSG_DONTWAIT | (inline_data ? MSG_MORE : MSG_EOR); 902 u8 hdgst = nvme_tcp_hdgst_len(queue); 903 int len = sizeof(*pdu) + hdgst - req->offset; 904 int ret; 905 906 if (queue->hdr_digest && !req->offset) 907 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); 908 909 ret = kernel_sendpage(queue->sock, virt_to_page(pdu), 910 offset_in_page(pdu) + req->offset, len, flags); 911 if (unlikely(ret <= 0)) 912 return ret; 913 914 len -= ret; 915 if (!len) { 916 if (inline_data) { 917 req->state = NVME_TCP_SEND_DATA; 918 if (queue->data_digest) 919 crypto_ahash_init(queue->snd_hash); 920 nvme_tcp_init_iter(req, WRITE); 921 } else { 922 nvme_tcp_done_send_req(queue); 923 } 924 return 1; 925 } 926 req->offset += ret; 927 928 return -EAGAIN; 929 } 930 931 static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req) 932 { 933 struct nvme_tcp_queue *queue = req->queue; 934 struct nvme_tcp_data_pdu *pdu = req->pdu; 935 u8 hdgst = nvme_tcp_hdgst_len(queue); 936 int len = sizeof(*pdu) - req->offset + hdgst; 937 int ret; 938 939 if (queue->hdr_digest && !req->offset) 940 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); 941 942 ret = kernel_sendpage(queue->sock, virt_to_page(pdu), 943 offset_in_page(pdu) + req->offset, len, 944 MSG_DONTWAIT | MSG_MORE); 945 if (unlikely(ret <= 0)) 946 return ret; 947 948 len -= ret; 949 if (!len) { 950 req->state = NVME_TCP_SEND_DATA; 951 if (queue->data_digest) 952 crypto_ahash_init(queue->snd_hash); 953 if (!req->data_sent) 954 nvme_tcp_init_iter(req, WRITE); 955 return 1; 956 } 957 req->offset += ret; 958 959 return -EAGAIN; 960 } 961 962 static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req) 963 { 964 struct nvme_tcp_queue *queue = req->queue; 965 int ret; 966 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_EOR }; 967 struct kvec iov = { 968 .iov_base = &req->ddgst + req->offset, 969 .iov_len = NVME_TCP_DIGEST_LENGTH - req->offset 970 }; 971 972 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len); 973 if (unlikely(ret <= 0)) 974 return ret; 975 976 if (req->offset + ret == NVME_TCP_DIGEST_LENGTH) { 977 nvme_tcp_done_send_req(queue); 978 return 1; 979 } 980 981 req->offset += ret; 982 return -EAGAIN; 983 } 984 985 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue) 986 { 987 struct nvme_tcp_request *req; 988 int ret = 1; 989 990 if (!queue->request) { 991 queue->request = nvme_tcp_fetch_request(queue); 992 if (!queue->request) 993 return 0; 994 } 995 req = queue->request; 996 997 if (req->state == NVME_TCP_SEND_CMD_PDU) { 998 ret = nvme_tcp_try_send_cmd_pdu(req); 999 if (ret <= 0) 1000 goto done; 1001 if (!nvme_tcp_has_inline_data(req)) 1002 return ret; 1003 } 1004 1005 if (req->state == NVME_TCP_SEND_H2C_PDU) { 1006 ret = nvme_tcp_try_send_data_pdu(req); 1007 if (ret <= 0) 1008 goto done; 1009 } 1010 1011 if (req->state == NVME_TCP_SEND_DATA) { 1012 ret = nvme_tcp_try_send_data(req); 1013 if (ret <= 0) 1014 goto done; 1015 } 1016 1017 if (req->state == NVME_TCP_SEND_DDGST) 1018 ret = nvme_tcp_try_send_ddgst(req); 1019 done: 1020 if (ret == -EAGAIN) 1021 ret = 0; 1022 return ret; 1023 } 1024 1025 static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue) 1026 { 1027 struct socket *sock = queue->sock; 1028 struct sock *sk = sock->sk; 1029 read_descriptor_t rd_desc; 1030 int consumed; 1031 1032 rd_desc.arg.data = queue; 1033 rd_desc.count = 1; 1034 lock_sock(sk); 1035 queue->nr_cqe = 0; 1036 consumed = sock->ops->read_sock(sk, &rd_desc, nvme_tcp_recv_skb); 1037 release_sock(sk); 1038 return consumed; 1039 } 1040 1041 static void nvme_tcp_io_work(struct work_struct *w) 1042 { 1043 struct nvme_tcp_queue *queue = 1044 container_of(w, struct nvme_tcp_queue, io_work); 1045 unsigned long deadline = jiffies + msecs_to_jiffies(1); 1046 1047 do { 1048 bool pending = false; 1049 int result; 1050 1051 result = nvme_tcp_try_send(queue); 1052 if (result > 0) { 1053 pending = true; 1054 } else if (unlikely(result < 0)) { 1055 dev_err(queue->ctrl->ctrl.device, 1056 "failed to send request %d\n", result); 1057 if (result != -EPIPE) 1058 nvme_tcp_fail_request(queue->request); 1059 nvme_tcp_done_send_req(queue); 1060 return; 1061 } 1062 1063 result = nvme_tcp_try_recv(queue); 1064 if (result > 0) 1065 pending = true; 1066 1067 if (!pending) 1068 return; 1069 1070 } while (!time_after(jiffies, deadline)); /* quota is exhausted */ 1071 1072 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 1073 } 1074 1075 static void nvme_tcp_free_crypto(struct nvme_tcp_queue *queue) 1076 { 1077 struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash); 1078 1079 ahash_request_free(queue->rcv_hash); 1080 ahash_request_free(queue->snd_hash); 1081 crypto_free_ahash(tfm); 1082 } 1083 1084 static int nvme_tcp_alloc_crypto(struct nvme_tcp_queue *queue) 1085 { 1086 struct crypto_ahash *tfm; 1087 1088 tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC); 1089 if (IS_ERR(tfm)) 1090 return PTR_ERR(tfm); 1091 1092 queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL); 1093 if (!queue->snd_hash) 1094 goto free_tfm; 1095 ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL); 1096 1097 queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL); 1098 if (!queue->rcv_hash) 1099 goto free_snd_hash; 1100 ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL); 1101 1102 return 0; 1103 free_snd_hash: 1104 ahash_request_free(queue->snd_hash); 1105 free_tfm: 1106 crypto_free_ahash(tfm); 1107 return -ENOMEM; 1108 } 1109 1110 static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl) 1111 { 1112 struct nvme_tcp_request *async = &ctrl->async_req; 1113 1114 page_frag_free(async->pdu); 1115 } 1116 1117 static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl) 1118 { 1119 struct nvme_tcp_queue *queue = &ctrl->queues[0]; 1120 struct nvme_tcp_request *async = &ctrl->async_req; 1121 u8 hdgst = nvme_tcp_hdgst_len(queue); 1122 1123 async->pdu = page_frag_alloc(&queue->pf_cache, 1124 sizeof(struct nvme_tcp_cmd_pdu) + hdgst, 1125 GFP_KERNEL | __GFP_ZERO); 1126 if (!async->pdu) 1127 return -ENOMEM; 1128 1129 async->queue = &ctrl->queues[0]; 1130 return 0; 1131 } 1132 1133 static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid) 1134 { 1135 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1136 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1137 1138 if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags)) 1139 return; 1140 1141 if (queue->hdr_digest || queue->data_digest) 1142 nvme_tcp_free_crypto(queue); 1143 1144 sock_release(queue->sock); 1145 kfree(queue->pdu); 1146 } 1147 1148 static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue) 1149 { 1150 struct nvme_tcp_icreq_pdu *icreq; 1151 struct nvme_tcp_icresp_pdu *icresp; 1152 struct msghdr msg = {}; 1153 struct kvec iov; 1154 bool ctrl_hdgst, ctrl_ddgst; 1155 int ret; 1156 1157 icreq = kzalloc(sizeof(*icreq), GFP_KERNEL); 1158 if (!icreq) 1159 return -ENOMEM; 1160 1161 icresp = kzalloc(sizeof(*icresp), GFP_KERNEL); 1162 if (!icresp) { 1163 ret = -ENOMEM; 1164 goto free_icreq; 1165 } 1166 1167 icreq->hdr.type = nvme_tcp_icreq; 1168 icreq->hdr.hlen = sizeof(*icreq); 1169 icreq->hdr.pdo = 0; 1170 icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen); 1171 icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0); 1172 icreq->maxr2t = 0; /* single inflight r2t supported */ 1173 icreq->hpda = 0; /* no alignment constraint */ 1174 if (queue->hdr_digest) 1175 icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE; 1176 if (queue->data_digest) 1177 icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE; 1178 1179 iov.iov_base = icreq; 1180 iov.iov_len = sizeof(*icreq); 1181 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len); 1182 if (ret < 0) 1183 goto free_icresp; 1184 1185 memset(&msg, 0, sizeof(msg)); 1186 iov.iov_base = icresp; 1187 iov.iov_len = sizeof(*icresp); 1188 ret = kernel_recvmsg(queue->sock, &msg, &iov, 1, 1189 iov.iov_len, msg.msg_flags); 1190 if (ret < 0) 1191 goto free_icresp; 1192 1193 ret = -EINVAL; 1194 if (icresp->hdr.type != nvme_tcp_icresp) { 1195 pr_err("queue %d: bad type returned %d\n", 1196 nvme_tcp_queue_id(queue), icresp->hdr.type); 1197 goto free_icresp; 1198 } 1199 1200 if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) { 1201 pr_err("queue %d: bad pdu length returned %d\n", 1202 nvme_tcp_queue_id(queue), icresp->hdr.plen); 1203 goto free_icresp; 1204 } 1205 1206 if (icresp->pfv != NVME_TCP_PFV_1_0) { 1207 pr_err("queue %d: bad pfv returned %d\n", 1208 nvme_tcp_queue_id(queue), icresp->pfv); 1209 goto free_icresp; 1210 } 1211 1212 ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE); 1213 if ((queue->data_digest && !ctrl_ddgst) || 1214 (!queue->data_digest && ctrl_ddgst)) { 1215 pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n", 1216 nvme_tcp_queue_id(queue), 1217 queue->data_digest ? "enabled" : "disabled", 1218 ctrl_ddgst ? "enabled" : "disabled"); 1219 goto free_icresp; 1220 } 1221 1222 ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE); 1223 if ((queue->hdr_digest && !ctrl_hdgst) || 1224 (!queue->hdr_digest && ctrl_hdgst)) { 1225 pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n", 1226 nvme_tcp_queue_id(queue), 1227 queue->hdr_digest ? "enabled" : "disabled", 1228 ctrl_hdgst ? "enabled" : "disabled"); 1229 goto free_icresp; 1230 } 1231 1232 if (icresp->cpda != 0) { 1233 pr_err("queue %d: unsupported cpda returned %d\n", 1234 nvme_tcp_queue_id(queue), icresp->cpda); 1235 goto free_icresp; 1236 } 1237 1238 ret = 0; 1239 free_icresp: 1240 kfree(icresp); 1241 free_icreq: 1242 kfree(icreq); 1243 return ret; 1244 } 1245 1246 static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl, 1247 int qid, size_t queue_size) 1248 { 1249 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1250 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1251 struct linger sol = { .l_onoff = 1, .l_linger = 0 }; 1252 int ret, opt, rcv_pdu_size, n; 1253 1254 queue->ctrl = ctrl; 1255 INIT_LIST_HEAD(&queue->send_list); 1256 spin_lock_init(&queue->lock); 1257 INIT_WORK(&queue->io_work, nvme_tcp_io_work); 1258 queue->queue_size = queue_size; 1259 1260 if (qid > 0) 1261 queue->cmnd_capsule_len = nctrl->ioccsz * 16; 1262 else 1263 queue->cmnd_capsule_len = sizeof(struct nvme_command) + 1264 NVME_TCP_ADMIN_CCSZ; 1265 1266 ret = sock_create(ctrl->addr.ss_family, SOCK_STREAM, 1267 IPPROTO_TCP, &queue->sock); 1268 if (ret) { 1269 dev_err(nctrl->device, 1270 "failed to create socket: %d\n", ret); 1271 return ret; 1272 } 1273 1274 /* Single syn retry */ 1275 opt = 1; 1276 ret = kernel_setsockopt(queue->sock, IPPROTO_TCP, TCP_SYNCNT, 1277 (char *)&opt, sizeof(opt)); 1278 if (ret) { 1279 dev_err(nctrl->device, 1280 "failed to set TCP_SYNCNT sock opt %d\n", ret); 1281 goto err_sock; 1282 } 1283 1284 /* Set TCP no delay */ 1285 opt = 1; 1286 ret = kernel_setsockopt(queue->sock, IPPROTO_TCP, 1287 TCP_NODELAY, (char *)&opt, sizeof(opt)); 1288 if (ret) { 1289 dev_err(nctrl->device, 1290 "failed to set TCP_NODELAY sock opt %d\n", ret); 1291 goto err_sock; 1292 } 1293 1294 /* 1295 * Cleanup whatever is sitting in the TCP transmit queue on socket 1296 * close. This is done to prevent stale data from being sent should 1297 * the network connection be restored before TCP times out. 1298 */ 1299 ret = kernel_setsockopt(queue->sock, SOL_SOCKET, SO_LINGER, 1300 (char *)&sol, sizeof(sol)); 1301 if (ret) { 1302 dev_err(nctrl->device, 1303 "failed to set SO_LINGER sock opt %d\n", ret); 1304 goto err_sock; 1305 } 1306 1307 /* Set socket type of service */ 1308 if (nctrl->opts->tos >= 0) { 1309 opt = nctrl->opts->tos; 1310 ret = kernel_setsockopt(queue->sock, SOL_IP, IP_TOS, 1311 (char *)&opt, sizeof(opt)); 1312 if (ret) { 1313 dev_err(nctrl->device, 1314 "failed to set IP_TOS sock opt %d\n", ret); 1315 goto err_sock; 1316 } 1317 } 1318 1319 queue->sock->sk->sk_allocation = GFP_ATOMIC; 1320 if (!qid) 1321 n = 0; 1322 else 1323 n = (qid - 1) % num_online_cpus(); 1324 queue->io_cpu = cpumask_next_wrap(n - 1, cpu_online_mask, -1, false); 1325 queue->request = NULL; 1326 queue->data_remaining = 0; 1327 queue->ddgst_remaining = 0; 1328 queue->pdu_remaining = 0; 1329 queue->pdu_offset = 0; 1330 sk_set_memalloc(queue->sock->sk); 1331 1332 if (nctrl->opts->mask & NVMF_OPT_HOST_TRADDR) { 1333 ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr, 1334 sizeof(ctrl->src_addr)); 1335 if (ret) { 1336 dev_err(nctrl->device, 1337 "failed to bind queue %d socket %d\n", 1338 qid, ret); 1339 goto err_sock; 1340 } 1341 } 1342 1343 queue->hdr_digest = nctrl->opts->hdr_digest; 1344 queue->data_digest = nctrl->opts->data_digest; 1345 if (queue->hdr_digest || queue->data_digest) { 1346 ret = nvme_tcp_alloc_crypto(queue); 1347 if (ret) { 1348 dev_err(nctrl->device, 1349 "failed to allocate queue %d crypto\n", qid); 1350 goto err_sock; 1351 } 1352 } 1353 1354 rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) + 1355 nvme_tcp_hdgst_len(queue); 1356 queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL); 1357 if (!queue->pdu) { 1358 ret = -ENOMEM; 1359 goto err_crypto; 1360 } 1361 1362 dev_dbg(nctrl->device, "connecting queue %d\n", 1363 nvme_tcp_queue_id(queue)); 1364 1365 ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr, 1366 sizeof(ctrl->addr), 0); 1367 if (ret) { 1368 dev_err(nctrl->device, 1369 "failed to connect socket: %d\n", ret); 1370 goto err_rcv_pdu; 1371 } 1372 1373 ret = nvme_tcp_init_connection(queue); 1374 if (ret) 1375 goto err_init_connect; 1376 1377 queue->rd_enabled = true; 1378 set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags); 1379 nvme_tcp_init_recv_ctx(queue); 1380 1381 write_lock_bh(&queue->sock->sk->sk_callback_lock); 1382 queue->sock->sk->sk_user_data = queue; 1383 queue->state_change = queue->sock->sk->sk_state_change; 1384 queue->data_ready = queue->sock->sk->sk_data_ready; 1385 queue->write_space = queue->sock->sk->sk_write_space; 1386 queue->sock->sk->sk_data_ready = nvme_tcp_data_ready; 1387 queue->sock->sk->sk_state_change = nvme_tcp_state_change; 1388 queue->sock->sk->sk_write_space = nvme_tcp_write_space; 1389 #ifdef CONFIG_NET_RX_BUSY_POLL 1390 queue->sock->sk->sk_ll_usec = 1; 1391 #endif 1392 write_unlock_bh(&queue->sock->sk->sk_callback_lock); 1393 1394 return 0; 1395 1396 err_init_connect: 1397 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 1398 err_rcv_pdu: 1399 kfree(queue->pdu); 1400 err_crypto: 1401 if (queue->hdr_digest || queue->data_digest) 1402 nvme_tcp_free_crypto(queue); 1403 err_sock: 1404 sock_release(queue->sock); 1405 queue->sock = NULL; 1406 return ret; 1407 } 1408 1409 static void nvme_tcp_restore_sock_calls(struct nvme_tcp_queue *queue) 1410 { 1411 struct socket *sock = queue->sock; 1412 1413 write_lock_bh(&sock->sk->sk_callback_lock); 1414 sock->sk->sk_user_data = NULL; 1415 sock->sk->sk_data_ready = queue->data_ready; 1416 sock->sk->sk_state_change = queue->state_change; 1417 sock->sk->sk_write_space = queue->write_space; 1418 write_unlock_bh(&sock->sk->sk_callback_lock); 1419 } 1420 1421 static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue) 1422 { 1423 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 1424 nvme_tcp_restore_sock_calls(queue); 1425 cancel_work_sync(&queue->io_work); 1426 } 1427 1428 static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid) 1429 { 1430 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1431 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1432 1433 if (!test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags)) 1434 return; 1435 1436 __nvme_tcp_stop_queue(queue); 1437 } 1438 1439 static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx) 1440 { 1441 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1442 int ret; 1443 1444 if (idx) 1445 ret = nvmf_connect_io_queue(nctrl, idx, false); 1446 else 1447 ret = nvmf_connect_admin_queue(nctrl); 1448 1449 if (!ret) { 1450 set_bit(NVME_TCP_Q_LIVE, &ctrl->queues[idx].flags); 1451 } else { 1452 if (test_bit(NVME_TCP_Q_ALLOCATED, &ctrl->queues[idx].flags)) 1453 __nvme_tcp_stop_queue(&ctrl->queues[idx]); 1454 dev_err(nctrl->device, 1455 "failed to connect queue: %d ret=%d\n", idx, ret); 1456 } 1457 return ret; 1458 } 1459 1460 static struct blk_mq_tag_set *nvme_tcp_alloc_tagset(struct nvme_ctrl *nctrl, 1461 bool admin) 1462 { 1463 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1464 struct blk_mq_tag_set *set; 1465 int ret; 1466 1467 if (admin) { 1468 set = &ctrl->admin_tag_set; 1469 memset(set, 0, sizeof(*set)); 1470 set->ops = &nvme_tcp_admin_mq_ops; 1471 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH; 1472 set->reserved_tags = 2; /* connect + keep-alive */ 1473 set->numa_node = NUMA_NO_NODE; 1474 set->cmd_size = sizeof(struct nvme_tcp_request); 1475 set->driver_data = ctrl; 1476 set->nr_hw_queues = 1; 1477 set->timeout = ADMIN_TIMEOUT; 1478 } else { 1479 set = &ctrl->tag_set; 1480 memset(set, 0, sizeof(*set)); 1481 set->ops = &nvme_tcp_mq_ops; 1482 set->queue_depth = nctrl->sqsize + 1; 1483 set->reserved_tags = 1; /* fabric connect */ 1484 set->numa_node = NUMA_NO_NODE; 1485 set->flags = BLK_MQ_F_SHOULD_MERGE; 1486 set->cmd_size = sizeof(struct nvme_tcp_request); 1487 set->driver_data = ctrl; 1488 set->nr_hw_queues = nctrl->queue_count - 1; 1489 set->timeout = NVME_IO_TIMEOUT; 1490 set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2; 1491 } 1492 1493 ret = blk_mq_alloc_tag_set(set); 1494 if (ret) 1495 return ERR_PTR(ret); 1496 1497 return set; 1498 } 1499 1500 static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl) 1501 { 1502 if (to_tcp_ctrl(ctrl)->async_req.pdu) { 1503 nvme_tcp_free_async_req(to_tcp_ctrl(ctrl)); 1504 to_tcp_ctrl(ctrl)->async_req.pdu = NULL; 1505 } 1506 1507 nvme_tcp_free_queue(ctrl, 0); 1508 } 1509 1510 static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl) 1511 { 1512 int i; 1513 1514 for (i = 1; i < ctrl->queue_count; i++) 1515 nvme_tcp_free_queue(ctrl, i); 1516 } 1517 1518 static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl) 1519 { 1520 int i; 1521 1522 for (i = 1; i < ctrl->queue_count; i++) 1523 nvme_tcp_stop_queue(ctrl, i); 1524 } 1525 1526 static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl) 1527 { 1528 int i, ret = 0; 1529 1530 for (i = 1; i < ctrl->queue_count; i++) { 1531 ret = nvme_tcp_start_queue(ctrl, i); 1532 if (ret) 1533 goto out_stop_queues; 1534 } 1535 1536 return 0; 1537 1538 out_stop_queues: 1539 for (i--; i >= 1; i--) 1540 nvme_tcp_stop_queue(ctrl, i); 1541 return ret; 1542 } 1543 1544 static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl) 1545 { 1546 int ret; 1547 1548 ret = nvme_tcp_alloc_queue(ctrl, 0, NVME_AQ_DEPTH); 1549 if (ret) 1550 return ret; 1551 1552 ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl)); 1553 if (ret) 1554 goto out_free_queue; 1555 1556 return 0; 1557 1558 out_free_queue: 1559 nvme_tcp_free_queue(ctrl, 0); 1560 return ret; 1561 } 1562 1563 static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl) 1564 { 1565 int i, ret; 1566 1567 for (i = 1; i < ctrl->queue_count; i++) { 1568 ret = nvme_tcp_alloc_queue(ctrl, i, 1569 ctrl->sqsize + 1); 1570 if (ret) 1571 goto out_free_queues; 1572 } 1573 1574 return 0; 1575 1576 out_free_queues: 1577 for (i--; i >= 1; i--) 1578 nvme_tcp_free_queue(ctrl, i); 1579 1580 return ret; 1581 } 1582 1583 static unsigned int nvme_tcp_nr_io_queues(struct nvme_ctrl *ctrl) 1584 { 1585 unsigned int nr_io_queues; 1586 1587 nr_io_queues = min(ctrl->opts->nr_io_queues, num_online_cpus()); 1588 nr_io_queues += min(ctrl->opts->nr_write_queues, num_online_cpus()); 1589 nr_io_queues += min(ctrl->opts->nr_poll_queues, num_online_cpus()); 1590 1591 return nr_io_queues; 1592 } 1593 1594 static void nvme_tcp_set_io_queues(struct nvme_ctrl *nctrl, 1595 unsigned int nr_io_queues) 1596 { 1597 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1598 struct nvmf_ctrl_options *opts = nctrl->opts; 1599 1600 if (opts->nr_write_queues && opts->nr_io_queues < nr_io_queues) { 1601 /* 1602 * separate read/write queues 1603 * hand out dedicated default queues only after we have 1604 * sufficient read queues. 1605 */ 1606 ctrl->io_queues[HCTX_TYPE_READ] = opts->nr_io_queues; 1607 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ]; 1608 ctrl->io_queues[HCTX_TYPE_DEFAULT] = 1609 min(opts->nr_write_queues, nr_io_queues); 1610 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT]; 1611 } else { 1612 /* 1613 * shared read/write queues 1614 * either no write queues were requested, or we don't have 1615 * sufficient queue count to have dedicated default queues. 1616 */ 1617 ctrl->io_queues[HCTX_TYPE_DEFAULT] = 1618 min(opts->nr_io_queues, nr_io_queues); 1619 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT]; 1620 } 1621 1622 if (opts->nr_poll_queues && nr_io_queues) { 1623 /* map dedicated poll queues only if we have queues left */ 1624 ctrl->io_queues[HCTX_TYPE_POLL] = 1625 min(opts->nr_poll_queues, nr_io_queues); 1626 } 1627 } 1628 1629 static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl) 1630 { 1631 unsigned int nr_io_queues; 1632 int ret; 1633 1634 nr_io_queues = nvme_tcp_nr_io_queues(ctrl); 1635 ret = nvme_set_queue_count(ctrl, &nr_io_queues); 1636 if (ret) 1637 return ret; 1638 1639 ctrl->queue_count = nr_io_queues + 1; 1640 if (ctrl->queue_count < 2) 1641 return 0; 1642 1643 dev_info(ctrl->device, 1644 "creating %d I/O queues.\n", nr_io_queues); 1645 1646 nvme_tcp_set_io_queues(ctrl, nr_io_queues); 1647 1648 return __nvme_tcp_alloc_io_queues(ctrl); 1649 } 1650 1651 static void nvme_tcp_destroy_io_queues(struct nvme_ctrl *ctrl, bool remove) 1652 { 1653 nvme_tcp_stop_io_queues(ctrl); 1654 if (remove) { 1655 blk_cleanup_queue(ctrl->connect_q); 1656 blk_mq_free_tag_set(ctrl->tagset); 1657 } 1658 nvme_tcp_free_io_queues(ctrl); 1659 } 1660 1661 static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new) 1662 { 1663 int ret; 1664 1665 ret = nvme_tcp_alloc_io_queues(ctrl); 1666 if (ret) 1667 return ret; 1668 1669 if (new) { 1670 ctrl->tagset = nvme_tcp_alloc_tagset(ctrl, false); 1671 if (IS_ERR(ctrl->tagset)) { 1672 ret = PTR_ERR(ctrl->tagset); 1673 goto out_free_io_queues; 1674 } 1675 1676 ctrl->connect_q = blk_mq_init_queue(ctrl->tagset); 1677 if (IS_ERR(ctrl->connect_q)) { 1678 ret = PTR_ERR(ctrl->connect_q); 1679 goto out_free_tag_set; 1680 } 1681 } else { 1682 blk_mq_update_nr_hw_queues(ctrl->tagset, 1683 ctrl->queue_count - 1); 1684 } 1685 1686 ret = nvme_tcp_start_io_queues(ctrl); 1687 if (ret) 1688 goto out_cleanup_connect_q; 1689 1690 return 0; 1691 1692 out_cleanup_connect_q: 1693 if (new) 1694 blk_cleanup_queue(ctrl->connect_q); 1695 out_free_tag_set: 1696 if (new) 1697 blk_mq_free_tag_set(ctrl->tagset); 1698 out_free_io_queues: 1699 nvme_tcp_free_io_queues(ctrl); 1700 return ret; 1701 } 1702 1703 static void nvme_tcp_destroy_admin_queue(struct nvme_ctrl *ctrl, bool remove) 1704 { 1705 nvme_tcp_stop_queue(ctrl, 0); 1706 if (remove) { 1707 blk_cleanup_queue(ctrl->admin_q); 1708 blk_cleanup_queue(ctrl->fabrics_q); 1709 blk_mq_free_tag_set(ctrl->admin_tagset); 1710 } 1711 nvme_tcp_free_admin_queue(ctrl); 1712 } 1713 1714 static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new) 1715 { 1716 int error; 1717 1718 error = nvme_tcp_alloc_admin_queue(ctrl); 1719 if (error) 1720 return error; 1721 1722 if (new) { 1723 ctrl->admin_tagset = nvme_tcp_alloc_tagset(ctrl, true); 1724 if (IS_ERR(ctrl->admin_tagset)) { 1725 error = PTR_ERR(ctrl->admin_tagset); 1726 goto out_free_queue; 1727 } 1728 1729 ctrl->fabrics_q = blk_mq_init_queue(ctrl->admin_tagset); 1730 if (IS_ERR(ctrl->fabrics_q)) { 1731 error = PTR_ERR(ctrl->fabrics_q); 1732 goto out_free_tagset; 1733 } 1734 1735 ctrl->admin_q = blk_mq_init_queue(ctrl->admin_tagset); 1736 if (IS_ERR(ctrl->admin_q)) { 1737 error = PTR_ERR(ctrl->admin_q); 1738 goto out_cleanup_fabrics_q; 1739 } 1740 } 1741 1742 error = nvme_tcp_start_queue(ctrl, 0); 1743 if (error) 1744 goto out_cleanup_queue; 1745 1746 error = nvme_enable_ctrl(ctrl); 1747 if (error) 1748 goto out_stop_queue; 1749 1750 blk_mq_unquiesce_queue(ctrl->admin_q); 1751 1752 error = nvme_init_identify(ctrl); 1753 if (error) 1754 goto out_stop_queue; 1755 1756 return 0; 1757 1758 out_stop_queue: 1759 nvme_tcp_stop_queue(ctrl, 0); 1760 out_cleanup_queue: 1761 if (new) 1762 blk_cleanup_queue(ctrl->admin_q); 1763 out_cleanup_fabrics_q: 1764 if (new) 1765 blk_cleanup_queue(ctrl->fabrics_q); 1766 out_free_tagset: 1767 if (new) 1768 blk_mq_free_tag_set(ctrl->admin_tagset); 1769 out_free_queue: 1770 nvme_tcp_free_admin_queue(ctrl); 1771 return error; 1772 } 1773 1774 static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl, 1775 bool remove) 1776 { 1777 blk_mq_quiesce_queue(ctrl->admin_q); 1778 nvme_tcp_stop_queue(ctrl, 0); 1779 if (ctrl->admin_tagset) { 1780 blk_mq_tagset_busy_iter(ctrl->admin_tagset, 1781 nvme_cancel_request, ctrl); 1782 blk_mq_tagset_wait_completed_request(ctrl->admin_tagset); 1783 } 1784 if (remove) 1785 blk_mq_unquiesce_queue(ctrl->admin_q); 1786 nvme_tcp_destroy_admin_queue(ctrl, remove); 1787 } 1788 1789 static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl, 1790 bool remove) 1791 { 1792 if (ctrl->queue_count <= 1) 1793 return; 1794 nvme_stop_queues(ctrl); 1795 nvme_tcp_stop_io_queues(ctrl); 1796 if (ctrl->tagset) { 1797 blk_mq_tagset_busy_iter(ctrl->tagset, 1798 nvme_cancel_request, ctrl); 1799 blk_mq_tagset_wait_completed_request(ctrl->tagset); 1800 } 1801 if (remove) 1802 nvme_start_queues(ctrl); 1803 nvme_tcp_destroy_io_queues(ctrl, remove); 1804 } 1805 1806 static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl) 1807 { 1808 /* If we are resetting/deleting then do nothing */ 1809 if (ctrl->state != NVME_CTRL_CONNECTING) { 1810 WARN_ON_ONCE(ctrl->state == NVME_CTRL_NEW || 1811 ctrl->state == NVME_CTRL_LIVE); 1812 return; 1813 } 1814 1815 if (nvmf_should_reconnect(ctrl)) { 1816 dev_info(ctrl->device, "Reconnecting in %d seconds...\n", 1817 ctrl->opts->reconnect_delay); 1818 queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work, 1819 ctrl->opts->reconnect_delay * HZ); 1820 } else { 1821 dev_info(ctrl->device, "Removing controller...\n"); 1822 nvme_delete_ctrl(ctrl); 1823 } 1824 } 1825 1826 static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new) 1827 { 1828 struct nvmf_ctrl_options *opts = ctrl->opts; 1829 int ret; 1830 1831 ret = nvme_tcp_configure_admin_queue(ctrl, new); 1832 if (ret) 1833 return ret; 1834 1835 if (ctrl->icdoff) { 1836 dev_err(ctrl->device, "icdoff is not supported!\n"); 1837 goto destroy_admin; 1838 } 1839 1840 if (opts->queue_size > ctrl->sqsize + 1) 1841 dev_warn(ctrl->device, 1842 "queue_size %zu > ctrl sqsize %u, clamping down\n", 1843 opts->queue_size, ctrl->sqsize + 1); 1844 1845 if (ctrl->sqsize + 1 > ctrl->maxcmd) { 1846 dev_warn(ctrl->device, 1847 "sqsize %u > ctrl maxcmd %u, clamping down\n", 1848 ctrl->sqsize + 1, ctrl->maxcmd); 1849 ctrl->sqsize = ctrl->maxcmd - 1; 1850 } 1851 1852 if (ctrl->queue_count > 1) { 1853 ret = nvme_tcp_configure_io_queues(ctrl, new); 1854 if (ret) 1855 goto destroy_admin; 1856 } 1857 1858 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) { 1859 /* state change failure is ok if we're in DELETING state */ 1860 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING); 1861 ret = -EINVAL; 1862 goto destroy_io; 1863 } 1864 1865 nvme_start_ctrl(ctrl); 1866 return 0; 1867 1868 destroy_io: 1869 if (ctrl->queue_count > 1) 1870 nvme_tcp_destroy_io_queues(ctrl, new); 1871 destroy_admin: 1872 nvme_tcp_stop_queue(ctrl, 0); 1873 nvme_tcp_destroy_admin_queue(ctrl, new); 1874 return ret; 1875 } 1876 1877 static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work) 1878 { 1879 struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work), 1880 struct nvme_tcp_ctrl, connect_work); 1881 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl; 1882 1883 ++ctrl->nr_reconnects; 1884 1885 if (nvme_tcp_setup_ctrl(ctrl, false)) 1886 goto requeue; 1887 1888 dev_info(ctrl->device, "Successfully reconnected (%d attempt)\n", 1889 ctrl->nr_reconnects); 1890 1891 ctrl->nr_reconnects = 0; 1892 1893 return; 1894 1895 requeue: 1896 dev_info(ctrl->device, "Failed reconnect attempt %d\n", 1897 ctrl->nr_reconnects); 1898 nvme_tcp_reconnect_or_remove(ctrl); 1899 } 1900 1901 static void nvme_tcp_error_recovery_work(struct work_struct *work) 1902 { 1903 struct nvme_tcp_ctrl *tcp_ctrl = container_of(work, 1904 struct nvme_tcp_ctrl, err_work); 1905 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl; 1906 1907 nvme_stop_keep_alive(ctrl); 1908 nvme_tcp_teardown_io_queues(ctrl, false); 1909 /* unquiesce to fail fast pending requests */ 1910 nvme_start_queues(ctrl); 1911 nvme_tcp_teardown_admin_queue(ctrl, false); 1912 blk_mq_unquiesce_queue(ctrl->admin_q); 1913 1914 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) { 1915 /* state change failure is ok if we're in DELETING state */ 1916 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING); 1917 return; 1918 } 1919 1920 nvme_tcp_reconnect_or_remove(ctrl); 1921 } 1922 1923 static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown) 1924 { 1925 cancel_work_sync(&to_tcp_ctrl(ctrl)->err_work); 1926 cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work); 1927 1928 nvme_tcp_teardown_io_queues(ctrl, shutdown); 1929 blk_mq_quiesce_queue(ctrl->admin_q); 1930 if (shutdown) 1931 nvme_shutdown_ctrl(ctrl); 1932 else 1933 nvme_disable_ctrl(ctrl); 1934 nvme_tcp_teardown_admin_queue(ctrl, shutdown); 1935 } 1936 1937 static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl) 1938 { 1939 nvme_tcp_teardown_ctrl(ctrl, true); 1940 } 1941 1942 static void nvme_reset_ctrl_work(struct work_struct *work) 1943 { 1944 struct nvme_ctrl *ctrl = 1945 container_of(work, struct nvme_ctrl, reset_work); 1946 1947 nvme_stop_ctrl(ctrl); 1948 nvme_tcp_teardown_ctrl(ctrl, false); 1949 1950 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) { 1951 /* state change failure is ok if we're in DELETING state */ 1952 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING); 1953 return; 1954 } 1955 1956 if (nvme_tcp_setup_ctrl(ctrl, false)) 1957 goto out_fail; 1958 1959 return; 1960 1961 out_fail: 1962 ++ctrl->nr_reconnects; 1963 nvme_tcp_reconnect_or_remove(ctrl); 1964 } 1965 1966 static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl) 1967 { 1968 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1969 1970 if (list_empty(&ctrl->list)) 1971 goto free_ctrl; 1972 1973 mutex_lock(&nvme_tcp_ctrl_mutex); 1974 list_del(&ctrl->list); 1975 mutex_unlock(&nvme_tcp_ctrl_mutex); 1976 1977 nvmf_free_options(nctrl->opts); 1978 free_ctrl: 1979 kfree(ctrl->queues); 1980 kfree(ctrl); 1981 } 1982 1983 static void nvme_tcp_set_sg_null(struct nvme_command *c) 1984 { 1985 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 1986 1987 sg->addr = 0; 1988 sg->length = 0; 1989 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) | 1990 NVME_SGL_FMT_TRANSPORT_A; 1991 } 1992 1993 static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue, 1994 struct nvme_command *c, u32 data_len) 1995 { 1996 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 1997 1998 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff); 1999 sg->length = cpu_to_le32(data_len); 2000 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET; 2001 } 2002 2003 static void nvme_tcp_set_sg_host_data(struct nvme_command *c, 2004 u32 data_len) 2005 { 2006 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 2007 2008 sg->addr = 0; 2009 sg->length = cpu_to_le32(data_len); 2010 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) | 2011 NVME_SGL_FMT_TRANSPORT_A; 2012 } 2013 2014 static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg) 2015 { 2016 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg); 2017 struct nvme_tcp_queue *queue = &ctrl->queues[0]; 2018 struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu; 2019 struct nvme_command *cmd = &pdu->cmd; 2020 u8 hdgst = nvme_tcp_hdgst_len(queue); 2021 2022 memset(pdu, 0, sizeof(*pdu)); 2023 pdu->hdr.type = nvme_tcp_cmd; 2024 if (queue->hdr_digest) 2025 pdu->hdr.flags |= NVME_TCP_F_HDGST; 2026 pdu->hdr.hlen = sizeof(*pdu); 2027 pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst); 2028 2029 cmd->common.opcode = nvme_admin_async_event; 2030 cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH; 2031 cmd->common.flags |= NVME_CMD_SGL_METABUF; 2032 nvme_tcp_set_sg_null(cmd); 2033 2034 ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU; 2035 ctrl->async_req.offset = 0; 2036 ctrl->async_req.curr_bio = NULL; 2037 ctrl->async_req.data_len = 0; 2038 2039 nvme_tcp_queue_request(&ctrl->async_req); 2040 } 2041 2042 static enum blk_eh_timer_return 2043 nvme_tcp_timeout(struct request *rq, bool reserved) 2044 { 2045 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2046 struct nvme_tcp_ctrl *ctrl = req->queue->ctrl; 2047 struct nvme_tcp_cmd_pdu *pdu = req->pdu; 2048 2049 /* 2050 * Restart the timer if a controller reset is already scheduled. Any 2051 * timed out commands would be handled before entering the connecting 2052 * state. 2053 */ 2054 if (ctrl->ctrl.state == NVME_CTRL_RESETTING) 2055 return BLK_EH_RESET_TIMER; 2056 2057 dev_warn(ctrl->ctrl.device, 2058 "queue %d: timeout request %#x type %d\n", 2059 nvme_tcp_queue_id(req->queue), rq->tag, pdu->hdr.type); 2060 2061 if (ctrl->ctrl.state != NVME_CTRL_LIVE) { 2062 /* 2063 * Teardown immediately if controller times out while starting 2064 * or we are already started error recovery. all outstanding 2065 * requests are completed on shutdown, so we return BLK_EH_DONE. 2066 */ 2067 flush_work(&ctrl->err_work); 2068 nvme_tcp_teardown_io_queues(&ctrl->ctrl, false); 2069 nvme_tcp_teardown_admin_queue(&ctrl->ctrl, false); 2070 return BLK_EH_DONE; 2071 } 2072 2073 dev_warn(ctrl->ctrl.device, "starting error recovery\n"); 2074 nvme_tcp_error_recovery(&ctrl->ctrl); 2075 2076 return BLK_EH_RESET_TIMER; 2077 } 2078 2079 static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue, 2080 struct request *rq) 2081 { 2082 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2083 struct nvme_tcp_cmd_pdu *pdu = req->pdu; 2084 struct nvme_command *c = &pdu->cmd; 2085 2086 c->common.flags |= NVME_CMD_SGL_METABUF; 2087 2088 if (rq_data_dir(rq) == WRITE && req->data_len && 2089 req->data_len <= nvme_tcp_inline_data_size(queue)) 2090 nvme_tcp_set_sg_inline(queue, c, req->data_len); 2091 else 2092 nvme_tcp_set_sg_host_data(c, req->data_len); 2093 2094 return 0; 2095 } 2096 2097 static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns, 2098 struct request *rq) 2099 { 2100 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2101 struct nvme_tcp_cmd_pdu *pdu = req->pdu; 2102 struct nvme_tcp_queue *queue = req->queue; 2103 u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0; 2104 blk_status_t ret; 2105 2106 ret = nvme_setup_cmd(ns, rq, &pdu->cmd); 2107 if (ret) 2108 return ret; 2109 2110 req->state = NVME_TCP_SEND_CMD_PDU; 2111 req->offset = 0; 2112 req->data_sent = 0; 2113 req->pdu_len = 0; 2114 req->pdu_sent = 0; 2115 req->data_len = blk_rq_payload_bytes(rq); 2116 req->curr_bio = rq->bio; 2117 2118 if (rq_data_dir(rq) == WRITE && 2119 req->data_len <= nvme_tcp_inline_data_size(queue)) 2120 req->pdu_len = req->data_len; 2121 else if (req->curr_bio) 2122 nvme_tcp_init_iter(req, READ); 2123 2124 pdu->hdr.type = nvme_tcp_cmd; 2125 pdu->hdr.flags = 0; 2126 if (queue->hdr_digest) 2127 pdu->hdr.flags |= NVME_TCP_F_HDGST; 2128 if (queue->data_digest && req->pdu_len) { 2129 pdu->hdr.flags |= NVME_TCP_F_DDGST; 2130 ddgst = nvme_tcp_ddgst_len(queue); 2131 } 2132 pdu->hdr.hlen = sizeof(*pdu); 2133 pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0; 2134 pdu->hdr.plen = 2135 cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst); 2136 2137 ret = nvme_tcp_map_data(queue, rq); 2138 if (unlikely(ret)) { 2139 nvme_cleanup_cmd(rq); 2140 dev_err(queue->ctrl->ctrl.device, 2141 "Failed to map data (%d)\n", ret); 2142 return ret; 2143 } 2144 2145 return 0; 2146 } 2147 2148 static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx, 2149 const struct blk_mq_queue_data *bd) 2150 { 2151 struct nvme_ns *ns = hctx->queue->queuedata; 2152 struct nvme_tcp_queue *queue = hctx->driver_data; 2153 struct request *rq = bd->rq; 2154 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2155 bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags); 2156 blk_status_t ret; 2157 2158 if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready)) 2159 return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq); 2160 2161 ret = nvme_tcp_setup_cmd_pdu(ns, rq); 2162 if (unlikely(ret)) 2163 return ret; 2164 2165 blk_mq_start_request(rq); 2166 2167 nvme_tcp_queue_request(req); 2168 2169 return BLK_STS_OK; 2170 } 2171 2172 static int nvme_tcp_map_queues(struct blk_mq_tag_set *set) 2173 { 2174 struct nvme_tcp_ctrl *ctrl = set->driver_data; 2175 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 2176 2177 if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) { 2178 /* separate read/write queues */ 2179 set->map[HCTX_TYPE_DEFAULT].nr_queues = 2180 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2181 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0; 2182 set->map[HCTX_TYPE_READ].nr_queues = 2183 ctrl->io_queues[HCTX_TYPE_READ]; 2184 set->map[HCTX_TYPE_READ].queue_offset = 2185 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2186 } else { 2187 /* shared read/write queues */ 2188 set->map[HCTX_TYPE_DEFAULT].nr_queues = 2189 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2190 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0; 2191 set->map[HCTX_TYPE_READ].nr_queues = 2192 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2193 set->map[HCTX_TYPE_READ].queue_offset = 0; 2194 } 2195 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 2196 blk_mq_map_queues(&set->map[HCTX_TYPE_READ]); 2197 2198 if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) { 2199 /* map dedicated poll queues only if we have queues left */ 2200 set->map[HCTX_TYPE_POLL].nr_queues = 2201 ctrl->io_queues[HCTX_TYPE_POLL]; 2202 set->map[HCTX_TYPE_POLL].queue_offset = 2203 ctrl->io_queues[HCTX_TYPE_DEFAULT] + 2204 ctrl->io_queues[HCTX_TYPE_READ]; 2205 blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]); 2206 } 2207 2208 dev_info(ctrl->ctrl.device, 2209 "mapped %d/%d/%d default/read/poll queues.\n", 2210 ctrl->io_queues[HCTX_TYPE_DEFAULT], 2211 ctrl->io_queues[HCTX_TYPE_READ], 2212 ctrl->io_queues[HCTX_TYPE_POLL]); 2213 2214 return 0; 2215 } 2216 2217 static int nvme_tcp_poll(struct blk_mq_hw_ctx *hctx) 2218 { 2219 struct nvme_tcp_queue *queue = hctx->driver_data; 2220 struct sock *sk = queue->sock->sk; 2221 2222 if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue)) 2223 sk_busy_loop(sk, true); 2224 nvme_tcp_try_recv(queue); 2225 return queue->nr_cqe; 2226 } 2227 2228 static struct blk_mq_ops nvme_tcp_mq_ops = { 2229 .queue_rq = nvme_tcp_queue_rq, 2230 .complete = nvme_complete_rq, 2231 .init_request = nvme_tcp_init_request, 2232 .exit_request = nvme_tcp_exit_request, 2233 .init_hctx = nvme_tcp_init_hctx, 2234 .timeout = nvme_tcp_timeout, 2235 .map_queues = nvme_tcp_map_queues, 2236 .poll = nvme_tcp_poll, 2237 }; 2238 2239 static struct blk_mq_ops nvme_tcp_admin_mq_ops = { 2240 .queue_rq = nvme_tcp_queue_rq, 2241 .complete = nvme_complete_rq, 2242 .init_request = nvme_tcp_init_request, 2243 .exit_request = nvme_tcp_exit_request, 2244 .init_hctx = nvme_tcp_init_admin_hctx, 2245 .timeout = nvme_tcp_timeout, 2246 }; 2247 2248 static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = { 2249 .name = "tcp", 2250 .module = THIS_MODULE, 2251 .flags = NVME_F_FABRICS, 2252 .reg_read32 = nvmf_reg_read32, 2253 .reg_read64 = nvmf_reg_read64, 2254 .reg_write32 = nvmf_reg_write32, 2255 .free_ctrl = nvme_tcp_free_ctrl, 2256 .submit_async_event = nvme_tcp_submit_async_event, 2257 .delete_ctrl = nvme_tcp_delete_ctrl, 2258 .get_address = nvmf_get_address, 2259 }; 2260 2261 static bool 2262 nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts) 2263 { 2264 struct nvme_tcp_ctrl *ctrl; 2265 bool found = false; 2266 2267 mutex_lock(&nvme_tcp_ctrl_mutex); 2268 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) { 2269 found = nvmf_ip_options_match(&ctrl->ctrl, opts); 2270 if (found) 2271 break; 2272 } 2273 mutex_unlock(&nvme_tcp_ctrl_mutex); 2274 2275 return found; 2276 } 2277 2278 static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev, 2279 struct nvmf_ctrl_options *opts) 2280 { 2281 struct nvme_tcp_ctrl *ctrl; 2282 int ret; 2283 2284 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 2285 if (!ctrl) 2286 return ERR_PTR(-ENOMEM); 2287 2288 INIT_LIST_HEAD(&ctrl->list); 2289 ctrl->ctrl.opts = opts; 2290 ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues + 2291 opts->nr_poll_queues + 1; 2292 ctrl->ctrl.sqsize = opts->queue_size - 1; 2293 ctrl->ctrl.kato = opts->kato; 2294 2295 INIT_DELAYED_WORK(&ctrl->connect_work, 2296 nvme_tcp_reconnect_ctrl_work); 2297 INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work); 2298 INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work); 2299 2300 if (!(opts->mask & NVMF_OPT_TRSVCID)) { 2301 opts->trsvcid = 2302 kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL); 2303 if (!opts->trsvcid) { 2304 ret = -ENOMEM; 2305 goto out_free_ctrl; 2306 } 2307 opts->mask |= NVMF_OPT_TRSVCID; 2308 } 2309 2310 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 2311 opts->traddr, opts->trsvcid, &ctrl->addr); 2312 if (ret) { 2313 pr_err("malformed address passed: %s:%s\n", 2314 opts->traddr, opts->trsvcid); 2315 goto out_free_ctrl; 2316 } 2317 2318 if (opts->mask & NVMF_OPT_HOST_TRADDR) { 2319 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 2320 opts->host_traddr, NULL, &ctrl->src_addr); 2321 if (ret) { 2322 pr_err("malformed src address passed: %s\n", 2323 opts->host_traddr); 2324 goto out_free_ctrl; 2325 } 2326 } 2327 2328 if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) { 2329 ret = -EALREADY; 2330 goto out_free_ctrl; 2331 } 2332 2333 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues), 2334 GFP_KERNEL); 2335 if (!ctrl->queues) { 2336 ret = -ENOMEM; 2337 goto out_free_ctrl; 2338 } 2339 2340 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0); 2341 if (ret) 2342 goto out_kfree_queues; 2343 2344 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) { 2345 WARN_ON_ONCE(1); 2346 ret = -EINTR; 2347 goto out_uninit_ctrl; 2348 } 2349 2350 ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true); 2351 if (ret) 2352 goto out_uninit_ctrl; 2353 2354 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n", 2355 ctrl->ctrl.opts->subsysnqn, &ctrl->addr); 2356 2357 nvme_get_ctrl(&ctrl->ctrl); 2358 2359 mutex_lock(&nvme_tcp_ctrl_mutex); 2360 list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list); 2361 mutex_unlock(&nvme_tcp_ctrl_mutex); 2362 2363 return &ctrl->ctrl; 2364 2365 out_uninit_ctrl: 2366 nvme_uninit_ctrl(&ctrl->ctrl); 2367 nvme_put_ctrl(&ctrl->ctrl); 2368 if (ret > 0) 2369 ret = -EIO; 2370 return ERR_PTR(ret); 2371 out_kfree_queues: 2372 kfree(ctrl->queues); 2373 out_free_ctrl: 2374 kfree(ctrl); 2375 return ERR_PTR(ret); 2376 } 2377 2378 static struct nvmf_transport_ops nvme_tcp_transport = { 2379 .name = "tcp", 2380 .module = THIS_MODULE, 2381 .required_opts = NVMF_OPT_TRADDR, 2382 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY | 2383 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO | 2384 NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST | 2385 NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES | 2386 NVMF_OPT_TOS, 2387 .create_ctrl = nvme_tcp_create_ctrl, 2388 }; 2389 2390 static int __init nvme_tcp_init_module(void) 2391 { 2392 nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq", 2393 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 2394 if (!nvme_tcp_wq) 2395 return -ENOMEM; 2396 2397 nvmf_register_transport(&nvme_tcp_transport); 2398 return 0; 2399 } 2400 2401 static void __exit nvme_tcp_cleanup_module(void) 2402 { 2403 struct nvme_tcp_ctrl *ctrl; 2404 2405 nvmf_unregister_transport(&nvme_tcp_transport); 2406 2407 mutex_lock(&nvme_tcp_ctrl_mutex); 2408 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) 2409 nvme_delete_ctrl(&ctrl->ctrl); 2410 mutex_unlock(&nvme_tcp_ctrl_mutex); 2411 flush_workqueue(nvme_delete_wq); 2412 2413 destroy_workqueue(nvme_tcp_wq); 2414 } 2415 2416 module_init(nvme_tcp_init_module); 2417 module_exit(nvme_tcp_cleanup_module); 2418 2419 MODULE_LICENSE("GPL v2"); 2420