xref: /linux/drivers/nvme/host/tcp.c (revision 6eed756408c69687613a83fd221431c8790cf0bb)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics TCP host.
4  * Copyright (c) 2018 Lightbits Labs. All rights reserved.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/err.h>
11 #include <linux/nvme-tcp.h>
12 #include <net/sock.h>
13 #include <net/tcp.h>
14 #include <linux/blk-mq.h>
15 #include <crypto/hash.h>
16 #include <net/busy_poll.h>
17 
18 #include "nvme.h"
19 #include "fabrics.h"
20 
21 struct nvme_tcp_queue;
22 
23 /* Define the socket priority to use for connections were it is desirable
24  * that the NIC consider performing optimized packet processing or filtering.
25  * A non-zero value being sufficient to indicate general consideration of any
26  * possible optimization.  Making it a module param allows for alternative
27  * values that may be unique for some NIC implementations.
28  */
29 static int so_priority;
30 module_param(so_priority, int, 0644);
31 MODULE_PARM_DESC(so_priority, "nvme tcp socket optimize priority");
32 
33 #ifdef CONFIG_DEBUG_LOCK_ALLOC
34 /* lockdep can detect a circular dependency of the form
35  *   sk_lock -> mmap_lock (page fault) -> fs locks -> sk_lock
36  * because dependencies are tracked for both nvme-tcp and user contexts. Using
37  * a separate class prevents lockdep from conflating nvme-tcp socket use with
38  * user-space socket API use.
39  */
40 static struct lock_class_key nvme_tcp_sk_key[2];
41 static struct lock_class_key nvme_tcp_slock_key[2];
42 
43 static void nvme_tcp_reclassify_socket(struct socket *sock)
44 {
45 	struct sock *sk = sock->sk;
46 
47 	if (WARN_ON_ONCE(!sock_allow_reclassification(sk)))
48 		return;
49 
50 	switch (sk->sk_family) {
51 	case AF_INET:
52 		sock_lock_init_class_and_name(sk, "slock-AF_INET-NVME",
53 					      &nvme_tcp_slock_key[0],
54 					      "sk_lock-AF_INET-NVME",
55 					      &nvme_tcp_sk_key[0]);
56 		break;
57 	case AF_INET6:
58 		sock_lock_init_class_and_name(sk, "slock-AF_INET6-NVME",
59 					      &nvme_tcp_slock_key[1],
60 					      "sk_lock-AF_INET6-NVME",
61 					      &nvme_tcp_sk_key[1]);
62 		break;
63 	default:
64 		WARN_ON_ONCE(1);
65 	}
66 }
67 #else
68 static void nvme_tcp_reclassify_socket(struct socket *sock) { }
69 #endif
70 
71 enum nvme_tcp_send_state {
72 	NVME_TCP_SEND_CMD_PDU = 0,
73 	NVME_TCP_SEND_H2C_PDU,
74 	NVME_TCP_SEND_DATA,
75 	NVME_TCP_SEND_DDGST,
76 };
77 
78 struct nvme_tcp_request {
79 	struct nvme_request	req;
80 	void			*pdu;
81 	struct nvme_tcp_queue	*queue;
82 	u32			data_len;
83 	u32			pdu_len;
84 	u32			pdu_sent;
85 	u32			h2cdata_left;
86 	u32			h2cdata_offset;
87 	u16			ttag;
88 	__le16			status;
89 	struct list_head	entry;
90 	struct llist_node	lentry;
91 	__le32			ddgst;
92 
93 	struct bio		*curr_bio;
94 	struct iov_iter		iter;
95 
96 	/* send state */
97 	size_t			offset;
98 	size_t			data_sent;
99 	enum nvme_tcp_send_state state;
100 };
101 
102 enum nvme_tcp_queue_flags {
103 	NVME_TCP_Q_ALLOCATED	= 0,
104 	NVME_TCP_Q_LIVE		= 1,
105 	NVME_TCP_Q_POLLING	= 2,
106 };
107 
108 enum nvme_tcp_recv_state {
109 	NVME_TCP_RECV_PDU = 0,
110 	NVME_TCP_RECV_DATA,
111 	NVME_TCP_RECV_DDGST,
112 };
113 
114 struct nvme_tcp_ctrl;
115 struct nvme_tcp_queue {
116 	struct socket		*sock;
117 	struct work_struct	io_work;
118 	int			io_cpu;
119 
120 	struct mutex		queue_lock;
121 	struct mutex		send_mutex;
122 	struct llist_head	req_list;
123 	struct list_head	send_list;
124 
125 	/* recv state */
126 	void			*pdu;
127 	int			pdu_remaining;
128 	int			pdu_offset;
129 	size_t			data_remaining;
130 	size_t			ddgst_remaining;
131 	unsigned int		nr_cqe;
132 
133 	/* send state */
134 	struct nvme_tcp_request *request;
135 
136 	int			queue_size;
137 	u32			maxh2cdata;
138 	size_t			cmnd_capsule_len;
139 	struct nvme_tcp_ctrl	*ctrl;
140 	unsigned long		flags;
141 	bool			rd_enabled;
142 
143 	bool			hdr_digest;
144 	bool			data_digest;
145 	struct ahash_request	*rcv_hash;
146 	struct ahash_request	*snd_hash;
147 	__le32			exp_ddgst;
148 	__le32			recv_ddgst;
149 
150 	struct page_frag_cache	pf_cache;
151 
152 	void (*state_change)(struct sock *);
153 	void (*data_ready)(struct sock *);
154 	void (*write_space)(struct sock *);
155 };
156 
157 struct nvme_tcp_ctrl {
158 	/* read only in the hot path */
159 	struct nvme_tcp_queue	*queues;
160 	struct blk_mq_tag_set	tag_set;
161 
162 	/* other member variables */
163 	struct list_head	list;
164 	struct blk_mq_tag_set	admin_tag_set;
165 	struct sockaddr_storage addr;
166 	struct sockaddr_storage src_addr;
167 	struct nvme_ctrl	ctrl;
168 
169 	struct work_struct	err_work;
170 	struct delayed_work	connect_work;
171 	struct nvme_tcp_request async_req;
172 	u32			io_queues[HCTX_MAX_TYPES];
173 };
174 
175 static LIST_HEAD(nvme_tcp_ctrl_list);
176 static DEFINE_MUTEX(nvme_tcp_ctrl_mutex);
177 static struct workqueue_struct *nvme_tcp_wq;
178 static const struct blk_mq_ops nvme_tcp_mq_ops;
179 static const struct blk_mq_ops nvme_tcp_admin_mq_ops;
180 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue);
181 
182 static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl)
183 {
184 	return container_of(ctrl, struct nvme_tcp_ctrl, ctrl);
185 }
186 
187 static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue)
188 {
189 	return queue - queue->ctrl->queues;
190 }
191 
192 static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue)
193 {
194 	u32 queue_idx = nvme_tcp_queue_id(queue);
195 
196 	if (queue_idx == 0)
197 		return queue->ctrl->admin_tag_set.tags[queue_idx];
198 	return queue->ctrl->tag_set.tags[queue_idx - 1];
199 }
200 
201 static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue)
202 {
203 	return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
204 }
205 
206 static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue)
207 {
208 	return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
209 }
210 
211 static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_request *req)
212 {
213 	if (nvme_is_fabrics(req->req.cmd))
214 		return NVME_TCP_ADMIN_CCSZ;
215 	return req->queue->cmnd_capsule_len - sizeof(struct nvme_command);
216 }
217 
218 static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req)
219 {
220 	return req == &req->queue->ctrl->async_req;
221 }
222 
223 static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req)
224 {
225 	struct request *rq;
226 
227 	if (unlikely(nvme_tcp_async_req(req)))
228 		return false; /* async events don't have a request */
229 
230 	rq = blk_mq_rq_from_pdu(req);
231 
232 	return rq_data_dir(rq) == WRITE && req->data_len &&
233 		req->data_len <= nvme_tcp_inline_data_size(req);
234 }
235 
236 static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req)
237 {
238 	return req->iter.bvec->bv_page;
239 }
240 
241 static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req)
242 {
243 	return req->iter.bvec->bv_offset + req->iter.iov_offset;
244 }
245 
246 static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req)
247 {
248 	return min_t(size_t, iov_iter_single_seg_count(&req->iter),
249 			req->pdu_len - req->pdu_sent);
250 }
251 
252 static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req)
253 {
254 	return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ?
255 			req->pdu_len - req->pdu_sent : 0;
256 }
257 
258 static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req,
259 		int len)
260 {
261 	return nvme_tcp_pdu_data_left(req) <= len;
262 }
263 
264 static void nvme_tcp_init_iter(struct nvme_tcp_request *req,
265 		unsigned int dir)
266 {
267 	struct request *rq = blk_mq_rq_from_pdu(req);
268 	struct bio_vec *vec;
269 	unsigned int size;
270 	int nr_bvec;
271 	size_t offset;
272 
273 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) {
274 		vec = &rq->special_vec;
275 		nr_bvec = 1;
276 		size = blk_rq_payload_bytes(rq);
277 		offset = 0;
278 	} else {
279 		struct bio *bio = req->curr_bio;
280 		struct bvec_iter bi;
281 		struct bio_vec bv;
282 
283 		vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
284 		nr_bvec = 0;
285 		bio_for_each_bvec(bv, bio, bi) {
286 			nr_bvec++;
287 		}
288 		size = bio->bi_iter.bi_size;
289 		offset = bio->bi_iter.bi_bvec_done;
290 	}
291 
292 	iov_iter_bvec(&req->iter, dir, vec, nr_bvec, size);
293 	req->iter.iov_offset = offset;
294 }
295 
296 static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req,
297 		int len)
298 {
299 	req->data_sent += len;
300 	req->pdu_sent += len;
301 	iov_iter_advance(&req->iter, len);
302 	if (!iov_iter_count(&req->iter) &&
303 	    req->data_sent < req->data_len) {
304 		req->curr_bio = req->curr_bio->bi_next;
305 		nvme_tcp_init_iter(req, WRITE);
306 	}
307 }
308 
309 static inline void nvme_tcp_send_all(struct nvme_tcp_queue *queue)
310 {
311 	int ret;
312 
313 	/* drain the send queue as much as we can... */
314 	do {
315 		ret = nvme_tcp_try_send(queue);
316 	} while (ret > 0);
317 }
318 
319 static inline bool nvme_tcp_queue_more(struct nvme_tcp_queue *queue)
320 {
321 	return !list_empty(&queue->send_list) ||
322 		!llist_empty(&queue->req_list);
323 }
324 
325 static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req,
326 		bool sync, bool last)
327 {
328 	struct nvme_tcp_queue *queue = req->queue;
329 	bool empty;
330 
331 	empty = llist_add(&req->lentry, &queue->req_list) &&
332 		list_empty(&queue->send_list) && !queue->request;
333 
334 	/*
335 	 * if we're the first on the send_list and we can try to send
336 	 * directly, otherwise queue io_work. Also, only do that if we
337 	 * are on the same cpu, so we don't introduce contention.
338 	 */
339 	if (queue->io_cpu == raw_smp_processor_id() &&
340 	    sync && empty && mutex_trylock(&queue->send_mutex)) {
341 		nvme_tcp_send_all(queue);
342 		mutex_unlock(&queue->send_mutex);
343 	}
344 
345 	if (last && nvme_tcp_queue_more(queue))
346 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
347 }
348 
349 static void nvme_tcp_process_req_list(struct nvme_tcp_queue *queue)
350 {
351 	struct nvme_tcp_request *req;
352 	struct llist_node *node;
353 
354 	for (node = llist_del_all(&queue->req_list); node; node = node->next) {
355 		req = llist_entry(node, struct nvme_tcp_request, lentry);
356 		list_add(&req->entry, &queue->send_list);
357 	}
358 }
359 
360 static inline struct nvme_tcp_request *
361 nvme_tcp_fetch_request(struct nvme_tcp_queue *queue)
362 {
363 	struct nvme_tcp_request *req;
364 
365 	req = list_first_entry_or_null(&queue->send_list,
366 			struct nvme_tcp_request, entry);
367 	if (!req) {
368 		nvme_tcp_process_req_list(queue);
369 		req = list_first_entry_or_null(&queue->send_list,
370 				struct nvme_tcp_request, entry);
371 		if (unlikely(!req))
372 			return NULL;
373 	}
374 
375 	list_del(&req->entry);
376 	return req;
377 }
378 
379 static inline void nvme_tcp_ddgst_final(struct ahash_request *hash,
380 		__le32 *dgst)
381 {
382 	ahash_request_set_crypt(hash, NULL, (u8 *)dgst, 0);
383 	crypto_ahash_final(hash);
384 }
385 
386 static inline void nvme_tcp_ddgst_update(struct ahash_request *hash,
387 		struct page *page, off_t off, size_t len)
388 {
389 	struct scatterlist sg;
390 
391 	sg_init_marker(&sg, 1);
392 	sg_set_page(&sg, page, len, off);
393 	ahash_request_set_crypt(hash, &sg, NULL, len);
394 	crypto_ahash_update(hash);
395 }
396 
397 static inline void nvme_tcp_hdgst(struct ahash_request *hash,
398 		void *pdu, size_t len)
399 {
400 	struct scatterlist sg;
401 
402 	sg_init_one(&sg, pdu, len);
403 	ahash_request_set_crypt(hash, &sg, pdu + len, len);
404 	crypto_ahash_digest(hash);
405 }
406 
407 static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue,
408 		void *pdu, size_t pdu_len)
409 {
410 	struct nvme_tcp_hdr *hdr = pdu;
411 	__le32 recv_digest;
412 	__le32 exp_digest;
413 
414 	if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
415 		dev_err(queue->ctrl->ctrl.device,
416 			"queue %d: header digest flag is cleared\n",
417 			nvme_tcp_queue_id(queue));
418 		return -EPROTO;
419 	}
420 
421 	recv_digest = *(__le32 *)(pdu + hdr->hlen);
422 	nvme_tcp_hdgst(queue->rcv_hash, pdu, pdu_len);
423 	exp_digest = *(__le32 *)(pdu + hdr->hlen);
424 	if (recv_digest != exp_digest) {
425 		dev_err(queue->ctrl->ctrl.device,
426 			"header digest error: recv %#x expected %#x\n",
427 			le32_to_cpu(recv_digest), le32_to_cpu(exp_digest));
428 		return -EIO;
429 	}
430 
431 	return 0;
432 }
433 
434 static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu)
435 {
436 	struct nvme_tcp_hdr *hdr = pdu;
437 	u8 digest_len = nvme_tcp_hdgst_len(queue);
438 	u32 len;
439 
440 	len = le32_to_cpu(hdr->plen) - hdr->hlen -
441 		((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0);
442 
443 	if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
444 		dev_err(queue->ctrl->ctrl.device,
445 			"queue %d: data digest flag is cleared\n",
446 		nvme_tcp_queue_id(queue));
447 		return -EPROTO;
448 	}
449 	crypto_ahash_init(queue->rcv_hash);
450 
451 	return 0;
452 }
453 
454 static void nvme_tcp_exit_request(struct blk_mq_tag_set *set,
455 		struct request *rq, unsigned int hctx_idx)
456 {
457 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
458 
459 	page_frag_free(req->pdu);
460 }
461 
462 static int nvme_tcp_init_request(struct blk_mq_tag_set *set,
463 		struct request *rq, unsigned int hctx_idx,
464 		unsigned int numa_node)
465 {
466 	struct nvme_tcp_ctrl *ctrl = set->driver_data;
467 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
468 	struct nvme_tcp_cmd_pdu *pdu;
469 	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
470 	struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx];
471 	u8 hdgst = nvme_tcp_hdgst_len(queue);
472 
473 	req->pdu = page_frag_alloc(&queue->pf_cache,
474 		sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
475 		GFP_KERNEL | __GFP_ZERO);
476 	if (!req->pdu)
477 		return -ENOMEM;
478 
479 	pdu = req->pdu;
480 	req->queue = queue;
481 	nvme_req(rq)->ctrl = &ctrl->ctrl;
482 	nvme_req(rq)->cmd = &pdu->cmd;
483 
484 	return 0;
485 }
486 
487 static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
488 		unsigned int hctx_idx)
489 {
490 	struct nvme_tcp_ctrl *ctrl = data;
491 	struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1];
492 
493 	hctx->driver_data = queue;
494 	return 0;
495 }
496 
497 static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
498 		unsigned int hctx_idx)
499 {
500 	struct nvme_tcp_ctrl *ctrl = data;
501 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
502 
503 	hctx->driver_data = queue;
504 	return 0;
505 }
506 
507 static enum nvme_tcp_recv_state
508 nvme_tcp_recv_state(struct nvme_tcp_queue *queue)
509 {
510 	return  (queue->pdu_remaining) ? NVME_TCP_RECV_PDU :
511 		(queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST :
512 		NVME_TCP_RECV_DATA;
513 }
514 
515 static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue)
516 {
517 	queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) +
518 				nvme_tcp_hdgst_len(queue);
519 	queue->pdu_offset = 0;
520 	queue->data_remaining = -1;
521 	queue->ddgst_remaining = 0;
522 }
523 
524 static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl)
525 {
526 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
527 		return;
528 
529 	dev_warn(ctrl->device, "starting error recovery\n");
530 	queue_work(nvme_reset_wq, &to_tcp_ctrl(ctrl)->err_work);
531 }
532 
533 static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue,
534 		struct nvme_completion *cqe)
535 {
536 	struct nvme_tcp_request *req;
537 	struct request *rq;
538 
539 	rq = nvme_find_rq(nvme_tcp_tagset(queue), cqe->command_id);
540 	if (!rq) {
541 		dev_err(queue->ctrl->ctrl.device,
542 			"got bad cqe.command_id %#x on queue %d\n",
543 			cqe->command_id, nvme_tcp_queue_id(queue));
544 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
545 		return -EINVAL;
546 	}
547 
548 	req = blk_mq_rq_to_pdu(rq);
549 	if (req->status == cpu_to_le16(NVME_SC_SUCCESS))
550 		req->status = cqe->status;
551 
552 	if (!nvme_try_complete_req(rq, req->status, cqe->result))
553 		nvme_complete_rq(rq);
554 	queue->nr_cqe++;
555 
556 	return 0;
557 }
558 
559 static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue,
560 		struct nvme_tcp_data_pdu *pdu)
561 {
562 	struct request *rq;
563 
564 	rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id);
565 	if (!rq) {
566 		dev_err(queue->ctrl->ctrl.device,
567 			"got bad c2hdata.command_id %#x on queue %d\n",
568 			pdu->command_id, nvme_tcp_queue_id(queue));
569 		return -ENOENT;
570 	}
571 
572 	if (!blk_rq_payload_bytes(rq)) {
573 		dev_err(queue->ctrl->ctrl.device,
574 			"queue %d tag %#x unexpected data\n",
575 			nvme_tcp_queue_id(queue), rq->tag);
576 		return -EIO;
577 	}
578 
579 	queue->data_remaining = le32_to_cpu(pdu->data_length);
580 
581 	if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS &&
582 	    unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) {
583 		dev_err(queue->ctrl->ctrl.device,
584 			"queue %d tag %#x SUCCESS set but not last PDU\n",
585 			nvme_tcp_queue_id(queue), rq->tag);
586 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
587 		return -EPROTO;
588 	}
589 
590 	return 0;
591 }
592 
593 static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue,
594 		struct nvme_tcp_rsp_pdu *pdu)
595 {
596 	struct nvme_completion *cqe = &pdu->cqe;
597 	int ret = 0;
598 
599 	/*
600 	 * AEN requests are special as they don't time out and can
601 	 * survive any kind of queue freeze and often don't respond to
602 	 * aborts.  We don't even bother to allocate a struct request
603 	 * for them but rather special case them here.
604 	 */
605 	if (unlikely(nvme_is_aen_req(nvme_tcp_queue_id(queue),
606 				     cqe->command_id)))
607 		nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
608 				&cqe->result);
609 	else
610 		ret = nvme_tcp_process_nvme_cqe(queue, cqe);
611 
612 	return ret;
613 }
614 
615 static void nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req)
616 {
617 	struct nvme_tcp_data_pdu *data = req->pdu;
618 	struct nvme_tcp_queue *queue = req->queue;
619 	struct request *rq = blk_mq_rq_from_pdu(req);
620 	u32 h2cdata_sent = req->pdu_len;
621 	u8 hdgst = nvme_tcp_hdgst_len(queue);
622 	u8 ddgst = nvme_tcp_ddgst_len(queue);
623 
624 	req->state = NVME_TCP_SEND_H2C_PDU;
625 	req->offset = 0;
626 	req->pdu_len = min(req->h2cdata_left, queue->maxh2cdata);
627 	req->pdu_sent = 0;
628 	req->h2cdata_left -= req->pdu_len;
629 	req->h2cdata_offset += h2cdata_sent;
630 
631 	memset(data, 0, sizeof(*data));
632 	data->hdr.type = nvme_tcp_h2c_data;
633 	if (!req->h2cdata_left)
634 		data->hdr.flags = NVME_TCP_F_DATA_LAST;
635 	if (queue->hdr_digest)
636 		data->hdr.flags |= NVME_TCP_F_HDGST;
637 	if (queue->data_digest)
638 		data->hdr.flags |= NVME_TCP_F_DDGST;
639 	data->hdr.hlen = sizeof(*data);
640 	data->hdr.pdo = data->hdr.hlen + hdgst;
641 	data->hdr.plen =
642 		cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst);
643 	data->ttag = req->ttag;
644 	data->command_id = nvme_cid(rq);
645 	data->data_offset = cpu_to_le32(req->h2cdata_offset);
646 	data->data_length = cpu_to_le32(req->pdu_len);
647 }
648 
649 static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue,
650 		struct nvme_tcp_r2t_pdu *pdu)
651 {
652 	struct nvme_tcp_request *req;
653 	struct request *rq;
654 	u32 r2t_length = le32_to_cpu(pdu->r2t_length);
655 	u32 r2t_offset = le32_to_cpu(pdu->r2t_offset);
656 
657 	rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id);
658 	if (!rq) {
659 		dev_err(queue->ctrl->ctrl.device,
660 			"got bad r2t.command_id %#x on queue %d\n",
661 			pdu->command_id, nvme_tcp_queue_id(queue));
662 		return -ENOENT;
663 	}
664 	req = blk_mq_rq_to_pdu(rq);
665 
666 	if (unlikely(!r2t_length)) {
667 		dev_err(queue->ctrl->ctrl.device,
668 			"req %d r2t len is %u, probably a bug...\n",
669 			rq->tag, r2t_length);
670 		return -EPROTO;
671 	}
672 
673 	if (unlikely(req->data_sent + r2t_length > req->data_len)) {
674 		dev_err(queue->ctrl->ctrl.device,
675 			"req %d r2t len %u exceeded data len %u (%zu sent)\n",
676 			rq->tag, r2t_length, req->data_len, req->data_sent);
677 		return -EPROTO;
678 	}
679 
680 	if (unlikely(r2t_offset < req->data_sent)) {
681 		dev_err(queue->ctrl->ctrl.device,
682 			"req %d unexpected r2t offset %u (expected %zu)\n",
683 			rq->tag, r2t_offset, req->data_sent);
684 		return -EPROTO;
685 	}
686 
687 	req->pdu_len = 0;
688 	req->h2cdata_left = r2t_length;
689 	req->h2cdata_offset = r2t_offset;
690 	req->ttag = pdu->ttag;
691 
692 	nvme_tcp_setup_h2c_data_pdu(req);
693 	nvme_tcp_queue_request(req, false, true);
694 
695 	return 0;
696 }
697 
698 static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb,
699 		unsigned int *offset, size_t *len)
700 {
701 	struct nvme_tcp_hdr *hdr;
702 	char *pdu = queue->pdu;
703 	size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining);
704 	int ret;
705 
706 	ret = skb_copy_bits(skb, *offset,
707 		&pdu[queue->pdu_offset], rcv_len);
708 	if (unlikely(ret))
709 		return ret;
710 
711 	queue->pdu_remaining -= rcv_len;
712 	queue->pdu_offset += rcv_len;
713 	*offset += rcv_len;
714 	*len -= rcv_len;
715 	if (queue->pdu_remaining)
716 		return 0;
717 
718 	hdr = queue->pdu;
719 	if (queue->hdr_digest) {
720 		ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen);
721 		if (unlikely(ret))
722 			return ret;
723 	}
724 
725 
726 	if (queue->data_digest) {
727 		ret = nvme_tcp_check_ddgst(queue, queue->pdu);
728 		if (unlikely(ret))
729 			return ret;
730 	}
731 
732 	switch (hdr->type) {
733 	case nvme_tcp_c2h_data:
734 		return nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu);
735 	case nvme_tcp_rsp:
736 		nvme_tcp_init_recv_ctx(queue);
737 		return nvme_tcp_handle_comp(queue, (void *)queue->pdu);
738 	case nvme_tcp_r2t:
739 		nvme_tcp_init_recv_ctx(queue);
740 		return nvme_tcp_handle_r2t(queue, (void *)queue->pdu);
741 	default:
742 		dev_err(queue->ctrl->ctrl.device,
743 			"unsupported pdu type (%d)\n", hdr->type);
744 		return -EINVAL;
745 	}
746 }
747 
748 static inline void nvme_tcp_end_request(struct request *rq, u16 status)
749 {
750 	union nvme_result res = {};
751 
752 	if (!nvme_try_complete_req(rq, cpu_to_le16(status << 1), res))
753 		nvme_complete_rq(rq);
754 }
755 
756 static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb,
757 			      unsigned int *offset, size_t *len)
758 {
759 	struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
760 	struct request *rq =
761 		nvme_cid_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
762 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
763 
764 	while (true) {
765 		int recv_len, ret;
766 
767 		recv_len = min_t(size_t, *len, queue->data_remaining);
768 		if (!recv_len)
769 			break;
770 
771 		if (!iov_iter_count(&req->iter)) {
772 			req->curr_bio = req->curr_bio->bi_next;
773 
774 			/*
775 			 * If we don`t have any bios it means that controller
776 			 * sent more data than we requested, hence error
777 			 */
778 			if (!req->curr_bio) {
779 				dev_err(queue->ctrl->ctrl.device,
780 					"queue %d no space in request %#x",
781 					nvme_tcp_queue_id(queue), rq->tag);
782 				nvme_tcp_init_recv_ctx(queue);
783 				return -EIO;
784 			}
785 			nvme_tcp_init_iter(req, READ);
786 		}
787 
788 		/* we can read only from what is left in this bio */
789 		recv_len = min_t(size_t, recv_len,
790 				iov_iter_count(&req->iter));
791 
792 		if (queue->data_digest)
793 			ret = skb_copy_and_hash_datagram_iter(skb, *offset,
794 				&req->iter, recv_len, queue->rcv_hash);
795 		else
796 			ret = skb_copy_datagram_iter(skb, *offset,
797 					&req->iter, recv_len);
798 		if (ret) {
799 			dev_err(queue->ctrl->ctrl.device,
800 				"queue %d failed to copy request %#x data",
801 				nvme_tcp_queue_id(queue), rq->tag);
802 			return ret;
803 		}
804 
805 		*len -= recv_len;
806 		*offset += recv_len;
807 		queue->data_remaining -= recv_len;
808 	}
809 
810 	if (!queue->data_remaining) {
811 		if (queue->data_digest) {
812 			nvme_tcp_ddgst_final(queue->rcv_hash, &queue->exp_ddgst);
813 			queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH;
814 		} else {
815 			if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
816 				nvme_tcp_end_request(rq,
817 						le16_to_cpu(req->status));
818 				queue->nr_cqe++;
819 			}
820 			nvme_tcp_init_recv_ctx(queue);
821 		}
822 	}
823 
824 	return 0;
825 }
826 
827 static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue,
828 		struct sk_buff *skb, unsigned int *offset, size_t *len)
829 {
830 	struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
831 	char *ddgst = (char *)&queue->recv_ddgst;
832 	size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining);
833 	off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining;
834 	int ret;
835 
836 	ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len);
837 	if (unlikely(ret))
838 		return ret;
839 
840 	queue->ddgst_remaining -= recv_len;
841 	*offset += recv_len;
842 	*len -= recv_len;
843 	if (queue->ddgst_remaining)
844 		return 0;
845 
846 	if (queue->recv_ddgst != queue->exp_ddgst) {
847 		struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue),
848 					pdu->command_id);
849 		struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
850 
851 		req->status = cpu_to_le16(NVME_SC_DATA_XFER_ERROR);
852 
853 		dev_err(queue->ctrl->ctrl.device,
854 			"data digest error: recv %#x expected %#x\n",
855 			le32_to_cpu(queue->recv_ddgst),
856 			le32_to_cpu(queue->exp_ddgst));
857 	}
858 
859 	if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
860 		struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue),
861 					pdu->command_id);
862 		struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
863 
864 		nvme_tcp_end_request(rq, le16_to_cpu(req->status));
865 		queue->nr_cqe++;
866 	}
867 
868 	nvme_tcp_init_recv_ctx(queue);
869 	return 0;
870 }
871 
872 static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb,
873 			     unsigned int offset, size_t len)
874 {
875 	struct nvme_tcp_queue *queue = desc->arg.data;
876 	size_t consumed = len;
877 	int result;
878 
879 	while (len) {
880 		switch (nvme_tcp_recv_state(queue)) {
881 		case NVME_TCP_RECV_PDU:
882 			result = nvme_tcp_recv_pdu(queue, skb, &offset, &len);
883 			break;
884 		case NVME_TCP_RECV_DATA:
885 			result = nvme_tcp_recv_data(queue, skb, &offset, &len);
886 			break;
887 		case NVME_TCP_RECV_DDGST:
888 			result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len);
889 			break;
890 		default:
891 			result = -EFAULT;
892 		}
893 		if (result) {
894 			dev_err(queue->ctrl->ctrl.device,
895 				"receive failed:  %d\n", result);
896 			queue->rd_enabled = false;
897 			nvme_tcp_error_recovery(&queue->ctrl->ctrl);
898 			return result;
899 		}
900 	}
901 
902 	return consumed;
903 }
904 
905 static void nvme_tcp_data_ready(struct sock *sk)
906 {
907 	struct nvme_tcp_queue *queue;
908 
909 	read_lock_bh(&sk->sk_callback_lock);
910 	queue = sk->sk_user_data;
911 	if (likely(queue && queue->rd_enabled) &&
912 	    !test_bit(NVME_TCP_Q_POLLING, &queue->flags))
913 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
914 	read_unlock_bh(&sk->sk_callback_lock);
915 }
916 
917 static void nvme_tcp_write_space(struct sock *sk)
918 {
919 	struct nvme_tcp_queue *queue;
920 
921 	read_lock_bh(&sk->sk_callback_lock);
922 	queue = sk->sk_user_data;
923 	if (likely(queue && sk_stream_is_writeable(sk))) {
924 		clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
925 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
926 	}
927 	read_unlock_bh(&sk->sk_callback_lock);
928 }
929 
930 static void nvme_tcp_state_change(struct sock *sk)
931 {
932 	struct nvme_tcp_queue *queue;
933 
934 	read_lock_bh(&sk->sk_callback_lock);
935 	queue = sk->sk_user_data;
936 	if (!queue)
937 		goto done;
938 
939 	switch (sk->sk_state) {
940 	case TCP_CLOSE:
941 	case TCP_CLOSE_WAIT:
942 	case TCP_LAST_ACK:
943 	case TCP_FIN_WAIT1:
944 	case TCP_FIN_WAIT2:
945 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
946 		break;
947 	default:
948 		dev_info(queue->ctrl->ctrl.device,
949 			"queue %d socket state %d\n",
950 			nvme_tcp_queue_id(queue), sk->sk_state);
951 	}
952 
953 	queue->state_change(sk);
954 done:
955 	read_unlock_bh(&sk->sk_callback_lock);
956 }
957 
958 static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue)
959 {
960 	queue->request = NULL;
961 }
962 
963 static void nvme_tcp_fail_request(struct nvme_tcp_request *req)
964 {
965 	if (nvme_tcp_async_req(req)) {
966 		union nvme_result res = {};
967 
968 		nvme_complete_async_event(&req->queue->ctrl->ctrl,
969 				cpu_to_le16(NVME_SC_HOST_PATH_ERROR), &res);
970 	} else {
971 		nvme_tcp_end_request(blk_mq_rq_from_pdu(req),
972 				NVME_SC_HOST_PATH_ERROR);
973 	}
974 }
975 
976 static int nvme_tcp_try_send_data(struct nvme_tcp_request *req)
977 {
978 	struct nvme_tcp_queue *queue = req->queue;
979 	int req_data_len = req->data_len;
980 	u32 h2cdata_left = req->h2cdata_left;
981 
982 	while (true) {
983 		struct page *page = nvme_tcp_req_cur_page(req);
984 		size_t offset = nvme_tcp_req_cur_offset(req);
985 		size_t len = nvme_tcp_req_cur_length(req);
986 		bool last = nvme_tcp_pdu_last_send(req, len);
987 		int req_data_sent = req->data_sent;
988 		int ret, flags = MSG_DONTWAIT;
989 
990 		if (last && !queue->data_digest && !nvme_tcp_queue_more(queue))
991 			flags |= MSG_EOR;
992 		else
993 			flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
994 
995 		if (sendpage_ok(page)) {
996 			ret = kernel_sendpage(queue->sock, page, offset, len,
997 					flags);
998 		} else {
999 			ret = sock_no_sendpage(queue->sock, page, offset, len,
1000 					flags);
1001 		}
1002 		if (ret <= 0)
1003 			return ret;
1004 
1005 		if (queue->data_digest)
1006 			nvme_tcp_ddgst_update(queue->snd_hash, page,
1007 					offset, ret);
1008 
1009 		/*
1010 		 * update the request iterator except for the last payload send
1011 		 * in the request where we don't want to modify it as we may
1012 		 * compete with the RX path completing the request.
1013 		 */
1014 		if (req_data_sent + ret < req_data_len)
1015 			nvme_tcp_advance_req(req, ret);
1016 
1017 		/* fully successful last send in current PDU */
1018 		if (last && ret == len) {
1019 			if (queue->data_digest) {
1020 				nvme_tcp_ddgst_final(queue->snd_hash,
1021 					&req->ddgst);
1022 				req->state = NVME_TCP_SEND_DDGST;
1023 				req->offset = 0;
1024 			} else {
1025 				if (h2cdata_left)
1026 					nvme_tcp_setup_h2c_data_pdu(req);
1027 				else
1028 					nvme_tcp_done_send_req(queue);
1029 			}
1030 			return 1;
1031 		}
1032 	}
1033 	return -EAGAIN;
1034 }
1035 
1036 static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req)
1037 {
1038 	struct nvme_tcp_queue *queue = req->queue;
1039 	struct nvme_tcp_cmd_pdu *pdu = req->pdu;
1040 	bool inline_data = nvme_tcp_has_inline_data(req);
1041 	u8 hdgst = nvme_tcp_hdgst_len(queue);
1042 	int len = sizeof(*pdu) + hdgst - req->offset;
1043 	int flags = MSG_DONTWAIT;
1044 	int ret;
1045 
1046 	if (inline_data || nvme_tcp_queue_more(queue))
1047 		flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
1048 	else
1049 		flags |= MSG_EOR;
1050 
1051 	if (queue->hdr_digest && !req->offset)
1052 		nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
1053 
1054 	ret = kernel_sendpage(queue->sock, virt_to_page(pdu),
1055 			offset_in_page(pdu) + req->offset, len,  flags);
1056 	if (unlikely(ret <= 0))
1057 		return ret;
1058 
1059 	len -= ret;
1060 	if (!len) {
1061 		if (inline_data) {
1062 			req->state = NVME_TCP_SEND_DATA;
1063 			if (queue->data_digest)
1064 				crypto_ahash_init(queue->snd_hash);
1065 		} else {
1066 			nvme_tcp_done_send_req(queue);
1067 		}
1068 		return 1;
1069 	}
1070 	req->offset += ret;
1071 
1072 	return -EAGAIN;
1073 }
1074 
1075 static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req)
1076 {
1077 	struct nvme_tcp_queue *queue = req->queue;
1078 	struct nvme_tcp_data_pdu *pdu = req->pdu;
1079 	u8 hdgst = nvme_tcp_hdgst_len(queue);
1080 	int len = sizeof(*pdu) - req->offset + hdgst;
1081 	int ret;
1082 
1083 	if (queue->hdr_digest && !req->offset)
1084 		nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
1085 
1086 	if (!req->h2cdata_left)
1087 		ret = kernel_sendpage(queue->sock, virt_to_page(pdu),
1088 				offset_in_page(pdu) + req->offset, len,
1089 				MSG_DONTWAIT | MSG_MORE | MSG_SENDPAGE_NOTLAST);
1090 	else
1091 		ret = sock_no_sendpage(queue->sock, virt_to_page(pdu),
1092 				offset_in_page(pdu) + req->offset, len,
1093 				MSG_DONTWAIT | MSG_MORE);
1094 	if (unlikely(ret <= 0))
1095 		return ret;
1096 
1097 	len -= ret;
1098 	if (!len) {
1099 		req->state = NVME_TCP_SEND_DATA;
1100 		if (queue->data_digest)
1101 			crypto_ahash_init(queue->snd_hash);
1102 		return 1;
1103 	}
1104 	req->offset += ret;
1105 
1106 	return -EAGAIN;
1107 }
1108 
1109 static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req)
1110 {
1111 	struct nvme_tcp_queue *queue = req->queue;
1112 	size_t offset = req->offset;
1113 	u32 h2cdata_left = req->h2cdata_left;
1114 	int ret;
1115 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1116 	struct kvec iov = {
1117 		.iov_base = (u8 *)&req->ddgst + req->offset,
1118 		.iov_len = NVME_TCP_DIGEST_LENGTH - req->offset
1119 	};
1120 
1121 	if (nvme_tcp_queue_more(queue))
1122 		msg.msg_flags |= MSG_MORE;
1123 	else
1124 		msg.msg_flags |= MSG_EOR;
1125 
1126 	ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1127 	if (unlikely(ret <= 0))
1128 		return ret;
1129 
1130 	if (offset + ret == NVME_TCP_DIGEST_LENGTH) {
1131 		if (h2cdata_left)
1132 			nvme_tcp_setup_h2c_data_pdu(req);
1133 		else
1134 			nvme_tcp_done_send_req(queue);
1135 		return 1;
1136 	}
1137 
1138 	req->offset += ret;
1139 	return -EAGAIN;
1140 }
1141 
1142 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue)
1143 {
1144 	struct nvme_tcp_request *req;
1145 	int ret = 1;
1146 
1147 	if (!queue->request) {
1148 		queue->request = nvme_tcp_fetch_request(queue);
1149 		if (!queue->request)
1150 			return 0;
1151 	}
1152 	req = queue->request;
1153 
1154 	if (req->state == NVME_TCP_SEND_CMD_PDU) {
1155 		ret = nvme_tcp_try_send_cmd_pdu(req);
1156 		if (ret <= 0)
1157 			goto done;
1158 		if (!nvme_tcp_has_inline_data(req))
1159 			return ret;
1160 	}
1161 
1162 	if (req->state == NVME_TCP_SEND_H2C_PDU) {
1163 		ret = nvme_tcp_try_send_data_pdu(req);
1164 		if (ret <= 0)
1165 			goto done;
1166 	}
1167 
1168 	if (req->state == NVME_TCP_SEND_DATA) {
1169 		ret = nvme_tcp_try_send_data(req);
1170 		if (ret <= 0)
1171 			goto done;
1172 	}
1173 
1174 	if (req->state == NVME_TCP_SEND_DDGST)
1175 		ret = nvme_tcp_try_send_ddgst(req);
1176 done:
1177 	if (ret == -EAGAIN) {
1178 		ret = 0;
1179 	} else if (ret < 0) {
1180 		dev_err(queue->ctrl->ctrl.device,
1181 			"failed to send request %d\n", ret);
1182 		nvme_tcp_fail_request(queue->request);
1183 		nvme_tcp_done_send_req(queue);
1184 	}
1185 	return ret;
1186 }
1187 
1188 static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue)
1189 {
1190 	struct socket *sock = queue->sock;
1191 	struct sock *sk = sock->sk;
1192 	read_descriptor_t rd_desc;
1193 	int consumed;
1194 
1195 	rd_desc.arg.data = queue;
1196 	rd_desc.count = 1;
1197 	lock_sock(sk);
1198 	queue->nr_cqe = 0;
1199 	consumed = sock->ops->read_sock(sk, &rd_desc, nvme_tcp_recv_skb);
1200 	release_sock(sk);
1201 	return consumed;
1202 }
1203 
1204 static void nvme_tcp_io_work(struct work_struct *w)
1205 {
1206 	struct nvme_tcp_queue *queue =
1207 		container_of(w, struct nvme_tcp_queue, io_work);
1208 	unsigned long deadline = jiffies + msecs_to_jiffies(1);
1209 
1210 	do {
1211 		bool pending = false;
1212 		int result;
1213 
1214 		if (mutex_trylock(&queue->send_mutex)) {
1215 			result = nvme_tcp_try_send(queue);
1216 			mutex_unlock(&queue->send_mutex);
1217 			if (result > 0)
1218 				pending = true;
1219 			else if (unlikely(result < 0))
1220 				break;
1221 		}
1222 
1223 		result = nvme_tcp_try_recv(queue);
1224 		if (result > 0)
1225 			pending = true;
1226 		else if (unlikely(result < 0))
1227 			return;
1228 
1229 		if (!pending || !queue->rd_enabled)
1230 			return;
1231 
1232 	} while (!time_after(jiffies, deadline)); /* quota is exhausted */
1233 
1234 	queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
1235 }
1236 
1237 static void nvme_tcp_free_crypto(struct nvme_tcp_queue *queue)
1238 {
1239 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash);
1240 
1241 	ahash_request_free(queue->rcv_hash);
1242 	ahash_request_free(queue->snd_hash);
1243 	crypto_free_ahash(tfm);
1244 }
1245 
1246 static int nvme_tcp_alloc_crypto(struct nvme_tcp_queue *queue)
1247 {
1248 	struct crypto_ahash *tfm;
1249 
1250 	tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC);
1251 	if (IS_ERR(tfm))
1252 		return PTR_ERR(tfm);
1253 
1254 	queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1255 	if (!queue->snd_hash)
1256 		goto free_tfm;
1257 	ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL);
1258 
1259 	queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1260 	if (!queue->rcv_hash)
1261 		goto free_snd_hash;
1262 	ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL);
1263 
1264 	return 0;
1265 free_snd_hash:
1266 	ahash_request_free(queue->snd_hash);
1267 free_tfm:
1268 	crypto_free_ahash(tfm);
1269 	return -ENOMEM;
1270 }
1271 
1272 static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl)
1273 {
1274 	struct nvme_tcp_request *async = &ctrl->async_req;
1275 
1276 	page_frag_free(async->pdu);
1277 }
1278 
1279 static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl)
1280 {
1281 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
1282 	struct nvme_tcp_request *async = &ctrl->async_req;
1283 	u8 hdgst = nvme_tcp_hdgst_len(queue);
1284 
1285 	async->pdu = page_frag_alloc(&queue->pf_cache,
1286 		sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
1287 		GFP_KERNEL | __GFP_ZERO);
1288 	if (!async->pdu)
1289 		return -ENOMEM;
1290 
1291 	async->queue = &ctrl->queues[0];
1292 	return 0;
1293 }
1294 
1295 static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid)
1296 {
1297 	struct page *page;
1298 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1299 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1300 
1301 	if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1302 		return;
1303 
1304 	if (queue->hdr_digest || queue->data_digest)
1305 		nvme_tcp_free_crypto(queue);
1306 
1307 	if (queue->pf_cache.va) {
1308 		page = virt_to_head_page(queue->pf_cache.va);
1309 		__page_frag_cache_drain(page, queue->pf_cache.pagecnt_bias);
1310 		queue->pf_cache.va = NULL;
1311 	}
1312 	sock_release(queue->sock);
1313 	kfree(queue->pdu);
1314 	mutex_destroy(&queue->send_mutex);
1315 	mutex_destroy(&queue->queue_lock);
1316 }
1317 
1318 static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue)
1319 {
1320 	struct nvme_tcp_icreq_pdu *icreq;
1321 	struct nvme_tcp_icresp_pdu *icresp;
1322 	struct msghdr msg = {};
1323 	struct kvec iov;
1324 	bool ctrl_hdgst, ctrl_ddgst;
1325 	u32 maxh2cdata;
1326 	int ret;
1327 
1328 	icreq = kzalloc(sizeof(*icreq), GFP_KERNEL);
1329 	if (!icreq)
1330 		return -ENOMEM;
1331 
1332 	icresp = kzalloc(sizeof(*icresp), GFP_KERNEL);
1333 	if (!icresp) {
1334 		ret = -ENOMEM;
1335 		goto free_icreq;
1336 	}
1337 
1338 	icreq->hdr.type = nvme_tcp_icreq;
1339 	icreq->hdr.hlen = sizeof(*icreq);
1340 	icreq->hdr.pdo = 0;
1341 	icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen);
1342 	icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
1343 	icreq->maxr2t = 0; /* single inflight r2t supported */
1344 	icreq->hpda = 0; /* no alignment constraint */
1345 	if (queue->hdr_digest)
1346 		icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
1347 	if (queue->data_digest)
1348 		icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
1349 
1350 	iov.iov_base = icreq;
1351 	iov.iov_len = sizeof(*icreq);
1352 	ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1353 	if (ret < 0)
1354 		goto free_icresp;
1355 
1356 	memset(&msg, 0, sizeof(msg));
1357 	iov.iov_base = icresp;
1358 	iov.iov_len = sizeof(*icresp);
1359 	ret = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1360 			iov.iov_len, msg.msg_flags);
1361 	if (ret < 0)
1362 		goto free_icresp;
1363 
1364 	ret = -EINVAL;
1365 	if (icresp->hdr.type != nvme_tcp_icresp) {
1366 		pr_err("queue %d: bad type returned %d\n",
1367 			nvme_tcp_queue_id(queue), icresp->hdr.type);
1368 		goto free_icresp;
1369 	}
1370 
1371 	if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) {
1372 		pr_err("queue %d: bad pdu length returned %d\n",
1373 			nvme_tcp_queue_id(queue), icresp->hdr.plen);
1374 		goto free_icresp;
1375 	}
1376 
1377 	if (icresp->pfv != NVME_TCP_PFV_1_0) {
1378 		pr_err("queue %d: bad pfv returned %d\n",
1379 			nvme_tcp_queue_id(queue), icresp->pfv);
1380 		goto free_icresp;
1381 	}
1382 
1383 	ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE);
1384 	if ((queue->data_digest && !ctrl_ddgst) ||
1385 	    (!queue->data_digest && ctrl_ddgst)) {
1386 		pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n",
1387 			nvme_tcp_queue_id(queue),
1388 			queue->data_digest ? "enabled" : "disabled",
1389 			ctrl_ddgst ? "enabled" : "disabled");
1390 		goto free_icresp;
1391 	}
1392 
1393 	ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE);
1394 	if ((queue->hdr_digest && !ctrl_hdgst) ||
1395 	    (!queue->hdr_digest && ctrl_hdgst)) {
1396 		pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n",
1397 			nvme_tcp_queue_id(queue),
1398 			queue->hdr_digest ? "enabled" : "disabled",
1399 			ctrl_hdgst ? "enabled" : "disabled");
1400 		goto free_icresp;
1401 	}
1402 
1403 	if (icresp->cpda != 0) {
1404 		pr_err("queue %d: unsupported cpda returned %d\n",
1405 			nvme_tcp_queue_id(queue), icresp->cpda);
1406 		goto free_icresp;
1407 	}
1408 
1409 	maxh2cdata = le32_to_cpu(icresp->maxdata);
1410 	if ((maxh2cdata % 4) || (maxh2cdata < NVME_TCP_MIN_MAXH2CDATA)) {
1411 		pr_err("queue %d: invalid maxh2cdata returned %u\n",
1412 		       nvme_tcp_queue_id(queue), maxh2cdata);
1413 		goto free_icresp;
1414 	}
1415 	queue->maxh2cdata = maxh2cdata;
1416 
1417 	ret = 0;
1418 free_icresp:
1419 	kfree(icresp);
1420 free_icreq:
1421 	kfree(icreq);
1422 	return ret;
1423 }
1424 
1425 static bool nvme_tcp_admin_queue(struct nvme_tcp_queue *queue)
1426 {
1427 	return nvme_tcp_queue_id(queue) == 0;
1428 }
1429 
1430 static bool nvme_tcp_default_queue(struct nvme_tcp_queue *queue)
1431 {
1432 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1433 	int qid = nvme_tcp_queue_id(queue);
1434 
1435 	return !nvme_tcp_admin_queue(queue) &&
1436 		qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT];
1437 }
1438 
1439 static bool nvme_tcp_read_queue(struct nvme_tcp_queue *queue)
1440 {
1441 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1442 	int qid = nvme_tcp_queue_id(queue);
1443 
1444 	return !nvme_tcp_admin_queue(queue) &&
1445 		!nvme_tcp_default_queue(queue) &&
1446 		qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1447 			  ctrl->io_queues[HCTX_TYPE_READ];
1448 }
1449 
1450 static bool nvme_tcp_poll_queue(struct nvme_tcp_queue *queue)
1451 {
1452 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1453 	int qid = nvme_tcp_queue_id(queue);
1454 
1455 	return !nvme_tcp_admin_queue(queue) &&
1456 		!nvme_tcp_default_queue(queue) &&
1457 		!nvme_tcp_read_queue(queue) &&
1458 		qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1459 			  ctrl->io_queues[HCTX_TYPE_READ] +
1460 			  ctrl->io_queues[HCTX_TYPE_POLL];
1461 }
1462 
1463 static void nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue *queue)
1464 {
1465 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1466 	int qid = nvme_tcp_queue_id(queue);
1467 	int n = 0;
1468 
1469 	if (nvme_tcp_default_queue(queue))
1470 		n = qid - 1;
1471 	else if (nvme_tcp_read_queue(queue))
1472 		n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - 1;
1473 	else if (nvme_tcp_poll_queue(queue))
1474 		n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] -
1475 				ctrl->io_queues[HCTX_TYPE_READ] - 1;
1476 	queue->io_cpu = cpumask_next_wrap(n - 1, cpu_online_mask, -1, false);
1477 }
1478 
1479 static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl,
1480 		int qid, size_t queue_size)
1481 {
1482 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1483 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1484 	int ret, rcv_pdu_size;
1485 
1486 	mutex_init(&queue->queue_lock);
1487 	queue->ctrl = ctrl;
1488 	init_llist_head(&queue->req_list);
1489 	INIT_LIST_HEAD(&queue->send_list);
1490 	mutex_init(&queue->send_mutex);
1491 	INIT_WORK(&queue->io_work, nvme_tcp_io_work);
1492 	queue->queue_size = queue_size;
1493 
1494 	if (qid > 0)
1495 		queue->cmnd_capsule_len = nctrl->ioccsz * 16;
1496 	else
1497 		queue->cmnd_capsule_len = sizeof(struct nvme_command) +
1498 						NVME_TCP_ADMIN_CCSZ;
1499 
1500 	ret = sock_create(ctrl->addr.ss_family, SOCK_STREAM,
1501 			IPPROTO_TCP, &queue->sock);
1502 	if (ret) {
1503 		dev_err(nctrl->device,
1504 			"failed to create socket: %d\n", ret);
1505 		goto err_destroy_mutex;
1506 	}
1507 
1508 	nvme_tcp_reclassify_socket(queue->sock);
1509 
1510 	/* Single syn retry */
1511 	tcp_sock_set_syncnt(queue->sock->sk, 1);
1512 
1513 	/* Set TCP no delay */
1514 	tcp_sock_set_nodelay(queue->sock->sk);
1515 
1516 	/*
1517 	 * Cleanup whatever is sitting in the TCP transmit queue on socket
1518 	 * close. This is done to prevent stale data from being sent should
1519 	 * the network connection be restored before TCP times out.
1520 	 */
1521 	sock_no_linger(queue->sock->sk);
1522 
1523 	if (so_priority > 0)
1524 		sock_set_priority(queue->sock->sk, so_priority);
1525 
1526 	/* Set socket type of service */
1527 	if (nctrl->opts->tos >= 0)
1528 		ip_sock_set_tos(queue->sock->sk, nctrl->opts->tos);
1529 
1530 	/* Set 10 seconds timeout for icresp recvmsg */
1531 	queue->sock->sk->sk_rcvtimeo = 10 * HZ;
1532 
1533 	queue->sock->sk->sk_allocation = GFP_ATOMIC;
1534 	nvme_tcp_set_queue_io_cpu(queue);
1535 	queue->request = NULL;
1536 	queue->data_remaining = 0;
1537 	queue->ddgst_remaining = 0;
1538 	queue->pdu_remaining = 0;
1539 	queue->pdu_offset = 0;
1540 	sk_set_memalloc(queue->sock->sk);
1541 
1542 	if (nctrl->opts->mask & NVMF_OPT_HOST_TRADDR) {
1543 		ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr,
1544 			sizeof(ctrl->src_addr));
1545 		if (ret) {
1546 			dev_err(nctrl->device,
1547 				"failed to bind queue %d socket %d\n",
1548 				qid, ret);
1549 			goto err_sock;
1550 		}
1551 	}
1552 
1553 	if (nctrl->opts->mask & NVMF_OPT_HOST_IFACE) {
1554 		char *iface = nctrl->opts->host_iface;
1555 		sockptr_t optval = KERNEL_SOCKPTR(iface);
1556 
1557 		ret = sock_setsockopt(queue->sock, SOL_SOCKET, SO_BINDTODEVICE,
1558 				      optval, strlen(iface));
1559 		if (ret) {
1560 			dev_err(nctrl->device,
1561 			  "failed to bind to interface %s queue %d err %d\n",
1562 			  iface, qid, ret);
1563 			goto err_sock;
1564 		}
1565 	}
1566 
1567 	queue->hdr_digest = nctrl->opts->hdr_digest;
1568 	queue->data_digest = nctrl->opts->data_digest;
1569 	if (queue->hdr_digest || queue->data_digest) {
1570 		ret = nvme_tcp_alloc_crypto(queue);
1571 		if (ret) {
1572 			dev_err(nctrl->device,
1573 				"failed to allocate queue %d crypto\n", qid);
1574 			goto err_sock;
1575 		}
1576 	}
1577 
1578 	rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) +
1579 			nvme_tcp_hdgst_len(queue);
1580 	queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL);
1581 	if (!queue->pdu) {
1582 		ret = -ENOMEM;
1583 		goto err_crypto;
1584 	}
1585 
1586 	dev_dbg(nctrl->device, "connecting queue %d\n",
1587 			nvme_tcp_queue_id(queue));
1588 
1589 	ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr,
1590 		sizeof(ctrl->addr), 0);
1591 	if (ret) {
1592 		dev_err(nctrl->device,
1593 			"failed to connect socket: %d\n", ret);
1594 		goto err_rcv_pdu;
1595 	}
1596 
1597 	ret = nvme_tcp_init_connection(queue);
1598 	if (ret)
1599 		goto err_init_connect;
1600 
1601 	queue->rd_enabled = true;
1602 	set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags);
1603 	nvme_tcp_init_recv_ctx(queue);
1604 
1605 	write_lock_bh(&queue->sock->sk->sk_callback_lock);
1606 	queue->sock->sk->sk_user_data = queue;
1607 	queue->state_change = queue->sock->sk->sk_state_change;
1608 	queue->data_ready = queue->sock->sk->sk_data_ready;
1609 	queue->write_space = queue->sock->sk->sk_write_space;
1610 	queue->sock->sk->sk_data_ready = nvme_tcp_data_ready;
1611 	queue->sock->sk->sk_state_change = nvme_tcp_state_change;
1612 	queue->sock->sk->sk_write_space = nvme_tcp_write_space;
1613 #ifdef CONFIG_NET_RX_BUSY_POLL
1614 	queue->sock->sk->sk_ll_usec = 1;
1615 #endif
1616 	write_unlock_bh(&queue->sock->sk->sk_callback_lock);
1617 
1618 	return 0;
1619 
1620 err_init_connect:
1621 	kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1622 err_rcv_pdu:
1623 	kfree(queue->pdu);
1624 err_crypto:
1625 	if (queue->hdr_digest || queue->data_digest)
1626 		nvme_tcp_free_crypto(queue);
1627 err_sock:
1628 	sock_release(queue->sock);
1629 	queue->sock = NULL;
1630 err_destroy_mutex:
1631 	mutex_destroy(&queue->send_mutex);
1632 	mutex_destroy(&queue->queue_lock);
1633 	return ret;
1634 }
1635 
1636 static void nvme_tcp_restore_sock_calls(struct nvme_tcp_queue *queue)
1637 {
1638 	struct socket *sock = queue->sock;
1639 
1640 	write_lock_bh(&sock->sk->sk_callback_lock);
1641 	sock->sk->sk_user_data  = NULL;
1642 	sock->sk->sk_data_ready = queue->data_ready;
1643 	sock->sk->sk_state_change = queue->state_change;
1644 	sock->sk->sk_write_space  = queue->write_space;
1645 	write_unlock_bh(&sock->sk->sk_callback_lock);
1646 }
1647 
1648 static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue)
1649 {
1650 	kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1651 	nvme_tcp_restore_sock_calls(queue);
1652 	cancel_work_sync(&queue->io_work);
1653 }
1654 
1655 static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid)
1656 {
1657 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1658 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1659 
1660 	if (!test_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1661 		return;
1662 
1663 	mutex_lock(&queue->queue_lock);
1664 	if (test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags))
1665 		__nvme_tcp_stop_queue(queue);
1666 	mutex_unlock(&queue->queue_lock);
1667 }
1668 
1669 static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx)
1670 {
1671 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1672 	int ret;
1673 
1674 	if (idx)
1675 		ret = nvmf_connect_io_queue(nctrl, idx);
1676 	else
1677 		ret = nvmf_connect_admin_queue(nctrl);
1678 
1679 	if (!ret) {
1680 		set_bit(NVME_TCP_Q_LIVE, &ctrl->queues[idx].flags);
1681 	} else {
1682 		if (test_bit(NVME_TCP_Q_ALLOCATED, &ctrl->queues[idx].flags))
1683 			__nvme_tcp_stop_queue(&ctrl->queues[idx]);
1684 		dev_err(nctrl->device,
1685 			"failed to connect queue: %d ret=%d\n", idx, ret);
1686 	}
1687 	return ret;
1688 }
1689 
1690 static int nvme_tcp_alloc_admin_tag_set(struct nvme_ctrl *nctrl)
1691 {
1692 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1693 	struct blk_mq_tag_set *set = &ctrl->admin_tag_set;
1694 	int ret;
1695 
1696 	memset(set, 0, sizeof(*set));
1697 	set->ops = &nvme_tcp_admin_mq_ops;
1698 	set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1699 	set->reserved_tags = NVMF_RESERVED_TAGS;
1700 	set->numa_node = nctrl->numa_node;
1701 	set->flags = BLK_MQ_F_BLOCKING;
1702 	set->cmd_size = sizeof(struct nvme_tcp_request);
1703 	set->driver_data = ctrl;
1704 	set->nr_hw_queues = 1;
1705 	set->timeout = NVME_ADMIN_TIMEOUT;
1706 	ret = blk_mq_alloc_tag_set(set);
1707 	if (!ret)
1708 		nctrl->admin_tagset = set;
1709 	return ret;
1710 }
1711 
1712 static int nvme_tcp_alloc_tag_set(struct nvme_ctrl *nctrl)
1713 {
1714 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1715 	struct blk_mq_tag_set *set = &ctrl->tag_set;
1716 	int ret;
1717 
1718 	memset(set, 0, sizeof(*set));
1719 	set->ops = &nvme_tcp_mq_ops;
1720 	set->queue_depth = nctrl->sqsize + 1;
1721 	set->reserved_tags = NVMF_RESERVED_TAGS;
1722 	set->numa_node = nctrl->numa_node;
1723 	set->flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_BLOCKING;
1724 	set->cmd_size = sizeof(struct nvme_tcp_request);
1725 	set->driver_data = ctrl;
1726 	set->nr_hw_queues = nctrl->queue_count - 1;
1727 	set->timeout = NVME_IO_TIMEOUT;
1728 	set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2;
1729 	ret = blk_mq_alloc_tag_set(set);
1730 	if (!ret)
1731 		nctrl->tagset = set;
1732 	return ret;
1733 }
1734 
1735 static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl)
1736 {
1737 	if (to_tcp_ctrl(ctrl)->async_req.pdu) {
1738 		cancel_work_sync(&ctrl->async_event_work);
1739 		nvme_tcp_free_async_req(to_tcp_ctrl(ctrl));
1740 		to_tcp_ctrl(ctrl)->async_req.pdu = NULL;
1741 	}
1742 
1743 	nvme_tcp_free_queue(ctrl, 0);
1744 }
1745 
1746 static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl)
1747 {
1748 	int i;
1749 
1750 	for (i = 1; i < ctrl->queue_count; i++)
1751 		nvme_tcp_free_queue(ctrl, i);
1752 }
1753 
1754 static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl)
1755 {
1756 	int i;
1757 
1758 	for (i = 1; i < ctrl->queue_count; i++)
1759 		nvme_tcp_stop_queue(ctrl, i);
1760 }
1761 
1762 static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl)
1763 {
1764 	int i, ret;
1765 
1766 	for (i = 1; i < ctrl->queue_count; i++) {
1767 		ret = nvme_tcp_start_queue(ctrl, i);
1768 		if (ret)
1769 			goto out_stop_queues;
1770 	}
1771 
1772 	return 0;
1773 
1774 out_stop_queues:
1775 	for (i--; i >= 1; i--)
1776 		nvme_tcp_stop_queue(ctrl, i);
1777 	return ret;
1778 }
1779 
1780 static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl)
1781 {
1782 	int ret;
1783 
1784 	ret = nvme_tcp_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
1785 	if (ret)
1786 		return ret;
1787 
1788 	ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl));
1789 	if (ret)
1790 		goto out_free_queue;
1791 
1792 	return 0;
1793 
1794 out_free_queue:
1795 	nvme_tcp_free_queue(ctrl, 0);
1796 	return ret;
1797 }
1798 
1799 static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1800 {
1801 	int i, ret;
1802 
1803 	for (i = 1; i < ctrl->queue_count; i++) {
1804 		ret = nvme_tcp_alloc_queue(ctrl, i, ctrl->sqsize + 1);
1805 		if (ret)
1806 			goto out_free_queues;
1807 	}
1808 
1809 	return 0;
1810 
1811 out_free_queues:
1812 	for (i--; i >= 1; i--)
1813 		nvme_tcp_free_queue(ctrl, i);
1814 
1815 	return ret;
1816 }
1817 
1818 static unsigned int nvme_tcp_nr_io_queues(struct nvme_ctrl *ctrl)
1819 {
1820 	unsigned int nr_io_queues;
1821 
1822 	nr_io_queues = min(ctrl->opts->nr_io_queues, num_online_cpus());
1823 	nr_io_queues += min(ctrl->opts->nr_write_queues, num_online_cpus());
1824 	nr_io_queues += min(ctrl->opts->nr_poll_queues, num_online_cpus());
1825 
1826 	return nr_io_queues;
1827 }
1828 
1829 static void nvme_tcp_set_io_queues(struct nvme_ctrl *nctrl,
1830 		unsigned int nr_io_queues)
1831 {
1832 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1833 	struct nvmf_ctrl_options *opts = nctrl->opts;
1834 
1835 	if (opts->nr_write_queues && opts->nr_io_queues < nr_io_queues) {
1836 		/*
1837 		 * separate read/write queues
1838 		 * hand out dedicated default queues only after we have
1839 		 * sufficient read queues.
1840 		 */
1841 		ctrl->io_queues[HCTX_TYPE_READ] = opts->nr_io_queues;
1842 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ];
1843 		ctrl->io_queues[HCTX_TYPE_DEFAULT] =
1844 			min(opts->nr_write_queues, nr_io_queues);
1845 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
1846 	} else {
1847 		/*
1848 		 * shared read/write queues
1849 		 * either no write queues were requested, or we don't have
1850 		 * sufficient queue count to have dedicated default queues.
1851 		 */
1852 		ctrl->io_queues[HCTX_TYPE_DEFAULT] =
1853 			min(opts->nr_io_queues, nr_io_queues);
1854 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
1855 	}
1856 
1857 	if (opts->nr_poll_queues && nr_io_queues) {
1858 		/* map dedicated poll queues only if we have queues left */
1859 		ctrl->io_queues[HCTX_TYPE_POLL] =
1860 			min(opts->nr_poll_queues, nr_io_queues);
1861 	}
1862 }
1863 
1864 static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1865 {
1866 	unsigned int nr_io_queues;
1867 	int ret;
1868 
1869 	nr_io_queues = nvme_tcp_nr_io_queues(ctrl);
1870 	ret = nvme_set_queue_count(ctrl, &nr_io_queues);
1871 	if (ret)
1872 		return ret;
1873 
1874 	if (nr_io_queues == 0) {
1875 		dev_err(ctrl->device,
1876 			"unable to set any I/O queues\n");
1877 		return -ENOMEM;
1878 	}
1879 
1880 	ctrl->queue_count = nr_io_queues + 1;
1881 	dev_info(ctrl->device,
1882 		"creating %d I/O queues.\n", nr_io_queues);
1883 
1884 	nvme_tcp_set_io_queues(ctrl, nr_io_queues);
1885 
1886 	return __nvme_tcp_alloc_io_queues(ctrl);
1887 }
1888 
1889 static void nvme_tcp_destroy_io_queues(struct nvme_ctrl *ctrl, bool remove)
1890 {
1891 	nvme_tcp_stop_io_queues(ctrl);
1892 	if (remove) {
1893 		blk_mq_destroy_queue(ctrl->connect_q);
1894 		blk_mq_free_tag_set(ctrl->tagset);
1895 	}
1896 	nvme_tcp_free_io_queues(ctrl);
1897 }
1898 
1899 static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new)
1900 {
1901 	int ret;
1902 
1903 	ret = nvme_tcp_alloc_io_queues(ctrl);
1904 	if (ret)
1905 		return ret;
1906 
1907 	if (new) {
1908 		ret = nvme_tcp_alloc_tag_set(ctrl);
1909 		if (ret)
1910 			goto out_free_io_queues;
1911 
1912 		ret = nvme_ctrl_init_connect_q(ctrl);
1913 		if (ret)
1914 			goto out_free_tag_set;
1915 	}
1916 
1917 	ret = nvme_tcp_start_io_queues(ctrl);
1918 	if (ret)
1919 		goto out_cleanup_connect_q;
1920 
1921 	if (!new) {
1922 		nvme_start_queues(ctrl);
1923 		if (!nvme_wait_freeze_timeout(ctrl, NVME_IO_TIMEOUT)) {
1924 			/*
1925 			 * If we timed out waiting for freeze we are likely to
1926 			 * be stuck.  Fail the controller initialization just
1927 			 * to be safe.
1928 			 */
1929 			ret = -ENODEV;
1930 			goto out_wait_freeze_timed_out;
1931 		}
1932 		blk_mq_update_nr_hw_queues(ctrl->tagset,
1933 			ctrl->queue_count - 1);
1934 		nvme_unfreeze(ctrl);
1935 	}
1936 
1937 	return 0;
1938 
1939 out_wait_freeze_timed_out:
1940 	nvme_stop_queues(ctrl);
1941 	nvme_sync_io_queues(ctrl);
1942 	nvme_tcp_stop_io_queues(ctrl);
1943 out_cleanup_connect_q:
1944 	nvme_cancel_tagset(ctrl);
1945 	if (new)
1946 		blk_mq_destroy_queue(ctrl->connect_q);
1947 out_free_tag_set:
1948 	if (new)
1949 		blk_mq_free_tag_set(ctrl->tagset);
1950 out_free_io_queues:
1951 	nvme_tcp_free_io_queues(ctrl);
1952 	return ret;
1953 }
1954 
1955 static void nvme_tcp_destroy_admin_queue(struct nvme_ctrl *ctrl, bool remove)
1956 {
1957 	nvme_tcp_stop_queue(ctrl, 0);
1958 	if (remove) {
1959 		blk_mq_destroy_queue(ctrl->admin_q);
1960 		blk_mq_destroy_queue(ctrl->fabrics_q);
1961 		blk_mq_free_tag_set(ctrl->admin_tagset);
1962 	}
1963 	nvme_tcp_free_admin_queue(ctrl);
1964 }
1965 
1966 static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new)
1967 {
1968 	int error;
1969 
1970 	error = nvme_tcp_alloc_admin_queue(ctrl);
1971 	if (error)
1972 		return error;
1973 
1974 	if (new) {
1975 		error = nvme_tcp_alloc_admin_tag_set(ctrl);
1976 		if (error)
1977 			goto out_free_queue;
1978 
1979 		ctrl->fabrics_q = blk_mq_init_queue(ctrl->admin_tagset);
1980 		if (IS_ERR(ctrl->fabrics_q)) {
1981 			error = PTR_ERR(ctrl->fabrics_q);
1982 			goto out_free_tagset;
1983 		}
1984 
1985 		ctrl->admin_q = blk_mq_init_queue(ctrl->admin_tagset);
1986 		if (IS_ERR(ctrl->admin_q)) {
1987 			error = PTR_ERR(ctrl->admin_q);
1988 			goto out_cleanup_fabrics_q;
1989 		}
1990 	}
1991 
1992 	error = nvme_tcp_start_queue(ctrl, 0);
1993 	if (error)
1994 		goto out_cleanup_queue;
1995 
1996 	error = nvme_enable_ctrl(ctrl);
1997 	if (error)
1998 		goto out_stop_queue;
1999 
2000 	nvme_start_admin_queue(ctrl);
2001 
2002 	error = nvme_init_ctrl_finish(ctrl);
2003 	if (error)
2004 		goto out_quiesce_queue;
2005 
2006 	return 0;
2007 
2008 out_quiesce_queue:
2009 	nvme_stop_admin_queue(ctrl);
2010 	blk_sync_queue(ctrl->admin_q);
2011 out_stop_queue:
2012 	nvme_tcp_stop_queue(ctrl, 0);
2013 	nvme_cancel_admin_tagset(ctrl);
2014 out_cleanup_queue:
2015 	if (new)
2016 		blk_mq_destroy_queue(ctrl->admin_q);
2017 out_cleanup_fabrics_q:
2018 	if (new)
2019 		blk_mq_destroy_queue(ctrl->fabrics_q);
2020 out_free_tagset:
2021 	if (new)
2022 		blk_mq_free_tag_set(ctrl->admin_tagset);
2023 out_free_queue:
2024 	nvme_tcp_free_admin_queue(ctrl);
2025 	return error;
2026 }
2027 
2028 static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl,
2029 		bool remove)
2030 {
2031 	nvme_stop_admin_queue(ctrl);
2032 	blk_sync_queue(ctrl->admin_q);
2033 	nvme_tcp_stop_queue(ctrl, 0);
2034 	nvme_cancel_admin_tagset(ctrl);
2035 	if (remove)
2036 		nvme_start_admin_queue(ctrl);
2037 	nvme_tcp_destroy_admin_queue(ctrl, remove);
2038 }
2039 
2040 static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl,
2041 		bool remove)
2042 {
2043 	if (ctrl->queue_count <= 1)
2044 		return;
2045 	nvme_stop_admin_queue(ctrl);
2046 	nvme_start_freeze(ctrl);
2047 	nvme_stop_queues(ctrl);
2048 	nvme_sync_io_queues(ctrl);
2049 	nvme_tcp_stop_io_queues(ctrl);
2050 	nvme_cancel_tagset(ctrl);
2051 	if (remove)
2052 		nvme_start_queues(ctrl);
2053 	nvme_tcp_destroy_io_queues(ctrl, remove);
2054 }
2055 
2056 static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl)
2057 {
2058 	/* If we are resetting/deleting then do nothing */
2059 	if (ctrl->state != NVME_CTRL_CONNECTING) {
2060 		WARN_ON_ONCE(ctrl->state == NVME_CTRL_NEW ||
2061 			ctrl->state == NVME_CTRL_LIVE);
2062 		return;
2063 	}
2064 
2065 	if (nvmf_should_reconnect(ctrl)) {
2066 		dev_info(ctrl->device, "Reconnecting in %d seconds...\n",
2067 			ctrl->opts->reconnect_delay);
2068 		queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work,
2069 				ctrl->opts->reconnect_delay * HZ);
2070 	} else {
2071 		dev_info(ctrl->device, "Removing controller...\n");
2072 		nvme_delete_ctrl(ctrl);
2073 	}
2074 }
2075 
2076 static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new)
2077 {
2078 	struct nvmf_ctrl_options *opts = ctrl->opts;
2079 	int ret;
2080 
2081 	ret = nvme_tcp_configure_admin_queue(ctrl, new);
2082 	if (ret)
2083 		return ret;
2084 
2085 	if (ctrl->icdoff) {
2086 		ret = -EOPNOTSUPP;
2087 		dev_err(ctrl->device, "icdoff is not supported!\n");
2088 		goto destroy_admin;
2089 	}
2090 
2091 	if (!nvme_ctrl_sgl_supported(ctrl)) {
2092 		ret = -EOPNOTSUPP;
2093 		dev_err(ctrl->device, "Mandatory sgls are not supported!\n");
2094 		goto destroy_admin;
2095 	}
2096 
2097 	if (opts->queue_size > ctrl->sqsize + 1)
2098 		dev_warn(ctrl->device,
2099 			"queue_size %zu > ctrl sqsize %u, clamping down\n",
2100 			opts->queue_size, ctrl->sqsize + 1);
2101 
2102 	if (ctrl->sqsize + 1 > ctrl->maxcmd) {
2103 		dev_warn(ctrl->device,
2104 			"sqsize %u > ctrl maxcmd %u, clamping down\n",
2105 			ctrl->sqsize + 1, ctrl->maxcmd);
2106 		ctrl->sqsize = ctrl->maxcmd - 1;
2107 	}
2108 
2109 	if (ctrl->queue_count > 1) {
2110 		ret = nvme_tcp_configure_io_queues(ctrl, new);
2111 		if (ret)
2112 			goto destroy_admin;
2113 	}
2114 
2115 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) {
2116 		/*
2117 		 * state change failure is ok if we started ctrl delete,
2118 		 * unless we're during creation of a new controller to
2119 		 * avoid races with teardown flow.
2120 		 */
2121 		WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2122 			     ctrl->state != NVME_CTRL_DELETING_NOIO);
2123 		WARN_ON_ONCE(new);
2124 		ret = -EINVAL;
2125 		goto destroy_io;
2126 	}
2127 
2128 	nvme_start_ctrl(ctrl);
2129 	return 0;
2130 
2131 destroy_io:
2132 	if (ctrl->queue_count > 1) {
2133 		nvme_stop_queues(ctrl);
2134 		nvme_sync_io_queues(ctrl);
2135 		nvme_tcp_stop_io_queues(ctrl);
2136 		nvme_cancel_tagset(ctrl);
2137 		nvme_tcp_destroy_io_queues(ctrl, new);
2138 	}
2139 destroy_admin:
2140 	nvme_stop_admin_queue(ctrl);
2141 	blk_sync_queue(ctrl->admin_q);
2142 	nvme_tcp_stop_queue(ctrl, 0);
2143 	nvme_cancel_admin_tagset(ctrl);
2144 	nvme_tcp_destroy_admin_queue(ctrl, new);
2145 	return ret;
2146 }
2147 
2148 static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work)
2149 {
2150 	struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work),
2151 			struct nvme_tcp_ctrl, connect_work);
2152 	struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2153 
2154 	++ctrl->nr_reconnects;
2155 
2156 	if (nvme_tcp_setup_ctrl(ctrl, false))
2157 		goto requeue;
2158 
2159 	dev_info(ctrl->device, "Successfully reconnected (%d attempt)\n",
2160 			ctrl->nr_reconnects);
2161 
2162 	ctrl->nr_reconnects = 0;
2163 
2164 	return;
2165 
2166 requeue:
2167 	dev_info(ctrl->device, "Failed reconnect attempt %d\n",
2168 			ctrl->nr_reconnects);
2169 	nvme_tcp_reconnect_or_remove(ctrl);
2170 }
2171 
2172 static void nvme_tcp_error_recovery_work(struct work_struct *work)
2173 {
2174 	struct nvme_tcp_ctrl *tcp_ctrl = container_of(work,
2175 				struct nvme_tcp_ctrl, err_work);
2176 	struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2177 
2178 	nvme_auth_stop(ctrl);
2179 	nvme_stop_keep_alive(ctrl);
2180 	flush_work(&ctrl->async_event_work);
2181 	nvme_tcp_teardown_io_queues(ctrl, false);
2182 	/* unquiesce to fail fast pending requests */
2183 	nvme_start_queues(ctrl);
2184 	nvme_tcp_teardown_admin_queue(ctrl, false);
2185 	nvme_start_admin_queue(ctrl);
2186 
2187 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2188 		/* state change failure is ok if we started ctrl delete */
2189 		WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2190 			     ctrl->state != NVME_CTRL_DELETING_NOIO);
2191 		return;
2192 	}
2193 
2194 	nvme_tcp_reconnect_or_remove(ctrl);
2195 }
2196 
2197 static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
2198 {
2199 	nvme_tcp_teardown_io_queues(ctrl, shutdown);
2200 	nvme_stop_admin_queue(ctrl);
2201 	if (shutdown)
2202 		nvme_shutdown_ctrl(ctrl);
2203 	else
2204 		nvme_disable_ctrl(ctrl);
2205 	nvme_tcp_teardown_admin_queue(ctrl, shutdown);
2206 }
2207 
2208 static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl)
2209 {
2210 	nvme_tcp_teardown_ctrl(ctrl, true);
2211 }
2212 
2213 static void nvme_reset_ctrl_work(struct work_struct *work)
2214 {
2215 	struct nvme_ctrl *ctrl =
2216 		container_of(work, struct nvme_ctrl, reset_work);
2217 
2218 	nvme_stop_ctrl(ctrl);
2219 	nvme_tcp_teardown_ctrl(ctrl, false);
2220 
2221 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2222 		/* state change failure is ok if we started ctrl delete */
2223 		WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2224 			     ctrl->state != NVME_CTRL_DELETING_NOIO);
2225 		return;
2226 	}
2227 
2228 	if (nvme_tcp_setup_ctrl(ctrl, false))
2229 		goto out_fail;
2230 
2231 	return;
2232 
2233 out_fail:
2234 	++ctrl->nr_reconnects;
2235 	nvme_tcp_reconnect_or_remove(ctrl);
2236 }
2237 
2238 static void nvme_tcp_stop_ctrl(struct nvme_ctrl *ctrl)
2239 {
2240 	cancel_work_sync(&to_tcp_ctrl(ctrl)->err_work);
2241 	cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work);
2242 }
2243 
2244 static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl)
2245 {
2246 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
2247 
2248 	if (list_empty(&ctrl->list))
2249 		goto free_ctrl;
2250 
2251 	mutex_lock(&nvme_tcp_ctrl_mutex);
2252 	list_del(&ctrl->list);
2253 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2254 
2255 	nvmf_free_options(nctrl->opts);
2256 free_ctrl:
2257 	kfree(ctrl->queues);
2258 	kfree(ctrl);
2259 }
2260 
2261 static void nvme_tcp_set_sg_null(struct nvme_command *c)
2262 {
2263 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2264 
2265 	sg->addr = 0;
2266 	sg->length = 0;
2267 	sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2268 			NVME_SGL_FMT_TRANSPORT_A;
2269 }
2270 
2271 static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue,
2272 		struct nvme_command *c, u32 data_len)
2273 {
2274 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2275 
2276 	sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
2277 	sg->length = cpu_to_le32(data_len);
2278 	sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
2279 }
2280 
2281 static void nvme_tcp_set_sg_host_data(struct nvme_command *c,
2282 		u32 data_len)
2283 {
2284 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2285 
2286 	sg->addr = 0;
2287 	sg->length = cpu_to_le32(data_len);
2288 	sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2289 			NVME_SGL_FMT_TRANSPORT_A;
2290 }
2291 
2292 static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg)
2293 {
2294 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg);
2295 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
2296 	struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu;
2297 	struct nvme_command *cmd = &pdu->cmd;
2298 	u8 hdgst = nvme_tcp_hdgst_len(queue);
2299 
2300 	memset(pdu, 0, sizeof(*pdu));
2301 	pdu->hdr.type = nvme_tcp_cmd;
2302 	if (queue->hdr_digest)
2303 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
2304 	pdu->hdr.hlen = sizeof(*pdu);
2305 	pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
2306 
2307 	cmd->common.opcode = nvme_admin_async_event;
2308 	cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
2309 	cmd->common.flags |= NVME_CMD_SGL_METABUF;
2310 	nvme_tcp_set_sg_null(cmd);
2311 
2312 	ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU;
2313 	ctrl->async_req.offset = 0;
2314 	ctrl->async_req.curr_bio = NULL;
2315 	ctrl->async_req.data_len = 0;
2316 
2317 	nvme_tcp_queue_request(&ctrl->async_req, true, true);
2318 }
2319 
2320 static void nvme_tcp_complete_timed_out(struct request *rq)
2321 {
2322 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2323 	struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2324 
2325 	nvme_tcp_stop_queue(ctrl, nvme_tcp_queue_id(req->queue));
2326 	nvmf_complete_timed_out_request(rq);
2327 }
2328 
2329 static enum blk_eh_timer_return nvme_tcp_timeout(struct request *rq)
2330 {
2331 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2332 	struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2333 	struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2334 
2335 	dev_warn(ctrl->device,
2336 		"queue %d: timeout request %#x type %d\n",
2337 		nvme_tcp_queue_id(req->queue), rq->tag, pdu->hdr.type);
2338 
2339 	if (ctrl->state != NVME_CTRL_LIVE) {
2340 		/*
2341 		 * If we are resetting, connecting or deleting we should
2342 		 * complete immediately because we may block controller
2343 		 * teardown or setup sequence
2344 		 * - ctrl disable/shutdown fabrics requests
2345 		 * - connect requests
2346 		 * - initialization admin requests
2347 		 * - I/O requests that entered after unquiescing and
2348 		 *   the controller stopped responding
2349 		 *
2350 		 * All other requests should be cancelled by the error
2351 		 * recovery work, so it's fine that we fail it here.
2352 		 */
2353 		nvme_tcp_complete_timed_out(rq);
2354 		return BLK_EH_DONE;
2355 	}
2356 
2357 	/*
2358 	 * LIVE state should trigger the normal error recovery which will
2359 	 * handle completing this request.
2360 	 */
2361 	nvme_tcp_error_recovery(ctrl);
2362 	return BLK_EH_RESET_TIMER;
2363 }
2364 
2365 static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue,
2366 			struct request *rq)
2367 {
2368 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2369 	struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2370 	struct nvme_command *c = &pdu->cmd;
2371 
2372 	c->common.flags |= NVME_CMD_SGL_METABUF;
2373 
2374 	if (!blk_rq_nr_phys_segments(rq))
2375 		nvme_tcp_set_sg_null(c);
2376 	else if (rq_data_dir(rq) == WRITE &&
2377 	    req->data_len <= nvme_tcp_inline_data_size(req))
2378 		nvme_tcp_set_sg_inline(queue, c, req->data_len);
2379 	else
2380 		nvme_tcp_set_sg_host_data(c, req->data_len);
2381 
2382 	return 0;
2383 }
2384 
2385 static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns,
2386 		struct request *rq)
2387 {
2388 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2389 	struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2390 	struct nvme_tcp_queue *queue = req->queue;
2391 	u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0;
2392 	blk_status_t ret;
2393 
2394 	ret = nvme_setup_cmd(ns, rq);
2395 	if (ret)
2396 		return ret;
2397 
2398 	req->state = NVME_TCP_SEND_CMD_PDU;
2399 	req->status = cpu_to_le16(NVME_SC_SUCCESS);
2400 	req->offset = 0;
2401 	req->data_sent = 0;
2402 	req->pdu_len = 0;
2403 	req->pdu_sent = 0;
2404 	req->h2cdata_left = 0;
2405 	req->data_len = blk_rq_nr_phys_segments(rq) ?
2406 				blk_rq_payload_bytes(rq) : 0;
2407 	req->curr_bio = rq->bio;
2408 	if (req->curr_bio && req->data_len)
2409 		nvme_tcp_init_iter(req, rq_data_dir(rq));
2410 
2411 	if (rq_data_dir(rq) == WRITE &&
2412 	    req->data_len <= nvme_tcp_inline_data_size(req))
2413 		req->pdu_len = req->data_len;
2414 
2415 	pdu->hdr.type = nvme_tcp_cmd;
2416 	pdu->hdr.flags = 0;
2417 	if (queue->hdr_digest)
2418 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
2419 	if (queue->data_digest && req->pdu_len) {
2420 		pdu->hdr.flags |= NVME_TCP_F_DDGST;
2421 		ddgst = nvme_tcp_ddgst_len(queue);
2422 	}
2423 	pdu->hdr.hlen = sizeof(*pdu);
2424 	pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0;
2425 	pdu->hdr.plen =
2426 		cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst);
2427 
2428 	ret = nvme_tcp_map_data(queue, rq);
2429 	if (unlikely(ret)) {
2430 		nvme_cleanup_cmd(rq);
2431 		dev_err(queue->ctrl->ctrl.device,
2432 			"Failed to map data (%d)\n", ret);
2433 		return ret;
2434 	}
2435 
2436 	return 0;
2437 }
2438 
2439 static void nvme_tcp_commit_rqs(struct blk_mq_hw_ctx *hctx)
2440 {
2441 	struct nvme_tcp_queue *queue = hctx->driver_data;
2442 
2443 	if (!llist_empty(&queue->req_list))
2444 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
2445 }
2446 
2447 static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx,
2448 		const struct blk_mq_queue_data *bd)
2449 {
2450 	struct nvme_ns *ns = hctx->queue->queuedata;
2451 	struct nvme_tcp_queue *queue = hctx->driver_data;
2452 	struct request *rq = bd->rq;
2453 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2454 	bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags);
2455 	blk_status_t ret;
2456 
2457 	if (!nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2458 		return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq);
2459 
2460 	ret = nvme_tcp_setup_cmd_pdu(ns, rq);
2461 	if (unlikely(ret))
2462 		return ret;
2463 
2464 	blk_mq_start_request(rq);
2465 
2466 	nvme_tcp_queue_request(req, true, bd->last);
2467 
2468 	return BLK_STS_OK;
2469 }
2470 
2471 static int nvme_tcp_map_queues(struct blk_mq_tag_set *set)
2472 {
2473 	struct nvme_tcp_ctrl *ctrl = set->driver_data;
2474 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2475 
2476 	if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) {
2477 		/* separate read/write queues */
2478 		set->map[HCTX_TYPE_DEFAULT].nr_queues =
2479 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2480 		set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2481 		set->map[HCTX_TYPE_READ].nr_queues =
2482 			ctrl->io_queues[HCTX_TYPE_READ];
2483 		set->map[HCTX_TYPE_READ].queue_offset =
2484 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2485 	} else {
2486 		/* shared read/write queues */
2487 		set->map[HCTX_TYPE_DEFAULT].nr_queues =
2488 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2489 		set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2490 		set->map[HCTX_TYPE_READ].nr_queues =
2491 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2492 		set->map[HCTX_TYPE_READ].queue_offset = 0;
2493 	}
2494 	blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
2495 	blk_mq_map_queues(&set->map[HCTX_TYPE_READ]);
2496 
2497 	if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) {
2498 		/* map dedicated poll queues only if we have queues left */
2499 		set->map[HCTX_TYPE_POLL].nr_queues =
2500 				ctrl->io_queues[HCTX_TYPE_POLL];
2501 		set->map[HCTX_TYPE_POLL].queue_offset =
2502 			ctrl->io_queues[HCTX_TYPE_DEFAULT] +
2503 			ctrl->io_queues[HCTX_TYPE_READ];
2504 		blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]);
2505 	}
2506 
2507 	dev_info(ctrl->ctrl.device,
2508 		"mapped %d/%d/%d default/read/poll queues.\n",
2509 		ctrl->io_queues[HCTX_TYPE_DEFAULT],
2510 		ctrl->io_queues[HCTX_TYPE_READ],
2511 		ctrl->io_queues[HCTX_TYPE_POLL]);
2512 
2513 	return 0;
2514 }
2515 
2516 static int nvme_tcp_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
2517 {
2518 	struct nvme_tcp_queue *queue = hctx->driver_data;
2519 	struct sock *sk = queue->sock->sk;
2520 
2521 	if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags))
2522 		return 0;
2523 
2524 	set_bit(NVME_TCP_Q_POLLING, &queue->flags);
2525 	if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue))
2526 		sk_busy_loop(sk, true);
2527 	nvme_tcp_try_recv(queue);
2528 	clear_bit(NVME_TCP_Q_POLLING, &queue->flags);
2529 	return queue->nr_cqe;
2530 }
2531 
2532 static const struct blk_mq_ops nvme_tcp_mq_ops = {
2533 	.queue_rq	= nvme_tcp_queue_rq,
2534 	.commit_rqs	= nvme_tcp_commit_rqs,
2535 	.complete	= nvme_complete_rq,
2536 	.init_request	= nvme_tcp_init_request,
2537 	.exit_request	= nvme_tcp_exit_request,
2538 	.init_hctx	= nvme_tcp_init_hctx,
2539 	.timeout	= nvme_tcp_timeout,
2540 	.map_queues	= nvme_tcp_map_queues,
2541 	.poll		= nvme_tcp_poll,
2542 };
2543 
2544 static const struct blk_mq_ops nvme_tcp_admin_mq_ops = {
2545 	.queue_rq	= nvme_tcp_queue_rq,
2546 	.complete	= nvme_complete_rq,
2547 	.init_request	= nvme_tcp_init_request,
2548 	.exit_request	= nvme_tcp_exit_request,
2549 	.init_hctx	= nvme_tcp_init_admin_hctx,
2550 	.timeout	= nvme_tcp_timeout,
2551 };
2552 
2553 static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = {
2554 	.name			= "tcp",
2555 	.module			= THIS_MODULE,
2556 	.flags			= NVME_F_FABRICS,
2557 	.reg_read32		= nvmf_reg_read32,
2558 	.reg_read64		= nvmf_reg_read64,
2559 	.reg_write32		= nvmf_reg_write32,
2560 	.free_ctrl		= nvme_tcp_free_ctrl,
2561 	.submit_async_event	= nvme_tcp_submit_async_event,
2562 	.delete_ctrl		= nvme_tcp_delete_ctrl,
2563 	.get_address		= nvmf_get_address,
2564 	.stop_ctrl		= nvme_tcp_stop_ctrl,
2565 };
2566 
2567 static bool
2568 nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts)
2569 {
2570 	struct nvme_tcp_ctrl *ctrl;
2571 	bool found = false;
2572 
2573 	mutex_lock(&nvme_tcp_ctrl_mutex);
2574 	list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) {
2575 		found = nvmf_ip_options_match(&ctrl->ctrl, opts);
2576 		if (found)
2577 			break;
2578 	}
2579 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2580 
2581 	return found;
2582 }
2583 
2584 static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev,
2585 		struct nvmf_ctrl_options *opts)
2586 {
2587 	struct nvme_tcp_ctrl *ctrl;
2588 	int ret;
2589 
2590 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2591 	if (!ctrl)
2592 		return ERR_PTR(-ENOMEM);
2593 
2594 	INIT_LIST_HEAD(&ctrl->list);
2595 	ctrl->ctrl.opts = opts;
2596 	ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2597 				opts->nr_poll_queues + 1;
2598 	ctrl->ctrl.sqsize = opts->queue_size - 1;
2599 	ctrl->ctrl.kato = opts->kato;
2600 
2601 	INIT_DELAYED_WORK(&ctrl->connect_work,
2602 			nvme_tcp_reconnect_ctrl_work);
2603 	INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work);
2604 	INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work);
2605 
2606 	if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2607 		opts->trsvcid =
2608 			kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL);
2609 		if (!opts->trsvcid) {
2610 			ret = -ENOMEM;
2611 			goto out_free_ctrl;
2612 		}
2613 		opts->mask |= NVMF_OPT_TRSVCID;
2614 	}
2615 
2616 	ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2617 			opts->traddr, opts->trsvcid, &ctrl->addr);
2618 	if (ret) {
2619 		pr_err("malformed address passed: %s:%s\n",
2620 			opts->traddr, opts->trsvcid);
2621 		goto out_free_ctrl;
2622 	}
2623 
2624 	if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2625 		ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2626 			opts->host_traddr, NULL, &ctrl->src_addr);
2627 		if (ret) {
2628 			pr_err("malformed src address passed: %s\n",
2629 			       opts->host_traddr);
2630 			goto out_free_ctrl;
2631 		}
2632 	}
2633 
2634 	if (opts->mask & NVMF_OPT_HOST_IFACE) {
2635 		if (!__dev_get_by_name(&init_net, opts->host_iface)) {
2636 			pr_err("invalid interface passed: %s\n",
2637 			       opts->host_iface);
2638 			ret = -ENODEV;
2639 			goto out_free_ctrl;
2640 		}
2641 	}
2642 
2643 	if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) {
2644 		ret = -EALREADY;
2645 		goto out_free_ctrl;
2646 	}
2647 
2648 	ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2649 				GFP_KERNEL);
2650 	if (!ctrl->queues) {
2651 		ret = -ENOMEM;
2652 		goto out_free_ctrl;
2653 	}
2654 
2655 	ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0);
2656 	if (ret)
2657 		goto out_kfree_queues;
2658 
2659 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2660 		WARN_ON_ONCE(1);
2661 		ret = -EINTR;
2662 		goto out_uninit_ctrl;
2663 	}
2664 
2665 	ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true);
2666 	if (ret)
2667 		goto out_uninit_ctrl;
2668 
2669 	dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n",
2670 		nvmf_ctrl_subsysnqn(&ctrl->ctrl), &ctrl->addr);
2671 
2672 	mutex_lock(&nvme_tcp_ctrl_mutex);
2673 	list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list);
2674 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2675 
2676 	return &ctrl->ctrl;
2677 
2678 out_uninit_ctrl:
2679 	nvme_uninit_ctrl(&ctrl->ctrl);
2680 	nvme_put_ctrl(&ctrl->ctrl);
2681 	if (ret > 0)
2682 		ret = -EIO;
2683 	return ERR_PTR(ret);
2684 out_kfree_queues:
2685 	kfree(ctrl->queues);
2686 out_free_ctrl:
2687 	kfree(ctrl);
2688 	return ERR_PTR(ret);
2689 }
2690 
2691 static struct nvmf_transport_ops nvme_tcp_transport = {
2692 	.name		= "tcp",
2693 	.module		= THIS_MODULE,
2694 	.required_opts	= NVMF_OPT_TRADDR,
2695 	.allowed_opts	= NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2696 			  NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2697 			  NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST |
2698 			  NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
2699 			  NVMF_OPT_TOS | NVMF_OPT_HOST_IFACE,
2700 	.create_ctrl	= nvme_tcp_create_ctrl,
2701 };
2702 
2703 static int __init nvme_tcp_init_module(void)
2704 {
2705 	nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq",
2706 			WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2707 	if (!nvme_tcp_wq)
2708 		return -ENOMEM;
2709 
2710 	nvmf_register_transport(&nvme_tcp_transport);
2711 	return 0;
2712 }
2713 
2714 static void __exit nvme_tcp_cleanup_module(void)
2715 {
2716 	struct nvme_tcp_ctrl *ctrl;
2717 
2718 	nvmf_unregister_transport(&nvme_tcp_transport);
2719 
2720 	mutex_lock(&nvme_tcp_ctrl_mutex);
2721 	list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list)
2722 		nvme_delete_ctrl(&ctrl->ctrl);
2723 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2724 	flush_workqueue(nvme_delete_wq);
2725 
2726 	destroy_workqueue(nvme_tcp_wq);
2727 }
2728 
2729 module_init(nvme_tcp_init_module);
2730 module_exit(nvme_tcp_cleanup_module);
2731 
2732 MODULE_LICENSE("GPL v2");
2733