1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVMe over Fabrics TCP host. 4 * Copyright (c) 2018 Lightbits Labs. All rights reserved. 5 */ 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 #include <linux/module.h> 8 #include <linux/init.h> 9 #include <linux/slab.h> 10 #include <linux/err.h> 11 #include <linux/key.h> 12 #include <linux/nvme-tcp.h> 13 #include <linux/nvme-keyring.h> 14 #include <net/sock.h> 15 #include <net/tcp.h> 16 #include <net/tls.h> 17 #include <net/tls_prot.h> 18 #include <net/handshake.h> 19 #include <linux/blk-mq.h> 20 #include <crypto/hash.h> 21 #include <net/busy_poll.h> 22 #include <trace/events/sock.h> 23 24 #include "nvme.h" 25 #include "fabrics.h" 26 27 struct nvme_tcp_queue; 28 29 /* Define the socket priority to use for connections were it is desirable 30 * that the NIC consider performing optimized packet processing or filtering. 31 * A non-zero value being sufficient to indicate general consideration of any 32 * possible optimization. Making it a module param allows for alternative 33 * values that may be unique for some NIC implementations. 34 */ 35 static int so_priority; 36 module_param(so_priority, int, 0644); 37 MODULE_PARM_DESC(so_priority, "nvme tcp socket optimize priority"); 38 39 /* 40 * Use the unbound workqueue for nvme_tcp_wq, then we can set the cpu affinity 41 * from sysfs. 42 */ 43 static bool wq_unbound; 44 module_param(wq_unbound, bool, 0644); 45 MODULE_PARM_DESC(wq_unbound, "Use unbound workqueue for nvme-tcp IO context (default false)"); 46 47 /* 48 * TLS handshake timeout 49 */ 50 static int tls_handshake_timeout = 10; 51 #ifdef CONFIG_NVME_TCP_TLS 52 module_param(tls_handshake_timeout, int, 0644); 53 MODULE_PARM_DESC(tls_handshake_timeout, 54 "nvme TLS handshake timeout in seconds (default 10)"); 55 #endif 56 57 #ifdef CONFIG_DEBUG_LOCK_ALLOC 58 /* lockdep can detect a circular dependency of the form 59 * sk_lock -> mmap_lock (page fault) -> fs locks -> sk_lock 60 * because dependencies are tracked for both nvme-tcp and user contexts. Using 61 * a separate class prevents lockdep from conflating nvme-tcp socket use with 62 * user-space socket API use. 63 */ 64 static struct lock_class_key nvme_tcp_sk_key[2]; 65 static struct lock_class_key nvme_tcp_slock_key[2]; 66 67 static void nvme_tcp_reclassify_socket(struct socket *sock) 68 { 69 struct sock *sk = sock->sk; 70 71 if (WARN_ON_ONCE(!sock_allow_reclassification(sk))) 72 return; 73 74 switch (sk->sk_family) { 75 case AF_INET: 76 sock_lock_init_class_and_name(sk, "slock-AF_INET-NVME", 77 &nvme_tcp_slock_key[0], 78 "sk_lock-AF_INET-NVME", 79 &nvme_tcp_sk_key[0]); 80 break; 81 case AF_INET6: 82 sock_lock_init_class_and_name(sk, "slock-AF_INET6-NVME", 83 &nvme_tcp_slock_key[1], 84 "sk_lock-AF_INET6-NVME", 85 &nvme_tcp_sk_key[1]); 86 break; 87 default: 88 WARN_ON_ONCE(1); 89 } 90 } 91 #else 92 static void nvme_tcp_reclassify_socket(struct socket *sock) { } 93 #endif 94 95 enum nvme_tcp_send_state { 96 NVME_TCP_SEND_CMD_PDU = 0, 97 NVME_TCP_SEND_H2C_PDU, 98 NVME_TCP_SEND_DATA, 99 NVME_TCP_SEND_DDGST, 100 }; 101 102 struct nvme_tcp_request { 103 struct nvme_request req; 104 void *pdu; 105 struct nvme_tcp_queue *queue; 106 u32 data_len; 107 u32 pdu_len; 108 u32 pdu_sent; 109 u32 h2cdata_left; 110 u32 h2cdata_offset; 111 u16 ttag; 112 __le16 status; 113 struct list_head entry; 114 struct llist_node lentry; 115 __le32 ddgst; 116 117 struct bio *curr_bio; 118 struct iov_iter iter; 119 120 /* send state */ 121 size_t offset; 122 size_t data_sent; 123 enum nvme_tcp_send_state state; 124 }; 125 126 enum nvme_tcp_queue_flags { 127 NVME_TCP_Q_ALLOCATED = 0, 128 NVME_TCP_Q_LIVE = 1, 129 NVME_TCP_Q_POLLING = 2, 130 }; 131 132 enum nvme_tcp_recv_state { 133 NVME_TCP_RECV_PDU = 0, 134 NVME_TCP_RECV_DATA, 135 NVME_TCP_RECV_DDGST, 136 }; 137 138 struct nvme_tcp_ctrl; 139 struct nvme_tcp_queue { 140 struct socket *sock; 141 struct work_struct io_work; 142 int io_cpu; 143 144 struct mutex queue_lock; 145 struct mutex send_mutex; 146 struct llist_head req_list; 147 struct list_head send_list; 148 149 /* recv state */ 150 void *pdu; 151 int pdu_remaining; 152 int pdu_offset; 153 size_t data_remaining; 154 size_t ddgst_remaining; 155 unsigned int nr_cqe; 156 157 /* send state */ 158 struct nvme_tcp_request *request; 159 160 u32 maxh2cdata; 161 size_t cmnd_capsule_len; 162 struct nvme_tcp_ctrl *ctrl; 163 unsigned long flags; 164 bool rd_enabled; 165 166 bool hdr_digest; 167 bool data_digest; 168 struct ahash_request *rcv_hash; 169 struct ahash_request *snd_hash; 170 __le32 exp_ddgst; 171 __le32 recv_ddgst; 172 struct completion tls_complete; 173 int tls_err; 174 struct page_frag_cache pf_cache; 175 176 void (*state_change)(struct sock *); 177 void (*data_ready)(struct sock *); 178 void (*write_space)(struct sock *); 179 }; 180 181 struct nvme_tcp_ctrl { 182 /* read only in the hot path */ 183 struct nvme_tcp_queue *queues; 184 struct blk_mq_tag_set tag_set; 185 186 /* other member variables */ 187 struct list_head list; 188 struct blk_mq_tag_set admin_tag_set; 189 struct sockaddr_storage addr; 190 struct sockaddr_storage src_addr; 191 struct nvme_ctrl ctrl; 192 193 struct work_struct err_work; 194 struct delayed_work connect_work; 195 struct nvme_tcp_request async_req; 196 u32 io_queues[HCTX_MAX_TYPES]; 197 }; 198 199 static LIST_HEAD(nvme_tcp_ctrl_list); 200 static DEFINE_MUTEX(nvme_tcp_ctrl_mutex); 201 static struct workqueue_struct *nvme_tcp_wq; 202 static const struct blk_mq_ops nvme_tcp_mq_ops; 203 static const struct blk_mq_ops nvme_tcp_admin_mq_ops; 204 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue); 205 206 static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl) 207 { 208 return container_of(ctrl, struct nvme_tcp_ctrl, ctrl); 209 } 210 211 static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue) 212 { 213 return queue - queue->ctrl->queues; 214 } 215 216 static inline bool nvme_tcp_tls(struct nvme_ctrl *ctrl) 217 { 218 if (!IS_ENABLED(CONFIG_NVME_TCP_TLS)) 219 return 0; 220 221 return ctrl->opts->tls; 222 } 223 224 static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue) 225 { 226 u32 queue_idx = nvme_tcp_queue_id(queue); 227 228 if (queue_idx == 0) 229 return queue->ctrl->admin_tag_set.tags[queue_idx]; 230 return queue->ctrl->tag_set.tags[queue_idx - 1]; 231 } 232 233 static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue) 234 { 235 return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0; 236 } 237 238 static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue) 239 { 240 return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0; 241 } 242 243 static inline void *nvme_tcp_req_cmd_pdu(struct nvme_tcp_request *req) 244 { 245 return req->pdu; 246 } 247 248 static inline void *nvme_tcp_req_data_pdu(struct nvme_tcp_request *req) 249 { 250 /* use the pdu space in the back for the data pdu */ 251 return req->pdu + sizeof(struct nvme_tcp_cmd_pdu) - 252 sizeof(struct nvme_tcp_data_pdu); 253 } 254 255 static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_request *req) 256 { 257 if (nvme_is_fabrics(req->req.cmd)) 258 return NVME_TCP_ADMIN_CCSZ; 259 return req->queue->cmnd_capsule_len - sizeof(struct nvme_command); 260 } 261 262 static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req) 263 { 264 return req == &req->queue->ctrl->async_req; 265 } 266 267 static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req) 268 { 269 struct request *rq; 270 271 if (unlikely(nvme_tcp_async_req(req))) 272 return false; /* async events don't have a request */ 273 274 rq = blk_mq_rq_from_pdu(req); 275 276 return rq_data_dir(rq) == WRITE && req->data_len && 277 req->data_len <= nvme_tcp_inline_data_size(req); 278 } 279 280 static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req) 281 { 282 return req->iter.bvec->bv_page; 283 } 284 285 static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req) 286 { 287 return req->iter.bvec->bv_offset + req->iter.iov_offset; 288 } 289 290 static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req) 291 { 292 return min_t(size_t, iov_iter_single_seg_count(&req->iter), 293 req->pdu_len - req->pdu_sent); 294 } 295 296 static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req) 297 { 298 return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ? 299 req->pdu_len - req->pdu_sent : 0; 300 } 301 302 static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req, 303 int len) 304 { 305 return nvme_tcp_pdu_data_left(req) <= len; 306 } 307 308 static void nvme_tcp_init_iter(struct nvme_tcp_request *req, 309 unsigned int dir) 310 { 311 struct request *rq = blk_mq_rq_from_pdu(req); 312 struct bio_vec *vec; 313 unsigned int size; 314 int nr_bvec; 315 size_t offset; 316 317 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) { 318 vec = &rq->special_vec; 319 nr_bvec = 1; 320 size = blk_rq_payload_bytes(rq); 321 offset = 0; 322 } else { 323 struct bio *bio = req->curr_bio; 324 struct bvec_iter bi; 325 struct bio_vec bv; 326 327 vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); 328 nr_bvec = 0; 329 bio_for_each_bvec(bv, bio, bi) { 330 nr_bvec++; 331 } 332 size = bio->bi_iter.bi_size; 333 offset = bio->bi_iter.bi_bvec_done; 334 } 335 336 iov_iter_bvec(&req->iter, dir, vec, nr_bvec, size); 337 req->iter.iov_offset = offset; 338 } 339 340 static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req, 341 int len) 342 { 343 req->data_sent += len; 344 req->pdu_sent += len; 345 iov_iter_advance(&req->iter, len); 346 if (!iov_iter_count(&req->iter) && 347 req->data_sent < req->data_len) { 348 req->curr_bio = req->curr_bio->bi_next; 349 nvme_tcp_init_iter(req, ITER_SOURCE); 350 } 351 } 352 353 static inline void nvme_tcp_send_all(struct nvme_tcp_queue *queue) 354 { 355 int ret; 356 357 /* drain the send queue as much as we can... */ 358 do { 359 ret = nvme_tcp_try_send(queue); 360 } while (ret > 0); 361 } 362 363 static inline bool nvme_tcp_queue_more(struct nvme_tcp_queue *queue) 364 { 365 return !list_empty(&queue->send_list) || 366 !llist_empty(&queue->req_list); 367 } 368 369 static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req, 370 bool sync, bool last) 371 { 372 struct nvme_tcp_queue *queue = req->queue; 373 bool empty; 374 375 empty = llist_add(&req->lentry, &queue->req_list) && 376 list_empty(&queue->send_list) && !queue->request; 377 378 /* 379 * if we're the first on the send_list and we can try to send 380 * directly, otherwise queue io_work. Also, only do that if we 381 * are on the same cpu, so we don't introduce contention. 382 */ 383 if (queue->io_cpu == raw_smp_processor_id() && 384 sync && empty && mutex_trylock(&queue->send_mutex)) { 385 nvme_tcp_send_all(queue); 386 mutex_unlock(&queue->send_mutex); 387 } 388 389 if (last && nvme_tcp_queue_more(queue)) 390 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 391 } 392 393 static void nvme_tcp_process_req_list(struct nvme_tcp_queue *queue) 394 { 395 struct nvme_tcp_request *req; 396 struct llist_node *node; 397 398 for (node = llist_del_all(&queue->req_list); node; node = node->next) { 399 req = llist_entry(node, struct nvme_tcp_request, lentry); 400 list_add(&req->entry, &queue->send_list); 401 } 402 } 403 404 static inline struct nvme_tcp_request * 405 nvme_tcp_fetch_request(struct nvme_tcp_queue *queue) 406 { 407 struct nvme_tcp_request *req; 408 409 req = list_first_entry_or_null(&queue->send_list, 410 struct nvme_tcp_request, entry); 411 if (!req) { 412 nvme_tcp_process_req_list(queue); 413 req = list_first_entry_or_null(&queue->send_list, 414 struct nvme_tcp_request, entry); 415 if (unlikely(!req)) 416 return NULL; 417 } 418 419 list_del(&req->entry); 420 return req; 421 } 422 423 static inline void nvme_tcp_ddgst_final(struct ahash_request *hash, 424 __le32 *dgst) 425 { 426 ahash_request_set_crypt(hash, NULL, (u8 *)dgst, 0); 427 crypto_ahash_final(hash); 428 } 429 430 static inline void nvme_tcp_ddgst_update(struct ahash_request *hash, 431 struct page *page, off_t off, size_t len) 432 { 433 struct scatterlist sg; 434 435 sg_init_table(&sg, 1); 436 sg_set_page(&sg, page, len, off); 437 ahash_request_set_crypt(hash, &sg, NULL, len); 438 crypto_ahash_update(hash); 439 } 440 441 static inline void nvme_tcp_hdgst(struct ahash_request *hash, 442 void *pdu, size_t len) 443 { 444 struct scatterlist sg; 445 446 sg_init_one(&sg, pdu, len); 447 ahash_request_set_crypt(hash, &sg, pdu + len, len); 448 crypto_ahash_digest(hash); 449 } 450 451 static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue, 452 void *pdu, size_t pdu_len) 453 { 454 struct nvme_tcp_hdr *hdr = pdu; 455 __le32 recv_digest; 456 __le32 exp_digest; 457 458 if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) { 459 dev_err(queue->ctrl->ctrl.device, 460 "queue %d: header digest flag is cleared\n", 461 nvme_tcp_queue_id(queue)); 462 return -EPROTO; 463 } 464 465 recv_digest = *(__le32 *)(pdu + hdr->hlen); 466 nvme_tcp_hdgst(queue->rcv_hash, pdu, pdu_len); 467 exp_digest = *(__le32 *)(pdu + hdr->hlen); 468 if (recv_digest != exp_digest) { 469 dev_err(queue->ctrl->ctrl.device, 470 "header digest error: recv %#x expected %#x\n", 471 le32_to_cpu(recv_digest), le32_to_cpu(exp_digest)); 472 return -EIO; 473 } 474 475 return 0; 476 } 477 478 static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu) 479 { 480 struct nvme_tcp_hdr *hdr = pdu; 481 u8 digest_len = nvme_tcp_hdgst_len(queue); 482 u32 len; 483 484 len = le32_to_cpu(hdr->plen) - hdr->hlen - 485 ((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0); 486 487 if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) { 488 dev_err(queue->ctrl->ctrl.device, 489 "queue %d: data digest flag is cleared\n", 490 nvme_tcp_queue_id(queue)); 491 return -EPROTO; 492 } 493 crypto_ahash_init(queue->rcv_hash); 494 495 return 0; 496 } 497 498 static void nvme_tcp_exit_request(struct blk_mq_tag_set *set, 499 struct request *rq, unsigned int hctx_idx) 500 { 501 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 502 503 page_frag_free(req->pdu); 504 } 505 506 static int nvme_tcp_init_request(struct blk_mq_tag_set *set, 507 struct request *rq, unsigned int hctx_idx, 508 unsigned int numa_node) 509 { 510 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(set->driver_data); 511 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 512 struct nvme_tcp_cmd_pdu *pdu; 513 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; 514 struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx]; 515 u8 hdgst = nvme_tcp_hdgst_len(queue); 516 517 req->pdu = page_frag_alloc(&queue->pf_cache, 518 sizeof(struct nvme_tcp_cmd_pdu) + hdgst, 519 GFP_KERNEL | __GFP_ZERO); 520 if (!req->pdu) 521 return -ENOMEM; 522 523 pdu = req->pdu; 524 req->queue = queue; 525 nvme_req(rq)->ctrl = &ctrl->ctrl; 526 nvme_req(rq)->cmd = &pdu->cmd; 527 528 return 0; 529 } 530 531 static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 532 unsigned int hctx_idx) 533 { 534 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(data); 535 struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1]; 536 537 hctx->driver_data = queue; 538 return 0; 539 } 540 541 static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, 542 unsigned int hctx_idx) 543 { 544 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(data); 545 struct nvme_tcp_queue *queue = &ctrl->queues[0]; 546 547 hctx->driver_data = queue; 548 return 0; 549 } 550 551 static enum nvme_tcp_recv_state 552 nvme_tcp_recv_state(struct nvme_tcp_queue *queue) 553 { 554 return (queue->pdu_remaining) ? NVME_TCP_RECV_PDU : 555 (queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST : 556 NVME_TCP_RECV_DATA; 557 } 558 559 static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue) 560 { 561 queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) + 562 nvme_tcp_hdgst_len(queue); 563 queue->pdu_offset = 0; 564 queue->data_remaining = -1; 565 queue->ddgst_remaining = 0; 566 } 567 568 static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl) 569 { 570 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 571 return; 572 573 dev_warn(ctrl->device, "starting error recovery\n"); 574 queue_work(nvme_reset_wq, &to_tcp_ctrl(ctrl)->err_work); 575 } 576 577 static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue, 578 struct nvme_completion *cqe) 579 { 580 struct nvme_tcp_request *req; 581 struct request *rq; 582 583 rq = nvme_find_rq(nvme_tcp_tagset(queue), cqe->command_id); 584 if (!rq) { 585 dev_err(queue->ctrl->ctrl.device, 586 "got bad cqe.command_id %#x on queue %d\n", 587 cqe->command_id, nvme_tcp_queue_id(queue)); 588 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 589 return -EINVAL; 590 } 591 592 req = blk_mq_rq_to_pdu(rq); 593 if (req->status == cpu_to_le16(NVME_SC_SUCCESS)) 594 req->status = cqe->status; 595 596 if (!nvme_try_complete_req(rq, req->status, cqe->result)) 597 nvme_complete_rq(rq); 598 queue->nr_cqe++; 599 600 return 0; 601 } 602 603 static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue, 604 struct nvme_tcp_data_pdu *pdu) 605 { 606 struct request *rq; 607 608 rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id); 609 if (!rq) { 610 dev_err(queue->ctrl->ctrl.device, 611 "got bad c2hdata.command_id %#x on queue %d\n", 612 pdu->command_id, nvme_tcp_queue_id(queue)); 613 return -ENOENT; 614 } 615 616 if (!blk_rq_payload_bytes(rq)) { 617 dev_err(queue->ctrl->ctrl.device, 618 "queue %d tag %#x unexpected data\n", 619 nvme_tcp_queue_id(queue), rq->tag); 620 return -EIO; 621 } 622 623 queue->data_remaining = le32_to_cpu(pdu->data_length); 624 625 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS && 626 unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) { 627 dev_err(queue->ctrl->ctrl.device, 628 "queue %d tag %#x SUCCESS set but not last PDU\n", 629 nvme_tcp_queue_id(queue), rq->tag); 630 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 631 return -EPROTO; 632 } 633 634 return 0; 635 } 636 637 static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue, 638 struct nvme_tcp_rsp_pdu *pdu) 639 { 640 struct nvme_completion *cqe = &pdu->cqe; 641 int ret = 0; 642 643 /* 644 * AEN requests are special as they don't time out and can 645 * survive any kind of queue freeze and often don't respond to 646 * aborts. We don't even bother to allocate a struct request 647 * for them but rather special case them here. 648 */ 649 if (unlikely(nvme_is_aen_req(nvme_tcp_queue_id(queue), 650 cqe->command_id))) 651 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status, 652 &cqe->result); 653 else 654 ret = nvme_tcp_process_nvme_cqe(queue, cqe); 655 656 return ret; 657 } 658 659 static void nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req) 660 { 661 struct nvme_tcp_data_pdu *data = nvme_tcp_req_data_pdu(req); 662 struct nvme_tcp_queue *queue = req->queue; 663 struct request *rq = blk_mq_rq_from_pdu(req); 664 u32 h2cdata_sent = req->pdu_len; 665 u8 hdgst = nvme_tcp_hdgst_len(queue); 666 u8 ddgst = nvme_tcp_ddgst_len(queue); 667 668 req->state = NVME_TCP_SEND_H2C_PDU; 669 req->offset = 0; 670 req->pdu_len = min(req->h2cdata_left, queue->maxh2cdata); 671 req->pdu_sent = 0; 672 req->h2cdata_left -= req->pdu_len; 673 req->h2cdata_offset += h2cdata_sent; 674 675 memset(data, 0, sizeof(*data)); 676 data->hdr.type = nvme_tcp_h2c_data; 677 if (!req->h2cdata_left) 678 data->hdr.flags = NVME_TCP_F_DATA_LAST; 679 if (queue->hdr_digest) 680 data->hdr.flags |= NVME_TCP_F_HDGST; 681 if (queue->data_digest) 682 data->hdr.flags |= NVME_TCP_F_DDGST; 683 data->hdr.hlen = sizeof(*data); 684 data->hdr.pdo = data->hdr.hlen + hdgst; 685 data->hdr.plen = 686 cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst); 687 data->ttag = req->ttag; 688 data->command_id = nvme_cid(rq); 689 data->data_offset = cpu_to_le32(req->h2cdata_offset); 690 data->data_length = cpu_to_le32(req->pdu_len); 691 } 692 693 static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue, 694 struct nvme_tcp_r2t_pdu *pdu) 695 { 696 struct nvme_tcp_request *req; 697 struct request *rq; 698 u32 r2t_length = le32_to_cpu(pdu->r2t_length); 699 u32 r2t_offset = le32_to_cpu(pdu->r2t_offset); 700 701 rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id); 702 if (!rq) { 703 dev_err(queue->ctrl->ctrl.device, 704 "got bad r2t.command_id %#x on queue %d\n", 705 pdu->command_id, nvme_tcp_queue_id(queue)); 706 return -ENOENT; 707 } 708 req = blk_mq_rq_to_pdu(rq); 709 710 if (unlikely(!r2t_length)) { 711 dev_err(queue->ctrl->ctrl.device, 712 "req %d r2t len is %u, probably a bug...\n", 713 rq->tag, r2t_length); 714 return -EPROTO; 715 } 716 717 if (unlikely(req->data_sent + r2t_length > req->data_len)) { 718 dev_err(queue->ctrl->ctrl.device, 719 "req %d r2t len %u exceeded data len %u (%zu sent)\n", 720 rq->tag, r2t_length, req->data_len, req->data_sent); 721 return -EPROTO; 722 } 723 724 if (unlikely(r2t_offset < req->data_sent)) { 725 dev_err(queue->ctrl->ctrl.device, 726 "req %d unexpected r2t offset %u (expected %zu)\n", 727 rq->tag, r2t_offset, req->data_sent); 728 return -EPROTO; 729 } 730 731 req->pdu_len = 0; 732 req->h2cdata_left = r2t_length; 733 req->h2cdata_offset = r2t_offset; 734 req->ttag = pdu->ttag; 735 736 nvme_tcp_setup_h2c_data_pdu(req); 737 nvme_tcp_queue_request(req, false, true); 738 739 return 0; 740 } 741 742 static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb, 743 unsigned int *offset, size_t *len) 744 { 745 struct nvme_tcp_hdr *hdr; 746 char *pdu = queue->pdu; 747 size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining); 748 int ret; 749 750 ret = skb_copy_bits(skb, *offset, 751 &pdu[queue->pdu_offset], rcv_len); 752 if (unlikely(ret)) 753 return ret; 754 755 queue->pdu_remaining -= rcv_len; 756 queue->pdu_offset += rcv_len; 757 *offset += rcv_len; 758 *len -= rcv_len; 759 if (queue->pdu_remaining) 760 return 0; 761 762 hdr = queue->pdu; 763 if (queue->hdr_digest) { 764 ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen); 765 if (unlikely(ret)) 766 return ret; 767 } 768 769 770 if (queue->data_digest) { 771 ret = nvme_tcp_check_ddgst(queue, queue->pdu); 772 if (unlikely(ret)) 773 return ret; 774 } 775 776 switch (hdr->type) { 777 case nvme_tcp_c2h_data: 778 return nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu); 779 case nvme_tcp_rsp: 780 nvme_tcp_init_recv_ctx(queue); 781 return nvme_tcp_handle_comp(queue, (void *)queue->pdu); 782 case nvme_tcp_r2t: 783 nvme_tcp_init_recv_ctx(queue); 784 return nvme_tcp_handle_r2t(queue, (void *)queue->pdu); 785 default: 786 dev_err(queue->ctrl->ctrl.device, 787 "unsupported pdu type (%d)\n", hdr->type); 788 return -EINVAL; 789 } 790 } 791 792 static inline void nvme_tcp_end_request(struct request *rq, u16 status) 793 { 794 union nvme_result res = {}; 795 796 if (!nvme_try_complete_req(rq, cpu_to_le16(status << 1), res)) 797 nvme_complete_rq(rq); 798 } 799 800 static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb, 801 unsigned int *offset, size_t *len) 802 { 803 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu; 804 struct request *rq = 805 nvme_cid_to_rq(nvme_tcp_tagset(queue), pdu->command_id); 806 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 807 808 while (true) { 809 int recv_len, ret; 810 811 recv_len = min_t(size_t, *len, queue->data_remaining); 812 if (!recv_len) 813 break; 814 815 if (!iov_iter_count(&req->iter)) { 816 req->curr_bio = req->curr_bio->bi_next; 817 818 /* 819 * If we don`t have any bios it means that controller 820 * sent more data than we requested, hence error 821 */ 822 if (!req->curr_bio) { 823 dev_err(queue->ctrl->ctrl.device, 824 "queue %d no space in request %#x", 825 nvme_tcp_queue_id(queue), rq->tag); 826 nvme_tcp_init_recv_ctx(queue); 827 return -EIO; 828 } 829 nvme_tcp_init_iter(req, ITER_DEST); 830 } 831 832 /* we can read only from what is left in this bio */ 833 recv_len = min_t(size_t, recv_len, 834 iov_iter_count(&req->iter)); 835 836 if (queue->data_digest) 837 ret = skb_copy_and_hash_datagram_iter(skb, *offset, 838 &req->iter, recv_len, queue->rcv_hash); 839 else 840 ret = skb_copy_datagram_iter(skb, *offset, 841 &req->iter, recv_len); 842 if (ret) { 843 dev_err(queue->ctrl->ctrl.device, 844 "queue %d failed to copy request %#x data", 845 nvme_tcp_queue_id(queue), rq->tag); 846 return ret; 847 } 848 849 *len -= recv_len; 850 *offset += recv_len; 851 queue->data_remaining -= recv_len; 852 } 853 854 if (!queue->data_remaining) { 855 if (queue->data_digest) { 856 nvme_tcp_ddgst_final(queue->rcv_hash, &queue->exp_ddgst); 857 queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH; 858 } else { 859 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) { 860 nvme_tcp_end_request(rq, 861 le16_to_cpu(req->status)); 862 queue->nr_cqe++; 863 } 864 nvme_tcp_init_recv_ctx(queue); 865 } 866 } 867 868 return 0; 869 } 870 871 static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue, 872 struct sk_buff *skb, unsigned int *offset, size_t *len) 873 { 874 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu; 875 char *ddgst = (char *)&queue->recv_ddgst; 876 size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining); 877 off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining; 878 int ret; 879 880 ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len); 881 if (unlikely(ret)) 882 return ret; 883 884 queue->ddgst_remaining -= recv_len; 885 *offset += recv_len; 886 *len -= recv_len; 887 if (queue->ddgst_remaining) 888 return 0; 889 890 if (queue->recv_ddgst != queue->exp_ddgst) { 891 struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue), 892 pdu->command_id); 893 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 894 895 req->status = cpu_to_le16(NVME_SC_DATA_XFER_ERROR); 896 897 dev_err(queue->ctrl->ctrl.device, 898 "data digest error: recv %#x expected %#x\n", 899 le32_to_cpu(queue->recv_ddgst), 900 le32_to_cpu(queue->exp_ddgst)); 901 } 902 903 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) { 904 struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue), 905 pdu->command_id); 906 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 907 908 nvme_tcp_end_request(rq, le16_to_cpu(req->status)); 909 queue->nr_cqe++; 910 } 911 912 nvme_tcp_init_recv_ctx(queue); 913 return 0; 914 } 915 916 static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb, 917 unsigned int offset, size_t len) 918 { 919 struct nvme_tcp_queue *queue = desc->arg.data; 920 size_t consumed = len; 921 int result; 922 923 if (unlikely(!queue->rd_enabled)) 924 return -EFAULT; 925 926 while (len) { 927 switch (nvme_tcp_recv_state(queue)) { 928 case NVME_TCP_RECV_PDU: 929 result = nvme_tcp_recv_pdu(queue, skb, &offset, &len); 930 break; 931 case NVME_TCP_RECV_DATA: 932 result = nvme_tcp_recv_data(queue, skb, &offset, &len); 933 break; 934 case NVME_TCP_RECV_DDGST: 935 result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len); 936 break; 937 default: 938 result = -EFAULT; 939 } 940 if (result) { 941 dev_err(queue->ctrl->ctrl.device, 942 "receive failed: %d\n", result); 943 queue->rd_enabled = false; 944 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 945 return result; 946 } 947 } 948 949 return consumed; 950 } 951 952 static void nvme_tcp_data_ready(struct sock *sk) 953 { 954 struct nvme_tcp_queue *queue; 955 956 trace_sk_data_ready(sk); 957 958 read_lock_bh(&sk->sk_callback_lock); 959 queue = sk->sk_user_data; 960 if (likely(queue && queue->rd_enabled) && 961 !test_bit(NVME_TCP_Q_POLLING, &queue->flags)) 962 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 963 read_unlock_bh(&sk->sk_callback_lock); 964 } 965 966 static void nvme_tcp_write_space(struct sock *sk) 967 { 968 struct nvme_tcp_queue *queue; 969 970 read_lock_bh(&sk->sk_callback_lock); 971 queue = sk->sk_user_data; 972 if (likely(queue && sk_stream_is_writeable(sk))) { 973 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 974 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 975 } 976 read_unlock_bh(&sk->sk_callback_lock); 977 } 978 979 static void nvme_tcp_state_change(struct sock *sk) 980 { 981 struct nvme_tcp_queue *queue; 982 983 read_lock_bh(&sk->sk_callback_lock); 984 queue = sk->sk_user_data; 985 if (!queue) 986 goto done; 987 988 switch (sk->sk_state) { 989 case TCP_CLOSE: 990 case TCP_CLOSE_WAIT: 991 case TCP_LAST_ACK: 992 case TCP_FIN_WAIT1: 993 case TCP_FIN_WAIT2: 994 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 995 break; 996 default: 997 dev_info(queue->ctrl->ctrl.device, 998 "queue %d socket state %d\n", 999 nvme_tcp_queue_id(queue), sk->sk_state); 1000 } 1001 1002 queue->state_change(sk); 1003 done: 1004 read_unlock_bh(&sk->sk_callback_lock); 1005 } 1006 1007 static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue) 1008 { 1009 queue->request = NULL; 1010 } 1011 1012 static void nvme_tcp_fail_request(struct nvme_tcp_request *req) 1013 { 1014 if (nvme_tcp_async_req(req)) { 1015 union nvme_result res = {}; 1016 1017 nvme_complete_async_event(&req->queue->ctrl->ctrl, 1018 cpu_to_le16(NVME_SC_HOST_PATH_ERROR), &res); 1019 } else { 1020 nvme_tcp_end_request(blk_mq_rq_from_pdu(req), 1021 NVME_SC_HOST_PATH_ERROR); 1022 } 1023 } 1024 1025 static int nvme_tcp_try_send_data(struct nvme_tcp_request *req) 1026 { 1027 struct nvme_tcp_queue *queue = req->queue; 1028 int req_data_len = req->data_len; 1029 u32 h2cdata_left = req->h2cdata_left; 1030 1031 while (true) { 1032 struct bio_vec bvec; 1033 struct msghdr msg = { 1034 .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, 1035 }; 1036 struct page *page = nvme_tcp_req_cur_page(req); 1037 size_t offset = nvme_tcp_req_cur_offset(req); 1038 size_t len = nvme_tcp_req_cur_length(req); 1039 bool last = nvme_tcp_pdu_last_send(req, len); 1040 int req_data_sent = req->data_sent; 1041 int ret; 1042 1043 if (last && !queue->data_digest && !nvme_tcp_queue_more(queue)) 1044 msg.msg_flags |= MSG_EOR; 1045 else 1046 msg.msg_flags |= MSG_MORE; 1047 1048 if (!sendpage_ok(page)) 1049 msg.msg_flags &= ~MSG_SPLICE_PAGES; 1050 1051 bvec_set_page(&bvec, page, len, offset); 1052 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len); 1053 ret = sock_sendmsg(queue->sock, &msg); 1054 if (ret <= 0) 1055 return ret; 1056 1057 if (queue->data_digest) 1058 nvme_tcp_ddgst_update(queue->snd_hash, page, 1059 offset, ret); 1060 1061 /* 1062 * update the request iterator except for the last payload send 1063 * in the request where we don't want to modify it as we may 1064 * compete with the RX path completing the request. 1065 */ 1066 if (req_data_sent + ret < req_data_len) 1067 nvme_tcp_advance_req(req, ret); 1068 1069 /* fully successful last send in current PDU */ 1070 if (last && ret == len) { 1071 if (queue->data_digest) { 1072 nvme_tcp_ddgst_final(queue->snd_hash, 1073 &req->ddgst); 1074 req->state = NVME_TCP_SEND_DDGST; 1075 req->offset = 0; 1076 } else { 1077 if (h2cdata_left) 1078 nvme_tcp_setup_h2c_data_pdu(req); 1079 else 1080 nvme_tcp_done_send_req(queue); 1081 } 1082 return 1; 1083 } 1084 } 1085 return -EAGAIN; 1086 } 1087 1088 static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req) 1089 { 1090 struct nvme_tcp_queue *queue = req->queue; 1091 struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req); 1092 struct bio_vec bvec; 1093 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, }; 1094 bool inline_data = nvme_tcp_has_inline_data(req); 1095 u8 hdgst = nvme_tcp_hdgst_len(queue); 1096 int len = sizeof(*pdu) + hdgst - req->offset; 1097 int ret; 1098 1099 if (inline_data || nvme_tcp_queue_more(queue)) 1100 msg.msg_flags |= MSG_MORE; 1101 else 1102 msg.msg_flags |= MSG_EOR; 1103 1104 if (queue->hdr_digest && !req->offset) 1105 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); 1106 1107 bvec_set_virt(&bvec, (void *)pdu + req->offset, len); 1108 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len); 1109 ret = sock_sendmsg(queue->sock, &msg); 1110 if (unlikely(ret <= 0)) 1111 return ret; 1112 1113 len -= ret; 1114 if (!len) { 1115 if (inline_data) { 1116 req->state = NVME_TCP_SEND_DATA; 1117 if (queue->data_digest) 1118 crypto_ahash_init(queue->snd_hash); 1119 } else { 1120 nvme_tcp_done_send_req(queue); 1121 } 1122 return 1; 1123 } 1124 req->offset += ret; 1125 1126 return -EAGAIN; 1127 } 1128 1129 static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req) 1130 { 1131 struct nvme_tcp_queue *queue = req->queue; 1132 struct nvme_tcp_data_pdu *pdu = nvme_tcp_req_data_pdu(req); 1133 struct bio_vec bvec; 1134 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_MORE, }; 1135 u8 hdgst = nvme_tcp_hdgst_len(queue); 1136 int len = sizeof(*pdu) - req->offset + hdgst; 1137 int ret; 1138 1139 if (queue->hdr_digest && !req->offset) 1140 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); 1141 1142 if (!req->h2cdata_left) 1143 msg.msg_flags |= MSG_SPLICE_PAGES; 1144 1145 bvec_set_virt(&bvec, (void *)pdu + req->offset, len); 1146 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len); 1147 ret = sock_sendmsg(queue->sock, &msg); 1148 if (unlikely(ret <= 0)) 1149 return ret; 1150 1151 len -= ret; 1152 if (!len) { 1153 req->state = NVME_TCP_SEND_DATA; 1154 if (queue->data_digest) 1155 crypto_ahash_init(queue->snd_hash); 1156 return 1; 1157 } 1158 req->offset += ret; 1159 1160 return -EAGAIN; 1161 } 1162 1163 static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req) 1164 { 1165 struct nvme_tcp_queue *queue = req->queue; 1166 size_t offset = req->offset; 1167 u32 h2cdata_left = req->h2cdata_left; 1168 int ret; 1169 struct msghdr msg = { .msg_flags = MSG_DONTWAIT }; 1170 struct kvec iov = { 1171 .iov_base = (u8 *)&req->ddgst + req->offset, 1172 .iov_len = NVME_TCP_DIGEST_LENGTH - req->offset 1173 }; 1174 1175 if (nvme_tcp_queue_more(queue)) 1176 msg.msg_flags |= MSG_MORE; 1177 else 1178 msg.msg_flags |= MSG_EOR; 1179 1180 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len); 1181 if (unlikely(ret <= 0)) 1182 return ret; 1183 1184 if (offset + ret == NVME_TCP_DIGEST_LENGTH) { 1185 if (h2cdata_left) 1186 nvme_tcp_setup_h2c_data_pdu(req); 1187 else 1188 nvme_tcp_done_send_req(queue); 1189 return 1; 1190 } 1191 1192 req->offset += ret; 1193 return -EAGAIN; 1194 } 1195 1196 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue) 1197 { 1198 struct nvme_tcp_request *req; 1199 unsigned int noreclaim_flag; 1200 int ret = 1; 1201 1202 if (!queue->request) { 1203 queue->request = nvme_tcp_fetch_request(queue); 1204 if (!queue->request) 1205 return 0; 1206 } 1207 req = queue->request; 1208 1209 noreclaim_flag = memalloc_noreclaim_save(); 1210 if (req->state == NVME_TCP_SEND_CMD_PDU) { 1211 ret = nvme_tcp_try_send_cmd_pdu(req); 1212 if (ret <= 0) 1213 goto done; 1214 if (!nvme_tcp_has_inline_data(req)) 1215 goto out; 1216 } 1217 1218 if (req->state == NVME_TCP_SEND_H2C_PDU) { 1219 ret = nvme_tcp_try_send_data_pdu(req); 1220 if (ret <= 0) 1221 goto done; 1222 } 1223 1224 if (req->state == NVME_TCP_SEND_DATA) { 1225 ret = nvme_tcp_try_send_data(req); 1226 if (ret <= 0) 1227 goto done; 1228 } 1229 1230 if (req->state == NVME_TCP_SEND_DDGST) 1231 ret = nvme_tcp_try_send_ddgst(req); 1232 done: 1233 if (ret == -EAGAIN) { 1234 ret = 0; 1235 } else if (ret < 0) { 1236 dev_err(queue->ctrl->ctrl.device, 1237 "failed to send request %d\n", ret); 1238 nvme_tcp_fail_request(queue->request); 1239 nvme_tcp_done_send_req(queue); 1240 } 1241 out: 1242 memalloc_noreclaim_restore(noreclaim_flag); 1243 return ret; 1244 } 1245 1246 static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue) 1247 { 1248 struct socket *sock = queue->sock; 1249 struct sock *sk = sock->sk; 1250 read_descriptor_t rd_desc; 1251 int consumed; 1252 1253 rd_desc.arg.data = queue; 1254 rd_desc.count = 1; 1255 lock_sock(sk); 1256 queue->nr_cqe = 0; 1257 consumed = sock->ops->read_sock(sk, &rd_desc, nvme_tcp_recv_skb); 1258 release_sock(sk); 1259 return consumed; 1260 } 1261 1262 static void nvme_tcp_io_work(struct work_struct *w) 1263 { 1264 struct nvme_tcp_queue *queue = 1265 container_of(w, struct nvme_tcp_queue, io_work); 1266 unsigned long deadline = jiffies + msecs_to_jiffies(1); 1267 1268 do { 1269 bool pending = false; 1270 int result; 1271 1272 if (mutex_trylock(&queue->send_mutex)) { 1273 result = nvme_tcp_try_send(queue); 1274 mutex_unlock(&queue->send_mutex); 1275 if (result > 0) 1276 pending = true; 1277 else if (unlikely(result < 0)) 1278 break; 1279 } 1280 1281 result = nvme_tcp_try_recv(queue); 1282 if (result > 0) 1283 pending = true; 1284 else if (unlikely(result < 0)) 1285 return; 1286 1287 if (!pending || !queue->rd_enabled) 1288 return; 1289 1290 } while (!time_after(jiffies, deadline)); /* quota is exhausted */ 1291 1292 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 1293 } 1294 1295 static void nvme_tcp_free_crypto(struct nvme_tcp_queue *queue) 1296 { 1297 struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash); 1298 1299 ahash_request_free(queue->rcv_hash); 1300 ahash_request_free(queue->snd_hash); 1301 crypto_free_ahash(tfm); 1302 } 1303 1304 static int nvme_tcp_alloc_crypto(struct nvme_tcp_queue *queue) 1305 { 1306 struct crypto_ahash *tfm; 1307 1308 tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC); 1309 if (IS_ERR(tfm)) 1310 return PTR_ERR(tfm); 1311 1312 queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL); 1313 if (!queue->snd_hash) 1314 goto free_tfm; 1315 ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL); 1316 1317 queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL); 1318 if (!queue->rcv_hash) 1319 goto free_snd_hash; 1320 ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL); 1321 1322 return 0; 1323 free_snd_hash: 1324 ahash_request_free(queue->snd_hash); 1325 free_tfm: 1326 crypto_free_ahash(tfm); 1327 return -ENOMEM; 1328 } 1329 1330 static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl) 1331 { 1332 struct nvme_tcp_request *async = &ctrl->async_req; 1333 1334 page_frag_free(async->pdu); 1335 } 1336 1337 static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl) 1338 { 1339 struct nvme_tcp_queue *queue = &ctrl->queues[0]; 1340 struct nvme_tcp_request *async = &ctrl->async_req; 1341 u8 hdgst = nvme_tcp_hdgst_len(queue); 1342 1343 async->pdu = page_frag_alloc(&queue->pf_cache, 1344 sizeof(struct nvme_tcp_cmd_pdu) + hdgst, 1345 GFP_KERNEL | __GFP_ZERO); 1346 if (!async->pdu) 1347 return -ENOMEM; 1348 1349 async->queue = &ctrl->queues[0]; 1350 return 0; 1351 } 1352 1353 static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid) 1354 { 1355 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1356 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1357 unsigned int noreclaim_flag; 1358 1359 if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags)) 1360 return; 1361 1362 if (queue->hdr_digest || queue->data_digest) 1363 nvme_tcp_free_crypto(queue); 1364 1365 page_frag_cache_drain(&queue->pf_cache); 1366 1367 noreclaim_flag = memalloc_noreclaim_save(); 1368 /* ->sock will be released by fput() */ 1369 fput(queue->sock->file); 1370 queue->sock = NULL; 1371 memalloc_noreclaim_restore(noreclaim_flag); 1372 1373 kfree(queue->pdu); 1374 mutex_destroy(&queue->send_mutex); 1375 mutex_destroy(&queue->queue_lock); 1376 } 1377 1378 static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue) 1379 { 1380 struct nvme_tcp_icreq_pdu *icreq; 1381 struct nvme_tcp_icresp_pdu *icresp; 1382 char cbuf[CMSG_LEN(sizeof(char))] = {}; 1383 u8 ctype; 1384 struct msghdr msg = {}; 1385 struct kvec iov; 1386 bool ctrl_hdgst, ctrl_ddgst; 1387 u32 maxh2cdata; 1388 int ret; 1389 1390 icreq = kzalloc(sizeof(*icreq), GFP_KERNEL); 1391 if (!icreq) 1392 return -ENOMEM; 1393 1394 icresp = kzalloc(sizeof(*icresp), GFP_KERNEL); 1395 if (!icresp) { 1396 ret = -ENOMEM; 1397 goto free_icreq; 1398 } 1399 1400 icreq->hdr.type = nvme_tcp_icreq; 1401 icreq->hdr.hlen = sizeof(*icreq); 1402 icreq->hdr.pdo = 0; 1403 icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen); 1404 icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0); 1405 icreq->maxr2t = 0; /* single inflight r2t supported */ 1406 icreq->hpda = 0; /* no alignment constraint */ 1407 if (queue->hdr_digest) 1408 icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE; 1409 if (queue->data_digest) 1410 icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE; 1411 1412 iov.iov_base = icreq; 1413 iov.iov_len = sizeof(*icreq); 1414 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len); 1415 if (ret < 0) { 1416 pr_warn("queue %d: failed to send icreq, error %d\n", 1417 nvme_tcp_queue_id(queue), ret); 1418 goto free_icresp; 1419 } 1420 1421 memset(&msg, 0, sizeof(msg)); 1422 iov.iov_base = icresp; 1423 iov.iov_len = sizeof(*icresp); 1424 if (nvme_tcp_tls(&queue->ctrl->ctrl)) { 1425 msg.msg_control = cbuf; 1426 msg.msg_controllen = sizeof(cbuf); 1427 } 1428 ret = kernel_recvmsg(queue->sock, &msg, &iov, 1, 1429 iov.iov_len, msg.msg_flags); 1430 if (ret < 0) { 1431 pr_warn("queue %d: failed to receive icresp, error %d\n", 1432 nvme_tcp_queue_id(queue), ret); 1433 goto free_icresp; 1434 } 1435 ret = -ENOTCONN; 1436 if (nvme_tcp_tls(&queue->ctrl->ctrl)) { 1437 ctype = tls_get_record_type(queue->sock->sk, 1438 (struct cmsghdr *)cbuf); 1439 if (ctype != TLS_RECORD_TYPE_DATA) { 1440 pr_err("queue %d: unhandled TLS record %d\n", 1441 nvme_tcp_queue_id(queue), ctype); 1442 goto free_icresp; 1443 } 1444 } 1445 ret = -EINVAL; 1446 if (icresp->hdr.type != nvme_tcp_icresp) { 1447 pr_err("queue %d: bad type returned %d\n", 1448 nvme_tcp_queue_id(queue), icresp->hdr.type); 1449 goto free_icresp; 1450 } 1451 1452 if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) { 1453 pr_err("queue %d: bad pdu length returned %d\n", 1454 nvme_tcp_queue_id(queue), icresp->hdr.plen); 1455 goto free_icresp; 1456 } 1457 1458 if (icresp->pfv != NVME_TCP_PFV_1_0) { 1459 pr_err("queue %d: bad pfv returned %d\n", 1460 nvme_tcp_queue_id(queue), icresp->pfv); 1461 goto free_icresp; 1462 } 1463 1464 ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE); 1465 if ((queue->data_digest && !ctrl_ddgst) || 1466 (!queue->data_digest && ctrl_ddgst)) { 1467 pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n", 1468 nvme_tcp_queue_id(queue), 1469 queue->data_digest ? "enabled" : "disabled", 1470 ctrl_ddgst ? "enabled" : "disabled"); 1471 goto free_icresp; 1472 } 1473 1474 ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE); 1475 if ((queue->hdr_digest && !ctrl_hdgst) || 1476 (!queue->hdr_digest && ctrl_hdgst)) { 1477 pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n", 1478 nvme_tcp_queue_id(queue), 1479 queue->hdr_digest ? "enabled" : "disabled", 1480 ctrl_hdgst ? "enabled" : "disabled"); 1481 goto free_icresp; 1482 } 1483 1484 if (icresp->cpda != 0) { 1485 pr_err("queue %d: unsupported cpda returned %d\n", 1486 nvme_tcp_queue_id(queue), icresp->cpda); 1487 goto free_icresp; 1488 } 1489 1490 maxh2cdata = le32_to_cpu(icresp->maxdata); 1491 if ((maxh2cdata % 4) || (maxh2cdata < NVME_TCP_MIN_MAXH2CDATA)) { 1492 pr_err("queue %d: invalid maxh2cdata returned %u\n", 1493 nvme_tcp_queue_id(queue), maxh2cdata); 1494 goto free_icresp; 1495 } 1496 queue->maxh2cdata = maxh2cdata; 1497 1498 ret = 0; 1499 free_icresp: 1500 kfree(icresp); 1501 free_icreq: 1502 kfree(icreq); 1503 return ret; 1504 } 1505 1506 static bool nvme_tcp_admin_queue(struct nvme_tcp_queue *queue) 1507 { 1508 return nvme_tcp_queue_id(queue) == 0; 1509 } 1510 1511 static bool nvme_tcp_default_queue(struct nvme_tcp_queue *queue) 1512 { 1513 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1514 int qid = nvme_tcp_queue_id(queue); 1515 1516 return !nvme_tcp_admin_queue(queue) && 1517 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT]; 1518 } 1519 1520 static bool nvme_tcp_read_queue(struct nvme_tcp_queue *queue) 1521 { 1522 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1523 int qid = nvme_tcp_queue_id(queue); 1524 1525 return !nvme_tcp_admin_queue(queue) && 1526 !nvme_tcp_default_queue(queue) && 1527 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] + 1528 ctrl->io_queues[HCTX_TYPE_READ]; 1529 } 1530 1531 static bool nvme_tcp_poll_queue(struct nvme_tcp_queue *queue) 1532 { 1533 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1534 int qid = nvme_tcp_queue_id(queue); 1535 1536 return !nvme_tcp_admin_queue(queue) && 1537 !nvme_tcp_default_queue(queue) && 1538 !nvme_tcp_read_queue(queue) && 1539 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] + 1540 ctrl->io_queues[HCTX_TYPE_READ] + 1541 ctrl->io_queues[HCTX_TYPE_POLL]; 1542 } 1543 1544 static void nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue *queue) 1545 { 1546 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1547 int qid = nvme_tcp_queue_id(queue); 1548 int n = 0; 1549 1550 if (nvme_tcp_default_queue(queue)) 1551 n = qid - 1; 1552 else if (nvme_tcp_read_queue(queue)) 1553 n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - 1; 1554 else if (nvme_tcp_poll_queue(queue)) 1555 n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - 1556 ctrl->io_queues[HCTX_TYPE_READ] - 1; 1557 if (wq_unbound) 1558 queue->io_cpu = WORK_CPU_UNBOUND; 1559 else 1560 queue->io_cpu = cpumask_next_wrap(n - 1, cpu_online_mask, -1, false); 1561 } 1562 1563 static void nvme_tcp_tls_done(void *data, int status, key_serial_t pskid) 1564 { 1565 struct nvme_tcp_queue *queue = data; 1566 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1567 int qid = nvme_tcp_queue_id(queue); 1568 struct key *tls_key; 1569 1570 dev_dbg(ctrl->ctrl.device, "queue %d: TLS handshake done, key %x, status %d\n", 1571 qid, pskid, status); 1572 1573 if (status) { 1574 queue->tls_err = -status; 1575 goto out_complete; 1576 } 1577 1578 tls_key = key_lookup(pskid); 1579 if (IS_ERR(tls_key)) { 1580 dev_warn(ctrl->ctrl.device, "queue %d: Invalid key %x\n", 1581 qid, pskid); 1582 queue->tls_err = -ENOKEY; 1583 } else { 1584 ctrl->ctrl.tls_key = tls_key; 1585 queue->tls_err = 0; 1586 } 1587 1588 out_complete: 1589 complete(&queue->tls_complete); 1590 } 1591 1592 static int nvme_tcp_start_tls(struct nvme_ctrl *nctrl, 1593 struct nvme_tcp_queue *queue, 1594 key_serial_t pskid) 1595 { 1596 int qid = nvme_tcp_queue_id(queue); 1597 int ret; 1598 struct tls_handshake_args args; 1599 unsigned long tmo = tls_handshake_timeout * HZ; 1600 key_serial_t keyring = nvme_keyring_id(); 1601 1602 dev_dbg(nctrl->device, "queue %d: start TLS with key %x\n", 1603 qid, pskid); 1604 memset(&args, 0, sizeof(args)); 1605 args.ta_sock = queue->sock; 1606 args.ta_done = nvme_tcp_tls_done; 1607 args.ta_data = queue; 1608 args.ta_my_peerids[0] = pskid; 1609 args.ta_num_peerids = 1; 1610 if (nctrl->opts->keyring) 1611 keyring = key_serial(nctrl->opts->keyring); 1612 args.ta_keyring = keyring; 1613 args.ta_timeout_ms = tls_handshake_timeout * 1000; 1614 queue->tls_err = -EOPNOTSUPP; 1615 init_completion(&queue->tls_complete); 1616 ret = tls_client_hello_psk(&args, GFP_KERNEL); 1617 if (ret) { 1618 dev_err(nctrl->device, "queue %d: failed to start TLS: %d\n", 1619 qid, ret); 1620 return ret; 1621 } 1622 ret = wait_for_completion_interruptible_timeout(&queue->tls_complete, tmo); 1623 if (ret <= 0) { 1624 if (ret == 0) 1625 ret = -ETIMEDOUT; 1626 1627 dev_err(nctrl->device, 1628 "queue %d: TLS handshake failed, error %d\n", 1629 qid, ret); 1630 tls_handshake_cancel(queue->sock->sk); 1631 } else { 1632 dev_dbg(nctrl->device, 1633 "queue %d: TLS handshake complete, error %d\n", 1634 qid, queue->tls_err); 1635 ret = queue->tls_err; 1636 } 1637 return ret; 1638 } 1639 1640 static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl, int qid, 1641 key_serial_t pskid) 1642 { 1643 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1644 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1645 int ret, rcv_pdu_size; 1646 struct file *sock_file; 1647 1648 mutex_init(&queue->queue_lock); 1649 queue->ctrl = ctrl; 1650 init_llist_head(&queue->req_list); 1651 INIT_LIST_HEAD(&queue->send_list); 1652 mutex_init(&queue->send_mutex); 1653 INIT_WORK(&queue->io_work, nvme_tcp_io_work); 1654 1655 if (qid > 0) 1656 queue->cmnd_capsule_len = nctrl->ioccsz * 16; 1657 else 1658 queue->cmnd_capsule_len = sizeof(struct nvme_command) + 1659 NVME_TCP_ADMIN_CCSZ; 1660 1661 ret = sock_create(ctrl->addr.ss_family, SOCK_STREAM, 1662 IPPROTO_TCP, &queue->sock); 1663 if (ret) { 1664 dev_err(nctrl->device, 1665 "failed to create socket: %d\n", ret); 1666 goto err_destroy_mutex; 1667 } 1668 1669 sock_file = sock_alloc_file(queue->sock, O_CLOEXEC, NULL); 1670 if (IS_ERR(sock_file)) { 1671 ret = PTR_ERR(sock_file); 1672 goto err_destroy_mutex; 1673 } 1674 nvme_tcp_reclassify_socket(queue->sock); 1675 1676 /* Single syn retry */ 1677 tcp_sock_set_syncnt(queue->sock->sk, 1); 1678 1679 /* Set TCP no delay */ 1680 tcp_sock_set_nodelay(queue->sock->sk); 1681 1682 /* 1683 * Cleanup whatever is sitting in the TCP transmit queue on socket 1684 * close. This is done to prevent stale data from being sent should 1685 * the network connection be restored before TCP times out. 1686 */ 1687 sock_no_linger(queue->sock->sk); 1688 1689 if (so_priority > 0) 1690 sock_set_priority(queue->sock->sk, so_priority); 1691 1692 /* Set socket type of service */ 1693 if (nctrl->opts->tos >= 0) 1694 ip_sock_set_tos(queue->sock->sk, nctrl->opts->tos); 1695 1696 /* Set 10 seconds timeout for icresp recvmsg */ 1697 queue->sock->sk->sk_rcvtimeo = 10 * HZ; 1698 1699 queue->sock->sk->sk_allocation = GFP_ATOMIC; 1700 queue->sock->sk->sk_use_task_frag = false; 1701 nvme_tcp_set_queue_io_cpu(queue); 1702 queue->request = NULL; 1703 queue->data_remaining = 0; 1704 queue->ddgst_remaining = 0; 1705 queue->pdu_remaining = 0; 1706 queue->pdu_offset = 0; 1707 sk_set_memalloc(queue->sock->sk); 1708 1709 if (nctrl->opts->mask & NVMF_OPT_HOST_TRADDR) { 1710 ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr, 1711 sizeof(ctrl->src_addr)); 1712 if (ret) { 1713 dev_err(nctrl->device, 1714 "failed to bind queue %d socket %d\n", 1715 qid, ret); 1716 goto err_sock; 1717 } 1718 } 1719 1720 if (nctrl->opts->mask & NVMF_OPT_HOST_IFACE) { 1721 char *iface = nctrl->opts->host_iface; 1722 sockptr_t optval = KERNEL_SOCKPTR(iface); 1723 1724 ret = sock_setsockopt(queue->sock, SOL_SOCKET, SO_BINDTODEVICE, 1725 optval, strlen(iface)); 1726 if (ret) { 1727 dev_err(nctrl->device, 1728 "failed to bind to interface %s queue %d err %d\n", 1729 iface, qid, ret); 1730 goto err_sock; 1731 } 1732 } 1733 1734 queue->hdr_digest = nctrl->opts->hdr_digest; 1735 queue->data_digest = nctrl->opts->data_digest; 1736 if (queue->hdr_digest || queue->data_digest) { 1737 ret = nvme_tcp_alloc_crypto(queue); 1738 if (ret) { 1739 dev_err(nctrl->device, 1740 "failed to allocate queue %d crypto\n", qid); 1741 goto err_sock; 1742 } 1743 } 1744 1745 rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) + 1746 nvme_tcp_hdgst_len(queue); 1747 queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL); 1748 if (!queue->pdu) { 1749 ret = -ENOMEM; 1750 goto err_crypto; 1751 } 1752 1753 dev_dbg(nctrl->device, "connecting queue %d\n", 1754 nvme_tcp_queue_id(queue)); 1755 1756 ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr, 1757 sizeof(ctrl->addr), 0); 1758 if (ret) { 1759 dev_err(nctrl->device, 1760 "failed to connect socket: %d\n", ret); 1761 goto err_rcv_pdu; 1762 } 1763 1764 /* If PSKs are configured try to start TLS */ 1765 if (IS_ENABLED(CONFIG_NVME_TCP_TLS) && pskid) { 1766 ret = nvme_tcp_start_tls(nctrl, queue, pskid); 1767 if (ret) 1768 goto err_init_connect; 1769 } 1770 1771 ret = nvme_tcp_init_connection(queue); 1772 if (ret) 1773 goto err_init_connect; 1774 1775 set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags); 1776 1777 return 0; 1778 1779 err_init_connect: 1780 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 1781 err_rcv_pdu: 1782 kfree(queue->pdu); 1783 err_crypto: 1784 if (queue->hdr_digest || queue->data_digest) 1785 nvme_tcp_free_crypto(queue); 1786 err_sock: 1787 /* ->sock will be released by fput() */ 1788 fput(queue->sock->file); 1789 queue->sock = NULL; 1790 err_destroy_mutex: 1791 mutex_destroy(&queue->send_mutex); 1792 mutex_destroy(&queue->queue_lock); 1793 return ret; 1794 } 1795 1796 static void nvme_tcp_restore_sock_ops(struct nvme_tcp_queue *queue) 1797 { 1798 struct socket *sock = queue->sock; 1799 1800 write_lock_bh(&sock->sk->sk_callback_lock); 1801 sock->sk->sk_user_data = NULL; 1802 sock->sk->sk_data_ready = queue->data_ready; 1803 sock->sk->sk_state_change = queue->state_change; 1804 sock->sk->sk_write_space = queue->write_space; 1805 write_unlock_bh(&sock->sk->sk_callback_lock); 1806 } 1807 1808 static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue) 1809 { 1810 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 1811 nvme_tcp_restore_sock_ops(queue); 1812 cancel_work_sync(&queue->io_work); 1813 } 1814 1815 static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid) 1816 { 1817 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1818 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1819 1820 if (!test_bit(NVME_TCP_Q_ALLOCATED, &queue->flags)) 1821 return; 1822 1823 mutex_lock(&queue->queue_lock); 1824 if (test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags)) 1825 __nvme_tcp_stop_queue(queue); 1826 mutex_unlock(&queue->queue_lock); 1827 } 1828 1829 static void nvme_tcp_setup_sock_ops(struct nvme_tcp_queue *queue) 1830 { 1831 write_lock_bh(&queue->sock->sk->sk_callback_lock); 1832 queue->sock->sk->sk_user_data = queue; 1833 queue->state_change = queue->sock->sk->sk_state_change; 1834 queue->data_ready = queue->sock->sk->sk_data_ready; 1835 queue->write_space = queue->sock->sk->sk_write_space; 1836 queue->sock->sk->sk_data_ready = nvme_tcp_data_ready; 1837 queue->sock->sk->sk_state_change = nvme_tcp_state_change; 1838 queue->sock->sk->sk_write_space = nvme_tcp_write_space; 1839 #ifdef CONFIG_NET_RX_BUSY_POLL 1840 queue->sock->sk->sk_ll_usec = 1; 1841 #endif 1842 write_unlock_bh(&queue->sock->sk->sk_callback_lock); 1843 } 1844 1845 static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx) 1846 { 1847 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1848 struct nvme_tcp_queue *queue = &ctrl->queues[idx]; 1849 int ret; 1850 1851 queue->rd_enabled = true; 1852 nvme_tcp_init_recv_ctx(queue); 1853 nvme_tcp_setup_sock_ops(queue); 1854 1855 if (idx) 1856 ret = nvmf_connect_io_queue(nctrl, idx); 1857 else 1858 ret = nvmf_connect_admin_queue(nctrl); 1859 1860 if (!ret) { 1861 set_bit(NVME_TCP_Q_LIVE, &queue->flags); 1862 } else { 1863 if (test_bit(NVME_TCP_Q_ALLOCATED, &queue->flags)) 1864 __nvme_tcp_stop_queue(queue); 1865 dev_err(nctrl->device, 1866 "failed to connect queue: %d ret=%d\n", idx, ret); 1867 } 1868 return ret; 1869 } 1870 1871 static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl) 1872 { 1873 if (to_tcp_ctrl(ctrl)->async_req.pdu) { 1874 cancel_work_sync(&ctrl->async_event_work); 1875 nvme_tcp_free_async_req(to_tcp_ctrl(ctrl)); 1876 to_tcp_ctrl(ctrl)->async_req.pdu = NULL; 1877 } 1878 1879 nvme_tcp_free_queue(ctrl, 0); 1880 } 1881 1882 static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl) 1883 { 1884 int i; 1885 1886 for (i = 1; i < ctrl->queue_count; i++) 1887 nvme_tcp_free_queue(ctrl, i); 1888 } 1889 1890 static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl) 1891 { 1892 int i; 1893 1894 for (i = 1; i < ctrl->queue_count; i++) 1895 nvme_tcp_stop_queue(ctrl, i); 1896 } 1897 1898 static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl, 1899 int first, int last) 1900 { 1901 int i, ret; 1902 1903 for (i = first; i < last; i++) { 1904 ret = nvme_tcp_start_queue(ctrl, i); 1905 if (ret) 1906 goto out_stop_queues; 1907 } 1908 1909 return 0; 1910 1911 out_stop_queues: 1912 for (i--; i >= first; i--) 1913 nvme_tcp_stop_queue(ctrl, i); 1914 return ret; 1915 } 1916 1917 static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl) 1918 { 1919 int ret; 1920 key_serial_t pskid = 0; 1921 1922 if (nvme_tcp_tls(ctrl)) { 1923 if (ctrl->opts->tls_key) 1924 pskid = key_serial(ctrl->opts->tls_key); 1925 else 1926 pskid = nvme_tls_psk_default(ctrl->opts->keyring, 1927 ctrl->opts->host->nqn, 1928 ctrl->opts->subsysnqn); 1929 if (!pskid) { 1930 dev_err(ctrl->device, "no valid PSK found\n"); 1931 return -ENOKEY; 1932 } 1933 } 1934 1935 ret = nvme_tcp_alloc_queue(ctrl, 0, pskid); 1936 if (ret) 1937 return ret; 1938 1939 ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl)); 1940 if (ret) 1941 goto out_free_queue; 1942 1943 return 0; 1944 1945 out_free_queue: 1946 nvme_tcp_free_queue(ctrl, 0); 1947 return ret; 1948 } 1949 1950 static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl) 1951 { 1952 int i, ret; 1953 1954 if (nvme_tcp_tls(ctrl) && !ctrl->tls_key) { 1955 dev_err(ctrl->device, "no PSK negotiated\n"); 1956 return -ENOKEY; 1957 } 1958 for (i = 1; i < ctrl->queue_count; i++) { 1959 ret = nvme_tcp_alloc_queue(ctrl, i, 1960 key_serial(ctrl->tls_key)); 1961 if (ret) 1962 goto out_free_queues; 1963 } 1964 1965 return 0; 1966 1967 out_free_queues: 1968 for (i--; i >= 1; i--) 1969 nvme_tcp_free_queue(ctrl, i); 1970 1971 return ret; 1972 } 1973 1974 static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl) 1975 { 1976 unsigned int nr_io_queues; 1977 int ret; 1978 1979 nr_io_queues = nvmf_nr_io_queues(ctrl->opts); 1980 ret = nvme_set_queue_count(ctrl, &nr_io_queues); 1981 if (ret) 1982 return ret; 1983 1984 if (nr_io_queues == 0) { 1985 dev_err(ctrl->device, 1986 "unable to set any I/O queues\n"); 1987 return -ENOMEM; 1988 } 1989 1990 ctrl->queue_count = nr_io_queues + 1; 1991 dev_info(ctrl->device, 1992 "creating %d I/O queues.\n", nr_io_queues); 1993 1994 nvmf_set_io_queues(ctrl->opts, nr_io_queues, 1995 to_tcp_ctrl(ctrl)->io_queues); 1996 return __nvme_tcp_alloc_io_queues(ctrl); 1997 } 1998 1999 static void nvme_tcp_destroy_io_queues(struct nvme_ctrl *ctrl, bool remove) 2000 { 2001 nvme_tcp_stop_io_queues(ctrl); 2002 if (remove) 2003 nvme_remove_io_tag_set(ctrl); 2004 nvme_tcp_free_io_queues(ctrl); 2005 } 2006 2007 static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new) 2008 { 2009 int ret, nr_queues; 2010 2011 ret = nvme_tcp_alloc_io_queues(ctrl); 2012 if (ret) 2013 return ret; 2014 2015 if (new) { 2016 ret = nvme_alloc_io_tag_set(ctrl, &to_tcp_ctrl(ctrl)->tag_set, 2017 &nvme_tcp_mq_ops, 2018 ctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2, 2019 sizeof(struct nvme_tcp_request)); 2020 if (ret) 2021 goto out_free_io_queues; 2022 } 2023 2024 /* 2025 * Only start IO queues for which we have allocated the tagset 2026 * and limitted it to the available queues. On reconnects, the 2027 * queue number might have changed. 2028 */ 2029 nr_queues = min(ctrl->tagset->nr_hw_queues + 1, ctrl->queue_count); 2030 ret = nvme_tcp_start_io_queues(ctrl, 1, nr_queues); 2031 if (ret) 2032 goto out_cleanup_connect_q; 2033 2034 if (!new) { 2035 nvme_start_freeze(ctrl); 2036 nvme_unquiesce_io_queues(ctrl); 2037 if (!nvme_wait_freeze_timeout(ctrl, NVME_IO_TIMEOUT)) { 2038 /* 2039 * If we timed out waiting for freeze we are likely to 2040 * be stuck. Fail the controller initialization just 2041 * to be safe. 2042 */ 2043 ret = -ENODEV; 2044 nvme_unfreeze(ctrl); 2045 goto out_wait_freeze_timed_out; 2046 } 2047 blk_mq_update_nr_hw_queues(ctrl->tagset, 2048 ctrl->queue_count - 1); 2049 nvme_unfreeze(ctrl); 2050 } 2051 2052 /* 2053 * If the number of queues has increased (reconnect case) 2054 * start all new queues now. 2055 */ 2056 ret = nvme_tcp_start_io_queues(ctrl, nr_queues, 2057 ctrl->tagset->nr_hw_queues + 1); 2058 if (ret) 2059 goto out_wait_freeze_timed_out; 2060 2061 return 0; 2062 2063 out_wait_freeze_timed_out: 2064 nvme_quiesce_io_queues(ctrl); 2065 nvme_sync_io_queues(ctrl); 2066 nvme_tcp_stop_io_queues(ctrl); 2067 out_cleanup_connect_q: 2068 nvme_cancel_tagset(ctrl); 2069 if (new) 2070 nvme_remove_io_tag_set(ctrl); 2071 out_free_io_queues: 2072 nvme_tcp_free_io_queues(ctrl); 2073 return ret; 2074 } 2075 2076 static void nvme_tcp_destroy_admin_queue(struct nvme_ctrl *ctrl, bool remove) 2077 { 2078 nvme_tcp_stop_queue(ctrl, 0); 2079 if (remove) 2080 nvme_remove_admin_tag_set(ctrl); 2081 nvme_tcp_free_admin_queue(ctrl); 2082 } 2083 2084 static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new) 2085 { 2086 int error; 2087 2088 error = nvme_tcp_alloc_admin_queue(ctrl); 2089 if (error) 2090 return error; 2091 2092 if (new) { 2093 error = nvme_alloc_admin_tag_set(ctrl, 2094 &to_tcp_ctrl(ctrl)->admin_tag_set, 2095 &nvme_tcp_admin_mq_ops, 2096 sizeof(struct nvme_tcp_request)); 2097 if (error) 2098 goto out_free_queue; 2099 } 2100 2101 error = nvme_tcp_start_queue(ctrl, 0); 2102 if (error) 2103 goto out_cleanup_tagset; 2104 2105 error = nvme_enable_ctrl(ctrl); 2106 if (error) 2107 goto out_stop_queue; 2108 2109 nvme_unquiesce_admin_queue(ctrl); 2110 2111 error = nvme_init_ctrl_finish(ctrl, false); 2112 if (error) 2113 goto out_quiesce_queue; 2114 2115 return 0; 2116 2117 out_quiesce_queue: 2118 nvme_quiesce_admin_queue(ctrl); 2119 blk_sync_queue(ctrl->admin_q); 2120 out_stop_queue: 2121 nvme_tcp_stop_queue(ctrl, 0); 2122 nvme_cancel_admin_tagset(ctrl); 2123 out_cleanup_tagset: 2124 if (new) 2125 nvme_remove_admin_tag_set(ctrl); 2126 out_free_queue: 2127 nvme_tcp_free_admin_queue(ctrl); 2128 return error; 2129 } 2130 2131 static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl, 2132 bool remove) 2133 { 2134 nvme_quiesce_admin_queue(ctrl); 2135 blk_sync_queue(ctrl->admin_q); 2136 nvme_tcp_stop_queue(ctrl, 0); 2137 nvme_cancel_admin_tagset(ctrl); 2138 if (remove) 2139 nvme_unquiesce_admin_queue(ctrl); 2140 nvme_tcp_destroy_admin_queue(ctrl, remove); 2141 } 2142 2143 static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl, 2144 bool remove) 2145 { 2146 if (ctrl->queue_count <= 1) 2147 return; 2148 nvme_quiesce_admin_queue(ctrl); 2149 nvme_quiesce_io_queues(ctrl); 2150 nvme_sync_io_queues(ctrl); 2151 nvme_tcp_stop_io_queues(ctrl); 2152 nvme_cancel_tagset(ctrl); 2153 if (remove) 2154 nvme_unquiesce_io_queues(ctrl); 2155 nvme_tcp_destroy_io_queues(ctrl, remove); 2156 } 2157 2158 static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl) 2159 { 2160 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl); 2161 2162 /* If we are resetting/deleting then do nothing */ 2163 if (state != NVME_CTRL_CONNECTING) { 2164 WARN_ON_ONCE(state == NVME_CTRL_NEW || state == NVME_CTRL_LIVE); 2165 return; 2166 } 2167 2168 if (nvmf_should_reconnect(ctrl)) { 2169 dev_info(ctrl->device, "Reconnecting in %d seconds...\n", 2170 ctrl->opts->reconnect_delay); 2171 queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work, 2172 ctrl->opts->reconnect_delay * HZ); 2173 } else { 2174 dev_info(ctrl->device, "Removing controller...\n"); 2175 nvme_delete_ctrl(ctrl); 2176 } 2177 } 2178 2179 static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new) 2180 { 2181 struct nvmf_ctrl_options *opts = ctrl->opts; 2182 int ret; 2183 2184 ret = nvme_tcp_configure_admin_queue(ctrl, new); 2185 if (ret) 2186 return ret; 2187 2188 if (ctrl->icdoff) { 2189 ret = -EOPNOTSUPP; 2190 dev_err(ctrl->device, "icdoff is not supported!\n"); 2191 goto destroy_admin; 2192 } 2193 2194 if (!nvme_ctrl_sgl_supported(ctrl)) { 2195 ret = -EOPNOTSUPP; 2196 dev_err(ctrl->device, "Mandatory sgls are not supported!\n"); 2197 goto destroy_admin; 2198 } 2199 2200 if (opts->queue_size > ctrl->sqsize + 1) 2201 dev_warn(ctrl->device, 2202 "queue_size %zu > ctrl sqsize %u, clamping down\n", 2203 opts->queue_size, ctrl->sqsize + 1); 2204 2205 if (ctrl->sqsize + 1 > ctrl->maxcmd) { 2206 dev_warn(ctrl->device, 2207 "sqsize %u > ctrl maxcmd %u, clamping down\n", 2208 ctrl->sqsize + 1, ctrl->maxcmd); 2209 ctrl->sqsize = ctrl->maxcmd - 1; 2210 } 2211 2212 if (ctrl->queue_count > 1) { 2213 ret = nvme_tcp_configure_io_queues(ctrl, new); 2214 if (ret) 2215 goto destroy_admin; 2216 } 2217 2218 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) { 2219 /* 2220 * state change failure is ok if we started ctrl delete, 2221 * unless we're during creation of a new controller to 2222 * avoid races with teardown flow. 2223 */ 2224 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl); 2225 2226 WARN_ON_ONCE(state != NVME_CTRL_DELETING && 2227 state != NVME_CTRL_DELETING_NOIO); 2228 WARN_ON_ONCE(new); 2229 ret = -EINVAL; 2230 goto destroy_io; 2231 } 2232 2233 nvme_start_ctrl(ctrl); 2234 return 0; 2235 2236 destroy_io: 2237 if (ctrl->queue_count > 1) { 2238 nvme_quiesce_io_queues(ctrl); 2239 nvme_sync_io_queues(ctrl); 2240 nvme_tcp_stop_io_queues(ctrl); 2241 nvme_cancel_tagset(ctrl); 2242 nvme_tcp_destroy_io_queues(ctrl, new); 2243 } 2244 destroy_admin: 2245 nvme_stop_keep_alive(ctrl); 2246 nvme_tcp_teardown_admin_queue(ctrl, false); 2247 return ret; 2248 } 2249 2250 static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work) 2251 { 2252 struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work), 2253 struct nvme_tcp_ctrl, connect_work); 2254 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl; 2255 2256 ++ctrl->nr_reconnects; 2257 2258 if (nvme_tcp_setup_ctrl(ctrl, false)) 2259 goto requeue; 2260 2261 dev_info(ctrl->device, "Successfully reconnected (%d attempt)\n", 2262 ctrl->nr_reconnects); 2263 2264 ctrl->nr_reconnects = 0; 2265 2266 return; 2267 2268 requeue: 2269 dev_info(ctrl->device, "Failed reconnect attempt %d\n", 2270 ctrl->nr_reconnects); 2271 nvme_tcp_reconnect_or_remove(ctrl); 2272 } 2273 2274 static void nvme_tcp_error_recovery_work(struct work_struct *work) 2275 { 2276 struct nvme_tcp_ctrl *tcp_ctrl = container_of(work, 2277 struct nvme_tcp_ctrl, err_work); 2278 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl; 2279 2280 nvme_stop_keep_alive(ctrl); 2281 flush_work(&ctrl->async_event_work); 2282 nvme_tcp_teardown_io_queues(ctrl, false); 2283 /* unquiesce to fail fast pending requests */ 2284 nvme_unquiesce_io_queues(ctrl); 2285 nvme_tcp_teardown_admin_queue(ctrl, false); 2286 nvme_unquiesce_admin_queue(ctrl); 2287 nvme_auth_stop(ctrl); 2288 2289 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) { 2290 /* state change failure is ok if we started ctrl delete */ 2291 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl); 2292 2293 WARN_ON_ONCE(state != NVME_CTRL_DELETING && 2294 state != NVME_CTRL_DELETING_NOIO); 2295 return; 2296 } 2297 2298 nvme_tcp_reconnect_or_remove(ctrl); 2299 } 2300 2301 static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown) 2302 { 2303 nvme_tcp_teardown_io_queues(ctrl, shutdown); 2304 nvme_quiesce_admin_queue(ctrl); 2305 nvme_disable_ctrl(ctrl, shutdown); 2306 nvme_tcp_teardown_admin_queue(ctrl, shutdown); 2307 } 2308 2309 static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl) 2310 { 2311 nvme_tcp_teardown_ctrl(ctrl, true); 2312 } 2313 2314 static void nvme_reset_ctrl_work(struct work_struct *work) 2315 { 2316 struct nvme_ctrl *ctrl = 2317 container_of(work, struct nvme_ctrl, reset_work); 2318 2319 nvme_stop_ctrl(ctrl); 2320 nvme_tcp_teardown_ctrl(ctrl, false); 2321 2322 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) { 2323 /* state change failure is ok if we started ctrl delete */ 2324 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl); 2325 2326 WARN_ON_ONCE(state != NVME_CTRL_DELETING && 2327 state != NVME_CTRL_DELETING_NOIO); 2328 return; 2329 } 2330 2331 if (nvme_tcp_setup_ctrl(ctrl, false)) 2332 goto out_fail; 2333 2334 return; 2335 2336 out_fail: 2337 ++ctrl->nr_reconnects; 2338 nvme_tcp_reconnect_or_remove(ctrl); 2339 } 2340 2341 static void nvme_tcp_stop_ctrl(struct nvme_ctrl *ctrl) 2342 { 2343 flush_work(&to_tcp_ctrl(ctrl)->err_work); 2344 cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work); 2345 } 2346 2347 static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl) 2348 { 2349 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 2350 2351 if (list_empty(&ctrl->list)) 2352 goto free_ctrl; 2353 2354 mutex_lock(&nvme_tcp_ctrl_mutex); 2355 list_del(&ctrl->list); 2356 mutex_unlock(&nvme_tcp_ctrl_mutex); 2357 2358 nvmf_free_options(nctrl->opts); 2359 free_ctrl: 2360 kfree(ctrl->queues); 2361 kfree(ctrl); 2362 } 2363 2364 static void nvme_tcp_set_sg_null(struct nvme_command *c) 2365 { 2366 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 2367 2368 sg->addr = 0; 2369 sg->length = 0; 2370 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) | 2371 NVME_SGL_FMT_TRANSPORT_A; 2372 } 2373 2374 static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue, 2375 struct nvme_command *c, u32 data_len) 2376 { 2377 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 2378 2379 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff); 2380 sg->length = cpu_to_le32(data_len); 2381 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET; 2382 } 2383 2384 static void nvme_tcp_set_sg_host_data(struct nvme_command *c, 2385 u32 data_len) 2386 { 2387 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 2388 2389 sg->addr = 0; 2390 sg->length = cpu_to_le32(data_len); 2391 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) | 2392 NVME_SGL_FMT_TRANSPORT_A; 2393 } 2394 2395 static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg) 2396 { 2397 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg); 2398 struct nvme_tcp_queue *queue = &ctrl->queues[0]; 2399 struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu; 2400 struct nvme_command *cmd = &pdu->cmd; 2401 u8 hdgst = nvme_tcp_hdgst_len(queue); 2402 2403 memset(pdu, 0, sizeof(*pdu)); 2404 pdu->hdr.type = nvme_tcp_cmd; 2405 if (queue->hdr_digest) 2406 pdu->hdr.flags |= NVME_TCP_F_HDGST; 2407 pdu->hdr.hlen = sizeof(*pdu); 2408 pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst); 2409 2410 cmd->common.opcode = nvme_admin_async_event; 2411 cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH; 2412 cmd->common.flags |= NVME_CMD_SGL_METABUF; 2413 nvme_tcp_set_sg_null(cmd); 2414 2415 ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU; 2416 ctrl->async_req.offset = 0; 2417 ctrl->async_req.curr_bio = NULL; 2418 ctrl->async_req.data_len = 0; 2419 2420 nvme_tcp_queue_request(&ctrl->async_req, true, true); 2421 } 2422 2423 static void nvme_tcp_complete_timed_out(struct request *rq) 2424 { 2425 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2426 struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl; 2427 2428 nvme_tcp_stop_queue(ctrl, nvme_tcp_queue_id(req->queue)); 2429 nvmf_complete_timed_out_request(rq); 2430 } 2431 2432 static enum blk_eh_timer_return nvme_tcp_timeout(struct request *rq) 2433 { 2434 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2435 struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl; 2436 struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req); 2437 struct nvme_command *cmd = &pdu->cmd; 2438 int qid = nvme_tcp_queue_id(req->queue); 2439 2440 dev_warn(ctrl->device, 2441 "I/O tag %d (%04x) type %d opcode %#x (%s) QID %d timeout\n", 2442 rq->tag, nvme_cid(rq), pdu->hdr.type, cmd->common.opcode, 2443 nvme_fabrics_opcode_str(qid, cmd), qid); 2444 2445 if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE) { 2446 /* 2447 * If we are resetting, connecting or deleting we should 2448 * complete immediately because we may block controller 2449 * teardown or setup sequence 2450 * - ctrl disable/shutdown fabrics requests 2451 * - connect requests 2452 * - initialization admin requests 2453 * - I/O requests that entered after unquiescing and 2454 * the controller stopped responding 2455 * 2456 * All other requests should be cancelled by the error 2457 * recovery work, so it's fine that we fail it here. 2458 */ 2459 nvme_tcp_complete_timed_out(rq); 2460 return BLK_EH_DONE; 2461 } 2462 2463 /* 2464 * LIVE state should trigger the normal error recovery which will 2465 * handle completing this request. 2466 */ 2467 nvme_tcp_error_recovery(ctrl); 2468 return BLK_EH_RESET_TIMER; 2469 } 2470 2471 static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue, 2472 struct request *rq) 2473 { 2474 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2475 struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req); 2476 struct nvme_command *c = &pdu->cmd; 2477 2478 c->common.flags |= NVME_CMD_SGL_METABUF; 2479 2480 if (!blk_rq_nr_phys_segments(rq)) 2481 nvme_tcp_set_sg_null(c); 2482 else if (rq_data_dir(rq) == WRITE && 2483 req->data_len <= nvme_tcp_inline_data_size(req)) 2484 nvme_tcp_set_sg_inline(queue, c, req->data_len); 2485 else 2486 nvme_tcp_set_sg_host_data(c, req->data_len); 2487 2488 return 0; 2489 } 2490 2491 static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns, 2492 struct request *rq) 2493 { 2494 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2495 struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req); 2496 struct nvme_tcp_queue *queue = req->queue; 2497 u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0; 2498 blk_status_t ret; 2499 2500 ret = nvme_setup_cmd(ns, rq); 2501 if (ret) 2502 return ret; 2503 2504 req->state = NVME_TCP_SEND_CMD_PDU; 2505 req->status = cpu_to_le16(NVME_SC_SUCCESS); 2506 req->offset = 0; 2507 req->data_sent = 0; 2508 req->pdu_len = 0; 2509 req->pdu_sent = 0; 2510 req->h2cdata_left = 0; 2511 req->data_len = blk_rq_nr_phys_segments(rq) ? 2512 blk_rq_payload_bytes(rq) : 0; 2513 req->curr_bio = rq->bio; 2514 if (req->curr_bio && req->data_len) 2515 nvme_tcp_init_iter(req, rq_data_dir(rq)); 2516 2517 if (rq_data_dir(rq) == WRITE && 2518 req->data_len <= nvme_tcp_inline_data_size(req)) 2519 req->pdu_len = req->data_len; 2520 2521 pdu->hdr.type = nvme_tcp_cmd; 2522 pdu->hdr.flags = 0; 2523 if (queue->hdr_digest) 2524 pdu->hdr.flags |= NVME_TCP_F_HDGST; 2525 if (queue->data_digest && req->pdu_len) { 2526 pdu->hdr.flags |= NVME_TCP_F_DDGST; 2527 ddgst = nvme_tcp_ddgst_len(queue); 2528 } 2529 pdu->hdr.hlen = sizeof(*pdu); 2530 pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0; 2531 pdu->hdr.plen = 2532 cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst); 2533 2534 ret = nvme_tcp_map_data(queue, rq); 2535 if (unlikely(ret)) { 2536 nvme_cleanup_cmd(rq); 2537 dev_err(queue->ctrl->ctrl.device, 2538 "Failed to map data (%d)\n", ret); 2539 return ret; 2540 } 2541 2542 return 0; 2543 } 2544 2545 static void nvme_tcp_commit_rqs(struct blk_mq_hw_ctx *hctx) 2546 { 2547 struct nvme_tcp_queue *queue = hctx->driver_data; 2548 2549 if (!llist_empty(&queue->req_list)) 2550 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 2551 } 2552 2553 static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx, 2554 const struct blk_mq_queue_data *bd) 2555 { 2556 struct nvme_ns *ns = hctx->queue->queuedata; 2557 struct nvme_tcp_queue *queue = hctx->driver_data; 2558 struct request *rq = bd->rq; 2559 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2560 bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags); 2561 blk_status_t ret; 2562 2563 if (!nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready)) 2564 return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq); 2565 2566 ret = nvme_tcp_setup_cmd_pdu(ns, rq); 2567 if (unlikely(ret)) 2568 return ret; 2569 2570 nvme_start_request(rq); 2571 2572 nvme_tcp_queue_request(req, true, bd->last); 2573 2574 return BLK_STS_OK; 2575 } 2576 2577 static void nvme_tcp_map_queues(struct blk_mq_tag_set *set) 2578 { 2579 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(set->driver_data); 2580 2581 nvmf_map_queues(set, &ctrl->ctrl, ctrl->io_queues); 2582 } 2583 2584 static int nvme_tcp_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob) 2585 { 2586 struct nvme_tcp_queue *queue = hctx->driver_data; 2587 struct sock *sk = queue->sock->sk; 2588 2589 if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags)) 2590 return 0; 2591 2592 set_bit(NVME_TCP_Q_POLLING, &queue->flags); 2593 if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue)) 2594 sk_busy_loop(sk, true); 2595 nvme_tcp_try_recv(queue); 2596 clear_bit(NVME_TCP_Q_POLLING, &queue->flags); 2597 return queue->nr_cqe; 2598 } 2599 2600 static int nvme_tcp_get_address(struct nvme_ctrl *ctrl, char *buf, int size) 2601 { 2602 struct nvme_tcp_queue *queue = &to_tcp_ctrl(ctrl)->queues[0]; 2603 struct sockaddr_storage src_addr; 2604 int ret, len; 2605 2606 len = nvmf_get_address(ctrl, buf, size); 2607 2608 mutex_lock(&queue->queue_lock); 2609 2610 if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags)) 2611 goto done; 2612 ret = kernel_getsockname(queue->sock, (struct sockaddr *)&src_addr); 2613 if (ret > 0) { 2614 if (len > 0) 2615 len--; /* strip trailing newline */ 2616 len += scnprintf(buf + len, size - len, "%ssrc_addr=%pISc\n", 2617 (len) ? "," : "", &src_addr); 2618 } 2619 done: 2620 mutex_unlock(&queue->queue_lock); 2621 2622 return len; 2623 } 2624 2625 static const struct blk_mq_ops nvme_tcp_mq_ops = { 2626 .queue_rq = nvme_tcp_queue_rq, 2627 .commit_rqs = nvme_tcp_commit_rqs, 2628 .complete = nvme_complete_rq, 2629 .init_request = nvme_tcp_init_request, 2630 .exit_request = nvme_tcp_exit_request, 2631 .init_hctx = nvme_tcp_init_hctx, 2632 .timeout = nvme_tcp_timeout, 2633 .map_queues = nvme_tcp_map_queues, 2634 .poll = nvme_tcp_poll, 2635 }; 2636 2637 static const struct blk_mq_ops nvme_tcp_admin_mq_ops = { 2638 .queue_rq = nvme_tcp_queue_rq, 2639 .complete = nvme_complete_rq, 2640 .init_request = nvme_tcp_init_request, 2641 .exit_request = nvme_tcp_exit_request, 2642 .init_hctx = nvme_tcp_init_admin_hctx, 2643 .timeout = nvme_tcp_timeout, 2644 }; 2645 2646 static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = { 2647 .name = "tcp", 2648 .module = THIS_MODULE, 2649 .flags = NVME_F_FABRICS | NVME_F_BLOCKING, 2650 .reg_read32 = nvmf_reg_read32, 2651 .reg_read64 = nvmf_reg_read64, 2652 .reg_write32 = nvmf_reg_write32, 2653 .free_ctrl = nvme_tcp_free_ctrl, 2654 .submit_async_event = nvme_tcp_submit_async_event, 2655 .delete_ctrl = nvme_tcp_delete_ctrl, 2656 .get_address = nvme_tcp_get_address, 2657 .stop_ctrl = nvme_tcp_stop_ctrl, 2658 }; 2659 2660 static bool 2661 nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts) 2662 { 2663 struct nvme_tcp_ctrl *ctrl; 2664 bool found = false; 2665 2666 mutex_lock(&nvme_tcp_ctrl_mutex); 2667 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) { 2668 found = nvmf_ip_options_match(&ctrl->ctrl, opts); 2669 if (found) 2670 break; 2671 } 2672 mutex_unlock(&nvme_tcp_ctrl_mutex); 2673 2674 return found; 2675 } 2676 2677 static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev, 2678 struct nvmf_ctrl_options *opts) 2679 { 2680 struct nvme_tcp_ctrl *ctrl; 2681 int ret; 2682 2683 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 2684 if (!ctrl) 2685 return ERR_PTR(-ENOMEM); 2686 2687 INIT_LIST_HEAD(&ctrl->list); 2688 ctrl->ctrl.opts = opts; 2689 ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues + 2690 opts->nr_poll_queues + 1; 2691 ctrl->ctrl.sqsize = opts->queue_size - 1; 2692 ctrl->ctrl.kato = opts->kato; 2693 2694 INIT_DELAYED_WORK(&ctrl->connect_work, 2695 nvme_tcp_reconnect_ctrl_work); 2696 INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work); 2697 INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work); 2698 2699 if (!(opts->mask & NVMF_OPT_TRSVCID)) { 2700 opts->trsvcid = 2701 kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL); 2702 if (!opts->trsvcid) { 2703 ret = -ENOMEM; 2704 goto out_free_ctrl; 2705 } 2706 opts->mask |= NVMF_OPT_TRSVCID; 2707 } 2708 2709 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 2710 opts->traddr, opts->trsvcid, &ctrl->addr); 2711 if (ret) { 2712 pr_err("malformed address passed: %s:%s\n", 2713 opts->traddr, opts->trsvcid); 2714 goto out_free_ctrl; 2715 } 2716 2717 if (opts->mask & NVMF_OPT_HOST_TRADDR) { 2718 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 2719 opts->host_traddr, NULL, &ctrl->src_addr); 2720 if (ret) { 2721 pr_err("malformed src address passed: %s\n", 2722 opts->host_traddr); 2723 goto out_free_ctrl; 2724 } 2725 } 2726 2727 if (opts->mask & NVMF_OPT_HOST_IFACE) { 2728 if (!__dev_get_by_name(&init_net, opts->host_iface)) { 2729 pr_err("invalid interface passed: %s\n", 2730 opts->host_iface); 2731 ret = -ENODEV; 2732 goto out_free_ctrl; 2733 } 2734 } 2735 2736 if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) { 2737 ret = -EALREADY; 2738 goto out_free_ctrl; 2739 } 2740 2741 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues), 2742 GFP_KERNEL); 2743 if (!ctrl->queues) { 2744 ret = -ENOMEM; 2745 goto out_free_ctrl; 2746 } 2747 2748 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0); 2749 if (ret) 2750 goto out_kfree_queues; 2751 2752 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) { 2753 WARN_ON_ONCE(1); 2754 ret = -EINTR; 2755 goto out_uninit_ctrl; 2756 } 2757 2758 ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true); 2759 if (ret) 2760 goto out_uninit_ctrl; 2761 2762 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp, hostnqn: %s\n", 2763 nvmf_ctrl_subsysnqn(&ctrl->ctrl), &ctrl->addr, opts->host->nqn); 2764 2765 mutex_lock(&nvme_tcp_ctrl_mutex); 2766 list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list); 2767 mutex_unlock(&nvme_tcp_ctrl_mutex); 2768 2769 return &ctrl->ctrl; 2770 2771 out_uninit_ctrl: 2772 nvme_uninit_ctrl(&ctrl->ctrl); 2773 nvme_put_ctrl(&ctrl->ctrl); 2774 if (ret > 0) 2775 ret = -EIO; 2776 return ERR_PTR(ret); 2777 out_kfree_queues: 2778 kfree(ctrl->queues); 2779 out_free_ctrl: 2780 kfree(ctrl); 2781 return ERR_PTR(ret); 2782 } 2783 2784 static struct nvmf_transport_ops nvme_tcp_transport = { 2785 .name = "tcp", 2786 .module = THIS_MODULE, 2787 .required_opts = NVMF_OPT_TRADDR, 2788 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY | 2789 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO | 2790 NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST | 2791 NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES | 2792 NVMF_OPT_TOS | NVMF_OPT_HOST_IFACE | NVMF_OPT_TLS | 2793 NVMF_OPT_KEYRING | NVMF_OPT_TLS_KEY, 2794 .create_ctrl = nvme_tcp_create_ctrl, 2795 }; 2796 2797 static int __init nvme_tcp_init_module(void) 2798 { 2799 unsigned int wq_flags = WQ_MEM_RECLAIM | WQ_HIGHPRI | WQ_SYSFS; 2800 2801 BUILD_BUG_ON(sizeof(struct nvme_tcp_hdr) != 8); 2802 BUILD_BUG_ON(sizeof(struct nvme_tcp_cmd_pdu) != 72); 2803 BUILD_BUG_ON(sizeof(struct nvme_tcp_data_pdu) != 24); 2804 BUILD_BUG_ON(sizeof(struct nvme_tcp_rsp_pdu) != 24); 2805 BUILD_BUG_ON(sizeof(struct nvme_tcp_r2t_pdu) != 24); 2806 BUILD_BUG_ON(sizeof(struct nvme_tcp_icreq_pdu) != 128); 2807 BUILD_BUG_ON(sizeof(struct nvme_tcp_icresp_pdu) != 128); 2808 BUILD_BUG_ON(sizeof(struct nvme_tcp_term_pdu) != 24); 2809 2810 if (wq_unbound) 2811 wq_flags |= WQ_UNBOUND; 2812 2813 nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq", wq_flags, 0); 2814 if (!nvme_tcp_wq) 2815 return -ENOMEM; 2816 2817 nvmf_register_transport(&nvme_tcp_transport); 2818 return 0; 2819 } 2820 2821 static void __exit nvme_tcp_cleanup_module(void) 2822 { 2823 struct nvme_tcp_ctrl *ctrl; 2824 2825 nvmf_unregister_transport(&nvme_tcp_transport); 2826 2827 mutex_lock(&nvme_tcp_ctrl_mutex); 2828 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) 2829 nvme_delete_ctrl(&ctrl->ctrl); 2830 mutex_unlock(&nvme_tcp_ctrl_mutex); 2831 flush_workqueue(nvme_delete_wq); 2832 2833 destroy_workqueue(nvme_tcp_wq); 2834 } 2835 2836 module_init(nvme_tcp_init_module); 2837 module_exit(nvme_tcp_cleanup_module); 2838 2839 MODULE_DESCRIPTION("NVMe host TCP transport driver"); 2840 MODULE_LICENSE("GPL v2"); 2841