xref: /linux/drivers/nvme/host/tcp.c (revision 2573c25e2c482b53b6e1142ff3cd28f6de13e659)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics TCP host.
4  * Copyright (c) 2018 Lightbits Labs. All rights reserved.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/err.h>
11 #include <linux/key.h>
12 #include <linux/nvme-tcp.h>
13 #include <linux/nvme-keyring.h>
14 #include <net/sock.h>
15 #include <net/tcp.h>
16 #include <net/tls.h>
17 #include <net/tls_prot.h>
18 #include <net/handshake.h>
19 #include <linux/blk-mq.h>
20 #include <crypto/hash.h>
21 #include <net/busy_poll.h>
22 #include <trace/events/sock.h>
23 
24 #include "nvme.h"
25 #include "fabrics.h"
26 
27 struct nvme_tcp_queue;
28 
29 /* Define the socket priority to use for connections were it is desirable
30  * that the NIC consider performing optimized packet processing or filtering.
31  * A non-zero value being sufficient to indicate general consideration of any
32  * possible optimization.  Making it a module param allows for alternative
33  * values that may be unique for some NIC implementations.
34  */
35 static int so_priority;
36 module_param(so_priority, int, 0644);
37 MODULE_PARM_DESC(so_priority, "nvme tcp socket optimize priority");
38 
39 /*
40  * Use the unbound workqueue for nvme_tcp_wq, then we can set the cpu affinity
41  * from sysfs.
42  */
43 static bool wq_unbound;
44 module_param(wq_unbound, bool, 0644);
45 MODULE_PARM_DESC(wq_unbound, "Use unbound workqueue for nvme-tcp IO context (default false)");
46 
47 /*
48  * TLS handshake timeout
49  */
50 static int tls_handshake_timeout = 10;
51 #ifdef CONFIG_NVME_TCP_TLS
52 module_param(tls_handshake_timeout, int, 0644);
53 MODULE_PARM_DESC(tls_handshake_timeout,
54 		 "nvme TLS handshake timeout in seconds (default 10)");
55 #endif
56 
57 #ifdef CONFIG_DEBUG_LOCK_ALLOC
58 /* lockdep can detect a circular dependency of the form
59  *   sk_lock -> mmap_lock (page fault) -> fs locks -> sk_lock
60  * because dependencies are tracked for both nvme-tcp and user contexts. Using
61  * a separate class prevents lockdep from conflating nvme-tcp socket use with
62  * user-space socket API use.
63  */
64 static struct lock_class_key nvme_tcp_sk_key[2];
65 static struct lock_class_key nvme_tcp_slock_key[2];
66 
67 static void nvme_tcp_reclassify_socket(struct socket *sock)
68 {
69 	struct sock *sk = sock->sk;
70 
71 	if (WARN_ON_ONCE(!sock_allow_reclassification(sk)))
72 		return;
73 
74 	switch (sk->sk_family) {
75 	case AF_INET:
76 		sock_lock_init_class_and_name(sk, "slock-AF_INET-NVME",
77 					      &nvme_tcp_slock_key[0],
78 					      "sk_lock-AF_INET-NVME",
79 					      &nvme_tcp_sk_key[0]);
80 		break;
81 	case AF_INET6:
82 		sock_lock_init_class_and_name(sk, "slock-AF_INET6-NVME",
83 					      &nvme_tcp_slock_key[1],
84 					      "sk_lock-AF_INET6-NVME",
85 					      &nvme_tcp_sk_key[1]);
86 		break;
87 	default:
88 		WARN_ON_ONCE(1);
89 	}
90 }
91 #else
92 static void nvme_tcp_reclassify_socket(struct socket *sock) { }
93 #endif
94 
95 enum nvme_tcp_send_state {
96 	NVME_TCP_SEND_CMD_PDU = 0,
97 	NVME_TCP_SEND_H2C_PDU,
98 	NVME_TCP_SEND_DATA,
99 	NVME_TCP_SEND_DDGST,
100 };
101 
102 struct nvme_tcp_request {
103 	struct nvme_request	req;
104 	void			*pdu;
105 	struct nvme_tcp_queue	*queue;
106 	u32			data_len;
107 	u32			pdu_len;
108 	u32			pdu_sent;
109 	u32			h2cdata_left;
110 	u32			h2cdata_offset;
111 	u16			ttag;
112 	__le16			status;
113 	struct list_head	entry;
114 	struct llist_node	lentry;
115 	__le32			ddgst;
116 
117 	struct bio		*curr_bio;
118 	struct iov_iter		iter;
119 
120 	/* send state */
121 	size_t			offset;
122 	size_t			data_sent;
123 	enum nvme_tcp_send_state state;
124 };
125 
126 enum nvme_tcp_queue_flags {
127 	NVME_TCP_Q_ALLOCATED	= 0,
128 	NVME_TCP_Q_LIVE		= 1,
129 	NVME_TCP_Q_POLLING	= 2,
130 };
131 
132 enum nvme_tcp_recv_state {
133 	NVME_TCP_RECV_PDU = 0,
134 	NVME_TCP_RECV_DATA,
135 	NVME_TCP_RECV_DDGST,
136 };
137 
138 struct nvme_tcp_ctrl;
139 struct nvme_tcp_queue {
140 	struct socket		*sock;
141 	struct work_struct	io_work;
142 	int			io_cpu;
143 
144 	struct mutex		queue_lock;
145 	struct mutex		send_mutex;
146 	struct llist_head	req_list;
147 	struct list_head	send_list;
148 
149 	/* recv state */
150 	void			*pdu;
151 	int			pdu_remaining;
152 	int			pdu_offset;
153 	size_t			data_remaining;
154 	size_t			ddgst_remaining;
155 	unsigned int		nr_cqe;
156 
157 	/* send state */
158 	struct nvme_tcp_request *request;
159 
160 	u32			maxh2cdata;
161 	size_t			cmnd_capsule_len;
162 	struct nvme_tcp_ctrl	*ctrl;
163 	unsigned long		flags;
164 	bool			rd_enabled;
165 
166 	bool			hdr_digest;
167 	bool			data_digest;
168 	struct ahash_request	*rcv_hash;
169 	struct ahash_request	*snd_hash;
170 	__le32			exp_ddgst;
171 	__le32			recv_ddgst;
172 	struct completion       tls_complete;
173 	int                     tls_err;
174 	struct page_frag_cache	pf_cache;
175 
176 	void (*state_change)(struct sock *);
177 	void (*data_ready)(struct sock *);
178 	void (*write_space)(struct sock *);
179 };
180 
181 struct nvme_tcp_ctrl {
182 	/* read only in the hot path */
183 	struct nvme_tcp_queue	*queues;
184 	struct blk_mq_tag_set	tag_set;
185 
186 	/* other member variables */
187 	struct list_head	list;
188 	struct blk_mq_tag_set	admin_tag_set;
189 	struct sockaddr_storage addr;
190 	struct sockaddr_storage src_addr;
191 	struct nvme_ctrl	ctrl;
192 
193 	struct work_struct	err_work;
194 	struct delayed_work	connect_work;
195 	struct nvme_tcp_request async_req;
196 	u32			io_queues[HCTX_MAX_TYPES];
197 };
198 
199 static LIST_HEAD(nvme_tcp_ctrl_list);
200 static DEFINE_MUTEX(nvme_tcp_ctrl_mutex);
201 static struct workqueue_struct *nvme_tcp_wq;
202 static const struct blk_mq_ops nvme_tcp_mq_ops;
203 static const struct blk_mq_ops nvme_tcp_admin_mq_ops;
204 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue);
205 
206 static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl)
207 {
208 	return container_of(ctrl, struct nvme_tcp_ctrl, ctrl);
209 }
210 
211 static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue)
212 {
213 	return queue - queue->ctrl->queues;
214 }
215 
216 static inline bool nvme_tcp_tls(struct nvme_ctrl *ctrl)
217 {
218 	if (!IS_ENABLED(CONFIG_NVME_TCP_TLS))
219 		return 0;
220 
221 	return ctrl->opts->tls;
222 }
223 
224 static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue)
225 {
226 	u32 queue_idx = nvme_tcp_queue_id(queue);
227 
228 	if (queue_idx == 0)
229 		return queue->ctrl->admin_tag_set.tags[queue_idx];
230 	return queue->ctrl->tag_set.tags[queue_idx - 1];
231 }
232 
233 static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue)
234 {
235 	return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
236 }
237 
238 static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue)
239 {
240 	return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
241 }
242 
243 static inline void *nvme_tcp_req_cmd_pdu(struct nvme_tcp_request *req)
244 {
245 	return req->pdu;
246 }
247 
248 static inline void *nvme_tcp_req_data_pdu(struct nvme_tcp_request *req)
249 {
250 	/* use the pdu space in the back for the data pdu */
251 	return req->pdu + sizeof(struct nvme_tcp_cmd_pdu) -
252 		sizeof(struct nvme_tcp_data_pdu);
253 }
254 
255 static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_request *req)
256 {
257 	if (nvme_is_fabrics(req->req.cmd))
258 		return NVME_TCP_ADMIN_CCSZ;
259 	return req->queue->cmnd_capsule_len - sizeof(struct nvme_command);
260 }
261 
262 static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req)
263 {
264 	return req == &req->queue->ctrl->async_req;
265 }
266 
267 static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req)
268 {
269 	struct request *rq;
270 
271 	if (unlikely(nvme_tcp_async_req(req)))
272 		return false; /* async events don't have a request */
273 
274 	rq = blk_mq_rq_from_pdu(req);
275 
276 	return rq_data_dir(rq) == WRITE && req->data_len &&
277 		req->data_len <= nvme_tcp_inline_data_size(req);
278 }
279 
280 static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req)
281 {
282 	return req->iter.bvec->bv_page;
283 }
284 
285 static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req)
286 {
287 	return req->iter.bvec->bv_offset + req->iter.iov_offset;
288 }
289 
290 static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req)
291 {
292 	return min_t(size_t, iov_iter_single_seg_count(&req->iter),
293 			req->pdu_len - req->pdu_sent);
294 }
295 
296 static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req)
297 {
298 	return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ?
299 			req->pdu_len - req->pdu_sent : 0;
300 }
301 
302 static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req,
303 		int len)
304 {
305 	return nvme_tcp_pdu_data_left(req) <= len;
306 }
307 
308 static void nvme_tcp_init_iter(struct nvme_tcp_request *req,
309 		unsigned int dir)
310 {
311 	struct request *rq = blk_mq_rq_from_pdu(req);
312 	struct bio_vec *vec;
313 	unsigned int size;
314 	int nr_bvec;
315 	size_t offset;
316 
317 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) {
318 		vec = &rq->special_vec;
319 		nr_bvec = 1;
320 		size = blk_rq_payload_bytes(rq);
321 		offset = 0;
322 	} else {
323 		struct bio *bio = req->curr_bio;
324 		struct bvec_iter bi;
325 		struct bio_vec bv;
326 
327 		vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
328 		nr_bvec = 0;
329 		bio_for_each_bvec(bv, bio, bi) {
330 			nr_bvec++;
331 		}
332 		size = bio->bi_iter.bi_size;
333 		offset = bio->bi_iter.bi_bvec_done;
334 	}
335 
336 	iov_iter_bvec(&req->iter, dir, vec, nr_bvec, size);
337 	req->iter.iov_offset = offset;
338 }
339 
340 static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req,
341 		int len)
342 {
343 	req->data_sent += len;
344 	req->pdu_sent += len;
345 	iov_iter_advance(&req->iter, len);
346 	if (!iov_iter_count(&req->iter) &&
347 	    req->data_sent < req->data_len) {
348 		req->curr_bio = req->curr_bio->bi_next;
349 		nvme_tcp_init_iter(req, ITER_SOURCE);
350 	}
351 }
352 
353 static inline void nvme_tcp_send_all(struct nvme_tcp_queue *queue)
354 {
355 	int ret;
356 
357 	/* drain the send queue as much as we can... */
358 	do {
359 		ret = nvme_tcp_try_send(queue);
360 	} while (ret > 0);
361 }
362 
363 static inline bool nvme_tcp_queue_more(struct nvme_tcp_queue *queue)
364 {
365 	return !list_empty(&queue->send_list) ||
366 		!llist_empty(&queue->req_list);
367 }
368 
369 static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req,
370 		bool sync, bool last)
371 {
372 	struct nvme_tcp_queue *queue = req->queue;
373 	bool empty;
374 
375 	empty = llist_add(&req->lentry, &queue->req_list) &&
376 		list_empty(&queue->send_list) && !queue->request;
377 
378 	/*
379 	 * if we're the first on the send_list and we can try to send
380 	 * directly, otherwise queue io_work. Also, only do that if we
381 	 * are on the same cpu, so we don't introduce contention.
382 	 */
383 	if (queue->io_cpu == raw_smp_processor_id() &&
384 	    sync && empty && mutex_trylock(&queue->send_mutex)) {
385 		nvme_tcp_send_all(queue);
386 		mutex_unlock(&queue->send_mutex);
387 	}
388 
389 	if (last && nvme_tcp_queue_more(queue))
390 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
391 }
392 
393 static void nvme_tcp_process_req_list(struct nvme_tcp_queue *queue)
394 {
395 	struct nvme_tcp_request *req;
396 	struct llist_node *node;
397 
398 	for (node = llist_del_all(&queue->req_list); node; node = node->next) {
399 		req = llist_entry(node, struct nvme_tcp_request, lentry);
400 		list_add(&req->entry, &queue->send_list);
401 	}
402 }
403 
404 static inline struct nvme_tcp_request *
405 nvme_tcp_fetch_request(struct nvme_tcp_queue *queue)
406 {
407 	struct nvme_tcp_request *req;
408 
409 	req = list_first_entry_or_null(&queue->send_list,
410 			struct nvme_tcp_request, entry);
411 	if (!req) {
412 		nvme_tcp_process_req_list(queue);
413 		req = list_first_entry_or_null(&queue->send_list,
414 				struct nvme_tcp_request, entry);
415 		if (unlikely(!req))
416 			return NULL;
417 	}
418 
419 	list_del(&req->entry);
420 	return req;
421 }
422 
423 static inline void nvme_tcp_ddgst_final(struct ahash_request *hash,
424 		__le32 *dgst)
425 {
426 	ahash_request_set_crypt(hash, NULL, (u8 *)dgst, 0);
427 	crypto_ahash_final(hash);
428 }
429 
430 static inline void nvme_tcp_ddgst_update(struct ahash_request *hash,
431 		struct page *page, off_t off, size_t len)
432 {
433 	struct scatterlist sg;
434 
435 	sg_init_table(&sg, 1);
436 	sg_set_page(&sg, page, len, off);
437 	ahash_request_set_crypt(hash, &sg, NULL, len);
438 	crypto_ahash_update(hash);
439 }
440 
441 static inline void nvme_tcp_hdgst(struct ahash_request *hash,
442 		void *pdu, size_t len)
443 {
444 	struct scatterlist sg;
445 
446 	sg_init_one(&sg, pdu, len);
447 	ahash_request_set_crypt(hash, &sg, pdu + len, len);
448 	crypto_ahash_digest(hash);
449 }
450 
451 static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue,
452 		void *pdu, size_t pdu_len)
453 {
454 	struct nvme_tcp_hdr *hdr = pdu;
455 	__le32 recv_digest;
456 	__le32 exp_digest;
457 
458 	if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
459 		dev_err(queue->ctrl->ctrl.device,
460 			"queue %d: header digest flag is cleared\n",
461 			nvme_tcp_queue_id(queue));
462 		return -EPROTO;
463 	}
464 
465 	recv_digest = *(__le32 *)(pdu + hdr->hlen);
466 	nvme_tcp_hdgst(queue->rcv_hash, pdu, pdu_len);
467 	exp_digest = *(__le32 *)(pdu + hdr->hlen);
468 	if (recv_digest != exp_digest) {
469 		dev_err(queue->ctrl->ctrl.device,
470 			"header digest error: recv %#x expected %#x\n",
471 			le32_to_cpu(recv_digest), le32_to_cpu(exp_digest));
472 		return -EIO;
473 	}
474 
475 	return 0;
476 }
477 
478 static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu)
479 {
480 	struct nvme_tcp_hdr *hdr = pdu;
481 	u8 digest_len = nvme_tcp_hdgst_len(queue);
482 	u32 len;
483 
484 	len = le32_to_cpu(hdr->plen) - hdr->hlen -
485 		((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0);
486 
487 	if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
488 		dev_err(queue->ctrl->ctrl.device,
489 			"queue %d: data digest flag is cleared\n",
490 		nvme_tcp_queue_id(queue));
491 		return -EPROTO;
492 	}
493 	crypto_ahash_init(queue->rcv_hash);
494 
495 	return 0;
496 }
497 
498 static void nvme_tcp_exit_request(struct blk_mq_tag_set *set,
499 		struct request *rq, unsigned int hctx_idx)
500 {
501 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
502 
503 	page_frag_free(req->pdu);
504 }
505 
506 static int nvme_tcp_init_request(struct blk_mq_tag_set *set,
507 		struct request *rq, unsigned int hctx_idx,
508 		unsigned int numa_node)
509 {
510 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(set->driver_data);
511 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
512 	struct nvme_tcp_cmd_pdu *pdu;
513 	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
514 	struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx];
515 	u8 hdgst = nvme_tcp_hdgst_len(queue);
516 
517 	req->pdu = page_frag_alloc(&queue->pf_cache,
518 		sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
519 		GFP_KERNEL | __GFP_ZERO);
520 	if (!req->pdu)
521 		return -ENOMEM;
522 
523 	pdu = req->pdu;
524 	req->queue = queue;
525 	nvme_req(rq)->ctrl = &ctrl->ctrl;
526 	nvme_req(rq)->cmd = &pdu->cmd;
527 
528 	return 0;
529 }
530 
531 static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
532 		unsigned int hctx_idx)
533 {
534 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(data);
535 	struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1];
536 
537 	hctx->driver_data = queue;
538 	return 0;
539 }
540 
541 static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
542 		unsigned int hctx_idx)
543 {
544 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(data);
545 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
546 
547 	hctx->driver_data = queue;
548 	return 0;
549 }
550 
551 static enum nvme_tcp_recv_state
552 nvme_tcp_recv_state(struct nvme_tcp_queue *queue)
553 {
554 	return  (queue->pdu_remaining) ? NVME_TCP_RECV_PDU :
555 		(queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST :
556 		NVME_TCP_RECV_DATA;
557 }
558 
559 static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue)
560 {
561 	queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) +
562 				nvme_tcp_hdgst_len(queue);
563 	queue->pdu_offset = 0;
564 	queue->data_remaining = -1;
565 	queue->ddgst_remaining = 0;
566 }
567 
568 static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl)
569 {
570 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
571 		return;
572 
573 	dev_warn(ctrl->device, "starting error recovery\n");
574 	queue_work(nvme_reset_wq, &to_tcp_ctrl(ctrl)->err_work);
575 }
576 
577 static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue,
578 		struct nvme_completion *cqe)
579 {
580 	struct nvme_tcp_request *req;
581 	struct request *rq;
582 
583 	rq = nvme_find_rq(nvme_tcp_tagset(queue), cqe->command_id);
584 	if (!rq) {
585 		dev_err(queue->ctrl->ctrl.device,
586 			"got bad cqe.command_id %#x on queue %d\n",
587 			cqe->command_id, nvme_tcp_queue_id(queue));
588 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
589 		return -EINVAL;
590 	}
591 
592 	req = blk_mq_rq_to_pdu(rq);
593 	if (req->status == cpu_to_le16(NVME_SC_SUCCESS))
594 		req->status = cqe->status;
595 
596 	if (!nvme_try_complete_req(rq, req->status, cqe->result))
597 		nvme_complete_rq(rq);
598 	queue->nr_cqe++;
599 
600 	return 0;
601 }
602 
603 static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue,
604 		struct nvme_tcp_data_pdu *pdu)
605 {
606 	struct request *rq;
607 
608 	rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id);
609 	if (!rq) {
610 		dev_err(queue->ctrl->ctrl.device,
611 			"got bad c2hdata.command_id %#x on queue %d\n",
612 			pdu->command_id, nvme_tcp_queue_id(queue));
613 		return -ENOENT;
614 	}
615 
616 	if (!blk_rq_payload_bytes(rq)) {
617 		dev_err(queue->ctrl->ctrl.device,
618 			"queue %d tag %#x unexpected data\n",
619 			nvme_tcp_queue_id(queue), rq->tag);
620 		return -EIO;
621 	}
622 
623 	queue->data_remaining = le32_to_cpu(pdu->data_length);
624 
625 	if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS &&
626 	    unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) {
627 		dev_err(queue->ctrl->ctrl.device,
628 			"queue %d tag %#x SUCCESS set but not last PDU\n",
629 			nvme_tcp_queue_id(queue), rq->tag);
630 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
631 		return -EPROTO;
632 	}
633 
634 	return 0;
635 }
636 
637 static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue,
638 		struct nvme_tcp_rsp_pdu *pdu)
639 {
640 	struct nvme_completion *cqe = &pdu->cqe;
641 	int ret = 0;
642 
643 	/*
644 	 * AEN requests are special as they don't time out and can
645 	 * survive any kind of queue freeze and often don't respond to
646 	 * aborts.  We don't even bother to allocate a struct request
647 	 * for them but rather special case them here.
648 	 */
649 	if (unlikely(nvme_is_aen_req(nvme_tcp_queue_id(queue),
650 				     cqe->command_id)))
651 		nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
652 				&cqe->result);
653 	else
654 		ret = nvme_tcp_process_nvme_cqe(queue, cqe);
655 
656 	return ret;
657 }
658 
659 static void nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req)
660 {
661 	struct nvme_tcp_data_pdu *data = nvme_tcp_req_data_pdu(req);
662 	struct nvme_tcp_queue *queue = req->queue;
663 	struct request *rq = blk_mq_rq_from_pdu(req);
664 	u32 h2cdata_sent = req->pdu_len;
665 	u8 hdgst = nvme_tcp_hdgst_len(queue);
666 	u8 ddgst = nvme_tcp_ddgst_len(queue);
667 
668 	req->state = NVME_TCP_SEND_H2C_PDU;
669 	req->offset = 0;
670 	req->pdu_len = min(req->h2cdata_left, queue->maxh2cdata);
671 	req->pdu_sent = 0;
672 	req->h2cdata_left -= req->pdu_len;
673 	req->h2cdata_offset += h2cdata_sent;
674 
675 	memset(data, 0, sizeof(*data));
676 	data->hdr.type = nvme_tcp_h2c_data;
677 	if (!req->h2cdata_left)
678 		data->hdr.flags = NVME_TCP_F_DATA_LAST;
679 	if (queue->hdr_digest)
680 		data->hdr.flags |= NVME_TCP_F_HDGST;
681 	if (queue->data_digest)
682 		data->hdr.flags |= NVME_TCP_F_DDGST;
683 	data->hdr.hlen = sizeof(*data);
684 	data->hdr.pdo = data->hdr.hlen + hdgst;
685 	data->hdr.plen =
686 		cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst);
687 	data->ttag = req->ttag;
688 	data->command_id = nvme_cid(rq);
689 	data->data_offset = cpu_to_le32(req->h2cdata_offset);
690 	data->data_length = cpu_to_le32(req->pdu_len);
691 }
692 
693 static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue,
694 		struct nvme_tcp_r2t_pdu *pdu)
695 {
696 	struct nvme_tcp_request *req;
697 	struct request *rq;
698 	u32 r2t_length = le32_to_cpu(pdu->r2t_length);
699 	u32 r2t_offset = le32_to_cpu(pdu->r2t_offset);
700 
701 	rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id);
702 	if (!rq) {
703 		dev_err(queue->ctrl->ctrl.device,
704 			"got bad r2t.command_id %#x on queue %d\n",
705 			pdu->command_id, nvme_tcp_queue_id(queue));
706 		return -ENOENT;
707 	}
708 	req = blk_mq_rq_to_pdu(rq);
709 
710 	if (unlikely(!r2t_length)) {
711 		dev_err(queue->ctrl->ctrl.device,
712 			"req %d r2t len is %u, probably a bug...\n",
713 			rq->tag, r2t_length);
714 		return -EPROTO;
715 	}
716 
717 	if (unlikely(req->data_sent + r2t_length > req->data_len)) {
718 		dev_err(queue->ctrl->ctrl.device,
719 			"req %d r2t len %u exceeded data len %u (%zu sent)\n",
720 			rq->tag, r2t_length, req->data_len, req->data_sent);
721 		return -EPROTO;
722 	}
723 
724 	if (unlikely(r2t_offset < req->data_sent)) {
725 		dev_err(queue->ctrl->ctrl.device,
726 			"req %d unexpected r2t offset %u (expected %zu)\n",
727 			rq->tag, r2t_offset, req->data_sent);
728 		return -EPROTO;
729 	}
730 
731 	req->pdu_len = 0;
732 	req->h2cdata_left = r2t_length;
733 	req->h2cdata_offset = r2t_offset;
734 	req->ttag = pdu->ttag;
735 
736 	nvme_tcp_setup_h2c_data_pdu(req);
737 	nvme_tcp_queue_request(req, false, true);
738 
739 	return 0;
740 }
741 
742 static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb,
743 		unsigned int *offset, size_t *len)
744 {
745 	struct nvme_tcp_hdr *hdr;
746 	char *pdu = queue->pdu;
747 	size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining);
748 	int ret;
749 
750 	ret = skb_copy_bits(skb, *offset,
751 		&pdu[queue->pdu_offset], rcv_len);
752 	if (unlikely(ret))
753 		return ret;
754 
755 	queue->pdu_remaining -= rcv_len;
756 	queue->pdu_offset += rcv_len;
757 	*offset += rcv_len;
758 	*len -= rcv_len;
759 	if (queue->pdu_remaining)
760 		return 0;
761 
762 	hdr = queue->pdu;
763 	if (queue->hdr_digest) {
764 		ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen);
765 		if (unlikely(ret))
766 			return ret;
767 	}
768 
769 
770 	if (queue->data_digest) {
771 		ret = nvme_tcp_check_ddgst(queue, queue->pdu);
772 		if (unlikely(ret))
773 			return ret;
774 	}
775 
776 	switch (hdr->type) {
777 	case nvme_tcp_c2h_data:
778 		return nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu);
779 	case nvme_tcp_rsp:
780 		nvme_tcp_init_recv_ctx(queue);
781 		return nvme_tcp_handle_comp(queue, (void *)queue->pdu);
782 	case nvme_tcp_r2t:
783 		nvme_tcp_init_recv_ctx(queue);
784 		return nvme_tcp_handle_r2t(queue, (void *)queue->pdu);
785 	default:
786 		dev_err(queue->ctrl->ctrl.device,
787 			"unsupported pdu type (%d)\n", hdr->type);
788 		return -EINVAL;
789 	}
790 }
791 
792 static inline void nvme_tcp_end_request(struct request *rq, u16 status)
793 {
794 	union nvme_result res = {};
795 
796 	if (!nvme_try_complete_req(rq, cpu_to_le16(status << 1), res))
797 		nvme_complete_rq(rq);
798 }
799 
800 static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb,
801 			      unsigned int *offset, size_t *len)
802 {
803 	struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
804 	struct request *rq =
805 		nvme_cid_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
806 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
807 
808 	while (true) {
809 		int recv_len, ret;
810 
811 		recv_len = min_t(size_t, *len, queue->data_remaining);
812 		if (!recv_len)
813 			break;
814 
815 		if (!iov_iter_count(&req->iter)) {
816 			req->curr_bio = req->curr_bio->bi_next;
817 
818 			/*
819 			 * If we don`t have any bios it means that controller
820 			 * sent more data than we requested, hence error
821 			 */
822 			if (!req->curr_bio) {
823 				dev_err(queue->ctrl->ctrl.device,
824 					"queue %d no space in request %#x",
825 					nvme_tcp_queue_id(queue), rq->tag);
826 				nvme_tcp_init_recv_ctx(queue);
827 				return -EIO;
828 			}
829 			nvme_tcp_init_iter(req, ITER_DEST);
830 		}
831 
832 		/* we can read only from what is left in this bio */
833 		recv_len = min_t(size_t, recv_len,
834 				iov_iter_count(&req->iter));
835 
836 		if (queue->data_digest)
837 			ret = skb_copy_and_hash_datagram_iter(skb, *offset,
838 				&req->iter, recv_len, queue->rcv_hash);
839 		else
840 			ret = skb_copy_datagram_iter(skb, *offset,
841 					&req->iter, recv_len);
842 		if (ret) {
843 			dev_err(queue->ctrl->ctrl.device,
844 				"queue %d failed to copy request %#x data",
845 				nvme_tcp_queue_id(queue), rq->tag);
846 			return ret;
847 		}
848 
849 		*len -= recv_len;
850 		*offset += recv_len;
851 		queue->data_remaining -= recv_len;
852 	}
853 
854 	if (!queue->data_remaining) {
855 		if (queue->data_digest) {
856 			nvme_tcp_ddgst_final(queue->rcv_hash, &queue->exp_ddgst);
857 			queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH;
858 		} else {
859 			if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
860 				nvme_tcp_end_request(rq,
861 						le16_to_cpu(req->status));
862 				queue->nr_cqe++;
863 			}
864 			nvme_tcp_init_recv_ctx(queue);
865 		}
866 	}
867 
868 	return 0;
869 }
870 
871 static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue,
872 		struct sk_buff *skb, unsigned int *offset, size_t *len)
873 {
874 	struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
875 	char *ddgst = (char *)&queue->recv_ddgst;
876 	size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining);
877 	off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining;
878 	int ret;
879 
880 	ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len);
881 	if (unlikely(ret))
882 		return ret;
883 
884 	queue->ddgst_remaining -= recv_len;
885 	*offset += recv_len;
886 	*len -= recv_len;
887 	if (queue->ddgst_remaining)
888 		return 0;
889 
890 	if (queue->recv_ddgst != queue->exp_ddgst) {
891 		struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue),
892 					pdu->command_id);
893 		struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
894 
895 		req->status = cpu_to_le16(NVME_SC_DATA_XFER_ERROR);
896 
897 		dev_err(queue->ctrl->ctrl.device,
898 			"data digest error: recv %#x expected %#x\n",
899 			le32_to_cpu(queue->recv_ddgst),
900 			le32_to_cpu(queue->exp_ddgst));
901 	}
902 
903 	if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
904 		struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue),
905 					pdu->command_id);
906 		struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
907 
908 		nvme_tcp_end_request(rq, le16_to_cpu(req->status));
909 		queue->nr_cqe++;
910 	}
911 
912 	nvme_tcp_init_recv_ctx(queue);
913 	return 0;
914 }
915 
916 static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb,
917 			     unsigned int offset, size_t len)
918 {
919 	struct nvme_tcp_queue *queue = desc->arg.data;
920 	size_t consumed = len;
921 	int result;
922 
923 	if (unlikely(!queue->rd_enabled))
924 		return -EFAULT;
925 
926 	while (len) {
927 		switch (nvme_tcp_recv_state(queue)) {
928 		case NVME_TCP_RECV_PDU:
929 			result = nvme_tcp_recv_pdu(queue, skb, &offset, &len);
930 			break;
931 		case NVME_TCP_RECV_DATA:
932 			result = nvme_tcp_recv_data(queue, skb, &offset, &len);
933 			break;
934 		case NVME_TCP_RECV_DDGST:
935 			result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len);
936 			break;
937 		default:
938 			result = -EFAULT;
939 		}
940 		if (result) {
941 			dev_err(queue->ctrl->ctrl.device,
942 				"receive failed:  %d\n", result);
943 			queue->rd_enabled = false;
944 			nvme_tcp_error_recovery(&queue->ctrl->ctrl);
945 			return result;
946 		}
947 	}
948 
949 	return consumed;
950 }
951 
952 static void nvme_tcp_data_ready(struct sock *sk)
953 {
954 	struct nvme_tcp_queue *queue;
955 
956 	trace_sk_data_ready(sk);
957 
958 	read_lock_bh(&sk->sk_callback_lock);
959 	queue = sk->sk_user_data;
960 	if (likely(queue && queue->rd_enabled) &&
961 	    !test_bit(NVME_TCP_Q_POLLING, &queue->flags))
962 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
963 	read_unlock_bh(&sk->sk_callback_lock);
964 }
965 
966 static void nvme_tcp_write_space(struct sock *sk)
967 {
968 	struct nvme_tcp_queue *queue;
969 
970 	read_lock_bh(&sk->sk_callback_lock);
971 	queue = sk->sk_user_data;
972 	if (likely(queue && sk_stream_is_writeable(sk))) {
973 		clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
974 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
975 	}
976 	read_unlock_bh(&sk->sk_callback_lock);
977 }
978 
979 static void nvme_tcp_state_change(struct sock *sk)
980 {
981 	struct nvme_tcp_queue *queue;
982 
983 	read_lock_bh(&sk->sk_callback_lock);
984 	queue = sk->sk_user_data;
985 	if (!queue)
986 		goto done;
987 
988 	switch (sk->sk_state) {
989 	case TCP_CLOSE:
990 	case TCP_CLOSE_WAIT:
991 	case TCP_LAST_ACK:
992 	case TCP_FIN_WAIT1:
993 	case TCP_FIN_WAIT2:
994 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
995 		break;
996 	default:
997 		dev_info(queue->ctrl->ctrl.device,
998 			"queue %d socket state %d\n",
999 			nvme_tcp_queue_id(queue), sk->sk_state);
1000 	}
1001 
1002 	queue->state_change(sk);
1003 done:
1004 	read_unlock_bh(&sk->sk_callback_lock);
1005 }
1006 
1007 static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue)
1008 {
1009 	queue->request = NULL;
1010 }
1011 
1012 static void nvme_tcp_fail_request(struct nvme_tcp_request *req)
1013 {
1014 	if (nvme_tcp_async_req(req)) {
1015 		union nvme_result res = {};
1016 
1017 		nvme_complete_async_event(&req->queue->ctrl->ctrl,
1018 				cpu_to_le16(NVME_SC_HOST_PATH_ERROR), &res);
1019 	} else {
1020 		nvme_tcp_end_request(blk_mq_rq_from_pdu(req),
1021 				NVME_SC_HOST_PATH_ERROR);
1022 	}
1023 }
1024 
1025 static int nvme_tcp_try_send_data(struct nvme_tcp_request *req)
1026 {
1027 	struct nvme_tcp_queue *queue = req->queue;
1028 	int req_data_len = req->data_len;
1029 	u32 h2cdata_left = req->h2cdata_left;
1030 
1031 	while (true) {
1032 		struct bio_vec bvec;
1033 		struct msghdr msg = {
1034 			.msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES,
1035 		};
1036 		struct page *page = nvme_tcp_req_cur_page(req);
1037 		size_t offset = nvme_tcp_req_cur_offset(req);
1038 		size_t len = nvme_tcp_req_cur_length(req);
1039 		bool last = nvme_tcp_pdu_last_send(req, len);
1040 		int req_data_sent = req->data_sent;
1041 		int ret;
1042 
1043 		if (last && !queue->data_digest && !nvme_tcp_queue_more(queue))
1044 			msg.msg_flags |= MSG_EOR;
1045 		else
1046 			msg.msg_flags |= MSG_MORE;
1047 
1048 		if (!sendpage_ok(page))
1049 			msg.msg_flags &= ~MSG_SPLICE_PAGES;
1050 
1051 		bvec_set_page(&bvec, page, len, offset);
1052 		iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len);
1053 		ret = sock_sendmsg(queue->sock, &msg);
1054 		if (ret <= 0)
1055 			return ret;
1056 
1057 		if (queue->data_digest)
1058 			nvme_tcp_ddgst_update(queue->snd_hash, page,
1059 					offset, ret);
1060 
1061 		/*
1062 		 * update the request iterator except for the last payload send
1063 		 * in the request where we don't want to modify it as we may
1064 		 * compete with the RX path completing the request.
1065 		 */
1066 		if (req_data_sent + ret < req_data_len)
1067 			nvme_tcp_advance_req(req, ret);
1068 
1069 		/* fully successful last send in current PDU */
1070 		if (last && ret == len) {
1071 			if (queue->data_digest) {
1072 				nvme_tcp_ddgst_final(queue->snd_hash,
1073 					&req->ddgst);
1074 				req->state = NVME_TCP_SEND_DDGST;
1075 				req->offset = 0;
1076 			} else {
1077 				if (h2cdata_left)
1078 					nvme_tcp_setup_h2c_data_pdu(req);
1079 				else
1080 					nvme_tcp_done_send_req(queue);
1081 			}
1082 			return 1;
1083 		}
1084 	}
1085 	return -EAGAIN;
1086 }
1087 
1088 static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req)
1089 {
1090 	struct nvme_tcp_queue *queue = req->queue;
1091 	struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req);
1092 	struct bio_vec bvec;
1093 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, };
1094 	bool inline_data = nvme_tcp_has_inline_data(req);
1095 	u8 hdgst = nvme_tcp_hdgst_len(queue);
1096 	int len = sizeof(*pdu) + hdgst - req->offset;
1097 	int ret;
1098 
1099 	if (inline_data || nvme_tcp_queue_more(queue))
1100 		msg.msg_flags |= MSG_MORE;
1101 	else
1102 		msg.msg_flags |= MSG_EOR;
1103 
1104 	if (queue->hdr_digest && !req->offset)
1105 		nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
1106 
1107 	bvec_set_virt(&bvec, (void *)pdu + req->offset, len);
1108 	iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len);
1109 	ret = sock_sendmsg(queue->sock, &msg);
1110 	if (unlikely(ret <= 0))
1111 		return ret;
1112 
1113 	len -= ret;
1114 	if (!len) {
1115 		if (inline_data) {
1116 			req->state = NVME_TCP_SEND_DATA;
1117 			if (queue->data_digest)
1118 				crypto_ahash_init(queue->snd_hash);
1119 		} else {
1120 			nvme_tcp_done_send_req(queue);
1121 		}
1122 		return 1;
1123 	}
1124 	req->offset += ret;
1125 
1126 	return -EAGAIN;
1127 }
1128 
1129 static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req)
1130 {
1131 	struct nvme_tcp_queue *queue = req->queue;
1132 	struct nvme_tcp_data_pdu *pdu = nvme_tcp_req_data_pdu(req);
1133 	struct bio_vec bvec;
1134 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_MORE, };
1135 	u8 hdgst = nvme_tcp_hdgst_len(queue);
1136 	int len = sizeof(*pdu) - req->offset + hdgst;
1137 	int ret;
1138 
1139 	if (queue->hdr_digest && !req->offset)
1140 		nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
1141 
1142 	if (!req->h2cdata_left)
1143 		msg.msg_flags |= MSG_SPLICE_PAGES;
1144 
1145 	bvec_set_virt(&bvec, (void *)pdu + req->offset, len);
1146 	iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len);
1147 	ret = sock_sendmsg(queue->sock, &msg);
1148 	if (unlikely(ret <= 0))
1149 		return ret;
1150 
1151 	len -= ret;
1152 	if (!len) {
1153 		req->state = NVME_TCP_SEND_DATA;
1154 		if (queue->data_digest)
1155 			crypto_ahash_init(queue->snd_hash);
1156 		return 1;
1157 	}
1158 	req->offset += ret;
1159 
1160 	return -EAGAIN;
1161 }
1162 
1163 static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req)
1164 {
1165 	struct nvme_tcp_queue *queue = req->queue;
1166 	size_t offset = req->offset;
1167 	u32 h2cdata_left = req->h2cdata_left;
1168 	int ret;
1169 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1170 	struct kvec iov = {
1171 		.iov_base = (u8 *)&req->ddgst + req->offset,
1172 		.iov_len = NVME_TCP_DIGEST_LENGTH - req->offset
1173 	};
1174 
1175 	if (nvme_tcp_queue_more(queue))
1176 		msg.msg_flags |= MSG_MORE;
1177 	else
1178 		msg.msg_flags |= MSG_EOR;
1179 
1180 	ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1181 	if (unlikely(ret <= 0))
1182 		return ret;
1183 
1184 	if (offset + ret == NVME_TCP_DIGEST_LENGTH) {
1185 		if (h2cdata_left)
1186 			nvme_tcp_setup_h2c_data_pdu(req);
1187 		else
1188 			nvme_tcp_done_send_req(queue);
1189 		return 1;
1190 	}
1191 
1192 	req->offset += ret;
1193 	return -EAGAIN;
1194 }
1195 
1196 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue)
1197 {
1198 	struct nvme_tcp_request *req;
1199 	unsigned int noreclaim_flag;
1200 	int ret = 1;
1201 
1202 	if (!queue->request) {
1203 		queue->request = nvme_tcp_fetch_request(queue);
1204 		if (!queue->request)
1205 			return 0;
1206 	}
1207 	req = queue->request;
1208 
1209 	noreclaim_flag = memalloc_noreclaim_save();
1210 	if (req->state == NVME_TCP_SEND_CMD_PDU) {
1211 		ret = nvme_tcp_try_send_cmd_pdu(req);
1212 		if (ret <= 0)
1213 			goto done;
1214 		if (!nvme_tcp_has_inline_data(req))
1215 			goto out;
1216 	}
1217 
1218 	if (req->state == NVME_TCP_SEND_H2C_PDU) {
1219 		ret = nvme_tcp_try_send_data_pdu(req);
1220 		if (ret <= 0)
1221 			goto done;
1222 	}
1223 
1224 	if (req->state == NVME_TCP_SEND_DATA) {
1225 		ret = nvme_tcp_try_send_data(req);
1226 		if (ret <= 0)
1227 			goto done;
1228 	}
1229 
1230 	if (req->state == NVME_TCP_SEND_DDGST)
1231 		ret = nvme_tcp_try_send_ddgst(req);
1232 done:
1233 	if (ret == -EAGAIN) {
1234 		ret = 0;
1235 	} else if (ret < 0) {
1236 		dev_err(queue->ctrl->ctrl.device,
1237 			"failed to send request %d\n", ret);
1238 		nvme_tcp_fail_request(queue->request);
1239 		nvme_tcp_done_send_req(queue);
1240 	}
1241 out:
1242 	memalloc_noreclaim_restore(noreclaim_flag);
1243 	return ret;
1244 }
1245 
1246 static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue)
1247 {
1248 	struct socket *sock = queue->sock;
1249 	struct sock *sk = sock->sk;
1250 	read_descriptor_t rd_desc;
1251 	int consumed;
1252 
1253 	rd_desc.arg.data = queue;
1254 	rd_desc.count = 1;
1255 	lock_sock(sk);
1256 	queue->nr_cqe = 0;
1257 	consumed = sock->ops->read_sock(sk, &rd_desc, nvme_tcp_recv_skb);
1258 	release_sock(sk);
1259 	return consumed;
1260 }
1261 
1262 static void nvme_tcp_io_work(struct work_struct *w)
1263 {
1264 	struct nvme_tcp_queue *queue =
1265 		container_of(w, struct nvme_tcp_queue, io_work);
1266 	unsigned long deadline = jiffies + msecs_to_jiffies(1);
1267 
1268 	do {
1269 		bool pending = false;
1270 		int result;
1271 
1272 		if (mutex_trylock(&queue->send_mutex)) {
1273 			result = nvme_tcp_try_send(queue);
1274 			mutex_unlock(&queue->send_mutex);
1275 			if (result > 0)
1276 				pending = true;
1277 			else if (unlikely(result < 0))
1278 				break;
1279 		}
1280 
1281 		result = nvme_tcp_try_recv(queue);
1282 		if (result > 0)
1283 			pending = true;
1284 		else if (unlikely(result < 0))
1285 			return;
1286 
1287 		if (!pending || !queue->rd_enabled)
1288 			return;
1289 
1290 	} while (!time_after(jiffies, deadline)); /* quota is exhausted */
1291 
1292 	queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
1293 }
1294 
1295 static void nvme_tcp_free_crypto(struct nvme_tcp_queue *queue)
1296 {
1297 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash);
1298 
1299 	ahash_request_free(queue->rcv_hash);
1300 	ahash_request_free(queue->snd_hash);
1301 	crypto_free_ahash(tfm);
1302 }
1303 
1304 static int nvme_tcp_alloc_crypto(struct nvme_tcp_queue *queue)
1305 {
1306 	struct crypto_ahash *tfm;
1307 
1308 	tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC);
1309 	if (IS_ERR(tfm))
1310 		return PTR_ERR(tfm);
1311 
1312 	queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1313 	if (!queue->snd_hash)
1314 		goto free_tfm;
1315 	ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL);
1316 
1317 	queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1318 	if (!queue->rcv_hash)
1319 		goto free_snd_hash;
1320 	ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL);
1321 
1322 	return 0;
1323 free_snd_hash:
1324 	ahash_request_free(queue->snd_hash);
1325 free_tfm:
1326 	crypto_free_ahash(tfm);
1327 	return -ENOMEM;
1328 }
1329 
1330 static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl)
1331 {
1332 	struct nvme_tcp_request *async = &ctrl->async_req;
1333 
1334 	page_frag_free(async->pdu);
1335 }
1336 
1337 static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl)
1338 {
1339 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
1340 	struct nvme_tcp_request *async = &ctrl->async_req;
1341 	u8 hdgst = nvme_tcp_hdgst_len(queue);
1342 
1343 	async->pdu = page_frag_alloc(&queue->pf_cache,
1344 		sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
1345 		GFP_KERNEL | __GFP_ZERO);
1346 	if (!async->pdu)
1347 		return -ENOMEM;
1348 
1349 	async->queue = &ctrl->queues[0];
1350 	return 0;
1351 }
1352 
1353 static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid)
1354 {
1355 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1356 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1357 	unsigned int noreclaim_flag;
1358 
1359 	if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1360 		return;
1361 
1362 	if (queue->hdr_digest || queue->data_digest)
1363 		nvme_tcp_free_crypto(queue);
1364 
1365 	page_frag_cache_drain(&queue->pf_cache);
1366 
1367 	noreclaim_flag = memalloc_noreclaim_save();
1368 	/* ->sock will be released by fput() */
1369 	fput(queue->sock->file);
1370 	queue->sock = NULL;
1371 	memalloc_noreclaim_restore(noreclaim_flag);
1372 
1373 	kfree(queue->pdu);
1374 	mutex_destroy(&queue->send_mutex);
1375 	mutex_destroy(&queue->queue_lock);
1376 }
1377 
1378 static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue)
1379 {
1380 	struct nvme_tcp_icreq_pdu *icreq;
1381 	struct nvme_tcp_icresp_pdu *icresp;
1382 	char cbuf[CMSG_LEN(sizeof(char))] = {};
1383 	u8 ctype;
1384 	struct msghdr msg = {};
1385 	struct kvec iov;
1386 	bool ctrl_hdgst, ctrl_ddgst;
1387 	u32 maxh2cdata;
1388 	int ret;
1389 
1390 	icreq = kzalloc(sizeof(*icreq), GFP_KERNEL);
1391 	if (!icreq)
1392 		return -ENOMEM;
1393 
1394 	icresp = kzalloc(sizeof(*icresp), GFP_KERNEL);
1395 	if (!icresp) {
1396 		ret = -ENOMEM;
1397 		goto free_icreq;
1398 	}
1399 
1400 	icreq->hdr.type = nvme_tcp_icreq;
1401 	icreq->hdr.hlen = sizeof(*icreq);
1402 	icreq->hdr.pdo = 0;
1403 	icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen);
1404 	icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
1405 	icreq->maxr2t = 0; /* single inflight r2t supported */
1406 	icreq->hpda = 0; /* no alignment constraint */
1407 	if (queue->hdr_digest)
1408 		icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
1409 	if (queue->data_digest)
1410 		icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
1411 
1412 	iov.iov_base = icreq;
1413 	iov.iov_len = sizeof(*icreq);
1414 	ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1415 	if (ret < 0) {
1416 		pr_warn("queue %d: failed to send icreq, error %d\n",
1417 			nvme_tcp_queue_id(queue), ret);
1418 		goto free_icresp;
1419 	}
1420 
1421 	memset(&msg, 0, sizeof(msg));
1422 	iov.iov_base = icresp;
1423 	iov.iov_len = sizeof(*icresp);
1424 	if (nvme_tcp_tls(&queue->ctrl->ctrl)) {
1425 		msg.msg_control = cbuf;
1426 		msg.msg_controllen = sizeof(cbuf);
1427 	}
1428 	ret = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1429 			iov.iov_len, msg.msg_flags);
1430 	if (ret < 0) {
1431 		pr_warn("queue %d: failed to receive icresp, error %d\n",
1432 			nvme_tcp_queue_id(queue), ret);
1433 		goto free_icresp;
1434 	}
1435 	ret = -ENOTCONN;
1436 	if (nvme_tcp_tls(&queue->ctrl->ctrl)) {
1437 		ctype = tls_get_record_type(queue->sock->sk,
1438 					    (struct cmsghdr *)cbuf);
1439 		if (ctype != TLS_RECORD_TYPE_DATA) {
1440 			pr_err("queue %d: unhandled TLS record %d\n",
1441 			       nvme_tcp_queue_id(queue), ctype);
1442 			goto free_icresp;
1443 		}
1444 	}
1445 	ret = -EINVAL;
1446 	if (icresp->hdr.type != nvme_tcp_icresp) {
1447 		pr_err("queue %d: bad type returned %d\n",
1448 			nvme_tcp_queue_id(queue), icresp->hdr.type);
1449 		goto free_icresp;
1450 	}
1451 
1452 	if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) {
1453 		pr_err("queue %d: bad pdu length returned %d\n",
1454 			nvme_tcp_queue_id(queue), icresp->hdr.plen);
1455 		goto free_icresp;
1456 	}
1457 
1458 	if (icresp->pfv != NVME_TCP_PFV_1_0) {
1459 		pr_err("queue %d: bad pfv returned %d\n",
1460 			nvme_tcp_queue_id(queue), icresp->pfv);
1461 		goto free_icresp;
1462 	}
1463 
1464 	ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE);
1465 	if ((queue->data_digest && !ctrl_ddgst) ||
1466 	    (!queue->data_digest && ctrl_ddgst)) {
1467 		pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n",
1468 			nvme_tcp_queue_id(queue),
1469 			queue->data_digest ? "enabled" : "disabled",
1470 			ctrl_ddgst ? "enabled" : "disabled");
1471 		goto free_icresp;
1472 	}
1473 
1474 	ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE);
1475 	if ((queue->hdr_digest && !ctrl_hdgst) ||
1476 	    (!queue->hdr_digest && ctrl_hdgst)) {
1477 		pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n",
1478 			nvme_tcp_queue_id(queue),
1479 			queue->hdr_digest ? "enabled" : "disabled",
1480 			ctrl_hdgst ? "enabled" : "disabled");
1481 		goto free_icresp;
1482 	}
1483 
1484 	if (icresp->cpda != 0) {
1485 		pr_err("queue %d: unsupported cpda returned %d\n",
1486 			nvme_tcp_queue_id(queue), icresp->cpda);
1487 		goto free_icresp;
1488 	}
1489 
1490 	maxh2cdata = le32_to_cpu(icresp->maxdata);
1491 	if ((maxh2cdata % 4) || (maxh2cdata < NVME_TCP_MIN_MAXH2CDATA)) {
1492 		pr_err("queue %d: invalid maxh2cdata returned %u\n",
1493 		       nvme_tcp_queue_id(queue), maxh2cdata);
1494 		goto free_icresp;
1495 	}
1496 	queue->maxh2cdata = maxh2cdata;
1497 
1498 	ret = 0;
1499 free_icresp:
1500 	kfree(icresp);
1501 free_icreq:
1502 	kfree(icreq);
1503 	return ret;
1504 }
1505 
1506 static bool nvme_tcp_admin_queue(struct nvme_tcp_queue *queue)
1507 {
1508 	return nvme_tcp_queue_id(queue) == 0;
1509 }
1510 
1511 static bool nvme_tcp_default_queue(struct nvme_tcp_queue *queue)
1512 {
1513 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1514 	int qid = nvme_tcp_queue_id(queue);
1515 
1516 	return !nvme_tcp_admin_queue(queue) &&
1517 		qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT];
1518 }
1519 
1520 static bool nvme_tcp_read_queue(struct nvme_tcp_queue *queue)
1521 {
1522 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1523 	int qid = nvme_tcp_queue_id(queue);
1524 
1525 	return !nvme_tcp_admin_queue(queue) &&
1526 		!nvme_tcp_default_queue(queue) &&
1527 		qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1528 			  ctrl->io_queues[HCTX_TYPE_READ];
1529 }
1530 
1531 static bool nvme_tcp_poll_queue(struct nvme_tcp_queue *queue)
1532 {
1533 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1534 	int qid = nvme_tcp_queue_id(queue);
1535 
1536 	return !nvme_tcp_admin_queue(queue) &&
1537 		!nvme_tcp_default_queue(queue) &&
1538 		!nvme_tcp_read_queue(queue) &&
1539 		qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1540 			  ctrl->io_queues[HCTX_TYPE_READ] +
1541 			  ctrl->io_queues[HCTX_TYPE_POLL];
1542 }
1543 
1544 static void nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue *queue)
1545 {
1546 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1547 	int qid = nvme_tcp_queue_id(queue);
1548 	int n = 0;
1549 
1550 	if (nvme_tcp_default_queue(queue))
1551 		n = qid - 1;
1552 	else if (nvme_tcp_read_queue(queue))
1553 		n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - 1;
1554 	else if (nvme_tcp_poll_queue(queue))
1555 		n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] -
1556 				ctrl->io_queues[HCTX_TYPE_READ] - 1;
1557 	if (wq_unbound)
1558 		queue->io_cpu = WORK_CPU_UNBOUND;
1559 	else
1560 		queue->io_cpu = cpumask_next_wrap(n - 1, cpu_online_mask, -1, false);
1561 }
1562 
1563 static void nvme_tcp_tls_done(void *data, int status, key_serial_t pskid)
1564 {
1565 	struct nvme_tcp_queue *queue = data;
1566 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1567 	int qid = nvme_tcp_queue_id(queue);
1568 	struct key *tls_key;
1569 
1570 	dev_dbg(ctrl->ctrl.device, "queue %d: TLS handshake done, key %x, status %d\n",
1571 		qid, pskid, status);
1572 
1573 	if (status) {
1574 		queue->tls_err = -status;
1575 		goto out_complete;
1576 	}
1577 
1578 	tls_key = key_lookup(pskid);
1579 	if (IS_ERR(tls_key)) {
1580 		dev_warn(ctrl->ctrl.device, "queue %d: Invalid key %x\n",
1581 			 qid, pskid);
1582 		queue->tls_err = -ENOKEY;
1583 	} else {
1584 		ctrl->ctrl.tls_key = tls_key;
1585 		queue->tls_err = 0;
1586 	}
1587 
1588 out_complete:
1589 	complete(&queue->tls_complete);
1590 }
1591 
1592 static int nvme_tcp_start_tls(struct nvme_ctrl *nctrl,
1593 			      struct nvme_tcp_queue *queue,
1594 			      key_serial_t pskid)
1595 {
1596 	int qid = nvme_tcp_queue_id(queue);
1597 	int ret;
1598 	struct tls_handshake_args args;
1599 	unsigned long tmo = tls_handshake_timeout * HZ;
1600 	key_serial_t keyring = nvme_keyring_id();
1601 
1602 	dev_dbg(nctrl->device, "queue %d: start TLS with key %x\n",
1603 		qid, pskid);
1604 	memset(&args, 0, sizeof(args));
1605 	args.ta_sock = queue->sock;
1606 	args.ta_done = nvme_tcp_tls_done;
1607 	args.ta_data = queue;
1608 	args.ta_my_peerids[0] = pskid;
1609 	args.ta_num_peerids = 1;
1610 	if (nctrl->opts->keyring)
1611 		keyring = key_serial(nctrl->opts->keyring);
1612 	args.ta_keyring = keyring;
1613 	args.ta_timeout_ms = tls_handshake_timeout * 1000;
1614 	queue->tls_err = -EOPNOTSUPP;
1615 	init_completion(&queue->tls_complete);
1616 	ret = tls_client_hello_psk(&args, GFP_KERNEL);
1617 	if (ret) {
1618 		dev_err(nctrl->device, "queue %d: failed to start TLS: %d\n",
1619 			qid, ret);
1620 		return ret;
1621 	}
1622 	ret = wait_for_completion_interruptible_timeout(&queue->tls_complete, tmo);
1623 	if (ret <= 0) {
1624 		if (ret == 0)
1625 			ret = -ETIMEDOUT;
1626 
1627 		dev_err(nctrl->device,
1628 			"queue %d: TLS handshake failed, error %d\n",
1629 			qid, ret);
1630 		tls_handshake_cancel(queue->sock->sk);
1631 	} else {
1632 		dev_dbg(nctrl->device,
1633 			"queue %d: TLS handshake complete, error %d\n",
1634 			qid, queue->tls_err);
1635 		ret = queue->tls_err;
1636 	}
1637 	return ret;
1638 }
1639 
1640 static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl, int qid,
1641 				key_serial_t pskid)
1642 {
1643 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1644 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1645 	int ret, rcv_pdu_size;
1646 	struct file *sock_file;
1647 
1648 	mutex_init(&queue->queue_lock);
1649 	queue->ctrl = ctrl;
1650 	init_llist_head(&queue->req_list);
1651 	INIT_LIST_HEAD(&queue->send_list);
1652 	mutex_init(&queue->send_mutex);
1653 	INIT_WORK(&queue->io_work, nvme_tcp_io_work);
1654 
1655 	if (qid > 0)
1656 		queue->cmnd_capsule_len = nctrl->ioccsz * 16;
1657 	else
1658 		queue->cmnd_capsule_len = sizeof(struct nvme_command) +
1659 						NVME_TCP_ADMIN_CCSZ;
1660 
1661 	ret = sock_create(ctrl->addr.ss_family, SOCK_STREAM,
1662 			IPPROTO_TCP, &queue->sock);
1663 	if (ret) {
1664 		dev_err(nctrl->device,
1665 			"failed to create socket: %d\n", ret);
1666 		goto err_destroy_mutex;
1667 	}
1668 
1669 	sock_file = sock_alloc_file(queue->sock, O_CLOEXEC, NULL);
1670 	if (IS_ERR(sock_file)) {
1671 		ret = PTR_ERR(sock_file);
1672 		goto err_destroy_mutex;
1673 	}
1674 	nvme_tcp_reclassify_socket(queue->sock);
1675 
1676 	/* Single syn retry */
1677 	tcp_sock_set_syncnt(queue->sock->sk, 1);
1678 
1679 	/* Set TCP no delay */
1680 	tcp_sock_set_nodelay(queue->sock->sk);
1681 
1682 	/*
1683 	 * Cleanup whatever is sitting in the TCP transmit queue on socket
1684 	 * close. This is done to prevent stale data from being sent should
1685 	 * the network connection be restored before TCP times out.
1686 	 */
1687 	sock_no_linger(queue->sock->sk);
1688 
1689 	if (so_priority > 0)
1690 		sock_set_priority(queue->sock->sk, so_priority);
1691 
1692 	/* Set socket type of service */
1693 	if (nctrl->opts->tos >= 0)
1694 		ip_sock_set_tos(queue->sock->sk, nctrl->opts->tos);
1695 
1696 	/* Set 10 seconds timeout for icresp recvmsg */
1697 	queue->sock->sk->sk_rcvtimeo = 10 * HZ;
1698 
1699 	queue->sock->sk->sk_allocation = GFP_ATOMIC;
1700 	queue->sock->sk->sk_use_task_frag = false;
1701 	nvme_tcp_set_queue_io_cpu(queue);
1702 	queue->request = NULL;
1703 	queue->data_remaining = 0;
1704 	queue->ddgst_remaining = 0;
1705 	queue->pdu_remaining = 0;
1706 	queue->pdu_offset = 0;
1707 	sk_set_memalloc(queue->sock->sk);
1708 
1709 	if (nctrl->opts->mask & NVMF_OPT_HOST_TRADDR) {
1710 		ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr,
1711 			sizeof(ctrl->src_addr));
1712 		if (ret) {
1713 			dev_err(nctrl->device,
1714 				"failed to bind queue %d socket %d\n",
1715 				qid, ret);
1716 			goto err_sock;
1717 		}
1718 	}
1719 
1720 	if (nctrl->opts->mask & NVMF_OPT_HOST_IFACE) {
1721 		char *iface = nctrl->opts->host_iface;
1722 		sockptr_t optval = KERNEL_SOCKPTR(iface);
1723 
1724 		ret = sock_setsockopt(queue->sock, SOL_SOCKET, SO_BINDTODEVICE,
1725 				      optval, strlen(iface));
1726 		if (ret) {
1727 			dev_err(nctrl->device,
1728 			  "failed to bind to interface %s queue %d err %d\n",
1729 			  iface, qid, ret);
1730 			goto err_sock;
1731 		}
1732 	}
1733 
1734 	queue->hdr_digest = nctrl->opts->hdr_digest;
1735 	queue->data_digest = nctrl->opts->data_digest;
1736 	if (queue->hdr_digest || queue->data_digest) {
1737 		ret = nvme_tcp_alloc_crypto(queue);
1738 		if (ret) {
1739 			dev_err(nctrl->device,
1740 				"failed to allocate queue %d crypto\n", qid);
1741 			goto err_sock;
1742 		}
1743 	}
1744 
1745 	rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) +
1746 			nvme_tcp_hdgst_len(queue);
1747 	queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL);
1748 	if (!queue->pdu) {
1749 		ret = -ENOMEM;
1750 		goto err_crypto;
1751 	}
1752 
1753 	dev_dbg(nctrl->device, "connecting queue %d\n",
1754 			nvme_tcp_queue_id(queue));
1755 
1756 	ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr,
1757 		sizeof(ctrl->addr), 0);
1758 	if (ret) {
1759 		dev_err(nctrl->device,
1760 			"failed to connect socket: %d\n", ret);
1761 		goto err_rcv_pdu;
1762 	}
1763 
1764 	/* If PSKs are configured try to start TLS */
1765 	if (IS_ENABLED(CONFIG_NVME_TCP_TLS) && pskid) {
1766 		ret = nvme_tcp_start_tls(nctrl, queue, pskid);
1767 		if (ret)
1768 			goto err_init_connect;
1769 	}
1770 
1771 	ret = nvme_tcp_init_connection(queue);
1772 	if (ret)
1773 		goto err_init_connect;
1774 
1775 	set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags);
1776 
1777 	return 0;
1778 
1779 err_init_connect:
1780 	kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1781 err_rcv_pdu:
1782 	kfree(queue->pdu);
1783 err_crypto:
1784 	if (queue->hdr_digest || queue->data_digest)
1785 		nvme_tcp_free_crypto(queue);
1786 err_sock:
1787 	/* ->sock will be released by fput() */
1788 	fput(queue->sock->file);
1789 	queue->sock = NULL;
1790 err_destroy_mutex:
1791 	mutex_destroy(&queue->send_mutex);
1792 	mutex_destroy(&queue->queue_lock);
1793 	return ret;
1794 }
1795 
1796 static void nvme_tcp_restore_sock_ops(struct nvme_tcp_queue *queue)
1797 {
1798 	struct socket *sock = queue->sock;
1799 
1800 	write_lock_bh(&sock->sk->sk_callback_lock);
1801 	sock->sk->sk_user_data  = NULL;
1802 	sock->sk->sk_data_ready = queue->data_ready;
1803 	sock->sk->sk_state_change = queue->state_change;
1804 	sock->sk->sk_write_space  = queue->write_space;
1805 	write_unlock_bh(&sock->sk->sk_callback_lock);
1806 }
1807 
1808 static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue)
1809 {
1810 	kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1811 	nvme_tcp_restore_sock_ops(queue);
1812 	cancel_work_sync(&queue->io_work);
1813 }
1814 
1815 static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid)
1816 {
1817 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1818 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1819 
1820 	if (!test_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1821 		return;
1822 
1823 	mutex_lock(&queue->queue_lock);
1824 	if (test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags))
1825 		__nvme_tcp_stop_queue(queue);
1826 	mutex_unlock(&queue->queue_lock);
1827 }
1828 
1829 static void nvme_tcp_setup_sock_ops(struct nvme_tcp_queue *queue)
1830 {
1831 	write_lock_bh(&queue->sock->sk->sk_callback_lock);
1832 	queue->sock->sk->sk_user_data = queue;
1833 	queue->state_change = queue->sock->sk->sk_state_change;
1834 	queue->data_ready = queue->sock->sk->sk_data_ready;
1835 	queue->write_space = queue->sock->sk->sk_write_space;
1836 	queue->sock->sk->sk_data_ready = nvme_tcp_data_ready;
1837 	queue->sock->sk->sk_state_change = nvme_tcp_state_change;
1838 	queue->sock->sk->sk_write_space = nvme_tcp_write_space;
1839 #ifdef CONFIG_NET_RX_BUSY_POLL
1840 	queue->sock->sk->sk_ll_usec = 1;
1841 #endif
1842 	write_unlock_bh(&queue->sock->sk->sk_callback_lock);
1843 }
1844 
1845 static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx)
1846 {
1847 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1848 	struct nvme_tcp_queue *queue = &ctrl->queues[idx];
1849 	int ret;
1850 
1851 	queue->rd_enabled = true;
1852 	nvme_tcp_init_recv_ctx(queue);
1853 	nvme_tcp_setup_sock_ops(queue);
1854 
1855 	if (idx)
1856 		ret = nvmf_connect_io_queue(nctrl, idx);
1857 	else
1858 		ret = nvmf_connect_admin_queue(nctrl);
1859 
1860 	if (!ret) {
1861 		set_bit(NVME_TCP_Q_LIVE, &queue->flags);
1862 	} else {
1863 		if (test_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1864 			__nvme_tcp_stop_queue(queue);
1865 		dev_err(nctrl->device,
1866 			"failed to connect queue: %d ret=%d\n", idx, ret);
1867 	}
1868 	return ret;
1869 }
1870 
1871 static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl)
1872 {
1873 	if (to_tcp_ctrl(ctrl)->async_req.pdu) {
1874 		cancel_work_sync(&ctrl->async_event_work);
1875 		nvme_tcp_free_async_req(to_tcp_ctrl(ctrl));
1876 		to_tcp_ctrl(ctrl)->async_req.pdu = NULL;
1877 	}
1878 
1879 	nvme_tcp_free_queue(ctrl, 0);
1880 }
1881 
1882 static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl)
1883 {
1884 	int i;
1885 
1886 	for (i = 1; i < ctrl->queue_count; i++)
1887 		nvme_tcp_free_queue(ctrl, i);
1888 }
1889 
1890 static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl)
1891 {
1892 	int i;
1893 
1894 	for (i = 1; i < ctrl->queue_count; i++)
1895 		nvme_tcp_stop_queue(ctrl, i);
1896 }
1897 
1898 static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl,
1899 				    int first, int last)
1900 {
1901 	int i, ret;
1902 
1903 	for (i = first; i < last; i++) {
1904 		ret = nvme_tcp_start_queue(ctrl, i);
1905 		if (ret)
1906 			goto out_stop_queues;
1907 	}
1908 
1909 	return 0;
1910 
1911 out_stop_queues:
1912 	for (i--; i >= first; i--)
1913 		nvme_tcp_stop_queue(ctrl, i);
1914 	return ret;
1915 }
1916 
1917 static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl)
1918 {
1919 	int ret;
1920 	key_serial_t pskid = 0;
1921 
1922 	if (nvme_tcp_tls(ctrl)) {
1923 		if (ctrl->opts->tls_key)
1924 			pskid = key_serial(ctrl->opts->tls_key);
1925 		else
1926 			pskid = nvme_tls_psk_default(ctrl->opts->keyring,
1927 						      ctrl->opts->host->nqn,
1928 						      ctrl->opts->subsysnqn);
1929 		if (!pskid) {
1930 			dev_err(ctrl->device, "no valid PSK found\n");
1931 			return -ENOKEY;
1932 		}
1933 	}
1934 
1935 	ret = nvme_tcp_alloc_queue(ctrl, 0, pskid);
1936 	if (ret)
1937 		return ret;
1938 
1939 	ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl));
1940 	if (ret)
1941 		goto out_free_queue;
1942 
1943 	return 0;
1944 
1945 out_free_queue:
1946 	nvme_tcp_free_queue(ctrl, 0);
1947 	return ret;
1948 }
1949 
1950 static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1951 {
1952 	int i, ret;
1953 
1954 	if (nvme_tcp_tls(ctrl) && !ctrl->tls_key) {
1955 		dev_err(ctrl->device, "no PSK negotiated\n");
1956 		return -ENOKEY;
1957 	}
1958 	for (i = 1; i < ctrl->queue_count; i++) {
1959 		ret = nvme_tcp_alloc_queue(ctrl, i,
1960 				key_serial(ctrl->tls_key));
1961 		if (ret)
1962 			goto out_free_queues;
1963 	}
1964 
1965 	return 0;
1966 
1967 out_free_queues:
1968 	for (i--; i >= 1; i--)
1969 		nvme_tcp_free_queue(ctrl, i);
1970 
1971 	return ret;
1972 }
1973 
1974 static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1975 {
1976 	unsigned int nr_io_queues;
1977 	int ret;
1978 
1979 	nr_io_queues = nvmf_nr_io_queues(ctrl->opts);
1980 	ret = nvme_set_queue_count(ctrl, &nr_io_queues);
1981 	if (ret)
1982 		return ret;
1983 
1984 	if (nr_io_queues == 0) {
1985 		dev_err(ctrl->device,
1986 			"unable to set any I/O queues\n");
1987 		return -ENOMEM;
1988 	}
1989 
1990 	ctrl->queue_count = nr_io_queues + 1;
1991 	dev_info(ctrl->device,
1992 		"creating %d I/O queues.\n", nr_io_queues);
1993 
1994 	nvmf_set_io_queues(ctrl->opts, nr_io_queues,
1995 			   to_tcp_ctrl(ctrl)->io_queues);
1996 	return __nvme_tcp_alloc_io_queues(ctrl);
1997 }
1998 
1999 static void nvme_tcp_destroy_io_queues(struct nvme_ctrl *ctrl, bool remove)
2000 {
2001 	nvme_tcp_stop_io_queues(ctrl);
2002 	if (remove)
2003 		nvme_remove_io_tag_set(ctrl);
2004 	nvme_tcp_free_io_queues(ctrl);
2005 }
2006 
2007 static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new)
2008 {
2009 	int ret, nr_queues;
2010 
2011 	ret = nvme_tcp_alloc_io_queues(ctrl);
2012 	if (ret)
2013 		return ret;
2014 
2015 	if (new) {
2016 		ret = nvme_alloc_io_tag_set(ctrl, &to_tcp_ctrl(ctrl)->tag_set,
2017 				&nvme_tcp_mq_ops,
2018 				ctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2,
2019 				sizeof(struct nvme_tcp_request));
2020 		if (ret)
2021 			goto out_free_io_queues;
2022 	}
2023 
2024 	/*
2025 	 * Only start IO queues for which we have allocated the tagset
2026 	 * and limitted it to the available queues. On reconnects, the
2027 	 * queue number might have changed.
2028 	 */
2029 	nr_queues = min(ctrl->tagset->nr_hw_queues + 1, ctrl->queue_count);
2030 	ret = nvme_tcp_start_io_queues(ctrl, 1, nr_queues);
2031 	if (ret)
2032 		goto out_cleanup_connect_q;
2033 
2034 	if (!new) {
2035 		nvme_start_freeze(ctrl);
2036 		nvme_unquiesce_io_queues(ctrl);
2037 		if (!nvme_wait_freeze_timeout(ctrl, NVME_IO_TIMEOUT)) {
2038 			/*
2039 			 * If we timed out waiting for freeze we are likely to
2040 			 * be stuck.  Fail the controller initialization just
2041 			 * to be safe.
2042 			 */
2043 			ret = -ENODEV;
2044 			nvme_unfreeze(ctrl);
2045 			goto out_wait_freeze_timed_out;
2046 		}
2047 		blk_mq_update_nr_hw_queues(ctrl->tagset,
2048 			ctrl->queue_count - 1);
2049 		nvme_unfreeze(ctrl);
2050 	}
2051 
2052 	/*
2053 	 * If the number of queues has increased (reconnect case)
2054 	 * start all new queues now.
2055 	 */
2056 	ret = nvme_tcp_start_io_queues(ctrl, nr_queues,
2057 				       ctrl->tagset->nr_hw_queues + 1);
2058 	if (ret)
2059 		goto out_wait_freeze_timed_out;
2060 
2061 	return 0;
2062 
2063 out_wait_freeze_timed_out:
2064 	nvme_quiesce_io_queues(ctrl);
2065 	nvme_sync_io_queues(ctrl);
2066 	nvme_tcp_stop_io_queues(ctrl);
2067 out_cleanup_connect_q:
2068 	nvme_cancel_tagset(ctrl);
2069 	if (new)
2070 		nvme_remove_io_tag_set(ctrl);
2071 out_free_io_queues:
2072 	nvme_tcp_free_io_queues(ctrl);
2073 	return ret;
2074 }
2075 
2076 static void nvme_tcp_destroy_admin_queue(struct nvme_ctrl *ctrl, bool remove)
2077 {
2078 	nvme_tcp_stop_queue(ctrl, 0);
2079 	if (remove)
2080 		nvme_remove_admin_tag_set(ctrl);
2081 	nvme_tcp_free_admin_queue(ctrl);
2082 }
2083 
2084 static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new)
2085 {
2086 	int error;
2087 
2088 	error = nvme_tcp_alloc_admin_queue(ctrl);
2089 	if (error)
2090 		return error;
2091 
2092 	if (new) {
2093 		error = nvme_alloc_admin_tag_set(ctrl,
2094 				&to_tcp_ctrl(ctrl)->admin_tag_set,
2095 				&nvme_tcp_admin_mq_ops,
2096 				sizeof(struct nvme_tcp_request));
2097 		if (error)
2098 			goto out_free_queue;
2099 	}
2100 
2101 	error = nvme_tcp_start_queue(ctrl, 0);
2102 	if (error)
2103 		goto out_cleanup_tagset;
2104 
2105 	error = nvme_enable_ctrl(ctrl);
2106 	if (error)
2107 		goto out_stop_queue;
2108 
2109 	nvme_unquiesce_admin_queue(ctrl);
2110 
2111 	error = nvme_init_ctrl_finish(ctrl, false);
2112 	if (error)
2113 		goto out_quiesce_queue;
2114 
2115 	return 0;
2116 
2117 out_quiesce_queue:
2118 	nvme_quiesce_admin_queue(ctrl);
2119 	blk_sync_queue(ctrl->admin_q);
2120 out_stop_queue:
2121 	nvme_tcp_stop_queue(ctrl, 0);
2122 	nvme_cancel_admin_tagset(ctrl);
2123 out_cleanup_tagset:
2124 	if (new)
2125 		nvme_remove_admin_tag_set(ctrl);
2126 out_free_queue:
2127 	nvme_tcp_free_admin_queue(ctrl);
2128 	return error;
2129 }
2130 
2131 static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl,
2132 		bool remove)
2133 {
2134 	nvme_quiesce_admin_queue(ctrl);
2135 	blk_sync_queue(ctrl->admin_q);
2136 	nvme_tcp_stop_queue(ctrl, 0);
2137 	nvme_cancel_admin_tagset(ctrl);
2138 	if (remove)
2139 		nvme_unquiesce_admin_queue(ctrl);
2140 	nvme_tcp_destroy_admin_queue(ctrl, remove);
2141 }
2142 
2143 static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl,
2144 		bool remove)
2145 {
2146 	if (ctrl->queue_count <= 1)
2147 		return;
2148 	nvme_quiesce_admin_queue(ctrl);
2149 	nvme_quiesce_io_queues(ctrl);
2150 	nvme_sync_io_queues(ctrl);
2151 	nvme_tcp_stop_io_queues(ctrl);
2152 	nvme_cancel_tagset(ctrl);
2153 	if (remove)
2154 		nvme_unquiesce_io_queues(ctrl);
2155 	nvme_tcp_destroy_io_queues(ctrl, remove);
2156 }
2157 
2158 static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl)
2159 {
2160 	enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
2161 
2162 	/* If we are resetting/deleting then do nothing */
2163 	if (state != NVME_CTRL_CONNECTING) {
2164 		WARN_ON_ONCE(state == NVME_CTRL_NEW || state == NVME_CTRL_LIVE);
2165 		return;
2166 	}
2167 
2168 	if (nvmf_should_reconnect(ctrl)) {
2169 		dev_info(ctrl->device, "Reconnecting in %d seconds...\n",
2170 			ctrl->opts->reconnect_delay);
2171 		queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work,
2172 				ctrl->opts->reconnect_delay * HZ);
2173 	} else {
2174 		dev_info(ctrl->device, "Removing controller...\n");
2175 		nvme_delete_ctrl(ctrl);
2176 	}
2177 }
2178 
2179 static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new)
2180 {
2181 	struct nvmf_ctrl_options *opts = ctrl->opts;
2182 	int ret;
2183 
2184 	ret = nvme_tcp_configure_admin_queue(ctrl, new);
2185 	if (ret)
2186 		return ret;
2187 
2188 	if (ctrl->icdoff) {
2189 		ret = -EOPNOTSUPP;
2190 		dev_err(ctrl->device, "icdoff is not supported!\n");
2191 		goto destroy_admin;
2192 	}
2193 
2194 	if (!nvme_ctrl_sgl_supported(ctrl)) {
2195 		ret = -EOPNOTSUPP;
2196 		dev_err(ctrl->device, "Mandatory sgls are not supported!\n");
2197 		goto destroy_admin;
2198 	}
2199 
2200 	if (opts->queue_size > ctrl->sqsize + 1)
2201 		dev_warn(ctrl->device,
2202 			"queue_size %zu > ctrl sqsize %u, clamping down\n",
2203 			opts->queue_size, ctrl->sqsize + 1);
2204 
2205 	if (ctrl->sqsize + 1 > ctrl->maxcmd) {
2206 		dev_warn(ctrl->device,
2207 			"sqsize %u > ctrl maxcmd %u, clamping down\n",
2208 			ctrl->sqsize + 1, ctrl->maxcmd);
2209 		ctrl->sqsize = ctrl->maxcmd - 1;
2210 	}
2211 
2212 	if (ctrl->queue_count > 1) {
2213 		ret = nvme_tcp_configure_io_queues(ctrl, new);
2214 		if (ret)
2215 			goto destroy_admin;
2216 	}
2217 
2218 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) {
2219 		/*
2220 		 * state change failure is ok if we started ctrl delete,
2221 		 * unless we're during creation of a new controller to
2222 		 * avoid races with teardown flow.
2223 		 */
2224 		enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
2225 
2226 		WARN_ON_ONCE(state != NVME_CTRL_DELETING &&
2227 			     state != NVME_CTRL_DELETING_NOIO);
2228 		WARN_ON_ONCE(new);
2229 		ret = -EINVAL;
2230 		goto destroy_io;
2231 	}
2232 
2233 	nvme_start_ctrl(ctrl);
2234 	return 0;
2235 
2236 destroy_io:
2237 	if (ctrl->queue_count > 1) {
2238 		nvme_quiesce_io_queues(ctrl);
2239 		nvme_sync_io_queues(ctrl);
2240 		nvme_tcp_stop_io_queues(ctrl);
2241 		nvme_cancel_tagset(ctrl);
2242 		nvme_tcp_destroy_io_queues(ctrl, new);
2243 	}
2244 destroy_admin:
2245 	nvme_stop_keep_alive(ctrl);
2246 	nvme_tcp_teardown_admin_queue(ctrl, false);
2247 	return ret;
2248 }
2249 
2250 static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work)
2251 {
2252 	struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work),
2253 			struct nvme_tcp_ctrl, connect_work);
2254 	struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2255 
2256 	++ctrl->nr_reconnects;
2257 
2258 	if (nvme_tcp_setup_ctrl(ctrl, false))
2259 		goto requeue;
2260 
2261 	dev_info(ctrl->device, "Successfully reconnected (%d attempt)\n",
2262 			ctrl->nr_reconnects);
2263 
2264 	ctrl->nr_reconnects = 0;
2265 
2266 	return;
2267 
2268 requeue:
2269 	dev_info(ctrl->device, "Failed reconnect attempt %d\n",
2270 			ctrl->nr_reconnects);
2271 	nvme_tcp_reconnect_or_remove(ctrl);
2272 }
2273 
2274 static void nvme_tcp_error_recovery_work(struct work_struct *work)
2275 {
2276 	struct nvme_tcp_ctrl *tcp_ctrl = container_of(work,
2277 				struct nvme_tcp_ctrl, err_work);
2278 	struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2279 
2280 	nvme_stop_keep_alive(ctrl);
2281 	flush_work(&ctrl->async_event_work);
2282 	nvme_tcp_teardown_io_queues(ctrl, false);
2283 	/* unquiesce to fail fast pending requests */
2284 	nvme_unquiesce_io_queues(ctrl);
2285 	nvme_tcp_teardown_admin_queue(ctrl, false);
2286 	nvme_unquiesce_admin_queue(ctrl);
2287 	nvme_auth_stop(ctrl);
2288 
2289 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2290 		/* state change failure is ok if we started ctrl delete */
2291 		enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
2292 
2293 		WARN_ON_ONCE(state != NVME_CTRL_DELETING &&
2294 			     state != NVME_CTRL_DELETING_NOIO);
2295 		return;
2296 	}
2297 
2298 	nvme_tcp_reconnect_or_remove(ctrl);
2299 }
2300 
2301 static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
2302 {
2303 	nvme_tcp_teardown_io_queues(ctrl, shutdown);
2304 	nvme_quiesce_admin_queue(ctrl);
2305 	nvme_disable_ctrl(ctrl, shutdown);
2306 	nvme_tcp_teardown_admin_queue(ctrl, shutdown);
2307 }
2308 
2309 static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl)
2310 {
2311 	nvme_tcp_teardown_ctrl(ctrl, true);
2312 }
2313 
2314 static void nvme_reset_ctrl_work(struct work_struct *work)
2315 {
2316 	struct nvme_ctrl *ctrl =
2317 		container_of(work, struct nvme_ctrl, reset_work);
2318 
2319 	nvme_stop_ctrl(ctrl);
2320 	nvme_tcp_teardown_ctrl(ctrl, false);
2321 
2322 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2323 		/* state change failure is ok if we started ctrl delete */
2324 		enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
2325 
2326 		WARN_ON_ONCE(state != NVME_CTRL_DELETING &&
2327 			     state != NVME_CTRL_DELETING_NOIO);
2328 		return;
2329 	}
2330 
2331 	if (nvme_tcp_setup_ctrl(ctrl, false))
2332 		goto out_fail;
2333 
2334 	return;
2335 
2336 out_fail:
2337 	++ctrl->nr_reconnects;
2338 	nvme_tcp_reconnect_or_remove(ctrl);
2339 }
2340 
2341 static void nvme_tcp_stop_ctrl(struct nvme_ctrl *ctrl)
2342 {
2343 	flush_work(&to_tcp_ctrl(ctrl)->err_work);
2344 	cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work);
2345 }
2346 
2347 static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl)
2348 {
2349 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
2350 
2351 	if (list_empty(&ctrl->list))
2352 		goto free_ctrl;
2353 
2354 	mutex_lock(&nvme_tcp_ctrl_mutex);
2355 	list_del(&ctrl->list);
2356 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2357 
2358 	nvmf_free_options(nctrl->opts);
2359 free_ctrl:
2360 	kfree(ctrl->queues);
2361 	kfree(ctrl);
2362 }
2363 
2364 static void nvme_tcp_set_sg_null(struct nvme_command *c)
2365 {
2366 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2367 
2368 	sg->addr = 0;
2369 	sg->length = 0;
2370 	sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2371 			NVME_SGL_FMT_TRANSPORT_A;
2372 }
2373 
2374 static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue,
2375 		struct nvme_command *c, u32 data_len)
2376 {
2377 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2378 
2379 	sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
2380 	sg->length = cpu_to_le32(data_len);
2381 	sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
2382 }
2383 
2384 static void nvme_tcp_set_sg_host_data(struct nvme_command *c,
2385 		u32 data_len)
2386 {
2387 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2388 
2389 	sg->addr = 0;
2390 	sg->length = cpu_to_le32(data_len);
2391 	sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2392 			NVME_SGL_FMT_TRANSPORT_A;
2393 }
2394 
2395 static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg)
2396 {
2397 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg);
2398 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
2399 	struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu;
2400 	struct nvme_command *cmd = &pdu->cmd;
2401 	u8 hdgst = nvme_tcp_hdgst_len(queue);
2402 
2403 	memset(pdu, 0, sizeof(*pdu));
2404 	pdu->hdr.type = nvme_tcp_cmd;
2405 	if (queue->hdr_digest)
2406 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
2407 	pdu->hdr.hlen = sizeof(*pdu);
2408 	pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
2409 
2410 	cmd->common.opcode = nvme_admin_async_event;
2411 	cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
2412 	cmd->common.flags |= NVME_CMD_SGL_METABUF;
2413 	nvme_tcp_set_sg_null(cmd);
2414 
2415 	ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU;
2416 	ctrl->async_req.offset = 0;
2417 	ctrl->async_req.curr_bio = NULL;
2418 	ctrl->async_req.data_len = 0;
2419 
2420 	nvme_tcp_queue_request(&ctrl->async_req, true, true);
2421 }
2422 
2423 static void nvme_tcp_complete_timed_out(struct request *rq)
2424 {
2425 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2426 	struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2427 
2428 	nvme_tcp_stop_queue(ctrl, nvme_tcp_queue_id(req->queue));
2429 	nvmf_complete_timed_out_request(rq);
2430 }
2431 
2432 static enum blk_eh_timer_return nvme_tcp_timeout(struct request *rq)
2433 {
2434 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2435 	struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2436 	struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req);
2437 	struct nvme_command *cmd = &pdu->cmd;
2438 	int qid = nvme_tcp_queue_id(req->queue);
2439 
2440 	dev_warn(ctrl->device,
2441 		 "I/O tag %d (%04x) type %d opcode %#x (%s) QID %d timeout\n",
2442 		 rq->tag, nvme_cid(rq), pdu->hdr.type, cmd->common.opcode,
2443 		 nvme_fabrics_opcode_str(qid, cmd), qid);
2444 
2445 	if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE) {
2446 		/*
2447 		 * If we are resetting, connecting or deleting we should
2448 		 * complete immediately because we may block controller
2449 		 * teardown or setup sequence
2450 		 * - ctrl disable/shutdown fabrics requests
2451 		 * - connect requests
2452 		 * - initialization admin requests
2453 		 * - I/O requests that entered after unquiescing and
2454 		 *   the controller stopped responding
2455 		 *
2456 		 * All other requests should be cancelled by the error
2457 		 * recovery work, so it's fine that we fail it here.
2458 		 */
2459 		nvme_tcp_complete_timed_out(rq);
2460 		return BLK_EH_DONE;
2461 	}
2462 
2463 	/*
2464 	 * LIVE state should trigger the normal error recovery which will
2465 	 * handle completing this request.
2466 	 */
2467 	nvme_tcp_error_recovery(ctrl);
2468 	return BLK_EH_RESET_TIMER;
2469 }
2470 
2471 static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue,
2472 			struct request *rq)
2473 {
2474 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2475 	struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req);
2476 	struct nvme_command *c = &pdu->cmd;
2477 
2478 	c->common.flags |= NVME_CMD_SGL_METABUF;
2479 
2480 	if (!blk_rq_nr_phys_segments(rq))
2481 		nvme_tcp_set_sg_null(c);
2482 	else if (rq_data_dir(rq) == WRITE &&
2483 	    req->data_len <= nvme_tcp_inline_data_size(req))
2484 		nvme_tcp_set_sg_inline(queue, c, req->data_len);
2485 	else
2486 		nvme_tcp_set_sg_host_data(c, req->data_len);
2487 
2488 	return 0;
2489 }
2490 
2491 static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns,
2492 		struct request *rq)
2493 {
2494 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2495 	struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req);
2496 	struct nvme_tcp_queue *queue = req->queue;
2497 	u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0;
2498 	blk_status_t ret;
2499 
2500 	ret = nvme_setup_cmd(ns, rq);
2501 	if (ret)
2502 		return ret;
2503 
2504 	req->state = NVME_TCP_SEND_CMD_PDU;
2505 	req->status = cpu_to_le16(NVME_SC_SUCCESS);
2506 	req->offset = 0;
2507 	req->data_sent = 0;
2508 	req->pdu_len = 0;
2509 	req->pdu_sent = 0;
2510 	req->h2cdata_left = 0;
2511 	req->data_len = blk_rq_nr_phys_segments(rq) ?
2512 				blk_rq_payload_bytes(rq) : 0;
2513 	req->curr_bio = rq->bio;
2514 	if (req->curr_bio && req->data_len)
2515 		nvme_tcp_init_iter(req, rq_data_dir(rq));
2516 
2517 	if (rq_data_dir(rq) == WRITE &&
2518 	    req->data_len <= nvme_tcp_inline_data_size(req))
2519 		req->pdu_len = req->data_len;
2520 
2521 	pdu->hdr.type = nvme_tcp_cmd;
2522 	pdu->hdr.flags = 0;
2523 	if (queue->hdr_digest)
2524 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
2525 	if (queue->data_digest && req->pdu_len) {
2526 		pdu->hdr.flags |= NVME_TCP_F_DDGST;
2527 		ddgst = nvme_tcp_ddgst_len(queue);
2528 	}
2529 	pdu->hdr.hlen = sizeof(*pdu);
2530 	pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0;
2531 	pdu->hdr.plen =
2532 		cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst);
2533 
2534 	ret = nvme_tcp_map_data(queue, rq);
2535 	if (unlikely(ret)) {
2536 		nvme_cleanup_cmd(rq);
2537 		dev_err(queue->ctrl->ctrl.device,
2538 			"Failed to map data (%d)\n", ret);
2539 		return ret;
2540 	}
2541 
2542 	return 0;
2543 }
2544 
2545 static void nvme_tcp_commit_rqs(struct blk_mq_hw_ctx *hctx)
2546 {
2547 	struct nvme_tcp_queue *queue = hctx->driver_data;
2548 
2549 	if (!llist_empty(&queue->req_list))
2550 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
2551 }
2552 
2553 static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx,
2554 		const struct blk_mq_queue_data *bd)
2555 {
2556 	struct nvme_ns *ns = hctx->queue->queuedata;
2557 	struct nvme_tcp_queue *queue = hctx->driver_data;
2558 	struct request *rq = bd->rq;
2559 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2560 	bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags);
2561 	blk_status_t ret;
2562 
2563 	if (!nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2564 		return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq);
2565 
2566 	ret = nvme_tcp_setup_cmd_pdu(ns, rq);
2567 	if (unlikely(ret))
2568 		return ret;
2569 
2570 	nvme_start_request(rq);
2571 
2572 	nvme_tcp_queue_request(req, true, bd->last);
2573 
2574 	return BLK_STS_OK;
2575 }
2576 
2577 static void nvme_tcp_map_queues(struct blk_mq_tag_set *set)
2578 {
2579 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(set->driver_data);
2580 
2581 	nvmf_map_queues(set, &ctrl->ctrl, ctrl->io_queues);
2582 }
2583 
2584 static int nvme_tcp_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
2585 {
2586 	struct nvme_tcp_queue *queue = hctx->driver_data;
2587 	struct sock *sk = queue->sock->sk;
2588 
2589 	if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags))
2590 		return 0;
2591 
2592 	set_bit(NVME_TCP_Q_POLLING, &queue->flags);
2593 	if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue))
2594 		sk_busy_loop(sk, true);
2595 	nvme_tcp_try_recv(queue);
2596 	clear_bit(NVME_TCP_Q_POLLING, &queue->flags);
2597 	return queue->nr_cqe;
2598 }
2599 
2600 static int nvme_tcp_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2601 {
2602 	struct nvme_tcp_queue *queue = &to_tcp_ctrl(ctrl)->queues[0];
2603 	struct sockaddr_storage src_addr;
2604 	int ret, len;
2605 
2606 	len = nvmf_get_address(ctrl, buf, size);
2607 
2608 	mutex_lock(&queue->queue_lock);
2609 
2610 	if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags))
2611 		goto done;
2612 	ret = kernel_getsockname(queue->sock, (struct sockaddr *)&src_addr);
2613 	if (ret > 0) {
2614 		if (len > 0)
2615 			len--; /* strip trailing newline */
2616 		len += scnprintf(buf + len, size - len, "%ssrc_addr=%pISc\n",
2617 				(len) ? "," : "", &src_addr);
2618 	}
2619 done:
2620 	mutex_unlock(&queue->queue_lock);
2621 
2622 	return len;
2623 }
2624 
2625 static const struct blk_mq_ops nvme_tcp_mq_ops = {
2626 	.queue_rq	= nvme_tcp_queue_rq,
2627 	.commit_rqs	= nvme_tcp_commit_rqs,
2628 	.complete	= nvme_complete_rq,
2629 	.init_request	= nvme_tcp_init_request,
2630 	.exit_request	= nvme_tcp_exit_request,
2631 	.init_hctx	= nvme_tcp_init_hctx,
2632 	.timeout	= nvme_tcp_timeout,
2633 	.map_queues	= nvme_tcp_map_queues,
2634 	.poll		= nvme_tcp_poll,
2635 };
2636 
2637 static const struct blk_mq_ops nvme_tcp_admin_mq_ops = {
2638 	.queue_rq	= nvme_tcp_queue_rq,
2639 	.complete	= nvme_complete_rq,
2640 	.init_request	= nvme_tcp_init_request,
2641 	.exit_request	= nvme_tcp_exit_request,
2642 	.init_hctx	= nvme_tcp_init_admin_hctx,
2643 	.timeout	= nvme_tcp_timeout,
2644 };
2645 
2646 static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = {
2647 	.name			= "tcp",
2648 	.module			= THIS_MODULE,
2649 	.flags			= NVME_F_FABRICS | NVME_F_BLOCKING,
2650 	.reg_read32		= nvmf_reg_read32,
2651 	.reg_read64		= nvmf_reg_read64,
2652 	.reg_write32		= nvmf_reg_write32,
2653 	.free_ctrl		= nvme_tcp_free_ctrl,
2654 	.submit_async_event	= nvme_tcp_submit_async_event,
2655 	.delete_ctrl		= nvme_tcp_delete_ctrl,
2656 	.get_address		= nvme_tcp_get_address,
2657 	.stop_ctrl		= nvme_tcp_stop_ctrl,
2658 };
2659 
2660 static bool
2661 nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts)
2662 {
2663 	struct nvme_tcp_ctrl *ctrl;
2664 	bool found = false;
2665 
2666 	mutex_lock(&nvme_tcp_ctrl_mutex);
2667 	list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) {
2668 		found = nvmf_ip_options_match(&ctrl->ctrl, opts);
2669 		if (found)
2670 			break;
2671 	}
2672 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2673 
2674 	return found;
2675 }
2676 
2677 static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev,
2678 		struct nvmf_ctrl_options *opts)
2679 {
2680 	struct nvme_tcp_ctrl *ctrl;
2681 	int ret;
2682 
2683 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2684 	if (!ctrl)
2685 		return ERR_PTR(-ENOMEM);
2686 
2687 	INIT_LIST_HEAD(&ctrl->list);
2688 	ctrl->ctrl.opts = opts;
2689 	ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2690 				opts->nr_poll_queues + 1;
2691 	ctrl->ctrl.sqsize = opts->queue_size - 1;
2692 	ctrl->ctrl.kato = opts->kato;
2693 
2694 	INIT_DELAYED_WORK(&ctrl->connect_work,
2695 			nvme_tcp_reconnect_ctrl_work);
2696 	INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work);
2697 	INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work);
2698 
2699 	if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2700 		opts->trsvcid =
2701 			kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL);
2702 		if (!opts->trsvcid) {
2703 			ret = -ENOMEM;
2704 			goto out_free_ctrl;
2705 		}
2706 		opts->mask |= NVMF_OPT_TRSVCID;
2707 	}
2708 
2709 	ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2710 			opts->traddr, opts->trsvcid, &ctrl->addr);
2711 	if (ret) {
2712 		pr_err("malformed address passed: %s:%s\n",
2713 			opts->traddr, opts->trsvcid);
2714 		goto out_free_ctrl;
2715 	}
2716 
2717 	if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2718 		ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2719 			opts->host_traddr, NULL, &ctrl->src_addr);
2720 		if (ret) {
2721 			pr_err("malformed src address passed: %s\n",
2722 			       opts->host_traddr);
2723 			goto out_free_ctrl;
2724 		}
2725 	}
2726 
2727 	if (opts->mask & NVMF_OPT_HOST_IFACE) {
2728 		if (!__dev_get_by_name(&init_net, opts->host_iface)) {
2729 			pr_err("invalid interface passed: %s\n",
2730 			       opts->host_iface);
2731 			ret = -ENODEV;
2732 			goto out_free_ctrl;
2733 		}
2734 	}
2735 
2736 	if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) {
2737 		ret = -EALREADY;
2738 		goto out_free_ctrl;
2739 	}
2740 
2741 	ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2742 				GFP_KERNEL);
2743 	if (!ctrl->queues) {
2744 		ret = -ENOMEM;
2745 		goto out_free_ctrl;
2746 	}
2747 
2748 	ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0);
2749 	if (ret)
2750 		goto out_kfree_queues;
2751 
2752 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2753 		WARN_ON_ONCE(1);
2754 		ret = -EINTR;
2755 		goto out_uninit_ctrl;
2756 	}
2757 
2758 	ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true);
2759 	if (ret)
2760 		goto out_uninit_ctrl;
2761 
2762 	dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp, hostnqn: %s\n",
2763 		nvmf_ctrl_subsysnqn(&ctrl->ctrl), &ctrl->addr, opts->host->nqn);
2764 
2765 	mutex_lock(&nvme_tcp_ctrl_mutex);
2766 	list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list);
2767 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2768 
2769 	return &ctrl->ctrl;
2770 
2771 out_uninit_ctrl:
2772 	nvme_uninit_ctrl(&ctrl->ctrl);
2773 	nvme_put_ctrl(&ctrl->ctrl);
2774 	if (ret > 0)
2775 		ret = -EIO;
2776 	return ERR_PTR(ret);
2777 out_kfree_queues:
2778 	kfree(ctrl->queues);
2779 out_free_ctrl:
2780 	kfree(ctrl);
2781 	return ERR_PTR(ret);
2782 }
2783 
2784 static struct nvmf_transport_ops nvme_tcp_transport = {
2785 	.name		= "tcp",
2786 	.module		= THIS_MODULE,
2787 	.required_opts	= NVMF_OPT_TRADDR,
2788 	.allowed_opts	= NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2789 			  NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2790 			  NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST |
2791 			  NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
2792 			  NVMF_OPT_TOS | NVMF_OPT_HOST_IFACE | NVMF_OPT_TLS |
2793 			  NVMF_OPT_KEYRING | NVMF_OPT_TLS_KEY,
2794 	.create_ctrl	= nvme_tcp_create_ctrl,
2795 };
2796 
2797 static int __init nvme_tcp_init_module(void)
2798 {
2799 	unsigned int wq_flags = WQ_MEM_RECLAIM | WQ_HIGHPRI | WQ_SYSFS;
2800 
2801 	BUILD_BUG_ON(sizeof(struct nvme_tcp_hdr) != 8);
2802 	BUILD_BUG_ON(sizeof(struct nvme_tcp_cmd_pdu) != 72);
2803 	BUILD_BUG_ON(sizeof(struct nvme_tcp_data_pdu) != 24);
2804 	BUILD_BUG_ON(sizeof(struct nvme_tcp_rsp_pdu) != 24);
2805 	BUILD_BUG_ON(sizeof(struct nvme_tcp_r2t_pdu) != 24);
2806 	BUILD_BUG_ON(sizeof(struct nvme_tcp_icreq_pdu) != 128);
2807 	BUILD_BUG_ON(sizeof(struct nvme_tcp_icresp_pdu) != 128);
2808 	BUILD_BUG_ON(sizeof(struct nvme_tcp_term_pdu) != 24);
2809 
2810 	if (wq_unbound)
2811 		wq_flags |= WQ_UNBOUND;
2812 
2813 	nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq", wq_flags, 0);
2814 	if (!nvme_tcp_wq)
2815 		return -ENOMEM;
2816 
2817 	nvmf_register_transport(&nvme_tcp_transport);
2818 	return 0;
2819 }
2820 
2821 static void __exit nvme_tcp_cleanup_module(void)
2822 {
2823 	struct nvme_tcp_ctrl *ctrl;
2824 
2825 	nvmf_unregister_transport(&nvme_tcp_transport);
2826 
2827 	mutex_lock(&nvme_tcp_ctrl_mutex);
2828 	list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list)
2829 		nvme_delete_ctrl(&ctrl->ctrl);
2830 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2831 	flush_workqueue(nvme_delete_wq);
2832 
2833 	destroy_workqueue(nvme_tcp_wq);
2834 }
2835 
2836 module_init(nvme_tcp_init_module);
2837 module_exit(nvme_tcp_cleanup_module);
2838 
2839 MODULE_DESCRIPTION("NVMe host TCP transport driver");
2840 MODULE_LICENSE("GPL v2");
2841