1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVMe over Fabrics TCP host. 4 * Copyright (c) 2018 Lightbits Labs. All rights reserved. 5 */ 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 #include <linux/module.h> 8 #include <linux/init.h> 9 #include <linux/slab.h> 10 #include <linux/err.h> 11 #include <linux/nvme-tcp.h> 12 #include <net/sock.h> 13 #include <net/tcp.h> 14 #include <linux/blk-mq.h> 15 #include <crypto/hash.h> 16 #include <net/busy_poll.h> 17 18 #include "nvme.h" 19 #include "fabrics.h" 20 21 struct nvme_tcp_queue; 22 23 /* Define the socket priority to use for connections were it is desirable 24 * that the NIC consider performing optimized packet processing or filtering. 25 * A non-zero value being sufficient to indicate general consideration of any 26 * possible optimization. Making it a module param allows for alternative 27 * values that may be unique for some NIC implementations. 28 */ 29 static int so_priority; 30 module_param(so_priority, int, 0644); 31 MODULE_PARM_DESC(so_priority, "nvme tcp socket optimize priority"); 32 33 enum nvme_tcp_send_state { 34 NVME_TCP_SEND_CMD_PDU = 0, 35 NVME_TCP_SEND_H2C_PDU, 36 NVME_TCP_SEND_DATA, 37 NVME_TCP_SEND_DDGST, 38 }; 39 40 struct nvme_tcp_request { 41 struct nvme_request req; 42 void *pdu; 43 struct nvme_tcp_queue *queue; 44 u32 data_len; 45 u32 pdu_len; 46 u32 pdu_sent; 47 u16 ttag; 48 __le16 status; 49 struct list_head entry; 50 struct llist_node lentry; 51 __le32 ddgst; 52 53 struct bio *curr_bio; 54 struct iov_iter iter; 55 56 /* send state */ 57 size_t offset; 58 size_t data_sent; 59 enum nvme_tcp_send_state state; 60 }; 61 62 enum nvme_tcp_queue_flags { 63 NVME_TCP_Q_ALLOCATED = 0, 64 NVME_TCP_Q_LIVE = 1, 65 NVME_TCP_Q_POLLING = 2, 66 }; 67 68 enum nvme_tcp_recv_state { 69 NVME_TCP_RECV_PDU = 0, 70 NVME_TCP_RECV_DATA, 71 NVME_TCP_RECV_DDGST, 72 }; 73 74 struct nvme_tcp_ctrl; 75 struct nvme_tcp_queue { 76 struct socket *sock; 77 struct work_struct io_work; 78 int io_cpu; 79 80 struct mutex queue_lock; 81 struct mutex send_mutex; 82 struct llist_head req_list; 83 struct list_head send_list; 84 bool more_requests; 85 86 /* recv state */ 87 void *pdu; 88 int pdu_remaining; 89 int pdu_offset; 90 size_t data_remaining; 91 size_t ddgst_remaining; 92 unsigned int nr_cqe; 93 94 /* send state */ 95 struct nvme_tcp_request *request; 96 97 int queue_size; 98 size_t cmnd_capsule_len; 99 struct nvme_tcp_ctrl *ctrl; 100 unsigned long flags; 101 bool rd_enabled; 102 103 bool hdr_digest; 104 bool data_digest; 105 struct ahash_request *rcv_hash; 106 struct ahash_request *snd_hash; 107 __le32 exp_ddgst; 108 __le32 recv_ddgst; 109 110 struct page_frag_cache pf_cache; 111 112 void (*state_change)(struct sock *); 113 void (*data_ready)(struct sock *); 114 void (*write_space)(struct sock *); 115 }; 116 117 struct nvme_tcp_ctrl { 118 /* read only in the hot path */ 119 struct nvme_tcp_queue *queues; 120 struct blk_mq_tag_set tag_set; 121 122 /* other member variables */ 123 struct list_head list; 124 struct blk_mq_tag_set admin_tag_set; 125 struct sockaddr_storage addr; 126 struct sockaddr_storage src_addr; 127 struct nvme_ctrl ctrl; 128 129 struct work_struct err_work; 130 struct delayed_work connect_work; 131 struct nvme_tcp_request async_req; 132 u32 io_queues[HCTX_MAX_TYPES]; 133 }; 134 135 static LIST_HEAD(nvme_tcp_ctrl_list); 136 static DEFINE_MUTEX(nvme_tcp_ctrl_mutex); 137 static struct workqueue_struct *nvme_tcp_wq; 138 static const struct blk_mq_ops nvme_tcp_mq_ops; 139 static const struct blk_mq_ops nvme_tcp_admin_mq_ops; 140 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue); 141 142 static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl) 143 { 144 return container_of(ctrl, struct nvme_tcp_ctrl, ctrl); 145 } 146 147 static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue) 148 { 149 return queue - queue->ctrl->queues; 150 } 151 152 static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue) 153 { 154 u32 queue_idx = nvme_tcp_queue_id(queue); 155 156 if (queue_idx == 0) 157 return queue->ctrl->admin_tag_set.tags[queue_idx]; 158 return queue->ctrl->tag_set.tags[queue_idx - 1]; 159 } 160 161 static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue) 162 { 163 return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0; 164 } 165 166 static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue) 167 { 168 return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0; 169 } 170 171 static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_queue *queue) 172 { 173 return queue->cmnd_capsule_len - sizeof(struct nvme_command); 174 } 175 176 static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req) 177 { 178 return req == &req->queue->ctrl->async_req; 179 } 180 181 static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req) 182 { 183 struct request *rq; 184 185 if (unlikely(nvme_tcp_async_req(req))) 186 return false; /* async events don't have a request */ 187 188 rq = blk_mq_rq_from_pdu(req); 189 190 return rq_data_dir(rq) == WRITE && req->data_len && 191 req->data_len <= nvme_tcp_inline_data_size(req->queue); 192 } 193 194 static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req) 195 { 196 return req->iter.bvec->bv_page; 197 } 198 199 static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req) 200 { 201 return req->iter.bvec->bv_offset + req->iter.iov_offset; 202 } 203 204 static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req) 205 { 206 return min_t(size_t, iov_iter_single_seg_count(&req->iter), 207 req->pdu_len - req->pdu_sent); 208 } 209 210 static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req) 211 { 212 return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ? 213 req->pdu_len - req->pdu_sent : 0; 214 } 215 216 static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req, 217 int len) 218 { 219 return nvme_tcp_pdu_data_left(req) <= len; 220 } 221 222 static void nvme_tcp_init_iter(struct nvme_tcp_request *req, 223 unsigned int dir) 224 { 225 struct request *rq = blk_mq_rq_from_pdu(req); 226 struct bio_vec *vec; 227 unsigned int size; 228 int nr_bvec; 229 size_t offset; 230 231 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) { 232 vec = &rq->special_vec; 233 nr_bvec = 1; 234 size = blk_rq_payload_bytes(rq); 235 offset = 0; 236 } else { 237 struct bio *bio = req->curr_bio; 238 struct bvec_iter bi; 239 struct bio_vec bv; 240 241 vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); 242 nr_bvec = 0; 243 bio_for_each_bvec(bv, bio, bi) { 244 nr_bvec++; 245 } 246 size = bio->bi_iter.bi_size; 247 offset = bio->bi_iter.bi_bvec_done; 248 } 249 250 iov_iter_bvec(&req->iter, dir, vec, nr_bvec, size); 251 req->iter.iov_offset = offset; 252 } 253 254 static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req, 255 int len) 256 { 257 req->data_sent += len; 258 req->pdu_sent += len; 259 iov_iter_advance(&req->iter, len); 260 if (!iov_iter_count(&req->iter) && 261 req->data_sent < req->data_len) { 262 req->curr_bio = req->curr_bio->bi_next; 263 nvme_tcp_init_iter(req, WRITE); 264 } 265 } 266 267 static inline void nvme_tcp_send_all(struct nvme_tcp_queue *queue) 268 { 269 int ret; 270 271 /* drain the send queue as much as we can... */ 272 do { 273 ret = nvme_tcp_try_send(queue); 274 } while (ret > 0); 275 } 276 277 static inline bool nvme_tcp_queue_more(struct nvme_tcp_queue *queue) 278 { 279 return !list_empty(&queue->send_list) || 280 !llist_empty(&queue->req_list) || queue->more_requests; 281 } 282 283 static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req, 284 bool sync, bool last) 285 { 286 struct nvme_tcp_queue *queue = req->queue; 287 bool empty; 288 289 empty = llist_add(&req->lentry, &queue->req_list) && 290 list_empty(&queue->send_list) && !queue->request; 291 292 /* 293 * if we're the first on the send_list and we can try to send 294 * directly, otherwise queue io_work. Also, only do that if we 295 * are on the same cpu, so we don't introduce contention. 296 */ 297 if (queue->io_cpu == raw_smp_processor_id() && 298 sync && empty && mutex_trylock(&queue->send_mutex)) { 299 queue->more_requests = !last; 300 nvme_tcp_send_all(queue); 301 queue->more_requests = false; 302 mutex_unlock(&queue->send_mutex); 303 } 304 305 if (last && nvme_tcp_queue_more(queue)) 306 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 307 } 308 309 static void nvme_tcp_process_req_list(struct nvme_tcp_queue *queue) 310 { 311 struct nvme_tcp_request *req; 312 struct llist_node *node; 313 314 for (node = llist_del_all(&queue->req_list); node; node = node->next) { 315 req = llist_entry(node, struct nvme_tcp_request, lentry); 316 list_add(&req->entry, &queue->send_list); 317 } 318 } 319 320 static inline struct nvme_tcp_request * 321 nvme_tcp_fetch_request(struct nvme_tcp_queue *queue) 322 { 323 struct nvme_tcp_request *req; 324 325 req = list_first_entry_or_null(&queue->send_list, 326 struct nvme_tcp_request, entry); 327 if (!req) { 328 nvme_tcp_process_req_list(queue); 329 req = list_first_entry_or_null(&queue->send_list, 330 struct nvme_tcp_request, entry); 331 if (unlikely(!req)) 332 return NULL; 333 } 334 335 list_del(&req->entry); 336 return req; 337 } 338 339 static inline void nvme_tcp_ddgst_final(struct ahash_request *hash, 340 __le32 *dgst) 341 { 342 ahash_request_set_crypt(hash, NULL, (u8 *)dgst, 0); 343 crypto_ahash_final(hash); 344 } 345 346 static inline void nvme_tcp_ddgst_update(struct ahash_request *hash, 347 struct page *page, off_t off, size_t len) 348 { 349 struct scatterlist sg; 350 351 sg_init_marker(&sg, 1); 352 sg_set_page(&sg, page, len, off); 353 ahash_request_set_crypt(hash, &sg, NULL, len); 354 crypto_ahash_update(hash); 355 } 356 357 static inline void nvme_tcp_hdgst(struct ahash_request *hash, 358 void *pdu, size_t len) 359 { 360 struct scatterlist sg; 361 362 sg_init_one(&sg, pdu, len); 363 ahash_request_set_crypt(hash, &sg, pdu + len, len); 364 crypto_ahash_digest(hash); 365 } 366 367 static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue, 368 void *pdu, size_t pdu_len) 369 { 370 struct nvme_tcp_hdr *hdr = pdu; 371 __le32 recv_digest; 372 __le32 exp_digest; 373 374 if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) { 375 dev_err(queue->ctrl->ctrl.device, 376 "queue %d: header digest flag is cleared\n", 377 nvme_tcp_queue_id(queue)); 378 return -EPROTO; 379 } 380 381 recv_digest = *(__le32 *)(pdu + hdr->hlen); 382 nvme_tcp_hdgst(queue->rcv_hash, pdu, pdu_len); 383 exp_digest = *(__le32 *)(pdu + hdr->hlen); 384 if (recv_digest != exp_digest) { 385 dev_err(queue->ctrl->ctrl.device, 386 "header digest error: recv %#x expected %#x\n", 387 le32_to_cpu(recv_digest), le32_to_cpu(exp_digest)); 388 return -EIO; 389 } 390 391 return 0; 392 } 393 394 static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu) 395 { 396 struct nvme_tcp_hdr *hdr = pdu; 397 u8 digest_len = nvme_tcp_hdgst_len(queue); 398 u32 len; 399 400 len = le32_to_cpu(hdr->plen) - hdr->hlen - 401 ((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0); 402 403 if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) { 404 dev_err(queue->ctrl->ctrl.device, 405 "queue %d: data digest flag is cleared\n", 406 nvme_tcp_queue_id(queue)); 407 return -EPROTO; 408 } 409 crypto_ahash_init(queue->rcv_hash); 410 411 return 0; 412 } 413 414 static void nvme_tcp_exit_request(struct blk_mq_tag_set *set, 415 struct request *rq, unsigned int hctx_idx) 416 { 417 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 418 419 page_frag_free(req->pdu); 420 } 421 422 static int nvme_tcp_init_request(struct blk_mq_tag_set *set, 423 struct request *rq, unsigned int hctx_idx, 424 unsigned int numa_node) 425 { 426 struct nvme_tcp_ctrl *ctrl = set->driver_data; 427 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 428 struct nvme_tcp_cmd_pdu *pdu; 429 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; 430 struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx]; 431 u8 hdgst = nvme_tcp_hdgst_len(queue); 432 433 req->pdu = page_frag_alloc(&queue->pf_cache, 434 sizeof(struct nvme_tcp_cmd_pdu) + hdgst, 435 GFP_KERNEL | __GFP_ZERO); 436 if (!req->pdu) 437 return -ENOMEM; 438 439 pdu = req->pdu; 440 req->queue = queue; 441 nvme_req(rq)->ctrl = &ctrl->ctrl; 442 nvme_req(rq)->cmd = &pdu->cmd; 443 444 return 0; 445 } 446 447 static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 448 unsigned int hctx_idx) 449 { 450 struct nvme_tcp_ctrl *ctrl = data; 451 struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1]; 452 453 hctx->driver_data = queue; 454 return 0; 455 } 456 457 static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, 458 unsigned int hctx_idx) 459 { 460 struct nvme_tcp_ctrl *ctrl = data; 461 struct nvme_tcp_queue *queue = &ctrl->queues[0]; 462 463 hctx->driver_data = queue; 464 return 0; 465 } 466 467 static enum nvme_tcp_recv_state 468 nvme_tcp_recv_state(struct nvme_tcp_queue *queue) 469 { 470 return (queue->pdu_remaining) ? NVME_TCP_RECV_PDU : 471 (queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST : 472 NVME_TCP_RECV_DATA; 473 } 474 475 static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue) 476 { 477 queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) + 478 nvme_tcp_hdgst_len(queue); 479 queue->pdu_offset = 0; 480 queue->data_remaining = -1; 481 queue->ddgst_remaining = 0; 482 } 483 484 static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl) 485 { 486 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 487 return; 488 489 dev_warn(ctrl->device, "starting error recovery\n"); 490 queue_work(nvme_reset_wq, &to_tcp_ctrl(ctrl)->err_work); 491 } 492 493 static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue, 494 struct nvme_completion *cqe) 495 { 496 struct nvme_tcp_request *req; 497 struct request *rq; 498 499 rq = nvme_find_rq(nvme_tcp_tagset(queue), cqe->command_id); 500 if (!rq) { 501 dev_err(queue->ctrl->ctrl.device, 502 "got bad cqe.command_id %#x on queue %d\n", 503 cqe->command_id, nvme_tcp_queue_id(queue)); 504 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 505 return -EINVAL; 506 } 507 508 req = blk_mq_rq_to_pdu(rq); 509 if (req->status == cpu_to_le16(NVME_SC_SUCCESS)) 510 req->status = cqe->status; 511 512 if (!nvme_try_complete_req(rq, req->status, cqe->result)) 513 nvme_complete_rq(rq); 514 queue->nr_cqe++; 515 516 return 0; 517 } 518 519 static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue, 520 struct nvme_tcp_data_pdu *pdu) 521 { 522 struct request *rq; 523 524 rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id); 525 if (!rq) { 526 dev_err(queue->ctrl->ctrl.device, 527 "got bad c2hdata.command_id %#x on queue %d\n", 528 pdu->command_id, nvme_tcp_queue_id(queue)); 529 return -ENOENT; 530 } 531 532 if (!blk_rq_payload_bytes(rq)) { 533 dev_err(queue->ctrl->ctrl.device, 534 "queue %d tag %#x unexpected data\n", 535 nvme_tcp_queue_id(queue), rq->tag); 536 return -EIO; 537 } 538 539 queue->data_remaining = le32_to_cpu(pdu->data_length); 540 541 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS && 542 unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) { 543 dev_err(queue->ctrl->ctrl.device, 544 "queue %d tag %#x SUCCESS set but not last PDU\n", 545 nvme_tcp_queue_id(queue), rq->tag); 546 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 547 return -EPROTO; 548 } 549 550 return 0; 551 } 552 553 static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue, 554 struct nvme_tcp_rsp_pdu *pdu) 555 { 556 struct nvme_completion *cqe = &pdu->cqe; 557 int ret = 0; 558 559 /* 560 * AEN requests are special as they don't time out and can 561 * survive any kind of queue freeze and often don't respond to 562 * aborts. We don't even bother to allocate a struct request 563 * for them but rather special case them here. 564 */ 565 if (unlikely(nvme_is_aen_req(nvme_tcp_queue_id(queue), 566 cqe->command_id))) 567 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status, 568 &cqe->result); 569 else 570 ret = nvme_tcp_process_nvme_cqe(queue, cqe); 571 572 return ret; 573 } 574 575 static void nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req, 576 struct nvme_tcp_r2t_pdu *pdu) 577 { 578 struct nvme_tcp_data_pdu *data = req->pdu; 579 struct nvme_tcp_queue *queue = req->queue; 580 struct request *rq = blk_mq_rq_from_pdu(req); 581 u8 hdgst = nvme_tcp_hdgst_len(queue); 582 u8 ddgst = nvme_tcp_ddgst_len(queue); 583 584 req->state = NVME_TCP_SEND_H2C_PDU; 585 req->offset = 0; 586 req->pdu_len = le32_to_cpu(pdu->r2t_length); 587 req->pdu_sent = 0; 588 589 memset(data, 0, sizeof(*data)); 590 data->hdr.type = nvme_tcp_h2c_data; 591 data->hdr.flags = NVME_TCP_F_DATA_LAST; 592 if (queue->hdr_digest) 593 data->hdr.flags |= NVME_TCP_F_HDGST; 594 if (queue->data_digest) 595 data->hdr.flags |= NVME_TCP_F_DDGST; 596 data->hdr.hlen = sizeof(*data); 597 data->hdr.pdo = data->hdr.hlen + hdgst; 598 data->hdr.plen = 599 cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst); 600 data->ttag = pdu->ttag; 601 data->command_id = nvme_cid(rq); 602 data->data_offset = pdu->r2t_offset; 603 data->data_length = cpu_to_le32(req->pdu_len); 604 } 605 606 static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue, 607 struct nvme_tcp_r2t_pdu *pdu) 608 { 609 struct nvme_tcp_request *req; 610 struct request *rq; 611 u32 r2t_length = le32_to_cpu(pdu->r2t_length); 612 613 rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id); 614 if (!rq) { 615 dev_err(queue->ctrl->ctrl.device, 616 "got bad r2t.command_id %#x on queue %d\n", 617 pdu->command_id, nvme_tcp_queue_id(queue)); 618 return -ENOENT; 619 } 620 req = blk_mq_rq_to_pdu(rq); 621 622 if (unlikely(!r2t_length)) { 623 dev_err(queue->ctrl->ctrl.device, 624 "req %d r2t len is %u, probably a bug...\n", 625 rq->tag, r2t_length); 626 return -EPROTO; 627 } 628 629 if (unlikely(req->data_sent + r2t_length > req->data_len)) { 630 dev_err(queue->ctrl->ctrl.device, 631 "req %d r2t len %u exceeded data len %u (%zu sent)\n", 632 rq->tag, r2t_length, req->data_len, req->data_sent); 633 return -EPROTO; 634 } 635 636 if (unlikely(le32_to_cpu(pdu->r2t_offset) < req->data_sent)) { 637 dev_err(queue->ctrl->ctrl.device, 638 "req %d unexpected r2t offset %u (expected %zu)\n", 639 rq->tag, le32_to_cpu(pdu->r2t_offset), req->data_sent); 640 return -EPROTO; 641 } 642 643 nvme_tcp_setup_h2c_data_pdu(req, pdu); 644 nvme_tcp_queue_request(req, false, true); 645 646 return 0; 647 } 648 649 static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb, 650 unsigned int *offset, size_t *len) 651 { 652 struct nvme_tcp_hdr *hdr; 653 char *pdu = queue->pdu; 654 size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining); 655 int ret; 656 657 ret = skb_copy_bits(skb, *offset, 658 &pdu[queue->pdu_offset], rcv_len); 659 if (unlikely(ret)) 660 return ret; 661 662 queue->pdu_remaining -= rcv_len; 663 queue->pdu_offset += rcv_len; 664 *offset += rcv_len; 665 *len -= rcv_len; 666 if (queue->pdu_remaining) 667 return 0; 668 669 hdr = queue->pdu; 670 if (queue->hdr_digest) { 671 ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen); 672 if (unlikely(ret)) 673 return ret; 674 } 675 676 677 if (queue->data_digest) { 678 ret = nvme_tcp_check_ddgst(queue, queue->pdu); 679 if (unlikely(ret)) 680 return ret; 681 } 682 683 switch (hdr->type) { 684 case nvme_tcp_c2h_data: 685 return nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu); 686 case nvme_tcp_rsp: 687 nvme_tcp_init_recv_ctx(queue); 688 return nvme_tcp_handle_comp(queue, (void *)queue->pdu); 689 case nvme_tcp_r2t: 690 nvme_tcp_init_recv_ctx(queue); 691 return nvme_tcp_handle_r2t(queue, (void *)queue->pdu); 692 default: 693 dev_err(queue->ctrl->ctrl.device, 694 "unsupported pdu type (%d)\n", hdr->type); 695 return -EINVAL; 696 } 697 } 698 699 static inline void nvme_tcp_end_request(struct request *rq, u16 status) 700 { 701 union nvme_result res = {}; 702 703 if (!nvme_try_complete_req(rq, cpu_to_le16(status << 1), res)) 704 nvme_complete_rq(rq); 705 } 706 707 static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb, 708 unsigned int *offset, size_t *len) 709 { 710 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu; 711 struct request *rq = 712 nvme_cid_to_rq(nvme_tcp_tagset(queue), pdu->command_id); 713 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 714 715 while (true) { 716 int recv_len, ret; 717 718 recv_len = min_t(size_t, *len, queue->data_remaining); 719 if (!recv_len) 720 break; 721 722 if (!iov_iter_count(&req->iter)) { 723 req->curr_bio = req->curr_bio->bi_next; 724 725 /* 726 * If we don`t have any bios it means that controller 727 * sent more data than we requested, hence error 728 */ 729 if (!req->curr_bio) { 730 dev_err(queue->ctrl->ctrl.device, 731 "queue %d no space in request %#x", 732 nvme_tcp_queue_id(queue), rq->tag); 733 nvme_tcp_init_recv_ctx(queue); 734 return -EIO; 735 } 736 nvme_tcp_init_iter(req, READ); 737 } 738 739 /* we can read only from what is left in this bio */ 740 recv_len = min_t(size_t, recv_len, 741 iov_iter_count(&req->iter)); 742 743 if (queue->data_digest) 744 ret = skb_copy_and_hash_datagram_iter(skb, *offset, 745 &req->iter, recv_len, queue->rcv_hash); 746 else 747 ret = skb_copy_datagram_iter(skb, *offset, 748 &req->iter, recv_len); 749 if (ret) { 750 dev_err(queue->ctrl->ctrl.device, 751 "queue %d failed to copy request %#x data", 752 nvme_tcp_queue_id(queue), rq->tag); 753 return ret; 754 } 755 756 *len -= recv_len; 757 *offset += recv_len; 758 queue->data_remaining -= recv_len; 759 } 760 761 if (!queue->data_remaining) { 762 if (queue->data_digest) { 763 nvme_tcp_ddgst_final(queue->rcv_hash, &queue->exp_ddgst); 764 queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH; 765 } else { 766 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) { 767 nvme_tcp_end_request(rq, 768 le16_to_cpu(req->status)); 769 queue->nr_cqe++; 770 } 771 nvme_tcp_init_recv_ctx(queue); 772 } 773 } 774 775 return 0; 776 } 777 778 static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue, 779 struct sk_buff *skb, unsigned int *offset, size_t *len) 780 { 781 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu; 782 char *ddgst = (char *)&queue->recv_ddgst; 783 size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining); 784 off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining; 785 int ret; 786 787 ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len); 788 if (unlikely(ret)) 789 return ret; 790 791 queue->ddgst_remaining -= recv_len; 792 *offset += recv_len; 793 *len -= recv_len; 794 if (queue->ddgst_remaining) 795 return 0; 796 797 if (queue->recv_ddgst != queue->exp_ddgst) { 798 struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue), 799 pdu->command_id); 800 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 801 802 req->status = cpu_to_le16(NVME_SC_DATA_XFER_ERROR); 803 804 dev_err(queue->ctrl->ctrl.device, 805 "data digest error: recv %#x expected %#x\n", 806 le32_to_cpu(queue->recv_ddgst), 807 le32_to_cpu(queue->exp_ddgst)); 808 } 809 810 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) { 811 struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue), 812 pdu->command_id); 813 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 814 815 nvme_tcp_end_request(rq, le16_to_cpu(req->status)); 816 queue->nr_cqe++; 817 } 818 819 nvme_tcp_init_recv_ctx(queue); 820 return 0; 821 } 822 823 static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb, 824 unsigned int offset, size_t len) 825 { 826 struct nvme_tcp_queue *queue = desc->arg.data; 827 size_t consumed = len; 828 int result; 829 830 while (len) { 831 switch (nvme_tcp_recv_state(queue)) { 832 case NVME_TCP_RECV_PDU: 833 result = nvme_tcp_recv_pdu(queue, skb, &offset, &len); 834 break; 835 case NVME_TCP_RECV_DATA: 836 result = nvme_tcp_recv_data(queue, skb, &offset, &len); 837 break; 838 case NVME_TCP_RECV_DDGST: 839 result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len); 840 break; 841 default: 842 result = -EFAULT; 843 } 844 if (result) { 845 dev_err(queue->ctrl->ctrl.device, 846 "receive failed: %d\n", result); 847 queue->rd_enabled = false; 848 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 849 return result; 850 } 851 } 852 853 return consumed; 854 } 855 856 static void nvme_tcp_data_ready(struct sock *sk) 857 { 858 struct nvme_tcp_queue *queue; 859 860 read_lock_bh(&sk->sk_callback_lock); 861 queue = sk->sk_user_data; 862 if (likely(queue && queue->rd_enabled) && 863 !test_bit(NVME_TCP_Q_POLLING, &queue->flags)) 864 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 865 read_unlock_bh(&sk->sk_callback_lock); 866 } 867 868 static void nvme_tcp_write_space(struct sock *sk) 869 { 870 struct nvme_tcp_queue *queue; 871 872 read_lock_bh(&sk->sk_callback_lock); 873 queue = sk->sk_user_data; 874 if (likely(queue && sk_stream_is_writeable(sk))) { 875 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 876 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 877 } 878 read_unlock_bh(&sk->sk_callback_lock); 879 } 880 881 static void nvme_tcp_state_change(struct sock *sk) 882 { 883 struct nvme_tcp_queue *queue; 884 885 read_lock_bh(&sk->sk_callback_lock); 886 queue = sk->sk_user_data; 887 if (!queue) 888 goto done; 889 890 switch (sk->sk_state) { 891 case TCP_CLOSE: 892 case TCP_CLOSE_WAIT: 893 case TCP_LAST_ACK: 894 case TCP_FIN_WAIT1: 895 case TCP_FIN_WAIT2: 896 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 897 break; 898 default: 899 dev_info(queue->ctrl->ctrl.device, 900 "queue %d socket state %d\n", 901 nvme_tcp_queue_id(queue), sk->sk_state); 902 } 903 904 queue->state_change(sk); 905 done: 906 read_unlock_bh(&sk->sk_callback_lock); 907 } 908 909 static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue) 910 { 911 queue->request = NULL; 912 } 913 914 static void nvme_tcp_fail_request(struct nvme_tcp_request *req) 915 { 916 if (nvme_tcp_async_req(req)) { 917 union nvme_result res = {}; 918 919 nvme_complete_async_event(&req->queue->ctrl->ctrl, 920 cpu_to_le16(NVME_SC_HOST_PATH_ERROR), &res); 921 } else { 922 nvme_tcp_end_request(blk_mq_rq_from_pdu(req), 923 NVME_SC_HOST_PATH_ERROR); 924 } 925 } 926 927 static int nvme_tcp_try_send_data(struct nvme_tcp_request *req) 928 { 929 struct nvme_tcp_queue *queue = req->queue; 930 int req_data_len = req->data_len; 931 932 while (true) { 933 struct page *page = nvme_tcp_req_cur_page(req); 934 size_t offset = nvme_tcp_req_cur_offset(req); 935 size_t len = nvme_tcp_req_cur_length(req); 936 bool last = nvme_tcp_pdu_last_send(req, len); 937 int req_data_sent = req->data_sent; 938 int ret, flags = MSG_DONTWAIT; 939 940 if (last && !queue->data_digest && !nvme_tcp_queue_more(queue)) 941 flags |= MSG_EOR; 942 else 943 flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST; 944 945 if (sendpage_ok(page)) { 946 ret = kernel_sendpage(queue->sock, page, offset, len, 947 flags); 948 } else { 949 ret = sock_no_sendpage(queue->sock, page, offset, len, 950 flags); 951 } 952 if (ret <= 0) 953 return ret; 954 955 if (queue->data_digest) 956 nvme_tcp_ddgst_update(queue->snd_hash, page, 957 offset, ret); 958 959 /* 960 * update the request iterator except for the last payload send 961 * in the request where we don't want to modify it as we may 962 * compete with the RX path completing the request. 963 */ 964 if (req_data_sent + ret < req_data_len) 965 nvme_tcp_advance_req(req, ret); 966 967 /* fully successful last send in current PDU */ 968 if (last && ret == len) { 969 if (queue->data_digest) { 970 nvme_tcp_ddgst_final(queue->snd_hash, 971 &req->ddgst); 972 req->state = NVME_TCP_SEND_DDGST; 973 req->offset = 0; 974 } else { 975 nvme_tcp_done_send_req(queue); 976 } 977 return 1; 978 } 979 } 980 return -EAGAIN; 981 } 982 983 static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req) 984 { 985 struct nvme_tcp_queue *queue = req->queue; 986 struct nvme_tcp_cmd_pdu *pdu = req->pdu; 987 bool inline_data = nvme_tcp_has_inline_data(req); 988 u8 hdgst = nvme_tcp_hdgst_len(queue); 989 int len = sizeof(*pdu) + hdgst - req->offset; 990 int flags = MSG_DONTWAIT; 991 int ret; 992 993 if (inline_data || nvme_tcp_queue_more(queue)) 994 flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST; 995 else 996 flags |= MSG_EOR; 997 998 if (queue->hdr_digest && !req->offset) 999 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); 1000 1001 ret = kernel_sendpage(queue->sock, virt_to_page(pdu), 1002 offset_in_page(pdu) + req->offset, len, flags); 1003 if (unlikely(ret <= 0)) 1004 return ret; 1005 1006 len -= ret; 1007 if (!len) { 1008 if (inline_data) { 1009 req->state = NVME_TCP_SEND_DATA; 1010 if (queue->data_digest) 1011 crypto_ahash_init(queue->snd_hash); 1012 } else { 1013 nvme_tcp_done_send_req(queue); 1014 } 1015 return 1; 1016 } 1017 req->offset += ret; 1018 1019 return -EAGAIN; 1020 } 1021 1022 static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req) 1023 { 1024 struct nvme_tcp_queue *queue = req->queue; 1025 struct nvme_tcp_data_pdu *pdu = req->pdu; 1026 u8 hdgst = nvme_tcp_hdgst_len(queue); 1027 int len = sizeof(*pdu) - req->offset + hdgst; 1028 int ret; 1029 1030 if (queue->hdr_digest && !req->offset) 1031 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); 1032 1033 ret = kernel_sendpage(queue->sock, virt_to_page(pdu), 1034 offset_in_page(pdu) + req->offset, len, 1035 MSG_DONTWAIT | MSG_MORE | MSG_SENDPAGE_NOTLAST); 1036 if (unlikely(ret <= 0)) 1037 return ret; 1038 1039 len -= ret; 1040 if (!len) { 1041 req->state = NVME_TCP_SEND_DATA; 1042 if (queue->data_digest) 1043 crypto_ahash_init(queue->snd_hash); 1044 return 1; 1045 } 1046 req->offset += ret; 1047 1048 return -EAGAIN; 1049 } 1050 1051 static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req) 1052 { 1053 struct nvme_tcp_queue *queue = req->queue; 1054 size_t offset = req->offset; 1055 int ret; 1056 struct msghdr msg = { .msg_flags = MSG_DONTWAIT }; 1057 struct kvec iov = { 1058 .iov_base = (u8 *)&req->ddgst + req->offset, 1059 .iov_len = NVME_TCP_DIGEST_LENGTH - req->offset 1060 }; 1061 1062 if (nvme_tcp_queue_more(queue)) 1063 msg.msg_flags |= MSG_MORE; 1064 else 1065 msg.msg_flags |= MSG_EOR; 1066 1067 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len); 1068 if (unlikely(ret <= 0)) 1069 return ret; 1070 1071 if (offset + ret == NVME_TCP_DIGEST_LENGTH) { 1072 nvme_tcp_done_send_req(queue); 1073 return 1; 1074 } 1075 1076 req->offset += ret; 1077 return -EAGAIN; 1078 } 1079 1080 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue) 1081 { 1082 struct nvme_tcp_request *req; 1083 int ret = 1; 1084 1085 if (!queue->request) { 1086 queue->request = nvme_tcp_fetch_request(queue); 1087 if (!queue->request) 1088 return 0; 1089 } 1090 req = queue->request; 1091 1092 if (req->state == NVME_TCP_SEND_CMD_PDU) { 1093 ret = nvme_tcp_try_send_cmd_pdu(req); 1094 if (ret <= 0) 1095 goto done; 1096 if (!nvme_tcp_has_inline_data(req)) 1097 return ret; 1098 } 1099 1100 if (req->state == NVME_TCP_SEND_H2C_PDU) { 1101 ret = nvme_tcp_try_send_data_pdu(req); 1102 if (ret <= 0) 1103 goto done; 1104 } 1105 1106 if (req->state == NVME_TCP_SEND_DATA) { 1107 ret = nvme_tcp_try_send_data(req); 1108 if (ret <= 0) 1109 goto done; 1110 } 1111 1112 if (req->state == NVME_TCP_SEND_DDGST) 1113 ret = nvme_tcp_try_send_ddgst(req); 1114 done: 1115 if (ret == -EAGAIN) { 1116 ret = 0; 1117 } else if (ret < 0) { 1118 dev_err(queue->ctrl->ctrl.device, 1119 "failed to send request %d\n", ret); 1120 if (ret != -EPIPE && ret != -ECONNRESET) 1121 nvme_tcp_fail_request(queue->request); 1122 nvme_tcp_done_send_req(queue); 1123 } 1124 return ret; 1125 } 1126 1127 static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue) 1128 { 1129 struct socket *sock = queue->sock; 1130 struct sock *sk = sock->sk; 1131 read_descriptor_t rd_desc; 1132 int consumed; 1133 1134 rd_desc.arg.data = queue; 1135 rd_desc.count = 1; 1136 lock_sock(sk); 1137 queue->nr_cqe = 0; 1138 consumed = sock->ops->read_sock(sk, &rd_desc, nvme_tcp_recv_skb); 1139 release_sock(sk); 1140 return consumed; 1141 } 1142 1143 static void nvme_tcp_io_work(struct work_struct *w) 1144 { 1145 struct nvme_tcp_queue *queue = 1146 container_of(w, struct nvme_tcp_queue, io_work); 1147 unsigned long deadline = jiffies + msecs_to_jiffies(1); 1148 1149 do { 1150 bool pending = false; 1151 int result; 1152 1153 if (mutex_trylock(&queue->send_mutex)) { 1154 result = nvme_tcp_try_send(queue); 1155 mutex_unlock(&queue->send_mutex); 1156 if (result > 0) 1157 pending = true; 1158 else if (unlikely(result < 0)) 1159 break; 1160 } 1161 1162 result = nvme_tcp_try_recv(queue); 1163 if (result > 0) 1164 pending = true; 1165 else if (unlikely(result < 0)) 1166 return; 1167 1168 if (!pending) 1169 return; 1170 1171 } while (!time_after(jiffies, deadline)); /* quota is exhausted */ 1172 1173 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 1174 } 1175 1176 static void nvme_tcp_free_crypto(struct nvme_tcp_queue *queue) 1177 { 1178 struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash); 1179 1180 ahash_request_free(queue->rcv_hash); 1181 ahash_request_free(queue->snd_hash); 1182 crypto_free_ahash(tfm); 1183 } 1184 1185 static int nvme_tcp_alloc_crypto(struct nvme_tcp_queue *queue) 1186 { 1187 struct crypto_ahash *tfm; 1188 1189 tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC); 1190 if (IS_ERR(tfm)) 1191 return PTR_ERR(tfm); 1192 1193 queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL); 1194 if (!queue->snd_hash) 1195 goto free_tfm; 1196 ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL); 1197 1198 queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL); 1199 if (!queue->rcv_hash) 1200 goto free_snd_hash; 1201 ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL); 1202 1203 return 0; 1204 free_snd_hash: 1205 ahash_request_free(queue->snd_hash); 1206 free_tfm: 1207 crypto_free_ahash(tfm); 1208 return -ENOMEM; 1209 } 1210 1211 static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl) 1212 { 1213 struct nvme_tcp_request *async = &ctrl->async_req; 1214 1215 page_frag_free(async->pdu); 1216 } 1217 1218 static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl) 1219 { 1220 struct nvme_tcp_queue *queue = &ctrl->queues[0]; 1221 struct nvme_tcp_request *async = &ctrl->async_req; 1222 u8 hdgst = nvme_tcp_hdgst_len(queue); 1223 1224 async->pdu = page_frag_alloc(&queue->pf_cache, 1225 sizeof(struct nvme_tcp_cmd_pdu) + hdgst, 1226 GFP_KERNEL | __GFP_ZERO); 1227 if (!async->pdu) 1228 return -ENOMEM; 1229 1230 async->queue = &ctrl->queues[0]; 1231 return 0; 1232 } 1233 1234 static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid) 1235 { 1236 struct page *page; 1237 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1238 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1239 1240 if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags)) 1241 return; 1242 1243 if (queue->hdr_digest || queue->data_digest) 1244 nvme_tcp_free_crypto(queue); 1245 1246 if (queue->pf_cache.va) { 1247 page = virt_to_head_page(queue->pf_cache.va); 1248 __page_frag_cache_drain(page, queue->pf_cache.pagecnt_bias); 1249 queue->pf_cache.va = NULL; 1250 } 1251 sock_release(queue->sock); 1252 kfree(queue->pdu); 1253 mutex_destroy(&queue->send_mutex); 1254 mutex_destroy(&queue->queue_lock); 1255 } 1256 1257 static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue) 1258 { 1259 struct nvme_tcp_icreq_pdu *icreq; 1260 struct nvme_tcp_icresp_pdu *icresp; 1261 struct msghdr msg = {}; 1262 struct kvec iov; 1263 bool ctrl_hdgst, ctrl_ddgst; 1264 int ret; 1265 1266 icreq = kzalloc(sizeof(*icreq), GFP_KERNEL); 1267 if (!icreq) 1268 return -ENOMEM; 1269 1270 icresp = kzalloc(sizeof(*icresp), GFP_KERNEL); 1271 if (!icresp) { 1272 ret = -ENOMEM; 1273 goto free_icreq; 1274 } 1275 1276 icreq->hdr.type = nvme_tcp_icreq; 1277 icreq->hdr.hlen = sizeof(*icreq); 1278 icreq->hdr.pdo = 0; 1279 icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen); 1280 icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0); 1281 icreq->maxr2t = 0; /* single inflight r2t supported */ 1282 icreq->hpda = 0; /* no alignment constraint */ 1283 if (queue->hdr_digest) 1284 icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE; 1285 if (queue->data_digest) 1286 icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE; 1287 1288 iov.iov_base = icreq; 1289 iov.iov_len = sizeof(*icreq); 1290 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len); 1291 if (ret < 0) 1292 goto free_icresp; 1293 1294 memset(&msg, 0, sizeof(msg)); 1295 iov.iov_base = icresp; 1296 iov.iov_len = sizeof(*icresp); 1297 ret = kernel_recvmsg(queue->sock, &msg, &iov, 1, 1298 iov.iov_len, msg.msg_flags); 1299 if (ret < 0) 1300 goto free_icresp; 1301 1302 ret = -EINVAL; 1303 if (icresp->hdr.type != nvme_tcp_icresp) { 1304 pr_err("queue %d: bad type returned %d\n", 1305 nvme_tcp_queue_id(queue), icresp->hdr.type); 1306 goto free_icresp; 1307 } 1308 1309 if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) { 1310 pr_err("queue %d: bad pdu length returned %d\n", 1311 nvme_tcp_queue_id(queue), icresp->hdr.plen); 1312 goto free_icresp; 1313 } 1314 1315 if (icresp->pfv != NVME_TCP_PFV_1_0) { 1316 pr_err("queue %d: bad pfv returned %d\n", 1317 nvme_tcp_queue_id(queue), icresp->pfv); 1318 goto free_icresp; 1319 } 1320 1321 ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE); 1322 if ((queue->data_digest && !ctrl_ddgst) || 1323 (!queue->data_digest && ctrl_ddgst)) { 1324 pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n", 1325 nvme_tcp_queue_id(queue), 1326 queue->data_digest ? "enabled" : "disabled", 1327 ctrl_ddgst ? "enabled" : "disabled"); 1328 goto free_icresp; 1329 } 1330 1331 ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE); 1332 if ((queue->hdr_digest && !ctrl_hdgst) || 1333 (!queue->hdr_digest && ctrl_hdgst)) { 1334 pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n", 1335 nvme_tcp_queue_id(queue), 1336 queue->hdr_digest ? "enabled" : "disabled", 1337 ctrl_hdgst ? "enabled" : "disabled"); 1338 goto free_icresp; 1339 } 1340 1341 if (icresp->cpda != 0) { 1342 pr_err("queue %d: unsupported cpda returned %d\n", 1343 nvme_tcp_queue_id(queue), icresp->cpda); 1344 goto free_icresp; 1345 } 1346 1347 ret = 0; 1348 free_icresp: 1349 kfree(icresp); 1350 free_icreq: 1351 kfree(icreq); 1352 return ret; 1353 } 1354 1355 static bool nvme_tcp_admin_queue(struct nvme_tcp_queue *queue) 1356 { 1357 return nvme_tcp_queue_id(queue) == 0; 1358 } 1359 1360 static bool nvme_tcp_default_queue(struct nvme_tcp_queue *queue) 1361 { 1362 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1363 int qid = nvme_tcp_queue_id(queue); 1364 1365 return !nvme_tcp_admin_queue(queue) && 1366 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT]; 1367 } 1368 1369 static bool nvme_tcp_read_queue(struct nvme_tcp_queue *queue) 1370 { 1371 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1372 int qid = nvme_tcp_queue_id(queue); 1373 1374 return !nvme_tcp_admin_queue(queue) && 1375 !nvme_tcp_default_queue(queue) && 1376 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] + 1377 ctrl->io_queues[HCTX_TYPE_READ]; 1378 } 1379 1380 static bool nvme_tcp_poll_queue(struct nvme_tcp_queue *queue) 1381 { 1382 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1383 int qid = nvme_tcp_queue_id(queue); 1384 1385 return !nvme_tcp_admin_queue(queue) && 1386 !nvme_tcp_default_queue(queue) && 1387 !nvme_tcp_read_queue(queue) && 1388 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] + 1389 ctrl->io_queues[HCTX_TYPE_READ] + 1390 ctrl->io_queues[HCTX_TYPE_POLL]; 1391 } 1392 1393 static void nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue *queue) 1394 { 1395 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1396 int qid = nvme_tcp_queue_id(queue); 1397 int n = 0; 1398 1399 if (nvme_tcp_default_queue(queue)) 1400 n = qid - 1; 1401 else if (nvme_tcp_read_queue(queue)) 1402 n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - 1; 1403 else if (nvme_tcp_poll_queue(queue)) 1404 n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - 1405 ctrl->io_queues[HCTX_TYPE_READ] - 1; 1406 queue->io_cpu = cpumask_next_wrap(n - 1, cpu_online_mask, -1, false); 1407 } 1408 1409 static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl, 1410 int qid, size_t queue_size) 1411 { 1412 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1413 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1414 int ret, rcv_pdu_size; 1415 1416 mutex_init(&queue->queue_lock); 1417 queue->ctrl = ctrl; 1418 init_llist_head(&queue->req_list); 1419 INIT_LIST_HEAD(&queue->send_list); 1420 mutex_init(&queue->send_mutex); 1421 INIT_WORK(&queue->io_work, nvme_tcp_io_work); 1422 queue->queue_size = queue_size; 1423 1424 if (qid > 0) 1425 queue->cmnd_capsule_len = nctrl->ioccsz * 16; 1426 else 1427 queue->cmnd_capsule_len = sizeof(struct nvme_command) + 1428 NVME_TCP_ADMIN_CCSZ; 1429 1430 ret = sock_create(ctrl->addr.ss_family, SOCK_STREAM, 1431 IPPROTO_TCP, &queue->sock); 1432 if (ret) { 1433 dev_err(nctrl->device, 1434 "failed to create socket: %d\n", ret); 1435 goto err_destroy_mutex; 1436 } 1437 1438 /* Single syn retry */ 1439 tcp_sock_set_syncnt(queue->sock->sk, 1); 1440 1441 /* Set TCP no delay */ 1442 tcp_sock_set_nodelay(queue->sock->sk); 1443 1444 /* 1445 * Cleanup whatever is sitting in the TCP transmit queue on socket 1446 * close. This is done to prevent stale data from being sent should 1447 * the network connection be restored before TCP times out. 1448 */ 1449 sock_no_linger(queue->sock->sk); 1450 1451 if (so_priority > 0) 1452 sock_set_priority(queue->sock->sk, so_priority); 1453 1454 /* Set socket type of service */ 1455 if (nctrl->opts->tos >= 0) 1456 ip_sock_set_tos(queue->sock->sk, nctrl->opts->tos); 1457 1458 /* Set 10 seconds timeout for icresp recvmsg */ 1459 queue->sock->sk->sk_rcvtimeo = 10 * HZ; 1460 1461 queue->sock->sk->sk_allocation = GFP_ATOMIC; 1462 nvme_tcp_set_queue_io_cpu(queue); 1463 queue->request = NULL; 1464 queue->data_remaining = 0; 1465 queue->ddgst_remaining = 0; 1466 queue->pdu_remaining = 0; 1467 queue->pdu_offset = 0; 1468 sk_set_memalloc(queue->sock->sk); 1469 1470 if (nctrl->opts->mask & NVMF_OPT_HOST_TRADDR) { 1471 ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr, 1472 sizeof(ctrl->src_addr)); 1473 if (ret) { 1474 dev_err(nctrl->device, 1475 "failed to bind queue %d socket %d\n", 1476 qid, ret); 1477 goto err_sock; 1478 } 1479 } 1480 1481 if (nctrl->opts->mask & NVMF_OPT_HOST_IFACE) { 1482 char *iface = nctrl->opts->host_iface; 1483 sockptr_t optval = KERNEL_SOCKPTR(iface); 1484 1485 ret = sock_setsockopt(queue->sock, SOL_SOCKET, SO_BINDTODEVICE, 1486 optval, strlen(iface)); 1487 if (ret) { 1488 dev_err(nctrl->device, 1489 "failed to bind to interface %s queue %d err %d\n", 1490 iface, qid, ret); 1491 goto err_sock; 1492 } 1493 } 1494 1495 queue->hdr_digest = nctrl->opts->hdr_digest; 1496 queue->data_digest = nctrl->opts->data_digest; 1497 if (queue->hdr_digest || queue->data_digest) { 1498 ret = nvme_tcp_alloc_crypto(queue); 1499 if (ret) { 1500 dev_err(nctrl->device, 1501 "failed to allocate queue %d crypto\n", qid); 1502 goto err_sock; 1503 } 1504 } 1505 1506 rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) + 1507 nvme_tcp_hdgst_len(queue); 1508 queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL); 1509 if (!queue->pdu) { 1510 ret = -ENOMEM; 1511 goto err_crypto; 1512 } 1513 1514 dev_dbg(nctrl->device, "connecting queue %d\n", 1515 nvme_tcp_queue_id(queue)); 1516 1517 ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr, 1518 sizeof(ctrl->addr), 0); 1519 if (ret) { 1520 dev_err(nctrl->device, 1521 "failed to connect socket: %d\n", ret); 1522 goto err_rcv_pdu; 1523 } 1524 1525 ret = nvme_tcp_init_connection(queue); 1526 if (ret) 1527 goto err_init_connect; 1528 1529 queue->rd_enabled = true; 1530 set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags); 1531 nvme_tcp_init_recv_ctx(queue); 1532 1533 write_lock_bh(&queue->sock->sk->sk_callback_lock); 1534 queue->sock->sk->sk_user_data = queue; 1535 queue->state_change = queue->sock->sk->sk_state_change; 1536 queue->data_ready = queue->sock->sk->sk_data_ready; 1537 queue->write_space = queue->sock->sk->sk_write_space; 1538 queue->sock->sk->sk_data_ready = nvme_tcp_data_ready; 1539 queue->sock->sk->sk_state_change = nvme_tcp_state_change; 1540 queue->sock->sk->sk_write_space = nvme_tcp_write_space; 1541 #ifdef CONFIG_NET_RX_BUSY_POLL 1542 queue->sock->sk->sk_ll_usec = 1; 1543 #endif 1544 write_unlock_bh(&queue->sock->sk->sk_callback_lock); 1545 1546 return 0; 1547 1548 err_init_connect: 1549 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 1550 err_rcv_pdu: 1551 kfree(queue->pdu); 1552 err_crypto: 1553 if (queue->hdr_digest || queue->data_digest) 1554 nvme_tcp_free_crypto(queue); 1555 err_sock: 1556 sock_release(queue->sock); 1557 queue->sock = NULL; 1558 err_destroy_mutex: 1559 mutex_destroy(&queue->send_mutex); 1560 mutex_destroy(&queue->queue_lock); 1561 return ret; 1562 } 1563 1564 static void nvme_tcp_restore_sock_calls(struct nvme_tcp_queue *queue) 1565 { 1566 struct socket *sock = queue->sock; 1567 1568 write_lock_bh(&sock->sk->sk_callback_lock); 1569 sock->sk->sk_user_data = NULL; 1570 sock->sk->sk_data_ready = queue->data_ready; 1571 sock->sk->sk_state_change = queue->state_change; 1572 sock->sk->sk_write_space = queue->write_space; 1573 write_unlock_bh(&sock->sk->sk_callback_lock); 1574 } 1575 1576 static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue) 1577 { 1578 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 1579 nvme_tcp_restore_sock_calls(queue); 1580 cancel_work_sync(&queue->io_work); 1581 } 1582 1583 static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid) 1584 { 1585 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1586 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1587 1588 mutex_lock(&queue->queue_lock); 1589 if (test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags)) 1590 __nvme_tcp_stop_queue(queue); 1591 mutex_unlock(&queue->queue_lock); 1592 } 1593 1594 static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx) 1595 { 1596 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1597 int ret; 1598 1599 if (idx) 1600 ret = nvmf_connect_io_queue(nctrl, idx); 1601 else 1602 ret = nvmf_connect_admin_queue(nctrl); 1603 1604 if (!ret) { 1605 set_bit(NVME_TCP_Q_LIVE, &ctrl->queues[idx].flags); 1606 } else { 1607 if (test_bit(NVME_TCP_Q_ALLOCATED, &ctrl->queues[idx].flags)) 1608 __nvme_tcp_stop_queue(&ctrl->queues[idx]); 1609 dev_err(nctrl->device, 1610 "failed to connect queue: %d ret=%d\n", idx, ret); 1611 } 1612 return ret; 1613 } 1614 1615 static struct blk_mq_tag_set *nvme_tcp_alloc_tagset(struct nvme_ctrl *nctrl, 1616 bool admin) 1617 { 1618 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1619 struct blk_mq_tag_set *set; 1620 int ret; 1621 1622 if (admin) { 1623 set = &ctrl->admin_tag_set; 1624 memset(set, 0, sizeof(*set)); 1625 set->ops = &nvme_tcp_admin_mq_ops; 1626 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH; 1627 set->reserved_tags = NVMF_RESERVED_TAGS; 1628 set->numa_node = nctrl->numa_node; 1629 set->flags = BLK_MQ_F_BLOCKING; 1630 set->cmd_size = sizeof(struct nvme_tcp_request); 1631 set->driver_data = ctrl; 1632 set->nr_hw_queues = 1; 1633 set->timeout = NVME_ADMIN_TIMEOUT; 1634 } else { 1635 set = &ctrl->tag_set; 1636 memset(set, 0, sizeof(*set)); 1637 set->ops = &nvme_tcp_mq_ops; 1638 set->queue_depth = nctrl->sqsize + 1; 1639 set->reserved_tags = NVMF_RESERVED_TAGS; 1640 set->numa_node = nctrl->numa_node; 1641 set->flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_BLOCKING; 1642 set->cmd_size = sizeof(struct nvme_tcp_request); 1643 set->driver_data = ctrl; 1644 set->nr_hw_queues = nctrl->queue_count - 1; 1645 set->timeout = NVME_IO_TIMEOUT; 1646 set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2; 1647 } 1648 1649 ret = blk_mq_alloc_tag_set(set); 1650 if (ret) 1651 return ERR_PTR(ret); 1652 1653 return set; 1654 } 1655 1656 static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl) 1657 { 1658 if (to_tcp_ctrl(ctrl)->async_req.pdu) { 1659 cancel_work_sync(&ctrl->async_event_work); 1660 nvme_tcp_free_async_req(to_tcp_ctrl(ctrl)); 1661 to_tcp_ctrl(ctrl)->async_req.pdu = NULL; 1662 } 1663 1664 nvme_tcp_free_queue(ctrl, 0); 1665 } 1666 1667 static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl) 1668 { 1669 int i; 1670 1671 for (i = 1; i < ctrl->queue_count; i++) 1672 nvme_tcp_free_queue(ctrl, i); 1673 } 1674 1675 static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl) 1676 { 1677 int i; 1678 1679 for (i = 1; i < ctrl->queue_count; i++) 1680 nvme_tcp_stop_queue(ctrl, i); 1681 } 1682 1683 static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl) 1684 { 1685 int i, ret = 0; 1686 1687 for (i = 1; i < ctrl->queue_count; i++) { 1688 ret = nvme_tcp_start_queue(ctrl, i); 1689 if (ret) 1690 goto out_stop_queues; 1691 } 1692 1693 return 0; 1694 1695 out_stop_queues: 1696 for (i--; i >= 1; i--) 1697 nvme_tcp_stop_queue(ctrl, i); 1698 return ret; 1699 } 1700 1701 static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl) 1702 { 1703 int ret; 1704 1705 ret = nvme_tcp_alloc_queue(ctrl, 0, NVME_AQ_DEPTH); 1706 if (ret) 1707 return ret; 1708 1709 ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl)); 1710 if (ret) 1711 goto out_free_queue; 1712 1713 return 0; 1714 1715 out_free_queue: 1716 nvme_tcp_free_queue(ctrl, 0); 1717 return ret; 1718 } 1719 1720 static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl) 1721 { 1722 int i, ret; 1723 1724 for (i = 1; i < ctrl->queue_count; i++) { 1725 ret = nvme_tcp_alloc_queue(ctrl, i, 1726 ctrl->sqsize + 1); 1727 if (ret) 1728 goto out_free_queues; 1729 } 1730 1731 return 0; 1732 1733 out_free_queues: 1734 for (i--; i >= 1; i--) 1735 nvme_tcp_free_queue(ctrl, i); 1736 1737 return ret; 1738 } 1739 1740 static unsigned int nvme_tcp_nr_io_queues(struct nvme_ctrl *ctrl) 1741 { 1742 unsigned int nr_io_queues; 1743 1744 nr_io_queues = min(ctrl->opts->nr_io_queues, num_online_cpus()); 1745 nr_io_queues += min(ctrl->opts->nr_write_queues, num_online_cpus()); 1746 nr_io_queues += min(ctrl->opts->nr_poll_queues, num_online_cpus()); 1747 1748 return nr_io_queues; 1749 } 1750 1751 static void nvme_tcp_set_io_queues(struct nvme_ctrl *nctrl, 1752 unsigned int nr_io_queues) 1753 { 1754 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1755 struct nvmf_ctrl_options *opts = nctrl->opts; 1756 1757 if (opts->nr_write_queues && opts->nr_io_queues < nr_io_queues) { 1758 /* 1759 * separate read/write queues 1760 * hand out dedicated default queues only after we have 1761 * sufficient read queues. 1762 */ 1763 ctrl->io_queues[HCTX_TYPE_READ] = opts->nr_io_queues; 1764 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ]; 1765 ctrl->io_queues[HCTX_TYPE_DEFAULT] = 1766 min(opts->nr_write_queues, nr_io_queues); 1767 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT]; 1768 } else { 1769 /* 1770 * shared read/write queues 1771 * either no write queues were requested, or we don't have 1772 * sufficient queue count to have dedicated default queues. 1773 */ 1774 ctrl->io_queues[HCTX_TYPE_DEFAULT] = 1775 min(opts->nr_io_queues, nr_io_queues); 1776 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT]; 1777 } 1778 1779 if (opts->nr_poll_queues && nr_io_queues) { 1780 /* map dedicated poll queues only if we have queues left */ 1781 ctrl->io_queues[HCTX_TYPE_POLL] = 1782 min(opts->nr_poll_queues, nr_io_queues); 1783 } 1784 } 1785 1786 static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl) 1787 { 1788 unsigned int nr_io_queues; 1789 int ret; 1790 1791 nr_io_queues = nvme_tcp_nr_io_queues(ctrl); 1792 ret = nvme_set_queue_count(ctrl, &nr_io_queues); 1793 if (ret) 1794 return ret; 1795 1796 if (nr_io_queues == 0) { 1797 dev_err(ctrl->device, 1798 "unable to set any I/O queues\n"); 1799 return -ENOMEM; 1800 } 1801 1802 ctrl->queue_count = nr_io_queues + 1; 1803 dev_info(ctrl->device, 1804 "creating %d I/O queues.\n", nr_io_queues); 1805 1806 nvme_tcp_set_io_queues(ctrl, nr_io_queues); 1807 1808 return __nvme_tcp_alloc_io_queues(ctrl); 1809 } 1810 1811 static void nvme_tcp_destroy_io_queues(struct nvme_ctrl *ctrl, bool remove) 1812 { 1813 nvme_tcp_stop_io_queues(ctrl); 1814 if (remove) { 1815 blk_cleanup_queue(ctrl->connect_q); 1816 blk_mq_free_tag_set(ctrl->tagset); 1817 } 1818 nvme_tcp_free_io_queues(ctrl); 1819 } 1820 1821 static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new) 1822 { 1823 int ret; 1824 1825 ret = nvme_tcp_alloc_io_queues(ctrl); 1826 if (ret) 1827 return ret; 1828 1829 if (new) { 1830 ctrl->tagset = nvme_tcp_alloc_tagset(ctrl, false); 1831 if (IS_ERR(ctrl->tagset)) { 1832 ret = PTR_ERR(ctrl->tagset); 1833 goto out_free_io_queues; 1834 } 1835 1836 ctrl->connect_q = blk_mq_init_queue(ctrl->tagset); 1837 if (IS_ERR(ctrl->connect_q)) { 1838 ret = PTR_ERR(ctrl->connect_q); 1839 goto out_free_tag_set; 1840 } 1841 } 1842 1843 ret = nvme_tcp_start_io_queues(ctrl); 1844 if (ret) 1845 goto out_cleanup_connect_q; 1846 1847 if (!new) { 1848 nvme_start_queues(ctrl); 1849 if (!nvme_wait_freeze_timeout(ctrl, NVME_IO_TIMEOUT)) { 1850 /* 1851 * If we timed out waiting for freeze we are likely to 1852 * be stuck. Fail the controller initialization just 1853 * to be safe. 1854 */ 1855 ret = -ENODEV; 1856 goto out_wait_freeze_timed_out; 1857 } 1858 blk_mq_update_nr_hw_queues(ctrl->tagset, 1859 ctrl->queue_count - 1); 1860 nvme_unfreeze(ctrl); 1861 } 1862 1863 return 0; 1864 1865 out_wait_freeze_timed_out: 1866 nvme_stop_queues(ctrl); 1867 nvme_sync_io_queues(ctrl); 1868 nvme_tcp_stop_io_queues(ctrl); 1869 out_cleanup_connect_q: 1870 nvme_cancel_tagset(ctrl); 1871 if (new) 1872 blk_cleanup_queue(ctrl->connect_q); 1873 out_free_tag_set: 1874 if (new) 1875 blk_mq_free_tag_set(ctrl->tagset); 1876 out_free_io_queues: 1877 nvme_tcp_free_io_queues(ctrl); 1878 return ret; 1879 } 1880 1881 static void nvme_tcp_destroy_admin_queue(struct nvme_ctrl *ctrl, bool remove) 1882 { 1883 nvme_tcp_stop_queue(ctrl, 0); 1884 if (remove) { 1885 blk_cleanup_queue(ctrl->admin_q); 1886 blk_cleanup_queue(ctrl->fabrics_q); 1887 blk_mq_free_tag_set(ctrl->admin_tagset); 1888 } 1889 nvme_tcp_free_admin_queue(ctrl); 1890 } 1891 1892 static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new) 1893 { 1894 int error; 1895 1896 error = nvme_tcp_alloc_admin_queue(ctrl); 1897 if (error) 1898 return error; 1899 1900 if (new) { 1901 ctrl->admin_tagset = nvme_tcp_alloc_tagset(ctrl, true); 1902 if (IS_ERR(ctrl->admin_tagset)) { 1903 error = PTR_ERR(ctrl->admin_tagset); 1904 goto out_free_queue; 1905 } 1906 1907 ctrl->fabrics_q = blk_mq_init_queue(ctrl->admin_tagset); 1908 if (IS_ERR(ctrl->fabrics_q)) { 1909 error = PTR_ERR(ctrl->fabrics_q); 1910 goto out_free_tagset; 1911 } 1912 1913 ctrl->admin_q = blk_mq_init_queue(ctrl->admin_tagset); 1914 if (IS_ERR(ctrl->admin_q)) { 1915 error = PTR_ERR(ctrl->admin_q); 1916 goto out_cleanup_fabrics_q; 1917 } 1918 } 1919 1920 error = nvme_tcp_start_queue(ctrl, 0); 1921 if (error) 1922 goto out_cleanup_queue; 1923 1924 error = nvme_enable_ctrl(ctrl); 1925 if (error) 1926 goto out_stop_queue; 1927 1928 nvme_start_admin_queue(ctrl); 1929 1930 error = nvme_init_ctrl_finish(ctrl); 1931 if (error) 1932 goto out_quiesce_queue; 1933 1934 return 0; 1935 1936 out_quiesce_queue: 1937 nvme_stop_admin_queue(ctrl); 1938 blk_sync_queue(ctrl->admin_q); 1939 out_stop_queue: 1940 nvme_tcp_stop_queue(ctrl, 0); 1941 nvme_cancel_admin_tagset(ctrl); 1942 out_cleanup_queue: 1943 if (new) 1944 blk_cleanup_queue(ctrl->admin_q); 1945 out_cleanup_fabrics_q: 1946 if (new) 1947 blk_cleanup_queue(ctrl->fabrics_q); 1948 out_free_tagset: 1949 if (new) 1950 blk_mq_free_tag_set(ctrl->admin_tagset); 1951 out_free_queue: 1952 nvme_tcp_free_admin_queue(ctrl); 1953 return error; 1954 } 1955 1956 static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl, 1957 bool remove) 1958 { 1959 nvme_stop_admin_queue(ctrl); 1960 blk_sync_queue(ctrl->admin_q); 1961 nvme_tcp_stop_queue(ctrl, 0); 1962 nvme_cancel_admin_tagset(ctrl); 1963 if (remove) 1964 nvme_start_admin_queue(ctrl); 1965 nvme_tcp_destroy_admin_queue(ctrl, remove); 1966 } 1967 1968 static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl, 1969 bool remove) 1970 { 1971 if (ctrl->queue_count <= 1) 1972 return; 1973 nvme_stop_admin_queue(ctrl); 1974 nvme_start_freeze(ctrl); 1975 nvme_stop_queues(ctrl); 1976 nvme_sync_io_queues(ctrl); 1977 nvme_tcp_stop_io_queues(ctrl); 1978 nvme_cancel_tagset(ctrl); 1979 if (remove) 1980 nvme_start_queues(ctrl); 1981 nvme_tcp_destroy_io_queues(ctrl, remove); 1982 } 1983 1984 static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl) 1985 { 1986 /* If we are resetting/deleting then do nothing */ 1987 if (ctrl->state != NVME_CTRL_CONNECTING) { 1988 WARN_ON_ONCE(ctrl->state == NVME_CTRL_NEW || 1989 ctrl->state == NVME_CTRL_LIVE); 1990 return; 1991 } 1992 1993 if (nvmf_should_reconnect(ctrl)) { 1994 dev_info(ctrl->device, "Reconnecting in %d seconds...\n", 1995 ctrl->opts->reconnect_delay); 1996 queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work, 1997 ctrl->opts->reconnect_delay * HZ); 1998 } else { 1999 dev_info(ctrl->device, "Removing controller...\n"); 2000 nvme_delete_ctrl(ctrl); 2001 } 2002 } 2003 2004 static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new) 2005 { 2006 struct nvmf_ctrl_options *opts = ctrl->opts; 2007 int ret; 2008 2009 ret = nvme_tcp_configure_admin_queue(ctrl, new); 2010 if (ret) 2011 return ret; 2012 2013 if (ctrl->icdoff) { 2014 ret = -EOPNOTSUPP; 2015 dev_err(ctrl->device, "icdoff is not supported!\n"); 2016 goto destroy_admin; 2017 } 2018 2019 if (!nvme_ctrl_sgl_supported(ctrl)) { 2020 ret = -EOPNOTSUPP; 2021 dev_err(ctrl->device, "Mandatory sgls are not supported!\n"); 2022 goto destroy_admin; 2023 } 2024 2025 if (opts->queue_size > ctrl->sqsize + 1) 2026 dev_warn(ctrl->device, 2027 "queue_size %zu > ctrl sqsize %u, clamping down\n", 2028 opts->queue_size, ctrl->sqsize + 1); 2029 2030 if (ctrl->sqsize + 1 > ctrl->maxcmd) { 2031 dev_warn(ctrl->device, 2032 "sqsize %u > ctrl maxcmd %u, clamping down\n", 2033 ctrl->sqsize + 1, ctrl->maxcmd); 2034 ctrl->sqsize = ctrl->maxcmd - 1; 2035 } 2036 2037 if (ctrl->queue_count > 1) { 2038 ret = nvme_tcp_configure_io_queues(ctrl, new); 2039 if (ret) 2040 goto destroy_admin; 2041 } 2042 2043 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) { 2044 /* 2045 * state change failure is ok if we started ctrl delete, 2046 * unless we're during creation of a new controller to 2047 * avoid races with teardown flow. 2048 */ 2049 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING && 2050 ctrl->state != NVME_CTRL_DELETING_NOIO); 2051 WARN_ON_ONCE(new); 2052 ret = -EINVAL; 2053 goto destroy_io; 2054 } 2055 2056 nvme_start_ctrl(ctrl); 2057 return 0; 2058 2059 destroy_io: 2060 if (ctrl->queue_count > 1) { 2061 nvme_stop_queues(ctrl); 2062 nvme_sync_io_queues(ctrl); 2063 nvme_tcp_stop_io_queues(ctrl); 2064 nvme_cancel_tagset(ctrl); 2065 nvme_tcp_destroy_io_queues(ctrl, new); 2066 } 2067 destroy_admin: 2068 nvme_stop_admin_queue(ctrl); 2069 blk_sync_queue(ctrl->admin_q); 2070 nvme_tcp_stop_queue(ctrl, 0); 2071 nvme_cancel_admin_tagset(ctrl); 2072 nvme_tcp_destroy_admin_queue(ctrl, new); 2073 return ret; 2074 } 2075 2076 static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work) 2077 { 2078 struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work), 2079 struct nvme_tcp_ctrl, connect_work); 2080 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl; 2081 2082 ++ctrl->nr_reconnects; 2083 2084 if (nvme_tcp_setup_ctrl(ctrl, false)) 2085 goto requeue; 2086 2087 dev_info(ctrl->device, "Successfully reconnected (%d attempt)\n", 2088 ctrl->nr_reconnects); 2089 2090 ctrl->nr_reconnects = 0; 2091 2092 return; 2093 2094 requeue: 2095 dev_info(ctrl->device, "Failed reconnect attempt %d\n", 2096 ctrl->nr_reconnects); 2097 nvme_tcp_reconnect_or_remove(ctrl); 2098 } 2099 2100 static void nvme_tcp_error_recovery_work(struct work_struct *work) 2101 { 2102 struct nvme_tcp_ctrl *tcp_ctrl = container_of(work, 2103 struct nvme_tcp_ctrl, err_work); 2104 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl; 2105 2106 nvme_stop_keep_alive(ctrl); 2107 flush_work(&ctrl->async_event_work); 2108 nvme_tcp_teardown_io_queues(ctrl, false); 2109 /* unquiesce to fail fast pending requests */ 2110 nvme_start_queues(ctrl); 2111 nvme_tcp_teardown_admin_queue(ctrl, false); 2112 nvme_start_admin_queue(ctrl); 2113 2114 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) { 2115 /* state change failure is ok if we started ctrl delete */ 2116 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING && 2117 ctrl->state != NVME_CTRL_DELETING_NOIO); 2118 return; 2119 } 2120 2121 nvme_tcp_reconnect_or_remove(ctrl); 2122 } 2123 2124 static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown) 2125 { 2126 cancel_work_sync(&to_tcp_ctrl(ctrl)->err_work); 2127 cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work); 2128 2129 nvme_tcp_teardown_io_queues(ctrl, shutdown); 2130 nvme_stop_admin_queue(ctrl); 2131 if (shutdown) 2132 nvme_shutdown_ctrl(ctrl); 2133 else 2134 nvme_disable_ctrl(ctrl); 2135 nvme_tcp_teardown_admin_queue(ctrl, shutdown); 2136 } 2137 2138 static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl) 2139 { 2140 nvme_tcp_teardown_ctrl(ctrl, true); 2141 } 2142 2143 static void nvme_reset_ctrl_work(struct work_struct *work) 2144 { 2145 struct nvme_ctrl *ctrl = 2146 container_of(work, struct nvme_ctrl, reset_work); 2147 2148 nvme_stop_ctrl(ctrl); 2149 nvme_tcp_teardown_ctrl(ctrl, false); 2150 2151 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) { 2152 /* state change failure is ok if we started ctrl delete */ 2153 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING && 2154 ctrl->state != NVME_CTRL_DELETING_NOIO); 2155 return; 2156 } 2157 2158 if (nvme_tcp_setup_ctrl(ctrl, false)) 2159 goto out_fail; 2160 2161 return; 2162 2163 out_fail: 2164 ++ctrl->nr_reconnects; 2165 nvme_tcp_reconnect_or_remove(ctrl); 2166 } 2167 2168 static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl) 2169 { 2170 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 2171 2172 if (list_empty(&ctrl->list)) 2173 goto free_ctrl; 2174 2175 mutex_lock(&nvme_tcp_ctrl_mutex); 2176 list_del(&ctrl->list); 2177 mutex_unlock(&nvme_tcp_ctrl_mutex); 2178 2179 nvmf_free_options(nctrl->opts); 2180 free_ctrl: 2181 kfree(ctrl->queues); 2182 kfree(ctrl); 2183 } 2184 2185 static void nvme_tcp_set_sg_null(struct nvme_command *c) 2186 { 2187 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 2188 2189 sg->addr = 0; 2190 sg->length = 0; 2191 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) | 2192 NVME_SGL_FMT_TRANSPORT_A; 2193 } 2194 2195 static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue, 2196 struct nvme_command *c, u32 data_len) 2197 { 2198 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 2199 2200 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff); 2201 sg->length = cpu_to_le32(data_len); 2202 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET; 2203 } 2204 2205 static void nvme_tcp_set_sg_host_data(struct nvme_command *c, 2206 u32 data_len) 2207 { 2208 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 2209 2210 sg->addr = 0; 2211 sg->length = cpu_to_le32(data_len); 2212 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) | 2213 NVME_SGL_FMT_TRANSPORT_A; 2214 } 2215 2216 static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg) 2217 { 2218 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg); 2219 struct nvme_tcp_queue *queue = &ctrl->queues[0]; 2220 struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu; 2221 struct nvme_command *cmd = &pdu->cmd; 2222 u8 hdgst = nvme_tcp_hdgst_len(queue); 2223 2224 memset(pdu, 0, sizeof(*pdu)); 2225 pdu->hdr.type = nvme_tcp_cmd; 2226 if (queue->hdr_digest) 2227 pdu->hdr.flags |= NVME_TCP_F_HDGST; 2228 pdu->hdr.hlen = sizeof(*pdu); 2229 pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst); 2230 2231 cmd->common.opcode = nvme_admin_async_event; 2232 cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH; 2233 cmd->common.flags |= NVME_CMD_SGL_METABUF; 2234 nvme_tcp_set_sg_null(cmd); 2235 2236 ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU; 2237 ctrl->async_req.offset = 0; 2238 ctrl->async_req.curr_bio = NULL; 2239 ctrl->async_req.data_len = 0; 2240 2241 nvme_tcp_queue_request(&ctrl->async_req, true, true); 2242 } 2243 2244 static void nvme_tcp_complete_timed_out(struct request *rq) 2245 { 2246 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2247 struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl; 2248 2249 nvme_tcp_stop_queue(ctrl, nvme_tcp_queue_id(req->queue)); 2250 if (blk_mq_request_started(rq) && !blk_mq_request_completed(rq)) { 2251 nvme_req(rq)->status = NVME_SC_HOST_ABORTED_CMD; 2252 blk_mq_complete_request(rq); 2253 } 2254 } 2255 2256 static enum blk_eh_timer_return 2257 nvme_tcp_timeout(struct request *rq, bool reserved) 2258 { 2259 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2260 struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl; 2261 struct nvme_tcp_cmd_pdu *pdu = req->pdu; 2262 2263 dev_warn(ctrl->device, 2264 "queue %d: timeout request %#x type %d\n", 2265 nvme_tcp_queue_id(req->queue), rq->tag, pdu->hdr.type); 2266 2267 if (ctrl->state != NVME_CTRL_LIVE) { 2268 /* 2269 * If we are resetting, connecting or deleting we should 2270 * complete immediately because we may block controller 2271 * teardown or setup sequence 2272 * - ctrl disable/shutdown fabrics requests 2273 * - connect requests 2274 * - initialization admin requests 2275 * - I/O requests that entered after unquiescing and 2276 * the controller stopped responding 2277 * 2278 * All other requests should be cancelled by the error 2279 * recovery work, so it's fine that we fail it here. 2280 */ 2281 nvme_tcp_complete_timed_out(rq); 2282 return BLK_EH_DONE; 2283 } 2284 2285 /* 2286 * LIVE state should trigger the normal error recovery which will 2287 * handle completing this request. 2288 */ 2289 nvme_tcp_error_recovery(ctrl); 2290 return BLK_EH_RESET_TIMER; 2291 } 2292 2293 static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue, 2294 struct request *rq) 2295 { 2296 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2297 struct nvme_tcp_cmd_pdu *pdu = req->pdu; 2298 struct nvme_command *c = &pdu->cmd; 2299 2300 c->common.flags |= NVME_CMD_SGL_METABUF; 2301 2302 if (!blk_rq_nr_phys_segments(rq)) 2303 nvme_tcp_set_sg_null(c); 2304 else if (rq_data_dir(rq) == WRITE && 2305 req->data_len <= nvme_tcp_inline_data_size(queue)) 2306 nvme_tcp_set_sg_inline(queue, c, req->data_len); 2307 else 2308 nvme_tcp_set_sg_host_data(c, req->data_len); 2309 2310 return 0; 2311 } 2312 2313 static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns, 2314 struct request *rq) 2315 { 2316 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2317 struct nvme_tcp_cmd_pdu *pdu = req->pdu; 2318 struct nvme_tcp_queue *queue = req->queue; 2319 u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0; 2320 blk_status_t ret; 2321 2322 ret = nvme_setup_cmd(ns, rq); 2323 if (ret) 2324 return ret; 2325 2326 req->state = NVME_TCP_SEND_CMD_PDU; 2327 req->status = cpu_to_le16(NVME_SC_SUCCESS); 2328 req->offset = 0; 2329 req->data_sent = 0; 2330 req->pdu_len = 0; 2331 req->pdu_sent = 0; 2332 req->data_len = blk_rq_nr_phys_segments(rq) ? 2333 blk_rq_payload_bytes(rq) : 0; 2334 req->curr_bio = rq->bio; 2335 if (req->curr_bio && req->data_len) 2336 nvme_tcp_init_iter(req, rq_data_dir(rq)); 2337 2338 if (rq_data_dir(rq) == WRITE && 2339 req->data_len <= nvme_tcp_inline_data_size(queue)) 2340 req->pdu_len = req->data_len; 2341 2342 pdu->hdr.type = nvme_tcp_cmd; 2343 pdu->hdr.flags = 0; 2344 if (queue->hdr_digest) 2345 pdu->hdr.flags |= NVME_TCP_F_HDGST; 2346 if (queue->data_digest && req->pdu_len) { 2347 pdu->hdr.flags |= NVME_TCP_F_DDGST; 2348 ddgst = nvme_tcp_ddgst_len(queue); 2349 } 2350 pdu->hdr.hlen = sizeof(*pdu); 2351 pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0; 2352 pdu->hdr.plen = 2353 cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst); 2354 2355 ret = nvme_tcp_map_data(queue, rq); 2356 if (unlikely(ret)) { 2357 nvme_cleanup_cmd(rq); 2358 dev_err(queue->ctrl->ctrl.device, 2359 "Failed to map data (%d)\n", ret); 2360 return ret; 2361 } 2362 2363 return 0; 2364 } 2365 2366 static void nvme_tcp_commit_rqs(struct blk_mq_hw_ctx *hctx) 2367 { 2368 struct nvme_tcp_queue *queue = hctx->driver_data; 2369 2370 if (!llist_empty(&queue->req_list)) 2371 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 2372 } 2373 2374 static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx, 2375 const struct blk_mq_queue_data *bd) 2376 { 2377 struct nvme_ns *ns = hctx->queue->queuedata; 2378 struct nvme_tcp_queue *queue = hctx->driver_data; 2379 struct request *rq = bd->rq; 2380 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2381 bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags); 2382 blk_status_t ret; 2383 2384 if (!nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready)) 2385 return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq); 2386 2387 ret = nvme_tcp_setup_cmd_pdu(ns, rq); 2388 if (unlikely(ret)) 2389 return ret; 2390 2391 blk_mq_start_request(rq); 2392 2393 nvme_tcp_queue_request(req, true, bd->last); 2394 2395 return BLK_STS_OK; 2396 } 2397 2398 static int nvme_tcp_map_queues(struct blk_mq_tag_set *set) 2399 { 2400 struct nvme_tcp_ctrl *ctrl = set->driver_data; 2401 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 2402 2403 if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) { 2404 /* separate read/write queues */ 2405 set->map[HCTX_TYPE_DEFAULT].nr_queues = 2406 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2407 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0; 2408 set->map[HCTX_TYPE_READ].nr_queues = 2409 ctrl->io_queues[HCTX_TYPE_READ]; 2410 set->map[HCTX_TYPE_READ].queue_offset = 2411 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2412 } else { 2413 /* shared read/write queues */ 2414 set->map[HCTX_TYPE_DEFAULT].nr_queues = 2415 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2416 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0; 2417 set->map[HCTX_TYPE_READ].nr_queues = 2418 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2419 set->map[HCTX_TYPE_READ].queue_offset = 0; 2420 } 2421 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 2422 blk_mq_map_queues(&set->map[HCTX_TYPE_READ]); 2423 2424 if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) { 2425 /* map dedicated poll queues only if we have queues left */ 2426 set->map[HCTX_TYPE_POLL].nr_queues = 2427 ctrl->io_queues[HCTX_TYPE_POLL]; 2428 set->map[HCTX_TYPE_POLL].queue_offset = 2429 ctrl->io_queues[HCTX_TYPE_DEFAULT] + 2430 ctrl->io_queues[HCTX_TYPE_READ]; 2431 blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]); 2432 } 2433 2434 dev_info(ctrl->ctrl.device, 2435 "mapped %d/%d/%d default/read/poll queues.\n", 2436 ctrl->io_queues[HCTX_TYPE_DEFAULT], 2437 ctrl->io_queues[HCTX_TYPE_READ], 2438 ctrl->io_queues[HCTX_TYPE_POLL]); 2439 2440 return 0; 2441 } 2442 2443 static int nvme_tcp_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob) 2444 { 2445 struct nvme_tcp_queue *queue = hctx->driver_data; 2446 struct sock *sk = queue->sock->sk; 2447 2448 if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags)) 2449 return 0; 2450 2451 set_bit(NVME_TCP_Q_POLLING, &queue->flags); 2452 if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue)) 2453 sk_busy_loop(sk, true); 2454 nvme_tcp_try_recv(queue); 2455 clear_bit(NVME_TCP_Q_POLLING, &queue->flags); 2456 return queue->nr_cqe; 2457 } 2458 2459 static const struct blk_mq_ops nvme_tcp_mq_ops = { 2460 .queue_rq = nvme_tcp_queue_rq, 2461 .commit_rqs = nvme_tcp_commit_rqs, 2462 .complete = nvme_complete_rq, 2463 .init_request = nvme_tcp_init_request, 2464 .exit_request = nvme_tcp_exit_request, 2465 .init_hctx = nvme_tcp_init_hctx, 2466 .timeout = nvme_tcp_timeout, 2467 .map_queues = nvme_tcp_map_queues, 2468 .poll = nvme_tcp_poll, 2469 }; 2470 2471 static const struct blk_mq_ops nvme_tcp_admin_mq_ops = { 2472 .queue_rq = nvme_tcp_queue_rq, 2473 .complete = nvme_complete_rq, 2474 .init_request = nvme_tcp_init_request, 2475 .exit_request = nvme_tcp_exit_request, 2476 .init_hctx = nvme_tcp_init_admin_hctx, 2477 .timeout = nvme_tcp_timeout, 2478 }; 2479 2480 static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = { 2481 .name = "tcp", 2482 .module = THIS_MODULE, 2483 .flags = NVME_F_FABRICS, 2484 .reg_read32 = nvmf_reg_read32, 2485 .reg_read64 = nvmf_reg_read64, 2486 .reg_write32 = nvmf_reg_write32, 2487 .free_ctrl = nvme_tcp_free_ctrl, 2488 .submit_async_event = nvme_tcp_submit_async_event, 2489 .delete_ctrl = nvme_tcp_delete_ctrl, 2490 .get_address = nvmf_get_address, 2491 }; 2492 2493 static bool 2494 nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts) 2495 { 2496 struct nvme_tcp_ctrl *ctrl; 2497 bool found = false; 2498 2499 mutex_lock(&nvme_tcp_ctrl_mutex); 2500 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) { 2501 found = nvmf_ip_options_match(&ctrl->ctrl, opts); 2502 if (found) 2503 break; 2504 } 2505 mutex_unlock(&nvme_tcp_ctrl_mutex); 2506 2507 return found; 2508 } 2509 2510 static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev, 2511 struct nvmf_ctrl_options *opts) 2512 { 2513 struct nvme_tcp_ctrl *ctrl; 2514 int ret; 2515 2516 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 2517 if (!ctrl) 2518 return ERR_PTR(-ENOMEM); 2519 2520 INIT_LIST_HEAD(&ctrl->list); 2521 ctrl->ctrl.opts = opts; 2522 ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues + 2523 opts->nr_poll_queues + 1; 2524 ctrl->ctrl.sqsize = opts->queue_size - 1; 2525 ctrl->ctrl.kato = opts->kato; 2526 2527 INIT_DELAYED_WORK(&ctrl->connect_work, 2528 nvme_tcp_reconnect_ctrl_work); 2529 INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work); 2530 INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work); 2531 2532 if (!(opts->mask & NVMF_OPT_TRSVCID)) { 2533 opts->trsvcid = 2534 kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL); 2535 if (!opts->trsvcid) { 2536 ret = -ENOMEM; 2537 goto out_free_ctrl; 2538 } 2539 opts->mask |= NVMF_OPT_TRSVCID; 2540 } 2541 2542 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 2543 opts->traddr, opts->trsvcid, &ctrl->addr); 2544 if (ret) { 2545 pr_err("malformed address passed: %s:%s\n", 2546 opts->traddr, opts->trsvcid); 2547 goto out_free_ctrl; 2548 } 2549 2550 if (opts->mask & NVMF_OPT_HOST_TRADDR) { 2551 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 2552 opts->host_traddr, NULL, &ctrl->src_addr); 2553 if (ret) { 2554 pr_err("malformed src address passed: %s\n", 2555 opts->host_traddr); 2556 goto out_free_ctrl; 2557 } 2558 } 2559 2560 if (opts->mask & NVMF_OPT_HOST_IFACE) { 2561 if (!__dev_get_by_name(&init_net, opts->host_iface)) { 2562 pr_err("invalid interface passed: %s\n", 2563 opts->host_iface); 2564 ret = -ENODEV; 2565 goto out_free_ctrl; 2566 } 2567 } 2568 2569 if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) { 2570 ret = -EALREADY; 2571 goto out_free_ctrl; 2572 } 2573 2574 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues), 2575 GFP_KERNEL); 2576 if (!ctrl->queues) { 2577 ret = -ENOMEM; 2578 goto out_free_ctrl; 2579 } 2580 2581 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0); 2582 if (ret) 2583 goto out_kfree_queues; 2584 2585 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) { 2586 WARN_ON_ONCE(1); 2587 ret = -EINTR; 2588 goto out_uninit_ctrl; 2589 } 2590 2591 ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true); 2592 if (ret) 2593 goto out_uninit_ctrl; 2594 2595 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n", 2596 nvmf_ctrl_subsysnqn(&ctrl->ctrl), &ctrl->addr); 2597 2598 mutex_lock(&nvme_tcp_ctrl_mutex); 2599 list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list); 2600 mutex_unlock(&nvme_tcp_ctrl_mutex); 2601 2602 return &ctrl->ctrl; 2603 2604 out_uninit_ctrl: 2605 nvme_uninit_ctrl(&ctrl->ctrl); 2606 nvme_put_ctrl(&ctrl->ctrl); 2607 if (ret > 0) 2608 ret = -EIO; 2609 return ERR_PTR(ret); 2610 out_kfree_queues: 2611 kfree(ctrl->queues); 2612 out_free_ctrl: 2613 kfree(ctrl); 2614 return ERR_PTR(ret); 2615 } 2616 2617 static struct nvmf_transport_ops nvme_tcp_transport = { 2618 .name = "tcp", 2619 .module = THIS_MODULE, 2620 .required_opts = NVMF_OPT_TRADDR, 2621 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY | 2622 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO | 2623 NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST | 2624 NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES | 2625 NVMF_OPT_TOS | NVMF_OPT_HOST_IFACE, 2626 .create_ctrl = nvme_tcp_create_ctrl, 2627 }; 2628 2629 static int __init nvme_tcp_init_module(void) 2630 { 2631 nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq", 2632 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 2633 if (!nvme_tcp_wq) 2634 return -ENOMEM; 2635 2636 nvmf_register_transport(&nvme_tcp_transport); 2637 return 0; 2638 } 2639 2640 static void __exit nvme_tcp_cleanup_module(void) 2641 { 2642 struct nvme_tcp_ctrl *ctrl; 2643 2644 nvmf_unregister_transport(&nvme_tcp_transport); 2645 2646 mutex_lock(&nvme_tcp_ctrl_mutex); 2647 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) 2648 nvme_delete_ctrl(&ctrl->ctrl); 2649 mutex_unlock(&nvme_tcp_ctrl_mutex); 2650 flush_workqueue(nvme_delete_wq); 2651 2652 destroy_workqueue(nvme_tcp_wq); 2653 } 2654 2655 module_init(nvme_tcp_init_module); 2656 module_exit(nvme_tcp_cleanup_module); 2657 2658 MODULE_LICENSE("GPL v2"); 2659