xref: /linux/drivers/nvme/host/tcp.c (revision 1907d3ff5a644ad7c07bf3c0a56a0b1864c9e5cf)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics TCP host.
4  * Copyright (c) 2018 Lightbits Labs. All rights reserved.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/err.h>
11 #include <linux/nvme-tcp.h>
12 #include <net/sock.h>
13 #include <net/tcp.h>
14 #include <linux/blk-mq.h>
15 #include <crypto/hash.h>
16 #include <net/busy_poll.h>
17 
18 #include "nvme.h"
19 #include "fabrics.h"
20 
21 struct nvme_tcp_queue;
22 
23 /* Define the socket priority to use for connections were it is desirable
24  * that the NIC consider performing optimized packet processing or filtering.
25  * A non-zero value being sufficient to indicate general consideration of any
26  * possible optimization.  Making it a module param allows for alternative
27  * values that may be unique for some NIC implementations.
28  */
29 static int so_priority;
30 module_param(so_priority, int, 0644);
31 MODULE_PARM_DESC(so_priority, "nvme tcp socket optimize priority");
32 
33 enum nvme_tcp_send_state {
34 	NVME_TCP_SEND_CMD_PDU = 0,
35 	NVME_TCP_SEND_H2C_PDU,
36 	NVME_TCP_SEND_DATA,
37 	NVME_TCP_SEND_DDGST,
38 };
39 
40 struct nvme_tcp_request {
41 	struct nvme_request	req;
42 	void			*pdu;
43 	struct nvme_tcp_queue	*queue;
44 	u32			data_len;
45 	u32			pdu_len;
46 	u32			pdu_sent;
47 	u16			ttag;
48 	__le16			status;
49 	struct list_head	entry;
50 	struct llist_node	lentry;
51 	__le32			ddgst;
52 
53 	struct bio		*curr_bio;
54 	struct iov_iter		iter;
55 
56 	/* send state */
57 	size_t			offset;
58 	size_t			data_sent;
59 	enum nvme_tcp_send_state state;
60 };
61 
62 enum nvme_tcp_queue_flags {
63 	NVME_TCP_Q_ALLOCATED	= 0,
64 	NVME_TCP_Q_LIVE		= 1,
65 	NVME_TCP_Q_POLLING	= 2,
66 };
67 
68 enum nvme_tcp_recv_state {
69 	NVME_TCP_RECV_PDU = 0,
70 	NVME_TCP_RECV_DATA,
71 	NVME_TCP_RECV_DDGST,
72 };
73 
74 struct nvme_tcp_ctrl;
75 struct nvme_tcp_queue {
76 	struct socket		*sock;
77 	struct work_struct	io_work;
78 	int			io_cpu;
79 
80 	struct mutex		queue_lock;
81 	struct mutex		send_mutex;
82 	struct llist_head	req_list;
83 	struct list_head	send_list;
84 	bool			more_requests;
85 
86 	/* recv state */
87 	void			*pdu;
88 	int			pdu_remaining;
89 	int			pdu_offset;
90 	size_t			data_remaining;
91 	size_t			ddgst_remaining;
92 	unsigned int		nr_cqe;
93 
94 	/* send state */
95 	struct nvme_tcp_request *request;
96 
97 	int			queue_size;
98 	size_t			cmnd_capsule_len;
99 	struct nvme_tcp_ctrl	*ctrl;
100 	unsigned long		flags;
101 	bool			rd_enabled;
102 
103 	bool			hdr_digest;
104 	bool			data_digest;
105 	struct ahash_request	*rcv_hash;
106 	struct ahash_request	*snd_hash;
107 	__le32			exp_ddgst;
108 	__le32			recv_ddgst;
109 
110 	struct page_frag_cache	pf_cache;
111 
112 	void (*state_change)(struct sock *);
113 	void (*data_ready)(struct sock *);
114 	void (*write_space)(struct sock *);
115 };
116 
117 struct nvme_tcp_ctrl {
118 	/* read only in the hot path */
119 	struct nvme_tcp_queue	*queues;
120 	struct blk_mq_tag_set	tag_set;
121 
122 	/* other member variables */
123 	struct list_head	list;
124 	struct blk_mq_tag_set	admin_tag_set;
125 	struct sockaddr_storage addr;
126 	struct sockaddr_storage src_addr;
127 	struct nvme_ctrl	ctrl;
128 
129 	struct work_struct	err_work;
130 	struct delayed_work	connect_work;
131 	struct nvme_tcp_request async_req;
132 	u32			io_queues[HCTX_MAX_TYPES];
133 };
134 
135 static LIST_HEAD(nvme_tcp_ctrl_list);
136 static DEFINE_MUTEX(nvme_tcp_ctrl_mutex);
137 static struct workqueue_struct *nvme_tcp_wq;
138 static const struct blk_mq_ops nvme_tcp_mq_ops;
139 static const struct blk_mq_ops nvme_tcp_admin_mq_ops;
140 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue);
141 
142 static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl)
143 {
144 	return container_of(ctrl, struct nvme_tcp_ctrl, ctrl);
145 }
146 
147 static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue)
148 {
149 	return queue - queue->ctrl->queues;
150 }
151 
152 static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue)
153 {
154 	u32 queue_idx = nvme_tcp_queue_id(queue);
155 
156 	if (queue_idx == 0)
157 		return queue->ctrl->admin_tag_set.tags[queue_idx];
158 	return queue->ctrl->tag_set.tags[queue_idx - 1];
159 }
160 
161 static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue)
162 {
163 	return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
164 }
165 
166 static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue)
167 {
168 	return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
169 }
170 
171 static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_queue *queue)
172 {
173 	return queue->cmnd_capsule_len - sizeof(struct nvme_command);
174 }
175 
176 static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req)
177 {
178 	return req == &req->queue->ctrl->async_req;
179 }
180 
181 static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req)
182 {
183 	struct request *rq;
184 
185 	if (unlikely(nvme_tcp_async_req(req)))
186 		return false; /* async events don't have a request */
187 
188 	rq = blk_mq_rq_from_pdu(req);
189 
190 	return rq_data_dir(rq) == WRITE && req->data_len &&
191 		req->data_len <= nvme_tcp_inline_data_size(req->queue);
192 }
193 
194 static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req)
195 {
196 	return req->iter.bvec->bv_page;
197 }
198 
199 static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req)
200 {
201 	return req->iter.bvec->bv_offset + req->iter.iov_offset;
202 }
203 
204 static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req)
205 {
206 	return min_t(size_t, iov_iter_single_seg_count(&req->iter),
207 			req->pdu_len - req->pdu_sent);
208 }
209 
210 static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req)
211 {
212 	return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ?
213 			req->pdu_len - req->pdu_sent : 0;
214 }
215 
216 static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req,
217 		int len)
218 {
219 	return nvme_tcp_pdu_data_left(req) <= len;
220 }
221 
222 static void nvme_tcp_init_iter(struct nvme_tcp_request *req,
223 		unsigned int dir)
224 {
225 	struct request *rq = blk_mq_rq_from_pdu(req);
226 	struct bio_vec *vec;
227 	unsigned int size;
228 	int nr_bvec;
229 	size_t offset;
230 
231 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) {
232 		vec = &rq->special_vec;
233 		nr_bvec = 1;
234 		size = blk_rq_payload_bytes(rq);
235 		offset = 0;
236 	} else {
237 		struct bio *bio = req->curr_bio;
238 		struct bvec_iter bi;
239 		struct bio_vec bv;
240 
241 		vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
242 		nr_bvec = 0;
243 		bio_for_each_bvec(bv, bio, bi) {
244 			nr_bvec++;
245 		}
246 		size = bio->bi_iter.bi_size;
247 		offset = bio->bi_iter.bi_bvec_done;
248 	}
249 
250 	iov_iter_bvec(&req->iter, dir, vec, nr_bvec, size);
251 	req->iter.iov_offset = offset;
252 }
253 
254 static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req,
255 		int len)
256 {
257 	req->data_sent += len;
258 	req->pdu_sent += len;
259 	iov_iter_advance(&req->iter, len);
260 	if (!iov_iter_count(&req->iter) &&
261 	    req->data_sent < req->data_len) {
262 		req->curr_bio = req->curr_bio->bi_next;
263 		nvme_tcp_init_iter(req, WRITE);
264 	}
265 }
266 
267 static inline void nvme_tcp_send_all(struct nvme_tcp_queue *queue)
268 {
269 	int ret;
270 
271 	/* drain the send queue as much as we can... */
272 	do {
273 		ret = nvme_tcp_try_send(queue);
274 	} while (ret > 0);
275 }
276 
277 static inline bool nvme_tcp_queue_more(struct nvme_tcp_queue *queue)
278 {
279 	return !list_empty(&queue->send_list) ||
280 		!llist_empty(&queue->req_list) || queue->more_requests;
281 }
282 
283 static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req,
284 		bool sync, bool last)
285 {
286 	struct nvme_tcp_queue *queue = req->queue;
287 	bool empty;
288 
289 	empty = llist_add(&req->lentry, &queue->req_list) &&
290 		list_empty(&queue->send_list) && !queue->request;
291 
292 	/*
293 	 * if we're the first on the send_list and we can try to send
294 	 * directly, otherwise queue io_work. Also, only do that if we
295 	 * are on the same cpu, so we don't introduce contention.
296 	 */
297 	if (queue->io_cpu == raw_smp_processor_id() &&
298 	    sync && empty && mutex_trylock(&queue->send_mutex)) {
299 		queue->more_requests = !last;
300 		nvme_tcp_send_all(queue);
301 		queue->more_requests = false;
302 		mutex_unlock(&queue->send_mutex);
303 	}
304 
305 	if (last && nvme_tcp_queue_more(queue))
306 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
307 }
308 
309 static void nvme_tcp_process_req_list(struct nvme_tcp_queue *queue)
310 {
311 	struct nvme_tcp_request *req;
312 	struct llist_node *node;
313 
314 	for (node = llist_del_all(&queue->req_list); node; node = node->next) {
315 		req = llist_entry(node, struct nvme_tcp_request, lentry);
316 		list_add(&req->entry, &queue->send_list);
317 	}
318 }
319 
320 static inline struct nvme_tcp_request *
321 nvme_tcp_fetch_request(struct nvme_tcp_queue *queue)
322 {
323 	struct nvme_tcp_request *req;
324 
325 	req = list_first_entry_or_null(&queue->send_list,
326 			struct nvme_tcp_request, entry);
327 	if (!req) {
328 		nvme_tcp_process_req_list(queue);
329 		req = list_first_entry_or_null(&queue->send_list,
330 				struct nvme_tcp_request, entry);
331 		if (unlikely(!req))
332 			return NULL;
333 	}
334 
335 	list_del(&req->entry);
336 	return req;
337 }
338 
339 static inline void nvme_tcp_ddgst_final(struct ahash_request *hash,
340 		__le32 *dgst)
341 {
342 	ahash_request_set_crypt(hash, NULL, (u8 *)dgst, 0);
343 	crypto_ahash_final(hash);
344 }
345 
346 static inline void nvme_tcp_ddgst_update(struct ahash_request *hash,
347 		struct page *page, off_t off, size_t len)
348 {
349 	struct scatterlist sg;
350 
351 	sg_init_marker(&sg, 1);
352 	sg_set_page(&sg, page, len, off);
353 	ahash_request_set_crypt(hash, &sg, NULL, len);
354 	crypto_ahash_update(hash);
355 }
356 
357 static inline void nvme_tcp_hdgst(struct ahash_request *hash,
358 		void *pdu, size_t len)
359 {
360 	struct scatterlist sg;
361 
362 	sg_init_one(&sg, pdu, len);
363 	ahash_request_set_crypt(hash, &sg, pdu + len, len);
364 	crypto_ahash_digest(hash);
365 }
366 
367 static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue,
368 		void *pdu, size_t pdu_len)
369 {
370 	struct nvme_tcp_hdr *hdr = pdu;
371 	__le32 recv_digest;
372 	__le32 exp_digest;
373 
374 	if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
375 		dev_err(queue->ctrl->ctrl.device,
376 			"queue %d: header digest flag is cleared\n",
377 			nvme_tcp_queue_id(queue));
378 		return -EPROTO;
379 	}
380 
381 	recv_digest = *(__le32 *)(pdu + hdr->hlen);
382 	nvme_tcp_hdgst(queue->rcv_hash, pdu, pdu_len);
383 	exp_digest = *(__le32 *)(pdu + hdr->hlen);
384 	if (recv_digest != exp_digest) {
385 		dev_err(queue->ctrl->ctrl.device,
386 			"header digest error: recv %#x expected %#x\n",
387 			le32_to_cpu(recv_digest), le32_to_cpu(exp_digest));
388 		return -EIO;
389 	}
390 
391 	return 0;
392 }
393 
394 static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu)
395 {
396 	struct nvme_tcp_hdr *hdr = pdu;
397 	u8 digest_len = nvme_tcp_hdgst_len(queue);
398 	u32 len;
399 
400 	len = le32_to_cpu(hdr->plen) - hdr->hlen -
401 		((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0);
402 
403 	if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
404 		dev_err(queue->ctrl->ctrl.device,
405 			"queue %d: data digest flag is cleared\n",
406 		nvme_tcp_queue_id(queue));
407 		return -EPROTO;
408 	}
409 	crypto_ahash_init(queue->rcv_hash);
410 
411 	return 0;
412 }
413 
414 static void nvme_tcp_exit_request(struct blk_mq_tag_set *set,
415 		struct request *rq, unsigned int hctx_idx)
416 {
417 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
418 
419 	page_frag_free(req->pdu);
420 }
421 
422 static int nvme_tcp_init_request(struct blk_mq_tag_set *set,
423 		struct request *rq, unsigned int hctx_idx,
424 		unsigned int numa_node)
425 {
426 	struct nvme_tcp_ctrl *ctrl = set->driver_data;
427 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
428 	struct nvme_tcp_cmd_pdu *pdu;
429 	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
430 	struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx];
431 	u8 hdgst = nvme_tcp_hdgst_len(queue);
432 
433 	req->pdu = page_frag_alloc(&queue->pf_cache,
434 		sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
435 		GFP_KERNEL | __GFP_ZERO);
436 	if (!req->pdu)
437 		return -ENOMEM;
438 
439 	pdu = req->pdu;
440 	req->queue = queue;
441 	nvme_req(rq)->ctrl = &ctrl->ctrl;
442 	nvme_req(rq)->cmd = &pdu->cmd;
443 
444 	return 0;
445 }
446 
447 static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
448 		unsigned int hctx_idx)
449 {
450 	struct nvme_tcp_ctrl *ctrl = data;
451 	struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1];
452 
453 	hctx->driver_data = queue;
454 	return 0;
455 }
456 
457 static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
458 		unsigned int hctx_idx)
459 {
460 	struct nvme_tcp_ctrl *ctrl = data;
461 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
462 
463 	hctx->driver_data = queue;
464 	return 0;
465 }
466 
467 static enum nvme_tcp_recv_state
468 nvme_tcp_recv_state(struct nvme_tcp_queue *queue)
469 {
470 	return  (queue->pdu_remaining) ? NVME_TCP_RECV_PDU :
471 		(queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST :
472 		NVME_TCP_RECV_DATA;
473 }
474 
475 static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue)
476 {
477 	queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) +
478 				nvme_tcp_hdgst_len(queue);
479 	queue->pdu_offset = 0;
480 	queue->data_remaining = -1;
481 	queue->ddgst_remaining = 0;
482 }
483 
484 static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl)
485 {
486 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
487 		return;
488 
489 	dev_warn(ctrl->device, "starting error recovery\n");
490 	queue_work(nvme_reset_wq, &to_tcp_ctrl(ctrl)->err_work);
491 }
492 
493 static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue,
494 		struct nvme_completion *cqe)
495 {
496 	struct nvme_tcp_request *req;
497 	struct request *rq;
498 
499 	rq = nvme_find_rq(nvme_tcp_tagset(queue), cqe->command_id);
500 	if (!rq) {
501 		dev_err(queue->ctrl->ctrl.device,
502 			"got bad cqe.command_id %#x on queue %d\n",
503 			cqe->command_id, nvme_tcp_queue_id(queue));
504 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
505 		return -EINVAL;
506 	}
507 
508 	req = blk_mq_rq_to_pdu(rq);
509 	if (req->status == cpu_to_le16(NVME_SC_SUCCESS))
510 		req->status = cqe->status;
511 
512 	if (!nvme_try_complete_req(rq, req->status, cqe->result))
513 		nvme_complete_rq(rq);
514 	queue->nr_cqe++;
515 
516 	return 0;
517 }
518 
519 static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue,
520 		struct nvme_tcp_data_pdu *pdu)
521 {
522 	struct request *rq;
523 
524 	rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id);
525 	if (!rq) {
526 		dev_err(queue->ctrl->ctrl.device,
527 			"got bad c2hdata.command_id %#x on queue %d\n",
528 			pdu->command_id, nvme_tcp_queue_id(queue));
529 		return -ENOENT;
530 	}
531 
532 	if (!blk_rq_payload_bytes(rq)) {
533 		dev_err(queue->ctrl->ctrl.device,
534 			"queue %d tag %#x unexpected data\n",
535 			nvme_tcp_queue_id(queue), rq->tag);
536 		return -EIO;
537 	}
538 
539 	queue->data_remaining = le32_to_cpu(pdu->data_length);
540 
541 	if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS &&
542 	    unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) {
543 		dev_err(queue->ctrl->ctrl.device,
544 			"queue %d tag %#x SUCCESS set but not last PDU\n",
545 			nvme_tcp_queue_id(queue), rq->tag);
546 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
547 		return -EPROTO;
548 	}
549 
550 	return 0;
551 }
552 
553 static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue,
554 		struct nvme_tcp_rsp_pdu *pdu)
555 {
556 	struct nvme_completion *cqe = &pdu->cqe;
557 	int ret = 0;
558 
559 	/*
560 	 * AEN requests are special as they don't time out and can
561 	 * survive any kind of queue freeze and often don't respond to
562 	 * aborts.  We don't even bother to allocate a struct request
563 	 * for them but rather special case them here.
564 	 */
565 	if (unlikely(nvme_is_aen_req(nvme_tcp_queue_id(queue),
566 				     cqe->command_id)))
567 		nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
568 				&cqe->result);
569 	else
570 		ret = nvme_tcp_process_nvme_cqe(queue, cqe);
571 
572 	return ret;
573 }
574 
575 static int nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req,
576 		struct nvme_tcp_r2t_pdu *pdu)
577 {
578 	struct nvme_tcp_data_pdu *data = req->pdu;
579 	struct nvme_tcp_queue *queue = req->queue;
580 	struct request *rq = blk_mq_rq_from_pdu(req);
581 	u8 hdgst = nvme_tcp_hdgst_len(queue);
582 	u8 ddgst = nvme_tcp_ddgst_len(queue);
583 
584 	req->pdu_len = le32_to_cpu(pdu->r2t_length);
585 	req->pdu_sent = 0;
586 
587 	if (unlikely(!req->pdu_len)) {
588 		dev_err(queue->ctrl->ctrl.device,
589 			"req %d r2t len is %u, probably a bug...\n",
590 			rq->tag, req->pdu_len);
591 		return -EPROTO;
592 	}
593 
594 	if (unlikely(req->data_sent + req->pdu_len > req->data_len)) {
595 		dev_err(queue->ctrl->ctrl.device,
596 			"req %d r2t len %u exceeded data len %u (%zu sent)\n",
597 			rq->tag, req->pdu_len, req->data_len,
598 			req->data_sent);
599 		return -EPROTO;
600 	}
601 
602 	if (unlikely(le32_to_cpu(pdu->r2t_offset) < req->data_sent)) {
603 		dev_err(queue->ctrl->ctrl.device,
604 			"req %d unexpected r2t offset %u (expected %zu)\n",
605 			rq->tag, le32_to_cpu(pdu->r2t_offset),
606 			req->data_sent);
607 		return -EPROTO;
608 	}
609 
610 	memset(data, 0, sizeof(*data));
611 	data->hdr.type = nvme_tcp_h2c_data;
612 	data->hdr.flags = NVME_TCP_F_DATA_LAST;
613 	if (queue->hdr_digest)
614 		data->hdr.flags |= NVME_TCP_F_HDGST;
615 	if (queue->data_digest)
616 		data->hdr.flags |= NVME_TCP_F_DDGST;
617 	data->hdr.hlen = sizeof(*data);
618 	data->hdr.pdo = data->hdr.hlen + hdgst;
619 	data->hdr.plen =
620 		cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst);
621 	data->ttag = pdu->ttag;
622 	data->command_id = nvme_cid(rq);
623 	data->data_offset = pdu->r2t_offset;
624 	data->data_length = cpu_to_le32(req->pdu_len);
625 	return 0;
626 }
627 
628 static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue,
629 		struct nvme_tcp_r2t_pdu *pdu)
630 {
631 	struct nvme_tcp_request *req;
632 	struct request *rq;
633 	int ret;
634 
635 	rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id);
636 	if (!rq) {
637 		dev_err(queue->ctrl->ctrl.device,
638 			"got bad r2t.command_id %#x on queue %d\n",
639 			pdu->command_id, nvme_tcp_queue_id(queue));
640 		return -ENOENT;
641 	}
642 	req = blk_mq_rq_to_pdu(rq);
643 
644 	ret = nvme_tcp_setup_h2c_data_pdu(req, pdu);
645 	if (unlikely(ret))
646 		return ret;
647 
648 	req->state = NVME_TCP_SEND_H2C_PDU;
649 	req->offset = 0;
650 
651 	nvme_tcp_queue_request(req, false, true);
652 
653 	return 0;
654 }
655 
656 static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb,
657 		unsigned int *offset, size_t *len)
658 {
659 	struct nvme_tcp_hdr *hdr;
660 	char *pdu = queue->pdu;
661 	size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining);
662 	int ret;
663 
664 	ret = skb_copy_bits(skb, *offset,
665 		&pdu[queue->pdu_offset], rcv_len);
666 	if (unlikely(ret))
667 		return ret;
668 
669 	queue->pdu_remaining -= rcv_len;
670 	queue->pdu_offset += rcv_len;
671 	*offset += rcv_len;
672 	*len -= rcv_len;
673 	if (queue->pdu_remaining)
674 		return 0;
675 
676 	hdr = queue->pdu;
677 	if (queue->hdr_digest) {
678 		ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen);
679 		if (unlikely(ret))
680 			return ret;
681 	}
682 
683 
684 	if (queue->data_digest) {
685 		ret = nvme_tcp_check_ddgst(queue, queue->pdu);
686 		if (unlikely(ret))
687 			return ret;
688 	}
689 
690 	switch (hdr->type) {
691 	case nvme_tcp_c2h_data:
692 		return nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu);
693 	case nvme_tcp_rsp:
694 		nvme_tcp_init_recv_ctx(queue);
695 		return nvme_tcp_handle_comp(queue, (void *)queue->pdu);
696 	case nvme_tcp_r2t:
697 		nvme_tcp_init_recv_ctx(queue);
698 		return nvme_tcp_handle_r2t(queue, (void *)queue->pdu);
699 	default:
700 		dev_err(queue->ctrl->ctrl.device,
701 			"unsupported pdu type (%d)\n", hdr->type);
702 		return -EINVAL;
703 	}
704 }
705 
706 static inline void nvme_tcp_end_request(struct request *rq, u16 status)
707 {
708 	union nvme_result res = {};
709 
710 	if (!nvme_try_complete_req(rq, cpu_to_le16(status << 1), res))
711 		nvme_complete_rq(rq);
712 }
713 
714 static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb,
715 			      unsigned int *offset, size_t *len)
716 {
717 	struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
718 	struct request *rq =
719 		nvme_cid_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
720 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
721 
722 	while (true) {
723 		int recv_len, ret;
724 
725 		recv_len = min_t(size_t, *len, queue->data_remaining);
726 		if (!recv_len)
727 			break;
728 
729 		if (!iov_iter_count(&req->iter)) {
730 			req->curr_bio = req->curr_bio->bi_next;
731 
732 			/*
733 			 * If we don`t have any bios it means that controller
734 			 * sent more data than we requested, hence error
735 			 */
736 			if (!req->curr_bio) {
737 				dev_err(queue->ctrl->ctrl.device,
738 					"queue %d no space in request %#x",
739 					nvme_tcp_queue_id(queue), rq->tag);
740 				nvme_tcp_init_recv_ctx(queue);
741 				return -EIO;
742 			}
743 			nvme_tcp_init_iter(req, READ);
744 		}
745 
746 		/* we can read only from what is left in this bio */
747 		recv_len = min_t(size_t, recv_len,
748 				iov_iter_count(&req->iter));
749 
750 		if (queue->data_digest)
751 			ret = skb_copy_and_hash_datagram_iter(skb, *offset,
752 				&req->iter, recv_len, queue->rcv_hash);
753 		else
754 			ret = skb_copy_datagram_iter(skb, *offset,
755 					&req->iter, recv_len);
756 		if (ret) {
757 			dev_err(queue->ctrl->ctrl.device,
758 				"queue %d failed to copy request %#x data",
759 				nvme_tcp_queue_id(queue), rq->tag);
760 			return ret;
761 		}
762 
763 		*len -= recv_len;
764 		*offset += recv_len;
765 		queue->data_remaining -= recv_len;
766 	}
767 
768 	if (!queue->data_remaining) {
769 		if (queue->data_digest) {
770 			nvme_tcp_ddgst_final(queue->rcv_hash, &queue->exp_ddgst);
771 			queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH;
772 		} else {
773 			if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
774 				nvme_tcp_end_request(rq,
775 						le16_to_cpu(req->status));
776 				queue->nr_cqe++;
777 			}
778 			nvme_tcp_init_recv_ctx(queue);
779 		}
780 	}
781 
782 	return 0;
783 }
784 
785 static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue,
786 		struct sk_buff *skb, unsigned int *offset, size_t *len)
787 {
788 	struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
789 	char *ddgst = (char *)&queue->recv_ddgst;
790 	size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining);
791 	off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining;
792 	int ret;
793 
794 	ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len);
795 	if (unlikely(ret))
796 		return ret;
797 
798 	queue->ddgst_remaining -= recv_len;
799 	*offset += recv_len;
800 	*len -= recv_len;
801 	if (queue->ddgst_remaining)
802 		return 0;
803 
804 	if (queue->recv_ddgst != queue->exp_ddgst) {
805 		struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue),
806 					pdu->command_id);
807 		struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
808 
809 		req->status = cpu_to_le16(NVME_SC_DATA_XFER_ERROR);
810 
811 		dev_err(queue->ctrl->ctrl.device,
812 			"data digest error: recv %#x expected %#x\n",
813 			le32_to_cpu(queue->recv_ddgst),
814 			le32_to_cpu(queue->exp_ddgst));
815 	}
816 
817 	if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
818 		struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue),
819 					pdu->command_id);
820 		struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
821 
822 		nvme_tcp_end_request(rq, le16_to_cpu(req->status));
823 		queue->nr_cqe++;
824 	}
825 
826 	nvme_tcp_init_recv_ctx(queue);
827 	return 0;
828 }
829 
830 static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb,
831 			     unsigned int offset, size_t len)
832 {
833 	struct nvme_tcp_queue *queue = desc->arg.data;
834 	size_t consumed = len;
835 	int result;
836 
837 	while (len) {
838 		switch (nvme_tcp_recv_state(queue)) {
839 		case NVME_TCP_RECV_PDU:
840 			result = nvme_tcp_recv_pdu(queue, skb, &offset, &len);
841 			break;
842 		case NVME_TCP_RECV_DATA:
843 			result = nvme_tcp_recv_data(queue, skb, &offset, &len);
844 			break;
845 		case NVME_TCP_RECV_DDGST:
846 			result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len);
847 			break;
848 		default:
849 			result = -EFAULT;
850 		}
851 		if (result) {
852 			dev_err(queue->ctrl->ctrl.device,
853 				"receive failed:  %d\n", result);
854 			queue->rd_enabled = false;
855 			nvme_tcp_error_recovery(&queue->ctrl->ctrl);
856 			return result;
857 		}
858 	}
859 
860 	return consumed;
861 }
862 
863 static void nvme_tcp_data_ready(struct sock *sk)
864 {
865 	struct nvme_tcp_queue *queue;
866 
867 	read_lock_bh(&sk->sk_callback_lock);
868 	queue = sk->sk_user_data;
869 	if (likely(queue && queue->rd_enabled) &&
870 	    !test_bit(NVME_TCP_Q_POLLING, &queue->flags))
871 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
872 	read_unlock_bh(&sk->sk_callback_lock);
873 }
874 
875 static void nvme_tcp_write_space(struct sock *sk)
876 {
877 	struct nvme_tcp_queue *queue;
878 
879 	read_lock_bh(&sk->sk_callback_lock);
880 	queue = sk->sk_user_data;
881 	if (likely(queue && sk_stream_is_writeable(sk))) {
882 		clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
883 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
884 	}
885 	read_unlock_bh(&sk->sk_callback_lock);
886 }
887 
888 static void nvme_tcp_state_change(struct sock *sk)
889 {
890 	struct nvme_tcp_queue *queue;
891 
892 	read_lock_bh(&sk->sk_callback_lock);
893 	queue = sk->sk_user_data;
894 	if (!queue)
895 		goto done;
896 
897 	switch (sk->sk_state) {
898 	case TCP_CLOSE:
899 	case TCP_CLOSE_WAIT:
900 	case TCP_LAST_ACK:
901 	case TCP_FIN_WAIT1:
902 	case TCP_FIN_WAIT2:
903 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
904 		break;
905 	default:
906 		dev_info(queue->ctrl->ctrl.device,
907 			"queue %d socket state %d\n",
908 			nvme_tcp_queue_id(queue), sk->sk_state);
909 	}
910 
911 	queue->state_change(sk);
912 done:
913 	read_unlock_bh(&sk->sk_callback_lock);
914 }
915 
916 static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue)
917 {
918 	queue->request = NULL;
919 }
920 
921 static void nvme_tcp_fail_request(struct nvme_tcp_request *req)
922 {
923 	nvme_tcp_end_request(blk_mq_rq_from_pdu(req), NVME_SC_HOST_PATH_ERROR);
924 }
925 
926 static int nvme_tcp_try_send_data(struct nvme_tcp_request *req)
927 {
928 	struct nvme_tcp_queue *queue = req->queue;
929 
930 	while (true) {
931 		struct page *page = nvme_tcp_req_cur_page(req);
932 		size_t offset = nvme_tcp_req_cur_offset(req);
933 		size_t len = nvme_tcp_req_cur_length(req);
934 		bool last = nvme_tcp_pdu_last_send(req, len);
935 		int ret, flags = MSG_DONTWAIT;
936 
937 		if (last && !queue->data_digest && !nvme_tcp_queue_more(queue))
938 			flags |= MSG_EOR;
939 		else
940 			flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
941 
942 		if (sendpage_ok(page)) {
943 			ret = kernel_sendpage(queue->sock, page, offset, len,
944 					flags);
945 		} else {
946 			ret = sock_no_sendpage(queue->sock, page, offset, len,
947 					flags);
948 		}
949 		if (ret <= 0)
950 			return ret;
951 
952 		if (queue->data_digest)
953 			nvme_tcp_ddgst_update(queue->snd_hash, page,
954 					offset, ret);
955 
956 		/*
957 		 * update the request iterator except for the last payload send
958 		 * in the request where we don't want to modify it as we may
959 		 * compete with the RX path completing the request.
960 		 */
961 		if (req->data_sent + ret < req->data_len)
962 			nvme_tcp_advance_req(req, ret);
963 
964 		/* fully successful last send in current PDU */
965 		if (last && ret == len) {
966 			if (queue->data_digest) {
967 				nvme_tcp_ddgst_final(queue->snd_hash,
968 					&req->ddgst);
969 				req->state = NVME_TCP_SEND_DDGST;
970 				req->offset = 0;
971 			} else {
972 				nvme_tcp_done_send_req(queue);
973 			}
974 			return 1;
975 		}
976 	}
977 	return -EAGAIN;
978 }
979 
980 static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req)
981 {
982 	struct nvme_tcp_queue *queue = req->queue;
983 	struct nvme_tcp_cmd_pdu *pdu = req->pdu;
984 	bool inline_data = nvme_tcp_has_inline_data(req);
985 	u8 hdgst = nvme_tcp_hdgst_len(queue);
986 	int len = sizeof(*pdu) + hdgst - req->offset;
987 	int flags = MSG_DONTWAIT;
988 	int ret;
989 
990 	if (inline_data || nvme_tcp_queue_more(queue))
991 		flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
992 	else
993 		flags |= MSG_EOR;
994 
995 	if (queue->hdr_digest && !req->offset)
996 		nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
997 
998 	ret = kernel_sendpage(queue->sock, virt_to_page(pdu),
999 			offset_in_page(pdu) + req->offset, len,  flags);
1000 	if (unlikely(ret <= 0))
1001 		return ret;
1002 
1003 	len -= ret;
1004 	if (!len) {
1005 		if (inline_data) {
1006 			req->state = NVME_TCP_SEND_DATA;
1007 			if (queue->data_digest)
1008 				crypto_ahash_init(queue->snd_hash);
1009 		} else {
1010 			nvme_tcp_done_send_req(queue);
1011 		}
1012 		return 1;
1013 	}
1014 	req->offset += ret;
1015 
1016 	return -EAGAIN;
1017 }
1018 
1019 static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req)
1020 {
1021 	struct nvme_tcp_queue *queue = req->queue;
1022 	struct nvme_tcp_data_pdu *pdu = req->pdu;
1023 	u8 hdgst = nvme_tcp_hdgst_len(queue);
1024 	int len = sizeof(*pdu) - req->offset + hdgst;
1025 	int ret;
1026 
1027 	if (queue->hdr_digest && !req->offset)
1028 		nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
1029 
1030 	ret = kernel_sendpage(queue->sock, virt_to_page(pdu),
1031 			offset_in_page(pdu) + req->offset, len,
1032 			MSG_DONTWAIT | MSG_MORE | MSG_SENDPAGE_NOTLAST);
1033 	if (unlikely(ret <= 0))
1034 		return ret;
1035 
1036 	len -= ret;
1037 	if (!len) {
1038 		req->state = NVME_TCP_SEND_DATA;
1039 		if (queue->data_digest)
1040 			crypto_ahash_init(queue->snd_hash);
1041 		return 1;
1042 	}
1043 	req->offset += ret;
1044 
1045 	return -EAGAIN;
1046 }
1047 
1048 static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req)
1049 {
1050 	struct nvme_tcp_queue *queue = req->queue;
1051 	int ret;
1052 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1053 	struct kvec iov = {
1054 		.iov_base = &req->ddgst + req->offset,
1055 		.iov_len = NVME_TCP_DIGEST_LENGTH - req->offset
1056 	};
1057 
1058 	if (nvme_tcp_queue_more(queue))
1059 		msg.msg_flags |= MSG_MORE;
1060 	else
1061 		msg.msg_flags |= MSG_EOR;
1062 
1063 	ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1064 	if (unlikely(ret <= 0))
1065 		return ret;
1066 
1067 	if (req->offset + ret == NVME_TCP_DIGEST_LENGTH) {
1068 		nvme_tcp_done_send_req(queue);
1069 		return 1;
1070 	}
1071 
1072 	req->offset += ret;
1073 	return -EAGAIN;
1074 }
1075 
1076 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue)
1077 {
1078 	struct nvme_tcp_request *req;
1079 	int ret = 1;
1080 
1081 	if (!queue->request) {
1082 		queue->request = nvme_tcp_fetch_request(queue);
1083 		if (!queue->request)
1084 			return 0;
1085 	}
1086 	req = queue->request;
1087 
1088 	if (req->state == NVME_TCP_SEND_CMD_PDU) {
1089 		ret = nvme_tcp_try_send_cmd_pdu(req);
1090 		if (ret <= 0)
1091 			goto done;
1092 		if (!nvme_tcp_has_inline_data(req))
1093 			return ret;
1094 	}
1095 
1096 	if (req->state == NVME_TCP_SEND_H2C_PDU) {
1097 		ret = nvme_tcp_try_send_data_pdu(req);
1098 		if (ret <= 0)
1099 			goto done;
1100 	}
1101 
1102 	if (req->state == NVME_TCP_SEND_DATA) {
1103 		ret = nvme_tcp_try_send_data(req);
1104 		if (ret <= 0)
1105 			goto done;
1106 	}
1107 
1108 	if (req->state == NVME_TCP_SEND_DDGST)
1109 		ret = nvme_tcp_try_send_ddgst(req);
1110 done:
1111 	if (ret == -EAGAIN) {
1112 		ret = 0;
1113 	} else if (ret < 0) {
1114 		dev_err(queue->ctrl->ctrl.device,
1115 			"failed to send request %d\n", ret);
1116 		if (ret != -EPIPE && ret != -ECONNRESET)
1117 			nvme_tcp_fail_request(queue->request);
1118 		nvme_tcp_done_send_req(queue);
1119 	}
1120 	return ret;
1121 }
1122 
1123 static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue)
1124 {
1125 	struct socket *sock = queue->sock;
1126 	struct sock *sk = sock->sk;
1127 	read_descriptor_t rd_desc;
1128 	int consumed;
1129 
1130 	rd_desc.arg.data = queue;
1131 	rd_desc.count = 1;
1132 	lock_sock(sk);
1133 	queue->nr_cqe = 0;
1134 	consumed = sock->ops->read_sock(sk, &rd_desc, nvme_tcp_recv_skb);
1135 	release_sock(sk);
1136 	return consumed;
1137 }
1138 
1139 static void nvme_tcp_io_work(struct work_struct *w)
1140 {
1141 	struct nvme_tcp_queue *queue =
1142 		container_of(w, struct nvme_tcp_queue, io_work);
1143 	unsigned long deadline = jiffies + msecs_to_jiffies(1);
1144 
1145 	do {
1146 		bool pending = false;
1147 		int result;
1148 
1149 		if (mutex_trylock(&queue->send_mutex)) {
1150 			result = nvme_tcp_try_send(queue);
1151 			mutex_unlock(&queue->send_mutex);
1152 			if (result > 0)
1153 				pending = true;
1154 			else if (unlikely(result < 0))
1155 				break;
1156 		}
1157 
1158 		result = nvme_tcp_try_recv(queue);
1159 		if (result > 0)
1160 			pending = true;
1161 		else if (unlikely(result < 0))
1162 			return;
1163 
1164 		if (!pending)
1165 			return;
1166 
1167 	} while (!time_after(jiffies, deadline)); /* quota is exhausted */
1168 
1169 	queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
1170 }
1171 
1172 static void nvme_tcp_free_crypto(struct nvme_tcp_queue *queue)
1173 {
1174 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash);
1175 
1176 	ahash_request_free(queue->rcv_hash);
1177 	ahash_request_free(queue->snd_hash);
1178 	crypto_free_ahash(tfm);
1179 }
1180 
1181 static int nvme_tcp_alloc_crypto(struct nvme_tcp_queue *queue)
1182 {
1183 	struct crypto_ahash *tfm;
1184 
1185 	tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC);
1186 	if (IS_ERR(tfm))
1187 		return PTR_ERR(tfm);
1188 
1189 	queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1190 	if (!queue->snd_hash)
1191 		goto free_tfm;
1192 	ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL);
1193 
1194 	queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1195 	if (!queue->rcv_hash)
1196 		goto free_snd_hash;
1197 	ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL);
1198 
1199 	return 0;
1200 free_snd_hash:
1201 	ahash_request_free(queue->snd_hash);
1202 free_tfm:
1203 	crypto_free_ahash(tfm);
1204 	return -ENOMEM;
1205 }
1206 
1207 static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl)
1208 {
1209 	struct nvme_tcp_request *async = &ctrl->async_req;
1210 
1211 	page_frag_free(async->pdu);
1212 }
1213 
1214 static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl)
1215 {
1216 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
1217 	struct nvme_tcp_request *async = &ctrl->async_req;
1218 	u8 hdgst = nvme_tcp_hdgst_len(queue);
1219 
1220 	async->pdu = page_frag_alloc(&queue->pf_cache,
1221 		sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
1222 		GFP_KERNEL | __GFP_ZERO);
1223 	if (!async->pdu)
1224 		return -ENOMEM;
1225 
1226 	async->queue = &ctrl->queues[0];
1227 	return 0;
1228 }
1229 
1230 static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid)
1231 {
1232 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1233 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1234 
1235 	if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1236 		return;
1237 
1238 	if (queue->hdr_digest || queue->data_digest)
1239 		nvme_tcp_free_crypto(queue);
1240 
1241 	sock_release(queue->sock);
1242 	kfree(queue->pdu);
1243 	mutex_destroy(&queue->send_mutex);
1244 	mutex_destroy(&queue->queue_lock);
1245 }
1246 
1247 static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue)
1248 {
1249 	struct nvme_tcp_icreq_pdu *icreq;
1250 	struct nvme_tcp_icresp_pdu *icresp;
1251 	struct msghdr msg = {};
1252 	struct kvec iov;
1253 	bool ctrl_hdgst, ctrl_ddgst;
1254 	int ret;
1255 
1256 	icreq = kzalloc(sizeof(*icreq), GFP_KERNEL);
1257 	if (!icreq)
1258 		return -ENOMEM;
1259 
1260 	icresp = kzalloc(sizeof(*icresp), GFP_KERNEL);
1261 	if (!icresp) {
1262 		ret = -ENOMEM;
1263 		goto free_icreq;
1264 	}
1265 
1266 	icreq->hdr.type = nvme_tcp_icreq;
1267 	icreq->hdr.hlen = sizeof(*icreq);
1268 	icreq->hdr.pdo = 0;
1269 	icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen);
1270 	icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
1271 	icreq->maxr2t = 0; /* single inflight r2t supported */
1272 	icreq->hpda = 0; /* no alignment constraint */
1273 	if (queue->hdr_digest)
1274 		icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
1275 	if (queue->data_digest)
1276 		icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
1277 
1278 	iov.iov_base = icreq;
1279 	iov.iov_len = sizeof(*icreq);
1280 	ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1281 	if (ret < 0)
1282 		goto free_icresp;
1283 
1284 	memset(&msg, 0, sizeof(msg));
1285 	iov.iov_base = icresp;
1286 	iov.iov_len = sizeof(*icresp);
1287 	ret = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1288 			iov.iov_len, msg.msg_flags);
1289 	if (ret < 0)
1290 		goto free_icresp;
1291 
1292 	ret = -EINVAL;
1293 	if (icresp->hdr.type != nvme_tcp_icresp) {
1294 		pr_err("queue %d: bad type returned %d\n",
1295 			nvme_tcp_queue_id(queue), icresp->hdr.type);
1296 		goto free_icresp;
1297 	}
1298 
1299 	if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) {
1300 		pr_err("queue %d: bad pdu length returned %d\n",
1301 			nvme_tcp_queue_id(queue), icresp->hdr.plen);
1302 		goto free_icresp;
1303 	}
1304 
1305 	if (icresp->pfv != NVME_TCP_PFV_1_0) {
1306 		pr_err("queue %d: bad pfv returned %d\n",
1307 			nvme_tcp_queue_id(queue), icresp->pfv);
1308 		goto free_icresp;
1309 	}
1310 
1311 	ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE);
1312 	if ((queue->data_digest && !ctrl_ddgst) ||
1313 	    (!queue->data_digest && ctrl_ddgst)) {
1314 		pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n",
1315 			nvme_tcp_queue_id(queue),
1316 			queue->data_digest ? "enabled" : "disabled",
1317 			ctrl_ddgst ? "enabled" : "disabled");
1318 		goto free_icresp;
1319 	}
1320 
1321 	ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE);
1322 	if ((queue->hdr_digest && !ctrl_hdgst) ||
1323 	    (!queue->hdr_digest && ctrl_hdgst)) {
1324 		pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n",
1325 			nvme_tcp_queue_id(queue),
1326 			queue->hdr_digest ? "enabled" : "disabled",
1327 			ctrl_hdgst ? "enabled" : "disabled");
1328 		goto free_icresp;
1329 	}
1330 
1331 	if (icresp->cpda != 0) {
1332 		pr_err("queue %d: unsupported cpda returned %d\n",
1333 			nvme_tcp_queue_id(queue), icresp->cpda);
1334 		goto free_icresp;
1335 	}
1336 
1337 	ret = 0;
1338 free_icresp:
1339 	kfree(icresp);
1340 free_icreq:
1341 	kfree(icreq);
1342 	return ret;
1343 }
1344 
1345 static bool nvme_tcp_admin_queue(struct nvme_tcp_queue *queue)
1346 {
1347 	return nvme_tcp_queue_id(queue) == 0;
1348 }
1349 
1350 static bool nvme_tcp_default_queue(struct nvme_tcp_queue *queue)
1351 {
1352 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1353 	int qid = nvme_tcp_queue_id(queue);
1354 
1355 	return !nvme_tcp_admin_queue(queue) &&
1356 		qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT];
1357 }
1358 
1359 static bool nvme_tcp_read_queue(struct nvme_tcp_queue *queue)
1360 {
1361 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1362 	int qid = nvme_tcp_queue_id(queue);
1363 
1364 	return !nvme_tcp_admin_queue(queue) &&
1365 		!nvme_tcp_default_queue(queue) &&
1366 		qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1367 			  ctrl->io_queues[HCTX_TYPE_READ];
1368 }
1369 
1370 static bool nvme_tcp_poll_queue(struct nvme_tcp_queue *queue)
1371 {
1372 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1373 	int qid = nvme_tcp_queue_id(queue);
1374 
1375 	return !nvme_tcp_admin_queue(queue) &&
1376 		!nvme_tcp_default_queue(queue) &&
1377 		!nvme_tcp_read_queue(queue) &&
1378 		qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1379 			  ctrl->io_queues[HCTX_TYPE_READ] +
1380 			  ctrl->io_queues[HCTX_TYPE_POLL];
1381 }
1382 
1383 static void nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue *queue)
1384 {
1385 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1386 	int qid = nvme_tcp_queue_id(queue);
1387 	int n = 0;
1388 
1389 	if (nvme_tcp_default_queue(queue))
1390 		n = qid - 1;
1391 	else if (nvme_tcp_read_queue(queue))
1392 		n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - 1;
1393 	else if (nvme_tcp_poll_queue(queue))
1394 		n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] -
1395 				ctrl->io_queues[HCTX_TYPE_READ] - 1;
1396 	queue->io_cpu = cpumask_next_wrap(n - 1, cpu_online_mask, -1, false);
1397 }
1398 
1399 static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl,
1400 		int qid, size_t queue_size)
1401 {
1402 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1403 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1404 	int ret, rcv_pdu_size;
1405 
1406 	mutex_init(&queue->queue_lock);
1407 	queue->ctrl = ctrl;
1408 	init_llist_head(&queue->req_list);
1409 	INIT_LIST_HEAD(&queue->send_list);
1410 	mutex_init(&queue->send_mutex);
1411 	INIT_WORK(&queue->io_work, nvme_tcp_io_work);
1412 	queue->queue_size = queue_size;
1413 
1414 	if (qid > 0)
1415 		queue->cmnd_capsule_len = nctrl->ioccsz * 16;
1416 	else
1417 		queue->cmnd_capsule_len = sizeof(struct nvme_command) +
1418 						NVME_TCP_ADMIN_CCSZ;
1419 
1420 	ret = sock_create(ctrl->addr.ss_family, SOCK_STREAM,
1421 			IPPROTO_TCP, &queue->sock);
1422 	if (ret) {
1423 		dev_err(nctrl->device,
1424 			"failed to create socket: %d\n", ret);
1425 		goto err_destroy_mutex;
1426 	}
1427 
1428 	/* Single syn retry */
1429 	tcp_sock_set_syncnt(queue->sock->sk, 1);
1430 
1431 	/* Set TCP no delay */
1432 	tcp_sock_set_nodelay(queue->sock->sk);
1433 
1434 	/*
1435 	 * Cleanup whatever is sitting in the TCP transmit queue on socket
1436 	 * close. This is done to prevent stale data from being sent should
1437 	 * the network connection be restored before TCP times out.
1438 	 */
1439 	sock_no_linger(queue->sock->sk);
1440 
1441 	if (so_priority > 0)
1442 		sock_set_priority(queue->sock->sk, so_priority);
1443 
1444 	/* Set socket type of service */
1445 	if (nctrl->opts->tos >= 0)
1446 		ip_sock_set_tos(queue->sock->sk, nctrl->opts->tos);
1447 
1448 	/* Set 10 seconds timeout for icresp recvmsg */
1449 	queue->sock->sk->sk_rcvtimeo = 10 * HZ;
1450 
1451 	queue->sock->sk->sk_allocation = GFP_ATOMIC;
1452 	nvme_tcp_set_queue_io_cpu(queue);
1453 	queue->request = NULL;
1454 	queue->data_remaining = 0;
1455 	queue->ddgst_remaining = 0;
1456 	queue->pdu_remaining = 0;
1457 	queue->pdu_offset = 0;
1458 	sk_set_memalloc(queue->sock->sk);
1459 
1460 	if (nctrl->opts->mask & NVMF_OPT_HOST_TRADDR) {
1461 		ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr,
1462 			sizeof(ctrl->src_addr));
1463 		if (ret) {
1464 			dev_err(nctrl->device,
1465 				"failed to bind queue %d socket %d\n",
1466 				qid, ret);
1467 			goto err_sock;
1468 		}
1469 	}
1470 
1471 	if (nctrl->opts->mask & NVMF_OPT_HOST_IFACE) {
1472 		char *iface = nctrl->opts->host_iface;
1473 		sockptr_t optval = KERNEL_SOCKPTR(iface);
1474 
1475 		ret = sock_setsockopt(queue->sock, SOL_SOCKET, SO_BINDTODEVICE,
1476 				      optval, strlen(iface));
1477 		if (ret) {
1478 			dev_err(nctrl->device,
1479 			  "failed to bind to interface %s queue %d err %d\n",
1480 			  iface, qid, ret);
1481 			goto err_sock;
1482 		}
1483 	}
1484 
1485 	queue->hdr_digest = nctrl->opts->hdr_digest;
1486 	queue->data_digest = nctrl->opts->data_digest;
1487 	if (queue->hdr_digest || queue->data_digest) {
1488 		ret = nvme_tcp_alloc_crypto(queue);
1489 		if (ret) {
1490 			dev_err(nctrl->device,
1491 				"failed to allocate queue %d crypto\n", qid);
1492 			goto err_sock;
1493 		}
1494 	}
1495 
1496 	rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) +
1497 			nvme_tcp_hdgst_len(queue);
1498 	queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL);
1499 	if (!queue->pdu) {
1500 		ret = -ENOMEM;
1501 		goto err_crypto;
1502 	}
1503 
1504 	dev_dbg(nctrl->device, "connecting queue %d\n",
1505 			nvme_tcp_queue_id(queue));
1506 
1507 	ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr,
1508 		sizeof(ctrl->addr), 0);
1509 	if (ret) {
1510 		dev_err(nctrl->device,
1511 			"failed to connect socket: %d\n", ret);
1512 		goto err_rcv_pdu;
1513 	}
1514 
1515 	ret = nvme_tcp_init_connection(queue);
1516 	if (ret)
1517 		goto err_init_connect;
1518 
1519 	queue->rd_enabled = true;
1520 	set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags);
1521 	nvme_tcp_init_recv_ctx(queue);
1522 
1523 	write_lock_bh(&queue->sock->sk->sk_callback_lock);
1524 	queue->sock->sk->sk_user_data = queue;
1525 	queue->state_change = queue->sock->sk->sk_state_change;
1526 	queue->data_ready = queue->sock->sk->sk_data_ready;
1527 	queue->write_space = queue->sock->sk->sk_write_space;
1528 	queue->sock->sk->sk_data_ready = nvme_tcp_data_ready;
1529 	queue->sock->sk->sk_state_change = nvme_tcp_state_change;
1530 	queue->sock->sk->sk_write_space = nvme_tcp_write_space;
1531 #ifdef CONFIG_NET_RX_BUSY_POLL
1532 	queue->sock->sk->sk_ll_usec = 1;
1533 #endif
1534 	write_unlock_bh(&queue->sock->sk->sk_callback_lock);
1535 
1536 	return 0;
1537 
1538 err_init_connect:
1539 	kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1540 err_rcv_pdu:
1541 	kfree(queue->pdu);
1542 err_crypto:
1543 	if (queue->hdr_digest || queue->data_digest)
1544 		nvme_tcp_free_crypto(queue);
1545 err_sock:
1546 	sock_release(queue->sock);
1547 	queue->sock = NULL;
1548 err_destroy_mutex:
1549 	mutex_destroy(&queue->send_mutex);
1550 	mutex_destroy(&queue->queue_lock);
1551 	return ret;
1552 }
1553 
1554 static void nvme_tcp_restore_sock_calls(struct nvme_tcp_queue *queue)
1555 {
1556 	struct socket *sock = queue->sock;
1557 
1558 	write_lock_bh(&sock->sk->sk_callback_lock);
1559 	sock->sk->sk_user_data  = NULL;
1560 	sock->sk->sk_data_ready = queue->data_ready;
1561 	sock->sk->sk_state_change = queue->state_change;
1562 	sock->sk->sk_write_space  = queue->write_space;
1563 	write_unlock_bh(&sock->sk->sk_callback_lock);
1564 }
1565 
1566 static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue)
1567 {
1568 	kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1569 	nvme_tcp_restore_sock_calls(queue);
1570 	cancel_work_sync(&queue->io_work);
1571 }
1572 
1573 static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid)
1574 {
1575 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1576 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1577 
1578 	mutex_lock(&queue->queue_lock);
1579 	if (test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags))
1580 		__nvme_tcp_stop_queue(queue);
1581 	mutex_unlock(&queue->queue_lock);
1582 }
1583 
1584 static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx)
1585 {
1586 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1587 	int ret;
1588 
1589 	if (idx)
1590 		ret = nvmf_connect_io_queue(nctrl, idx);
1591 	else
1592 		ret = nvmf_connect_admin_queue(nctrl);
1593 
1594 	if (!ret) {
1595 		set_bit(NVME_TCP_Q_LIVE, &ctrl->queues[idx].flags);
1596 	} else {
1597 		if (test_bit(NVME_TCP_Q_ALLOCATED, &ctrl->queues[idx].flags))
1598 			__nvme_tcp_stop_queue(&ctrl->queues[idx]);
1599 		dev_err(nctrl->device,
1600 			"failed to connect queue: %d ret=%d\n", idx, ret);
1601 	}
1602 	return ret;
1603 }
1604 
1605 static struct blk_mq_tag_set *nvme_tcp_alloc_tagset(struct nvme_ctrl *nctrl,
1606 		bool admin)
1607 {
1608 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1609 	struct blk_mq_tag_set *set;
1610 	int ret;
1611 
1612 	if (admin) {
1613 		set = &ctrl->admin_tag_set;
1614 		memset(set, 0, sizeof(*set));
1615 		set->ops = &nvme_tcp_admin_mq_ops;
1616 		set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1617 		set->reserved_tags = NVMF_RESERVED_TAGS;
1618 		set->numa_node = nctrl->numa_node;
1619 		set->flags = BLK_MQ_F_BLOCKING;
1620 		set->cmd_size = sizeof(struct nvme_tcp_request);
1621 		set->driver_data = ctrl;
1622 		set->nr_hw_queues = 1;
1623 		set->timeout = NVME_ADMIN_TIMEOUT;
1624 	} else {
1625 		set = &ctrl->tag_set;
1626 		memset(set, 0, sizeof(*set));
1627 		set->ops = &nvme_tcp_mq_ops;
1628 		set->queue_depth = nctrl->sqsize + 1;
1629 		set->reserved_tags = NVMF_RESERVED_TAGS;
1630 		set->numa_node = nctrl->numa_node;
1631 		set->flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_BLOCKING;
1632 		set->cmd_size = sizeof(struct nvme_tcp_request);
1633 		set->driver_data = ctrl;
1634 		set->nr_hw_queues = nctrl->queue_count - 1;
1635 		set->timeout = NVME_IO_TIMEOUT;
1636 		set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2;
1637 	}
1638 
1639 	ret = blk_mq_alloc_tag_set(set);
1640 	if (ret)
1641 		return ERR_PTR(ret);
1642 
1643 	return set;
1644 }
1645 
1646 static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl)
1647 {
1648 	if (to_tcp_ctrl(ctrl)->async_req.pdu) {
1649 		cancel_work_sync(&ctrl->async_event_work);
1650 		nvme_tcp_free_async_req(to_tcp_ctrl(ctrl));
1651 		to_tcp_ctrl(ctrl)->async_req.pdu = NULL;
1652 	}
1653 
1654 	nvme_tcp_free_queue(ctrl, 0);
1655 }
1656 
1657 static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl)
1658 {
1659 	int i;
1660 
1661 	for (i = 1; i < ctrl->queue_count; i++)
1662 		nvme_tcp_free_queue(ctrl, i);
1663 }
1664 
1665 static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl)
1666 {
1667 	int i;
1668 
1669 	for (i = 1; i < ctrl->queue_count; i++)
1670 		nvme_tcp_stop_queue(ctrl, i);
1671 }
1672 
1673 static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl)
1674 {
1675 	int i, ret = 0;
1676 
1677 	for (i = 1; i < ctrl->queue_count; i++) {
1678 		ret = nvme_tcp_start_queue(ctrl, i);
1679 		if (ret)
1680 			goto out_stop_queues;
1681 	}
1682 
1683 	return 0;
1684 
1685 out_stop_queues:
1686 	for (i--; i >= 1; i--)
1687 		nvme_tcp_stop_queue(ctrl, i);
1688 	return ret;
1689 }
1690 
1691 static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl)
1692 {
1693 	int ret;
1694 
1695 	ret = nvme_tcp_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
1696 	if (ret)
1697 		return ret;
1698 
1699 	ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl));
1700 	if (ret)
1701 		goto out_free_queue;
1702 
1703 	return 0;
1704 
1705 out_free_queue:
1706 	nvme_tcp_free_queue(ctrl, 0);
1707 	return ret;
1708 }
1709 
1710 static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1711 {
1712 	int i, ret;
1713 
1714 	for (i = 1; i < ctrl->queue_count; i++) {
1715 		ret = nvme_tcp_alloc_queue(ctrl, i,
1716 				ctrl->sqsize + 1);
1717 		if (ret)
1718 			goto out_free_queues;
1719 	}
1720 
1721 	return 0;
1722 
1723 out_free_queues:
1724 	for (i--; i >= 1; i--)
1725 		nvme_tcp_free_queue(ctrl, i);
1726 
1727 	return ret;
1728 }
1729 
1730 static unsigned int nvme_tcp_nr_io_queues(struct nvme_ctrl *ctrl)
1731 {
1732 	unsigned int nr_io_queues;
1733 
1734 	nr_io_queues = min(ctrl->opts->nr_io_queues, num_online_cpus());
1735 	nr_io_queues += min(ctrl->opts->nr_write_queues, num_online_cpus());
1736 	nr_io_queues += min(ctrl->opts->nr_poll_queues, num_online_cpus());
1737 
1738 	return nr_io_queues;
1739 }
1740 
1741 static void nvme_tcp_set_io_queues(struct nvme_ctrl *nctrl,
1742 		unsigned int nr_io_queues)
1743 {
1744 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1745 	struct nvmf_ctrl_options *opts = nctrl->opts;
1746 
1747 	if (opts->nr_write_queues && opts->nr_io_queues < nr_io_queues) {
1748 		/*
1749 		 * separate read/write queues
1750 		 * hand out dedicated default queues only after we have
1751 		 * sufficient read queues.
1752 		 */
1753 		ctrl->io_queues[HCTX_TYPE_READ] = opts->nr_io_queues;
1754 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ];
1755 		ctrl->io_queues[HCTX_TYPE_DEFAULT] =
1756 			min(opts->nr_write_queues, nr_io_queues);
1757 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
1758 	} else {
1759 		/*
1760 		 * shared read/write queues
1761 		 * either no write queues were requested, or we don't have
1762 		 * sufficient queue count to have dedicated default queues.
1763 		 */
1764 		ctrl->io_queues[HCTX_TYPE_DEFAULT] =
1765 			min(opts->nr_io_queues, nr_io_queues);
1766 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
1767 	}
1768 
1769 	if (opts->nr_poll_queues && nr_io_queues) {
1770 		/* map dedicated poll queues only if we have queues left */
1771 		ctrl->io_queues[HCTX_TYPE_POLL] =
1772 			min(opts->nr_poll_queues, nr_io_queues);
1773 	}
1774 }
1775 
1776 static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1777 {
1778 	unsigned int nr_io_queues;
1779 	int ret;
1780 
1781 	nr_io_queues = nvme_tcp_nr_io_queues(ctrl);
1782 	ret = nvme_set_queue_count(ctrl, &nr_io_queues);
1783 	if (ret)
1784 		return ret;
1785 
1786 	if (nr_io_queues == 0) {
1787 		dev_err(ctrl->device,
1788 			"unable to set any I/O queues\n");
1789 		return -ENOMEM;
1790 	}
1791 
1792 	ctrl->queue_count = nr_io_queues + 1;
1793 	dev_info(ctrl->device,
1794 		"creating %d I/O queues.\n", nr_io_queues);
1795 
1796 	nvme_tcp_set_io_queues(ctrl, nr_io_queues);
1797 
1798 	return __nvme_tcp_alloc_io_queues(ctrl);
1799 }
1800 
1801 static void nvme_tcp_destroy_io_queues(struct nvme_ctrl *ctrl, bool remove)
1802 {
1803 	nvme_tcp_stop_io_queues(ctrl);
1804 	if (remove) {
1805 		blk_cleanup_queue(ctrl->connect_q);
1806 		blk_mq_free_tag_set(ctrl->tagset);
1807 	}
1808 	nvme_tcp_free_io_queues(ctrl);
1809 }
1810 
1811 static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new)
1812 {
1813 	int ret;
1814 
1815 	ret = nvme_tcp_alloc_io_queues(ctrl);
1816 	if (ret)
1817 		return ret;
1818 
1819 	if (new) {
1820 		ctrl->tagset = nvme_tcp_alloc_tagset(ctrl, false);
1821 		if (IS_ERR(ctrl->tagset)) {
1822 			ret = PTR_ERR(ctrl->tagset);
1823 			goto out_free_io_queues;
1824 		}
1825 
1826 		ctrl->connect_q = blk_mq_init_queue(ctrl->tagset);
1827 		if (IS_ERR(ctrl->connect_q)) {
1828 			ret = PTR_ERR(ctrl->connect_q);
1829 			goto out_free_tag_set;
1830 		}
1831 	}
1832 
1833 	ret = nvme_tcp_start_io_queues(ctrl);
1834 	if (ret)
1835 		goto out_cleanup_connect_q;
1836 
1837 	if (!new) {
1838 		nvme_start_queues(ctrl);
1839 		if (!nvme_wait_freeze_timeout(ctrl, NVME_IO_TIMEOUT)) {
1840 			/*
1841 			 * If we timed out waiting for freeze we are likely to
1842 			 * be stuck.  Fail the controller initialization just
1843 			 * to be safe.
1844 			 */
1845 			ret = -ENODEV;
1846 			goto out_wait_freeze_timed_out;
1847 		}
1848 		blk_mq_update_nr_hw_queues(ctrl->tagset,
1849 			ctrl->queue_count - 1);
1850 		nvme_unfreeze(ctrl);
1851 	}
1852 
1853 	return 0;
1854 
1855 out_wait_freeze_timed_out:
1856 	nvme_stop_queues(ctrl);
1857 	nvme_sync_io_queues(ctrl);
1858 	nvme_tcp_stop_io_queues(ctrl);
1859 out_cleanup_connect_q:
1860 	nvme_cancel_tagset(ctrl);
1861 	if (new)
1862 		blk_cleanup_queue(ctrl->connect_q);
1863 out_free_tag_set:
1864 	if (new)
1865 		blk_mq_free_tag_set(ctrl->tagset);
1866 out_free_io_queues:
1867 	nvme_tcp_free_io_queues(ctrl);
1868 	return ret;
1869 }
1870 
1871 static void nvme_tcp_destroy_admin_queue(struct nvme_ctrl *ctrl, bool remove)
1872 {
1873 	nvme_tcp_stop_queue(ctrl, 0);
1874 	if (remove) {
1875 		blk_cleanup_queue(ctrl->admin_q);
1876 		blk_cleanup_queue(ctrl->fabrics_q);
1877 		blk_mq_free_tag_set(ctrl->admin_tagset);
1878 	}
1879 	nvme_tcp_free_admin_queue(ctrl);
1880 }
1881 
1882 static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new)
1883 {
1884 	int error;
1885 
1886 	error = nvme_tcp_alloc_admin_queue(ctrl);
1887 	if (error)
1888 		return error;
1889 
1890 	if (new) {
1891 		ctrl->admin_tagset = nvme_tcp_alloc_tagset(ctrl, true);
1892 		if (IS_ERR(ctrl->admin_tagset)) {
1893 			error = PTR_ERR(ctrl->admin_tagset);
1894 			goto out_free_queue;
1895 		}
1896 
1897 		ctrl->fabrics_q = blk_mq_init_queue(ctrl->admin_tagset);
1898 		if (IS_ERR(ctrl->fabrics_q)) {
1899 			error = PTR_ERR(ctrl->fabrics_q);
1900 			goto out_free_tagset;
1901 		}
1902 
1903 		ctrl->admin_q = blk_mq_init_queue(ctrl->admin_tagset);
1904 		if (IS_ERR(ctrl->admin_q)) {
1905 			error = PTR_ERR(ctrl->admin_q);
1906 			goto out_cleanup_fabrics_q;
1907 		}
1908 	}
1909 
1910 	error = nvme_tcp_start_queue(ctrl, 0);
1911 	if (error)
1912 		goto out_cleanup_queue;
1913 
1914 	error = nvme_enable_ctrl(ctrl);
1915 	if (error)
1916 		goto out_stop_queue;
1917 
1918 	blk_mq_unquiesce_queue(ctrl->admin_q);
1919 
1920 	error = nvme_init_ctrl_finish(ctrl);
1921 	if (error)
1922 		goto out_quiesce_queue;
1923 
1924 	return 0;
1925 
1926 out_quiesce_queue:
1927 	blk_mq_quiesce_queue(ctrl->admin_q);
1928 	blk_sync_queue(ctrl->admin_q);
1929 out_stop_queue:
1930 	nvme_tcp_stop_queue(ctrl, 0);
1931 	nvme_cancel_admin_tagset(ctrl);
1932 out_cleanup_queue:
1933 	if (new)
1934 		blk_cleanup_queue(ctrl->admin_q);
1935 out_cleanup_fabrics_q:
1936 	if (new)
1937 		blk_cleanup_queue(ctrl->fabrics_q);
1938 out_free_tagset:
1939 	if (new)
1940 		blk_mq_free_tag_set(ctrl->admin_tagset);
1941 out_free_queue:
1942 	nvme_tcp_free_admin_queue(ctrl);
1943 	return error;
1944 }
1945 
1946 static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl,
1947 		bool remove)
1948 {
1949 	blk_mq_quiesce_queue(ctrl->admin_q);
1950 	blk_sync_queue(ctrl->admin_q);
1951 	nvme_tcp_stop_queue(ctrl, 0);
1952 	nvme_cancel_admin_tagset(ctrl);
1953 	if (remove)
1954 		blk_mq_unquiesce_queue(ctrl->admin_q);
1955 	nvme_tcp_destroy_admin_queue(ctrl, remove);
1956 }
1957 
1958 static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl,
1959 		bool remove)
1960 {
1961 	if (ctrl->queue_count <= 1)
1962 		return;
1963 	blk_mq_quiesce_queue(ctrl->admin_q);
1964 	nvme_start_freeze(ctrl);
1965 	nvme_stop_queues(ctrl);
1966 	nvme_sync_io_queues(ctrl);
1967 	nvme_tcp_stop_io_queues(ctrl);
1968 	nvme_cancel_tagset(ctrl);
1969 	if (remove)
1970 		nvme_start_queues(ctrl);
1971 	nvme_tcp_destroy_io_queues(ctrl, remove);
1972 }
1973 
1974 static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl)
1975 {
1976 	/* If we are resetting/deleting then do nothing */
1977 	if (ctrl->state != NVME_CTRL_CONNECTING) {
1978 		WARN_ON_ONCE(ctrl->state == NVME_CTRL_NEW ||
1979 			ctrl->state == NVME_CTRL_LIVE);
1980 		return;
1981 	}
1982 
1983 	if (nvmf_should_reconnect(ctrl)) {
1984 		dev_info(ctrl->device, "Reconnecting in %d seconds...\n",
1985 			ctrl->opts->reconnect_delay);
1986 		queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work,
1987 				ctrl->opts->reconnect_delay * HZ);
1988 	} else {
1989 		dev_info(ctrl->device, "Removing controller...\n");
1990 		nvme_delete_ctrl(ctrl);
1991 	}
1992 }
1993 
1994 static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new)
1995 {
1996 	struct nvmf_ctrl_options *opts = ctrl->opts;
1997 	int ret;
1998 
1999 	ret = nvme_tcp_configure_admin_queue(ctrl, new);
2000 	if (ret)
2001 		return ret;
2002 
2003 	if (ctrl->icdoff) {
2004 		ret = -EOPNOTSUPP;
2005 		dev_err(ctrl->device, "icdoff is not supported!\n");
2006 		goto destroy_admin;
2007 	}
2008 
2009 	if (!nvme_ctrl_sgl_supported(ctrl)) {
2010 		ret = -EOPNOTSUPP;
2011 		dev_err(ctrl->device, "Mandatory sgls are not supported!\n");
2012 		goto destroy_admin;
2013 	}
2014 
2015 	if (opts->queue_size > ctrl->sqsize + 1)
2016 		dev_warn(ctrl->device,
2017 			"queue_size %zu > ctrl sqsize %u, clamping down\n",
2018 			opts->queue_size, ctrl->sqsize + 1);
2019 
2020 	if (ctrl->sqsize + 1 > ctrl->maxcmd) {
2021 		dev_warn(ctrl->device,
2022 			"sqsize %u > ctrl maxcmd %u, clamping down\n",
2023 			ctrl->sqsize + 1, ctrl->maxcmd);
2024 		ctrl->sqsize = ctrl->maxcmd - 1;
2025 	}
2026 
2027 	if (ctrl->queue_count > 1) {
2028 		ret = nvme_tcp_configure_io_queues(ctrl, new);
2029 		if (ret)
2030 			goto destroy_admin;
2031 	}
2032 
2033 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) {
2034 		/*
2035 		 * state change failure is ok if we started ctrl delete,
2036 		 * unless we're during creation of a new controller to
2037 		 * avoid races with teardown flow.
2038 		 */
2039 		WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2040 			     ctrl->state != NVME_CTRL_DELETING_NOIO);
2041 		WARN_ON_ONCE(new);
2042 		ret = -EINVAL;
2043 		goto destroy_io;
2044 	}
2045 
2046 	nvme_start_ctrl(ctrl);
2047 	return 0;
2048 
2049 destroy_io:
2050 	if (ctrl->queue_count > 1) {
2051 		nvme_stop_queues(ctrl);
2052 		nvme_sync_io_queues(ctrl);
2053 		nvme_tcp_stop_io_queues(ctrl);
2054 		nvme_cancel_tagset(ctrl);
2055 		nvme_tcp_destroy_io_queues(ctrl, new);
2056 	}
2057 destroy_admin:
2058 	blk_mq_quiesce_queue(ctrl->admin_q);
2059 	blk_sync_queue(ctrl->admin_q);
2060 	nvme_tcp_stop_queue(ctrl, 0);
2061 	nvme_cancel_admin_tagset(ctrl);
2062 	nvme_tcp_destroy_admin_queue(ctrl, new);
2063 	return ret;
2064 }
2065 
2066 static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work)
2067 {
2068 	struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work),
2069 			struct nvme_tcp_ctrl, connect_work);
2070 	struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2071 
2072 	++ctrl->nr_reconnects;
2073 
2074 	if (nvme_tcp_setup_ctrl(ctrl, false))
2075 		goto requeue;
2076 
2077 	dev_info(ctrl->device, "Successfully reconnected (%d attempt)\n",
2078 			ctrl->nr_reconnects);
2079 
2080 	ctrl->nr_reconnects = 0;
2081 
2082 	return;
2083 
2084 requeue:
2085 	dev_info(ctrl->device, "Failed reconnect attempt %d\n",
2086 			ctrl->nr_reconnects);
2087 	nvme_tcp_reconnect_or_remove(ctrl);
2088 }
2089 
2090 static void nvme_tcp_error_recovery_work(struct work_struct *work)
2091 {
2092 	struct nvme_tcp_ctrl *tcp_ctrl = container_of(work,
2093 				struct nvme_tcp_ctrl, err_work);
2094 	struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2095 
2096 	nvme_stop_keep_alive(ctrl);
2097 	nvme_tcp_teardown_io_queues(ctrl, false);
2098 	/* unquiesce to fail fast pending requests */
2099 	nvme_start_queues(ctrl);
2100 	nvme_tcp_teardown_admin_queue(ctrl, false);
2101 	blk_mq_unquiesce_queue(ctrl->admin_q);
2102 
2103 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2104 		/* state change failure is ok if we started ctrl delete */
2105 		WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2106 			     ctrl->state != NVME_CTRL_DELETING_NOIO);
2107 		return;
2108 	}
2109 
2110 	nvme_tcp_reconnect_or_remove(ctrl);
2111 }
2112 
2113 static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
2114 {
2115 	cancel_work_sync(&to_tcp_ctrl(ctrl)->err_work);
2116 	cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work);
2117 
2118 	nvme_tcp_teardown_io_queues(ctrl, shutdown);
2119 	blk_mq_quiesce_queue(ctrl->admin_q);
2120 	if (shutdown)
2121 		nvme_shutdown_ctrl(ctrl);
2122 	else
2123 		nvme_disable_ctrl(ctrl);
2124 	nvme_tcp_teardown_admin_queue(ctrl, shutdown);
2125 }
2126 
2127 static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl)
2128 {
2129 	nvme_tcp_teardown_ctrl(ctrl, true);
2130 }
2131 
2132 static void nvme_reset_ctrl_work(struct work_struct *work)
2133 {
2134 	struct nvme_ctrl *ctrl =
2135 		container_of(work, struct nvme_ctrl, reset_work);
2136 
2137 	nvme_stop_ctrl(ctrl);
2138 	nvme_tcp_teardown_ctrl(ctrl, false);
2139 
2140 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2141 		/* state change failure is ok if we started ctrl delete */
2142 		WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2143 			     ctrl->state != NVME_CTRL_DELETING_NOIO);
2144 		return;
2145 	}
2146 
2147 	if (nvme_tcp_setup_ctrl(ctrl, false))
2148 		goto out_fail;
2149 
2150 	return;
2151 
2152 out_fail:
2153 	++ctrl->nr_reconnects;
2154 	nvme_tcp_reconnect_or_remove(ctrl);
2155 }
2156 
2157 static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl)
2158 {
2159 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
2160 
2161 	if (list_empty(&ctrl->list))
2162 		goto free_ctrl;
2163 
2164 	mutex_lock(&nvme_tcp_ctrl_mutex);
2165 	list_del(&ctrl->list);
2166 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2167 
2168 	nvmf_free_options(nctrl->opts);
2169 free_ctrl:
2170 	kfree(ctrl->queues);
2171 	kfree(ctrl);
2172 }
2173 
2174 static void nvme_tcp_set_sg_null(struct nvme_command *c)
2175 {
2176 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2177 
2178 	sg->addr = 0;
2179 	sg->length = 0;
2180 	sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2181 			NVME_SGL_FMT_TRANSPORT_A;
2182 }
2183 
2184 static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue,
2185 		struct nvme_command *c, u32 data_len)
2186 {
2187 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2188 
2189 	sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
2190 	sg->length = cpu_to_le32(data_len);
2191 	sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
2192 }
2193 
2194 static void nvme_tcp_set_sg_host_data(struct nvme_command *c,
2195 		u32 data_len)
2196 {
2197 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2198 
2199 	sg->addr = 0;
2200 	sg->length = cpu_to_le32(data_len);
2201 	sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2202 			NVME_SGL_FMT_TRANSPORT_A;
2203 }
2204 
2205 static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg)
2206 {
2207 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg);
2208 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
2209 	struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu;
2210 	struct nvme_command *cmd = &pdu->cmd;
2211 	u8 hdgst = nvme_tcp_hdgst_len(queue);
2212 
2213 	memset(pdu, 0, sizeof(*pdu));
2214 	pdu->hdr.type = nvme_tcp_cmd;
2215 	if (queue->hdr_digest)
2216 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
2217 	pdu->hdr.hlen = sizeof(*pdu);
2218 	pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
2219 
2220 	cmd->common.opcode = nvme_admin_async_event;
2221 	cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
2222 	cmd->common.flags |= NVME_CMD_SGL_METABUF;
2223 	nvme_tcp_set_sg_null(cmd);
2224 
2225 	ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU;
2226 	ctrl->async_req.offset = 0;
2227 	ctrl->async_req.curr_bio = NULL;
2228 	ctrl->async_req.data_len = 0;
2229 
2230 	nvme_tcp_queue_request(&ctrl->async_req, true, true);
2231 }
2232 
2233 static void nvme_tcp_complete_timed_out(struct request *rq)
2234 {
2235 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2236 	struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2237 
2238 	nvme_tcp_stop_queue(ctrl, nvme_tcp_queue_id(req->queue));
2239 	if (blk_mq_request_started(rq) && !blk_mq_request_completed(rq)) {
2240 		nvme_req(rq)->status = NVME_SC_HOST_ABORTED_CMD;
2241 		blk_mq_complete_request(rq);
2242 	}
2243 }
2244 
2245 static enum blk_eh_timer_return
2246 nvme_tcp_timeout(struct request *rq, bool reserved)
2247 {
2248 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2249 	struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2250 	struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2251 
2252 	dev_warn(ctrl->device,
2253 		"queue %d: timeout request %#x type %d\n",
2254 		nvme_tcp_queue_id(req->queue), rq->tag, pdu->hdr.type);
2255 
2256 	if (ctrl->state != NVME_CTRL_LIVE) {
2257 		/*
2258 		 * If we are resetting, connecting or deleting we should
2259 		 * complete immediately because we may block controller
2260 		 * teardown or setup sequence
2261 		 * - ctrl disable/shutdown fabrics requests
2262 		 * - connect requests
2263 		 * - initialization admin requests
2264 		 * - I/O requests that entered after unquiescing and
2265 		 *   the controller stopped responding
2266 		 *
2267 		 * All other requests should be cancelled by the error
2268 		 * recovery work, so it's fine that we fail it here.
2269 		 */
2270 		nvme_tcp_complete_timed_out(rq);
2271 		return BLK_EH_DONE;
2272 	}
2273 
2274 	/*
2275 	 * LIVE state should trigger the normal error recovery which will
2276 	 * handle completing this request.
2277 	 */
2278 	nvme_tcp_error_recovery(ctrl);
2279 	return BLK_EH_RESET_TIMER;
2280 }
2281 
2282 static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue,
2283 			struct request *rq)
2284 {
2285 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2286 	struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2287 	struct nvme_command *c = &pdu->cmd;
2288 
2289 	c->common.flags |= NVME_CMD_SGL_METABUF;
2290 
2291 	if (!blk_rq_nr_phys_segments(rq))
2292 		nvme_tcp_set_sg_null(c);
2293 	else if (rq_data_dir(rq) == WRITE &&
2294 	    req->data_len <= nvme_tcp_inline_data_size(queue))
2295 		nvme_tcp_set_sg_inline(queue, c, req->data_len);
2296 	else
2297 		nvme_tcp_set_sg_host_data(c, req->data_len);
2298 
2299 	return 0;
2300 }
2301 
2302 static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns,
2303 		struct request *rq)
2304 {
2305 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2306 	struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2307 	struct nvme_tcp_queue *queue = req->queue;
2308 	u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0;
2309 	blk_status_t ret;
2310 
2311 	ret = nvme_setup_cmd(ns, rq);
2312 	if (ret)
2313 		return ret;
2314 
2315 	req->state = NVME_TCP_SEND_CMD_PDU;
2316 	req->status = cpu_to_le16(NVME_SC_SUCCESS);
2317 	req->offset = 0;
2318 	req->data_sent = 0;
2319 	req->pdu_len = 0;
2320 	req->pdu_sent = 0;
2321 	req->data_len = blk_rq_nr_phys_segments(rq) ?
2322 				blk_rq_payload_bytes(rq) : 0;
2323 	req->curr_bio = rq->bio;
2324 	if (req->curr_bio && req->data_len)
2325 		nvme_tcp_init_iter(req, rq_data_dir(rq));
2326 
2327 	if (rq_data_dir(rq) == WRITE &&
2328 	    req->data_len <= nvme_tcp_inline_data_size(queue))
2329 		req->pdu_len = req->data_len;
2330 
2331 	pdu->hdr.type = nvme_tcp_cmd;
2332 	pdu->hdr.flags = 0;
2333 	if (queue->hdr_digest)
2334 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
2335 	if (queue->data_digest && req->pdu_len) {
2336 		pdu->hdr.flags |= NVME_TCP_F_DDGST;
2337 		ddgst = nvme_tcp_ddgst_len(queue);
2338 	}
2339 	pdu->hdr.hlen = sizeof(*pdu);
2340 	pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0;
2341 	pdu->hdr.plen =
2342 		cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst);
2343 
2344 	ret = nvme_tcp_map_data(queue, rq);
2345 	if (unlikely(ret)) {
2346 		nvme_cleanup_cmd(rq);
2347 		dev_err(queue->ctrl->ctrl.device,
2348 			"Failed to map data (%d)\n", ret);
2349 		return ret;
2350 	}
2351 
2352 	return 0;
2353 }
2354 
2355 static void nvme_tcp_commit_rqs(struct blk_mq_hw_ctx *hctx)
2356 {
2357 	struct nvme_tcp_queue *queue = hctx->driver_data;
2358 
2359 	if (!llist_empty(&queue->req_list))
2360 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
2361 }
2362 
2363 static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx,
2364 		const struct blk_mq_queue_data *bd)
2365 {
2366 	struct nvme_ns *ns = hctx->queue->queuedata;
2367 	struct nvme_tcp_queue *queue = hctx->driver_data;
2368 	struct request *rq = bd->rq;
2369 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2370 	bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags);
2371 	blk_status_t ret;
2372 
2373 	if (!nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2374 		return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq);
2375 
2376 	ret = nvme_tcp_setup_cmd_pdu(ns, rq);
2377 	if (unlikely(ret))
2378 		return ret;
2379 
2380 	blk_mq_start_request(rq);
2381 
2382 	nvme_tcp_queue_request(req, true, bd->last);
2383 
2384 	return BLK_STS_OK;
2385 }
2386 
2387 static int nvme_tcp_map_queues(struct blk_mq_tag_set *set)
2388 {
2389 	struct nvme_tcp_ctrl *ctrl = set->driver_data;
2390 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2391 
2392 	if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) {
2393 		/* separate read/write queues */
2394 		set->map[HCTX_TYPE_DEFAULT].nr_queues =
2395 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2396 		set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2397 		set->map[HCTX_TYPE_READ].nr_queues =
2398 			ctrl->io_queues[HCTX_TYPE_READ];
2399 		set->map[HCTX_TYPE_READ].queue_offset =
2400 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2401 	} else {
2402 		/* shared read/write queues */
2403 		set->map[HCTX_TYPE_DEFAULT].nr_queues =
2404 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2405 		set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2406 		set->map[HCTX_TYPE_READ].nr_queues =
2407 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2408 		set->map[HCTX_TYPE_READ].queue_offset = 0;
2409 	}
2410 	blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
2411 	blk_mq_map_queues(&set->map[HCTX_TYPE_READ]);
2412 
2413 	if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) {
2414 		/* map dedicated poll queues only if we have queues left */
2415 		set->map[HCTX_TYPE_POLL].nr_queues =
2416 				ctrl->io_queues[HCTX_TYPE_POLL];
2417 		set->map[HCTX_TYPE_POLL].queue_offset =
2418 			ctrl->io_queues[HCTX_TYPE_DEFAULT] +
2419 			ctrl->io_queues[HCTX_TYPE_READ];
2420 		blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]);
2421 	}
2422 
2423 	dev_info(ctrl->ctrl.device,
2424 		"mapped %d/%d/%d default/read/poll queues.\n",
2425 		ctrl->io_queues[HCTX_TYPE_DEFAULT],
2426 		ctrl->io_queues[HCTX_TYPE_READ],
2427 		ctrl->io_queues[HCTX_TYPE_POLL]);
2428 
2429 	return 0;
2430 }
2431 
2432 static int nvme_tcp_poll(struct blk_mq_hw_ctx *hctx)
2433 {
2434 	struct nvme_tcp_queue *queue = hctx->driver_data;
2435 	struct sock *sk = queue->sock->sk;
2436 
2437 	if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags))
2438 		return 0;
2439 
2440 	set_bit(NVME_TCP_Q_POLLING, &queue->flags);
2441 	if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue))
2442 		sk_busy_loop(sk, true);
2443 	nvme_tcp_try_recv(queue);
2444 	clear_bit(NVME_TCP_Q_POLLING, &queue->flags);
2445 	return queue->nr_cqe;
2446 }
2447 
2448 static const struct blk_mq_ops nvme_tcp_mq_ops = {
2449 	.queue_rq	= nvme_tcp_queue_rq,
2450 	.commit_rqs	= nvme_tcp_commit_rqs,
2451 	.complete	= nvme_complete_rq,
2452 	.init_request	= nvme_tcp_init_request,
2453 	.exit_request	= nvme_tcp_exit_request,
2454 	.init_hctx	= nvme_tcp_init_hctx,
2455 	.timeout	= nvme_tcp_timeout,
2456 	.map_queues	= nvme_tcp_map_queues,
2457 	.poll		= nvme_tcp_poll,
2458 };
2459 
2460 static const struct blk_mq_ops nvme_tcp_admin_mq_ops = {
2461 	.queue_rq	= nvme_tcp_queue_rq,
2462 	.complete	= nvme_complete_rq,
2463 	.init_request	= nvme_tcp_init_request,
2464 	.exit_request	= nvme_tcp_exit_request,
2465 	.init_hctx	= nvme_tcp_init_admin_hctx,
2466 	.timeout	= nvme_tcp_timeout,
2467 };
2468 
2469 static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = {
2470 	.name			= "tcp",
2471 	.module			= THIS_MODULE,
2472 	.flags			= NVME_F_FABRICS,
2473 	.reg_read32		= nvmf_reg_read32,
2474 	.reg_read64		= nvmf_reg_read64,
2475 	.reg_write32		= nvmf_reg_write32,
2476 	.free_ctrl		= nvme_tcp_free_ctrl,
2477 	.submit_async_event	= nvme_tcp_submit_async_event,
2478 	.delete_ctrl		= nvme_tcp_delete_ctrl,
2479 	.get_address		= nvmf_get_address,
2480 };
2481 
2482 static bool
2483 nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts)
2484 {
2485 	struct nvme_tcp_ctrl *ctrl;
2486 	bool found = false;
2487 
2488 	mutex_lock(&nvme_tcp_ctrl_mutex);
2489 	list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) {
2490 		found = nvmf_ip_options_match(&ctrl->ctrl, opts);
2491 		if (found)
2492 			break;
2493 	}
2494 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2495 
2496 	return found;
2497 }
2498 
2499 static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev,
2500 		struct nvmf_ctrl_options *opts)
2501 {
2502 	struct nvme_tcp_ctrl *ctrl;
2503 	int ret;
2504 
2505 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2506 	if (!ctrl)
2507 		return ERR_PTR(-ENOMEM);
2508 
2509 	INIT_LIST_HEAD(&ctrl->list);
2510 	ctrl->ctrl.opts = opts;
2511 	ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2512 				opts->nr_poll_queues + 1;
2513 	ctrl->ctrl.sqsize = opts->queue_size - 1;
2514 	ctrl->ctrl.kato = opts->kato;
2515 
2516 	INIT_DELAYED_WORK(&ctrl->connect_work,
2517 			nvme_tcp_reconnect_ctrl_work);
2518 	INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work);
2519 	INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work);
2520 
2521 	if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2522 		opts->trsvcid =
2523 			kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL);
2524 		if (!opts->trsvcid) {
2525 			ret = -ENOMEM;
2526 			goto out_free_ctrl;
2527 		}
2528 		opts->mask |= NVMF_OPT_TRSVCID;
2529 	}
2530 
2531 	ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2532 			opts->traddr, opts->trsvcid, &ctrl->addr);
2533 	if (ret) {
2534 		pr_err("malformed address passed: %s:%s\n",
2535 			opts->traddr, opts->trsvcid);
2536 		goto out_free_ctrl;
2537 	}
2538 
2539 	if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2540 		ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2541 			opts->host_traddr, NULL, &ctrl->src_addr);
2542 		if (ret) {
2543 			pr_err("malformed src address passed: %s\n",
2544 			       opts->host_traddr);
2545 			goto out_free_ctrl;
2546 		}
2547 	}
2548 
2549 	if (opts->mask & NVMF_OPT_HOST_IFACE) {
2550 		if (!__dev_get_by_name(&init_net, opts->host_iface)) {
2551 			pr_err("invalid interface passed: %s\n",
2552 			       opts->host_iface);
2553 			ret = -ENODEV;
2554 			goto out_free_ctrl;
2555 		}
2556 	}
2557 
2558 	if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) {
2559 		ret = -EALREADY;
2560 		goto out_free_ctrl;
2561 	}
2562 
2563 	ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2564 				GFP_KERNEL);
2565 	if (!ctrl->queues) {
2566 		ret = -ENOMEM;
2567 		goto out_free_ctrl;
2568 	}
2569 
2570 	ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0);
2571 	if (ret)
2572 		goto out_kfree_queues;
2573 
2574 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2575 		WARN_ON_ONCE(1);
2576 		ret = -EINTR;
2577 		goto out_uninit_ctrl;
2578 	}
2579 
2580 	ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true);
2581 	if (ret)
2582 		goto out_uninit_ctrl;
2583 
2584 	dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n",
2585 		ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
2586 
2587 	mutex_lock(&nvme_tcp_ctrl_mutex);
2588 	list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list);
2589 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2590 
2591 	return &ctrl->ctrl;
2592 
2593 out_uninit_ctrl:
2594 	nvme_uninit_ctrl(&ctrl->ctrl);
2595 	nvme_put_ctrl(&ctrl->ctrl);
2596 	if (ret > 0)
2597 		ret = -EIO;
2598 	return ERR_PTR(ret);
2599 out_kfree_queues:
2600 	kfree(ctrl->queues);
2601 out_free_ctrl:
2602 	kfree(ctrl);
2603 	return ERR_PTR(ret);
2604 }
2605 
2606 static struct nvmf_transport_ops nvme_tcp_transport = {
2607 	.name		= "tcp",
2608 	.module		= THIS_MODULE,
2609 	.required_opts	= NVMF_OPT_TRADDR,
2610 	.allowed_opts	= NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2611 			  NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2612 			  NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST |
2613 			  NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
2614 			  NVMF_OPT_TOS | NVMF_OPT_HOST_IFACE,
2615 	.create_ctrl	= nvme_tcp_create_ctrl,
2616 };
2617 
2618 static int __init nvme_tcp_init_module(void)
2619 {
2620 	nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq",
2621 			WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2622 	if (!nvme_tcp_wq)
2623 		return -ENOMEM;
2624 
2625 	nvmf_register_transport(&nvme_tcp_transport);
2626 	return 0;
2627 }
2628 
2629 static void __exit nvme_tcp_cleanup_module(void)
2630 {
2631 	struct nvme_tcp_ctrl *ctrl;
2632 
2633 	nvmf_unregister_transport(&nvme_tcp_transport);
2634 
2635 	mutex_lock(&nvme_tcp_ctrl_mutex);
2636 	list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list)
2637 		nvme_delete_ctrl(&ctrl->ctrl);
2638 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2639 	flush_workqueue(nvme_delete_wq);
2640 
2641 	destroy_workqueue(nvme_tcp_wq);
2642 }
2643 
2644 module_init(nvme_tcp_init_module);
2645 module_exit(nvme_tcp_cleanup_module);
2646 
2647 MODULE_LICENSE("GPL v2");
2648