1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVMe over Fabrics TCP host. 4 * Copyright (c) 2018 Lightbits Labs. All rights reserved. 5 */ 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 #include <linux/module.h> 8 #include <linux/init.h> 9 #include <linux/slab.h> 10 #include <linux/err.h> 11 #include <linux/nvme-tcp.h> 12 #include <linux/nvme-keyring.h> 13 #include <net/sock.h> 14 #include <net/tcp.h> 15 #include <net/tls.h> 16 #include <net/tls_prot.h> 17 #include <net/handshake.h> 18 #include <linux/blk-mq.h> 19 #include <crypto/hash.h> 20 #include <net/busy_poll.h> 21 #include <trace/events/sock.h> 22 23 #include "nvme.h" 24 #include "fabrics.h" 25 26 struct nvme_tcp_queue; 27 28 /* Define the socket priority to use for connections were it is desirable 29 * that the NIC consider performing optimized packet processing or filtering. 30 * A non-zero value being sufficient to indicate general consideration of any 31 * possible optimization. Making it a module param allows for alternative 32 * values that may be unique for some NIC implementations. 33 */ 34 static int so_priority; 35 module_param(so_priority, int, 0644); 36 MODULE_PARM_DESC(so_priority, "nvme tcp socket optimize priority"); 37 38 /* 39 * Use the unbound workqueue for nvme_tcp_wq, then we can set the cpu affinity 40 * from sysfs. 41 */ 42 static bool wq_unbound; 43 module_param(wq_unbound, bool, 0644); 44 MODULE_PARM_DESC(wq_unbound, "Use unbound workqueue for nvme-tcp IO context (default false)"); 45 46 /* 47 * TLS handshake timeout 48 */ 49 static int tls_handshake_timeout = 10; 50 #ifdef CONFIG_NVME_TCP_TLS 51 module_param(tls_handshake_timeout, int, 0644); 52 MODULE_PARM_DESC(tls_handshake_timeout, 53 "nvme TLS handshake timeout in seconds (default 10)"); 54 #endif 55 56 static atomic_t nvme_tcp_cpu_queues[NR_CPUS]; 57 58 #ifdef CONFIG_DEBUG_LOCK_ALLOC 59 /* lockdep can detect a circular dependency of the form 60 * sk_lock -> mmap_lock (page fault) -> fs locks -> sk_lock 61 * because dependencies are tracked for both nvme-tcp and user contexts. Using 62 * a separate class prevents lockdep from conflating nvme-tcp socket use with 63 * user-space socket API use. 64 */ 65 static struct lock_class_key nvme_tcp_sk_key[2]; 66 static struct lock_class_key nvme_tcp_slock_key[2]; 67 68 static void nvme_tcp_reclassify_socket(struct socket *sock) 69 { 70 struct sock *sk = sock->sk; 71 72 if (WARN_ON_ONCE(!sock_allow_reclassification(sk))) 73 return; 74 75 switch (sk->sk_family) { 76 case AF_INET: 77 sock_lock_init_class_and_name(sk, "slock-AF_INET-NVME", 78 &nvme_tcp_slock_key[0], 79 "sk_lock-AF_INET-NVME", 80 &nvme_tcp_sk_key[0]); 81 break; 82 case AF_INET6: 83 sock_lock_init_class_and_name(sk, "slock-AF_INET6-NVME", 84 &nvme_tcp_slock_key[1], 85 "sk_lock-AF_INET6-NVME", 86 &nvme_tcp_sk_key[1]); 87 break; 88 default: 89 WARN_ON_ONCE(1); 90 } 91 } 92 #else 93 static void nvme_tcp_reclassify_socket(struct socket *sock) { } 94 #endif 95 96 enum nvme_tcp_send_state { 97 NVME_TCP_SEND_CMD_PDU = 0, 98 NVME_TCP_SEND_H2C_PDU, 99 NVME_TCP_SEND_DATA, 100 NVME_TCP_SEND_DDGST, 101 }; 102 103 struct nvme_tcp_request { 104 struct nvme_request req; 105 void *pdu; 106 struct nvme_tcp_queue *queue; 107 u32 data_len; 108 u32 pdu_len; 109 u32 pdu_sent; 110 u32 h2cdata_left; 111 u32 h2cdata_offset; 112 u16 ttag; 113 __le16 status; 114 struct list_head entry; 115 struct llist_node lentry; 116 __le32 ddgst; 117 118 struct bio *curr_bio; 119 struct iov_iter iter; 120 121 /* send state */ 122 size_t offset; 123 size_t data_sent; 124 enum nvme_tcp_send_state state; 125 }; 126 127 enum nvme_tcp_queue_flags { 128 NVME_TCP_Q_ALLOCATED = 0, 129 NVME_TCP_Q_LIVE = 1, 130 NVME_TCP_Q_POLLING = 2, 131 NVME_TCP_Q_IO_CPU_SET = 3, 132 }; 133 134 enum nvme_tcp_recv_state { 135 NVME_TCP_RECV_PDU = 0, 136 NVME_TCP_RECV_DATA, 137 NVME_TCP_RECV_DDGST, 138 }; 139 140 struct nvme_tcp_ctrl; 141 struct nvme_tcp_queue { 142 struct socket *sock; 143 struct work_struct io_work; 144 int io_cpu; 145 146 struct mutex queue_lock; 147 struct mutex send_mutex; 148 struct llist_head req_list; 149 struct list_head send_list; 150 151 /* recv state */ 152 void *pdu; 153 int pdu_remaining; 154 int pdu_offset; 155 size_t data_remaining; 156 size_t ddgst_remaining; 157 unsigned int nr_cqe; 158 159 /* send state */ 160 struct nvme_tcp_request *request; 161 162 u32 maxh2cdata; 163 size_t cmnd_capsule_len; 164 struct nvme_tcp_ctrl *ctrl; 165 unsigned long flags; 166 bool rd_enabled; 167 168 bool hdr_digest; 169 bool data_digest; 170 bool tls_enabled; 171 struct ahash_request *rcv_hash; 172 struct ahash_request *snd_hash; 173 __le32 exp_ddgst; 174 __le32 recv_ddgst; 175 struct completion tls_complete; 176 int tls_err; 177 struct page_frag_cache pf_cache; 178 179 void (*state_change)(struct sock *); 180 void (*data_ready)(struct sock *); 181 void (*write_space)(struct sock *); 182 }; 183 184 struct nvme_tcp_ctrl { 185 /* read only in the hot path */ 186 struct nvme_tcp_queue *queues; 187 struct blk_mq_tag_set tag_set; 188 189 /* other member variables */ 190 struct list_head list; 191 struct blk_mq_tag_set admin_tag_set; 192 struct sockaddr_storage addr; 193 struct sockaddr_storage src_addr; 194 struct nvme_ctrl ctrl; 195 196 struct work_struct err_work; 197 struct delayed_work connect_work; 198 struct nvme_tcp_request async_req; 199 u32 io_queues[HCTX_MAX_TYPES]; 200 }; 201 202 static LIST_HEAD(nvme_tcp_ctrl_list); 203 static DEFINE_MUTEX(nvme_tcp_ctrl_mutex); 204 static struct workqueue_struct *nvme_tcp_wq; 205 static const struct blk_mq_ops nvme_tcp_mq_ops; 206 static const struct blk_mq_ops nvme_tcp_admin_mq_ops; 207 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue); 208 209 static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl) 210 { 211 return container_of(ctrl, struct nvme_tcp_ctrl, ctrl); 212 } 213 214 static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue) 215 { 216 return queue - queue->ctrl->queues; 217 } 218 219 static inline bool nvme_tcp_recv_pdu_supported(enum nvme_tcp_pdu_type type) 220 { 221 switch (type) { 222 case nvme_tcp_c2h_term: 223 case nvme_tcp_c2h_data: 224 case nvme_tcp_r2t: 225 case nvme_tcp_rsp: 226 return true; 227 default: 228 return false; 229 } 230 } 231 232 /* 233 * Check if the queue is TLS encrypted 234 */ 235 static inline bool nvme_tcp_queue_tls(struct nvme_tcp_queue *queue) 236 { 237 if (!IS_ENABLED(CONFIG_NVME_TCP_TLS)) 238 return 0; 239 240 return queue->tls_enabled; 241 } 242 243 /* 244 * Check if TLS is configured for the controller. 245 */ 246 static inline bool nvme_tcp_tls_configured(struct nvme_ctrl *ctrl) 247 { 248 if (!IS_ENABLED(CONFIG_NVME_TCP_TLS)) 249 return 0; 250 251 return ctrl->opts->tls || ctrl->opts->concat; 252 } 253 254 static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue) 255 { 256 u32 queue_idx = nvme_tcp_queue_id(queue); 257 258 if (queue_idx == 0) 259 return queue->ctrl->admin_tag_set.tags[queue_idx]; 260 return queue->ctrl->tag_set.tags[queue_idx - 1]; 261 } 262 263 static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue) 264 { 265 return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0; 266 } 267 268 static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue) 269 { 270 return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0; 271 } 272 273 static inline void *nvme_tcp_req_cmd_pdu(struct nvme_tcp_request *req) 274 { 275 return req->pdu; 276 } 277 278 static inline void *nvme_tcp_req_data_pdu(struct nvme_tcp_request *req) 279 { 280 /* use the pdu space in the back for the data pdu */ 281 return req->pdu + sizeof(struct nvme_tcp_cmd_pdu) - 282 sizeof(struct nvme_tcp_data_pdu); 283 } 284 285 static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_request *req) 286 { 287 if (nvme_is_fabrics(req->req.cmd)) 288 return NVME_TCP_ADMIN_CCSZ; 289 return req->queue->cmnd_capsule_len - sizeof(struct nvme_command); 290 } 291 292 static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req) 293 { 294 return req == &req->queue->ctrl->async_req; 295 } 296 297 static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req) 298 { 299 struct request *rq; 300 301 if (unlikely(nvme_tcp_async_req(req))) 302 return false; /* async events don't have a request */ 303 304 rq = blk_mq_rq_from_pdu(req); 305 306 return rq_data_dir(rq) == WRITE && req->data_len && 307 req->data_len <= nvme_tcp_inline_data_size(req); 308 } 309 310 static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req) 311 { 312 return req->iter.bvec->bv_page; 313 } 314 315 static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req) 316 { 317 return req->iter.bvec->bv_offset + req->iter.iov_offset; 318 } 319 320 static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req) 321 { 322 return min_t(size_t, iov_iter_single_seg_count(&req->iter), 323 req->pdu_len - req->pdu_sent); 324 } 325 326 static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req) 327 { 328 return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ? 329 req->pdu_len - req->pdu_sent : 0; 330 } 331 332 static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req, 333 int len) 334 { 335 return nvme_tcp_pdu_data_left(req) <= len; 336 } 337 338 static void nvme_tcp_init_iter(struct nvme_tcp_request *req, 339 unsigned int dir) 340 { 341 struct request *rq = blk_mq_rq_from_pdu(req); 342 struct bio_vec *vec; 343 unsigned int size; 344 int nr_bvec; 345 size_t offset; 346 347 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) { 348 vec = &rq->special_vec; 349 nr_bvec = 1; 350 size = blk_rq_payload_bytes(rq); 351 offset = 0; 352 } else { 353 struct bio *bio = req->curr_bio; 354 struct bvec_iter bi; 355 struct bio_vec bv; 356 357 vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); 358 nr_bvec = 0; 359 bio_for_each_bvec(bv, bio, bi) { 360 nr_bvec++; 361 } 362 size = bio->bi_iter.bi_size; 363 offset = bio->bi_iter.bi_bvec_done; 364 } 365 366 iov_iter_bvec(&req->iter, dir, vec, nr_bvec, size); 367 req->iter.iov_offset = offset; 368 } 369 370 static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req, 371 int len) 372 { 373 req->data_sent += len; 374 req->pdu_sent += len; 375 iov_iter_advance(&req->iter, len); 376 if (!iov_iter_count(&req->iter) && 377 req->data_sent < req->data_len) { 378 req->curr_bio = req->curr_bio->bi_next; 379 nvme_tcp_init_iter(req, ITER_SOURCE); 380 } 381 } 382 383 static inline void nvme_tcp_send_all(struct nvme_tcp_queue *queue) 384 { 385 int ret; 386 387 /* drain the send queue as much as we can... */ 388 do { 389 ret = nvme_tcp_try_send(queue); 390 } while (ret > 0); 391 } 392 393 static inline bool nvme_tcp_queue_has_pending(struct nvme_tcp_queue *queue) 394 { 395 return !list_empty(&queue->send_list) || 396 !llist_empty(&queue->req_list); 397 } 398 399 static inline bool nvme_tcp_queue_more(struct nvme_tcp_queue *queue) 400 { 401 return !nvme_tcp_queue_tls(queue) && 402 nvme_tcp_queue_has_pending(queue); 403 } 404 405 static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req, 406 bool last) 407 { 408 struct nvme_tcp_queue *queue = req->queue; 409 bool empty; 410 411 empty = llist_add(&req->lentry, &queue->req_list) && 412 list_empty(&queue->send_list) && !queue->request; 413 414 /* 415 * if we're the first on the send_list and we can try to send 416 * directly, otherwise queue io_work. Also, only do that if we 417 * are on the same cpu, so we don't introduce contention. 418 */ 419 if (queue->io_cpu == raw_smp_processor_id() && 420 empty && mutex_trylock(&queue->send_mutex)) { 421 nvme_tcp_send_all(queue); 422 mutex_unlock(&queue->send_mutex); 423 } 424 425 if (last && nvme_tcp_queue_has_pending(queue)) 426 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 427 } 428 429 static void nvme_tcp_process_req_list(struct nvme_tcp_queue *queue) 430 { 431 struct nvme_tcp_request *req; 432 struct llist_node *node; 433 434 for (node = llist_del_all(&queue->req_list); node; node = node->next) { 435 req = llist_entry(node, struct nvme_tcp_request, lentry); 436 list_add(&req->entry, &queue->send_list); 437 } 438 } 439 440 static inline struct nvme_tcp_request * 441 nvme_tcp_fetch_request(struct nvme_tcp_queue *queue) 442 { 443 struct nvme_tcp_request *req; 444 445 req = list_first_entry_or_null(&queue->send_list, 446 struct nvme_tcp_request, entry); 447 if (!req) { 448 nvme_tcp_process_req_list(queue); 449 req = list_first_entry_or_null(&queue->send_list, 450 struct nvme_tcp_request, entry); 451 if (unlikely(!req)) 452 return NULL; 453 } 454 455 list_del(&req->entry); 456 return req; 457 } 458 459 static inline void nvme_tcp_ddgst_final(struct ahash_request *hash, 460 __le32 *dgst) 461 { 462 ahash_request_set_crypt(hash, NULL, (u8 *)dgst, 0); 463 crypto_ahash_final(hash); 464 } 465 466 static inline void nvme_tcp_ddgst_update(struct ahash_request *hash, 467 struct page *page, off_t off, size_t len) 468 { 469 struct scatterlist sg; 470 471 sg_init_table(&sg, 1); 472 sg_set_page(&sg, page, len, off); 473 ahash_request_set_crypt(hash, &sg, NULL, len); 474 crypto_ahash_update(hash); 475 } 476 477 static inline void nvme_tcp_hdgst(struct ahash_request *hash, 478 void *pdu, size_t len) 479 { 480 struct scatterlist sg; 481 482 sg_init_one(&sg, pdu, len); 483 ahash_request_set_crypt(hash, &sg, pdu + len, len); 484 crypto_ahash_digest(hash); 485 } 486 487 static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue, 488 void *pdu, size_t pdu_len) 489 { 490 struct nvme_tcp_hdr *hdr = pdu; 491 __le32 recv_digest; 492 __le32 exp_digest; 493 494 if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) { 495 dev_err(queue->ctrl->ctrl.device, 496 "queue %d: header digest flag is cleared\n", 497 nvme_tcp_queue_id(queue)); 498 return -EPROTO; 499 } 500 501 recv_digest = *(__le32 *)(pdu + hdr->hlen); 502 nvme_tcp_hdgst(queue->rcv_hash, pdu, pdu_len); 503 exp_digest = *(__le32 *)(pdu + hdr->hlen); 504 if (recv_digest != exp_digest) { 505 dev_err(queue->ctrl->ctrl.device, 506 "header digest error: recv %#x expected %#x\n", 507 le32_to_cpu(recv_digest), le32_to_cpu(exp_digest)); 508 return -EIO; 509 } 510 511 return 0; 512 } 513 514 static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu) 515 { 516 struct nvme_tcp_hdr *hdr = pdu; 517 u8 digest_len = nvme_tcp_hdgst_len(queue); 518 u32 len; 519 520 len = le32_to_cpu(hdr->plen) - hdr->hlen - 521 ((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0); 522 523 if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) { 524 dev_err(queue->ctrl->ctrl.device, 525 "queue %d: data digest flag is cleared\n", 526 nvme_tcp_queue_id(queue)); 527 return -EPROTO; 528 } 529 crypto_ahash_init(queue->rcv_hash); 530 531 return 0; 532 } 533 534 static void nvme_tcp_exit_request(struct blk_mq_tag_set *set, 535 struct request *rq, unsigned int hctx_idx) 536 { 537 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 538 539 page_frag_free(req->pdu); 540 } 541 542 static int nvme_tcp_init_request(struct blk_mq_tag_set *set, 543 struct request *rq, unsigned int hctx_idx, 544 unsigned int numa_node) 545 { 546 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(set->driver_data); 547 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 548 struct nvme_tcp_cmd_pdu *pdu; 549 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; 550 struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx]; 551 u8 hdgst = nvme_tcp_hdgst_len(queue); 552 553 req->pdu = page_frag_alloc(&queue->pf_cache, 554 sizeof(struct nvme_tcp_cmd_pdu) + hdgst, 555 GFP_KERNEL | __GFP_ZERO); 556 if (!req->pdu) 557 return -ENOMEM; 558 559 pdu = req->pdu; 560 req->queue = queue; 561 nvme_req(rq)->ctrl = &ctrl->ctrl; 562 nvme_req(rq)->cmd = &pdu->cmd; 563 564 return 0; 565 } 566 567 static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 568 unsigned int hctx_idx) 569 { 570 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(data); 571 struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1]; 572 573 hctx->driver_data = queue; 574 return 0; 575 } 576 577 static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, 578 unsigned int hctx_idx) 579 { 580 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(data); 581 struct nvme_tcp_queue *queue = &ctrl->queues[0]; 582 583 hctx->driver_data = queue; 584 return 0; 585 } 586 587 static enum nvme_tcp_recv_state 588 nvme_tcp_recv_state(struct nvme_tcp_queue *queue) 589 { 590 return (queue->pdu_remaining) ? NVME_TCP_RECV_PDU : 591 (queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST : 592 NVME_TCP_RECV_DATA; 593 } 594 595 static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue) 596 { 597 queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) + 598 nvme_tcp_hdgst_len(queue); 599 queue->pdu_offset = 0; 600 queue->data_remaining = -1; 601 queue->ddgst_remaining = 0; 602 } 603 604 static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl) 605 { 606 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 607 return; 608 609 dev_warn(ctrl->device, "starting error recovery\n"); 610 queue_work(nvme_reset_wq, &to_tcp_ctrl(ctrl)->err_work); 611 } 612 613 static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue, 614 struct nvme_completion *cqe) 615 { 616 struct nvme_tcp_request *req; 617 struct request *rq; 618 619 rq = nvme_find_rq(nvme_tcp_tagset(queue), cqe->command_id); 620 if (!rq) { 621 dev_err(queue->ctrl->ctrl.device, 622 "got bad cqe.command_id %#x on queue %d\n", 623 cqe->command_id, nvme_tcp_queue_id(queue)); 624 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 625 return -EINVAL; 626 } 627 628 req = blk_mq_rq_to_pdu(rq); 629 if (req->status == cpu_to_le16(NVME_SC_SUCCESS)) 630 req->status = cqe->status; 631 632 if (!nvme_try_complete_req(rq, req->status, cqe->result)) 633 nvme_complete_rq(rq); 634 queue->nr_cqe++; 635 636 return 0; 637 } 638 639 static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue, 640 struct nvme_tcp_data_pdu *pdu) 641 { 642 struct request *rq; 643 644 rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id); 645 if (!rq) { 646 dev_err(queue->ctrl->ctrl.device, 647 "got bad c2hdata.command_id %#x on queue %d\n", 648 pdu->command_id, nvme_tcp_queue_id(queue)); 649 return -ENOENT; 650 } 651 652 if (!blk_rq_payload_bytes(rq)) { 653 dev_err(queue->ctrl->ctrl.device, 654 "queue %d tag %#x unexpected data\n", 655 nvme_tcp_queue_id(queue), rq->tag); 656 return -EIO; 657 } 658 659 queue->data_remaining = le32_to_cpu(pdu->data_length); 660 661 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS && 662 unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) { 663 dev_err(queue->ctrl->ctrl.device, 664 "queue %d tag %#x SUCCESS set but not last PDU\n", 665 nvme_tcp_queue_id(queue), rq->tag); 666 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 667 return -EPROTO; 668 } 669 670 return 0; 671 } 672 673 static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue, 674 struct nvme_tcp_rsp_pdu *pdu) 675 { 676 struct nvme_completion *cqe = &pdu->cqe; 677 int ret = 0; 678 679 /* 680 * AEN requests are special as they don't time out and can 681 * survive any kind of queue freeze and often don't respond to 682 * aborts. We don't even bother to allocate a struct request 683 * for them but rather special case them here. 684 */ 685 if (unlikely(nvme_is_aen_req(nvme_tcp_queue_id(queue), 686 cqe->command_id))) 687 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status, 688 &cqe->result); 689 else 690 ret = nvme_tcp_process_nvme_cqe(queue, cqe); 691 692 return ret; 693 } 694 695 static void nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req) 696 { 697 struct nvme_tcp_data_pdu *data = nvme_tcp_req_data_pdu(req); 698 struct nvme_tcp_queue *queue = req->queue; 699 struct request *rq = blk_mq_rq_from_pdu(req); 700 u32 h2cdata_sent = req->pdu_len; 701 u8 hdgst = nvme_tcp_hdgst_len(queue); 702 u8 ddgst = nvme_tcp_ddgst_len(queue); 703 704 req->state = NVME_TCP_SEND_H2C_PDU; 705 req->offset = 0; 706 req->pdu_len = min(req->h2cdata_left, queue->maxh2cdata); 707 req->pdu_sent = 0; 708 req->h2cdata_left -= req->pdu_len; 709 req->h2cdata_offset += h2cdata_sent; 710 711 memset(data, 0, sizeof(*data)); 712 data->hdr.type = nvme_tcp_h2c_data; 713 if (!req->h2cdata_left) 714 data->hdr.flags = NVME_TCP_F_DATA_LAST; 715 if (queue->hdr_digest) 716 data->hdr.flags |= NVME_TCP_F_HDGST; 717 if (queue->data_digest) 718 data->hdr.flags |= NVME_TCP_F_DDGST; 719 data->hdr.hlen = sizeof(*data); 720 data->hdr.pdo = data->hdr.hlen + hdgst; 721 data->hdr.plen = 722 cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst); 723 data->ttag = req->ttag; 724 data->command_id = nvme_cid(rq); 725 data->data_offset = cpu_to_le32(req->h2cdata_offset); 726 data->data_length = cpu_to_le32(req->pdu_len); 727 } 728 729 static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue, 730 struct nvme_tcp_r2t_pdu *pdu) 731 { 732 struct nvme_tcp_request *req; 733 struct request *rq; 734 u32 r2t_length = le32_to_cpu(pdu->r2t_length); 735 u32 r2t_offset = le32_to_cpu(pdu->r2t_offset); 736 737 rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id); 738 if (!rq) { 739 dev_err(queue->ctrl->ctrl.device, 740 "got bad r2t.command_id %#x on queue %d\n", 741 pdu->command_id, nvme_tcp_queue_id(queue)); 742 return -ENOENT; 743 } 744 req = blk_mq_rq_to_pdu(rq); 745 746 if (unlikely(!r2t_length)) { 747 dev_err(queue->ctrl->ctrl.device, 748 "req %d r2t len is %u, probably a bug...\n", 749 rq->tag, r2t_length); 750 return -EPROTO; 751 } 752 753 if (unlikely(req->data_sent + r2t_length > req->data_len)) { 754 dev_err(queue->ctrl->ctrl.device, 755 "req %d r2t len %u exceeded data len %u (%zu sent)\n", 756 rq->tag, r2t_length, req->data_len, req->data_sent); 757 return -EPROTO; 758 } 759 760 if (unlikely(r2t_offset < req->data_sent)) { 761 dev_err(queue->ctrl->ctrl.device, 762 "req %d unexpected r2t offset %u (expected %zu)\n", 763 rq->tag, r2t_offset, req->data_sent); 764 return -EPROTO; 765 } 766 767 req->pdu_len = 0; 768 req->h2cdata_left = r2t_length; 769 req->h2cdata_offset = r2t_offset; 770 req->ttag = pdu->ttag; 771 772 nvme_tcp_setup_h2c_data_pdu(req); 773 774 llist_add(&req->lentry, &queue->req_list); 775 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 776 777 return 0; 778 } 779 780 static void nvme_tcp_handle_c2h_term(struct nvme_tcp_queue *queue, 781 struct nvme_tcp_term_pdu *pdu) 782 { 783 u16 fes; 784 const char *msg; 785 u32 plen = le32_to_cpu(pdu->hdr.plen); 786 787 static const char * const msg_table[] = { 788 [NVME_TCP_FES_INVALID_PDU_HDR] = "Invalid PDU Header Field", 789 [NVME_TCP_FES_PDU_SEQ_ERR] = "PDU Sequence Error", 790 [NVME_TCP_FES_HDR_DIGEST_ERR] = "Header Digest Error", 791 [NVME_TCP_FES_DATA_OUT_OF_RANGE] = "Data Transfer Out Of Range", 792 [NVME_TCP_FES_DATA_LIMIT_EXCEEDED] = "Data Transfer Limit Exceeded", 793 [NVME_TCP_FES_UNSUPPORTED_PARAM] = "Unsupported Parameter", 794 }; 795 796 if (plen < NVME_TCP_MIN_C2HTERM_PLEN || 797 plen > NVME_TCP_MAX_C2HTERM_PLEN) { 798 dev_err(queue->ctrl->ctrl.device, 799 "Received a malformed C2HTermReq PDU (plen = %u)\n", 800 plen); 801 return; 802 } 803 804 fes = le16_to_cpu(pdu->fes); 805 if (fes && fes < ARRAY_SIZE(msg_table)) 806 msg = msg_table[fes]; 807 else 808 msg = "Unknown"; 809 810 dev_err(queue->ctrl->ctrl.device, 811 "Received C2HTermReq (FES = %s)\n", msg); 812 } 813 814 static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb, 815 unsigned int *offset, size_t *len) 816 { 817 struct nvme_tcp_hdr *hdr; 818 char *pdu = queue->pdu; 819 size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining); 820 int ret; 821 822 ret = skb_copy_bits(skb, *offset, 823 &pdu[queue->pdu_offset], rcv_len); 824 if (unlikely(ret)) 825 return ret; 826 827 queue->pdu_remaining -= rcv_len; 828 queue->pdu_offset += rcv_len; 829 *offset += rcv_len; 830 *len -= rcv_len; 831 if (queue->pdu_remaining) 832 return 0; 833 834 hdr = queue->pdu; 835 if (unlikely(hdr->hlen != sizeof(struct nvme_tcp_rsp_pdu))) { 836 if (!nvme_tcp_recv_pdu_supported(hdr->type)) 837 goto unsupported_pdu; 838 839 dev_err(queue->ctrl->ctrl.device, 840 "pdu type %d has unexpected header length (%d)\n", 841 hdr->type, hdr->hlen); 842 return -EPROTO; 843 } 844 845 if (unlikely(hdr->type == nvme_tcp_c2h_term)) { 846 /* 847 * C2HTermReq never includes Header or Data digests. 848 * Skip the checks. 849 */ 850 nvme_tcp_handle_c2h_term(queue, (void *)queue->pdu); 851 return -EINVAL; 852 } 853 854 if (queue->hdr_digest) { 855 ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen); 856 if (unlikely(ret)) 857 return ret; 858 } 859 860 861 if (queue->data_digest) { 862 ret = nvme_tcp_check_ddgst(queue, queue->pdu); 863 if (unlikely(ret)) 864 return ret; 865 } 866 867 switch (hdr->type) { 868 case nvme_tcp_c2h_data: 869 return nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu); 870 case nvme_tcp_rsp: 871 nvme_tcp_init_recv_ctx(queue); 872 return nvme_tcp_handle_comp(queue, (void *)queue->pdu); 873 case nvme_tcp_r2t: 874 nvme_tcp_init_recv_ctx(queue); 875 return nvme_tcp_handle_r2t(queue, (void *)queue->pdu); 876 default: 877 goto unsupported_pdu; 878 } 879 880 unsupported_pdu: 881 dev_err(queue->ctrl->ctrl.device, 882 "unsupported pdu type (%d)\n", hdr->type); 883 return -EINVAL; 884 } 885 886 static inline void nvme_tcp_end_request(struct request *rq, u16 status) 887 { 888 union nvme_result res = {}; 889 890 if (!nvme_try_complete_req(rq, cpu_to_le16(status << 1), res)) 891 nvme_complete_rq(rq); 892 } 893 894 static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb, 895 unsigned int *offset, size_t *len) 896 { 897 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu; 898 struct request *rq = 899 nvme_cid_to_rq(nvme_tcp_tagset(queue), pdu->command_id); 900 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 901 902 while (true) { 903 int recv_len, ret; 904 905 recv_len = min_t(size_t, *len, queue->data_remaining); 906 if (!recv_len) 907 break; 908 909 if (!iov_iter_count(&req->iter)) { 910 req->curr_bio = req->curr_bio->bi_next; 911 912 /* 913 * If we don`t have any bios it means that controller 914 * sent more data than we requested, hence error 915 */ 916 if (!req->curr_bio) { 917 dev_err(queue->ctrl->ctrl.device, 918 "queue %d no space in request %#x", 919 nvme_tcp_queue_id(queue), rq->tag); 920 nvme_tcp_init_recv_ctx(queue); 921 return -EIO; 922 } 923 nvme_tcp_init_iter(req, ITER_DEST); 924 } 925 926 /* we can read only from what is left in this bio */ 927 recv_len = min_t(size_t, recv_len, 928 iov_iter_count(&req->iter)); 929 930 if (queue->data_digest) 931 ret = skb_copy_and_hash_datagram_iter(skb, *offset, 932 &req->iter, recv_len, queue->rcv_hash); 933 else 934 ret = skb_copy_datagram_iter(skb, *offset, 935 &req->iter, recv_len); 936 if (ret) { 937 dev_err(queue->ctrl->ctrl.device, 938 "queue %d failed to copy request %#x data", 939 nvme_tcp_queue_id(queue), rq->tag); 940 return ret; 941 } 942 943 *len -= recv_len; 944 *offset += recv_len; 945 queue->data_remaining -= recv_len; 946 } 947 948 if (!queue->data_remaining) { 949 if (queue->data_digest) { 950 nvme_tcp_ddgst_final(queue->rcv_hash, &queue->exp_ddgst); 951 queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH; 952 } else { 953 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) { 954 nvme_tcp_end_request(rq, 955 le16_to_cpu(req->status)); 956 queue->nr_cqe++; 957 } 958 nvme_tcp_init_recv_ctx(queue); 959 } 960 } 961 962 return 0; 963 } 964 965 static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue, 966 struct sk_buff *skb, unsigned int *offset, size_t *len) 967 { 968 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu; 969 char *ddgst = (char *)&queue->recv_ddgst; 970 size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining); 971 off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining; 972 int ret; 973 974 ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len); 975 if (unlikely(ret)) 976 return ret; 977 978 queue->ddgst_remaining -= recv_len; 979 *offset += recv_len; 980 *len -= recv_len; 981 if (queue->ddgst_remaining) 982 return 0; 983 984 if (queue->recv_ddgst != queue->exp_ddgst) { 985 struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue), 986 pdu->command_id); 987 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 988 989 req->status = cpu_to_le16(NVME_SC_DATA_XFER_ERROR); 990 991 dev_err(queue->ctrl->ctrl.device, 992 "data digest error: recv %#x expected %#x\n", 993 le32_to_cpu(queue->recv_ddgst), 994 le32_to_cpu(queue->exp_ddgst)); 995 } 996 997 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) { 998 struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue), 999 pdu->command_id); 1000 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 1001 1002 nvme_tcp_end_request(rq, le16_to_cpu(req->status)); 1003 queue->nr_cqe++; 1004 } 1005 1006 nvme_tcp_init_recv_ctx(queue); 1007 return 0; 1008 } 1009 1010 static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb, 1011 unsigned int offset, size_t len) 1012 { 1013 struct nvme_tcp_queue *queue = desc->arg.data; 1014 size_t consumed = len; 1015 int result; 1016 1017 if (unlikely(!queue->rd_enabled)) 1018 return -EFAULT; 1019 1020 while (len) { 1021 switch (nvme_tcp_recv_state(queue)) { 1022 case NVME_TCP_RECV_PDU: 1023 result = nvme_tcp_recv_pdu(queue, skb, &offset, &len); 1024 break; 1025 case NVME_TCP_RECV_DATA: 1026 result = nvme_tcp_recv_data(queue, skb, &offset, &len); 1027 break; 1028 case NVME_TCP_RECV_DDGST: 1029 result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len); 1030 break; 1031 default: 1032 result = -EFAULT; 1033 } 1034 if (result) { 1035 dev_err(queue->ctrl->ctrl.device, 1036 "receive failed: %d\n", result); 1037 queue->rd_enabled = false; 1038 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 1039 return result; 1040 } 1041 } 1042 1043 return consumed; 1044 } 1045 1046 static void nvme_tcp_data_ready(struct sock *sk) 1047 { 1048 struct nvme_tcp_queue *queue; 1049 1050 trace_sk_data_ready(sk); 1051 1052 read_lock_bh(&sk->sk_callback_lock); 1053 queue = sk->sk_user_data; 1054 if (likely(queue && queue->rd_enabled) && 1055 !test_bit(NVME_TCP_Q_POLLING, &queue->flags)) 1056 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 1057 read_unlock_bh(&sk->sk_callback_lock); 1058 } 1059 1060 static void nvme_tcp_write_space(struct sock *sk) 1061 { 1062 struct nvme_tcp_queue *queue; 1063 1064 read_lock_bh(&sk->sk_callback_lock); 1065 queue = sk->sk_user_data; 1066 if (likely(queue && sk_stream_is_writeable(sk))) { 1067 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1068 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 1069 } 1070 read_unlock_bh(&sk->sk_callback_lock); 1071 } 1072 1073 static void nvme_tcp_state_change(struct sock *sk) 1074 { 1075 struct nvme_tcp_queue *queue; 1076 1077 read_lock_bh(&sk->sk_callback_lock); 1078 queue = sk->sk_user_data; 1079 if (!queue) 1080 goto done; 1081 1082 switch (sk->sk_state) { 1083 case TCP_CLOSE: 1084 case TCP_CLOSE_WAIT: 1085 case TCP_LAST_ACK: 1086 case TCP_FIN_WAIT1: 1087 case TCP_FIN_WAIT2: 1088 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 1089 break; 1090 default: 1091 dev_info(queue->ctrl->ctrl.device, 1092 "queue %d socket state %d\n", 1093 nvme_tcp_queue_id(queue), sk->sk_state); 1094 } 1095 1096 queue->state_change(sk); 1097 done: 1098 read_unlock_bh(&sk->sk_callback_lock); 1099 } 1100 1101 static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue) 1102 { 1103 queue->request = NULL; 1104 } 1105 1106 static void nvme_tcp_fail_request(struct nvme_tcp_request *req) 1107 { 1108 if (nvme_tcp_async_req(req)) { 1109 union nvme_result res = {}; 1110 1111 nvme_complete_async_event(&req->queue->ctrl->ctrl, 1112 cpu_to_le16(NVME_SC_HOST_PATH_ERROR), &res); 1113 } else { 1114 nvme_tcp_end_request(blk_mq_rq_from_pdu(req), 1115 NVME_SC_HOST_PATH_ERROR); 1116 } 1117 } 1118 1119 static int nvme_tcp_try_send_data(struct nvme_tcp_request *req) 1120 { 1121 struct nvme_tcp_queue *queue = req->queue; 1122 int req_data_len = req->data_len; 1123 u32 h2cdata_left = req->h2cdata_left; 1124 1125 while (true) { 1126 struct bio_vec bvec; 1127 struct msghdr msg = { 1128 .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, 1129 }; 1130 struct page *page = nvme_tcp_req_cur_page(req); 1131 size_t offset = nvme_tcp_req_cur_offset(req); 1132 size_t len = nvme_tcp_req_cur_length(req); 1133 bool last = nvme_tcp_pdu_last_send(req, len); 1134 int req_data_sent = req->data_sent; 1135 int ret; 1136 1137 if (last && !queue->data_digest && !nvme_tcp_queue_more(queue)) 1138 msg.msg_flags |= MSG_EOR; 1139 else 1140 msg.msg_flags |= MSG_MORE; 1141 1142 if (!sendpages_ok(page, len, offset)) 1143 msg.msg_flags &= ~MSG_SPLICE_PAGES; 1144 1145 bvec_set_page(&bvec, page, len, offset); 1146 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len); 1147 ret = sock_sendmsg(queue->sock, &msg); 1148 if (ret <= 0) 1149 return ret; 1150 1151 if (queue->data_digest) 1152 nvme_tcp_ddgst_update(queue->snd_hash, page, 1153 offset, ret); 1154 1155 /* 1156 * update the request iterator except for the last payload send 1157 * in the request where we don't want to modify it as we may 1158 * compete with the RX path completing the request. 1159 */ 1160 if (req_data_sent + ret < req_data_len) 1161 nvme_tcp_advance_req(req, ret); 1162 1163 /* fully successful last send in current PDU */ 1164 if (last && ret == len) { 1165 if (queue->data_digest) { 1166 nvme_tcp_ddgst_final(queue->snd_hash, 1167 &req->ddgst); 1168 req->state = NVME_TCP_SEND_DDGST; 1169 req->offset = 0; 1170 } else { 1171 if (h2cdata_left) 1172 nvme_tcp_setup_h2c_data_pdu(req); 1173 else 1174 nvme_tcp_done_send_req(queue); 1175 } 1176 return 1; 1177 } 1178 } 1179 return -EAGAIN; 1180 } 1181 1182 static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req) 1183 { 1184 struct nvme_tcp_queue *queue = req->queue; 1185 struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req); 1186 struct bio_vec bvec; 1187 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, }; 1188 bool inline_data = nvme_tcp_has_inline_data(req); 1189 u8 hdgst = nvme_tcp_hdgst_len(queue); 1190 int len = sizeof(*pdu) + hdgst - req->offset; 1191 int ret; 1192 1193 if (inline_data || nvme_tcp_queue_more(queue)) 1194 msg.msg_flags |= MSG_MORE; 1195 else 1196 msg.msg_flags |= MSG_EOR; 1197 1198 if (queue->hdr_digest && !req->offset) 1199 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); 1200 1201 bvec_set_virt(&bvec, (void *)pdu + req->offset, len); 1202 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len); 1203 ret = sock_sendmsg(queue->sock, &msg); 1204 if (unlikely(ret <= 0)) 1205 return ret; 1206 1207 len -= ret; 1208 if (!len) { 1209 if (inline_data) { 1210 req->state = NVME_TCP_SEND_DATA; 1211 if (queue->data_digest) 1212 crypto_ahash_init(queue->snd_hash); 1213 } else { 1214 nvme_tcp_done_send_req(queue); 1215 } 1216 return 1; 1217 } 1218 req->offset += ret; 1219 1220 return -EAGAIN; 1221 } 1222 1223 static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req) 1224 { 1225 struct nvme_tcp_queue *queue = req->queue; 1226 struct nvme_tcp_data_pdu *pdu = nvme_tcp_req_data_pdu(req); 1227 struct bio_vec bvec; 1228 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_MORE, }; 1229 u8 hdgst = nvme_tcp_hdgst_len(queue); 1230 int len = sizeof(*pdu) - req->offset + hdgst; 1231 int ret; 1232 1233 if (queue->hdr_digest && !req->offset) 1234 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); 1235 1236 if (!req->h2cdata_left) 1237 msg.msg_flags |= MSG_SPLICE_PAGES; 1238 1239 bvec_set_virt(&bvec, (void *)pdu + req->offset, len); 1240 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len); 1241 ret = sock_sendmsg(queue->sock, &msg); 1242 if (unlikely(ret <= 0)) 1243 return ret; 1244 1245 len -= ret; 1246 if (!len) { 1247 req->state = NVME_TCP_SEND_DATA; 1248 if (queue->data_digest) 1249 crypto_ahash_init(queue->snd_hash); 1250 return 1; 1251 } 1252 req->offset += ret; 1253 1254 return -EAGAIN; 1255 } 1256 1257 static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req) 1258 { 1259 struct nvme_tcp_queue *queue = req->queue; 1260 size_t offset = req->offset; 1261 u32 h2cdata_left = req->h2cdata_left; 1262 int ret; 1263 struct msghdr msg = { .msg_flags = MSG_DONTWAIT }; 1264 struct kvec iov = { 1265 .iov_base = (u8 *)&req->ddgst + req->offset, 1266 .iov_len = NVME_TCP_DIGEST_LENGTH - req->offset 1267 }; 1268 1269 if (nvme_tcp_queue_more(queue)) 1270 msg.msg_flags |= MSG_MORE; 1271 else 1272 msg.msg_flags |= MSG_EOR; 1273 1274 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len); 1275 if (unlikely(ret <= 0)) 1276 return ret; 1277 1278 if (offset + ret == NVME_TCP_DIGEST_LENGTH) { 1279 if (h2cdata_left) 1280 nvme_tcp_setup_h2c_data_pdu(req); 1281 else 1282 nvme_tcp_done_send_req(queue); 1283 return 1; 1284 } 1285 1286 req->offset += ret; 1287 return -EAGAIN; 1288 } 1289 1290 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue) 1291 { 1292 struct nvme_tcp_request *req; 1293 unsigned int noreclaim_flag; 1294 int ret = 1; 1295 1296 if (!queue->request) { 1297 queue->request = nvme_tcp_fetch_request(queue); 1298 if (!queue->request) 1299 return 0; 1300 } 1301 req = queue->request; 1302 1303 noreclaim_flag = memalloc_noreclaim_save(); 1304 if (req->state == NVME_TCP_SEND_CMD_PDU) { 1305 ret = nvme_tcp_try_send_cmd_pdu(req); 1306 if (ret <= 0) 1307 goto done; 1308 if (!nvme_tcp_has_inline_data(req)) 1309 goto out; 1310 } 1311 1312 if (req->state == NVME_TCP_SEND_H2C_PDU) { 1313 ret = nvme_tcp_try_send_data_pdu(req); 1314 if (ret <= 0) 1315 goto done; 1316 } 1317 1318 if (req->state == NVME_TCP_SEND_DATA) { 1319 ret = nvme_tcp_try_send_data(req); 1320 if (ret <= 0) 1321 goto done; 1322 } 1323 1324 if (req->state == NVME_TCP_SEND_DDGST) 1325 ret = nvme_tcp_try_send_ddgst(req); 1326 done: 1327 if (ret == -EAGAIN) { 1328 ret = 0; 1329 } else if (ret < 0) { 1330 dev_err(queue->ctrl->ctrl.device, 1331 "failed to send request %d\n", ret); 1332 nvme_tcp_fail_request(queue->request); 1333 nvme_tcp_done_send_req(queue); 1334 } 1335 out: 1336 memalloc_noreclaim_restore(noreclaim_flag); 1337 return ret; 1338 } 1339 1340 static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue) 1341 { 1342 struct socket *sock = queue->sock; 1343 struct sock *sk = sock->sk; 1344 read_descriptor_t rd_desc; 1345 int consumed; 1346 1347 rd_desc.arg.data = queue; 1348 rd_desc.count = 1; 1349 lock_sock(sk); 1350 queue->nr_cqe = 0; 1351 consumed = sock->ops->read_sock(sk, &rd_desc, nvme_tcp_recv_skb); 1352 release_sock(sk); 1353 return consumed; 1354 } 1355 1356 static void nvme_tcp_io_work(struct work_struct *w) 1357 { 1358 struct nvme_tcp_queue *queue = 1359 container_of(w, struct nvme_tcp_queue, io_work); 1360 unsigned long deadline = jiffies + msecs_to_jiffies(1); 1361 1362 do { 1363 bool pending = false; 1364 int result; 1365 1366 if (mutex_trylock(&queue->send_mutex)) { 1367 result = nvme_tcp_try_send(queue); 1368 mutex_unlock(&queue->send_mutex); 1369 if (result > 0) 1370 pending = true; 1371 else if (unlikely(result < 0)) 1372 break; 1373 } 1374 1375 result = nvme_tcp_try_recv(queue); 1376 if (result > 0) 1377 pending = true; 1378 else if (unlikely(result < 0)) 1379 return; 1380 1381 if (!pending || !queue->rd_enabled) 1382 return; 1383 1384 } while (!time_after(jiffies, deadline)); /* quota is exhausted */ 1385 1386 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 1387 } 1388 1389 static void nvme_tcp_free_crypto(struct nvme_tcp_queue *queue) 1390 { 1391 struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash); 1392 1393 ahash_request_free(queue->rcv_hash); 1394 ahash_request_free(queue->snd_hash); 1395 crypto_free_ahash(tfm); 1396 } 1397 1398 static int nvme_tcp_alloc_crypto(struct nvme_tcp_queue *queue) 1399 { 1400 struct crypto_ahash *tfm; 1401 1402 tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC); 1403 if (IS_ERR(tfm)) 1404 return PTR_ERR(tfm); 1405 1406 queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL); 1407 if (!queue->snd_hash) 1408 goto free_tfm; 1409 ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL); 1410 1411 queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL); 1412 if (!queue->rcv_hash) 1413 goto free_snd_hash; 1414 ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL); 1415 1416 return 0; 1417 free_snd_hash: 1418 ahash_request_free(queue->snd_hash); 1419 free_tfm: 1420 crypto_free_ahash(tfm); 1421 return -ENOMEM; 1422 } 1423 1424 static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl) 1425 { 1426 struct nvme_tcp_request *async = &ctrl->async_req; 1427 1428 page_frag_free(async->pdu); 1429 } 1430 1431 static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl) 1432 { 1433 struct nvme_tcp_queue *queue = &ctrl->queues[0]; 1434 struct nvme_tcp_request *async = &ctrl->async_req; 1435 u8 hdgst = nvme_tcp_hdgst_len(queue); 1436 1437 async->pdu = page_frag_alloc(&queue->pf_cache, 1438 sizeof(struct nvme_tcp_cmd_pdu) + hdgst, 1439 GFP_KERNEL | __GFP_ZERO); 1440 if (!async->pdu) 1441 return -ENOMEM; 1442 1443 async->queue = &ctrl->queues[0]; 1444 return 0; 1445 } 1446 1447 static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid) 1448 { 1449 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1450 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1451 unsigned int noreclaim_flag; 1452 1453 if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags)) 1454 return; 1455 1456 if (queue->hdr_digest || queue->data_digest) 1457 nvme_tcp_free_crypto(queue); 1458 1459 page_frag_cache_drain(&queue->pf_cache); 1460 1461 noreclaim_flag = memalloc_noreclaim_save(); 1462 /* ->sock will be released by fput() */ 1463 fput(queue->sock->file); 1464 queue->sock = NULL; 1465 memalloc_noreclaim_restore(noreclaim_flag); 1466 1467 kfree(queue->pdu); 1468 mutex_destroy(&queue->send_mutex); 1469 mutex_destroy(&queue->queue_lock); 1470 } 1471 1472 static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue) 1473 { 1474 struct nvme_tcp_icreq_pdu *icreq; 1475 struct nvme_tcp_icresp_pdu *icresp; 1476 char cbuf[CMSG_LEN(sizeof(char))] = {}; 1477 u8 ctype; 1478 struct msghdr msg = {}; 1479 struct kvec iov; 1480 bool ctrl_hdgst, ctrl_ddgst; 1481 u32 maxh2cdata; 1482 int ret; 1483 1484 icreq = kzalloc(sizeof(*icreq), GFP_KERNEL); 1485 if (!icreq) 1486 return -ENOMEM; 1487 1488 icresp = kzalloc(sizeof(*icresp), GFP_KERNEL); 1489 if (!icresp) { 1490 ret = -ENOMEM; 1491 goto free_icreq; 1492 } 1493 1494 icreq->hdr.type = nvme_tcp_icreq; 1495 icreq->hdr.hlen = sizeof(*icreq); 1496 icreq->hdr.pdo = 0; 1497 icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen); 1498 icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0); 1499 icreq->maxr2t = 0; /* single inflight r2t supported */ 1500 icreq->hpda = 0; /* no alignment constraint */ 1501 if (queue->hdr_digest) 1502 icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE; 1503 if (queue->data_digest) 1504 icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE; 1505 1506 iov.iov_base = icreq; 1507 iov.iov_len = sizeof(*icreq); 1508 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len); 1509 if (ret < 0) { 1510 pr_warn("queue %d: failed to send icreq, error %d\n", 1511 nvme_tcp_queue_id(queue), ret); 1512 goto free_icresp; 1513 } 1514 1515 memset(&msg, 0, sizeof(msg)); 1516 iov.iov_base = icresp; 1517 iov.iov_len = sizeof(*icresp); 1518 if (nvme_tcp_queue_tls(queue)) { 1519 msg.msg_control = cbuf; 1520 msg.msg_controllen = sizeof(cbuf); 1521 } 1522 msg.msg_flags = MSG_WAITALL; 1523 ret = kernel_recvmsg(queue->sock, &msg, &iov, 1, 1524 iov.iov_len, msg.msg_flags); 1525 if (ret >= 0 && ret < sizeof(*icresp)) 1526 ret = -ECONNRESET; 1527 if (ret < 0) { 1528 pr_warn("queue %d: failed to receive icresp, error %d\n", 1529 nvme_tcp_queue_id(queue), ret); 1530 goto free_icresp; 1531 } 1532 ret = -ENOTCONN; 1533 if (nvme_tcp_queue_tls(queue)) { 1534 ctype = tls_get_record_type(queue->sock->sk, 1535 (struct cmsghdr *)cbuf); 1536 if (ctype != TLS_RECORD_TYPE_DATA) { 1537 pr_err("queue %d: unhandled TLS record %d\n", 1538 nvme_tcp_queue_id(queue), ctype); 1539 goto free_icresp; 1540 } 1541 } 1542 ret = -EINVAL; 1543 if (icresp->hdr.type != nvme_tcp_icresp) { 1544 pr_err("queue %d: bad type returned %d\n", 1545 nvme_tcp_queue_id(queue), icresp->hdr.type); 1546 goto free_icresp; 1547 } 1548 1549 if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) { 1550 pr_err("queue %d: bad pdu length returned %d\n", 1551 nvme_tcp_queue_id(queue), icresp->hdr.plen); 1552 goto free_icresp; 1553 } 1554 1555 if (icresp->pfv != NVME_TCP_PFV_1_0) { 1556 pr_err("queue %d: bad pfv returned %d\n", 1557 nvme_tcp_queue_id(queue), icresp->pfv); 1558 goto free_icresp; 1559 } 1560 1561 ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE); 1562 if ((queue->data_digest && !ctrl_ddgst) || 1563 (!queue->data_digest && ctrl_ddgst)) { 1564 pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n", 1565 nvme_tcp_queue_id(queue), 1566 queue->data_digest ? "enabled" : "disabled", 1567 ctrl_ddgst ? "enabled" : "disabled"); 1568 goto free_icresp; 1569 } 1570 1571 ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE); 1572 if ((queue->hdr_digest && !ctrl_hdgst) || 1573 (!queue->hdr_digest && ctrl_hdgst)) { 1574 pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n", 1575 nvme_tcp_queue_id(queue), 1576 queue->hdr_digest ? "enabled" : "disabled", 1577 ctrl_hdgst ? "enabled" : "disabled"); 1578 goto free_icresp; 1579 } 1580 1581 if (icresp->cpda != 0) { 1582 pr_err("queue %d: unsupported cpda returned %d\n", 1583 nvme_tcp_queue_id(queue), icresp->cpda); 1584 goto free_icresp; 1585 } 1586 1587 maxh2cdata = le32_to_cpu(icresp->maxdata); 1588 if ((maxh2cdata % 4) || (maxh2cdata < NVME_TCP_MIN_MAXH2CDATA)) { 1589 pr_err("queue %d: invalid maxh2cdata returned %u\n", 1590 nvme_tcp_queue_id(queue), maxh2cdata); 1591 goto free_icresp; 1592 } 1593 queue->maxh2cdata = maxh2cdata; 1594 1595 ret = 0; 1596 free_icresp: 1597 kfree(icresp); 1598 free_icreq: 1599 kfree(icreq); 1600 return ret; 1601 } 1602 1603 static bool nvme_tcp_admin_queue(struct nvme_tcp_queue *queue) 1604 { 1605 return nvme_tcp_queue_id(queue) == 0; 1606 } 1607 1608 static bool nvme_tcp_default_queue(struct nvme_tcp_queue *queue) 1609 { 1610 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1611 int qid = nvme_tcp_queue_id(queue); 1612 1613 return !nvme_tcp_admin_queue(queue) && 1614 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT]; 1615 } 1616 1617 static bool nvme_tcp_read_queue(struct nvme_tcp_queue *queue) 1618 { 1619 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1620 int qid = nvme_tcp_queue_id(queue); 1621 1622 return !nvme_tcp_admin_queue(queue) && 1623 !nvme_tcp_default_queue(queue) && 1624 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] + 1625 ctrl->io_queues[HCTX_TYPE_READ]; 1626 } 1627 1628 static bool nvme_tcp_poll_queue(struct nvme_tcp_queue *queue) 1629 { 1630 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1631 int qid = nvme_tcp_queue_id(queue); 1632 1633 return !nvme_tcp_admin_queue(queue) && 1634 !nvme_tcp_default_queue(queue) && 1635 !nvme_tcp_read_queue(queue) && 1636 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] + 1637 ctrl->io_queues[HCTX_TYPE_READ] + 1638 ctrl->io_queues[HCTX_TYPE_POLL]; 1639 } 1640 1641 /* 1642 * Track the number of queues assigned to each cpu using a global per-cpu 1643 * counter and select the least used cpu from the mq_map. Our goal is to spread 1644 * different controllers I/O threads across different cpu cores. 1645 * 1646 * Note that the accounting is not 100% perfect, but we don't need to be, we're 1647 * simply putting our best effort to select the best candidate cpu core that we 1648 * find at any given point. 1649 */ 1650 static void nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue *queue) 1651 { 1652 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1653 struct blk_mq_tag_set *set = &ctrl->tag_set; 1654 int qid = nvme_tcp_queue_id(queue) - 1; 1655 unsigned int *mq_map = NULL; 1656 int cpu, min_queues = INT_MAX, io_cpu; 1657 1658 if (wq_unbound) 1659 goto out; 1660 1661 if (nvme_tcp_default_queue(queue)) 1662 mq_map = set->map[HCTX_TYPE_DEFAULT].mq_map; 1663 else if (nvme_tcp_read_queue(queue)) 1664 mq_map = set->map[HCTX_TYPE_READ].mq_map; 1665 else if (nvme_tcp_poll_queue(queue)) 1666 mq_map = set->map[HCTX_TYPE_POLL].mq_map; 1667 1668 if (WARN_ON(!mq_map)) 1669 goto out; 1670 1671 /* Search for the least used cpu from the mq_map */ 1672 io_cpu = WORK_CPU_UNBOUND; 1673 for_each_online_cpu(cpu) { 1674 int num_queues = atomic_read(&nvme_tcp_cpu_queues[cpu]); 1675 1676 if (mq_map[cpu] != qid) 1677 continue; 1678 if (num_queues < min_queues) { 1679 io_cpu = cpu; 1680 min_queues = num_queues; 1681 } 1682 } 1683 if (io_cpu != WORK_CPU_UNBOUND) { 1684 queue->io_cpu = io_cpu; 1685 atomic_inc(&nvme_tcp_cpu_queues[io_cpu]); 1686 set_bit(NVME_TCP_Q_IO_CPU_SET, &queue->flags); 1687 } 1688 out: 1689 dev_dbg(ctrl->ctrl.device, "queue %d: using cpu %d\n", 1690 qid, queue->io_cpu); 1691 } 1692 1693 static void nvme_tcp_tls_done(void *data, int status, key_serial_t pskid) 1694 { 1695 struct nvme_tcp_queue *queue = data; 1696 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1697 int qid = nvme_tcp_queue_id(queue); 1698 struct key *tls_key; 1699 1700 dev_dbg(ctrl->ctrl.device, "queue %d: TLS handshake done, key %x, status %d\n", 1701 qid, pskid, status); 1702 1703 if (status) { 1704 queue->tls_err = -status; 1705 goto out_complete; 1706 } 1707 1708 tls_key = nvme_tls_key_lookup(pskid); 1709 if (IS_ERR(tls_key)) { 1710 dev_warn(ctrl->ctrl.device, "queue %d: Invalid key %x\n", 1711 qid, pskid); 1712 queue->tls_err = -ENOKEY; 1713 } else { 1714 queue->tls_enabled = true; 1715 if (qid == 0) 1716 ctrl->ctrl.tls_pskid = key_serial(tls_key); 1717 key_put(tls_key); 1718 queue->tls_err = 0; 1719 } 1720 1721 out_complete: 1722 complete(&queue->tls_complete); 1723 } 1724 1725 static int nvme_tcp_start_tls(struct nvme_ctrl *nctrl, 1726 struct nvme_tcp_queue *queue, 1727 key_serial_t pskid) 1728 { 1729 int qid = nvme_tcp_queue_id(queue); 1730 int ret; 1731 struct tls_handshake_args args; 1732 unsigned long tmo = tls_handshake_timeout * HZ; 1733 key_serial_t keyring = nvme_keyring_id(); 1734 1735 dev_dbg(nctrl->device, "queue %d: start TLS with key %x\n", 1736 qid, pskid); 1737 memset(&args, 0, sizeof(args)); 1738 args.ta_sock = queue->sock; 1739 args.ta_done = nvme_tcp_tls_done; 1740 args.ta_data = queue; 1741 args.ta_my_peerids[0] = pskid; 1742 args.ta_num_peerids = 1; 1743 if (nctrl->opts->keyring) 1744 keyring = key_serial(nctrl->opts->keyring); 1745 args.ta_keyring = keyring; 1746 args.ta_timeout_ms = tls_handshake_timeout * 1000; 1747 queue->tls_err = -EOPNOTSUPP; 1748 init_completion(&queue->tls_complete); 1749 ret = tls_client_hello_psk(&args, GFP_KERNEL); 1750 if (ret) { 1751 dev_err(nctrl->device, "queue %d: failed to start TLS: %d\n", 1752 qid, ret); 1753 return ret; 1754 } 1755 ret = wait_for_completion_interruptible_timeout(&queue->tls_complete, tmo); 1756 if (ret <= 0) { 1757 if (ret == 0) 1758 ret = -ETIMEDOUT; 1759 1760 dev_err(nctrl->device, 1761 "queue %d: TLS handshake failed, error %d\n", 1762 qid, ret); 1763 tls_handshake_cancel(queue->sock->sk); 1764 } else { 1765 dev_dbg(nctrl->device, 1766 "queue %d: TLS handshake complete, error %d\n", 1767 qid, queue->tls_err); 1768 ret = queue->tls_err; 1769 } 1770 return ret; 1771 } 1772 1773 static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl, int qid, 1774 key_serial_t pskid) 1775 { 1776 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1777 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1778 int ret, rcv_pdu_size; 1779 struct file *sock_file; 1780 1781 mutex_init(&queue->queue_lock); 1782 queue->ctrl = ctrl; 1783 init_llist_head(&queue->req_list); 1784 INIT_LIST_HEAD(&queue->send_list); 1785 mutex_init(&queue->send_mutex); 1786 INIT_WORK(&queue->io_work, nvme_tcp_io_work); 1787 1788 if (qid > 0) 1789 queue->cmnd_capsule_len = nctrl->ioccsz * 16; 1790 else 1791 queue->cmnd_capsule_len = sizeof(struct nvme_command) + 1792 NVME_TCP_ADMIN_CCSZ; 1793 1794 ret = sock_create_kern(current->nsproxy->net_ns, 1795 ctrl->addr.ss_family, SOCK_STREAM, 1796 IPPROTO_TCP, &queue->sock); 1797 if (ret) { 1798 dev_err(nctrl->device, 1799 "failed to create socket: %d\n", ret); 1800 goto err_destroy_mutex; 1801 } 1802 1803 sock_file = sock_alloc_file(queue->sock, O_CLOEXEC, NULL); 1804 if (IS_ERR(sock_file)) { 1805 ret = PTR_ERR(sock_file); 1806 goto err_destroy_mutex; 1807 } 1808 1809 sk_net_refcnt_upgrade(queue->sock->sk); 1810 nvme_tcp_reclassify_socket(queue->sock); 1811 1812 /* Single syn retry */ 1813 tcp_sock_set_syncnt(queue->sock->sk, 1); 1814 1815 /* Set TCP no delay */ 1816 tcp_sock_set_nodelay(queue->sock->sk); 1817 1818 /* 1819 * Cleanup whatever is sitting in the TCP transmit queue on socket 1820 * close. This is done to prevent stale data from being sent should 1821 * the network connection be restored before TCP times out. 1822 */ 1823 sock_no_linger(queue->sock->sk); 1824 1825 if (so_priority > 0) 1826 sock_set_priority(queue->sock->sk, so_priority); 1827 1828 /* Set socket type of service */ 1829 if (nctrl->opts->tos >= 0) 1830 ip_sock_set_tos(queue->sock->sk, nctrl->opts->tos); 1831 1832 /* Set 10 seconds timeout for icresp recvmsg */ 1833 queue->sock->sk->sk_rcvtimeo = 10 * HZ; 1834 1835 queue->sock->sk->sk_allocation = GFP_ATOMIC; 1836 queue->sock->sk->sk_use_task_frag = false; 1837 queue->io_cpu = WORK_CPU_UNBOUND; 1838 queue->request = NULL; 1839 queue->data_remaining = 0; 1840 queue->ddgst_remaining = 0; 1841 queue->pdu_remaining = 0; 1842 queue->pdu_offset = 0; 1843 sk_set_memalloc(queue->sock->sk); 1844 1845 if (nctrl->opts->mask & NVMF_OPT_HOST_TRADDR) { 1846 ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr, 1847 sizeof(ctrl->src_addr)); 1848 if (ret) { 1849 dev_err(nctrl->device, 1850 "failed to bind queue %d socket %d\n", 1851 qid, ret); 1852 goto err_sock; 1853 } 1854 } 1855 1856 if (nctrl->opts->mask & NVMF_OPT_HOST_IFACE) { 1857 char *iface = nctrl->opts->host_iface; 1858 sockptr_t optval = KERNEL_SOCKPTR(iface); 1859 1860 ret = sock_setsockopt(queue->sock, SOL_SOCKET, SO_BINDTODEVICE, 1861 optval, strlen(iface)); 1862 if (ret) { 1863 dev_err(nctrl->device, 1864 "failed to bind to interface %s queue %d err %d\n", 1865 iface, qid, ret); 1866 goto err_sock; 1867 } 1868 } 1869 1870 queue->hdr_digest = nctrl->opts->hdr_digest; 1871 queue->data_digest = nctrl->opts->data_digest; 1872 if (queue->hdr_digest || queue->data_digest) { 1873 ret = nvme_tcp_alloc_crypto(queue); 1874 if (ret) { 1875 dev_err(nctrl->device, 1876 "failed to allocate queue %d crypto\n", qid); 1877 goto err_sock; 1878 } 1879 } 1880 1881 rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) + 1882 nvme_tcp_hdgst_len(queue); 1883 queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL); 1884 if (!queue->pdu) { 1885 ret = -ENOMEM; 1886 goto err_crypto; 1887 } 1888 1889 dev_dbg(nctrl->device, "connecting queue %d\n", 1890 nvme_tcp_queue_id(queue)); 1891 1892 ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr, 1893 sizeof(ctrl->addr), 0); 1894 if (ret) { 1895 dev_err(nctrl->device, 1896 "failed to connect socket: %d\n", ret); 1897 goto err_rcv_pdu; 1898 } 1899 1900 /* If PSKs are configured try to start TLS */ 1901 if (nvme_tcp_tls_configured(nctrl) && pskid) { 1902 ret = nvme_tcp_start_tls(nctrl, queue, pskid); 1903 if (ret) 1904 goto err_init_connect; 1905 } 1906 1907 ret = nvme_tcp_init_connection(queue); 1908 if (ret) 1909 goto err_init_connect; 1910 1911 set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags); 1912 1913 return 0; 1914 1915 err_init_connect: 1916 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 1917 err_rcv_pdu: 1918 kfree(queue->pdu); 1919 err_crypto: 1920 if (queue->hdr_digest || queue->data_digest) 1921 nvme_tcp_free_crypto(queue); 1922 err_sock: 1923 /* ->sock will be released by fput() */ 1924 fput(queue->sock->file); 1925 queue->sock = NULL; 1926 err_destroy_mutex: 1927 mutex_destroy(&queue->send_mutex); 1928 mutex_destroy(&queue->queue_lock); 1929 return ret; 1930 } 1931 1932 static void nvme_tcp_restore_sock_ops(struct nvme_tcp_queue *queue) 1933 { 1934 struct socket *sock = queue->sock; 1935 1936 write_lock_bh(&sock->sk->sk_callback_lock); 1937 sock->sk->sk_user_data = NULL; 1938 sock->sk->sk_data_ready = queue->data_ready; 1939 sock->sk->sk_state_change = queue->state_change; 1940 sock->sk->sk_write_space = queue->write_space; 1941 write_unlock_bh(&sock->sk->sk_callback_lock); 1942 } 1943 1944 static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue) 1945 { 1946 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 1947 nvme_tcp_restore_sock_ops(queue); 1948 cancel_work_sync(&queue->io_work); 1949 } 1950 1951 static void nvme_tcp_stop_queue_nowait(struct nvme_ctrl *nctrl, int qid) 1952 { 1953 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1954 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1955 1956 if (!test_bit(NVME_TCP_Q_ALLOCATED, &queue->flags)) 1957 return; 1958 1959 if (test_and_clear_bit(NVME_TCP_Q_IO_CPU_SET, &queue->flags)) 1960 atomic_dec(&nvme_tcp_cpu_queues[queue->io_cpu]); 1961 1962 mutex_lock(&queue->queue_lock); 1963 if (test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags)) 1964 __nvme_tcp_stop_queue(queue); 1965 /* Stopping the queue will disable TLS */ 1966 queue->tls_enabled = false; 1967 mutex_unlock(&queue->queue_lock); 1968 } 1969 1970 static void nvme_tcp_wait_queue(struct nvme_ctrl *nctrl, int qid) 1971 { 1972 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1973 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1974 int timeout = 100; 1975 1976 while (timeout > 0) { 1977 if (!test_bit(NVME_TCP_Q_ALLOCATED, &queue->flags) || 1978 !sk_wmem_alloc_get(queue->sock->sk)) 1979 return; 1980 msleep(2); 1981 timeout -= 2; 1982 } 1983 dev_warn(nctrl->device, 1984 "qid %d: timeout draining sock wmem allocation expired\n", 1985 qid); 1986 } 1987 1988 static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid) 1989 { 1990 nvme_tcp_stop_queue_nowait(nctrl, qid); 1991 nvme_tcp_wait_queue(nctrl, qid); 1992 } 1993 1994 1995 static void nvme_tcp_setup_sock_ops(struct nvme_tcp_queue *queue) 1996 { 1997 write_lock_bh(&queue->sock->sk->sk_callback_lock); 1998 queue->sock->sk->sk_user_data = queue; 1999 queue->state_change = queue->sock->sk->sk_state_change; 2000 queue->data_ready = queue->sock->sk->sk_data_ready; 2001 queue->write_space = queue->sock->sk->sk_write_space; 2002 queue->sock->sk->sk_data_ready = nvme_tcp_data_ready; 2003 queue->sock->sk->sk_state_change = nvme_tcp_state_change; 2004 queue->sock->sk->sk_write_space = nvme_tcp_write_space; 2005 #ifdef CONFIG_NET_RX_BUSY_POLL 2006 queue->sock->sk->sk_ll_usec = 1; 2007 #endif 2008 write_unlock_bh(&queue->sock->sk->sk_callback_lock); 2009 } 2010 2011 static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx) 2012 { 2013 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 2014 struct nvme_tcp_queue *queue = &ctrl->queues[idx]; 2015 int ret; 2016 2017 queue->rd_enabled = true; 2018 nvme_tcp_init_recv_ctx(queue); 2019 nvme_tcp_setup_sock_ops(queue); 2020 2021 if (idx) { 2022 nvme_tcp_set_queue_io_cpu(queue); 2023 ret = nvmf_connect_io_queue(nctrl, idx); 2024 } else 2025 ret = nvmf_connect_admin_queue(nctrl); 2026 2027 if (!ret) { 2028 set_bit(NVME_TCP_Q_LIVE, &queue->flags); 2029 } else { 2030 if (test_bit(NVME_TCP_Q_ALLOCATED, &queue->flags)) 2031 __nvme_tcp_stop_queue(queue); 2032 dev_err(nctrl->device, 2033 "failed to connect queue: %d ret=%d\n", idx, ret); 2034 } 2035 return ret; 2036 } 2037 2038 static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl) 2039 { 2040 if (to_tcp_ctrl(ctrl)->async_req.pdu) { 2041 cancel_work_sync(&ctrl->async_event_work); 2042 nvme_tcp_free_async_req(to_tcp_ctrl(ctrl)); 2043 to_tcp_ctrl(ctrl)->async_req.pdu = NULL; 2044 } 2045 2046 nvme_tcp_free_queue(ctrl, 0); 2047 } 2048 2049 static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl) 2050 { 2051 int i; 2052 2053 for (i = 1; i < ctrl->queue_count; i++) 2054 nvme_tcp_free_queue(ctrl, i); 2055 } 2056 2057 static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl) 2058 { 2059 int i; 2060 2061 for (i = 1; i < ctrl->queue_count; i++) 2062 nvme_tcp_stop_queue_nowait(ctrl, i); 2063 for (i = 1; i < ctrl->queue_count; i++) 2064 nvme_tcp_wait_queue(ctrl, i); 2065 } 2066 2067 static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl, 2068 int first, int last) 2069 { 2070 int i, ret; 2071 2072 for (i = first; i < last; i++) { 2073 ret = nvme_tcp_start_queue(ctrl, i); 2074 if (ret) 2075 goto out_stop_queues; 2076 } 2077 2078 return 0; 2079 2080 out_stop_queues: 2081 for (i--; i >= first; i--) 2082 nvme_tcp_stop_queue(ctrl, i); 2083 return ret; 2084 } 2085 2086 static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl) 2087 { 2088 int ret; 2089 key_serial_t pskid = 0; 2090 2091 if (nvme_tcp_tls_configured(ctrl)) { 2092 if (ctrl->opts->tls_key) 2093 pskid = key_serial(ctrl->opts->tls_key); 2094 else if (ctrl->opts->tls) { 2095 pskid = nvme_tls_psk_default(ctrl->opts->keyring, 2096 ctrl->opts->host->nqn, 2097 ctrl->opts->subsysnqn); 2098 if (!pskid) { 2099 dev_err(ctrl->device, "no valid PSK found\n"); 2100 return -ENOKEY; 2101 } 2102 } 2103 } 2104 2105 ret = nvme_tcp_alloc_queue(ctrl, 0, pskid); 2106 if (ret) 2107 return ret; 2108 2109 ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl)); 2110 if (ret) 2111 goto out_free_queue; 2112 2113 return 0; 2114 2115 out_free_queue: 2116 nvme_tcp_free_queue(ctrl, 0); 2117 return ret; 2118 } 2119 2120 static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl) 2121 { 2122 int i, ret; 2123 2124 if (nvme_tcp_tls_configured(ctrl)) { 2125 if (ctrl->opts->concat) { 2126 /* 2127 * The generated PSK is stored in the 2128 * fabric options 2129 */ 2130 if (!ctrl->opts->tls_key) { 2131 dev_err(ctrl->device, "no PSK generated\n"); 2132 return -ENOKEY; 2133 } 2134 if (ctrl->tls_pskid && 2135 ctrl->tls_pskid != key_serial(ctrl->opts->tls_key)) { 2136 dev_err(ctrl->device, "Stale PSK id %08x\n", ctrl->tls_pskid); 2137 ctrl->tls_pskid = 0; 2138 } 2139 } else if (!ctrl->tls_pskid) { 2140 dev_err(ctrl->device, "no PSK negotiated\n"); 2141 return -ENOKEY; 2142 } 2143 } 2144 2145 for (i = 1; i < ctrl->queue_count; i++) { 2146 ret = nvme_tcp_alloc_queue(ctrl, i, 2147 ctrl->tls_pskid); 2148 if (ret) 2149 goto out_free_queues; 2150 } 2151 2152 return 0; 2153 2154 out_free_queues: 2155 for (i--; i >= 1; i--) 2156 nvme_tcp_free_queue(ctrl, i); 2157 2158 return ret; 2159 } 2160 2161 static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl) 2162 { 2163 unsigned int nr_io_queues; 2164 int ret; 2165 2166 nr_io_queues = nvmf_nr_io_queues(ctrl->opts); 2167 ret = nvme_set_queue_count(ctrl, &nr_io_queues); 2168 if (ret) 2169 return ret; 2170 2171 if (nr_io_queues == 0) { 2172 dev_err(ctrl->device, 2173 "unable to set any I/O queues\n"); 2174 return -ENOMEM; 2175 } 2176 2177 ctrl->queue_count = nr_io_queues + 1; 2178 dev_info(ctrl->device, 2179 "creating %d I/O queues.\n", nr_io_queues); 2180 2181 nvmf_set_io_queues(ctrl->opts, nr_io_queues, 2182 to_tcp_ctrl(ctrl)->io_queues); 2183 return __nvme_tcp_alloc_io_queues(ctrl); 2184 } 2185 2186 static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new) 2187 { 2188 int ret, nr_queues; 2189 2190 ret = nvme_tcp_alloc_io_queues(ctrl); 2191 if (ret) 2192 return ret; 2193 2194 if (new) { 2195 ret = nvme_alloc_io_tag_set(ctrl, &to_tcp_ctrl(ctrl)->tag_set, 2196 &nvme_tcp_mq_ops, 2197 ctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2, 2198 sizeof(struct nvme_tcp_request)); 2199 if (ret) 2200 goto out_free_io_queues; 2201 } 2202 2203 /* 2204 * Only start IO queues for which we have allocated the tagset 2205 * and limitted it to the available queues. On reconnects, the 2206 * queue number might have changed. 2207 */ 2208 nr_queues = min(ctrl->tagset->nr_hw_queues + 1, ctrl->queue_count); 2209 ret = nvme_tcp_start_io_queues(ctrl, 1, nr_queues); 2210 if (ret) 2211 goto out_cleanup_connect_q; 2212 2213 if (!new) { 2214 nvme_start_freeze(ctrl); 2215 nvme_unquiesce_io_queues(ctrl); 2216 if (!nvme_wait_freeze_timeout(ctrl, NVME_IO_TIMEOUT)) { 2217 /* 2218 * If we timed out waiting for freeze we are likely to 2219 * be stuck. Fail the controller initialization just 2220 * to be safe. 2221 */ 2222 ret = -ENODEV; 2223 nvme_unfreeze(ctrl); 2224 goto out_wait_freeze_timed_out; 2225 } 2226 blk_mq_update_nr_hw_queues(ctrl->tagset, 2227 ctrl->queue_count - 1); 2228 nvme_unfreeze(ctrl); 2229 } 2230 2231 /* 2232 * If the number of queues has increased (reconnect case) 2233 * start all new queues now. 2234 */ 2235 ret = nvme_tcp_start_io_queues(ctrl, nr_queues, 2236 ctrl->tagset->nr_hw_queues + 1); 2237 if (ret) 2238 goto out_wait_freeze_timed_out; 2239 2240 return 0; 2241 2242 out_wait_freeze_timed_out: 2243 nvme_quiesce_io_queues(ctrl); 2244 nvme_sync_io_queues(ctrl); 2245 nvme_tcp_stop_io_queues(ctrl); 2246 out_cleanup_connect_q: 2247 nvme_cancel_tagset(ctrl); 2248 if (new) 2249 nvme_remove_io_tag_set(ctrl); 2250 out_free_io_queues: 2251 nvme_tcp_free_io_queues(ctrl); 2252 return ret; 2253 } 2254 2255 static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new) 2256 { 2257 int error; 2258 2259 error = nvme_tcp_alloc_admin_queue(ctrl); 2260 if (error) 2261 return error; 2262 2263 if (new) { 2264 error = nvme_alloc_admin_tag_set(ctrl, 2265 &to_tcp_ctrl(ctrl)->admin_tag_set, 2266 &nvme_tcp_admin_mq_ops, 2267 sizeof(struct nvme_tcp_request)); 2268 if (error) 2269 goto out_free_queue; 2270 } 2271 2272 error = nvme_tcp_start_queue(ctrl, 0); 2273 if (error) 2274 goto out_cleanup_tagset; 2275 2276 error = nvme_enable_ctrl(ctrl); 2277 if (error) 2278 goto out_stop_queue; 2279 2280 nvme_unquiesce_admin_queue(ctrl); 2281 2282 error = nvme_init_ctrl_finish(ctrl, false); 2283 if (error) 2284 goto out_quiesce_queue; 2285 2286 return 0; 2287 2288 out_quiesce_queue: 2289 nvme_quiesce_admin_queue(ctrl); 2290 blk_sync_queue(ctrl->admin_q); 2291 out_stop_queue: 2292 nvme_tcp_stop_queue(ctrl, 0); 2293 nvme_cancel_admin_tagset(ctrl); 2294 out_cleanup_tagset: 2295 if (new) 2296 nvme_remove_admin_tag_set(ctrl); 2297 out_free_queue: 2298 nvme_tcp_free_admin_queue(ctrl); 2299 return error; 2300 } 2301 2302 static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl, 2303 bool remove) 2304 { 2305 nvme_quiesce_admin_queue(ctrl); 2306 blk_sync_queue(ctrl->admin_q); 2307 nvme_tcp_stop_queue(ctrl, 0); 2308 nvme_cancel_admin_tagset(ctrl); 2309 if (remove) { 2310 nvme_unquiesce_admin_queue(ctrl); 2311 nvme_remove_admin_tag_set(ctrl); 2312 } 2313 nvme_tcp_free_admin_queue(ctrl); 2314 if (ctrl->tls_pskid) { 2315 dev_dbg(ctrl->device, "Wipe negotiated TLS_PSK %08x\n", 2316 ctrl->tls_pskid); 2317 ctrl->tls_pskid = 0; 2318 } 2319 } 2320 2321 static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl, 2322 bool remove) 2323 { 2324 if (ctrl->queue_count <= 1) 2325 return; 2326 nvme_quiesce_io_queues(ctrl); 2327 nvme_sync_io_queues(ctrl); 2328 nvme_tcp_stop_io_queues(ctrl); 2329 nvme_cancel_tagset(ctrl); 2330 if (remove) { 2331 nvme_unquiesce_io_queues(ctrl); 2332 nvme_remove_io_tag_set(ctrl); 2333 } 2334 nvme_tcp_free_io_queues(ctrl); 2335 } 2336 2337 static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl, 2338 int status) 2339 { 2340 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl); 2341 2342 /* If we are resetting/deleting then do nothing */ 2343 if (state != NVME_CTRL_CONNECTING) { 2344 WARN_ON_ONCE(state == NVME_CTRL_NEW || state == NVME_CTRL_LIVE); 2345 return; 2346 } 2347 2348 if (nvmf_should_reconnect(ctrl, status)) { 2349 dev_info(ctrl->device, "Reconnecting in %d seconds...\n", 2350 ctrl->opts->reconnect_delay); 2351 queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work, 2352 ctrl->opts->reconnect_delay * HZ); 2353 } else { 2354 dev_info(ctrl->device, "Removing controller (%d)...\n", 2355 status); 2356 nvme_delete_ctrl(ctrl); 2357 } 2358 } 2359 2360 /* 2361 * The TLS key is set by secure concatenation after negotiation has been 2362 * completed on the admin queue. We need to revoke the key when: 2363 * - concatenation is enabled (otherwise it's a static key set by the user) 2364 * and 2365 * - the generated key is present in ctrl->tls_key (otherwise there's nothing 2366 * to revoke) 2367 * and 2368 * - a valid PSK key ID has been set in ctrl->tls_pskid (otherwise TLS 2369 * negotiation has not run). 2370 * 2371 * We cannot always revoke the key as nvme_tcp_alloc_admin_queue() is called 2372 * twice during secure concatenation, once on a 'normal' connection to run the 2373 * DH-HMAC-CHAP negotiation (which generates the key, so it _must not_ be set), 2374 * and once after the negotiation (which uses the key, so it _must_ be set). 2375 */ 2376 static bool nvme_tcp_key_revoke_needed(struct nvme_ctrl *ctrl) 2377 { 2378 return ctrl->opts->concat && ctrl->opts->tls_key && ctrl->tls_pskid; 2379 } 2380 2381 static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new) 2382 { 2383 struct nvmf_ctrl_options *opts = ctrl->opts; 2384 int ret; 2385 2386 ret = nvme_tcp_configure_admin_queue(ctrl, new); 2387 if (ret) 2388 return ret; 2389 2390 if (ctrl->opts->concat && !ctrl->tls_pskid) { 2391 /* See comments for nvme_tcp_key_revoke_needed() */ 2392 dev_dbg(ctrl->device, "restart admin queue for secure concatenation\n"); 2393 nvme_stop_keep_alive(ctrl); 2394 nvme_tcp_teardown_admin_queue(ctrl, false); 2395 ret = nvme_tcp_configure_admin_queue(ctrl, false); 2396 if (ret) 2397 return ret; 2398 } 2399 2400 if (ctrl->icdoff) { 2401 ret = -EOPNOTSUPP; 2402 dev_err(ctrl->device, "icdoff is not supported!\n"); 2403 goto destroy_admin; 2404 } 2405 2406 if (!nvme_ctrl_sgl_supported(ctrl)) { 2407 ret = -EOPNOTSUPP; 2408 dev_err(ctrl->device, "Mandatory sgls are not supported!\n"); 2409 goto destroy_admin; 2410 } 2411 2412 if (opts->queue_size > ctrl->sqsize + 1) 2413 dev_warn(ctrl->device, 2414 "queue_size %zu > ctrl sqsize %u, clamping down\n", 2415 opts->queue_size, ctrl->sqsize + 1); 2416 2417 if (ctrl->sqsize + 1 > ctrl->maxcmd) { 2418 dev_warn(ctrl->device, 2419 "sqsize %u > ctrl maxcmd %u, clamping down\n", 2420 ctrl->sqsize + 1, ctrl->maxcmd); 2421 ctrl->sqsize = ctrl->maxcmd - 1; 2422 } 2423 2424 if (ctrl->queue_count > 1) { 2425 ret = nvme_tcp_configure_io_queues(ctrl, new); 2426 if (ret) 2427 goto destroy_admin; 2428 } 2429 2430 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) { 2431 /* 2432 * state change failure is ok if we started ctrl delete, 2433 * unless we're during creation of a new controller to 2434 * avoid races with teardown flow. 2435 */ 2436 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl); 2437 2438 WARN_ON_ONCE(state != NVME_CTRL_DELETING && 2439 state != NVME_CTRL_DELETING_NOIO); 2440 WARN_ON_ONCE(new); 2441 ret = -EINVAL; 2442 goto destroy_io; 2443 } 2444 2445 nvme_start_ctrl(ctrl); 2446 return 0; 2447 2448 destroy_io: 2449 if (ctrl->queue_count > 1) { 2450 nvme_quiesce_io_queues(ctrl); 2451 nvme_sync_io_queues(ctrl); 2452 nvme_tcp_stop_io_queues(ctrl); 2453 nvme_cancel_tagset(ctrl); 2454 if (new) 2455 nvme_remove_io_tag_set(ctrl); 2456 nvme_tcp_free_io_queues(ctrl); 2457 } 2458 destroy_admin: 2459 nvme_stop_keep_alive(ctrl); 2460 nvme_tcp_teardown_admin_queue(ctrl, new); 2461 return ret; 2462 } 2463 2464 static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work) 2465 { 2466 struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work), 2467 struct nvme_tcp_ctrl, connect_work); 2468 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl; 2469 int ret; 2470 2471 ++ctrl->nr_reconnects; 2472 2473 ret = nvme_tcp_setup_ctrl(ctrl, false); 2474 if (ret) 2475 goto requeue; 2476 2477 dev_info(ctrl->device, "Successfully reconnected (attempt %d/%d)\n", 2478 ctrl->nr_reconnects, ctrl->opts->max_reconnects); 2479 2480 ctrl->nr_reconnects = 0; 2481 2482 return; 2483 2484 requeue: 2485 dev_info(ctrl->device, "Failed reconnect attempt %d/%d\n", 2486 ctrl->nr_reconnects, ctrl->opts->max_reconnects); 2487 nvme_tcp_reconnect_or_remove(ctrl, ret); 2488 } 2489 2490 static void nvme_tcp_error_recovery_work(struct work_struct *work) 2491 { 2492 struct nvme_tcp_ctrl *tcp_ctrl = container_of(work, 2493 struct nvme_tcp_ctrl, err_work); 2494 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl; 2495 2496 if (nvme_tcp_key_revoke_needed(ctrl)) 2497 nvme_auth_revoke_tls_key(ctrl); 2498 nvme_stop_keep_alive(ctrl); 2499 flush_work(&ctrl->async_event_work); 2500 nvme_tcp_teardown_io_queues(ctrl, false); 2501 /* unquiesce to fail fast pending requests */ 2502 nvme_unquiesce_io_queues(ctrl); 2503 nvme_tcp_teardown_admin_queue(ctrl, false); 2504 nvme_unquiesce_admin_queue(ctrl); 2505 nvme_auth_stop(ctrl); 2506 2507 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) { 2508 /* state change failure is ok if we started ctrl delete */ 2509 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl); 2510 2511 WARN_ON_ONCE(state != NVME_CTRL_DELETING && 2512 state != NVME_CTRL_DELETING_NOIO); 2513 return; 2514 } 2515 2516 nvme_tcp_reconnect_or_remove(ctrl, 0); 2517 } 2518 2519 static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown) 2520 { 2521 nvme_tcp_teardown_io_queues(ctrl, shutdown); 2522 nvme_quiesce_admin_queue(ctrl); 2523 nvme_disable_ctrl(ctrl, shutdown); 2524 nvme_tcp_teardown_admin_queue(ctrl, shutdown); 2525 } 2526 2527 static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl) 2528 { 2529 nvme_tcp_teardown_ctrl(ctrl, true); 2530 } 2531 2532 static void nvme_reset_ctrl_work(struct work_struct *work) 2533 { 2534 struct nvme_ctrl *ctrl = 2535 container_of(work, struct nvme_ctrl, reset_work); 2536 int ret; 2537 2538 if (nvme_tcp_key_revoke_needed(ctrl)) 2539 nvme_auth_revoke_tls_key(ctrl); 2540 nvme_stop_ctrl(ctrl); 2541 nvme_tcp_teardown_ctrl(ctrl, false); 2542 2543 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) { 2544 /* state change failure is ok if we started ctrl delete */ 2545 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl); 2546 2547 WARN_ON_ONCE(state != NVME_CTRL_DELETING && 2548 state != NVME_CTRL_DELETING_NOIO); 2549 return; 2550 } 2551 2552 ret = nvme_tcp_setup_ctrl(ctrl, false); 2553 if (ret) 2554 goto out_fail; 2555 2556 return; 2557 2558 out_fail: 2559 ++ctrl->nr_reconnects; 2560 nvme_tcp_reconnect_or_remove(ctrl, ret); 2561 } 2562 2563 static void nvme_tcp_stop_ctrl(struct nvme_ctrl *ctrl) 2564 { 2565 flush_work(&to_tcp_ctrl(ctrl)->err_work); 2566 cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work); 2567 } 2568 2569 static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl) 2570 { 2571 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 2572 2573 if (list_empty(&ctrl->list)) 2574 goto free_ctrl; 2575 2576 mutex_lock(&nvme_tcp_ctrl_mutex); 2577 list_del(&ctrl->list); 2578 mutex_unlock(&nvme_tcp_ctrl_mutex); 2579 2580 nvmf_free_options(nctrl->opts); 2581 free_ctrl: 2582 kfree(ctrl->queues); 2583 kfree(ctrl); 2584 } 2585 2586 static void nvme_tcp_set_sg_null(struct nvme_command *c) 2587 { 2588 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 2589 2590 sg->addr = 0; 2591 sg->length = 0; 2592 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) | 2593 NVME_SGL_FMT_TRANSPORT_A; 2594 } 2595 2596 static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue, 2597 struct nvme_command *c, u32 data_len) 2598 { 2599 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 2600 2601 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff); 2602 sg->length = cpu_to_le32(data_len); 2603 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET; 2604 } 2605 2606 static void nvme_tcp_set_sg_host_data(struct nvme_command *c, 2607 u32 data_len) 2608 { 2609 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 2610 2611 sg->addr = 0; 2612 sg->length = cpu_to_le32(data_len); 2613 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) | 2614 NVME_SGL_FMT_TRANSPORT_A; 2615 } 2616 2617 static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg) 2618 { 2619 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg); 2620 struct nvme_tcp_queue *queue = &ctrl->queues[0]; 2621 struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu; 2622 struct nvme_command *cmd = &pdu->cmd; 2623 u8 hdgst = nvme_tcp_hdgst_len(queue); 2624 2625 memset(pdu, 0, sizeof(*pdu)); 2626 pdu->hdr.type = nvme_tcp_cmd; 2627 if (queue->hdr_digest) 2628 pdu->hdr.flags |= NVME_TCP_F_HDGST; 2629 pdu->hdr.hlen = sizeof(*pdu); 2630 pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst); 2631 2632 cmd->common.opcode = nvme_admin_async_event; 2633 cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH; 2634 cmd->common.flags |= NVME_CMD_SGL_METABUF; 2635 nvme_tcp_set_sg_null(cmd); 2636 2637 ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU; 2638 ctrl->async_req.offset = 0; 2639 ctrl->async_req.curr_bio = NULL; 2640 ctrl->async_req.data_len = 0; 2641 2642 nvme_tcp_queue_request(&ctrl->async_req, true); 2643 } 2644 2645 static void nvme_tcp_complete_timed_out(struct request *rq) 2646 { 2647 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2648 struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl; 2649 2650 nvme_tcp_stop_queue(ctrl, nvme_tcp_queue_id(req->queue)); 2651 nvmf_complete_timed_out_request(rq); 2652 } 2653 2654 static enum blk_eh_timer_return nvme_tcp_timeout(struct request *rq) 2655 { 2656 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2657 struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl; 2658 struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req); 2659 struct nvme_command *cmd = &pdu->cmd; 2660 int qid = nvme_tcp_queue_id(req->queue); 2661 2662 dev_warn(ctrl->device, 2663 "I/O tag %d (%04x) type %d opcode %#x (%s) QID %d timeout\n", 2664 rq->tag, nvme_cid(rq), pdu->hdr.type, cmd->common.opcode, 2665 nvme_fabrics_opcode_str(qid, cmd), qid); 2666 2667 if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE) { 2668 /* 2669 * If we are resetting, connecting or deleting we should 2670 * complete immediately because we may block controller 2671 * teardown or setup sequence 2672 * - ctrl disable/shutdown fabrics requests 2673 * - connect requests 2674 * - initialization admin requests 2675 * - I/O requests that entered after unquiescing and 2676 * the controller stopped responding 2677 * 2678 * All other requests should be cancelled by the error 2679 * recovery work, so it's fine that we fail it here. 2680 */ 2681 nvme_tcp_complete_timed_out(rq); 2682 return BLK_EH_DONE; 2683 } 2684 2685 /* 2686 * LIVE state should trigger the normal error recovery which will 2687 * handle completing this request. 2688 */ 2689 nvme_tcp_error_recovery(ctrl); 2690 return BLK_EH_RESET_TIMER; 2691 } 2692 2693 static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue, 2694 struct request *rq) 2695 { 2696 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2697 struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req); 2698 struct nvme_command *c = &pdu->cmd; 2699 2700 c->common.flags |= NVME_CMD_SGL_METABUF; 2701 2702 if (!blk_rq_nr_phys_segments(rq)) 2703 nvme_tcp_set_sg_null(c); 2704 else if (rq_data_dir(rq) == WRITE && 2705 req->data_len <= nvme_tcp_inline_data_size(req)) 2706 nvme_tcp_set_sg_inline(queue, c, req->data_len); 2707 else 2708 nvme_tcp_set_sg_host_data(c, req->data_len); 2709 2710 return 0; 2711 } 2712 2713 static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns, 2714 struct request *rq) 2715 { 2716 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2717 struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req); 2718 struct nvme_tcp_queue *queue = req->queue; 2719 u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0; 2720 blk_status_t ret; 2721 2722 ret = nvme_setup_cmd(ns, rq); 2723 if (ret) 2724 return ret; 2725 2726 req->state = NVME_TCP_SEND_CMD_PDU; 2727 req->status = cpu_to_le16(NVME_SC_SUCCESS); 2728 req->offset = 0; 2729 req->data_sent = 0; 2730 req->pdu_len = 0; 2731 req->pdu_sent = 0; 2732 req->h2cdata_left = 0; 2733 req->data_len = blk_rq_nr_phys_segments(rq) ? 2734 blk_rq_payload_bytes(rq) : 0; 2735 req->curr_bio = rq->bio; 2736 if (req->curr_bio && req->data_len) 2737 nvme_tcp_init_iter(req, rq_data_dir(rq)); 2738 2739 if (rq_data_dir(rq) == WRITE && 2740 req->data_len <= nvme_tcp_inline_data_size(req)) 2741 req->pdu_len = req->data_len; 2742 2743 pdu->hdr.type = nvme_tcp_cmd; 2744 pdu->hdr.flags = 0; 2745 if (queue->hdr_digest) 2746 pdu->hdr.flags |= NVME_TCP_F_HDGST; 2747 if (queue->data_digest && req->pdu_len) { 2748 pdu->hdr.flags |= NVME_TCP_F_DDGST; 2749 ddgst = nvme_tcp_ddgst_len(queue); 2750 } 2751 pdu->hdr.hlen = sizeof(*pdu); 2752 pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0; 2753 pdu->hdr.plen = 2754 cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst); 2755 2756 ret = nvme_tcp_map_data(queue, rq); 2757 if (unlikely(ret)) { 2758 nvme_cleanup_cmd(rq); 2759 dev_err(queue->ctrl->ctrl.device, 2760 "Failed to map data (%d)\n", ret); 2761 return ret; 2762 } 2763 2764 return 0; 2765 } 2766 2767 static void nvme_tcp_commit_rqs(struct blk_mq_hw_ctx *hctx) 2768 { 2769 struct nvme_tcp_queue *queue = hctx->driver_data; 2770 2771 if (!llist_empty(&queue->req_list)) 2772 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 2773 } 2774 2775 static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx, 2776 const struct blk_mq_queue_data *bd) 2777 { 2778 struct nvme_ns *ns = hctx->queue->queuedata; 2779 struct nvme_tcp_queue *queue = hctx->driver_data; 2780 struct request *rq = bd->rq; 2781 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2782 bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags); 2783 blk_status_t ret; 2784 2785 if (!nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready)) 2786 return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq); 2787 2788 ret = nvme_tcp_setup_cmd_pdu(ns, rq); 2789 if (unlikely(ret)) 2790 return ret; 2791 2792 nvme_start_request(rq); 2793 2794 nvme_tcp_queue_request(req, bd->last); 2795 2796 return BLK_STS_OK; 2797 } 2798 2799 static void nvme_tcp_map_queues(struct blk_mq_tag_set *set) 2800 { 2801 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(set->driver_data); 2802 2803 nvmf_map_queues(set, &ctrl->ctrl, ctrl->io_queues); 2804 } 2805 2806 static int nvme_tcp_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob) 2807 { 2808 struct nvme_tcp_queue *queue = hctx->driver_data; 2809 struct sock *sk = queue->sock->sk; 2810 int ret; 2811 2812 if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags)) 2813 return 0; 2814 2815 set_bit(NVME_TCP_Q_POLLING, &queue->flags); 2816 if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue)) 2817 sk_busy_loop(sk, true); 2818 ret = nvme_tcp_try_recv(queue); 2819 clear_bit(NVME_TCP_Q_POLLING, &queue->flags); 2820 return ret < 0 ? ret : queue->nr_cqe; 2821 } 2822 2823 static int nvme_tcp_get_address(struct nvme_ctrl *ctrl, char *buf, int size) 2824 { 2825 struct nvme_tcp_queue *queue = &to_tcp_ctrl(ctrl)->queues[0]; 2826 struct sockaddr_storage src_addr; 2827 int ret, len; 2828 2829 len = nvmf_get_address(ctrl, buf, size); 2830 2831 if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags)) 2832 return len; 2833 2834 mutex_lock(&queue->queue_lock); 2835 2836 ret = kernel_getsockname(queue->sock, (struct sockaddr *)&src_addr); 2837 if (ret > 0) { 2838 if (len > 0) 2839 len--; /* strip trailing newline */ 2840 len += scnprintf(buf + len, size - len, "%ssrc_addr=%pISc\n", 2841 (len) ? "," : "", &src_addr); 2842 } 2843 2844 mutex_unlock(&queue->queue_lock); 2845 2846 return len; 2847 } 2848 2849 static const struct blk_mq_ops nvme_tcp_mq_ops = { 2850 .queue_rq = nvme_tcp_queue_rq, 2851 .commit_rqs = nvme_tcp_commit_rqs, 2852 .complete = nvme_complete_rq, 2853 .init_request = nvme_tcp_init_request, 2854 .exit_request = nvme_tcp_exit_request, 2855 .init_hctx = nvme_tcp_init_hctx, 2856 .timeout = nvme_tcp_timeout, 2857 .map_queues = nvme_tcp_map_queues, 2858 .poll = nvme_tcp_poll, 2859 }; 2860 2861 static const struct blk_mq_ops nvme_tcp_admin_mq_ops = { 2862 .queue_rq = nvme_tcp_queue_rq, 2863 .complete = nvme_complete_rq, 2864 .init_request = nvme_tcp_init_request, 2865 .exit_request = nvme_tcp_exit_request, 2866 .init_hctx = nvme_tcp_init_admin_hctx, 2867 .timeout = nvme_tcp_timeout, 2868 }; 2869 2870 static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = { 2871 .name = "tcp", 2872 .module = THIS_MODULE, 2873 .flags = NVME_F_FABRICS | NVME_F_BLOCKING, 2874 .reg_read32 = nvmf_reg_read32, 2875 .reg_read64 = nvmf_reg_read64, 2876 .reg_write32 = nvmf_reg_write32, 2877 .subsystem_reset = nvmf_subsystem_reset, 2878 .free_ctrl = nvme_tcp_free_ctrl, 2879 .submit_async_event = nvme_tcp_submit_async_event, 2880 .delete_ctrl = nvme_tcp_delete_ctrl, 2881 .get_address = nvme_tcp_get_address, 2882 .stop_ctrl = nvme_tcp_stop_ctrl, 2883 }; 2884 2885 static bool 2886 nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts) 2887 { 2888 struct nvme_tcp_ctrl *ctrl; 2889 bool found = false; 2890 2891 mutex_lock(&nvme_tcp_ctrl_mutex); 2892 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) { 2893 found = nvmf_ip_options_match(&ctrl->ctrl, opts); 2894 if (found) 2895 break; 2896 } 2897 mutex_unlock(&nvme_tcp_ctrl_mutex); 2898 2899 return found; 2900 } 2901 2902 static struct nvme_tcp_ctrl *nvme_tcp_alloc_ctrl(struct device *dev, 2903 struct nvmf_ctrl_options *opts) 2904 { 2905 struct nvme_tcp_ctrl *ctrl; 2906 int ret; 2907 2908 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 2909 if (!ctrl) 2910 return ERR_PTR(-ENOMEM); 2911 2912 INIT_LIST_HEAD(&ctrl->list); 2913 ctrl->ctrl.opts = opts; 2914 ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues + 2915 opts->nr_poll_queues + 1; 2916 ctrl->ctrl.sqsize = opts->queue_size - 1; 2917 ctrl->ctrl.kato = opts->kato; 2918 2919 INIT_DELAYED_WORK(&ctrl->connect_work, 2920 nvme_tcp_reconnect_ctrl_work); 2921 INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work); 2922 INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work); 2923 2924 if (!(opts->mask & NVMF_OPT_TRSVCID)) { 2925 opts->trsvcid = 2926 kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL); 2927 if (!opts->trsvcid) { 2928 ret = -ENOMEM; 2929 goto out_free_ctrl; 2930 } 2931 opts->mask |= NVMF_OPT_TRSVCID; 2932 } 2933 2934 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 2935 opts->traddr, opts->trsvcid, &ctrl->addr); 2936 if (ret) { 2937 pr_err("malformed address passed: %s:%s\n", 2938 opts->traddr, opts->trsvcid); 2939 goto out_free_ctrl; 2940 } 2941 2942 if (opts->mask & NVMF_OPT_HOST_TRADDR) { 2943 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 2944 opts->host_traddr, NULL, &ctrl->src_addr); 2945 if (ret) { 2946 pr_err("malformed src address passed: %s\n", 2947 opts->host_traddr); 2948 goto out_free_ctrl; 2949 } 2950 } 2951 2952 if (opts->mask & NVMF_OPT_HOST_IFACE) { 2953 if (!__dev_get_by_name(&init_net, opts->host_iface)) { 2954 pr_err("invalid interface passed: %s\n", 2955 opts->host_iface); 2956 ret = -ENODEV; 2957 goto out_free_ctrl; 2958 } 2959 } 2960 2961 if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) { 2962 ret = -EALREADY; 2963 goto out_free_ctrl; 2964 } 2965 2966 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues), 2967 GFP_KERNEL); 2968 if (!ctrl->queues) { 2969 ret = -ENOMEM; 2970 goto out_free_ctrl; 2971 } 2972 2973 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0); 2974 if (ret) 2975 goto out_kfree_queues; 2976 2977 return ctrl; 2978 out_kfree_queues: 2979 kfree(ctrl->queues); 2980 out_free_ctrl: 2981 kfree(ctrl); 2982 return ERR_PTR(ret); 2983 } 2984 2985 static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev, 2986 struct nvmf_ctrl_options *opts) 2987 { 2988 struct nvme_tcp_ctrl *ctrl; 2989 int ret; 2990 2991 ctrl = nvme_tcp_alloc_ctrl(dev, opts); 2992 if (IS_ERR(ctrl)) 2993 return ERR_CAST(ctrl); 2994 2995 ret = nvme_add_ctrl(&ctrl->ctrl); 2996 if (ret) 2997 goto out_put_ctrl; 2998 2999 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) { 3000 WARN_ON_ONCE(1); 3001 ret = -EINTR; 3002 goto out_uninit_ctrl; 3003 } 3004 3005 ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true); 3006 if (ret) 3007 goto out_uninit_ctrl; 3008 3009 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp, hostnqn: %s\n", 3010 nvmf_ctrl_subsysnqn(&ctrl->ctrl), &ctrl->addr, opts->host->nqn); 3011 3012 mutex_lock(&nvme_tcp_ctrl_mutex); 3013 list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list); 3014 mutex_unlock(&nvme_tcp_ctrl_mutex); 3015 3016 return &ctrl->ctrl; 3017 3018 out_uninit_ctrl: 3019 nvme_uninit_ctrl(&ctrl->ctrl); 3020 out_put_ctrl: 3021 nvme_put_ctrl(&ctrl->ctrl); 3022 if (ret > 0) 3023 ret = -EIO; 3024 return ERR_PTR(ret); 3025 } 3026 3027 static struct nvmf_transport_ops nvme_tcp_transport = { 3028 .name = "tcp", 3029 .module = THIS_MODULE, 3030 .required_opts = NVMF_OPT_TRADDR, 3031 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY | 3032 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO | 3033 NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST | 3034 NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES | 3035 NVMF_OPT_TOS | NVMF_OPT_HOST_IFACE | NVMF_OPT_TLS | 3036 NVMF_OPT_KEYRING | NVMF_OPT_TLS_KEY | NVMF_OPT_CONCAT, 3037 .create_ctrl = nvme_tcp_create_ctrl, 3038 }; 3039 3040 static int __init nvme_tcp_init_module(void) 3041 { 3042 unsigned int wq_flags = WQ_MEM_RECLAIM | WQ_HIGHPRI | WQ_SYSFS; 3043 int cpu; 3044 3045 BUILD_BUG_ON(sizeof(struct nvme_tcp_hdr) != 8); 3046 BUILD_BUG_ON(sizeof(struct nvme_tcp_cmd_pdu) != 72); 3047 BUILD_BUG_ON(sizeof(struct nvme_tcp_data_pdu) != 24); 3048 BUILD_BUG_ON(sizeof(struct nvme_tcp_rsp_pdu) != 24); 3049 BUILD_BUG_ON(sizeof(struct nvme_tcp_r2t_pdu) != 24); 3050 BUILD_BUG_ON(sizeof(struct nvme_tcp_icreq_pdu) != 128); 3051 BUILD_BUG_ON(sizeof(struct nvme_tcp_icresp_pdu) != 128); 3052 BUILD_BUG_ON(sizeof(struct nvme_tcp_term_pdu) != 24); 3053 3054 if (wq_unbound) 3055 wq_flags |= WQ_UNBOUND; 3056 3057 nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq", wq_flags, 0); 3058 if (!nvme_tcp_wq) 3059 return -ENOMEM; 3060 3061 for_each_possible_cpu(cpu) 3062 atomic_set(&nvme_tcp_cpu_queues[cpu], 0); 3063 3064 nvmf_register_transport(&nvme_tcp_transport); 3065 return 0; 3066 } 3067 3068 static void __exit nvme_tcp_cleanup_module(void) 3069 { 3070 struct nvme_tcp_ctrl *ctrl; 3071 3072 nvmf_unregister_transport(&nvme_tcp_transport); 3073 3074 mutex_lock(&nvme_tcp_ctrl_mutex); 3075 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) 3076 nvme_delete_ctrl(&ctrl->ctrl); 3077 mutex_unlock(&nvme_tcp_ctrl_mutex); 3078 flush_workqueue(nvme_delete_wq); 3079 3080 destroy_workqueue(nvme_tcp_wq); 3081 } 3082 3083 module_init(nvme_tcp_init_module); 3084 module_exit(nvme_tcp_cleanup_module); 3085 3086 MODULE_DESCRIPTION("NVMe host TCP transport driver"); 3087 MODULE_LICENSE("GPL v2"); 3088