1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVMe over Fabrics TCP host. 4 * Copyright (c) 2018 Lightbits Labs. All rights reserved. 5 */ 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 #include <linux/module.h> 8 #include <linux/init.h> 9 #include <linux/slab.h> 10 #include <linux/err.h> 11 #include <linux/nvme-tcp.h> 12 #include <net/sock.h> 13 #include <net/tcp.h> 14 #include <linux/blk-mq.h> 15 #include <crypto/hash.h> 16 #include <net/busy_poll.h> 17 18 #include "nvme.h" 19 #include "fabrics.h" 20 21 struct nvme_tcp_queue; 22 23 /* Define the socket priority to use for connections were it is desirable 24 * that the NIC consider performing optimized packet processing or filtering. 25 * A non-zero value being sufficient to indicate general consideration of any 26 * possible optimization. Making it a module param allows for alternative 27 * values that may be unique for some NIC implementations. 28 */ 29 static int so_priority; 30 module_param(so_priority, int, 0644); 31 MODULE_PARM_DESC(so_priority, "nvme tcp socket optimize priority"); 32 33 enum nvme_tcp_send_state { 34 NVME_TCP_SEND_CMD_PDU = 0, 35 NVME_TCP_SEND_H2C_PDU, 36 NVME_TCP_SEND_DATA, 37 NVME_TCP_SEND_DDGST, 38 }; 39 40 struct nvme_tcp_request { 41 struct nvme_request req; 42 void *pdu; 43 struct nvme_tcp_queue *queue; 44 u32 data_len; 45 u32 pdu_len; 46 u32 pdu_sent; 47 u16 ttag; 48 __le16 status; 49 struct list_head entry; 50 struct llist_node lentry; 51 __le32 ddgst; 52 53 struct bio *curr_bio; 54 struct iov_iter iter; 55 56 /* send state */ 57 size_t offset; 58 size_t data_sent; 59 enum nvme_tcp_send_state state; 60 }; 61 62 enum nvme_tcp_queue_flags { 63 NVME_TCP_Q_ALLOCATED = 0, 64 NVME_TCP_Q_LIVE = 1, 65 NVME_TCP_Q_POLLING = 2, 66 }; 67 68 enum nvme_tcp_recv_state { 69 NVME_TCP_RECV_PDU = 0, 70 NVME_TCP_RECV_DATA, 71 NVME_TCP_RECV_DDGST, 72 }; 73 74 struct nvme_tcp_ctrl; 75 struct nvme_tcp_queue { 76 struct socket *sock; 77 struct work_struct io_work; 78 int io_cpu; 79 80 struct mutex queue_lock; 81 struct mutex send_mutex; 82 struct llist_head req_list; 83 struct list_head send_list; 84 bool more_requests; 85 86 /* recv state */ 87 void *pdu; 88 int pdu_remaining; 89 int pdu_offset; 90 size_t data_remaining; 91 size_t ddgst_remaining; 92 unsigned int nr_cqe; 93 94 /* send state */ 95 struct nvme_tcp_request *request; 96 97 int queue_size; 98 size_t cmnd_capsule_len; 99 struct nvme_tcp_ctrl *ctrl; 100 unsigned long flags; 101 bool rd_enabled; 102 103 bool hdr_digest; 104 bool data_digest; 105 struct ahash_request *rcv_hash; 106 struct ahash_request *snd_hash; 107 __le32 exp_ddgst; 108 __le32 recv_ddgst; 109 110 struct page_frag_cache pf_cache; 111 112 void (*state_change)(struct sock *); 113 void (*data_ready)(struct sock *); 114 void (*write_space)(struct sock *); 115 }; 116 117 struct nvme_tcp_ctrl { 118 /* read only in the hot path */ 119 struct nvme_tcp_queue *queues; 120 struct blk_mq_tag_set tag_set; 121 122 /* other member variables */ 123 struct list_head list; 124 struct blk_mq_tag_set admin_tag_set; 125 struct sockaddr_storage addr; 126 struct sockaddr_storage src_addr; 127 struct nvme_ctrl ctrl; 128 129 struct work_struct err_work; 130 struct delayed_work connect_work; 131 struct nvme_tcp_request async_req; 132 u32 io_queues[HCTX_MAX_TYPES]; 133 }; 134 135 static LIST_HEAD(nvme_tcp_ctrl_list); 136 static DEFINE_MUTEX(nvme_tcp_ctrl_mutex); 137 static struct workqueue_struct *nvme_tcp_wq; 138 static const struct blk_mq_ops nvme_tcp_mq_ops; 139 static const struct blk_mq_ops nvme_tcp_admin_mq_ops; 140 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue); 141 142 static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl) 143 { 144 return container_of(ctrl, struct nvme_tcp_ctrl, ctrl); 145 } 146 147 static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue) 148 { 149 return queue - queue->ctrl->queues; 150 } 151 152 static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue) 153 { 154 u32 queue_idx = nvme_tcp_queue_id(queue); 155 156 if (queue_idx == 0) 157 return queue->ctrl->admin_tag_set.tags[queue_idx]; 158 return queue->ctrl->tag_set.tags[queue_idx - 1]; 159 } 160 161 static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue) 162 { 163 return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0; 164 } 165 166 static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue) 167 { 168 return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0; 169 } 170 171 static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_queue *queue) 172 { 173 return queue->cmnd_capsule_len - sizeof(struct nvme_command); 174 } 175 176 static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req) 177 { 178 return req == &req->queue->ctrl->async_req; 179 } 180 181 static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req) 182 { 183 struct request *rq; 184 185 if (unlikely(nvme_tcp_async_req(req))) 186 return false; /* async events don't have a request */ 187 188 rq = blk_mq_rq_from_pdu(req); 189 190 return rq_data_dir(rq) == WRITE && req->data_len && 191 req->data_len <= nvme_tcp_inline_data_size(req->queue); 192 } 193 194 static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req) 195 { 196 return req->iter.bvec->bv_page; 197 } 198 199 static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req) 200 { 201 return req->iter.bvec->bv_offset + req->iter.iov_offset; 202 } 203 204 static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req) 205 { 206 return min_t(size_t, iov_iter_single_seg_count(&req->iter), 207 req->pdu_len - req->pdu_sent); 208 } 209 210 static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req) 211 { 212 return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ? 213 req->pdu_len - req->pdu_sent : 0; 214 } 215 216 static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req, 217 int len) 218 { 219 return nvme_tcp_pdu_data_left(req) <= len; 220 } 221 222 static void nvme_tcp_init_iter(struct nvme_tcp_request *req, 223 unsigned int dir) 224 { 225 struct request *rq = blk_mq_rq_from_pdu(req); 226 struct bio_vec *vec; 227 unsigned int size; 228 int nr_bvec; 229 size_t offset; 230 231 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) { 232 vec = &rq->special_vec; 233 nr_bvec = 1; 234 size = blk_rq_payload_bytes(rq); 235 offset = 0; 236 } else { 237 struct bio *bio = req->curr_bio; 238 struct bvec_iter bi; 239 struct bio_vec bv; 240 241 vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); 242 nr_bvec = 0; 243 bio_for_each_bvec(bv, bio, bi) { 244 nr_bvec++; 245 } 246 size = bio->bi_iter.bi_size; 247 offset = bio->bi_iter.bi_bvec_done; 248 } 249 250 iov_iter_bvec(&req->iter, dir, vec, nr_bvec, size); 251 req->iter.iov_offset = offset; 252 } 253 254 static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req, 255 int len) 256 { 257 req->data_sent += len; 258 req->pdu_sent += len; 259 iov_iter_advance(&req->iter, len); 260 if (!iov_iter_count(&req->iter) && 261 req->data_sent < req->data_len) { 262 req->curr_bio = req->curr_bio->bi_next; 263 nvme_tcp_init_iter(req, WRITE); 264 } 265 } 266 267 static inline void nvme_tcp_send_all(struct nvme_tcp_queue *queue) 268 { 269 int ret; 270 271 /* drain the send queue as much as we can... */ 272 do { 273 ret = nvme_tcp_try_send(queue); 274 } while (ret > 0); 275 } 276 277 static inline bool nvme_tcp_queue_more(struct nvme_tcp_queue *queue) 278 { 279 return !list_empty(&queue->send_list) || 280 !llist_empty(&queue->req_list) || queue->more_requests; 281 } 282 283 static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req, 284 bool sync, bool last) 285 { 286 struct nvme_tcp_queue *queue = req->queue; 287 bool empty; 288 289 empty = llist_add(&req->lentry, &queue->req_list) && 290 list_empty(&queue->send_list) && !queue->request; 291 292 /* 293 * if we're the first on the send_list and we can try to send 294 * directly, otherwise queue io_work. Also, only do that if we 295 * are on the same cpu, so we don't introduce contention. 296 */ 297 if (queue->io_cpu == raw_smp_processor_id() && 298 sync && empty && mutex_trylock(&queue->send_mutex)) { 299 queue->more_requests = !last; 300 nvme_tcp_send_all(queue); 301 queue->more_requests = false; 302 mutex_unlock(&queue->send_mutex); 303 } 304 305 if (last && nvme_tcp_queue_more(queue)) 306 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 307 } 308 309 static void nvme_tcp_process_req_list(struct nvme_tcp_queue *queue) 310 { 311 struct nvme_tcp_request *req; 312 struct llist_node *node; 313 314 for (node = llist_del_all(&queue->req_list); node; node = node->next) { 315 req = llist_entry(node, struct nvme_tcp_request, lentry); 316 list_add(&req->entry, &queue->send_list); 317 } 318 } 319 320 static inline struct nvme_tcp_request * 321 nvme_tcp_fetch_request(struct nvme_tcp_queue *queue) 322 { 323 struct nvme_tcp_request *req; 324 325 req = list_first_entry_or_null(&queue->send_list, 326 struct nvme_tcp_request, entry); 327 if (!req) { 328 nvme_tcp_process_req_list(queue); 329 req = list_first_entry_or_null(&queue->send_list, 330 struct nvme_tcp_request, entry); 331 if (unlikely(!req)) 332 return NULL; 333 } 334 335 list_del(&req->entry); 336 return req; 337 } 338 339 static inline void nvme_tcp_ddgst_final(struct ahash_request *hash, 340 __le32 *dgst) 341 { 342 ahash_request_set_crypt(hash, NULL, (u8 *)dgst, 0); 343 crypto_ahash_final(hash); 344 } 345 346 static inline void nvme_tcp_ddgst_update(struct ahash_request *hash, 347 struct page *page, off_t off, size_t len) 348 { 349 struct scatterlist sg; 350 351 sg_init_marker(&sg, 1); 352 sg_set_page(&sg, page, len, off); 353 ahash_request_set_crypt(hash, &sg, NULL, len); 354 crypto_ahash_update(hash); 355 } 356 357 static inline void nvme_tcp_hdgst(struct ahash_request *hash, 358 void *pdu, size_t len) 359 { 360 struct scatterlist sg; 361 362 sg_init_one(&sg, pdu, len); 363 ahash_request_set_crypt(hash, &sg, pdu + len, len); 364 crypto_ahash_digest(hash); 365 } 366 367 static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue, 368 void *pdu, size_t pdu_len) 369 { 370 struct nvme_tcp_hdr *hdr = pdu; 371 __le32 recv_digest; 372 __le32 exp_digest; 373 374 if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) { 375 dev_err(queue->ctrl->ctrl.device, 376 "queue %d: header digest flag is cleared\n", 377 nvme_tcp_queue_id(queue)); 378 return -EPROTO; 379 } 380 381 recv_digest = *(__le32 *)(pdu + hdr->hlen); 382 nvme_tcp_hdgst(queue->rcv_hash, pdu, pdu_len); 383 exp_digest = *(__le32 *)(pdu + hdr->hlen); 384 if (recv_digest != exp_digest) { 385 dev_err(queue->ctrl->ctrl.device, 386 "header digest error: recv %#x expected %#x\n", 387 le32_to_cpu(recv_digest), le32_to_cpu(exp_digest)); 388 return -EIO; 389 } 390 391 return 0; 392 } 393 394 static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu) 395 { 396 struct nvme_tcp_hdr *hdr = pdu; 397 u8 digest_len = nvme_tcp_hdgst_len(queue); 398 u32 len; 399 400 len = le32_to_cpu(hdr->plen) - hdr->hlen - 401 ((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0); 402 403 if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) { 404 dev_err(queue->ctrl->ctrl.device, 405 "queue %d: data digest flag is cleared\n", 406 nvme_tcp_queue_id(queue)); 407 return -EPROTO; 408 } 409 crypto_ahash_init(queue->rcv_hash); 410 411 return 0; 412 } 413 414 static void nvme_tcp_exit_request(struct blk_mq_tag_set *set, 415 struct request *rq, unsigned int hctx_idx) 416 { 417 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 418 419 page_frag_free(req->pdu); 420 } 421 422 static int nvme_tcp_init_request(struct blk_mq_tag_set *set, 423 struct request *rq, unsigned int hctx_idx, 424 unsigned int numa_node) 425 { 426 struct nvme_tcp_ctrl *ctrl = set->driver_data; 427 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 428 struct nvme_tcp_cmd_pdu *pdu; 429 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; 430 struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx]; 431 u8 hdgst = nvme_tcp_hdgst_len(queue); 432 433 req->pdu = page_frag_alloc(&queue->pf_cache, 434 sizeof(struct nvme_tcp_cmd_pdu) + hdgst, 435 GFP_KERNEL | __GFP_ZERO); 436 if (!req->pdu) 437 return -ENOMEM; 438 439 pdu = req->pdu; 440 req->queue = queue; 441 nvme_req(rq)->ctrl = &ctrl->ctrl; 442 nvme_req(rq)->cmd = &pdu->cmd; 443 444 return 0; 445 } 446 447 static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 448 unsigned int hctx_idx) 449 { 450 struct nvme_tcp_ctrl *ctrl = data; 451 struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1]; 452 453 hctx->driver_data = queue; 454 return 0; 455 } 456 457 static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, 458 unsigned int hctx_idx) 459 { 460 struct nvme_tcp_ctrl *ctrl = data; 461 struct nvme_tcp_queue *queue = &ctrl->queues[0]; 462 463 hctx->driver_data = queue; 464 return 0; 465 } 466 467 static enum nvme_tcp_recv_state 468 nvme_tcp_recv_state(struct nvme_tcp_queue *queue) 469 { 470 return (queue->pdu_remaining) ? NVME_TCP_RECV_PDU : 471 (queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST : 472 NVME_TCP_RECV_DATA; 473 } 474 475 static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue) 476 { 477 queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) + 478 nvme_tcp_hdgst_len(queue); 479 queue->pdu_offset = 0; 480 queue->data_remaining = -1; 481 queue->ddgst_remaining = 0; 482 } 483 484 static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl) 485 { 486 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 487 return; 488 489 dev_warn(ctrl->device, "starting error recovery\n"); 490 queue_work(nvme_reset_wq, &to_tcp_ctrl(ctrl)->err_work); 491 } 492 493 static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue, 494 struct nvme_completion *cqe) 495 { 496 struct nvme_tcp_request *req; 497 struct request *rq; 498 499 rq = nvme_find_rq(nvme_tcp_tagset(queue), cqe->command_id); 500 if (!rq) { 501 dev_err(queue->ctrl->ctrl.device, 502 "got bad cqe.command_id %#x on queue %d\n", 503 cqe->command_id, nvme_tcp_queue_id(queue)); 504 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 505 return -EINVAL; 506 } 507 508 req = blk_mq_rq_to_pdu(rq); 509 if (req->status == cpu_to_le16(NVME_SC_SUCCESS)) 510 req->status = cqe->status; 511 512 if (!nvme_try_complete_req(rq, req->status, cqe->result)) 513 nvme_complete_rq(rq); 514 queue->nr_cqe++; 515 516 return 0; 517 } 518 519 static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue, 520 struct nvme_tcp_data_pdu *pdu) 521 { 522 struct request *rq; 523 524 rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id); 525 if (!rq) { 526 dev_err(queue->ctrl->ctrl.device, 527 "got bad c2hdata.command_id %#x on queue %d\n", 528 pdu->command_id, nvme_tcp_queue_id(queue)); 529 return -ENOENT; 530 } 531 532 if (!blk_rq_payload_bytes(rq)) { 533 dev_err(queue->ctrl->ctrl.device, 534 "queue %d tag %#x unexpected data\n", 535 nvme_tcp_queue_id(queue), rq->tag); 536 return -EIO; 537 } 538 539 queue->data_remaining = le32_to_cpu(pdu->data_length); 540 541 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS && 542 unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) { 543 dev_err(queue->ctrl->ctrl.device, 544 "queue %d tag %#x SUCCESS set but not last PDU\n", 545 nvme_tcp_queue_id(queue), rq->tag); 546 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 547 return -EPROTO; 548 } 549 550 return 0; 551 } 552 553 static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue, 554 struct nvme_tcp_rsp_pdu *pdu) 555 { 556 struct nvme_completion *cqe = &pdu->cqe; 557 int ret = 0; 558 559 /* 560 * AEN requests are special as they don't time out and can 561 * survive any kind of queue freeze and often don't respond to 562 * aborts. We don't even bother to allocate a struct request 563 * for them but rather special case them here. 564 */ 565 if (unlikely(nvme_is_aen_req(nvme_tcp_queue_id(queue), 566 cqe->command_id))) 567 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status, 568 &cqe->result); 569 else 570 ret = nvme_tcp_process_nvme_cqe(queue, cqe); 571 572 return ret; 573 } 574 575 static int nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req, 576 struct nvme_tcp_r2t_pdu *pdu) 577 { 578 struct nvme_tcp_data_pdu *data = req->pdu; 579 struct nvme_tcp_queue *queue = req->queue; 580 struct request *rq = blk_mq_rq_from_pdu(req); 581 u8 hdgst = nvme_tcp_hdgst_len(queue); 582 u8 ddgst = nvme_tcp_ddgst_len(queue); 583 584 req->pdu_len = le32_to_cpu(pdu->r2t_length); 585 req->pdu_sent = 0; 586 587 if (unlikely(!req->pdu_len)) { 588 dev_err(queue->ctrl->ctrl.device, 589 "req %d r2t len is %u, probably a bug...\n", 590 rq->tag, req->pdu_len); 591 return -EPROTO; 592 } 593 594 if (unlikely(req->data_sent + req->pdu_len > req->data_len)) { 595 dev_err(queue->ctrl->ctrl.device, 596 "req %d r2t len %u exceeded data len %u (%zu sent)\n", 597 rq->tag, req->pdu_len, req->data_len, 598 req->data_sent); 599 return -EPROTO; 600 } 601 602 if (unlikely(le32_to_cpu(pdu->r2t_offset) < req->data_sent)) { 603 dev_err(queue->ctrl->ctrl.device, 604 "req %d unexpected r2t offset %u (expected %zu)\n", 605 rq->tag, le32_to_cpu(pdu->r2t_offset), 606 req->data_sent); 607 return -EPROTO; 608 } 609 610 memset(data, 0, sizeof(*data)); 611 data->hdr.type = nvme_tcp_h2c_data; 612 data->hdr.flags = NVME_TCP_F_DATA_LAST; 613 if (queue->hdr_digest) 614 data->hdr.flags |= NVME_TCP_F_HDGST; 615 if (queue->data_digest) 616 data->hdr.flags |= NVME_TCP_F_DDGST; 617 data->hdr.hlen = sizeof(*data); 618 data->hdr.pdo = data->hdr.hlen + hdgst; 619 data->hdr.plen = 620 cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst); 621 data->ttag = pdu->ttag; 622 data->command_id = nvme_cid(rq); 623 data->data_offset = cpu_to_le32(req->data_sent); 624 data->data_length = cpu_to_le32(req->pdu_len); 625 return 0; 626 } 627 628 static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue, 629 struct nvme_tcp_r2t_pdu *pdu) 630 { 631 struct nvme_tcp_request *req; 632 struct request *rq; 633 int ret; 634 635 rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id); 636 if (!rq) { 637 dev_err(queue->ctrl->ctrl.device, 638 "got bad r2t.command_id %#x on queue %d\n", 639 pdu->command_id, nvme_tcp_queue_id(queue)); 640 return -ENOENT; 641 } 642 req = blk_mq_rq_to_pdu(rq); 643 644 ret = nvme_tcp_setup_h2c_data_pdu(req, pdu); 645 if (unlikely(ret)) 646 return ret; 647 648 req->state = NVME_TCP_SEND_H2C_PDU; 649 req->offset = 0; 650 651 nvme_tcp_queue_request(req, false, true); 652 653 return 0; 654 } 655 656 static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb, 657 unsigned int *offset, size_t *len) 658 { 659 struct nvme_tcp_hdr *hdr; 660 char *pdu = queue->pdu; 661 size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining); 662 int ret; 663 664 ret = skb_copy_bits(skb, *offset, 665 &pdu[queue->pdu_offset], rcv_len); 666 if (unlikely(ret)) 667 return ret; 668 669 queue->pdu_remaining -= rcv_len; 670 queue->pdu_offset += rcv_len; 671 *offset += rcv_len; 672 *len -= rcv_len; 673 if (queue->pdu_remaining) 674 return 0; 675 676 hdr = queue->pdu; 677 if (queue->hdr_digest) { 678 ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen); 679 if (unlikely(ret)) 680 return ret; 681 } 682 683 684 if (queue->data_digest) { 685 ret = nvme_tcp_check_ddgst(queue, queue->pdu); 686 if (unlikely(ret)) 687 return ret; 688 } 689 690 switch (hdr->type) { 691 case nvme_tcp_c2h_data: 692 return nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu); 693 case nvme_tcp_rsp: 694 nvme_tcp_init_recv_ctx(queue); 695 return nvme_tcp_handle_comp(queue, (void *)queue->pdu); 696 case nvme_tcp_r2t: 697 nvme_tcp_init_recv_ctx(queue); 698 return nvme_tcp_handle_r2t(queue, (void *)queue->pdu); 699 default: 700 dev_err(queue->ctrl->ctrl.device, 701 "unsupported pdu type (%d)\n", hdr->type); 702 return -EINVAL; 703 } 704 } 705 706 static inline void nvme_tcp_end_request(struct request *rq, u16 status) 707 { 708 union nvme_result res = {}; 709 710 if (!nvme_try_complete_req(rq, cpu_to_le16(status << 1), res)) 711 nvme_complete_rq(rq); 712 } 713 714 static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb, 715 unsigned int *offset, size_t *len) 716 { 717 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu; 718 struct request *rq = 719 nvme_cid_to_rq(nvme_tcp_tagset(queue), pdu->command_id); 720 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 721 722 while (true) { 723 int recv_len, ret; 724 725 recv_len = min_t(size_t, *len, queue->data_remaining); 726 if (!recv_len) 727 break; 728 729 if (!iov_iter_count(&req->iter)) { 730 req->curr_bio = req->curr_bio->bi_next; 731 732 /* 733 * If we don`t have any bios it means that controller 734 * sent more data than we requested, hence error 735 */ 736 if (!req->curr_bio) { 737 dev_err(queue->ctrl->ctrl.device, 738 "queue %d no space in request %#x", 739 nvme_tcp_queue_id(queue), rq->tag); 740 nvme_tcp_init_recv_ctx(queue); 741 return -EIO; 742 } 743 nvme_tcp_init_iter(req, READ); 744 } 745 746 /* we can read only from what is left in this bio */ 747 recv_len = min_t(size_t, recv_len, 748 iov_iter_count(&req->iter)); 749 750 if (queue->data_digest) 751 ret = skb_copy_and_hash_datagram_iter(skb, *offset, 752 &req->iter, recv_len, queue->rcv_hash); 753 else 754 ret = skb_copy_datagram_iter(skb, *offset, 755 &req->iter, recv_len); 756 if (ret) { 757 dev_err(queue->ctrl->ctrl.device, 758 "queue %d failed to copy request %#x data", 759 nvme_tcp_queue_id(queue), rq->tag); 760 return ret; 761 } 762 763 *len -= recv_len; 764 *offset += recv_len; 765 queue->data_remaining -= recv_len; 766 } 767 768 if (!queue->data_remaining) { 769 if (queue->data_digest) { 770 nvme_tcp_ddgst_final(queue->rcv_hash, &queue->exp_ddgst); 771 queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH; 772 } else { 773 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) { 774 nvme_tcp_end_request(rq, 775 le16_to_cpu(req->status)); 776 queue->nr_cqe++; 777 } 778 nvme_tcp_init_recv_ctx(queue); 779 } 780 } 781 782 return 0; 783 } 784 785 static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue, 786 struct sk_buff *skb, unsigned int *offset, size_t *len) 787 { 788 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu; 789 char *ddgst = (char *)&queue->recv_ddgst; 790 size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining); 791 off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining; 792 int ret; 793 794 ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len); 795 if (unlikely(ret)) 796 return ret; 797 798 queue->ddgst_remaining -= recv_len; 799 *offset += recv_len; 800 *len -= recv_len; 801 if (queue->ddgst_remaining) 802 return 0; 803 804 if (queue->recv_ddgst != queue->exp_ddgst) { 805 struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue), 806 pdu->command_id); 807 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 808 809 req->status = cpu_to_le16(NVME_SC_DATA_XFER_ERROR); 810 811 dev_err(queue->ctrl->ctrl.device, 812 "data digest error: recv %#x expected %#x\n", 813 le32_to_cpu(queue->recv_ddgst), 814 le32_to_cpu(queue->exp_ddgst)); 815 } 816 817 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) { 818 struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue), 819 pdu->command_id); 820 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 821 822 nvme_tcp_end_request(rq, le16_to_cpu(req->status)); 823 queue->nr_cqe++; 824 } 825 826 nvme_tcp_init_recv_ctx(queue); 827 return 0; 828 } 829 830 static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb, 831 unsigned int offset, size_t len) 832 { 833 struct nvme_tcp_queue *queue = desc->arg.data; 834 size_t consumed = len; 835 int result; 836 837 while (len) { 838 switch (nvme_tcp_recv_state(queue)) { 839 case NVME_TCP_RECV_PDU: 840 result = nvme_tcp_recv_pdu(queue, skb, &offset, &len); 841 break; 842 case NVME_TCP_RECV_DATA: 843 result = nvme_tcp_recv_data(queue, skb, &offset, &len); 844 break; 845 case NVME_TCP_RECV_DDGST: 846 result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len); 847 break; 848 default: 849 result = -EFAULT; 850 } 851 if (result) { 852 dev_err(queue->ctrl->ctrl.device, 853 "receive failed: %d\n", result); 854 queue->rd_enabled = false; 855 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 856 return result; 857 } 858 } 859 860 return consumed; 861 } 862 863 static void nvme_tcp_data_ready(struct sock *sk) 864 { 865 struct nvme_tcp_queue *queue; 866 867 read_lock_bh(&sk->sk_callback_lock); 868 queue = sk->sk_user_data; 869 if (likely(queue && queue->rd_enabled) && 870 !test_bit(NVME_TCP_Q_POLLING, &queue->flags)) 871 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 872 read_unlock_bh(&sk->sk_callback_lock); 873 } 874 875 static void nvme_tcp_write_space(struct sock *sk) 876 { 877 struct nvme_tcp_queue *queue; 878 879 read_lock_bh(&sk->sk_callback_lock); 880 queue = sk->sk_user_data; 881 if (likely(queue && sk_stream_is_writeable(sk))) { 882 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 883 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 884 } 885 read_unlock_bh(&sk->sk_callback_lock); 886 } 887 888 static void nvme_tcp_state_change(struct sock *sk) 889 { 890 struct nvme_tcp_queue *queue; 891 892 read_lock_bh(&sk->sk_callback_lock); 893 queue = sk->sk_user_data; 894 if (!queue) 895 goto done; 896 897 switch (sk->sk_state) { 898 case TCP_CLOSE: 899 case TCP_CLOSE_WAIT: 900 case TCP_LAST_ACK: 901 case TCP_FIN_WAIT1: 902 case TCP_FIN_WAIT2: 903 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 904 break; 905 default: 906 dev_info(queue->ctrl->ctrl.device, 907 "queue %d socket state %d\n", 908 nvme_tcp_queue_id(queue), sk->sk_state); 909 } 910 911 queue->state_change(sk); 912 done: 913 read_unlock_bh(&sk->sk_callback_lock); 914 } 915 916 static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue) 917 { 918 queue->request = NULL; 919 } 920 921 static void nvme_tcp_fail_request(struct nvme_tcp_request *req) 922 { 923 nvme_tcp_end_request(blk_mq_rq_from_pdu(req), NVME_SC_HOST_PATH_ERROR); 924 } 925 926 static int nvme_tcp_try_send_data(struct nvme_tcp_request *req) 927 { 928 struct nvme_tcp_queue *queue = req->queue; 929 930 while (true) { 931 struct page *page = nvme_tcp_req_cur_page(req); 932 size_t offset = nvme_tcp_req_cur_offset(req); 933 size_t len = nvme_tcp_req_cur_length(req); 934 bool last = nvme_tcp_pdu_last_send(req, len); 935 int ret, flags = MSG_DONTWAIT; 936 937 if (last && !queue->data_digest && !nvme_tcp_queue_more(queue)) 938 flags |= MSG_EOR; 939 else 940 flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST; 941 942 if (sendpage_ok(page)) { 943 ret = kernel_sendpage(queue->sock, page, offset, len, 944 flags); 945 } else { 946 ret = sock_no_sendpage(queue->sock, page, offset, len, 947 flags); 948 } 949 if (ret <= 0) 950 return ret; 951 952 if (queue->data_digest) 953 nvme_tcp_ddgst_update(queue->snd_hash, page, 954 offset, ret); 955 956 /* fully successful last write*/ 957 if (last && ret == len) { 958 if (queue->data_digest) { 959 nvme_tcp_ddgst_final(queue->snd_hash, 960 &req->ddgst); 961 req->state = NVME_TCP_SEND_DDGST; 962 req->offset = 0; 963 } else { 964 nvme_tcp_done_send_req(queue); 965 } 966 return 1; 967 } 968 nvme_tcp_advance_req(req, ret); 969 } 970 return -EAGAIN; 971 } 972 973 static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req) 974 { 975 struct nvme_tcp_queue *queue = req->queue; 976 struct nvme_tcp_cmd_pdu *pdu = req->pdu; 977 bool inline_data = nvme_tcp_has_inline_data(req); 978 u8 hdgst = nvme_tcp_hdgst_len(queue); 979 int len = sizeof(*pdu) + hdgst - req->offset; 980 int flags = MSG_DONTWAIT; 981 int ret; 982 983 if (inline_data || nvme_tcp_queue_more(queue)) 984 flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST; 985 else 986 flags |= MSG_EOR; 987 988 if (queue->hdr_digest && !req->offset) 989 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); 990 991 ret = kernel_sendpage(queue->sock, virt_to_page(pdu), 992 offset_in_page(pdu) + req->offset, len, flags); 993 if (unlikely(ret <= 0)) 994 return ret; 995 996 len -= ret; 997 if (!len) { 998 if (inline_data) { 999 req->state = NVME_TCP_SEND_DATA; 1000 if (queue->data_digest) 1001 crypto_ahash_init(queue->snd_hash); 1002 } else { 1003 nvme_tcp_done_send_req(queue); 1004 } 1005 return 1; 1006 } 1007 req->offset += ret; 1008 1009 return -EAGAIN; 1010 } 1011 1012 static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req) 1013 { 1014 struct nvme_tcp_queue *queue = req->queue; 1015 struct nvme_tcp_data_pdu *pdu = req->pdu; 1016 u8 hdgst = nvme_tcp_hdgst_len(queue); 1017 int len = sizeof(*pdu) - req->offset + hdgst; 1018 int ret; 1019 1020 if (queue->hdr_digest && !req->offset) 1021 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); 1022 1023 ret = kernel_sendpage(queue->sock, virt_to_page(pdu), 1024 offset_in_page(pdu) + req->offset, len, 1025 MSG_DONTWAIT | MSG_MORE | MSG_SENDPAGE_NOTLAST); 1026 if (unlikely(ret <= 0)) 1027 return ret; 1028 1029 len -= ret; 1030 if (!len) { 1031 req->state = NVME_TCP_SEND_DATA; 1032 if (queue->data_digest) 1033 crypto_ahash_init(queue->snd_hash); 1034 return 1; 1035 } 1036 req->offset += ret; 1037 1038 return -EAGAIN; 1039 } 1040 1041 static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req) 1042 { 1043 struct nvme_tcp_queue *queue = req->queue; 1044 int ret; 1045 struct msghdr msg = { .msg_flags = MSG_DONTWAIT }; 1046 struct kvec iov = { 1047 .iov_base = &req->ddgst + req->offset, 1048 .iov_len = NVME_TCP_DIGEST_LENGTH - req->offset 1049 }; 1050 1051 if (nvme_tcp_queue_more(queue)) 1052 msg.msg_flags |= MSG_MORE; 1053 else 1054 msg.msg_flags |= MSG_EOR; 1055 1056 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len); 1057 if (unlikely(ret <= 0)) 1058 return ret; 1059 1060 if (req->offset + ret == NVME_TCP_DIGEST_LENGTH) { 1061 nvme_tcp_done_send_req(queue); 1062 return 1; 1063 } 1064 1065 req->offset += ret; 1066 return -EAGAIN; 1067 } 1068 1069 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue) 1070 { 1071 struct nvme_tcp_request *req; 1072 int ret = 1; 1073 1074 if (!queue->request) { 1075 queue->request = nvme_tcp_fetch_request(queue); 1076 if (!queue->request) 1077 return 0; 1078 } 1079 req = queue->request; 1080 1081 if (req->state == NVME_TCP_SEND_CMD_PDU) { 1082 ret = nvme_tcp_try_send_cmd_pdu(req); 1083 if (ret <= 0) 1084 goto done; 1085 if (!nvme_tcp_has_inline_data(req)) 1086 return ret; 1087 } 1088 1089 if (req->state == NVME_TCP_SEND_H2C_PDU) { 1090 ret = nvme_tcp_try_send_data_pdu(req); 1091 if (ret <= 0) 1092 goto done; 1093 } 1094 1095 if (req->state == NVME_TCP_SEND_DATA) { 1096 ret = nvme_tcp_try_send_data(req); 1097 if (ret <= 0) 1098 goto done; 1099 } 1100 1101 if (req->state == NVME_TCP_SEND_DDGST) 1102 ret = nvme_tcp_try_send_ddgst(req); 1103 done: 1104 if (ret == -EAGAIN) { 1105 ret = 0; 1106 } else if (ret < 0) { 1107 dev_err(queue->ctrl->ctrl.device, 1108 "failed to send request %d\n", ret); 1109 if (ret != -EPIPE && ret != -ECONNRESET) 1110 nvme_tcp_fail_request(queue->request); 1111 nvme_tcp_done_send_req(queue); 1112 } 1113 return ret; 1114 } 1115 1116 static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue) 1117 { 1118 struct socket *sock = queue->sock; 1119 struct sock *sk = sock->sk; 1120 read_descriptor_t rd_desc; 1121 int consumed; 1122 1123 rd_desc.arg.data = queue; 1124 rd_desc.count = 1; 1125 lock_sock(sk); 1126 queue->nr_cqe = 0; 1127 consumed = sock->ops->read_sock(sk, &rd_desc, nvme_tcp_recv_skb); 1128 release_sock(sk); 1129 return consumed; 1130 } 1131 1132 static void nvme_tcp_io_work(struct work_struct *w) 1133 { 1134 struct nvme_tcp_queue *queue = 1135 container_of(w, struct nvme_tcp_queue, io_work); 1136 unsigned long deadline = jiffies + msecs_to_jiffies(1); 1137 1138 do { 1139 bool pending = false; 1140 int result; 1141 1142 if (mutex_trylock(&queue->send_mutex)) { 1143 result = nvme_tcp_try_send(queue); 1144 mutex_unlock(&queue->send_mutex); 1145 if (result > 0) 1146 pending = true; 1147 else if (unlikely(result < 0)) 1148 break; 1149 } 1150 1151 result = nvme_tcp_try_recv(queue); 1152 if (result > 0) 1153 pending = true; 1154 else if (unlikely(result < 0)) 1155 return; 1156 1157 if (!pending) 1158 return; 1159 1160 } while (!time_after(jiffies, deadline)); /* quota is exhausted */ 1161 1162 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 1163 } 1164 1165 static void nvme_tcp_free_crypto(struct nvme_tcp_queue *queue) 1166 { 1167 struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash); 1168 1169 ahash_request_free(queue->rcv_hash); 1170 ahash_request_free(queue->snd_hash); 1171 crypto_free_ahash(tfm); 1172 } 1173 1174 static int nvme_tcp_alloc_crypto(struct nvme_tcp_queue *queue) 1175 { 1176 struct crypto_ahash *tfm; 1177 1178 tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC); 1179 if (IS_ERR(tfm)) 1180 return PTR_ERR(tfm); 1181 1182 queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL); 1183 if (!queue->snd_hash) 1184 goto free_tfm; 1185 ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL); 1186 1187 queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL); 1188 if (!queue->rcv_hash) 1189 goto free_snd_hash; 1190 ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL); 1191 1192 return 0; 1193 free_snd_hash: 1194 ahash_request_free(queue->snd_hash); 1195 free_tfm: 1196 crypto_free_ahash(tfm); 1197 return -ENOMEM; 1198 } 1199 1200 static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl) 1201 { 1202 struct nvme_tcp_request *async = &ctrl->async_req; 1203 1204 page_frag_free(async->pdu); 1205 } 1206 1207 static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl) 1208 { 1209 struct nvme_tcp_queue *queue = &ctrl->queues[0]; 1210 struct nvme_tcp_request *async = &ctrl->async_req; 1211 u8 hdgst = nvme_tcp_hdgst_len(queue); 1212 1213 async->pdu = page_frag_alloc(&queue->pf_cache, 1214 sizeof(struct nvme_tcp_cmd_pdu) + hdgst, 1215 GFP_KERNEL | __GFP_ZERO); 1216 if (!async->pdu) 1217 return -ENOMEM; 1218 1219 async->queue = &ctrl->queues[0]; 1220 return 0; 1221 } 1222 1223 static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid) 1224 { 1225 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1226 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1227 1228 if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags)) 1229 return; 1230 1231 if (queue->hdr_digest || queue->data_digest) 1232 nvme_tcp_free_crypto(queue); 1233 1234 sock_release(queue->sock); 1235 kfree(queue->pdu); 1236 mutex_destroy(&queue->send_mutex); 1237 mutex_destroy(&queue->queue_lock); 1238 } 1239 1240 static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue) 1241 { 1242 struct nvme_tcp_icreq_pdu *icreq; 1243 struct nvme_tcp_icresp_pdu *icresp; 1244 struct msghdr msg = {}; 1245 struct kvec iov; 1246 bool ctrl_hdgst, ctrl_ddgst; 1247 int ret; 1248 1249 icreq = kzalloc(sizeof(*icreq), GFP_KERNEL); 1250 if (!icreq) 1251 return -ENOMEM; 1252 1253 icresp = kzalloc(sizeof(*icresp), GFP_KERNEL); 1254 if (!icresp) { 1255 ret = -ENOMEM; 1256 goto free_icreq; 1257 } 1258 1259 icreq->hdr.type = nvme_tcp_icreq; 1260 icreq->hdr.hlen = sizeof(*icreq); 1261 icreq->hdr.pdo = 0; 1262 icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen); 1263 icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0); 1264 icreq->maxr2t = 0; /* single inflight r2t supported */ 1265 icreq->hpda = 0; /* no alignment constraint */ 1266 if (queue->hdr_digest) 1267 icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE; 1268 if (queue->data_digest) 1269 icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE; 1270 1271 iov.iov_base = icreq; 1272 iov.iov_len = sizeof(*icreq); 1273 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len); 1274 if (ret < 0) 1275 goto free_icresp; 1276 1277 memset(&msg, 0, sizeof(msg)); 1278 iov.iov_base = icresp; 1279 iov.iov_len = sizeof(*icresp); 1280 ret = kernel_recvmsg(queue->sock, &msg, &iov, 1, 1281 iov.iov_len, msg.msg_flags); 1282 if (ret < 0) 1283 goto free_icresp; 1284 1285 ret = -EINVAL; 1286 if (icresp->hdr.type != nvme_tcp_icresp) { 1287 pr_err("queue %d: bad type returned %d\n", 1288 nvme_tcp_queue_id(queue), icresp->hdr.type); 1289 goto free_icresp; 1290 } 1291 1292 if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) { 1293 pr_err("queue %d: bad pdu length returned %d\n", 1294 nvme_tcp_queue_id(queue), icresp->hdr.plen); 1295 goto free_icresp; 1296 } 1297 1298 if (icresp->pfv != NVME_TCP_PFV_1_0) { 1299 pr_err("queue %d: bad pfv returned %d\n", 1300 nvme_tcp_queue_id(queue), icresp->pfv); 1301 goto free_icresp; 1302 } 1303 1304 ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE); 1305 if ((queue->data_digest && !ctrl_ddgst) || 1306 (!queue->data_digest && ctrl_ddgst)) { 1307 pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n", 1308 nvme_tcp_queue_id(queue), 1309 queue->data_digest ? "enabled" : "disabled", 1310 ctrl_ddgst ? "enabled" : "disabled"); 1311 goto free_icresp; 1312 } 1313 1314 ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE); 1315 if ((queue->hdr_digest && !ctrl_hdgst) || 1316 (!queue->hdr_digest && ctrl_hdgst)) { 1317 pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n", 1318 nvme_tcp_queue_id(queue), 1319 queue->hdr_digest ? "enabled" : "disabled", 1320 ctrl_hdgst ? "enabled" : "disabled"); 1321 goto free_icresp; 1322 } 1323 1324 if (icresp->cpda != 0) { 1325 pr_err("queue %d: unsupported cpda returned %d\n", 1326 nvme_tcp_queue_id(queue), icresp->cpda); 1327 goto free_icresp; 1328 } 1329 1330 ret = 0; 1331 free_icresp: 1332 kfree(icresp); 1333 free_icreq: 1334 kfree(icreq); 1335 return ret; 1336 } 1337 1338 static bool nvme_tcp_admin_queue(struct nvme_tcp_queue *queue) 1339 { 1340 return nvme_tcp_queue_id(queue) == 0; 1341 } 1342 1343 static bool nvme_tcp_default_queue(struct nvme_tcp_queue *queue) 1344 { 1345 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1346 int qid = nvme_tcp_queue_id(queue); 1347 1348 return !nvme_tcp_admin_queue(queue) && 1349 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT]; 1350 } 1351 1352 static bool nvme_tcp_read_queue(struct nvme_tcp_queue *queue) 1353 { 1354 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1355 int qid = nvme_tcp_queue_id(queue); 1356 1357 return !nvme_tcp_admin_queue(queue) && 1358 !nvme_tcp_default_queue(queue) && 1359 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] + 1360 ctrl->io_queues[HCTX_TYPE_READ]; 1361 } 1362 1363 static bool nvme_tcp_poll_queue(struct nvme_tcp_queue *queue) 1364 { 1365 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1366 int qid = nvme_tcp_queue_id(queue); 1367 1368 return !nvme_tcp_admin_queue(queue) && 1369 !nvme_tcp_default_queue(queue) && 1370 !nvme_tcp_read_queue(queue) && 1371 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] + 1372 ctrl->io_queues[HCTX_TYPE_READ] + 1373 ctrl->io_queues[HCTX_TYPE_POLL]; 1374 } 1375 1376 static void nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue *queue) 1377 { 1378 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1379 int qid = nvme_tcp_queue_id(queue); 1380 int n = 0; 1381 1382 if (nvme_tcp_default_queue(queue)) 1383 n = qid - 1; 1384 else if (nvme_tcp_read_queue(queue)) 1385 n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - 1; 1386 else if (nvme_tcp_poll_queue(queue)) 1387 n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - 1388 ctrl->io_queues[HCTX_TYPE_READ] - 1; 1389 queue->io_cpu = cpumask_next_wrap(n - 1, cpu_online_mask, -1, false); 1390 } 1391 1392 static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl, 1393 int qid, size_t queue_size) 1394 { 1395 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1396 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1397 int ret, rcv_pdu_size; 1398 1399 mutex_init(&queue->queue_lock); 1400 queue->ctrl = ctrl; 1401 init_llist_head(&queue->req_list); 1402 INIT_LIST_HEAD(&queue->send_list); 1403 mutex_init(&queue->send_mutex); 1404 INIT_WORK(&queue->io_work, nvme_tcp_io_work); 1405 queue->queue_size = queue_size; 1406 1407 if (qid > 0) 1408 queue->cmnd_capsule_len = nctrl->ioccsz * 16; 1409 else 1410 queue->cmnd_capsule_len = sizeof(struct nvme_command) + 1411 NVME_TCP_ADMIN_CCSZ; 1412 1413 ret = sock_create(ctrl->addr.ss_family, SOCK_STREAM, 1414 IPPROTO_TCP, &queue->sock); 1415 if (ret) { 1416 dev_err(nctrl->device, 1417 "failed to create socket: %d\n", ret); 1418 goto err_destroy_mutex; 1419 } 1420 1421 /* Single syn retry */ 1422 tcp_sock_set_syncnt(queue->sock->sk, 1); 1423 1424 /* Set TCP no delay */ 1425 tcp_sock_set_nodelay(queue->sock->sk); 1426 1427 /* 1428 * Cleanup whatever is sitting in the TCP transmit queue on socket 1429 * close. This is done to prevent stale data from being sent should 1430 * the network connection be restored before TCP times out. 1431 */ 1432 sock_no_linger(queue->sock->sk); 1433 1434 if (so_priority > 0) 1435 sock_set_priority(queue->sock->sk, so_priority); 1436 1437 /* Set socket type of service */ 1438 if (nctrl->opts->tos >= 0) 1439 ip_sock_set_tos(queue->sock->sk, nctrl->opts->tos); 1440 1441 /* Set 10 seconds timeout for icresp recvmsg */ 1442 queue->sock->sk->sk_rcvtimeo = 10 * HZ; 1443 1444 queue->sock->sk->sk_allocation = GFP_ATOMIC; 1445 nvme_tcp_set_queue_io_cpu(queue); 1446 queue->request = NULL; 1447 queue->data_remaining = 0; 1448 queue->ddgst_remaining = 0; 1449 queue->pdu_remaining = 0; 1450 queue->pdu_offset = 0; 1451 sk_set_memalloc(queue->sock->sk); 1452 1453 if (nctrl->opts->mask & NVMF_OPT_HOST_TRADDR) { 1454 ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr, 1455 sizeof(ctrl->src_addr)); 1456 if (ret) { 1457 dev_err(nctrl->device, 1458 "failed to bind queue %d socket %d\n", 1459 qid, ret); 1460 goto err_sock; 1461 } 1462 } 1463 1464 if (nctrl->opts->mask & NVMF_OPT_HOST_IFACE) { 1465 char *iface = nctrl->opts->host_iface; 1466 sockptr_t optval = KERNEL_SOCKPTR(iface); 1467 1468 ret = sock_setsockopt(queue->sock, SOL_SOCKET, SO_BINDTODEVICE, 1469 optval, strlen(iface)); 1470 if (ret) { 1471 dev_err(nctrl->device, 1472 "failed to bind to interface %s queue %d err %d\n", 1473 iface, qid, ret); 1474 goto err_sock; 1475 } 1476 } 1477 1478 queue->hdr_digest = nctrl->opts->hdr_digest; 1479 queue->data_digest = nctrl->opts->data_digest; 1480 if (queue->hdr_digest || queue->data_digest) { 1481 ret = nvme_tcp_alloc_crypto(queue); 1482 if (ret) { 1483 dev_err(nctrl->device, 1484 "failed to allocate queue %d crypto\n", qid); 1485 goto err_sock; 1486 } 1487 } 1488 1489 rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) + 1490 nvme_tcp_hdgst_len(queue); 1491 queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL); 1492 if (!queue->pdu) { 1493 ret = -ENOMEM; 1494 goto err_crypto; 1495 } 1496 1497 dev_dbg(nctrl->device, "connecting queue %d\n", 1498 nvme_tcp_queue_id(queue)); 1499 1500 ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr, 1501 sizeof(ctrl->addr), 0); 1502 if (ret) { 1503 dev_err(nctrl->device, 1504 "failed to connect socket: %d\n", ret); 1505 goto err_rcv_pdu; 1506 } 1507 1508 ret = nvme_tcp_init_connection(queue); 1509 if (ret) 1510 goto err_init_connect; 1511 1512 queue->rd_enabled = true; 1513 set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags); 1514 nvme_tcp_init_recv_ctx(queue); 1515 1516 write_lock_bh(&queue->sock->sk->sk_callback_lock); 1517 queue->sock->sk->sk_user_data = queue; 1518 queue->state_change = queue->sock->sk->sk_state_change; 1519 queue->data_ready = queue->sock->sk->sk_data_ready; 1520 queue->write_space = queue->sock->sk->sk_write_space; 1521 queue->sock->sk->sk_data_ready = nvme_tcp_data_ready; 1522 queue->sock->sk->sk_state_change = nvme_tcp_state_change; 1523 queue->sock->sk->sk_write_space = nvme_tcp_write_space; 1524 #ifdef CONFIG_NET_RX_BUSY_POLL 1525 queue->sock->sk->sk_ll_usec = 1; 1526 #endif 1527 write_unlock_bh(&queue->sock->sk->sk_callback_lock); 1528 1529 return 0; 1530 1531 err_init_connect: 1532 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 1533 err_rcv_pdu: 1534 kfree(queue->pdu); 1535 err_crypto: 1536 if (queue->hdr_digest || queue->data_digest) 1537 nvme_tcp_free_crypto(queue); 1538 err_sock: 1539 sock_release(queue->sock); 1540 queue->sock = NULL; 1541 err_destroy_mutex: 1542 mutex_destroy(&queue->send_mutex); 1543 mutex_destroy(&queue->queue_lock); 1544 return ret; 1545 } 1546 1547 static void nvme_tcp_restore_sock_calls(struct nvme_tcp_queue *queue) 1548 { 1549 struct socket *sock = queue->sock; 1550 1551 write_lock_bh(&sock->sk->sk_callback_lock); 1552 sock->sk->sk_user_data = NULL; 1553 sock->sk->sk_data_ready = queue->data_ready; 1554 sock->sk->sk_state_change = queue->state_change; 1555 sock->sk->sk_write_space = queue->write_space; 1556 write_unlock_bh(&sock->sk->sk_callback_lock); 1557 } 1558 1559 static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue) 1560 { 1561 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 1562 nvme_tcp_restore_sock_calls(queue); 1563 cancel_work_sync(&queue->io_work); 1564 } 1565 1566 static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid) 1567 { 1568 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1569 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1570 1571 mutex_lock(&queue->queue_lock); 1572 if (test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags)) 1573 __nvme_tcp_stop_queue(queue); 1574 mutex_unlock(&queue->queue_lock); 1575 } 1576 1577 static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx) 1578 { 1579 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1580 int ret; 1581 1582 if (idx) 1583 ret = nvmf_connect_io_queue(nctrl, idx); 1584 else 1585 ret = nvmf_connect_admin_queue(nctrl); 1586 1587 if (!ret) { 1588 set_bit(NVME_TCP_Q_LIVE, &ctrl->queues[idx].flags); 1589 } else { 1590 if (test_bit(NVME_TCP_Q_ALLOCATED, &ctrl->queues[idx].flags)) 1591 __nvme_tcp_stop_queue(&ctrl->queues[idx]); 1592 dev_err(nctrl->device, 1593 "failed to connect queue: %d ret=%d\n", idx, ret); 1594 } 1595 return ret; 1596 } 1597 1598 static struct blk_mq_tag_set *nvme_tcp_alloc_tagset(struct nvme_ctrl *nctrl, 1599 bool admin) 1600 { 1601 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1602 struct blk_mq_tag_set *set; 1603 int ret; 1604 1605 if (admin) { 1606 set = &ctrl->admin_tag_set; 1607 memset(set, 0, sizeof(*set)); 1608 set->ops = &nvme_tcp_admin_mq_ops; 1609 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH; 1610 set->reserved_tags = NVMF_RESERVED_TAGS; 1611 set->numa_node = nctrl->numa_node; 1612 set->flags = BLK_MQ_F_BLOCKING; 1613 set->cmd_size = sizeof(struct nvme_tcp_request); 1614 set->driver_data = ctrl; 1615 set->nr_hw_queues = 1; 1616 set->timeout = NVME_ADMIN_TIMEOUT; 1617 } else { 1618 set = &ctrl->tag_set; 1619 memset(set, 0, sizeof(*set)); 1620 set->ops = &nvme_tcp_mq_ops; 1621 set->queue_depth = nctrl->sqsize + 1; 1622 set->reserved_tags = NVMF_RESERVED_TAGS; 1623 set->numa_node = nctrl->numa_node; 1624 set->flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_BLOCKING; 1625 set->cmd_size = sizeof(struct nvme_tcp_request); 1626 set->driver_data = ctrl; 1627 set->nr_hw_queues = nctrl->queue_count - 1; 1628 set->timeout = NVME_IO_TIMEOUT; 1629 set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2; 1630 } 1631 1632 ret = blk_mq_alloc_tag_set(set); 1633 if (ret) 1634 return ERR_PTR(ret); 1635 1636 return set; 1637 } 1638 1639 static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl) 1640 { 1641 if (to_tcp_ctrl(ctrl)->async_req.pdu) { 1642 cancel_work_sync(&ctrl->async_event_work); 1643 nvme_tcp_free_async_req(to_tcp_ctrl(ctrl)); 1644 to_tcp_ctrl(ctrl)->async_req.pdu = NULL; 1645 } 1646 1647 nvme_tcp_free_queue(ctrl, 0); 1648 } 1649 1650 static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl) 1651 { 1652 int i; 1653 1654 for (i = 1; i < ctrl->queue_count; i++) 1655 nvme_tcp_free_queue(ctrl, i); 1656 } 1657 1658 static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl) 1659 { 1660 int i; 1661 1662 for (i = 1; i < ctrl->queue_count; i++) 1663 nvme_tcp_stop_queue(ctrl, i); 1664 } 1665 1666 static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl) 1667 { 1668 int i, ret = 0; 1669 1670 for (i = 1; i < ctrl->queue_count; i++) { 1671 ret = nvme_tcp_start_queue(ctrl, i); 1672 if (ret) 1673 goto out_stop_queues; 1674 } 1675 1676 return 0; 1677 1678 out_stop_queues: 1679 for (i--; i >= 1; i--) 1680 nvme_tcp_stop_queue(ctrl, i); 1681 return ret; 1682 } 1683 1684 static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl) 1685 { 1686 int ret; 1687 1688 ret = nvme_tcp_alloc_queue(ctrl, 0, NVME_AQ_DEPTH); 1689 if (ret) 1690 return ret; 1691 1692 ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl)); 1693 if (ret) 1694 goto out_free_queue; 1695 1696 return 0; 1697 1698 out_free_queue: 1699 nvme_tcp_free_queue(ctrl, 0); 1700 return ret; 1701 } 1702 1703 static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl) 1704 { 1705 int i, ret; 1706 1707 for (i = 1; i < ctrl->queue_count; i++) { 1708 ret = nvme_tcp_alloc_queue(ctrl, i, 1709 ctrl->sqsize + 1); 1710 if (ret) 1711 goto out_free_queues; 1712 } 1713 1714 return 0; 1715 1716 out_free_queues: 1717 for (i--; i >= 1; i--) 1718 nvme_tcp_free_queue(ctrl, i); 1719 1720 return ret; 1721 } 1722 1723 static unsigned int nvme_tcp_nr_io_queues(struct nvme_ctrl *ctrl) 1724 { 1725 unsigned int nr_io_queues; 1726 1727 nr_io_queues = min(ctrl->opts->nr_io_queues, num_online_cpus()); 1728 nr_io_queues += min(ctrl->opts->nr_write_queues, num_online_cpus()); 1729 nr_io_queues += min(ctrl->opts->nr_poll_queues, num_online_cpus()); 1730 1731 return nr_io_queues; 1732 } 1733 1734 static void nvme_tcp_set_io_queues(struct nvme_ctrl *nctrl, 1735 unsigned int nr_io_queues) 1736 { 1737 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1738 struct nvmf_ctrl_options *opts = nctrl->opts; 1739 1740 if (opts->nr_write_queues && opts->nr_io_queues < nr_io_queues) { 1741 /* 1742 * separate read/write queues 1743 * hand out dedicated default queues only after we have 1744 * sufficient read queues. 1745 */ 1746 ctrl->io_queues[HCTX_TYPE_READ] = opts->nr_io_queues; 1747 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ]; 1748 ctrl->io_queues[HCTX_TYPE_DEFAULT] = 1749 min(opts->nr_write_queues, nr_io_queues); 1750 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT]; 1751 } else { 1752 /* 1753 * shared read/write queues 1754 * either no write queues were requested, or we don't have 1755 * sufficient queue count to have dedicated default queues. 1756 */ 1757 ctrl->io_queues[HCTX_TYPE_DEFAULT] = 1758 min(opts->nr_io_queues, nr_io_queues); 1759 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT]; 1760 } 1761 1762 if (opts->nr_poll_queues && nr_io_queues) { 1763 /* map dedicated poll queues only if we have queues left */ 1764 ctrl->io_queues[HCTX_TYPE_POLL] = 1765 min(opts->nr_poll_queues, nr_io_queues); 1766 } 1767 } 1768 1769 static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl) 1770 { 1771 unsigned int nr_io_queues; 1772 int ret; 1773 1774 nr_io_queues = nvme_tcp_nr_io_queues(ctrl); 1775 ret = nvme_set_queue_count(ctrl, &nr_io_queues); 1776 if (ret) 1777 return ret; 1778 1779 if (nr_io_queues == 0) { 1780 dev_err(ctrl->device, 1781 "unable to set any I/O queues\n"); 1782 return -ENOMEM; 1783 } 1784 1785 ctrl->queue_count = nr_io_queues + 1; 1786 dev_info(ctrl->device, 1787 "creating %d I/O queues.\n", nr_io_queues); 1788 1789 nvme_tcp_set_io_queues(ctrl, nr_io_queues); 1790 1791 return __nvme_tcp_alloc_io_queues(ctrl); 1792 } 1793 1794 static void nvme_tcp_destroy_io_queues(struct nvme_ctrl *ctrl, bool remove) 1795 { 1796 nvme_tcp_stop_io_queues(ctrl); 1797 if (remove) { 1798 blk_cleanup_queue(ctrl->connect_q); 1799 blk_mq_free_tag_set(ctrl->tagset); 1800 } 1801 nvme_tcp_free_io_queues(ctrl); 1802 } 1803 1804 static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new) 1805 { 1806 int ret; 1807 1808 ret = nvme_tcp_alloc_io_queues(ctrl); 1809 if (ret) 1810 return ret; 1811 1812 if (new) { 1813 ctrl->tagset = nvme_tcp_alloc_tagset(ctrl, false); 1814 if (IS_ERR(ctrl->tagset)) { 1815 ret = PTR_ERR(ctrl->tagset); 1816 goto out_free_io_queues; 1817 } 1818 1819 ctrl->connect_q = blk_mq_init_queue(ctrl->tagset); 1820 if (IS_ERR(ctrl->connect_q)) { 1821 ret = PTR_ERR(ctrl->connect_q); 1822 goto out_free_tag_set; 1823 } 1824 } 1825 1826 ret = nvme_tcp_start_io_queues(ctrl); 1827 if (ret) 1828 goto out_cleanup_connect_q; 1829 1830 if (!new) { 1831 nvme_start_queues(ctrl); 1832 if (!nvme_wait_freeze_timeout(ctrl, NVME_IO_TIMEOUT)) { 1833 /* 1834 * If we timed out waiting for freeze we are likely to 1835 * be stuck. Fail the controller initialization just 1836 * to be safe. 1837 */ 1838 ret = -ENODEV; 1839 goto out_wait_freeze_timed_out; 1840 } 1841 blk_mq_update_nr_hw_queues(ctrl->tagset, 1842 ctrl->queue_count - 1); 1843 nvme_unfreeze(ctrl); 1844 } 1845 1846 return 0; 1847 1848 out_wait_freeze_timed_out: 1849 nvme_stop_queues(ctrl); 1850 nvme_sync_io_queues(ctrl); 1851 nvme_tcp_stop_io_queues(ctrl); 1852 out_cleanup_connect_q: 1853 nvme_cancel_tagset(ctrl); 1854 if (new) 1855 blk_cleanup_queue(ctrl->connect_q); 1856 out_free_tag_set: 1857 if (new) 1858 blk_mq_free_tag_set(ctrl->tagset); 1859 out_free_io_queues: 1860 nvme_tcp_free_io_queues(ctrl); 1861 return ret; 1862 } 1863 1864 static void nvme_tcp_destroy_admin_queue(struct nvme_ctrl *ctrl, bool remove) 1865 { 1866 nvme_tcp_stop_queue(ctrl, 0); 1867 if (remove) { 1868 blk_cleanup_queue(ctrl->admin_q); 1869 blk_cleanup_queue(ctrl->fabrics_q); 1870 blk_mq_free_tag_set(ctrl->admin_tagset); 1871 } 1872 nvme_tcp_free_admin_queue(ctrl); 1873 } 1874 1875 static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new) 1876 { 1877 int error; 1878 1879 error = nvme_tcp_alloc_admin_queue(ctrl); 1880 if (error) 1881 return error; 1882 1883 if (new) { 1884 ctrl->admin_tagset = nvme_tcp_alloc_tagset(ctrl, true); 1885 if (IS_ERR(ctrl->admin_tagset)) { 1886 error = PTR_ERR(ctrl->admin_tagset); 1887 goto out_free_queue; 1888 } 1889 1890 ctrl->fabrics_q = blk_mq_init_queue(ctrl->admin_tagset); 1891 if (IS_ERR(ctrl->fabrics_q)) { 1892 error = PTR_ERR(ctrl->fabrics_q); 1893 goto out_free_tagset; 1894 } 1895 1896 ctrl->admin_q = blk_mq_init_queue(ctrl->admin_tagset); 1897 if (IS_ERR(ctrl->admin_q)) { 1898 error = PTR_ERR(ctrl->admin_q); 1899 goto out_cleanup_fabrics_q; 1900 } 1901 } 1902 1903 error = nvme_tcp_start_queue(ctrl, 0); 1904 if (error) 1905 goto out_cleanup_queue; 1906 1907 error = nvme_enable_ctrl(ctrl); 1908 if (error) 1909 goto out_stop_queue; 1910 1911 blk_mq_unquiesce_queue(ctrl->admin_q); 1912 1913 error = nvme_init_ctrl_finish(ctrl); 1914 if (error) 1915 goto out_quiesce_queue; 1916 1917 return 0; 1918 1919 out_quiesce_queue: 1920 blk_mq_quiesce_queue(ctrl->admin_q); 1921 blk_sync_queue(ctrl->admin_q); 1922 out_stop_queue: 1923 nvme_tcp_stop_queue(ctrl, 0); 1924 nvme_cancel_admin_tagset(ctrl); 1925 out_cleanup_queue: 1926 if (new) 1927 blk_cleanup_queue(ctrl->admin_q); 1928 out_cleanup_fabrics_q: 1929 if (new) 1930 blk_cleanup_queue(ctrl->fabrics_q); 1931 out_free_tagset: 1932 if (new) 1933 blk_mq_free_tag_set(ctrl->admin_tagset); 1934 out_free_queue: 1935 nvme_tcp_free_admin_queue(ctrl); 1936 return error; 1937 } 1938 1939 static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl, 1940 bool remove) 1941 { 1942 blk_mq_quiesce_queue(ctrl->admin_q); 1943 blk_sync_queue(ctrl->admin_q); 1944 nvme_tcp_stop_queue(ctrl, 0); 1945 nvme_cancel_admin_tagset(ctrl); 1946 if (remove) 1947 blk_mq_unquiesce_queue(ctrl->admin_q); 1948 nvme_tcp_destroy_admin_queue(ctrl, remove); 1949 } 1950 1951 static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl, 1952 bool remove) 1953 { 1954 if (ctrl->queue_count <= 1) 1955 return; 1956 blk_mq_quiesce_queue(ctrl->admin_q); 1957 nvme_start_freeze(ctrl); 1958 nvme_stop_queues(ctrl); 1959 nvme_sync_io_queues(ctrl); 1960 nvme_tcp_stop_io_queues(ctrl); 1961 nvme_cancel_tagset(ctrl); 1962 if (remove) 1963 nvme_start_queues(ctrl); 1964 nvme_tcp_destroy_io_queues(ctrl, remove); 1965 } 1966 1967 static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl) 1968 { 1969 /* If we are resetting/deleting then do nothing */ 1970 if (ctrl->state != NVME_CTRL_CONNECTING) { 1971 WARN_ON_ONCE(ctrl->state == NVME_CTRL_NEW || 1972 ctrl->state == NVME_CTRL_LIVE); 1973 return; 1974 } 1975 1976 if (nvmf_should_reconnect(ctrl)) { 1977 dev_info(ctrl->device, "Reconnecting in %d seconds...\n", 1978 ctrl->opts->reconnect_delay); 1979 queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work, 1980 ctrl->opts->reconnect_delay * HZ); 1981 } else { 1982 dev_info(ctrl->device, "Removing controller...\n"); 1983 nvme_delete_ctrl(ctrl); 1984 } 1985 } 1986 1987 static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new) 1988 { 1989 struct nvmf_ctrl_options *opts = ctrl->opts; 1990 int ret; 1991 1992 ret = nvme_tcp_configure_admin_queue(ctrl, new); 1993 if (ret) 1994 return ret; 1995 1996 if (ctrl->icdoff) { 1997 ret = -EOPNOTSUPP; 1998 dev_err(ctrl->device, "icdoff is not supported!\n"); 1999 goto destroy_admin; 2000 } 2001 2002 if (!nvme_ctrl_sgl_supported(ctrl)) { 2003 ret = -EOPNOTSUPP; 2004 dev_err(ctrl->device, "Mandatory sgls are not supported!\n"); 2005 goto destroy_admin; 2006 } 2007 2008 if (opts->queue_size > ctrl->sqsize + 1) 2009 dev_warn(ctrl->device, 2010 "queue_size %zu > ctrl sqsize %u, clamping down\n", 2011 opts->queue_size, ctrl->sqsize + 1); 2012 2013 if (ctrl->sqsize + 1 > ctrl->maxcmd) { 2014 dev_warn(ctrl->device, 2015 "sqsize %u > ctrl maxcmd %u, clamping down\n", 2016 ctrl->sqsize + 1, ctrl->maxcmd); 2017 ctrl->sqsize = ctrl->maxcmd - 1; 2018 } 2019 2020 if (ctrl->queue_count > 1) { 2021 ret = nvme_tcp_configure_io_queues(ctrl, new); 2022 if (ret) 2023 goto destroy_admin; 2024 } 2025 2026 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) { 2027 /* 2028 * state change failure is ok if we started ctrl delete, 2029 * unless we're during creation of a new controller to 2030 * avoid races with teardown flow. 2031 */ 2032 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING && 2033 ctrl->state != NVME_CTRL_DELETING_NOIO); 2034 WARN_ON_ONCE(new); 2035 ret = -EINVAL; 2036 goto destroy_io; 2037 } 2038 2039 nvme_start_ctrl(ctrl); 2040 return 0; 2041 2042 destroy_io: 2043 if (ctrl->queue_count > 1) { 2044 nvme_stop_queues(ctrl); 2045 nvme_sync_io_queues(ctrl); 2046 nvme_tcp_stop_io_queues(ctrl); 2047 nvme_cancel_tagset(ctrl); 2048 nvme_tcp_destroy_io_queues(ctrl, new); 2049 } 2050 destroy_admin: 2051 blk_mq_quiesce_queue(ctrl->admin_q); 2052 blk_sync_queue(ctrl->admin_q); 2053 nvme_tcp_stop_queue(ctrl, 0); 2054 nvme_cancel_admin_tagset(ctrl); 2055 nvme_tcp_destroy_admin_queue(ctrl, new); 2056 return ret; 2057 } 2058 2059 static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work) 2060 { 2061 struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work), 2062 struct nvme_tcp_ctrl, connect_work); 2063 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl; 2064 2065 ++ctrl->nr_reconnects; 2066 2067 if (nvme_tcp_setup_ctrl(ctrl, false)) 2068 goto requeue; 2069 2070 dev_info(ctrl->device, "Successfully reconnected (%d attempt)\n", 2071 ctrl->nr_reconnects); 2072 2073 ctrl->nr_reconnects = 0; 2074 2075 return; 2076 2077 requeue: 2078 dev_info(ctrl->device, "Failed reconnect attempt %d\n", 2079 ctrl->nr_reconnects); 2080 nvme_tcp_reconnect_or_remove(ctrl); 2081 } 2082 2083 static void nvme_tcp_error_recovery_work(struct work_struct *work) 2084 { 2085 struct nvme_tcp_ctrl *tcp_ctrl = container_of(work, 2086 struct nvme_tcp_ctrl, err_work); 2087 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl; 2088 2089 nvme_stop_keep_alive(ctrl); 2090 nvme_tcp_teardown_io_queues(ctrl, false); 2091 /* unquiesce to fail fast pending requests */ 2092 nvme_start_queues(ctrl); 2093 nvme_tcp_teardown_admin_queue(ctrl, false); 2094 blk_mq_unquiesce_queue(ctrl->admin_q); 2095 2096 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) { 2097 /* state change failure is ok if we started ctrl delete */ 2098 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING && 2099 ctrl->state != NVME_CTRL_DELETING_NOIO); 2100 return; 2101 } 2102 2103 nvme_tcp_reconnect_or_remove(ctrl); 2104 } 2105 2106 static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown) 2107 { 2108 cancel_work_sync(&to_tcp_ctrl(ctrl)->err_work); 2109 cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work); 2110 2111 nvme_tcp_teardown_io_queues(ctrl, shutdown); 2112 blk_mq_quiesce_queue(ctrl->admin_q); 2113 if (shutdown) 2114 nvme_shutdown_ctrl(ctrl); 2115 else 2116 nvme_disable_ctrl(ctrl); 2117 nvme_tcp_teardown_admin_queue(ctrl, shutdown); 2118 } 2119 2120 static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl) 2121 { 2122 nvme_tcp_teardown_ctrl(ctrl, true); 2123 } 2124 2125 static void nvme_reset_ctrl_work(struct work_struct *work) 2126 { 2127 struct nvme_ctrl *ctrl = 2128 container_of(work, struct nvme_ctrl, reset_work); 2129 2130 nvme_stop_ctrl(ctrl); 2131 nvme_tcp_teardown_ctrl(ctrl, false); 2132 2133 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) { 2134 /* state change failure is ok if we started ctrl delete */ 2135 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING && 2136 ctrl->state != NVME_CTRL_DELETING_NOIO); 2137 return; 2138 } 2139 2140 if (nvme_tcp_setup_ctrl(ctrl, false)) 2141 goto out_fail; 2142 2143 return; 2144 2145 out_fail: 2146 ++ctrl->nr_reconnects; 2147 nvme_tcp_reconnect_or_remove(ctrl); 2148 } 2149 2150 static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl) 2151 { 2152 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 2153 2154 if (list_empty(&ctrl->list)) 2155 goto free_ctrl; 2156 2157 mutex_lock(&nvme_tcp_ctrl_mutex); 2158 list_del(&ctrl->list); 2159 mutex_unlock(&nvme_tcp_ctrl_mutex); 2160 2161 nvmf_free_options(nctrl->opts); 2162 free_ctrl: 2163 kfree(ctrl->queues); 2164 kfree(ctrl); 2165 } 2166 2167 static void nvme_tcp_set_sg_null(struct nvme_command *c) 2168 { 2169 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 2170 2171 sg->addr = 0; 2172 sg->length = 0; 2173 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) | 2174 NVME_SGL_FMT_TRANSPORT_A; 2175 } 2176 2177 static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue, 2178 struct nvme_command *c, u32 data_len) 2179 { 2180 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 2181 2182 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff); 2183 sg->length = cpu_to_le32(data_len); 2184 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET; 2185 } 2186 2187 static void nvme_tcp_set_sg_host_data(struct nvme_command *c, 2188 u32 data_len) 2189 { 2190 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 2191 2192 sg->addr = 0; 2193 sg->length = cpu_to_le32(data_len); 2194 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) | 2195 NVME_SGL_FMT_TRANSPORT_A; 2196 } 2197 2198 static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg) 2199 { 2200 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg); 2201 struct nvme_tcp_queue *queue = &ctrl->queues[0]; 2202 struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu; 2203 struct nvme_command *cmd = &pdu->cmd; 2204 u8 hdgst = nvme_tcp_hdgst_len(queue); 2205 2206 memset(pdu, 0, sizeof(*pdu)); 2207 pdu->hdr.type = nvme_tcp_cmd; 2208 if (queue->hdr_digest) 2209 pdu->hdr.flags |= NVME_TCP_F_HDGST; 2210 pdu->hdr.hlen = sizeof(*pdu); 2211 pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst); 2212 2213 cmd->common.opcode = nvme_admin_async_event; 2214 cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH; 2215 cmd->common.flags |= NVME_CMD_SGL_METABUF; 2216 nvme_tcp_set_sg_null(cmd); 2217 2218 ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU; 2219 ctrl->async_req.offset = 0; 2220 ctrl->async_req.curr_bio = NULL; 2221 ctrl->async_req.data_len = 0; 2222 2223 nvme_tcp_queue_request(&ctrl->async_req, true, true); 2224 } 2225 2226 static void nvme_tcp_complete_timed_out(struct request *rq) 2227 { 2228 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2229 struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl; 2230 2231 nvme_tcp_stop_queue(ctrl, nvme_tcp_queue_id(req->queue)); 2232 if (blk_mq_request_started(rq) && !blk_mq_request_completed(rq)) { 2233 nvme_req(rq)->status = NVME_SC_HOST_ABORTED_CMD; 2234 blk_mq_complete_request(rq); 2235 } 2236 } 2237 2238 static enum blk_eh_timer_return 2239 nvme_tcp_timeout(struct request *rq, bool reserved) 2240 { 2241 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2242 struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl; 2243 struct nvme_tcp_cmd_pdu *pdu = req->pdu; 2244 2245 dev_warn(ctrl->device, 2246 "queue %d: timeout request %#x type %d\n", 2247 nvme_tcp_queue_id(req->queue), rq->tag, pdu->hdr.type); 2248 2249 if (ctrl->state != NVME_CTRL_LIVE) { 2250 /* 2251 * If we are resetting, connecting or deleting we should 2252 * complete immediately because we may block controller 2253 * teardown or setup sequence 2254 * - ctrl disable/shutdown fabrics requests 2255 * - connect requests 2256 * - initialization admin requests 2257 * - I/O requests that entered after unquiescing and 2258 * the controller stopped responding 2259 * 2260 * All other requests should be cancelled by the error 2261 * recovery work, so it's fine that we fail it here. 2262 */ 2263 nvme_tcp_complete_timed_out(rq); 2264 return BLK_EH_DONE; 2265 } 2266 2267 /* 2268 * LIVE state should trigger the normal error recovery which will 2269 * handle completing this request. 2270 */ 2271 nvme_tcp_error_recovery(ctrl); 2272 return BLK_EH_RESET_TIMER; 2273 } 2274 2275 static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue, 2276 struct request *rq) 2277 { 2278 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2279 struct nvme_tcp_cmd_pdu *pdu = req->pdu; 2280 struct nvme_command *c = &pdu->cmd; 2281 2282 c->common.flags |= NVME_CMD_SGL_METABUF; 2283 2284 if (!blk_rq_nr_phys_segments(rq)) 2285 nvme_tcp_set_sg_null(c); 2286 else if (rq_data_dir(rq) == WRITE && 2287 req->data_len <= nvme_tcp_inline_data_size(queue)) 2288 nvme_tcp_set_sg_inline(queue, c, req->data_len); 2289 else 2290 nvme_tcp_set_sg_host_data(c, req->data_len); 2291 2292 return 0; 2293 } 2294 2295 static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns, 2296 struct request *rq) 2297 { 2298 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2299 struct nvme_tcp_cmd_pdu *pdu = req->pdu; 2300 struct nvme_tcp_queue *queue = req->queue; 2301 u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0; 2302 blk_status_t ret; 2303 2304 ret = nvme_setup_cmd(ns, rq); 2305 if (ret) 2306 return ret; 2307 2308 req->state = NVME_TCP_SEND_CMD_PDU; 2309 req->status = cpu_to_le16(NVME_SC_SUCCESS); 2310 req->offset = 0; 2311 req->data_sent = 0; 2312 req->pdu_len = 0; 2313 req->pdu_sent = 0; 2314 req->data_len = blk_rq_nr_phys_segments(rq) ? 2315 blk_rq_payload_bytes(rq) : 0; 2316 req->curr_bio = rq->bio; 2317 if (req->curr_bio && req->data_len) 2318 nvme_tcp_init_iter(req, rq_data_dir(rq)); 2319 2320 if (rq_data_dir(rq) == WRITE && 2321 req->data_len <= nvme_tcp_inline_data_size(queue)) 2322 req->pdu_len = req->data_len; 2323 2324 pdu->hdr.type = nvme_tcp_cmd; 2325 pdu->hdr.flags = 0; 2326 if (queue->hdr_digest) 2327 pdu->hdr.flags |= NVME_TCP_F_HDGST; 2328 if (queue->data_digest && req->pdu_len) { 2329 pdu->hdr.flags |= NVME_TCP_F_DDGST; 2330 ddgst = nvme_tcp_ddgst_len(queue); 2331 } 2332 pdu->hdr.hlen = sizeof(*pdu); 2333 pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0; 2334 pdu->hdr.plen = 2335 cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst); 2336 2337 ret = nvme_tcp_map_data(queue, rq); 2338 if (unlikely(ret)) { 2339 nvme_cleanup_cmd(rq); 2340 dev_err(queue->ctrl->ctrl.device, 2341 "Failed to map data (%d)\n", ret); 2342 return ret; 2343 } 2344 2345 return 0; 2346 } 2347 2348 static void nvme_tcp_commit_rqs(struct blk_mq_hw_ctx *hctx) 2349 { 2350 struct nvme_tcp_queue *queue = hctx->driver_data; 2351 2352 if (!llist_empty(&queue->req_list)) 2353 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 2354 } 2355 2356 static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx, 2357 const struct blk_mq_queue_data *bd) 2358 { 2359 struct nvme_ns *ns = hctx->queue->queuedata; 2360 struct nvme_tcp_queue *queue = hctx->driver_data; 2361 struct request *rq = bd->rq; 2362 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2363 bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags); 2364 blk_status_t ret; 2365 2366 if (!nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready)) 2367 return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq); 2368 2369 ret = nvme_tcp_setup_cmd_pdu(ns, rq); 2370 if (unlikely(ret)) 2371 return ret; 2372 2373 blk_mq_start_request(rq); 2374 2375 nvme_tcp_queue_request(req, true, bd->last); 2376 2377 return BLK_STS_OK; 2378 } 2379 2380 static int nvme_tcp_map_queues(struct blk_mq_tag_set *set) 2381 { 2382 struct nvme_tcp_ctrl *ctrl = set->driver_data; 2383 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 2384 2385 if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) { 2386 /* separate read/write queues */ 2387 set->map[HCTX_TYPE_DEFAULT].nr_queues = 2388 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2389 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0; 2390 set->map[HCTX_TYPE_READ].nr_queues = 2391 ctrl->io_queues[HCTX_TYPE_READ]; 2392 set->map[HCTX_TYPE_READ].queue_offset = 2393 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2394 } else { 2395 /* shared read/write queues */ 2396 set->map[HCTX_TYPE_DEFAULT].nr_queues = 2397 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2398 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0; 2399 set->map[HCTX_TYPE_READ].nr_queues = 2400 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2401 set->map[HCTX_TYPE_READ].queue_offset = 0; 2402 } 2403 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 2404 blk_mq_map_queues(&set->map[HCTX_TYPE_READ]); 2405 2406 if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) { 2407 /* map dedicated poll queues only if we have queues left */ 2408 set->map[HCTX_TYPE_POLL].nr_queues = 2409 ctrl->io_queues[HCTX_TYPE_POLL]; 2410 set->map[HCTX_TYPE_POLL].queue_offset = 2411 ctrl->io_queues[HCTX_TYPE_DEFAULT] + 2412 ctrl->io_queues[HCTX_TYPE_READ]; 2413 blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]); 2414 } 2415 2416 dev_info(ctrl->ctrl.device, 2417 "mapped %d/%d/%d default/read/poll queues.\n", 2418 ctrl->io_queues[HCTX_TYPE_DEFAULT], 2419 ctrl->io_queues[HCTX_TYPE_READ], 2420 ctrl->io_queues[HCTX_TYPE_POLL]); 2421 2422 return 0; 2423 } 2424 2425 static int nvme_tcp_poll(struct blk_mq_hw_ctx *hctx) 2426 { 2427 struct nvme_tcp_queue *queue = hctx->driver_data; 2428 struct sock *sk = queue->sock->sk; 2429 2430 if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags)) 2431 return 0; 2432 2433 set_bit(NVME_TCP_Q_POLLING, &queue->flags); 2434 if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue)) 2435 sk_busy_loop(sk, true); 2436 nvme_tcp_try_recv(queue); 2437 clear_bit(NVME_TCP_Q_POLLING, &queue->flags); 2438 return queue->nr_cqe; 2439 } 2440 2441 static const struct blk_mq_ops nvme_tcp_mq_ops = { 2442 .queue_rq = nvme_tcp_queue_rq, 2443 .commit_rqs = nvme_tcp_commit_rqs, 2444 .complete = nvme_complete_rq, 2445 .init_request = nvme_tcp_init_request, 2446 .exit_request = nvme_tcp_exit_request, 2447 .init_hctx = nvme_tcp_init_hctx, 2448 .timeout = nvme_tcp_timeout, 2449 .map_queues = nvme_tcp_map_queues, 2450 .poll = nvme_tcp_poll, 2451 }; 2452 2453 static const struct blk_mq_ops nvme_tcp_admin_mq_ops = { 2454 .queue_rq = nvme_tcp_queue_rq, 2455 .complete = nvme_complete_rq, 2456 .init_request = nvme_tcp_init_request, 2457 .exit_request = nvme_tcp_exit_request, 2458 .init_hctx = nvme_tcp_init_admin_hctx, 2459 .timeout = nvme_tcp_timeout, 2460 }; 2461 2462 static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = { 2463 .name = "tcp", 2464 .module = THIS_MODULE, 2465 .flags = NVME_F_FABRICS, 2466 .reg_read32 = nvmf_reg_read32, 2467 .reg_read64 = nvmf_reg_read64, 2468 .reg_write32 = nvmf_reg_write32, 2469 .free_ctrl = nvme_tcp_free_ctrl, 2470 .submit_async_event = nvme_tcp_submit_async_event, 2471 .delete_ctrl = nvme_tcp_delete_ctrl, 2472 .get_address = nvmf_get_address, 2473 }; 2474 2475 static bool 2476 nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts) 2477 { 2478 struct nvme_tcp_ctrl *ctrl; 2479 bool found = false; 2480 2481 mutex_lock(&nvme_tcp_ctrl_mutex); 2482 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) { 2483 found = nvmf_ip_options_match(&ctrl->ctrl, opts); 2484 if (found) 2485 break; 2486 } 2487 mutex_unlock(&nvme_tcp_ctrl_mutex); 2488 2489 return found; 2490 } 2491 2492 static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev, 2493 struct nvmf_ctrl_options *opts) 2494 { 2495 struct nvme_tcp_ctrl *ctrl; 2496 int ret; 2497 2498 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 2499 if (!ctrl) 2500 return ERR_PTR(-ENOMEM); 2501 2502 INIT_LIST_HEAD(&ctrl->list); 2503 ctrl->ctrl.opts = opts; 2504 ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues + 2505 opts->nr_poll_queues + 1; 2506 ctrl->ctrl.sqsize = opts->queue_size - 1; 2507 ctrl->ctrl.kato = opts->kato; 2508 2509 INIT_DELAYED_WORK(&ctrl->connect_work, 2510 nvme_tcp_reconnect_ctrl_work); 2511 INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work); 2512 INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work); 2513 2514 if (!(opts->mask & NVMF_OPT_TRSVCID)) { 2515 opts->trsvcid = 2516 kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL); 2517 if (!opts->trsvcid) { 2518 ret = -ENOMEM; 2519 goto out_free_ctrl; 2520 } 2521 opts->mask |= NVMF_OPT_TRSVCID; 2522 } 2523 2524 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 2525 opts->traddr, opts->trsvcid, &ctrl->addr); 2526 if (ret) { 2527 pr_err("malformed address passed: %s:%s\n", 2528 opts->traddr, opts->trsvcid); 2529 goto out_free_ctrl; 2530 } 2531 2532 if (opts->mask & NVMF_OPT_HOST_TRADDR) { 2533 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 2534 opts->host_traddr, NULL, &ctrl->src_addr); 2535 if (ret) { 2536 pr_err("malformed src address passed: %s\n", 2537 opts->host_traddr); 2538 goto out_free_ctrl; 2539 } 2540 } 2541 2542 if (opts->mask & NVMF_OPT_HOST_IFACE) { 2543 if (!__dev_get_by_name(&init_net, opts->host_iface)) { 2544 pr_err("invalid interface passed: %s\n", 2545 opts->host_iface); 2546 ret = -ENODEV; 2547 goto out_free_ctrl; 2548 } 2549 } 2550 2551 if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) { 2552 ret = -EALREADY; 2553 goto out_free_ctrl; 2554 } 2555 2556 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues), 2557 GFP_KERNEL); 2558 if (!ctrl->queues) { 2559 ret = -ENOMEM; 2560 goto out_free_ctrl; 2561 } 2562 2563 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0); 2564 if (ret) 2565 goto out_kfree_queues; 2566 2567 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) { 2568 WARN_ON_ONCE(1); 2569 ret = -EINTR; 2570 goto out_uninit_ctrl; 2571 } 2572 2573 ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true); 2574 if (ret) 2575 goto out_uninit_ctrl; 2576 2577 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n", 2578 ctrl->ctrl.opts->subsysnqn, &ctrl->addr); 2579 2580 mutex_lock(&nvme_tcp_ctrl_mutex); 2581 list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list); 2582 mutex_unlock(&nvme_tcp_ctrl_mutex); 2583 2584 return &ctrl->ctrl; 2585 2586 out_uninit_ctrl: 2587 nvme_uninit_ctrl(&ctrl->ctrl); 2588 nvme_put_ctrl(&ctrl->ctrl); 2589 if (ret > 0) 2590 ret = -EIO; 2591 return ERR_PTR(ret); 2592 out_kfree_queues: 2593 kfree(ctrl->queues); 2594 out_free_ctrl: 2595 kfree(ctrl); 2596 return ERR_PTR(ret); 2597 } 2598 2599 static struct nvmf_transport_ops nvme_tcp_transport = { 2600 .name = "tcp", 2601 .module = THIS_MODULE, 2602 .required_opts = NVMF_OPT_TRADDR, 2603 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY | 2604 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO | 2605 NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST | 2606 NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES | 2607 NVMF_OPT_TOS | NVMF_OPT_HOST_IFACE, 2608 .create_ctrl = nvme_tcp_create_ctrl, 2609 }; 2610 2611 static int __init nvme_tcp_init_module(void) 2612 { 2613 nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq", 2614 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 2615 if (!nvme_tcp_wq) 2616 return -ENOMEM; 2617 2618 nvmf_register_transport(&nvme_tcp_transport); 2619 return 0; 2620 } 2621 2622 static void __exit nvme_tcp_cleanup_module(void) 2623 { 2624 struct nvme_tcp_ctrl *ctrl; 2625 2626 nvmf_unregister_transport(&nvme_tcp_transport); 2627 2628 mutex_lock(&nvme_tcp_ctrl_mutex); 2629 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) 2630 nvme_delete_ctrl(&ctrl->ctrl); 2631 mutex_unlock(&nvme_tcp_ctrl_mutex); 2632 flush_workqueue(nvme_delete_wq); 2633 2634 destroy_workqueue(nvme_tcp_wq); 2635 } 2636 2637 module_init(nvme_tcp_init_module); 2638 module_exit(nvme_tcp_cleanup_module); 2639 2640 MODULE_LICENSE("GPL v2"); 2641