xref: /linux/drivers/nvme/host/tcp.c (revision 0a149ab78ee220c75eef797abea7a29f4490e226)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics TCP host.
4  * Copyright (c) 2018 Lightbits Labs. All rights reserved.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/err.h>
11 #include <linux/key.h>
12 #include <linux/nvme-tcp.h>
13 #include <linux/nvme-keyring.h>
14 #include <net/sock.h>
15 #include <net/tcp.h>
16 #include <net/tls.h>
17 #include <net/tls_prot.h>
18 #include <net/handshake.h>
19 #include <linux/blk-mq.h>
20 #include <crypto/hash.h>
21 #include <net/busy_poll.h>
22 #include <trace/events/sock.h>
23 
24 #include "nvme.h"
25 #include "fabrics.h"
26 
27 struct nvme_tcp_queue;
28 
29 /* Define the socket priority to use for connections were it is desirable
30  * that the NIC consider performing optimized packet processing or filtering.
31  * A non-zero value being sufficient to indicate general consideration of any
32  * possible optimization.  Making it a module param allows for alternative
33  * values that may be unique for some NIC implementations.
34  */
35 static int so_priority;
36 module_param(so_priority, int, 0644);
37 MODULE_PARM_DESC(so_priority, "nvme tcp socket optimize priority");
38 
39 /*
40  * TLS handshake timeout
41  */
42 static int tls_handshake_timeout = 10;
43 #ifdef CONFIG_NVME_TCP_TLS
44 module_param(tls_handshake_timeout, int, 0644);
45 MODULE_PARM_DESC(tls_handshake_timeout,
46 		 "nvme TLS handshake timeout in seconds (default 10)");
47 #endif
48 
49 #ifdef CONFIG_DEBUG_LOCK_ALLOC
50 /* lockdep can detect a circular dependency of the form
51  *   sk_lock -> mmap_lock (page fault) -> fs locks -> sk_lock
52  * because dependencies are tracked for both nvme-tcp and user contexts. Using
53  * a separate class prevents lockdep from conflating nvme-tcp socket use with
54  * user-space socket API use.
55  */
56 static struct lock_class_key nvme_tcp_sk_key[2];
57 static struct lock_class_key nvme_tcp_slock_key[2];
58 
59 static void nvme_tcp_reclassify_socket(struct socket *sock)
60 {
61 	struct sock *sk = sock->sk;
62 
63 	if (WARN_ON_ONCE(!sock_allow_reclassification(sk)))
64 		return;
65 
66 	switch (sk->sk_family) {
67 	case AF_INET:
68 		sock_lock_init_class_and_name(sk, "slock-AF_INET-NVME",
69 					      &nvme_tcp_slock_key[0],
70 					      "sk_lock-AF_INET-NVME",
71 					      &nvme_tcp_sk_key[0]);
72 		break;
73 	case AF_INET6:
74 		sock_lock_init_class_and_name(sk, "slock-AF_INET6-NVME",
75 					      &nvme_tcp_slock_key[1],
76 					      "sk_lock-AF_INET6-NVME",
77 					      &nvme_tcp_sk_key[1]);
78 		break;
79 	default:
80 		WARN_ON_ONCE(1);
81 	}
82 }
83 #else
84 static void nvme_tcp_reclassify_socket(struct socket *sock) { }
85 #endif
86 
87 enum nvme_tcp_send_state {
88 	NVME_TCP_SEND_CMD_PDU = 0,
89 	NVME_TCP_SEND_H2C_PDU,
90 	NVME_TCP_SEND_DATA,
91 	NVME_TCP_SEND_DDGST,
92 };
93 
94 struct nvme_tcp_request {
95 	struct nvme_request	req;
96 	void			*pdu;
97 	struct nvme_tcp_queue	*queue;
98 	u32			data_len;
99 	u32			pdu_len;
100 	u32			pdu_sent;
101 	u32			h2cdata_left;
102 	u32			h2cdata_offset;
103 	u16			ttag;
104 	__le16			status;
105 	struct list_head	entry;
106 	struct llist_node	lentry;
107 	__le32			ddgst;
108 
109 	struct bio		*curr_bio;
110 	struct iov_iter		iter;
111 
112 	/* send state */
113 	size_t			offset;
114 	size_t			data_sent;
115 	enum nvme_tcp_send_state state;
116 };
117 
118 enum nvme_tcp_queue_flags {
119 	NVME_TCP_Q_ALLOCATED	= 0,
120 	NVME_TCP_Q_LIVE		= 1,
121 	NVME_TCP_Q_POLLING	= 2,
122 };
123 
124 enum nvme_tcp_recv_state {
125 	NVME_TCP_RECV_PDU = 0,
126 	NVME_TCP_RECV_DATA,
127 	NVME_TCP_RECV_DDGST,
128 };
129 
130 struct nvme_tcp_ctrl;
131 struct nvme_tcp_queue {
132 	struct socket		*sock;
133 	struct work_struct	io_work;
134 	int			io_cpu;
135 
136 	struct mutex		queue_lock;
137 	struct mutex		send_mutex;
138 	struct llist_head	req_list;
139 	struct list_head	send_list;
140 
141 	/* recv state */
142 	void			*pdu;
143 	int			pdu_remaining;
144 	int			pdu_offset;
145 	size_t			data_remaining;
146 	size_t			ddgst_remaining;
147 	unsigned int		nr_cqe;
148 
149 	/* send state */
150 	struct nvme_tcp_request *request;
151 
152 	u32			maxh2cdata;
153 	size_t			cmnd_capsule_len;
154 	struct nvme_tcp_ctrl	*ctrl;
155 	unsigned long		flags;
156 	bool			rd_enabled;
157 
158 	bool			hdr_digest;
159 	bool			data_digest;
160 	struct ahash_request	*rcv_hash;
161 	struct ahash_request	*snd_hash;
162 	__le32			exp_ddgst;
163 	__le32			recv_ddgst;
164 	struct completion       tls_complete;
165 	int                     tls_err;
166 	struct page_frag_cache	pf_cache;
167 
168 	void (*state_change)(struct sock *);
169 	void (*data_ready)(struct sock *);
170 	void (*write_space)(struct sock *);
171 };
172 
173 struct nvme_tcp_ctrl {
174 	/* read only in the hot path */
175 	struct nvme_tcp_queue	*queues;
176 	struct blk_mq_tag_set	tag_set;
177 
178 	/* other member variables */
179 	struct list_head	list;
180 	struct blk_mq_tag_set	admin_tag_set;
181 	struct sockaddr_storage addr;
182 	struct sockaddr_storage src_addr;
183 	struct nvme_ctrl	ctrl;
184 
185 	struct work_struct	err_work;
186 	struct delayed_work	connect_work;
187 	struct nvme_tcp_request async_req;
188 	u32			io_queues[HCTX_MAX_TYPES];
189 };
190 
191 static LIST_HEAD(nvme_tcp_ctrl_list);
192 static DEFINE_MUTEX(nvme_tcp_ctrl_mutex);
193 static struct workqueue_struct *nvme_tcp_wq;
194 static const struct blk_mq_ops nvme_tcp_mq_ops;
195 static const struct blk_mq_ops nvme_tcp_admin_mq_ops;
196 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue);
197 
198 static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl)
199 {
200 	return container_of(ctrl, struct nvme_tcp_ctrl, ctrl);
201 }
202 
203 static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue)
204 {
205 	return queue - queue->ctrl->queues;
206 }
207 
208 static inline bool nvme_tcp_tls(struct nvme_ctrl *ctrl)
209 {
210 	if (!IS_ENABLED(CONFIG_NVME_TCP_TLS))
211 		return 0;
212 
213 	return ctrl->opts->tls;
214 }
215 
216 static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue)
217 {
218 	u32 queue_idx = nvme_tcp_queue_id(queue);
219 
220 	if (queue_idx == 0)
221 		return queue->ctrl->admin_tag_set.tags[queue_idx];
222 	return queue->ctrl->tag_set.tags[queue_idx - 1];
223 }
224 
225 static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue)
226 {
227 	return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
228 }
229 
230 static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue)
231 {
232 	return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
233 }
234 
235 static inline void *nvme_tcp_req_cmd_pdu(struct nvme_tcp_request *req)
236 {
237 	return req->pdu;
238 }
239 
240 static inline void *nvme_tcp_req_data_pdu(struct nvme_tcp_request *req)
241 {
242 	/* use the pdu space in the back for the data pdu */
243 	return req->pdu + sizeof(struct nvme_tcp_cmd_pdu) -
244 		sizeof(struct nvme_tcp_data_pdu);
245 }
246 
247 static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_request *req)
248 {
249 	if (nvme_is_fabrics(req->req.cmd))
250 		return NVME_TCP_ADMIN_CCSZ;
251 	return req->queue->cmnd_capsule_len - sizeof(struct nvme_command);
252 }
253 
254 static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req)
255 {
256 	return req == &req->queue->ctrl->async_req;
257 }
258 
259 static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req)
260 {
261 	struct request *rq;
262 
263 	if (unlikely(nvme_tcp_async_req(req)))
264 		return false; /* async events don't have a request */
265 
266 	rq = blk_mq_rq_from_pdu(req);
267 
268 	return rq_data_dir(rq) == WRITE && req->data_len &&
269 		req->data_len <= nvme_tcp_inline_data_size(req);
270 }
271 
272 static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req)
273 {
274 	return req->iter.bvec->bv_page;
275 }
276 
277 static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req)
278 {
279 	return req->iter.bvec->bv_offset + req->iter.iov_offset;
280 }
281 
282 static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req)
283 {
284 	return min_t(size_t, iov_iter_single_seg_count(&req->iter),
285 			req->pdu_len - req->pdu_sent);
286 }
287 
288 static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req)
289 {
290 	return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ?
291 			req->pdu_len - req->pdu_sent : 0;
292 }
293 
294 static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req,
295 		int len)
296 {
297 	return nvme_tcp_pdu_data_left(req) <= len;
298 }
299 
300 static void nvme_tcp_init_iter(struct nvme_tcp_request *req,
301 		unsigned int dir)
302 {
303 	struct request *rq = blk_mq_rq_from_pdu(req);
304 	struct bio_vec *vec;
305 	unsigned int size;
306 	int nr_bvec;
307 	size_t offset;
308 
309 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) {
310 		vec = &rq->special_vec;
311 		nr_bvec = 1;
312 		size = blk_rq_payload_bytes(rq);
313 		offset = 0;
314 	} else {
315 		struct bio *bio = req->curr_bio;
316 		struct bvec_iter bi;
317 		struct bio_vec bv;
318 
319 		vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
320 		nr_bvec = 0;
321 		bio_for_each_bvec(bv, bio, bi) {
322 			nr_bvec++;
323 		}
324 		size = bio->bi_iter.bi_size;
325 		offset = bio->bi_iter.bi_bvec_done;
326 	}
327 
328 	iov_iter_bvec(&req->iter, dir, vec, nr_bvec, size);
329 	req->iter.iov_offset = offset;
330 }
331 
332 static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req,
333 		int len)
334 {
335 	req->data_sent += len;
336 	req->pdu_sent += len;
337 	iov_iter_advance(&req->iter, len);
338 	if (!iov_iter_count(&req->iter) &&
339 	    req->data_sent < req->data_len) {
340 		req->curr_bio = req->curr_bio->bi_next;
341 		nvme_tcp_init_iter(req, ITER_SOURCE);
342 	}
343 }
344 
345 static inline void nvme_tcp_send_all(struct nvme_tcp_queue *queue)
346 {
347 	int ret;
348 
349 	/* drain the send queue as much as we can... */
350 	do {
351 		ret = nvme_tcp_try_send(queue);
352 	} while (ret > 0);
353 }
354 
355 static inline bool nvme_tcp_queue_more(struct nvme_tcp_queue *queue)
356 {
357 	return !list_empty(&queue->send_list) ||
358 		!llist_empty(&queue->req_list);
359 }
360 
361 static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req,
362 		bool sync, bool last)
363 {
364 	struct nvme_tcp_queue *queue = req->queue;
365 	bool empty;
366 
367 	empty = llist_add(&req->lentry, &queue->req_list) &&
368 		list_empty(&queue->send_list) && !queue->request;
369 
370 	/*
371 	 * if we're the first on the send_list and we can try to send
372 	 * directly, otherwise queue io_work. Also, only do that if we
373 	 * are on the same cpu, so we don't introduce contention.
374 	 */
375 	if (queue->io_cpu == raw_smp_processor_id() &&
376 	    sync && empty && mutex_trylock(&queue->send_mutex)) {
377 		nvme_tcp_send_all(queue);
378 		mutex_unlock(&queue->send_mutex);
379 	}
380 
381 	if (last && nvme_tcp_queue_more(queue))
382 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
383 }
384 
385 static void nvme_tcp_process_req_list(struct nvme_tcp_queue *queue)
386 {
387 	struct nvme_tcp_request *req;
388 	struct llist_node *node;
389 
390 	for (node = llist_del_all(&queue->req_list); node; node = node->next) {
391 		req = llist_entry(node, struct nvme_tcp_request, lentry);
392 		list_add(&req->entry, &queue->send_list);
393 	}
394 }
395 
396 static inline struct nvme_tcp_request *
397 nvme_tcp_fetch_request(struct nvme_tcp_queue *queue)
398 {
399 	struct nvme_tcp_request *req;
400 
401 	req = list_first_entry_or_null(&queue->send_list,
402 			struct nvme_tcp_request, entry);
403 	if (!req) {
404 		nvme_tcp_process_req_list(queue);
405 		req = list_first_entry_or_null(&queue->send_list,
406 				struct nvme_tcp_request, entry);
407 		if (unlikely(!req))
408 			return NULL;
409 	}
410 
411 	list_del(&req->entry);
412 	return req;
413 }
414 
415 static inline void nvme_tcp_ddgst_final(struct ahash_request *hash,
416 		__le32 *dgst)
417 {
418 	ahash_request_set_crypt(hash, NULL, (u8 *)dgst, 0);
419 	crypto_ahash_final(hash);
420 }
421 
422 static inline void nvme_tcp_ddgst_update(struct ahash_request *hash,
423 		struct page *page, off_t off, size_t len)
424 {
425 	struct scatterlist sg;
426 
427 	sg_init_table(&sg, 1);
428 	sg_set_page(&sg, page, len, off);
429 	ahash_request_set_crypt(hash, &sg, NULL, len);
430 	crypto_ahash_update(hash);
431 }
432 
433 static inline void nvme_tcp_hdgst(struct ahash_request *hash,
434 		void *pdu, size_t len)
435 {
436 	struct scatterlist sg;
437 
438 	sg_init_one(&sg, pdu, len);
439 	ahash_request_set_crypt(hash, &sg, pdu + len, len);
440 	crypto_ahash_digest(hash);
441 }
442 
443 static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue,
444 		void *pdu, size_t pdu_len)
445 {
446 	struct nvme_tcp_hdr *hdr = pdu;
447 	__le32 recv_digest;
448 	__le32 exp_digest;
449 
450 	if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
451 		dev_err(queue->ctrl->ctrl.device,
452 			"queue %d: header digest flag is cleared\n",
453 			nvme_tcp_queue_id(queue));
454 		return -EPROTO;
455 	}
456 
457 	recv_digest = *(__le32 *)(pdu + hdr->hlen);
458 	nvme_tcp_hdgst(queue->rcv_hash, pdu, pdu_len);
459 	exp_digest = *(__le32 *)(pdu + hdr->hlen);
460 	if (recv_digest != exp_digest) {
461 		dev_err(queue->ctrl->ctrl.device,
462 			"header digest error: recv %#x expected %#x\n",
463 			le32_to_cpu(recv_digest), le32_to_cpu(exp_digest));
464 		return -EIO;
465 	}
466 
467 	return 0;
468 }
469 
470 static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu)
471 {
472 	struct nvme_tcp_hdr *hdr = pdu;
473 	u8 digest_len = nvme_tcp_hdgst_len(queue);
474 	u32 len;
475 
476 	len = le32_to_cpu(hdr->plen) - hdr->hlen -
477 		((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0);
478 
479 	if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
480 		dev_err(queue->ctrl->ctrl.device,
481 			"queue %d: data digest flag is cleared\n",
482 		nvme_tcp_queue_id(queue));
483 		return -EPROTO;
484 	}
485 	crypto_ahash_init(queue->rcv_hash);
486 
487 	return 0;
488 }
489 
490 static void nvme_tcp_exit_request(struct blk_mq_tag_set *set,
491 		struct request *rq, unsigned int hctx_idx)
492 {
493 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
494 
495 	page_frag_free(req->pdu);
496 }
497 
498 static int nvme_tcp_init_request(struct blk_mq_tag_set *set,
499 		struct request *rq, unsigned int hctx_idx,
500 		unsigned int numa_node)
501 {
502 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(set->driver_data);
503 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
504 	struct nvme_tcp_cmd_pdu *pdu;
505 	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
506 	struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx];
507 	u8 hdgst = nvme_tcp_hdgst_len(queue);
508 
509 	req->pdu = page_frag_alloc(&queue->pf_cache,
510 		sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
511 		GFP_KERNEL | __GFP_ZERO);
512 	if (!req->pdu)
513 		return -ENOMEM;
514 
515 	pdu = req->pdu;
516 	req->queue = queue;
517 	nvme_req(rq)->ctrl = &ctrl->ctrl;
518 	nvme_req(rq)->cmd = &pdu->cmd;
519 
520 	return 0;
521 }
522 
523 static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
524 		unsigned int hctx_idx)
525 {
526 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(data);
527 	struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1];
528 
529 	hctx->driver_data = queue;
530 	return 0;
531 }
532 
533 static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
534 		unsigned int hctx_idx)
535 {
536 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(data);
537 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
538 
539 	hctx->driver_data = queue;
540 	return 0;
541 }
542 
543 static enum nvme_tcp_recv_state
544 nvme_tcp_recv_state(struct nvme_tcp_queue *queue)
545 {
546 	return  (queue->pdu_remaining) ? NVME_TCP_RECV_PDU :
547 		(queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST :
548 		NVME_TCP_RECV_DATA;
549 }
550 
551 static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue)
552 {
553 	queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) +
554 				nvme_tcp_hdgst_len(queue);
555 	queue->pdu_offset = 0;
556 	queue->data_remaining = -1;
557 	queue->ddgst_remaining = 0;
558 }
559 
560 static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl)
561 {
562 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
563 		return;
564 
565 	dev_warn(ctrl->device, "starting error recovery\n");
566 	queue_work(nvme_reset_wq, &to_tcp_ctrl(ctrl)->err_work);
567 }
568 
569 static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue,
570 		struct nvme_completion *cqe)
571 {
572 	struct nvme_tcp_request *req;
573 	struct request *rq;
574 
575 	rq = nvme_find_rq(nvme_tcp_tagset(queue), cqe->command_id);
576 	if (!rq) {
577 		dev_err(queue->ctrl->ctrl.device,
578 			"got bad cqe.command_id %#x on queue %d\n",
579 			cqe->command_id, nvme_tcp_queue_id(queue));
580 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
581 		return -EINVAL;
582 	}
583 
584 	req = blk_mq_rq_to_pdu(rq);
585 	if (req->status == cpu_to_le16(NVME_SC_SUCCESS))
586 		req->status = cqe->status;
587 
588 	if (!nvme_try_complete_req(rq, req->status, cqe->result))
589 		nvme_complete_rq(rq);
590 	queue->nr_cqe++;
591 
592 	return 0;
593 }
594 
595 static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue,
596 		struct nvme_tcp_data_pdu *pdu)
597 {
598 	struct request *rq;
599 
600 	rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id);
601 	if (!rq) {
602 		dev_err(queue->ctrl->ctrl.device,
603 			"got bad c2hdata.command_id %#x on queue %d\n",
604 			pdu->command_id, nvme_tcp_queue_id(queue));
605 		return -ENOENT;
606 	}
607 
608 	if (!blk_rq_payload_bytes(rq)) {
609 		dev_err(queue->ctrl->ctrl.device,
610 			"queue %d tag %#x unexpected data\n",
611 			nvme_tcp_queue_id(queue), rq->tag);
612 		return -EIO;
613 	}
614 
615 	queue->data_remaining = le32_to_cpu(pdu->data_length);
616 
617 	if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS &&
618 	    unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) {
619 		dev_err(queue->ctrl->ctrl.device,
620 			"queue %d tag %#x SUCCESS set but not last PDU\n",
621 			nvme_tcp_queue_id(queue), rq->tag);
622 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
623 		return -EPROTO;
624 	}
625 
626 	return 0;
627 }
628 
629 static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue,
630 		struct nvme_tcp_rsp_pdu *pdu)
631 {
632 	struct nvme_completion *cqe = &pdu->cqe;
633 	int ret = 0;
634 
635 	/*
636 	 * AEN requests are special as they don't time out and can
637 	 * survive any kind of queue freeze and often don't respond to
638 	 * aborts.  We don't even bother to allocate a struct request
639 	 * for them but rather special case them here.
640 	 */
641 	if (unlikely(nvme_is_aen_req(nvme_tcp_queue_id(queue),
642 				     cqe->command_id)))
643 		nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
644 				&cqe->result);
645 	else
646 		ret = nvme_tcp_process_nvme_cqe(queue, cqe);
647 
648 	return ret;
649 }
650 
651 static void nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req)
652 {
653 	struct nvme_tcp_data_pdu *data = nvme_tcp_req_data_pdu(req);
654 	struct nvme_tcp_queue *queue = req->queue;
655 	struct request *rq = blk_mq_rq_from_pdu(req);
656 	u32 h2cdata_sent = req->pdu_len;
657 	u8 hdgst = nvme_tcp_hdgst_len(queue);
658 	u8 ddgst = nvme_tcp_ddgst_len(queue);
659 
660 	req->state = NVME_TCP_SEND_H2C_PDU;
661 	req->offset = 0;
662 	req->pdu_len = min(req->h2cdata_left, queue->maxh2cdata);
663 	req->pdu_sent = 0;
664 	req->h2cdata_left -= req->pdu_len;
665 	req->h2cdata_offset += h2cdata_sent;
666 
667 	memset(data, 0, sizeof(*data));
668 	data->hdr.type = nvme_tcp_h2c_data;
669 	if (!req->h2cdata_left)
670 		data->hdr.flags = NVME_TCP_F_DATA_LAST;
671 	if (queue->hdr_digest)
672 		data->hdr.flags |= NVME_TCP_F_HDGST;
673 	if (queue->data_digest)
674 		data->hdr.flags |= NVME_TCP_F_DDGST;
675 	data->hdr.hlen = sizeof(*data);
676 	data->hdr.pdo = data->hdr.hlen + hdgst;
677 	data->hdr.plen =
678 		cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst);
679 	data->ttag = req->ttag;
680 	data->command_id = nvme_cid(rq);
681 	data->data_offset = cpu_to_le32(req->h2cdata_offset);
682 	data->data_length = cpu_to_le32(req->pdu_len);
683 }
684 
685 static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue,
686 		struct nvme_tcp_r2t_pdu *pdu)
687 {
688 	struct nvme_tcp_request *req;
689 	struct request *rq;
690 	u32 r2t_length = le32_to_cpu(pdu->r2t_length);
691 	u32 r2t_offset = le32_to_cpu(pdu->r2t_offset);
692 
693 	rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id);
694 	if (!rq) {
695 		dev_err(queue->ctrl->ctrl.device,
696 			"got bad r2t.command_id %#x on queue %d\n",
697 			pdu->command_id, nvme_tcp_queue_id(queue));
698 		return -ENOENT;
699 	}
700 	req = blk_mq_rq_to_pdu(rq);
701 
702 	if (unlikely(!r2t_length)) {
703 		dev_err(queue->ctrl->ctrl.device,
704 			"req %d r2t len is %u, probably a bug...\n",
705 			rq->tag, r2t_length);
706 		return -EPROTO;
707 	}
708 
709 	if (unlikely(req->data_sent + r2t_length > req->data_len)) {
710 		dev_err(queue->ctrl->ctrl.device,
711 			"req %d r2t len %u exceeded data len %u (%zu sent)\n",
712 			rq->tag, r2t_length, req->data_len, req->data_sent);
713 		return -EPROTO;
714 	}
715 
716 	if (unlikely(r2t_offset < req->data_sent)) {
717 		dev_err(queue->ctrl->ctrl.device,
718 			"req %d unexpected r2t offset %u (expected %zu)\n",
719 			rq->tag, r2t_offset, req->data_sent);
720 		return -EPROTO;
721 	}
722 
723 	req->pdu_len = 0;
724 	req->h2cdata_left = r2t_length;
725 	req->h2cdata_offset = r2t_offset;
726 	req->ttag = pdu->ttag;
727 
728 	nvme_tcp_setup_h2c_data_pdu(req);
729 	nvme_tcp_queue_request(req, false, true);
730 
731 	return 0;
732 }
733 
734 static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb,
735 		unsigned int *offset, size_t *len)
736 {
737 	struct nvme_tcp_hdr *hdr;
738 	char *pdu = queue->pdu;
739 	size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining);
740 	int ret;
741 
742 	ret = skb_copy_bits(skb, *offset,
743 		&pdu[queue->pdu_offset], rcv_len);
744 	if (unlikely(ret))
745 		return ret;
746 
747 	queue->pdu_remaining -= rcv_len;
748 	queue->pdu_offset += rcv_len;
749 	*offset += rcv_len;
750 	*len -= rcv_len;
751 	if (queue->pdu_remaining)
752 		return 0;
753 
754 	hdr = queue->pdu;
755 	if (queue->hdr_digest) {
756 		ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen);
757 		if (unlikely(ret))
758 			return ret;
759 	}
760 
761 
762 	if (queue->data_digest) {
763 		ret = nvme_tcp_check_ddgst(queue, queue->pdu);
764 		if (unlikely(ret))
765 			return ret;
766 	}
767 
768 	switch (hdr->type) {
769 	case nvme_tcp_c2h_data:
770 		return nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu);
771 	case nvme_tcp_rsp:
772 		nvme_tcp_init_recv_ctx(queue);
773 		return nvme_tcp_handle_comp(queue, (void *)queue->pdu);
774 	case nvme_tcp_r2t:
775 		nvme_tcp_init_recv_ctx(queue);
776 		return nvme_tcp_handle_r2t(queue, (void *)queue->pdu);
777 	default:
778 		dev_err(queue->ctrl->ctrl.device,
779 			"unsupported pdu type (%d)\n", hdr->type);
780 		return -EINVAL;
781 	}
782 }
783 
784 static inline void nvme_tcp_end_request(struct request *rq, u16 status)
785 {
786 	union nvme_result res = {};
787 
788 	if (!nvme_try_complete_req(rq, cpu_to_le16(status << 1), res))
789 		nvme_complete_rq(rq);
790 }
791 
792 static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb,
793 			      unsigned int *offset, size_t *len)
794 {
795 	struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
796 	struct request *rq =
797 		nvme_cid_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
798 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
799 
800 	while (true) {
801 		int recv_len, ret;
802 
803 		recv_len = min_t(size_t, *len, queue->data_remaining);
804 		if (!recv_len)
805 			break;
806 
807 		if (!iov_iter_count(&req->iter)) {
808 			req->curr_bio = req->curr_bio->bi_next;
809 
810 			/*
811 			 * If we don`t have any bios it means that controller
812 			 * sent more data than we requested, hence error
813 			 */
814 			if (!req->curr_bio) {
815 				dev_err(queue->ctrl->ctrl.device,
816 					"queue %d no space in request %#x",
817 					nvme_tcp_queue_id(queue), rq->tag);
818 				nvme_tcp_init_recv_ctx(queue);
819 				return -EIO;
820 			}
821 			nvme_tcp_init_iter(req, ITER_DEST);
822 		}
823 
824 		/* we can read only from what is left in this bio */
825 		recv_len = min_t(size_t, recv_len,
826 				iov_iter_count(&req->iter));
827 
828 		if (queue->data_digest)
829 			ret = skb_copy_and_hash_datagram_iter(skb, *offset,
830 				&req->iter, recv_len, queue->rcv_hash);
831 		else
832 			ret = skb_copy_datagram_iter(skb, *offset,
833 					&req->iter, recv_len);
834 		if (ret) {
835 			dev_err(queue->ctrl->ctrl.device,
836 				"queue %d failed to copy request %#x data",
837 				nvme_tcp_queue_id(queue), rq->tag);
838 			return ret;
839 		}
840 
841 		*len -= recv_len;
842 		*offset += recv_len;
843 		queue->data_remaining -= recv_len;
844 	}
845 
846 	if (!queue->data_remaining) {
847 		if (queue->data_digest) {
848 			nvme_tcp_ddgst_final(queue->rcv_hash, &queue->exp_ddgst);
849 			queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH;
850 		} else {
851 			if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
852 				nvme_tcp_end_request(rq,
853 						le16_to_cpu(req->status));
854 				queue->nr_cqe++;
855 			}
856 			nvme_tcp_init_recv_ctx(queue);
857 		}
858 	}
859 
860 	return 0;
861 }
862 
863 static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue,
864 		struct sk_buff *skb, unsigned int *offset, size_t *len)
865 {
866 	struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
867 	char *ddgst = (char *)&queue->recv_ddgst;
868 	size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining);
869 	off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining;
870 	int ret;
871 
872 	ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len);
873 	if (unlikely(ret))
874 		return ret;
875 
876 	queue->ddgst_remaining -= recv_len;
877 	*offset += recv_len;
878 	*len -= recv_len;
879 	if (queue->ddgst_remaining)
880 		return 0;
881 
882 	if (queue->recv_ddgst != queue->exp_ddgst) {
883 		struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue),
884 					pdu->command_id);
885 		struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
886 
887 		req->status = cpu_to_le16(NVME_SC_DATA_XFER_ERROR);
888 
889 		dev_err(queue->ctrl->ctrl.device,
890 			"data digest error: recv %#x expected %#x\n",
891 			le32_to_cpu(queue->recv_ddgst),
892 			le32_to_cpu(queue->exp_ddgst));
893 	}
894 
895 	if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
896 		struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue),
897 					pdu->command_id);
898 		struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
899 
900 		nvme_tcp_end_request(rq, le16_to_cpu(req->status));
901 		queue->nr_cqe++;
902 	}
903 
904 	nvme_tcp_init_recv_ctx(queue);
905 	return 0;
906 }
907 
908 static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb,
909 			     unsigned int offset, size_t len)
910 {
911 	struct nvme_tcp_queue *queue = desc->arg.data;
912 	size_t consumed = len;
913 	int result;
914 
915 	if (unlikely(!queue->rd_enabled))
916 		return -EFAULT;
917 
918 	while (len) {
919 		switch (nvme_tcp_recv_state(queue)) {
920 		case NVME_TCP_RECV_PDU:
921 			result = nvme_tcp_recv_pdu(queue, skb, &offset, &len);
922 			break;
923 		case NVME_TCP_RECV_DATA:
924 			result = nvme_tcp_recv_data(queue, skb, &offset, &len);
925 			break;
926 		case NVME_TCP_RECV_DDGST:
927 			result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len);
928 			break;
929 		default:
930 			result = -EFAULT;
931 		}
932 		if (result) {
933 			dev_err(queue->ctrl->ctrl.device,
934 				"receive failed:  %d\n", result);
935 			queue->rd_enabled = false;
936 			nvme_tcp_error_recovery(&queue->ctrl->ctrl);
937 			return result;
938 		}
939 	}
940 
941 	return consumed;
942 }
943 
944 static void nvme_tcp_data_ready(struct sock *sk)
945 {
946 	struct nvme_tcp_queue *queue;
947 
948 	trace_sk_data_ready(sk);
949 
950 	read_lock_bh(&sk->sk_callback_lock);
951 	queue = sk->sk_user_data;
952 	if (likely(queue && queue->rd_enabled) &&
953 	    !test_bit(NVME_TCP_Q_POLLING, &queue->flags))
954 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
955 	read_unlock_bh(&sk->sk_callback_lock);
956 }
957 
958 static void nvme_tcp_write_space(struct sock *sk)
959 {
960 	struct nvme_tcp_queue *queue;
961 
962 	read_lock_bh(&sk->sk_callback_lock);
963 	queue = sk->sk_user_data;
964 	if (likely(queue && sk_stream_is_writeable(sk))) {
965 		clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
966 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
967 	}
968 	read_unlock_bh(&sk->sk_callback_lock);
969 }
970 
971 static void nvme_tcp_state_change(struct sock *sk)
972 {
973 	struct nvme_tcp_queue *queue;
974 
975 	read_lock_bh(&sk->sk_callback_lock);
976 	queue = sk->sk_user_data;
977 	if (!queue)
978 		goto done;
979 
980 	switch (sk->sk_state) {
981 	case TCP_CLOSE:
982 	case TCP_CLOSE_WAIT:
983 	case TCP_LAST_ACK:
984 	case TCP_FIN_WAIT1:
985 	case TCP_FIN_WAIT2:
986 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
987 		break;
988 	default:
989 		dev_info(queue->ctrl->ctrl.device,
990 			"queue %d socket state %d\n",
991 			nvme_tcp_queue_id(queue), sk->sk_state);
992 	}
993 
994 	queue->state_change(sk);
995 done:
996 	read_unlock_bh(&sk->sk_callback_lock);
997 }
998 
999 static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue)
1000 {
1001 	queue->request = NULL;
1002 }
1003 
1004 static void nvme_tcp_fail_request(struct nvme_tcp_request *req)
1005 {
1006 	if (nvme_tcp_async_req(req)) {
1007 		union nvme_result res = {};
1008 
1009 		nvme_complete_async_event(&req->queue->ctrl->ctrl,
1010 				cpu_to_le16(NVME_SC_HOST_PATH_ERROR), &res);
1011 	} else {
1012 		nvme_tcp_end_request(blk_mq_rq_from_pdu(req),
1013 				NVME_SC_HOST_PATH_ERROR);
1014 	}
1015 }
1016 
1017 static int nvme_tcp_try_send_data(struct nvme_tcp_request *req)
1018 {
1019 	struct nvme_tcp_queue *queue = req->queue;
1020 	int req_data_len = req->data_len;
1021 	u32 h2cdata_left = req->h2cdata_left;
1022 
1023 	while (true) {
1024 		struct bio_vec bvec;
1025 		struct msghdr msg = {
1026 			.msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES,
1027 		};
1028 		struct page *page = nvme_tcp_req_cur_page(req);
1029 		size_t offset = nvme_tcp_req_cur_offset(req);
1030 		size_t len = nvme_tcp_req_cur_length(req);
1031 		bool last = nvme_tcp_pdu_last_send(req, len);
1032 		int req_data_sent = req->data_sent;
1033 		int ret;
1034 
1035 		if (last && !queue->data_digest && !nvme_tcp_queue_more(queue))
1036 			msg.msg_flags |= MSG_EOR;
1037 		else
1038 			msg.msg_flags |= MSG_MORE;
1039 
1040 		if (!sendpage_ok(page))
1041 			msg.msg_flags &= ~MSG_SPLICE_PAGES;
1042 
1043 		bvec_set_page(&bvec, page, len, offset);
1044 		iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len);
1045 		ret = sock_sendmsg(queue->sock, &msg);
1046 		if (ret <= 0)
1047 			return ret;
1048 
1049 		if (queue->data_digest)
1050 			nvme_tcp_ddgst_update(queue->snd_hash, page,
1051 					offset, ret);
1052 
1053 		/*
1054 		 * update the request iterator except for the last payload send
1055 		 * in the request where we don't want to modify it as we may
1056 		 * compete with the RX path completing the request.
1057 		 */
1058 		if (req_data_sent + ret < req_data_len)
1059 			nvme_tcp_advance_req(req, ret);
1060 
1061 		/* fully successful last send in current PDU */
1062 		if (last && ret == len) {
1063 			if (queue->data_digest) {
1064 				nvme_tcp_ddgst_final(queue->snd_hash,
1065 					&req->ddgst);
1066 				req->state = NVME_TCP_SEND_DDGST;
1067 				req->offset = 0;
1068 			} else {
1069 				if (h2cdata_left)
1070 					nvme_tcp_setup_h2c_data_pdu(req);
1071 				else
1072 					nvme_tcp_done_send_req(queue);
1073 			}
1074 			return 1;
1075 		}
1076 	}
1077 	return -EAGAIN;
1078 }
1079 
1080 static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req)
1081 {
1082 	struct nvme_tcp_queue *queue = req->queue;
1083 	struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req);
1084 	struct bio_vec bvec;
1085 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, };
1086 	bool inline_data = nvme_tcp_has_inline_data(req);
1087 	u8 hdgst = nvme_tcp_hdgst_len(queue);
1088 	int len = sizeof(*pdu) + hdgst - req->offset;
1089 	int ret;
1090 
1091 	if (inline_data || nvme_tcp_queue_more(queue))
1092 		msg.msg_flags |= MSG_MORE;
1093 	else
1094 		msg.msg_flags |= MSG_EOR;
1095 
1096 	if (queue->hdr_digest && !req->offset)
1097 		nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
1098 
1099 	bvec_set_virt(&bvec, (void *)pdu + req->offset, len);
1100 	iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len);
1101 	ret = sock_sendmsg(queue->sock, &msg);
1102 	if (unlikely(ret <= 0))
1103 		return ret;
1104 
1105 	len -= ret;
1106 	if (!len) {
1107 		if (inline_data) {
1108 			req->state = NVME_TCP_SEND_DATA;
1109 			if (queue->data_digest)
1110 				crypto_ahash_init(queue->snd_hash);
1111 		} else {
1112 			nvme_tcp_done_send_req(queue);
1113 		}
1114 		return 1;
1115 	}
1116 	req->offset += ret;
1117 
1118 	return -EAGAIN;
1119 }
1120 
1121 static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req)
1122 {
1123 	struct nvme_tcp_queue *queue = req->queue;
1124 	struct nvme_tcp_data_pdu *pdu = nvme_tcp_req_data_pdu(req);
1125 	struct bio_vec bvec;
1126 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_MORE, };
1127 	u8 hdgst = nvme_tcp_hdgst_len(queue);
1128 	int len = sizeof(*pdu) - req->offset + hdgst;
1129 	int ret;
1130 
1131 	if (queue->hdr_digest && !req->offset)
1132 		nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
1133 
1134 	if (!req->h2cdata_left)
1135 		msg.msg_flags |= MSG_SPLICE_PAGES;
1136 
1137 	bvec_set_virt(&bvec, (void *)pdu + req->offset, len);
1138 	iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len);
1139 	ret = sock_sendmsg(queue->sock, &msg);
1140 	if (unlikely(ret <= 0))
1141 		return ret;
1142 
1143 	len -= ret;
1144 	if (!len) {
1145 		req->state = NVME_TCP_SEND_DATA;
1146 		if (queue->data_digest)
1147 			crypto_ahash_init(queue->snd_hash);
1148 		return 1;
1149 	}
1150 	req->offset += ret;
1151 
1152 	return -EAGAIN;
1153 }
1154 
1155 static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req)
1156 {
1157 	struct nvme_tcp_queue *queue = req->queue;
1158 	size_t offset = req->offset;
1159 	u32 h2cdata_left = req->h2cdata_left;
1160 	int ret;
1161 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1162 	struct kvec iov = {
1163 		.iov_base = (u8 *)&req->ddgst + req->offset,
1164 		.iov_len = NVME_TCP_DIGEST_LENGTH - req->offset
1165 	};
1166 
1167 	if (nvme_tcp_queue_more(queue))
1168 		msg.msg_flags |= MSG_MORE;
1169 	else
1170 		msg.msg_flags |= MSG_EOR;
1171 
1172 	ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1173 	if (unlikely(ret <= 0))
1174 		return ret;
1175 
1176 	if (offset + ret == NVME_TCP_DIGEST_LENGTH) {
1177 		if (h2cdata_left)
1178 			nvme_tcp_setup_h2c_data_pdu(req);
1179 		else
1180 			nvme_tcp_done_send_req(queue);
1181 		return 1;
1182 	}
1183 
1184 	req->offset += ret;
1185 	return -EAGAIN;
1186 }
1187 
1188 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue)
1189 {
1190 	struct nvme_tcp_request *req;
1191 	unsigned int noreclaim_flag;
1192 	int ret = 1;
1193 
1194 	if (!queue->request) {
1195 		queue->request = nvme_tcp_fetch_request(queue);
1196 		if (!queue->request)
1197 			return 0;
1198 	}
1199 	req = queue->request;
1200 
1201 	noreclaim_flag = memalloc_noreclaim_save();
1202 	if (req->state == NVME_TCP_SEND_CMD_PDU) {
1203 		ret = nvme_tcp_try_send_cmd_pdu(req);
1204 		if (ret <= 0)
1205 			goto done;
1206 		if (!nvme_tcp_has_inline_data(req))
1207 			goto out;
1208 	}
1209 
1210 	if (req->state == NVME_TCP_SEND_H2C_PDU) {
1211 		ret = nvme_tcp_try_send_data_pdu(req);
1212 		if (ret <= 0)
1213 			goto done;
1214 	}
1215 
1216 	if (req->state == NVME_TCP_SEND_DATA) {
1217 		ret = nvme_tcp_try_send_data(req);
1218 		if (ret <= 0)
1219 			goto done;
1220 	}
1221 
1222 	if (req->state == NVME_TCP_SEND_DDGST)
1223 		ret = nvme_tcp_try_send_ddgst(req);
1224 done:
1225 	if (ret == -EAGAIN) {
1226 		ret = 0;
1227 	} else if (ret < 0) {
1228 		dev_err(queue->ctrl->ctrl.device,
1229 			"failed to send request %d\n", ret);
1230 		nvme_tcp_fail_request(queue->request);
1231 		nvme_tcp_done_send_req(queue);
1232 	}
1233 out:
1234 	memalloc_noreclaim_restore(noreclaim_flag);
1235 	return ret;
1236 }
1237 
1238 static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue)
1239 {
1240 	struct socket *sock = queue->sock;
1241 	struct sock *sk = sock->sk;
1242 	read_descriptor_t rd_desc;
1243 	int consumed;
1244 
1245 	rd_desc.arg.data = queue;
1246 	rd_desc.count = 1;
1247 	lock_sock(sk);
1248 	queue->nr_cqe = 0;
1249 	consumed = sock->ops->read_sock(sk, &rd_desc, nvme_tcp_recv_skb);
1250 	release_sock(sk);
1251 	return consumed;
1252 }
1253 
1254 static void nvme_tcp_io_work(struct work_struct *w)
1255 {
1256 	struct nvme_tcp_queue *queue =
1257 		container_of(w, struct nvme_tcp_queue, io_work);
1258 	unsigned long deadline = jiffies + msecs_to_jiffies(1);
1259 
1260 	do {
1261 		bool pending = false;
1262 		int result;
1263 
1264 		if (mutex_trylock(&queue->send_mutex)) {
1265 			result = nvme_tcp_try_send(queue);
1266 			mutex_unlock(&queue->send_mutex);
1267 			if (result > 0)
1268 				pending = true;
1269 			else if (unlikely(result < 0))
1270 				break;
1271 		}
1272 
1273 		result = nvme_tcp_try_recv(queue);
1274 		if (result > 0)
1275 			pending = true;
1276 		else if (unlikely(result < 0))
1277 			return;
1278 
1279 		if (!pending || !queue->rd_enabled)
1280 			return;
1281 
1282 	} while (!time_after(jiffies, deadline)); /* quota is exhausted */
1283 
1284 	queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
1285 }
1286 
1287 static void nvme_tcp_free_crypto(struct nvme_tcp_queue *queue)
1288 {
1289 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash);
1290 
1291 	ahash_request_free(queue->rcv_hash);
1292 	ahash_request_free(queue->snd_hash);
1293 	crypto_free_ahash(tfm);
1294 }
1295 
1296 static int nvme_tcp_alloc_crypto(struct nvme_tcp_queue *queue)
1297 {
1298 	struct crypto_ahash *tfm;
1299 
1300 	tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC);
1301 	if (IS_ERR(tfm))
1302 		return PTR_ERR(tfm);
1303 
1304 	queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1305 	if (!queue->snd_hash)
1306 		goto free_tfm;
1307 	ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL);
1308 
1309 	queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1310 	if (!queue->rcv_hash)
1311 		goto free_snd_hash;
1312 	ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL);
1313 
1314 	return 0;
1315 free_snd_hash:
1316 	ahash_request_free(queue->snd_hash);
1317 free_tfm:
1318 	crypto_free_ahash(tfm);
1319 	return -ENOMEM;
1320 }
1321 
1322 static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl)
1323 {
1324 	struct nvme_tcp_request *async = &ctrl->async_req;
1325 
1326 	page_frag_free(async->pdu);
1327 }
1328 
1329 static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl)
1330 {
1331 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
1332 	struct nvme_tcp_request *async = &ctrl->async_req;
1333 	u8 hdgst = nvme_tcp_hdgst_len(queue);
1334 
1335 	async->pdu = page_frag_alloc(&queue->pf_cache,
1336 		sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
1337 		GFP_KERNEL | __GFP_ZERO);
1338 	if (!async->pdu)
1339 		return -ENOMEM;
1340 
1341 	async->queue = &ctrl->queues[0];
1342 	return 0;
1343 }
1344 
1345 static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid)
1346 {
1347 	struct page *page;
1348 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1349 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1350 	unsigned int noreclaim_flag;
1351 
1352 	if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1353 		return;
1354 
1355 	if (queue->hdr_digest || queue->data_digest)
1356 		nvme_tcp_free_crypto(queue);
1357 
1358 	if (queue->pf_cache.va) {
1359 		page = virt_to_head_page(queue->pf_cache.va);
1360 		__page_frag_cache_drain(page, queue->pf_cache.pagecnt_bias);
1361 		queue->pf_cache.va = NULL;
1362 	}
1363 
1364 	noreclaim_flag = memalloc_noreclaim_save();
1365 	/* ->sock will be released by fput() */
1366 	fput(queue->sock->file);
1367 	queue->sock = NULL;
1368 	memalloc_noreclaim_restore(noreclaim_flag);
1369 
1370 	kfree(queue->pdu);
1371 	mutex_destroy(&queue->send_mutex);
1372 	mutex_destroy(&queue->queue_lock);
1373 }
1374 
1375 static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue)
1376 {
1377 	struct nvme_tcp_icreq_pdu *icreq;
1378 	struct nvme_tcp_icresp_pdu *icresp;
1379 	char cbuf[CMSG_LEN(sizeof(char))] = {};
1380 	u8 ctype;
1381 	struct msghdr msg = {};
1382 	struct kvec iov;
1383 	bool ctrl_hdgst, ctrl_ddgst;
1384 	u32 maxh2cdata;
1385 	int ret;
1386 
1387 	icreq = kzalloc(sizeof(*icreq), GFP_KERNEL);
1388 	if (!icreq)
1389 		return -ENOMEM;
1390 
1391 	icresp = kzalloc(sizeof(*icresp), GFP_KERNEL);
1392 	if (!icresp) {
1393 		ret = -ENOMEM;
1394 		goto free_icreq;
1395 	}
1396 
1397 	icreq->hdr.type = nvme_tcp_icreq;
1398 	icreq->hdr.hlen = sizeof(*icreq);
1399 	icreq->hdr.pdo = 0;
1400 	icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen);
1401 	icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
1402 	icreq->maxr2t = 0; /* single inflight r2t supported */
1403 	icreq->hpda = 0; /* no alignment constraint */
1404 	if (queue->hdr_digest)
1405 		icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
1406 	if (queue->data_digest)
1407 		icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
1408 
1409 	iov.iov_base = icreq;
1410 	iov.iov_len = sizeof(*icreq);
1411 	ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1412 	if (ret < 0) {
1413 		pr_warn("queue %d: failed to send icreq, error %d\n",
1414 			nvme_tcp_queue_id(queue), ret);
1415 		goto free_icresp;
1416 	}
1417 
1418 	memset(&msg, 0, sizeof(msg));
1419 	iov.iov_base = icresp;
1420 	iov.iov_len = sizeof(*icresp);
1421 	if (nvme_tcp_tls(&queue->ctrl->ctrl)) {
1422 		msg.msg_control = cbuf;
1423 		msg.msg_controllen = sizeof(cbuf);
1424 	}
1425 	ret = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1426 			iov.iov_len, msg.msg_flags);
1427 	if (ret < 0) {
1428 		pr_warn("queue %d: failed to receive icresp, error %d\n",
1429 			nvme_tcp_queue_id(queue), ret);
1430 		goto free_icresp;
1431 	}
1432 	ret = -ENOTCONN;
1433 	if (nvme_tcp_tls(&queue->ctrl->ctrl)) {
1434 		ctype = tls_get_record_type(queue->sock->sk,
1435 					    (struct cmsghdr *)cbuf);
1436 		if (ctype != TLS_RECORD_TYPE_DATA) {
1437 			pr_err("queue %d: unhandled TLS record %d\n",
1438 			       nvme_tcp_queue_id(queue), ctype);
1439 			goto free_icresp;
1440 		}
1441 	}
1442 	ret = -EINVAL;
1443 	if (icresp->hdr.type != nvme_tcp_icresp) {
1444 		pr_err("queue %d: bad type returned %d\n",
1445 			nvme_tcp_queue_id(queue), icresp->hdr.type);
1446 		goto free_icresp;
1447 	}
1448 
1449 	if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) {
1450 		pr_err("queue %d: bad pdu length returned %d\n",
1451 			nvme_tcp_queue_id(queue), icresp->hdr.plen);
1452 		goto free_icresp;
1453 	}
1454 
1455 	if (icresp->pfv != NVME_TCP_PFV_1_0) {
1456 		pr_err("queue %d: bad pfv returned %d\n",
1457 			nvme_tcp_queue_id(queue), icresp->pfv);
1458 		goto free_icresp;
1459 	}
1460 
1461 	ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE);
1462 	if ((queue->data_digest && !ctrl_ddgst) ||
1463 	    (!queue->data_digest && ctrl_ddgst)) {
1464 		pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n",
1465 			nvme_tcp_queue_id(queue),
1466 			queue->data_digest ? "enabled" : "disabled",
1467 			ctrl_ddgst ? "enabled" : "disabled");
1468 		goto free_icresp;
1469 	}
1470 
1471 	ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE);
1472 	if ((queue->hdr_digest && !ctrl_hdgst) ||
1473 	    (!queue->hdr_digest && ctrl_hdgst)) {
1474 		pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n",
1475 			nvme_tcp_queue_id(queue),
1476 			queue->hdr_digest ? "enabled" : "disabled",
1477 			ctrl_hdgst ? "enabled" : "disabled");
1478 		goto free_icresp;
1479 	}
1480 
1481 	if (icresp->cpda != 0) {
1482 		pr_err("queue %d: unsupported cpda returned %d\n",
1483 			nvme_tcp_queue_id(queue), icresp->cpda);
1484 		goto free_icresp;
1485 	}
1486 
1487 	maxh2cdata = le32_to_cpu(icresp->maxdata);
1488 	if ((maxh2cdata % 4) || (maxh2cdata < NVME_TCP_MIN_MAXH2CDATA)) {
1489 		pr_err("queue %d: invalid maxh2cdata returned %u\n",
1490 		       nvme_tcp_queue_id(queue), maxh2cdata);
1491 		goto free_icresp;
1492 	}
1493 	queue->maxh2cdata = maxh2cdata;
1494 
1495 	ret = 0;
1496 free_icresp:
1497 	kfree(icresp);
1498 free_icreq:
1499 	kfree(icreq);
1500 	return ret;
1501 }
1502 
1503 static bool nvme_tcp_admin_queue(struct nvme_tcp_queue *queue)
1504 {
1505 	return nvme_tcp_queue_id(queue) == 0;
1506 }
1507 
1508 static bool nvme_tcp_default_queue(struct nvme_tcp_queue *queue)
1509 {
1510 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1511 	int qid = nvme_tcp_queue_id(queue);
1512 
1513 	return !nvme_tcp_admin_queue(queue) &&
1514 		qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT];
1515 }
1516 
1517 static bool nvme_tcp_read_queue(struct nvme_tcp_queue *queue)
1518 {
1519 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1520 	int qid = nvme_tcp_queue_id(queue);
1521 
1522 	return !nvme_tcp_admin_queue(queue) &&
1523 		!nvme_tcp_default_queue(queue) &&
1524 		qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1525 			  ctrl->io_queues[HCTX_TYPE_READ];
1526 }
1527 
1528 static bool nvme_tcp_poll_queue(struct nvme_tcp_queue *queue)
1529 {
1530 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1531 	int qid = nvme_tcp_queue_id(queue);
1532 
1533 	return !nvme_tcp_admin_queue(queue) &&
1534 		!nvme_tcp_default_queue(queue) &&
1535 		!nvme_tcp_read_queue(queue) &&
1536 		qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1537 			  ctrl->io_queues[HCTX_TYPE_READ] +
1538 			  ctrl->io_queues[HCTX_TYPE_POLL];
1539 }
1540 
1541 static void nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue *queue)
1542 {
1543 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1544 	int qid = nvme_tcp_queue_id(queue);
1545 	int n = 0;
1546 
1547 	if (nvme_tcp_default_queue(queue))
1548 		n = qid - 1;
1549 	else if (nvme_tcp_read_queue(queue))
1550 		n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - 1;
1551 	else if (nvme_tcp_poll_queue(queue))
1552 		n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] -
1553 				ctrl->io_queues[HCTX_TYPE_READ] - 1;
1554 	queue->io_cpu = cpumask_next_wrap(n - 1, cpu_online_mask, -1, false);
1555 }
1556 
1557 static void nvme_tcp_tls_done(void *data, int status, key_serial_t pskid)
1558 {
1559 	struct nvme_tcp_queue *queue = data;
1560 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1561 	int qid = nvme_tcp_queue_id(queue);
1562 	struct key *tls_key;
1563 
1564 	dev_dbg(ctrl->ctrl.device, "queue %d: TLS handshake done, key %x, status %d\n",
1565 		qid, pskid, status);
1566 
1567 	if (status) {
1568 		queue->tls_err = -status;
1569 		goto out_complete;
1570 	}
1571 
1572 	tls_key = key_lookup(pskid);
1573 	if (IS_ERR(tls_key)) {
1574 		dev_warn(ctrl->ctrl.device, "queue %d: Invalid key %x\n",
1575 			 qid, pskid);
1576 		queue->tls_err = -ENOKEY;
1577 	} else {
1578 		ctrl->ctrl.tls_key = tls_key;
1579 		queue->tls_err = 0;
1580 	}
1581 
1582 out_complete:
1583 	complete(&queue->tls_complete);
1584 }
1585 
1586 static int nvme_tcp_start_tls(struct nvme_ctrl *nctrl,
1587 			      struct nvme_tcp_queue *queue,
1588 			      key_serial_t pskid)
1589 {
1590 	int qid = nvme_tcp_queue_id(queue);
1591 	int ret;
1592 	struct tls_handshake_args args;
1593 	unsigned long tmo = tls_handshake_timeout * HZ;
1594 	key_serial_t keyring = nvme_keyring_id();
1595 
1596 	dev_dbg(nctrl->device, "queue %d: start TLS with key %x\n",
1597 		qid, pskid);
1598 	memset(&args, 0, sizeof(args));
1599 	args.ta_sock = queue->sock;
1600 	args.ta_done = nvme_tcp_tls_done;
1601 	args.ta_data = queue;
1602 	args.ta_my_peerids[0] = pskid;
1603 	args.ta_num_peerids = 1;
1604 	if (nctrl->opts->keyring)
1605 		keyring = key_serial(nctrl->opts->keyring);
1606 	args.ta_keyring = keyring;
1607 	args.ta_timeout_ms = tls_handshake_timeout * 1000;
1608 	queue->tls_err = -EOPNOTSUPP;
1609 	init_completion(&queue->tls_complete);
1610 	ret = tls_client_hello_psk(&args, GFP_KERNEL);
1611 	if (ret) {
1612 		dev_err(nctrl->device, "queue %d: failed to start TLS: %d\n",
1613 			qid, ret);
1614 		return ret;
1615 	}
1616 	ret = wait_for_completion_interruptible_timeout(&queue->tls_complete, tmo);
1617 	if (ret <= 0) {
1618 		if (ret == 0)
1619 			ret = -ETIMEDOUT;
1620 
1621 		dev_err(nctrl->device,
1622 			"queue %d: TLS handshake failed, error %d\n",
1623 			qid, ret);
1624 		tls_handshake_cancel(queue->sock->sk);
1625 	} else {
1626 		dev_dbg(nctrl->device,
1627 			"queue %d: TLS handshake complete, error %d\n",
1628 			qid, queue->tls_err);
1629 		ret = queue->tls_err;
1630 	}
1631 	return ret;
1632 }
1633 
1634 static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl, int qid,
1635 				key_serial_t pskid)
1636 {
1637 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1638 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1639 	int ret, rcv_pdu_size;
1640 	struct file *sock_file;
1641 
1642 	mutex_init(&queue->queue_lock);
1643 	queue->ctrl = ctrl;
1644 	init_llist_head(&queue->req_list);
1645 	INIT_LIST_HEAD(&queue->send_list);
1646 	mutex_init(&queue->send_mutex);
1647 	INIT_WORK(&queue->io_work, nvme_tcp_io_work);
1648 
1649 	if (qid > 0)
1650 		queue->cmnd_capsule_len = nctrl->ioccsz * 16;
1651 	else
1652 		queue->cmnd_capsule_len = sizeof(struct nvme_command) +
1653 						NVME_TCP_ADMIN_CCSZ;
1654 
1655 	ret = sock_create(ctrl->addr.ss_family, SOCK_STREAM,
1656 			IPPROTO_TCP, &queue->sock);
1657 	if (ret) {
1658 		dev_err(nctrl->device,
1659 			"failed to create socket: %d\n", ret);
1660 		goto err_destroy_mutex;
1661 	}
1662 
1663 	sock_file = sock_alloc_file(queue->sock, O_CLOEXEC, NULL);
1664 	if (IS_ERR(sock_file)) {
1665 		ret = PTR_ERR(sock_file);
1666 		goto err_destroy_mutex;
1667 	}
1668 	nvme_tcp_reclassify_socket(queue->sock);
1669 
1670 	/* Single syn retry */
1671 	tcp_sock_set_syncnt(queue->sock->sk, 1);
1672 
1673 	/* Set TCP no delay */
1674 	tcp_sock_set_nodelay(queue->sock->sk);
1675 
1676 	/*
1677 	 * Cleanup whatever is sitting in the TCP transmit queue on socket
1678 	 * close. This is done to prevent stale data from being sent should
1679 	 * the network connection be restored before TCP times out.
1680 	 */
1681 	sock_no_linger(queue->sock->sk);
1682 
1683 	if (so_priority > 0)
1684 		sock_set_priority(queue->sock->sk, so_priority);
1685 
1686 	/* Set socket type of service */
1687 	if (nctrl->opts->tos >= 0)
1688 		ip_sock_set_tos(queue->sock->sk, nctrl->opts->tos);
1689 
1690 	/* Set 10 seconds timeout for icresp recvmsg */
1691 	queue->sock->sk->sk_rcvtimeo = 10 * HZ;
1692 
1693 	queue->sock->sk->sk_allocation = GFP_ATOMIC;
1694 	queue->sock->sk->sk_use_task_frag = false;
1695 	nvme_tcp_set_queue_io_cpu(queue);
1696 	queue->request = NULL;
1697 	queue->data_remaining = 0;
1698 	queue->ddgst_remaining = 0;
1699 	queue->pdu_remaining = 0;
1700 	queue->pdu_offset = 0;
1701 	sk_set_memalloc(queue->sock->sk);
1702 
1703 	if (nctrl->opts->mask & NVMF_OPT_HOST_TRADDR) {
1704 		ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr,
1705 			sizeof(ctrl->src_addr));
1706 		if (ret) {
1707 			dev_err(nctrl->device,
1708 				"failed to bind queue %d socket %d\n",
1709 				qid, ret);
1710 			goto err_sock;
1711 		}
1712 	}
1713 
1714 	if (nctrl->opts->mask & NVMF_OPT_HOST_IFACE) {
1715 		char *iface = nctrl->opts->host_iface;
1716 		sockptr_t optval = KERNEL_SOCKPTR(iface);
1717 
1718 		ret = sock_setsockopt(queue->sock, SOL_SOCKET, SO_BINDTODEVICE,
1719 				      optval, strlen(iface));
1720 		if (ret) {
1721 			dev_err(nctrl->device,
1722 			  "failed to bind to interface %s queue %d err %d\n",
1723 			  iface, qid, ret);
1724 			goto err_sock;
1725 		}
1726 	}
1727 
1728 	queue->hdr_digest = nctrl->opts->hdr_digest;
1729 	queue->data_digest = nctrl->opts->data_digest;
1730 	if (queue->hdr_digest || queue->data_digest) {
1731 		ret = nvme_tcp_alloc_crypto(queue);
1732 		if (ret) {
1733 			dev_err(nctrl->device,
1734 				"failed to allocate queue %d crypto\n", qid);
1735 			goto err_sock;
1736 		}
1737 	}
1738 
1739 	rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) +
1740 			nvme_tcp_hdgst_len(queue);
1741 	queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL);
1742 	if (!queue->pdu) {
1743 		ret = -ENOMEM;
1744 		goto err_crypto;
1745 	}
1746 
1747 	dev_dbg(nctrl->device, "connecting queue %d\n",
1748 			nvme_tcp_queue_id(queue));
1749 
1750 	ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr,
1751 		sizeof(ctrl->addr), 0);
1752 	if (ret) {
1753 		dev_err(nctrl->device,
1754 			"failed to connect socket: %d\n", ret);
1755 		goto err_rcv_pdu;
1756 	}
1757 
1758 	/* If PSKs are configured try to start TLS */
1759 	if (IS_ENABLED(CONFIG_NVME_TCP_TLS) && pskid) {
1760 		ret = nvme_tcp_start_tls(nctrl, queue, pskid);
1761 		if (ret)
1762 			goto err_init_connect;
1763 	}
1764 
1765 	ret = nvme_tcp_init_connection(queue);
1766 	if (ret)
1767 		goto err_init_connect;
1768 
1769 	set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags);
1770 
1771 	return 0;
1772 
1773 err_init_connect:
1774 	kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1775 err_rcv_pdu:
1776 	kfree(queue->pdu);
1777 err_crypto:
1778 	if (queue->hdr_digest || queue->data_digest)
1779 		nvme_tcp_free_crypto(queue);
1780 err_sock:
1781 	/* ->sock will be released by fput() */
1782 	fput(queue->sock->file);
1783 	queue->sock = NULL;
1784 err_destroy_mutex:
1785 	mutex_destroy(&queue->send_mutex);
1786 	mutex_destroy(&queue->queue_lock);
1787 	return ret;
1788 }
1789 
1790 static void nvme_tcp_restore_sock_ops(struct nvme_tcp_queue *queue)
1791 {
1792 	struct socket *sock = queue->sock;
1793 
1794 	write_lock_bh(&sock->sk->sk_callback_lock);
1795 	sock->sk->sk_user_data  = NULL;
1796 	sock->sk->sk_data_ready = queue->data_ready;
1797 	sock->sk->sk_state_change = queue->state_change;
1798 	sock->sk->sk_write_space  = queue->write_space;
1799 	write_unlock_bh(&sock->sk->sk_callback_lock);
1800 }
1801 
1802 static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue)
1803 {
1804 	kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1805 	nvme_tcp_restore_sock_ops(queue);
1806 	cancel_work_sync(&queue->io_work);
1807 }
1808 
1809 static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid)
1810 {
1811 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1812 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1813 
1814 	if (!test_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1815 		return;
1816 
1817 	mutex_lock(&queue->queue_lock);
1818 	if (test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags))
1819 		__nvme_tcp_stop_queue(queue);
1820 	mutex_unlock(&queue->queue_lock);
1821 }
1822 
1823 static void nvme_tcp_setup_sock_ops(struct nvme_tcp_queue *queue)
1824 {
1825 	write_lock_bh(&queue->sock->sk->sk_callback_lock);
1826 	queue->sock->sk->sk_user_data = queue;
1827 	queue->state_change = queue->sock->sk->sk_state_change;
1828 	queue->data_ready = queue->sock->sk->sk_data_ready;
1829 	queue->write_space = queue->sock->sk->sk_write_space;
1830 	queue->sock->sk->sk_data_ready = nvme_tcp_data_ready;
1831 	queue->sock->sk->sk_state_change = nvme_tcp_state_change;
1832 	queue->sock->sk->sk_write_space = nvme_tcp_write_space;
1833 #ifdef CONFIG_NET_RX_BUSY_POLL
1834 	queue->sock->sk->sk_ll_usec = 1;
1835 #endif
1836 	write_unlock_bh(&queue->sock->sk->sk_callback_lock);
1837 }
1838 
1839 static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx)
1840 {
1841 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1842 	struct nvme_tcp_queue *queue = &ctrl->queues[idx];
1843 	int ret;
1844 
1845 	queue->rd_enabled = true;
1846 	nvme_tcp_init_recv_ctx(queue);
1847 	nvme_tcp_setup_sock_ops(queue);
1848 
1849 	if (idx)
1850 		ret = nvmf_connect_io_queue(nctrl, idx);
1851 	else
1852 		ret = nvmf_connect_admin_queue(nctrl);
1853 
1854 	if (!ret) {
1855 		set_bit(NVME_TCP_Q_LIVE, &queue->flags);
1856 	} else {
1857 		if (test_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1858 			__nvme_tcp_stop_queue(queue);
1859 		dev_err(nctrl->device,
1860 			"failed to connect queue: %d ret=%d\n", idx, ret);
1861 	}
1862 	return ret;
1863 }
1864 
1865 static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl)
1866 {
1867 	if (to_tcp_ctrl(ctrl)->async_req.pdu) {
1868 		cancel_work_sync(&ctrl->async_event_work);
1869 		nvme_tcp_free_async_req(to_tcp_ctrl(ctrl));
1870 		to_tcp_ctrl(ctrl)->async_req.pdu = NULL;
1871 	}
1872 
1873 	nvme_tcp_free_queue(ctrl, 0);
1874 }
1875 
1876 static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl)
1877 {
1878 	int i;
1879 
1880 	for (i = 1; i < ctrl->queue_count; i++)
1881 		nvme_tcp_free_queue(ctrl, i);
1882 }
1883 
1884 static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl)
1885 {
1886 	int i;
1887 
1888 	for (i = 1; i < ctrl->queue_count; i++)
1889 		nvme_tcp_stop_queue(ctrl, i);
1890 }
1891 
1892 static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl,
1893 				    int first, int last)
1894 {
1895 	int i, ret;
1896 
1897 	for (i = first; i < last; i++) {
1898 		ret = nvme_tcp_start_queue(ctrl, i);
1899 		if (ret)
1900 			goto out_stop_queues;
1901 	}
1902 
1903 	return 0;
1904 
1905 out_stop_queues:
1906 	for (i--; i >= first; i--)
1907 		nvme_tcp_stop_queue(ctrl, i);
1908 	return ret;
1909 }
1910 
1911 static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl)
1912 {
1913 	int ret;
1914 	key_serial_t pskid = 0;
1915 
1916 	if (nvme_tcp_tls(ctrl)) {
1917 		if (ctrl->opts->tls_key)
1918 			pskid = key_serial(ctrl->opts->tls_key);
1919 		else
1920 			pskid = nvme_tls_psk_default(ctrl->opts->keyring,
1921 						      ctrl->opts->host->nqn,
1922 						      ctrl->opts->subsysnqn);
1923 		if (!pskid) {
1924 			dev_err(ctrl->device, "no valid PSK found\n");
1925 			ret = -ENOKEY;
1926 			goto out_free_queue;
1927 		}
1928 	}
1929 
1930 	ret = nvme_tcp_alloc_queue(ctrl, 0, pskid);
1931 	if (ret)
1932 		goto out_free_queue;
1933 
1934 	ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl));
1935 	if (ret)
1936 		goto out_free_queue;
1937 
1938 	return 0;
1939 
1940 out_free_queue:
1941 	nvme_tcp_free_queue(ctrl, 0);
1942 	return ret;
1943 }
1944 
1945 static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1946 {
1947 	int i, ret;
1948 
1949 	if (nvme_tcp_tls(ctrl) && !ctrl->tls_key) {
1950 		dev_err(ctrl->device, "no PSK negotiated\n");
1951 		return -ENOKEY;
1952 	}
1953 	for (i = 1; i < ctrl->queue_count; i++) {
1954 		ret = nvme_tcp_alloc_queue(ctrl, i,
1955 				key_serial(ctrl->tls_key));
1956 		if (ret)
1957 			goto out_free_queues;
1958 	}
1959 
1960 	return 0;
1961 
1962 out_free_queues:
1963 	for (i--; i >= 1; i--)
1964 		nvme_tcp_free_queue(ctrl, i);
1965 
1966 	return ret;
1967 }
1968 
1969 static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1970 {
1971 	unsigned int nr_io_queues;
1972 	int ret;
1973 
1974 	nr_io_queues = nvmf_nr_io_queues(ctrl->opts);
1975 	ret = nvme_set_queue_count(ctrl, &nr_io_queues);
1976 	if (ret)
1977 		return ret;
1978 
1979 	if (nr_io_queues == 0) {
1980 		dev_err(ctrl->device,
1981 			"unable to set any I/O queues\n");
1982 		return -ENOMEM;
1983 	}
1984 
1985 	ctrl->queue_count = nr_io_queues + 1;
1986 	dev_info(ctrl->device,
1987 		"creating %d I/O queues.\n", nr_io_queues);
1988 
1989 	nvmf_set_io_queues(ctrl->opts, nr_io_queues,
1990 			   to_tcp_ctrl(ctrl)->io_queues);
1991 	return __nvme_tcp_alloc_io_queues(ctrl);
1992 }
1993 
1994 static void nvme_tcp_destroy_io_queues(struct nvme_ctrl *ctrl, bool remove)
1995 {
1996 	nvme_tcp_stop_io_queues(ctrl);
1997 	if (remove)
1998 		nvme_remove_io_tag_set(ctrl);
1999 	nvme_tcp_free_io_queues(ctrl);
2000 }
2001 
2002 static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new)
2003 {
2004 	int ret, nr_queues;
2005 
2006 	ret = nvme_tcp_alloc_io_queues(ctrl);
2007 	if (ret)
2008 		return ret;
2009 
2010 	if (new) {
2011 		ret = nvme_alloc_io_tag_set(ctrl, &to_tcp_ctrl(ctrl)->tag_set,
2012 				&nvme_tcp_mq_ops,
2013 				ctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2,
2014 				sizeof(struct nvme_tcp_request));
2015 		if (ret)
2016 			goto out_free_io_queues;
2017 	}
2018 
2019 	/*
2020 	 * Only start IO queues for which we have allocated the tagset
2021 	 * and limitted it to the available queues. On reconnects, the
2022 	 * queue number might have changed.
2023 	 */
2024 	nr_queues = min(ctrl->tagset->nr_hw_queues + 1, ctrl->queue_count);
2025 	ret = nvme_tcp_start_io_queues(ctrl, 1, nr_queues);
2026 	if (ret)
2027 		goto out_cleanup_connect_q;
2028 
2029 	if (!new) {
2030 		nvme_start_freeze(ctrl);
2031 		nvme_unquiesce_io_queues(ctrl);
2032 		if (!nvme_wait_freeze_timeout(ctrl, NVME_IO_TIMEOUT)) {
2033 			/*
2034 			 * If we timed out waiting for freeze we are likely to
2035 			 * be stuck.  Fail the controller initialization just
2036 			 * to be safe.
2037 			 */
2038 			ret = -ENODEV;
2039 			nvme_unfreeze(ctrl);
2040 			goto out_wait_freeze_timed_out;
2041 		}
2042 		blk_mq_update_nr_hw_queues(ctrl->tagset,
2043 			ctrl->queue_count - 1);
2044 		nvme_unfreeze(ctrl);
2045 	}
2046 
2047 	/*
2048 	 * If the number of queues has increased (reconnect case)
2049 	 * start all new queues now.
2050 	 */
2051 	ret = nvme_tcp_start_io_queues(ctrl, nr_queues,
2052 				       ctrl->tagset->nr_hw_queues + 1);
2053 	if (ret)
2054 		goto out_wait_freeze_timed_out;
2055 
2056 	return 0;
2057 
2058 out_wait_freeze_timed_out:
2059 	nvme_quiesce_io_queues(ctrl);
2060 	nvme_sync_io_queues(ctrl);
2061 	nvme_tcp_stop_io_queues(ctrl);
2062 out_cleanup_connect_q:
2063 	nvme_cancel_tagset(ctrl);
2064 	if (new)
2065 		nvme_remove_io_tag_set(ctrl);
2066 out_free_io_queues:
2067 	nvme_tcp_free_io_queues(ctrl);
2068 	return ret;
2069 }
2070 
2071 static void nvme_tcp_destroy_admin_queue(struct nvme_ctrl *ctrl, bool remove)
2072 {
2073 	nvme_tcp_stop_queue(ctrl, 0);
2074 	if (remove)
2075 		nvme_remove_admin_tag_set(ctrl);
2076 	nvme_tcp_free_admin_queue(ctrl);
2077 }
2078 
2079 static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new)
2080 {
2081 	int error;
2082 
2083 	error = nvme_tcp_alloc_admin_queue(ctrl);
2084 	if (error)
2085 		return error;
2086 
2087 	if (new) {
2088 		error = nvme_alloc_admin_tag_set(ctrl,
2089 				&to_tcp_ctrl(ctrl)->admin_tag_set,
2090 				&nvme_tcp_admin_mq_ops,
2091 				sizeof(struct nvme_tcp_request));
2092 		if (error)
2093 			goto out_free_queue;
2094 	}
2095 
2096 	error = nvme_tcp_start_queue(ctrl, 0);
2097 	if (error)
2098 		goto out_cleanup_tagset;
2099 
2100 	error = nvme_enable_ctrl(ctrl);
2101 	if (error)
2102 		goto out_stop_queue;
2103 
2104 	nvme_unquiesce_admin_queue(ctrl);
2105 
2106 	error = nvme_init_ctrl_finish(ctrl, false);
2107 	if (error)
2108 		goto out_quiesce_queue;
2109 
2110 	return 0;
2111 
2112 out_quiesce_queue:
2113 	nvme_quiesce_admin_queue(ctrl);
2114 	blk_sync_queue(ctrl->admin_q);
2115 out_stop_queue:
2116 	nvme_tcp_stop_queue(ctrl, 0);
2117 	nvme_cancel_admin_tagset(ctrl);
2118 out_cleanup_tagset:
2119 	if (new)
2120 		nvme_remove_admin_tag_set(ctrl);
2121 out_free_queue:
2122 	nvme_tcp_free_admin_queue(ctrl);
2123 	return error;
2124 }
2125 
2126 static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl,
2127 		bool remove)
2128 {
2129 	nvme_quiesce_admin_queue(ctrl);
2130 	blk_sync_queue(ctrl->admin_q);
2131 	nvme_tcp_stop_queue(ctrl, 0);
2132 	nvme_cancel_admin_tagset(ctrl);
2133 	if (remove)
2134 		nvme_unquiesce_admin_queue(ctrl);
2135 	nvme_tcp_destroy_admin_queue(ctrl, remove);
2136 }
2137 
2138 static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl,
2139 		bool remove)
2140 {
2141 	if (ctrl->queue_count <= 1)
2142 		return;
2143 	nvme_quiesce_admin_queue(ctrl);
2144 	nvme_quiesce_io_queues(ctrl);
2145 	nvme_sync_io_queues(ctrl);
2146 	nvme_tcp_stop_io_queues(ctrl);
2147 	nvme_cancel_tagset(ctrl);
2148 	if (remove)
2149 		nvme_unquiesce_io_queues(ctrl);
2150 	nvme_tcp_destroy_io_queues(ctrl, remove);
2151 }
2152 
2153 static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl)
2154 {
2155 	/* If we are resetting/deleting then do nothing */
2156 	if (ctrl->state != NVME_CTRL_CONNECTING) {
2157 		WARN_ON_ONCE(ctrl->state == NVME_CTRL_NEW ||
2158 			ctrl->state == NVME_CTRL_LIVE);
2159 		return;
2160 	}
2161 
2162 	if (nvmf_should_reconnect(ctrl)) {
2163 		dev_info(ctrl->device, "Reconnecting in %d seconds...\n",
2164 			ctrl->opts->reconnect_delay);
2165 		queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work,
2166 				ctrl->opts->reconnect_delay * HZ);
2167 	} else {
2168 		dev_info(ctrl->device, "Removing controller...\n");
2169 		nvme_delete_ctrl(ctrl);
2170 	}
2171 }
2172 
2173 static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new)
2174 {
2175 	struct nvmf_ctrl_options *opts = ctrl->opts;
2176 	int ret;
2177 
2178 	ret = nvme_tcp_configure_admin_queue(ctrl, new);
2179 	if (ret)
2180 		return ret;
2181 
2182 	if (ctrl->icdoff) {
2183 		ret = -EOPNOTSUPP;
2184 		dev_err(ctrl->device, "icdoff is not supported!\n");
2185 		goto destroy_admin;
2186 	}
2187 
2188 	if (!nvme_ctrl_sgl_supported(ctrl)) {
2189 		ret = -EOPNOTSUPP;
2190 		dev_err(ctrl->device, "Mandatory sgls are not supported!\n");
2191 		goto destroy_admin;
2192 	}
2193 
2194 	if (opts->queue_size > ctrl->sqsize + 1)
2195 		dev_warn(ctrl->device,
2196 			"queue_size %zu > ctrl sqsize %u, clamping down\n",
2197 			opts->queue_size, ctrl->sqsize + 1);
2198 
2199 	if (ctrl->sqsize + 1 > ctrl->maxcmd) {
2200 		dev_warn(ctrl->device,
2201 			"sqsize %u > ctrl maxcmd %u, clamping down\n",
2202 			ctrl->sqsize + 1, ctrl->maxcmd);
2203 		ctrl->sqsize = ctrl->maxcmd - 1;
2204 	}
2205 
2206 	if (ctrl->queue_count > 1) {
2207 		ret = nvme_tcp_configure_io_queues(ctrl, new);
2208 		if (ret)
2209 			goto destroy_admin;
2210 	}
2211 
2212 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) {
2213 		/*
2214 		 * state change failure is ok if we started ctrl delete,
2215 		 * unless we're during creation of a new controller to
2216 		 * avoid races with teardown flow.
2217 		 */
2218 		WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2219 			     ctrl->state != NVME_CTRL_DELETING_NOIO);
2220 		WARN_ON_ONCE(new);
2221 		ret = -EINVAL;
2222 		goto destroy_io;
2223 	}
2224 
2225 	nvme_start_ctrl(ctrl);
2226 	return 0;
2227 
2228 destroy_io:
2229 	if (ctrl->queue_count > 1) {
2230 		nvme_quiesce_io_queues(ctrl);
2231 		nvme_sync_io_queues(ctrl);
2232 		nvme_tcp_stop_io_queues(ctrl);
2233 		nvme_cancel_tagset(ctrl);
2234 		nvme_tcp_destroy_io_queues(ctrl, new);
2235 	}
2236 destroy_admin:
2237 	nvme_stop_keep_alive(ctrl);
2238 	nvme_tcp_teardown_admin_queue(ctrl, false);
2239 	return ret;
2240 }
2241 
2242 static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work)
2243 {
2244 	struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work),
2245 			struct nvme_tcp_ctrl, connect_work);
2246 	struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2247 
2248 	++ctrl->nr_reconnects;
2249 
2250 	if (nvme_tcp_setup_ctrl(ctrl, false))
2251 		goto requeue;
2252 
2253 	dev_info(ctrl->device, "Successfully reconnected (%d attempt)\n",
2254 			ctrl->nr_reconnects);
2255 
2256 	ctrl->nr_reconnects = 0;
2257 
2258 	return;
2259 
2260 requeue:
2261 	dev_info(ctrl->device, "Failed reconnect attempt %d\n",
2262 			ctrl->nr_reconnects);
2263 	nvme_tcp_reconnect_or_remove(ctrl);
2264 }
2265 
2266 static void nvme_tcp_error_recovery_work(struct work_struct *work)
2267 {
2268 	struct nvme_tcp_ctrl *tcp_ctrl = container_of(work,
2269 				struct nvme_tcp_ctrl, err_work);
2270 	struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2271 
2272 	nvme_stop_keep_alive(ctrl);
2273 	flush_work(&ctrl->async_event_work);
2274 	nvme_tcp_teardown_io_queues(ctrl, false);
2275 	/* unquiesce to fail fast pending requests */
2276 	nvme_unquiesce_io_queues(ctrl);
2277 	nvme_tcp_teardown_admin_queue(ctrl, false);
2278 	nvme_unquiesce_admin_queue(ctrl);
2279 	nvme_auth_stop(ctrl);
2280 
2281 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2282 		/* state change failure is ok if we started ctrl delete */
2283 		WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2284 			     ctrl->state != NVME_CTRL_DELETING_NOIO);
2285 		return;
2286 	}
2287 
2288 	nvme_tcp_reconnect_or_remove(ctrl);
2289 }
2290 
2291 static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
2292 {
2293 	nvme_tcp_teardown_io_queues(ctrl, shutdown);
2294 	nvme_quiesce_admin_queue(ctrl);
2295 	nvme_disable_ctrl(ctrl, shutdown);
2296 	nvme_tcp_teardown_admin_queue(ctrl, shutdown);
2297 }
2298 
2299 static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl)
2300 {
2301 	nvme_tcp_teardown_ctrl(ctrl, true);
2302 }
2303 
2304 static void nvme_reset_ctrl_work(struct work_struct *work)
2305 {
2306 	struct nvme_ctrl *ctrl =
2307 		container_of(work, struct nvme_ctrl, reset_work);
2308 
2309 	nvme_stop_ctrl(ctrl);
2310 	nvme_tcp_teardown_ctrl(ctrl, false);
2311 
2312 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2313 		/* state change failure is ok if we started ctrl delete */
2314 		WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2315 			     ctrl->state != NVME_CTRL_DELETING_NOIO);
2316 		return;
2317 	}
2318 
2319 	if (nvme_tcp_setup_ctrl(ctrl, false))
2320 		goto out_fail;
2321 
2322 	return;
2323 
2324 out_fail:
2325 	++ctrl->nr_reconnects;
2326 	nvme_tcp_reconnect_or_remove(ctrl);
2327 }
2328 
2329 static void nvme_tcp_stop_ctrl(struct nvme_ctrl *ctrl)
2330 {
2331 	flush_work(&to_tcp_ctrl(ctrl)->err_work);
2332 	cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work);
2333 }
2334 
2335 static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl)
2336 {
2337 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
2338 
2339 	if (list_empty(&ctrl->list))
2340 		goto free_ctrl;
2341 
2342 	mutex_lock(&nvme_tcp_ctrl_mutex);
2343 	list_del(&ctrl->list);
2344 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2345 
2346 	nvmf_free_options(nctrl->opts);
2347 free_ctrl:
2348 	kfree(ctrl->queues);
2349 	kfree(ctrl);
2350 }
2351 
2352 static void nvme_tcp_set_sg_null(struct nvme_command *c)
2353 {
2354 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2355 
2356 	sg->addr = 0;
2357 	sg->length = 0;
2358 	sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2359 			NVME_SGL_FMT_TRANSPORT_A;
2360 }
2361 
2362 static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue,
2363 		struct nvme_command *c, u32 data_len)
2364 {
2365 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2366 
2367 	sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
2368 	sg->length = cpu_to_le32(data_len);
2369 	sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
2370 }
2371 
2372 static void nvme_tcp_set_sg_host_data(struct nvme_command *c,
2373 		u32 data_len)
2374 {
2375 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2376 
2377 	sg->addr = 0;
2378 	sg->length = cpu_to_le32(data_len);
2379 	sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2380 			NVME_SGL_FMT_TRANSPORT_A;
2381 }
2382 
2383 static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg)
2384 {
2385 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg);
2386 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
2387 	struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu;
2388 	struct nvme_command *cmd = &pdu->cmd;
2389 	u8 hdgst = nvme_tcp_hdgst_len(queue);
2390 
2391 	memset(pdu, 0, sizeof(*pdu));
2392 	pdu->hdr.type = nvme_tcp_cmd;
2393 	if (queue->hdr_digest)
2394 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
2395 	pdu->hdr.hlen = sizeof(*pdu);
2396 	pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
2397 
2398 	cmd->common.opcode = nvme_admin_async_event;
2399 	cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
2400 	cmd->common.flags |= NVME_CMD_SGL_METABUF;
2401 	nvme_tcp_set_sg_null(cmd);
2402 
2403 	ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU;
2404 	ctrl->async_req.offset = 0;
2405 	ctrl->async_req.curr_bio = NULL;
2406 	ctrl->async_req.data_len = 0;
2407 
2408 	nvme_tcp_queue_request(&ctrl->async_req, true, true);
2409 }
2410 
2411 static void nvme_tcp_complete_timed_out(struct request *rq)
2412 {
2413 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2414 	struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2415 
2416 	nvme_tcp_stop_queue(ctrl, nvme_tcp_queue_id(req->queue));
2417 	nvmf_complete_timed_out_request(rq);
2418 }
2419 
2420 static enum blk_eh_timer_return nvme_tcp_timeout(struct request *rq)
2421 {
2422 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2423 	struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2424 	struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req);
2425 	u8 opc = pdu->cmd.common.opcode, fctype = pdu->cmd.fabrics.fctype;
2426 	int qid = nvme_tcp_queue_id(req->queue);
2427 
2428 	dev_warn(ctrl->device,
2429 		"queue %d: timeout cid %#x type %d opcode %#x (%s)\n",
2430 		nvme_tcp_queue_id(req->queue), nvme_cid(rq), pdu->hdr.type,
2431 		opc, nvme_opcode_str(qid, opc, fctype));
2432 
2433 	if (ctrl->state != NVME_CTRL_LIVE) {
2434 		/*
2435 		 * If we are resetting, connecting or deleting we should
2436 		 * complete immediately because we may block controller
2437 		 * teardown or setup sequence
2438 		 * - ctrl disable/shutdown fabrics requests
2439 		 * - connect requests
2440 		 * - initialization admin requests
2441 		 * - I/O requests that entered after unquiescing and
2442 		 *   the controller stopped responding
2443 		 *
2444 		 * All other requests should be cancelled by the error
2445 		 * recovery work, so it's fine that we fail it here.
2446 		 */
2447 		nvme_tcp_complete_timed_out(rq);
2448 		return BLK_EH_DONE;
2449 	}
2450 
2451 	/*
2452 	 * LIVE state should trigger the normal error recovery which will
2453 	 * handle completing this request.
2454 	 */
2455 	nvme_tcp_error_recovery(ctrl);
2456 	return BLK_EH_RESET_TIMER;
2457 }
2458 
2459 static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue,
2460 			struct request *rq)
2461 {
2462 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2463 	struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req);
2464 	struct nvme_command *c = &pdu->cmd;
2465 
2466 	c->common.flags |= NVME_CMD_SGL_METABUF;
2467 
2468 	if (!blk_rq_nr_phys_segments(rq))
2469 		nvme_tcp_set_sg_null(c);
2470 	else if (rq_data_dir(rq) == WRITE &&
2471 	    req->data_len <= nvme_tcp_inline_data_size(req))
2472 		nvme_tcp_set_sg_inline(queue, c, req->data_len);
2473 	else
2474 		nvme_tcp_set_sg_host_data(c, req->data_len);
2475 
2476 	return 0;
2477 }
2478 
2479 static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns,
2480 		struct request *rq)
2481 {
2482 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2483 	struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req);
2484 	struct nvme_tcp_queue *queue = req->queue;
2485 	u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0;
2486 	blk_status_t ret;
2487 
2488 	ret = nvme_setup_cmd(ns, rq);
2489 	if (ret)
2490 		return ret;
2491 
2492 	req->state = NVME_TCP_SEND_CMD_PDU;
2493 	req->status = cpu_to_le16(NVME_SC_SUCCESS);
2494 	req->offset = 0;
2495 	req->data_sent = 0;
2496 	req->pdu_len = 0;
2497 	req->pdu_sent = 0;
2498 	req->h2cdata_left = 0;
2499 	req->data_len = blk_rq_nr_phys_segments(rq) ?
2500 				blk_rq_payload_bytes(rq) : 0;
2501 	req->curr_bio = rq->bio;
2502 	if (req->curr_bio && req->data_len)
2503 		nvme_tcp_init_iter(req, rq_data_dir(rq));
2504 
2505 	if (rq_data_dir(rq) == WRITE &&
2506 	    req->data_len <= nvme_tcp_inline_data_size(req))
2507 		req->pdu_len = req->data_len;
2508 
2509 	pdu->hdr.type = nvme_tcp_cmd;
2510 	pdu->hdr.flags = 0;
2511 	if (queue->hdr_digest)
2512 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
2513 	if (queue->data_digest && req->pdu_len) {
2514 		pdu->hdr.flags |= NVME_TCP_F_DDGST;
2515 		ddgst = nvme_tcp_ddgst_len(queue);
2516 	}
2517 	pdu->hdr.hlen = sizeof(*pdu);
2518 	pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0;
2519 	pdu->hdr.plen =
2520 		cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst);
2521 
2522 	ret = nvme_tcp_map_data(queue, rq);
2523 	if (unlikely(ret)) {
2524 		nvme_cleanup_cmd(rq);
2525 		dev_err(queue->ctrl->ctrl.device,
2526 			"Failed to map data (%d)\n", ret);
2527 		return ret;
2528 	}
2529 
2530 	return 0;
2531 }
2532 
2533 static void nvme_tcp_commit_rqs(struct blk_mq_hw_ctx *hctx)
2534 {
2535 	struct nvme_tcp_queue *queue = hctx->driver_data;
2536 
2537 	if (!llist_empty(&queue->req_list))
2538 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
2539 }
2540 
2541 static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx,
2542 		const struct blk_mq_queue_data *bd)
2543 {
2544 	struct nvme_ns *ns = hctx->queue->queuedata;
2545 	struct nvme_tcp_queue *queue = hctx->driver_data;
2546 	struct request *rq = bd->rq;
2547 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2548 	bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags);
2549 	blk_status_t ret;
2550 
2551 	if (!nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2552 		return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq);
2553 
2554 	ret = nvme_tcp_setup_cmd_pdu(ns, rq);
2555 	if (unlikely(ret))
2556 		return ret;
2557 
2558 	nvme_start_request(rq);
2559 
2560 	nvme_tcp_queue_request(req, true, bd->last);
2561 
2562 	return BLK_STS_OK;
2563 }
2564 
2565 static void nvme_tcp_map_queues(struct blk_mq_tag_set *set)
2566 {
2567 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(set->driver_data);
2568 
2569 	nvmf_map_queues(set, &ctrl->ctrl, ctrl->io_queues);
2570 }
2571 
2572 static int nvme_tcp_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
2573 {
2574 	struct nvme_tcp_queue *queue = hctx->driver_data;
2575 	struct sock *sk = queue->sock->sk;
2576 
2577 	if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags))
2578 		return 0;
2579 
2580 	set_bit(NVME_TCP_Q_POLLING, &queue->flags);
2581 	if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue))
2582 		sk_busy_loop(sk, true);
2583 	nvme_tcp_try_recv(queue);
2584 	clear_bit(NVME_TCP_Q_POLLING, &queue->flags);
2585 	return queue->nr_cqe;
2586 }
2587 
2588 static int nvme_tcp_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2589 {
2590 	struct nvme_tcp_queue *queue = &to_tcp_ctrl(ctrl)->queues[0];
2591 	struct sockaddr_storage src_addr;
2592 	int ret, len;
2593 
2594 	len = nvmf_get_address(ctrl, buf, size);
2595 
2596 	mutex_lock(&queue->queue_lock);
2597 
2598 	if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags))
2599 		goto done;
2600 	ret = kernel_getsockname(queue->sock, (struct sockaddr *)&src_addr);
2601 	if (ret > 0) {
2602 		if (len > 0)
2603 			len--; /* strip trailing newline */
2604 		len += scnprintf(buf + len, size - len, "%ssrc_addr=%pISc\n",
2605 				(len) ? "," : "", &src_addr);
2606 	}
2607 done:
2608 	mutex_unlock(&queue->queue_lock);
2609 
2610 	return len;
2611 }
2612 
2613 static const struct blk_mq_ops nvme_tcp_mq_ops = {
2614 	.queue_rq	= nvme_tcp_queue_rq,
2615 	.commit_rqs	= nvme_tcp_commit_rqs,
2616 	.complete	= nvme_complete_rq,
2617 	.init_request	= nvme_tcp_init_request,
2618 	.exit_request	= nvme_tcp_exit_request,
2619 	.init_hctx	= nvme_tcp_init_hctx,
2620 	.timeout	= nvme_tcp_timeout,
2621 	.map_queues	= nvme_tcp_map_queues,
2622 	.poll		= nvme_tcp_poll,
2623 };
2624 
2625 static const struct blk_mq_ops nvme_tcp_admin_mq_ops = {
2626 	.queue_rq	= nvme_tcp_queue_rq,
2627 	.complete	= nvme_complete_rq,
2628 	.init_request	= nvme_tcp_init_request,
2629 	.exit_request	= nvme_tcp_exit_request,
2630 	.init_hctx	= nvme_tcp_init_admin_hctx,
2631 	.timeout	= nvme_tcp_timeout,
2632 };
2633 
2634 static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = {
2635 	.name			= "tcp",
2636 	.module			= THIS_MODULE,
2637 	.flags			= NVME_F_FABRICS | NVME_F_BLOCKING,
2638 	.reg_read32		= nvmf_reg_read32,
2639 	.reg_read64		= nvmf_reg_read64,
2640 	.reg_write32		= nvmf_reg_write32,
2641 	.free_ctrl		= nvme_tcp_free_ctrl,
2642 	.submit_async_event	= nvme_tcp_submit_async_event,
2643 	.delete_ctrl		= nvme_tcp_delete_ctrl,
2644 	.get_address		= nvme_tcp_get_address,
2645 	.stop_ctrl		= nvme_tcp_stop_ctrl,
2646 };
2647 
2648 static bool
2649 nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts)
2650 {
2651 	struct nvme_tcp_ctrl *ctrl;
2652 	bool found = false;
2653 
2654 	mutex_lock(&nvme_tcp_ctrl_mutex);
2655 	list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) {
2656 		found = nvmf_ip_options_match(&ctrl->ctrl, opts);
2657 		if (found)
2658 			break;
2659 	}
2660 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2661 
2662 	return found;
2663 }
2664 
2665 static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev,
2666 		struct nvmf_ctrl_options *opts)
2667 {
2668 	struct nvme_tcp_ctrl *ctrl;
2669 	int ret;
2670 
2671 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2672 	if (!ctrl)
2673 		return ERR_PTR(-ENOMEM);
2674 
2675 	INIT_LIST_HEAD(&ctrl->list);
2676 	ctrl->ctrl.opts = opts;
2677 	ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2678 				opts->nr_poll_queues + 1;
2679 	ctrl->ctrl.sqsize = opts->queue_size - 1;
2680 	ctrl->ctrl.kato = opts->kato;
2681 
2682 	INIT_DELAYED_WORK(&ctrl->connect_work,
2683 			nvme_tcp_reconnect_ctrl_work);
2684 	INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work);
2685 	INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work);
2686 
2687 	if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2688 		opts->trsvcid =
2689 			kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL);
2690 		if (!opts->trsvcid) {
2691 			ret = -ENOMEM;
2692 			goto out_free_ctrl;
2693 		}
2694 		opts->mask |= NVMF_OPT_TRSVCID;
2695 	}
2696 
2697 	ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2698 			opts->traddr, opts->trsvcid, &ctrl->addr);
2699 	if (ret) {
2700 		pr_err("malformed address passed: %s:%s\n",
2701 			opts->traddr, opts->trsvcid);
2702 		goto out_free_ctrl;
2703 	}
2704 
2705 	if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2706 		ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2707 			opts->host_traddr, NULL, &ctrl->src_addr);
2708 		if (ret) {
2709 			pr_err("malformed src address passed: %s\n",
2710 			       opts->host_traddr);
2711 			goto out_free_ctrl;
2712 		}
2713 	}
2714 
2715 	if (opts->mask & NVMF_OPT_HOST_IFACE) {
2716 		if (!__dev_get_by_name(&init_net, opts->host_iface)) {
2717 			pr_err("invalid interface passed: %s\n",
2718 			       opts->host_iface);
2719 			ret = -ENODEV;
2720 			goto out_free_ctrl;
2721 		}
2722 	}
2723 
2724 	if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) {
2725 		ret = -EALREADY;
2726 		goto out_free_ctrl;
2727 	}
2728 
2729 	ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2730 				GFP_KERNEL);
2731 	if (!ctrl->queues) {
2732 		ret = -ENOMEM;
2733 		goto out_free_ctrl;
2734 	}
2735 
2736 	ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0);
2737 	if (ret)
2738 		goto out_kfree_queues;
2739 
2740 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2741 		WARN_ON_ONCE(1);
2742 		ret = -EINTR;
2743 		goto out_uninit_ctrl;
2744 	}
2745 
2746 	ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true);
2747 	if (ret)
2748 		goto out_uninit_ctrl;
2749 
2750 	dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n",
2751 		nvmf_ctrl_subsysnqn(&ctrl->ctrl), &ctrl->addr);
2752 
2753 	mutex_lock(&nvme_tcp_ctrl_mutex);
2754 	list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list);
2755 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2756 
2757 	return &ctrl->ctrl;
2758 
2759 out_uninit_ctrl:
2760 	nvme_uninit_ctrl(&ctrl->ctrl);
2761 	nvme_put_ctrl(&ctrl->ctrl);
2762 	if (ret > 0)
2763 		ret = -EIO;
2764 	return ERR_PTR(ret);
2765 out_kfree_queues:
2766 	kfree(ctrl->queues);
2767 out_free_ctrl:
2768 	kfree(ctrl);
2769 	return ERR_PTR(ret);
2770 }
2771 
2772 static struct nvmf_transport_ops nvme_tcp_transport = {
2773 	.name		= "tcp",
2774 	.module		= THIS_MODULE,
2775 	.required_opts	= NVMF_OPT_TRADDR,
2776 	.allowed_opts	= NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2777 			  NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2778 			  NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST |
2779 			  NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
2780 			  NVMF_OPT_TOS | NVMF_OPT_HOST_IFACE | NVMF_OPT_TLS |
2781 			  NVMF_OPT_KEYRING | NVMF_OPT_TLS_KEY,
2782 	.create_ctrl	= nvme_tcp_create_ctrl,
2783 };
2784 
2785 static int __init nvme_tcp_init_module(void)
2786 {
2787 	BUILD_BUG_ON(sizeof(struct nvme_tcp_hdr) != 8);
2788 	BUILD_BUG_ON(sizeof(struct nvme_tcp_cmd_pdu) != 72);
2789 	BUILD_BUG_ON(sizeof(struct nvme_tcp_data_pdu) != 24);
2790 	BUILD_BUG_ON(sizeof(struct nvme_tcp_rsp_pdu) != 24);
2791 	BUILD_BUG_ON(sizeof(struct nvme_tcp_r2t_pdu) != 24);
2792 	BUILD_BUG_ON(sizeof(struct nvme_tcp_icreq_pdu) != 128);
2793 	BUILD_BUG_ON(sizeof(struct nvme_tcp_icresp_pdu) != 128);
2794 	BUILD_BUG_ON(sizeof(struct nvme_tcp_term_pdu) != 24);
2795 
2796 	nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq",
2797 			WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2798 	if (!nvme_tcp_wq)
2799 		return -ENOMEM;
2800 
2801 	nvmf_register_transport(&nvme_tcp_transport);
2802 	return 0;
2803 }
2804 
2805 static void __exit nvme_tcp_cleanup_module(void)
2806 {
2807 	struct nvme_tcp_ctrl *ctrl;
2808 
2809 	nvmf_unregister_transport(&nvme_tcp_transport);
2810 
2811 	mutex_lock(&nvme_tcp_ctrl_mutex);
2812 	list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list)
2813 		nvme_delete_ctrl(&ctrl->ctrl);
2814 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2815 	flush_workqueue(nvme_delete_wq);
2816 
2817 	destroy_workqueue(nvme_tcp_wq);
2818 }
2819 
2820 module_init(nvme_tcp_init_module);
2821 module_exit(nvme_tcp_cleanup_module);
2822 
2823 MODULE_LICENSE("GPL v2");
2824