1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVMe over Fabrics TCP host. 4 * Copyright (c) 2018 Lightbits Labs. All rights reserved. 5 */ 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 #include <linux/module.h> 8 #include <linux/init.h> 9 #include <linux/slab.h> 10 #include <linux/err.h> 11 #include <linux/crc32.h> 12 #include <linux/nvme-tcp.h> 13 #include <linux/nvme-keyring.h> 14 #include <net/sock.h> 15 #include <net/tcp.h> 16 #include <net/tls.h> 17 #include <net/tls_prot.h> 18 #include <net/handshake.h> 19 #include <linux/blk-mq.h> 20 #include <net/busy_poll.h> 21 #include <trace/events/sock.h> 22 23 #include "nvme.h" 24 #include "fabrics.h" 25 26 struct nvme_tcp_queue; 27 28 /* Define the socket priority to use for connections were it is desirable 29 * that the NIC consider performing optimized packet processing or filtering. 30 * A non-zero value being sufficient to indicate general consideration of any 31 * possible optimization. Making it a module param allows for alternative 32 * values that may be unique for some NIC implementations. 33 */ 34 static int so_priority; 35 module_param(so_priority, int, 0644); 36 MODULE_PARM_DESC(so_priority, "nvme tcp socket optimize priority"); 37 38 /* 39 * Use the unbound workqueue for nvme_tcp_wq, then we can set the cpu affinity 40 * from sysfs. 41 */ 42 static bool wq_unbound; 43 module_param(wq_unbound, bool, 0644); 44 MODULE_PARM_DESC(wq_unbound, "Use unbound workqueue for nvme-tcp IO context (default false)"); 45 46 /* 47 * TLS handshake timeout 48 */ 49 static int tls_handshake_timeout = 10; 50 #ifdef CONFIG_NVME_TCP_TLS 51 module_param(tls_handshake_timeout, int, 0644); 52 MODULE_PARM_DESC(tls_handshake_timeout, 53 "nvme TLS handshake timeout in seconds (default 10)"); 54 #endif 55 56 static atomic_t nvme_tcp_cpu_queues[NR_CPUS]; 57 58 #ifdef CONFIG_DEBUG_LOCK_ALLOC 59 /* lockdep can detect a circular dependency of the form 60 * sk_lock -> mmap_lock (page fault) -> fs locks -> sk_lock 61 * because dependencies are tracked for both nvme-tcp and user contexts. Using 62 * a separate class prevents lockdep from conflating nvme-tcp socket use with 63 * user-space socket API use. 64 */ 65 static struct lock_class_key nvme_tcp_sk_key[2]; 66 static struct lock_class_key nvme_tcp_slock_key[2]; 67 68 static void nvme_tcp_reclassify_socket(struct socket *sock) 69 { 70 struct sock *sk = sock->sk; 71 72 if (WARN_ON_ONCE(!sock_allow_reclassification(sk))) 73 return; 74 75 switch (sk->sk_family) { 76 case AF_INET: 77 sock_lock_init_class_and_name(sk, "slock-AF_INET-NVME", 78 &nvme_tcp_slock_key[0], 79 "sk_lock-AF_INET-NVME", 80 &nvme_tcp_sk_key[0]); 81 break; 82 case AF_INET6: 83 sock_lock_init_class_and_name(sk, "slock-AF_INET6-NVME", 84 &nvme_tcp_slock_key[1], 85 "sk_lock-AF_INET6-NVME", 86 &nvme_tcp_sk_key[1]); 87 break; 88 default: 89 WARN_ON_ONCE(1); 90 } 91 } 92 #else 93 static void nvme_tcp_reclassify_socket(struct socket *sock) { } 94 #endif 95 96 enum nvme_tcp_send_state { 97 NVME_TCP_SEND_CMD_PDU = 0, 98 NVME_TCP_SEND_H2C_PDU, 99 NVME_TCP_SEND_DATA, 100 NVME_TCP_SEND_DDGST, 101 }; 102 103 struct nvme_tcp_request { 104 struct nvme_request req; 105 void *pdu; 106 struct nvme_tcp_queue *queue; 107 u32 data_len; 108 u32 pdu_len; 109 u32 pdu_sent; 110 u32 h2cdata_left; 111 u32 h2cdata_offset; 112 u16 ttag; 113 __le16 status; 114 struct list_head entry; 115 struct llist_node lentry; 116 __le32 ddgst; 117 118 struct bio *curr_bio; 119 struct iov_iter iter; 120 121 /* send state */ 122 size_t offset; 123 size_t data_sent; 124 enum nvme_tcp_send_state state; 125 }; 126 127 enum nvme_tcp_queue_flags { 128 NVME_TCP_Q_ALLOCATED = 0, 129 NVME_TCP_Q_LIVE = 1, 130 NVME_TCP_Q_POLLING = 2, 131 NVME_TCP_Q_IO_CPU_SET = 3, 132 }; 133 134 enum nvme_tcp_recv_state { 135 NVME_TCP_RECV_PDU = 0, 136 NVME_TCP_RECV_DATA, 137 NVME_TCP_RECV_DDGST, 138 }; 139 140 struct nvme_tcp_ctrl; 141 struct nvme_tcp_queue { 142 struct socket *sock; 143 struct work_struct io_work; 144 int io_cpu; 145 146 struct mutex queue_lock; 147 struct mutex send_mutex; 148 struct llist_head req_list; 149 struct list_head send_list; 150 151 /* recv state */ 152 void *pdu; 153 int pdu_remaining; 154 int pdu_offset; 155 size_t data_remaining; 156 size_t ddgst_remaining; 157 unsigned int nr_cqe; 158 159 /* send state */ 160 struct nvme_tcp_request *request; 161 162 u32 maxh2cdata; 163 size_t cmnd_capsule_len; 164 struct nvme_tcp_ctrl *ctrl; 165 unsigned long flags; 166 bool rd_enabled; 167 168 bool hdr_digest; 169 bool data_digest; 170 bool tls_enabled; 171 u32 rcv_crc; 172 u32 snd_crc; 173 __le32 exp_ddgst; 174 __le32 recv_ddgst; 175 struct completion tls_complete; 176 int tls_err; 177 struct page_frag_cache pf_cache; 178 179 void (*state_change)(struct sock *); 180 void (*data_ready)(struct sock *); 181 void (*write_space)(struct sock *); 182 }; 183 184 struct nvme_tcp_ctrl { 185 /* read only in the hot path */ 186 struct nvme_tcp_queue *queues; 187 struct blk_mq_tag_set tag_set; 188 189 /* other member variables */ 190 struct list_head list; 191 struct blk_mq_tag_set admin_tag_set; 192 struct sockaddr_storage addr; 193 struct sockaddr_storage src_addr; 194 struct nvme_ctrl ctrl; 195 196 struct work_struct err_work; 197 struct delayed_work connect_work; 198 struct nvme_tcp_request async_req; 199 u32 io_queues[HCTX_MAX_TYPES]; 200 }; 201 202 static LIST_HEAD(nvme_tcp_ctrl_list); 203 static DEFINE_MUTEX(nvme_tcp_ctrl_mutex); 204 static struct workqueue_struct *nvme_tcp_wq; 205 static const struct blk_mq_ops nvme_tcp_mq_ops; 206 static const struct blk_mq_ops nvme_tcp_admin_mq_ops; 207 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue); 208 209 static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl) 210 { 211 return container_of(ctrl, struct nvme_tcp_ctrl, ctrl); 212 } 213 214 static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue) 215 { 216 return queue - queue->ctrl->queues; 217 } 218 219 static inline bool nvme_tcp_recv_pdu_supported(enum nvme_tcp_pdu_type type) 220 { 221 switch (type) { 222 case nvme_tcp_c2h_term: 223 case nvme_tcp_c2h_data: 224 case nvme_tcp_r2t: 225 case nvme_tcp_rsp: 226 return true; 227 default: 228 return false; 229 } 230 } 231 232 /* 233 * Check if the queue is TLS encrypted 234 */ 235 static inline bool nvme_tcp_queue_tls(struct nvme_tcp_queue *queue) 236 { 237 if (!IS_ENABLED(CONFIG_NVME_TCP_TLS)) 238 return 0; 239 240 return queue->tls_enabled; 241 } 242 243 /* 244 * Check if TLS is configured for the controller. 245 */ 246 static inline bool nvme_tcp_tls_configured(struct nvme_ctrl *ctrl) 247 { 248 if (!IS_ENABLED(CONFIG_NVME_TCP_TLS)) 249 return 0; 250 251 return ctrl->opts->tls || ctrl->opts->concat; 252 } 253 254 static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue) 255 { 256 u32 queue_idx = nvme_tcp_queue_id(queue); 257 258 if (queue_idx == 0) 259 return queue->ctrl->admin_tag_set.tags[queue_idx]; 260 return queue->ctrl->tag_set.tags[queue_idx - 1]; 261 } 262 263 static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue) 264 { 265 return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0; 266 } 267 268 static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue) 269 { 270 return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0; 271 } 272 273 static inline void *nvme_tcp_req_cmd_pdu(struct nvme_tcp_request *req) 274 { 275 return req->pdu; 276 } 277 278 static inline void *nvme_tcp_req_data_pdu(struct nvme_tcp_request *req) 279 { 280 /* use the pdu space in the back for the data pdu */ 281 return req->pdu + sizeof(struct nvme_tcp_cmd_pdu) - 282 sizeof(struct nvme_tcp_data_pdu); 283 } 284 285 static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_request *req) 286 { 287 if (nvme_is_fabrics(req->req.cmd)) 288 return NVME_TCP_ADMIN_CCSZ; 289 return req->queue->cmnd_capsule_len - sizeof(struct nvme_command); 290 } 291 292 static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req) 293 { 294 return req == &req->queue->ctrl->async_req; 295 } 296 297 static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req) 298 { 299 struct request *rq; 300 301 if (unlikely(nvme_tcp_async_req(req))) 302 return false; /* async events don't have a request */ 303 304 rq = blk_mq_rq_from_pdu(req); 305 306 return rq_data_dir(rq) == WRITE && req->data_len && 307 req->data_len <= nvme_tcp_inline_data_size(req); 308 } 309 310 static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req) 311 { 312 return req->iter.bvec->bv_page; 313 } 314 315 static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req) 316 { 317 return req->iter.bvec->bv_offset + req->iter.iov_offset; 318 } 319 320 static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req) 321 { 322 return min_t(size_t, iov_iter_single_seg_count(&req->iter), 323 req->pdu_len - req->pdu_sent); 324 } 325 326 static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req) 327 { 328 return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ? 329 req->pdu_len - req->pdu_sent : 0; 330 } 331 332 static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req, 333 int len) 334 { 335 return nvme_tcp_pdu_data_left(req) <= len; 336 } 337 338 static void nvme_tcp_init_iter(struct nvme_tcp_request *req, 339 unsigned int dir) 340 { 341 struct request *rq = blk_mq_rq_from_pdu(req); 342 struct bio_vec *vec; 343 unsigned int size; 344 int nr_bvec; 345 size_t offset; 346 347 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) { 348 vec = &rq->special_vec; 349 nr_bvec = 1; 350 size = blk_rq_payload_bytes(rq); 351 offset = 0; 352 } else { 353 struct bio *bio = req->curr_bio; 354 struct bvec_iter bi; 355 struct bio_vec bv; 356 357 vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); 358 nr_bvec = 0; 359 bio_for_each_bvec(bv, bio, bi) { 360 nr_bvec++; 361 } 362 size = bio->bi_iter.bi_size; 363 offset = bio->bi_iter.bi_bvec_done; 364 } 365 366 iov_iter_bvec(&req->iter, dir, vec, nr_bvec, size); 367 req->iter.iov_offset = offset; 368 } 369 370 static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req, 371 int len) 372 { 373 req->data_sent += len; 374 req->pdu_sent += len; 375 iov_iter_advance(&req->iter, len); 376 if (!iov_iter_count(&req->iter) && 377 req->data_sent < req->data_len) { 378 req->curr_bio = req->curr_bio->bi_next; 379 nvme_tcp_init_iter(req, ITER_SOURCE); 380 } 381 } 382 383 static inline void nvme_tcp_send_all(struct nvme_tcp_queue *queue) 384 { 385 int ret; 386 387 /* drain the send queue as much as we can... */ 388 do { 389 ret = nvme_tcp_try_send(queue); 390 } while (ret > 0); 391 } 392 393 static inline bool nvme_tcp_queue_has_pending(struct nvme_tcp_queue *queue) 394 { 395 return !list_empty(&queue->send_list) || 396 !llist_empty(&queue->req_list); 397 } 398 399 static inline bool nvme_tcp_queue_more(struct nvme_tcp_queue *queue) 400 { 401 return !nvme_tcp_queue_tls(queue) && 402 nvme_tcp_queue_has_pending(queue); 403 } 404 405 static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req, 406 bool sync, bool last) 407 { 408 struct nvme_tcp_queue *queue = req->queue; 409 bool empty; 410 411 empty = llist_add(&req->lentry, &queue->req_list) && 412 list_empty(&queue->send_list) && !queue->request; 413 414 /* 415 * if we're the first on the send_list and we can try to send 416 * directly, otherwise queue io_work. Also, only do that if we 417 * are on the same cpu, so we don't introduce contention. 418 */ 419 if (queue->io_cpu == raw_smp_processor_id() && 420 sync && empty && mutex_trylock(&queue->send_mutex)) { 421 nvme_tcp_send_all(queue); 422 mutex_unlock(&queue->send_mutex); 423 } 424 425 if (last && nvme_tcp_queue_has_pending(queue)) 426 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 427 } 428 429 static void nvme_tcp_process_req_list(struct nvme_tcp_queue *queue) 430 { 431 struct nvme_tcp_request *req; 432 struct llist_node *node; 433 434 for (node = llist_del_all(&queue->req_list); node; node = node->next) { 435 req = llist_entry(node, struct nvme_tcp_request, lentry); 436 list_add(&req->entry, &queue->send_list); 437 } 438 } 439 440 static inline struct nvme_tcp_request * 441 nvme_tcp_fetch_request(struct nvme_tcp_queue *queue) 442 { 443 struct nvme_tcp_request *req; 444 445 req = list_first_entry_or_null(&queue->send_list, 446 struct nvme_tcp_request, entry); 447 if (!req) { 448 nvme_tcp_process_req_list(queue); 449 req = list_first_entry_or_null(&queue->send_list, 450 struct nvme_tcp_request, entry); 451 if (unlikely(!req)) 452 return NULL; 453 } 454 455 list_del(&req->entry); 456 return req; 457 } 458 459 #define NVME_TCP_CRC_SEED (~0) 460 461 static inline void nvme_tcp_ddgst_update(u32 *crcp, 462 struct page *page, size_t off, size_t len) 463 { 464 page += off / PAGE_SIZE; 465 off %= PAGE_SIZE; 466 while (len) { 467 const void *vaddr = kmap_local_page(page); 468 size_t n = min(len, (size_t)PAGE_SIZE - off); 469 470 *crcp = crc32c(*crcp, vaddr + off, n); 471 kunmap_local(vaddr); 472 page++; 473 off = 0; 474 len -= n; 475 } 476 } 477 478 static inline __le32 nvme_tcp_ddgst_final(u32 crc) 479 { 480 return cpu_to_le32(~crc); 481 } 482 483 static inline __le32 nvme_tcp_hdgst(const void *pdu, size_t len) 484 { 485 return cpu_to_le32(~crc32c(NVME_TCP_CRC_SEED, pdu, len)); 486 } 487 488 static inline void nvme_tcp_set_hdgst(void *pdu, size_t len) 489 { 490 *(__le32 *)(pdu + len) = nvme_tcp_hdgst(pdu, len); 491 } 492 493 static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue, 494 void *pdu, size_t pdu_len) 495 { 496 struct nvme_tcp_hdr *hdr = pdu; 497 __le32 recv_digest; 498 __le32 exp_digest; 499 500 if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) { 501 dev_err(queue->ctrl->ctrl.device, 502 "queue %d: header digest flag is cleared\n", 503 nvme_tcp_queue_id(queue)); 504 return -EPROTO; 505 } 506 507 recv_digest = *(__le32 *)(pdu + hdr->hlen); 508 exp_digest = nvme_tcp_hdgst(pdu, pdu_len); 509 if (recv_digest != exp_digest) { 510 dev_err(queue->ctrl->ctrl.device, 511 "header digest error: recv %#x expected %#x\n", 512 le32_to_cpu(recv_digest), le32_to_cpu(exp_digest)); 513 return -EIO; 514 } 515 516 return 0; 517 } 518 519 static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu) 520 { 521 struct nvme_tcp_hdr *hdr = pdu; 522 u8 digest_len = nvme_tcp_hdgst_len(queue); 523 u32 len; 524 525 len = le32_to_cpu(hdr->plen) - hdr->hlen - 526 ((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0); 527 528 if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) { 529 dev_err(queue->ctrl->ctrl.device, 530 "queue %d: data digest flag is cleared\n", 531 nvme_tcp_queue_id(queue)); 532 return -EPROTO; 533 } 534 queue->rcv_crc = NVME_TCP_CRC_SEED; 535 536 return 0; 537 } 538 539 static void nvme_tcp_exit_request(struct blk_mq_tag_set *set, 540 struct request *rq, unsigned int hctx_idx) 541 { 542 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 543 544 page_frag_free(req->pdu); 545 } 546 547 static int nvme_tcp_init_request(struct blk_mq_tag_set *set, 548 struct request *rq, unsigned int hctx_idx, 549 unsigned int numa_node) 550 { 551 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(set->driver_data); 552 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 553 struct nvme_tcp_cmd_pdu *pdu; 554 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; 555 struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx]; 556 u8 hdgst = nvme_tcp_hdgst_len(queue); 557 558 req->pdu = page_frag_alloc(&queue->pf_cache, 559 sizeof(struct nvme_tcp_cmd_pdu) + hdgst, 560 GFP_KERNEL | __GFP_ZERO); 561 if (!req->pdu) 562 return -ENOMEM; 563 564 pdu = req->pdu; 565 req->queue = queue; 566 nvme_req(rq)->ctrl = &ctrl->ctrl; 567 nvme_req(rq)->cmd = &pdu->cmd; 568 569 return 0; 570 } 571 572 static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 573 unsigned int hctx_idx) 574 { 575 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(data); 576 struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1]; 577 578 hctx->driver_data = queue; 579 return 0; 580 } 581 582 static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, 583 unsigned int hctx_idx) 584 { 585 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(data); 586 struct nvme_tcp_queue *queue = &ctrl->queues[0]; 587 588 hctx->driver_data = queue; 589 return 0; 590 } 591 592 static enum nvme_tcp_recv_state 593 nvme_tcp_recv_state(struct nvme_tcp_queue *queue) 594 { 595 return (queue->pdu_remaining) ? NVME_TCP_RECV_PDU : 596 (queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST : 597 NVME_TCP_RECV_DATA; 598 } 599 600 static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue) 601 { 602 queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) + 603 nvme_tcp_hdgst_len(queue); 604 queue->pdu_offset = 0; 605 queue->data_remaining = -1; 606 queue->ddgst_remaining = 0; 607 } 608 609 static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl) 610 { 611 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 612 return; 613 614 dev_warn(ctrl->device, "starting error recovery\n"); 615 queue_work(nvme_reset_wq, &to_tcp_ctrl(ctrl)->err_work); 616 } 617 618 static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue, 619 struct nvme_completion *cqe) 620 { 621 struct nvme_tcp_request *req; 622 struct request *rq; 623 624 rq = nvme_find_rq(nvme_tcp_tagset(queue), cqe->command_id); 625 if (!rq) { 626 dev_err(queue->ctrl->ctrl.device, 627 "got bad cqe.command_id %#x on queue %d\n", 628 cqe->command_id, nvme_tcp_queue_id(queue)); 629 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 630 return -EINVAL; 631 } 632 633 req = blk_mq_rq_to_pdu(rq); 634 if (req->status == cpu_to_le16(NVME_SC_SUCCESS)) 635 req->status = cqe->status; 636 637 if (!nvme_try_complete_req(rq, req->status, cqe->result)) 638 nvme_complete_rq(rq); 639 queue->nr_cqe++; 640 641 return 0; 642 } 643 644 static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue, 645 struct nvme_tcp_data_pdu *pdu) 646 { 647 struct request *rq; 648 649 rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id); 650 if (!rq) { 651 dev_err(queue->ctrl->ctrl.device, 652 "got bad c2hdata.command_id %#x on queue %d\n", 653 pdu->command_id, nvme_tcp_queue_id(queue)); 654 return -ENOENT; 655 } 656 657 if (!blk_rq_payload_bytes(rq)) { 658 dev_err(queue->ctrl->ctrl.device, 659 "queue %d tag %#x unexpected data\n", 660 nvme_tcp_queue_id(queue), rq->tag); 661 return -EIO; 662 } 663 664 queue->data_remaining = le32_to_cpu(pdu->data_length); 665 666 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS && 667 unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) { 668 dev_err(queue->ctrl->ctrl.device, 669 "queue %d tag %#x SUCCESS set but not last PDU\n", 670 nvme_tcp_queue_id(queue), rq->tag); 671 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 672 return -EPROTO; 673 } 674 675 return 0; 676 } 677 678 static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue, 679 struct nvme_tcp_rsp_pdu *pdu) 680 { 681 struct nvme_completion *cqe = &pdu->cqe; 682 int ret = 0; 683 684 /* 685 * AEN requests are special as they don't time out and can 686 * survive any kind of queue freeze and often don't respond to 687 * aborts. We don't even bother to allocate a struct request 688 * for them but rather special case them here. 689 */ 690 if (unlikely(nvme_is_aen_req(nvme_tcp_queue_id(queue), 691 cqe->command_id))) 692 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status, 693 &cqe->result); 694 else 695 ret = nvme_tcp_process_nvme_cqe(queue, cqe); 696 697 return ret; 698 } 699 700 static void nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req) 701 { 702 struct nvme_tcp_data_pdu *data = nvme_tcp_req_data_pdu(req); 703 struct nvme_tcp_queue *queue = req->queue; 704 struct request *rq = blk_mq_rq_from_pdu(req); 705 u32 h2cdata_sent = req->pdu_len; 706 u8 hdgst = nvme_tcp_hdgst_len(queue); 707 u8 ddgst = nvme_tcp_ddgst_len(queue); 708 709 req->state = NVME_TCP_SEND_H2C_PDU; 710 req->offset = 0; 711 req->pdu_len = min(req->h2cdata_left, queue->maxh2cdata); 712 req->pdu_sent = 0; 713 req->h2cdata_left -= req->pdu_len; 714 req->h2cdata_offset += h2cdata_sent; 715 716 memset(data, 0, sizeof(*data)); 717 data->hdr.type = nvme_tcp_h2c_data; 718 if (!req->h2cdata_left) 719 data->hdr.flags = NVME_TCP_F_DATA_LAST; 720 if (queue->hdr_digest) 721 data->hdr.flags |= NVME_TCP_F_HDGST; 722 if (queue->data_digest) 723 data->hdr.flags |= NVME_TCP_F_DDGST; 724 data->hdr.hlen = sizeof(*data); 725 data->hdr.pdo = data->hdr.hlen + hdgst; 726 data->hdr.plen = 727 cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst); 728 data->ttag = req->ttag; 729 data->command_id = nvme_cid(rq); 730 data->data_offset = cpu_to_le32(req->h2cdata_offset); 731 data->data_length = cpu_to_le32(req->pdu_len); 732 } 733 734 static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue, 735 struct nvme_tcp_r2t_pdu *pdu) 736 { 737 struct nvme_tcp_request *req; 738 struct request *rq; 739 u32 r2t_length = le32_to_cpu(pdu->r2t_length); 740 u32 r2t_offset = le32_to_cpu(pdu->r2t_offset); 741 742 rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id); 743 if (!rq) { 744 dev_err(queue->ctrl->ctrl.device, 745 "got bad r2t.command_id %#x on queue %d\n", 746 pdu->command_id, nvme_tcp_queue_id(queue)); 747 return -ENOENT; 748 } 749 req = blk_mq_rq_to_pdu(rq); 750 751 if (unlikely(!r2t_length)) { 752 dev_err(queue->ctrl->ctrl.device, 753 "req %d r2t len is %u, probably a bug...\n", 754 rq->tag, r2t_length); 755 return -EPROTO; 756 } 757 758 if (unlikely(req->data_sent + r2t_length > req->data_len)) { 759 dev_err(queue->ctrl->ctrl.device, 760 "req %d r2t len %u exceeded data len %u (%zu sent)\n", 761 rq->tag, r2t_length, req->data_len, req->data_sent); 762 return -EPROTO; 763 } 764 765 if (unlikely(r2t_offset < req->data_sent)) { 766 dev_err(queue->ctrl->ctrl.device, 767 "req %d unexpected r2t offset %u (expected %zu)\n", 768 rq->tag, r2t_offset, req->data_sent); 769 return -EPROTO; 770 } 771 772 req->pdu_len = 0; 773 req->h2cdata_left = r2t_length; 774 req->h2cdata_offset = r2t_offset; 775 req->ttag = pdu->ttag; 776 777 nvme_tcp_setup_h2c_data_pdu(req); 778 nvme_tcp_queue_request(req, false, true); 779 780 return 0; 781 } 782 783 static void nvme_tcp_handle_c2h_term(struct nvme_tcp_queue *queue, 784 struct nvme_tcp_term_pdu *pdu) 785 { 786 u16 fes; 787 const char *msg; 788 u32 plen = le32_to_cpu(pdu->hdr.plen); 789 790 static const char * const msg_table[] = { 791 [NVME_TCP_FES_INVALID_PDU_HDR] = "Invalid PDU Header Field", 792 [NVME_TCP_FES_PDU_SEQ_ERR] = "PDU Sequence Error", 793 [NVME_TCP_FES_HDR_DIGEST_ERR] = "Header Digest Error", 794 [NVME_TCP_FES_DATA_OUT_OF_RANGE] = "Data Transfer Out Of Range", 795 [NVME_TCP_FES_DATA_LIMIT_EXCEEDED] = "Data Transfer Limit Exceeded", 796 [NVME_TCP_FES_UNSUPPORTED_PARAM] = "Unsupported Parameter", 797 }; 798 799 if (plen < NVME_TCP_MIN_C2HTERM_PLEN || 800 plen > NVME_TCP_MAX_C2HTERM_PLEN) { 801 dev_err(queue->ctrl->ctrl.device, 802 "Received a malformed C2HTermReq PDU (plen = %u)\n", 803 plen); 804 return; 805 } 806 807 fes = le16_to_cpu(pdu->fes); 808 if (fes && fes < ARRAY_SIZE(msg_table)) 809 msg = msg_table[fes]; 810 else 811 msg = "Unknown"; 812 813 dev_err(queue->ctrl->ctrl.device, 814 "Received C2HTermReq (FES = %s)\n", msg); 815 } 816 817 static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb, 818 unsigned int *offset, size_t *len) 819 { 820 struct nvme_tcp_hdr *hdr; 821 char *pdu = queue->pdu; 822 size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining); 823 int ret; 824 825 ret = skb_copy_bits(skb, *offset, 826 &pdu[queue->pdu_offset], rcv_len); 827 if (unlikely(ret)) 828 return ret; 829 830 queue->pdu_remaining -= rcv_len; 831 queue->pdu_offset += rcv_len; 832 *offset += rcv_len; 833 *len -= rcv_len; 834 if (queue->pdu_remaining) 835 return 0; 836 837 hdr = queue->pdu; 838 if (unlikely(hdr->hlen != sizeof(struct nvme_tcp_rsp_pdu))) { 839 if (!nvme_tcp_recv_pdu_supported(hdr->type)) 840 goto unsupported_pdu; 841 842 dev_err(queue->ctrl->ctrl.device, 843 "pdu type %d has unexpected header length (%d)\n", 844 hdr->type, hdr->hlen); 845 return -EPROTO; 846 } 847 848 if (unlikely(hdr->type == nvme_tcp_c2h_term)) { 849 /* 850 * C2HTermReq never includes Header or Data digests. 851 * Skip the checks. 852 */ 853 nvme_tcp_handle_c2h_term(queue, (void *)queue->pdu); 854 return -EINVAL; 855 } 856 857 if (queue->hdr_digest) { 858 ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen); 859 if (unlikely(ret)) 860 return ret; 861 } 862 863 864 if (queue->data_digest) { 865 ret = nvme_tcp_check_ddgst(queue, queue->pdu); 866 if (unlikely(ret)) 867 return ret; 868 } 869 870 switch (hdr->type) { 871 case nvme_tcp_c2h_data: 872 return nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu); 873 case nvme_tcp_rsp: 874 nvme_tcp_init_recv_ctx(queue); 875 return nvme_tcp_handle_comp(queue, (void *)queue->pdu); 876 case nvme_tcp_r2t: 877 nvme_tcp_init_recv_ctx(queue); 878 return nvme_tcp_handle_r2t(queue, (void *)queue->pdu); 879 default: 880 goto unsupported_pdu; 881 } 882 883 unsupported_pdu: 884 dev_err(queue->ctrl->ctrl.device, 885 "unsupported pdu type (%d)\n", hdr->type); 886 return -EINVAL; 887 } 888 889 static inline void nvme_tcp_end_request(struct request *rq, u16 status) 890 { 891 union nvme_result res = {}; 892 893 if (!nvme_try_complete_req(rq, cpu_to_le16(status << 1), res)) 894 nvme_complete_rq(rq); 895 } 896 897 static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb, 898 unsigned int *offset, size_t *len) 899 { 900 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu; 901 struct request *rq = 902 nvme_cid_to_rq(nvme_tcp_tagset(queue), pdu->command_id); 903 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 904 905 while (true) { 906 int recv_len, ret; 907 908 recv_len = min_t(size_t, *len, queue->data_remaining); 909 if (!recv_len) 910 break; 911 912 if (!iov_iter_count(&req->iter)) { 913 req->curr_bio = req->curr_bio->bi_next; 914 915 /* 916 * If we don`t have any bios it means that controller 917 * sent more data than we requested, hence error 918 */ 919 if (!req->curr_bio) { 920 dev_err(queue->ctrl->ctrl.device, 921 "queue %d no space in request %#x", 922 nvme_tcp_queue_id(queue), rq->tag); 923 nvme_tcp_init_recv_ctx(queue); 924 return -EIO; 925 } 926 nvme_tcp_init_iter(req, ITER_DEST); 927 } 928 929 /* we can read only from what is left in this bio */ 930 recv_len = min_t(size_t, recv_len, 931 iov_iter_count(&req->iter)); 932 933 if (queue->data_digest) 934 ret = skb_copy_and_crc32c_datagram_iter(skb, *offset, 935 &req->iter, recv_len, &queue->rcv_crc); 936 else 937 ret = skb_copy_datagram_iter(skb, *offset, 938 &req->iter, recv_len); 939 if (ret) { 940 dev_err(queue->ctrl->ctrl.device, 941 "queue %d failed to copy request %#x data", 942 nvme_tcp_queue_id(queue), rq->tag); 943 return ret; 944 } 945 946 *len -= recv_len; 947 *offset += recv_len; 948 queue->data_remaining -= recv_len; 949 } 950 951 if (!queue->data_remaining) { 952 if (queue->data_digest) { 953 queue->exp_ddgst = nvme_tcp_ddgst_final(queue->rcv_crc); 954 queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH; 955 } else { 956 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) { 957 nvme_tcp_end_request(rq, 958 le16_to_cpu(req->status)); 959 queue->nr_cqe++; 960 } 961 nvme_tcp_init_recv_ctx(queue); 962 } 963 } 964 965 return 0; 966 } 967 968 static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue, 969 struct sk_buff *skb, unsigned int *offset, size_t *len) 970 { 971 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu; 972 char *ddgst = (char *)&queue->recv_ddgst; 973 size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining); 974 off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining; 975 int ret; 976 977 ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len); 978 if (unlikely(ret)) 979 return ret; 980 981 queue->ddgst_remaining -= recv_len; 982 *offset += recv_len; 983 *len -= recv_len; 984 if (queue->ddgst_remaining) 985 return 0; 986 987 if (queue->recv_ddgst != queue->exp_ddgst) { 988 struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue), 989 pdu->command_id); 990 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 991 992 req->status = cpu_to_le16(NVME_SC_DATA_XFER_ERROR); 993 994 dev_err(queue->ctrl->ctrl.device, 995 "data digest error: recv %#x expected %#x\n", 996 le32_to_cpu(queue->recv_ddgst), 997 le32_to_cpu(queue->exp_ddgst)); 998 } 999 1000 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) { 1001 struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue), 1002 pdu->command_id); 1003 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 1004 1005 nvme_tcp_end_request(rq, le16_to_cpu(req->status)); 1006 queue->nr_cqe++; 1007 } 1008 1009 nvme_tcp_init_recv_ctx(queue); 1010 return 0; 1011 } 1012 1013 static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb, 1014 unsigned int offset, size_t len) 1015 { 1016 struct nvme_tcp_queue *queue = desc->arg.data; 1017 size_t consumed = len; 1018 int result; 1019 1020 if (unlikely(!queue->rd_enabled)) 1021 return -EFAULT; 1022 1023 while (len) { 1024 switch (nvme_tcp_recv_state(queue)) { 1025 case NVME_TCP_RECV_PDU: 1026 result = nvme_tcp_recv_pdu(queue, skb, &offset, &len); 1027 break; 1028 case NVME_TCP_RECV_DATA: 1029 result = nvme_tcp_recv_data(queue, skb, &offset, &len); 1030 break; 1031 case NVME_TCP_RECV_DDGST: 1032 result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len); 1033 break; 1034 default: 1035 result = -EFAULT; 1036 } 1037 if (result) { 1038 dev_err(queue->ctrl->ctrl.device, 1039 "receive failed: %d\n", result); 1040 queue->rd_enabled = false; 1041 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 1042 return result; 1043 } 1044 } 1045 1046 return consumed; 1047 } 1048 1049 static void nvme_tcp_data_ready(struct sock *sk) 1050 { 1051 struct nvme_tcp_queue *queue; 1052 1053 trace_sk_data_ready(sk); 1054 1055 read_lock_bh(&sk->sk_callback_lock); 1056 queue = sk->sk_user_data; 1057 if (likely(queue && queue->rd_enabled) && 1058 !test_bit(NVME_TCP_Q_POLLING, &queue->flags)) 1059 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 1060 read_unlock_bh(&sk->sk_callback_lock); 1061 } 1062 1063 static void nvme_tcp_write_space(struct sock *sk) 1064 { 1065 struct nvme_tcp_queue *queue; 1066 1067 read_lock_bh(&sk->sk_callback_lock); 1068 queue = sk->sk_user_data; 1069 if (likely(queue && sk_stream_is_writeable(sk))) { 1070 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1071 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 1072 } 1073 read_unlock_bh(&sk->sk_callback_lock); 1074 } 1075 1076 static void nvme_tcp_state_change(struct sock *sk) 1077 { 1078 struct nvme_tcp_queue *queue; 1079 1080 read_lock_bh(&sk->sk_callback_lock); 1081 queue = sk->sk_user_data; 1082 if (!queue) 1083 goto done; 1084 1085 switch (sk->sk_state) { 1086 case TCP_CLOSE: 1087 case TCP_CLOSE_WAIT: 1088 case TCP_LAST_ACK: 1089 case TCP_FIN_WAIT1: 1090 case TCP_FIN_WAIT2: 1091 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 1092 break; 1093 default: 1094 dev_info(queue->ctrl->ctrl.device, 1095 "queue %d socket state %d\n", 1096 nvme_tcp_queue_id(queue), sk->sk_state); 1097 } 1098 1099 queue->state_change(sk); 1100 done: 1101 read_unlock_bh(&sk->sk_callback_lock); 1102 } 1103 1104 static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue) 1105 { 1106 queue->request = NULL; 1107 } 1108 1109 static void nvme_tcp_fail_request(struct nvme_tcp_request *req) 1110 { 1111 if (nvme_tcp_async_req(req)) { 1112 union nvme_result res = {}; 1113 1114 nvme_complete_async_event(&req->queue->ctrl->ctrl, 1115 cpu_to_le16(NVME_SC_HOST_PATH_ERROR), &res); 1116 } else { 1117 nvme_tcp_end_request(blk_mq_rq_from_pdu(req), 1118 NVME_SC_HOST_PATH_ERROR); 1119 } 1120 } 1121 1122 static int nvme_tcp_try_send_data(struct nvme_tcp_request *req) 1123 { 1124 struct nvme_tcp_queue *queue = req->queue; 1125 int req_data_len = req->data_len; 1126 u32 h2cdata_left = req->h2cdata_left; 1127 1128 while (true) { 1129 struct bio_vec bvec; 1130 struct msghdr msg = { 1131 .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, 1132 }; 1133 struct page *page = nvme_tcp_req_cur_page(req); 1134 size_t offset = nvme_tcp_req_cur_offset(req); 1135 size_t len = nvme_tcp_req_cur_length(req); 1136 bool last = nvme_tcp_pdu_last_send(req, len); 1137 int req_data_sent = req->data_sent; 1138 int ret; 1139 1140 if (last && !queue->data_digest && !nvme_tcp_queue_more(queue)) 1141 msg.msg_flags |= MSG_EOR; 1142 else 1143 msg.msg_flags |= MSG_MORE; 1144 1145 if (!sendpages_ok(page, len, offset)) 1146 msg.msg_flags &= ~MSG_SPLICE_PAGES; 1147 1148 bvec_set_page(&bvec, page, len, offset); 1149 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len); 1150 ret = sock_sendmsg(queue->sock, &msg); 1151 if (ret <= 0) 1152 return ret; 1153 1154 if (queue->data_digest) 1155 nvme_tcp_ddgst_update(&queue->snd_crc, page, 1156 offset, ret); 1157 1158 /* 1159 * update the request iterator except for the last payload send 1160 * in the request where we don't want to modify it as we may 1161 * compete with the RX path completing the request. 1162 */ 1163 if (req_data_sent + ret < req_data_len) 1164 nvme_tcp_advance_req(req, ret); 1165 1166 /* fully successful last send in current PDU */ 1167 if (last && ret == len) { 1168 if (queue->data_digest) { 1169 req->ddgst = 1170 nvme_tcp_ddgst_final(queue->snd_crc); 1171 req->state = NVME_TCP_SEND_DDGST; 1172 req->offset = 0; 1173 } else { 1174 if (h2cdata_left) 1175 nvme_tcp_setup_h2c_data_pdu(req); 1176 else 1177 nvme_tcp_done_send_req(queue); 1178 } 1179 return 1; 1180 } 1181 } 1182 return -EAGAIN; 1183 } 1184 1185 static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req) 1186 { 1187 struct nvme_tcp_queue *queue = req->queue; 1188 struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req); 1189 struct bio_vec bvec; 1190 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, }; 1191 bool inline_data = nvme_tcp_has_inline_data(req); 1192 u8 hdgst = nvme_tcp_hdgst_len(queue); 1193 int len = sizeof(*pdu) + hdgst - req->offset; 1194 int ret; 1195 1196 if (inline_data || nvme_tcp_queue_more(queue)) 1197 msg.msg_flags |= MSG_MORE; 1198 else 1199 msg.msg_flags |= MSG_EOR; 1200 1201 if (queue->hdr_digest && !req->offset) 1202 nvme_tcp_set_hdgst(pdu, sizeof(*pdu)); 1203 1204 bvec_set_virt(&bvec, (void *)pdu + req->offset, len); 1205 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len); 1206 ret = sock_sendmsg(queue->sock, &msg); 1207 if (unlikely(ret <= 0)) 1208 return ret; 1209 1210 len -= ret; 1211 if (!len) { 1212 if (inline_data) { 1213 req->state = NVME_TCP_SEND_DATA; 1214 if (queue->data_digest) 1215 queue->snd_crc = NVME_TCP_CRC_SEED; 1216 } else { 1217 nvme_tcp_done_send_req(queue); 1218 } 1219 return 1; 1220 } 1221 req->offset += ret; 1222 1223 return -EAGAIN; 1224 } 1225 1226 static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req) 1227 { 1228 struct nvme_tcp_queue *queue = req->queue; 1229 struct nvme_tcp_data_pdu *pdu = nvme_tcp_req_data_pdu(req); 1230 struct bio_vec bvec; 1231 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_MORE, }; 1232 u8 hdgst = nvme_tcp_hdgst_len(queue); 1233 int len = sizeof(*pdu) - req->offset + hdgst; 1234 int ret; 1235 1236 if (queue->hdr_digest && !req->offset) 1237 nvme_tcp_set_hdgst(pdu, sizeof(*pdu)); 1238 1239 if (!req->h2cdata_left) 1240 msg.msg_flags |= MSG_SPLICE_PAGES; 1241 1242 bvec_set_virt(&bvec, (void *)pdu + req->offset, len); 1243 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len); 1244 ret = sock_sendmsg(queue->sock, &msg); 1245 if (unlikely(ret <= 0)) 1246 return ret; 1247 1248 len -= ret; 1249 if (!len) { 1250 req->state = NVME_TCP_SEND_DATA; 1251 if (queue->data_digest) 1252 queue->snd_crc = NVME_TCP_CRC_SEED; 1253 return 1; 1254 } 1255 req->offset += ret; 1256 1257 return -EAGAIN; 1258 } 1259 1260 static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req) 1261 { 1262 struct nvme_tcp_queue *queue = req->queue; 1263 size_t offset = req->offset; 1264 u32 h2cdata_left = req->h2cdata_left; 1265 int ret; 1266 struct msghdr msg = { .msg_flags = MSG_DONTWAIT }; 1267 struct kvec iov = { 1268 .iov_base = (u8 *)&req->ddgst + req->offset, 1269 .iov_len = NVME_TCP_DIGEST_LENGTH - req->offset 1270 }; 1271 1272 if (nvme_tcp_queue_more(queue)) 1273 msg.msg_flags |= MSG_MORE; 1274 else 1275 msg.msg_flags |= MSG_EOR; 1276 1277 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len); 1278 if (unlikely(ret <= 0)) 1279 return ret; 1280 1281 if (offset + ret == NVME_TCP_DIGEST_LENGTH) { 1282 if (h2cdata_left) 1283 nvme_tcp_setup_h2c_data_pdu(req); 1284 else 1285 nvme_tcp_done_send_req(queue); 1286 return 1; 1287 } 1288 1289 req->offset += ret; 1290 return -EAGAIN; 1291 } 1292 1293 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue) 1294 { 1295 struct nvme_tcp_request *req; 1296 unsigned int noreclaim_flag; 1297 int ret = 1; 1298 1299 if (!queue->request) { 1300 queue->request = nvme_tcp_fetch_request(queue); 1301 if (!queue->request) 1302 return 0; 1303 } 1304 req = queue->request; 1305 1306 noreclaim_flag = memalloc_noreclaim_save(); 1307 if (req->state == NVME_TCP_SEND_CMD_PDU) { 1308 ret = nvme_tcp_try_send_cmd_pdu(req); 1309 if (ret <= 0) 1310 goto done; 1311 if (!nvme_tcp_has_inline_data(req)) 1312 goto out; 1313 } 1314 1315 if (req->state == NVME_TCP_SEND_H2C_PDU) { 1316 ret = nvme_tcp_try_send_data_pdu(req); 1317 if (ret <= 0) 1318 goto done; 1319 } 1320 1321 if (req->state == NVME_TCP_SEND_DATA) { 1322 ret = nvme_tcp_try_send_data(req); 1323 if (ret <= 0) 1324 goto done; 1325 } 1326 1327 if (req->state == NVME_TCP_SEND_DDGST) 1328 ret = nvme_tcp_try_send_ddgst(req); 1329 done: 1330 if (ret == -EAGAIN) { 1331 ret = 0; 1332 } else if (ret < 0) { 1333 dev_err(queue->ctrl->ctrl.device, 1334 "failed to send request %d\n", ret); 1335 nvme_tcp_fail_request(queue->request); 1336 nvme_tcp_done_send_req(queue); 1337 } 1338 out: 1339 memalloc_noreclaim_restore(noreclaim_flag); 1340 return ret; 1341 } 1342 1343 static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue) 1344 { 1345 struct socket *sock = queue->sock; 1346 struct sock *sk = sock->sk; 1347 read_descriptor_t rd_desc; 1348 int consumed; 1349 1350 rd_desc.arg.data = queue; 1351 rd_desc.count = 1; 1352 lock_sock(sk); 1353 queue->nr_cqe = 0; 1354 consumed = sock->ops->read_sock(sk, &rd_desc, nvme_tcp_recv_skb); 1355 release_sock(sk); 1356 return consumed; 1357 } 1358 1359 static void nvme_tcp_io_work(struct work_struct *w) 1360 { 1361 struct nvme_tcp_queue *queue = 1362 container_of(w, struct nvme_tcp_queue, io_work); 1363 unsigned long deadline = jiffies + msecs_to_jiffies(1); 1364 1365 do { 1366 bool pending = false; 1367 int result; 1368 1369 if (mutex_trylock(&queue->send_mutex)) { 1370 result = nvme_tcp_try_send(queue); 1371 mutex_unlock(&queue->send_mutex); 1372 if (result > 0) 1373 pending = true; 1374 else if (unlikely(result < 0)) 1375 break; 1376 } 1377 1378 result = nvme_tcp_try_recv(queue); 1379 if (result > 0) 1380 pending = true; 1381 else if (unlikely(result < 0)) 1382 return; 1383 1384 if (!pending || !queue->rd_enabled) 1385 return; 1386 1387 } while (!time_after(jiffies, deadline)); /* quota is exhausted */ 1388 1389 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 1390 } 1391 1392 static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl) 1393 { 1394 struct nvme_tcp_request *async = &ctrl->async_req; 1395 1396 page_frag_free(async->pdu); 1397 } 1398 1399 static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl) 1400 { 1401 struct nvme_tcp_queue *queue = &ctrl->queues[0]; 1402 struct nvme_tcp_request *async = &ctrl->async_req; 1403 u8 hdgst = nvme_tcp_hdgst_len(queue); 1404 1405 async->pdu = page_frag_alloc(&queue->pf_cache, 1406 sizeof(struct nvme_tcp_cmd_pdu) + hdgst, 1407 GFP_KERNEL | __GFP_ZERO); 1408 if (!async->pdu) 1409 return -ENOMEM; 1410 1411 async->queue = &ctrl->queues[0]; 1412 return 0; 1413 } 1414 1415 static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid) 1416 { 1417 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1418 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1419 unsigned int noreclaim_flag; 1420 1421 if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags)) 1422 return; 1423 1424 page_frag_cache_drain(&queue->pf_cache); 1425 1426 noreclaim_flag = memalloc_noreclaim_save(); 1427 /* ->sock will be released by fput() */ 1428 fput(queue->sock->file); 1429 queue->sock = NULL; 1430 memalloc_noreclaim_restore(noreclaim_flag); 1431 1432 kfree(queue->pdu); 1433 mutex_destroy(&queue->send_mutex); 1434 mutex_destroy(&queue->queue_lock); 1435 } 1436 1437 static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue) 1438 { 1439 struct nvme_tcp_icreq_pdu *icreq; 1440 struct nvme_tcp_icresp_pdu *icresp; 1441 char cbuf[CMSG_LEN(sizeof(char))] = {}; 1442 u8 ctype; 1443 struct msghdr msg = {}; 1444 struct kvec iov; 1445 bool ctrl_hdgst, ctrl_ddgst; 1446 u32 maxh2cdata; 1447 int ret; 1448 1449 icreq = kzalloc(sizeof(*icreq), GFP_KERNEL); 1450 if (!icreq) 1451 return -ENOMEM; 1452 1453 icresp = kzalloc(sizeof(*icresp), GFP_KERNEL); 1454 if (!icresp) { 1455 ret = -ENOMEM; 1456 goto free_icreq; 1457 } 1458 1459 icreq->hdr.type = nvme_tcp_icreq; 1460 icreq->hdr.hlen = sizeof(*icreq); 1461 icreq->hdr.pdo = 0; 1462 icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen); 1463 icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0); 1464 icreq->maxr2t = 0; /* single inflight r2t supported */ 1465 icreq->hpda = 0; /* no alignment constraint */ 1466 if (queue->hdr_digest) 1467 icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE; 1468 if (queue->data_digest) 1469 icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE; 1470 1471 iov.iov_base = icreq; 1472 iov.iov_len = sizeof(*icreq); 1473 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len); 1474 if (ret < 0) { 1475 pr_warn("queue %d: failed to send icreq, error %d\n", 1476 nvme_tcp_queue_id(queue), ret); 1477 goto free_icresp; 1478 } 1479 1480 memset(&msg, 0, sizeof(msg)); 1481 iov.iov_base = icresp; 1482 iov.iov_len = sizeof(*icresp); 1483 if (nvme_tcp_queue_tls(queue)) { 1484 msg.msg_control = cbuf; 1485 msg.msg_controllen = sizeof(cbuf); 1486 } 1487 msg.msg_flags = MSG_WAITALL; 1488 ret = kernel_recvmsg(queue->sock, &msg, &iov, 1, 1489 iov.iov_len, msg.msg_flags); 1490 if (ret >= 0 && ret < sizeof(*icresp)) 1491 ret = -ECONNRESET; 1492 if (ret < 0) { 1493 pr_warn("queue %d: failed to receive icresp, error %d\n", 1494 nvme_tcp_queue_id(queue), ret); 1495 goto free_icresp; 1496 } 1497 ret = -ENOTCONN; 1498 if (nvme_tcp_queue_tls(queue)) { 1499 ctype = tls_get_record_type(queue->sock->sk, 1500 (struct cmsghdr *)cbuf); 1501 if (ctype != TLS_RECORD_TYPE_DATA) { 1502 pr_err("queue %d: unhandled TLS record %d\n", 1503 nvme_tcp_queue_id(queue), ctype); 1504 goto free_icresp; 1505 } 1506 } 1507 ret = -EINVAL; 1508 if (icresp->hdr.type != nvme_tcp_icresp) { 1509 pr_err("queue %d: bad type returned %d\n", 1510 nvme_tcp_queue_id(queue), icresp->hdr.type); 1511 goto free_icresp; 1512 } 1513 1514 if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) { 1515 pr_err("queue %d: bad pdu length returned %d\n", 1516 nvme_tcp_queue_id(queue), icresp->hdr.plen); 1517 goto free_icresp; 1518 } 1519 1520 if (icresp->pfv != NVME_TCP_PFV_1_0) { 1521 pr_err("queue %d: bad pfv returned %d\n", 1522 nvme_tcp_queue_id(queue), icresp->pfv); 1523 goto free_icresp; 1524 } 1525 1526 ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE); 1527 if ((queue->data_digest && !ctrl_ddgst) || 1528 (!queue->data_digest && ctrl_ddgst)) { 1529 pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n", 1530 nvme_tcp_queue_id(queue), 1531 queue->data_digest ? "enabled" : "disabled", 1532 ctrl_ddgst ? "enabled" : "disabled"); 1533 goto free_icresp; 1534 } 1535 1536 ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE); 1537 if ((queue->hdr_digest && !ctrl_hdgst) || 1538 (!queue->hdr_digest && ctrl_hdgst)) { 1539 pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n", 1540 nvme_tcp_queue_id(queue), 1541 queue->hdr_digest ? "enabled" : "disabled", 1542 ctrl_hdgst ? "enabled" : "disabled"); 1543 goto free_icresp; 1544 } 1545 1546 if (icresp->cpda != 0) { 1547 pr_err("queue %d: unsupported cpda returned %d\n", 1548 nvme_tcp_queue_id(queue), icresp->cpda); 1549 goto free_icresp; 1550 } 1551 1552 maxh2cdata = le32_to_cpu(icresp->maxdata); 1553 if ((maxh2cdata % 4) || (maxh2cdata < NVME_TCP_MIN_MAXH2CDATA)) { 1554 pr_err("queue %d: invalid maxh2cdata returned %u\n", 1555 nvme_tcp_queue_id(queue), maxh2cdata); 1556 goto free_icresp; 1557 } 1558 queue->maxh2cdata = maxh2cdata; 1559 1560 ret = 0; 1561 free_icresp: 1562 kfree(icresp); 1563 free_icreq: 1564 kfree(icreq); 1565 return ret; 1566 } 1567 1568 static bool nvme_tcp_admin_queue(struct nvme_tcp_queue *queue) 1569 { 1570 return nvme_tcp_queue_id(queue) == 0; 1571 } 1572 1573 static bool nvme_tcp_default_queue(struct nvme_tcp_queue *queue) 1574 { 1575 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1576 int qid = nvme_tcp_queue_id(queue); 1577 1578 return !nvme_tcp_admin_queue(queue) && 1579 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT]; 1580 } 1581 1582 static bool nvme_tcp_read_queue(struct nvme_tcp_queue *queue) 1583 { 1584 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1585 int qid = nvme_tcp_queue_id(queue); 1586 1587 return !nvme_tcp_admin_queue(queue) && 1588 !nvme_tcp_default_queue(queue) && 1589 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] + 1590 ctrl->io_queues[HCTX_TYPE_READ]; 1591 } 1592 1593 static bool nvme_tcp_poll_queue(struct nvme_tcp_queue *queue) 1594 { 1595 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1596 int qid = nvme_tcp_queue_id(queue); 1597 1598 return !nvme_tcp_admin_queue(queue) && 1599 !nvme_tcp_default_queue(queue) && 1600 !nvme_tcp_read_queue(queue) && 1601 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] + 1602 ctrl->io_queues[HCTX_TYPE_READ] + 1603 ctrl->io_queues[HCTX_TYPE_POLL]; 1604 } 1605 1606 /* 1607 * Track the number of queues assigned to each cpu using a global per-cpu 1608 * counter and select the least used cpu from the mq_map. Our goal is to spread 1609 * different controllers I/O threads across different cpu cores. 1610 * 1611 * Note that the accounting is not 100% perfect, but we don't need to be, we're 1612 * simply putting our best effort to select the best candidate cpu core that we 1613 * find at any given point. 1614 */ 1615 static void nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue *queue) 1616 { 1617 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1618 struct blk_mq_tag_set *set = &ctrl->tag_set; 1619 int qid = nvme_tcp_queue_id(queue) - 1; 1620 unsigned int *mq_map = NULL; 1621 int cpu, min_queues = INT_MAX, io_cpu; 1622 1623 if (wq_unbound) 1624 goto out; 1625 1626 if (nvme_tcp_default_queue(queue)) 1627 mq_map = set->map[HCTX_TYPE_DEFAULT].mq_map; 1628 else if (nvme_tcp_read_queue(queue)) 1629 mq_map = set->map[HCTX_TYPE_READ].mq_map; 1630 else if (nvme_tcp_poll_queue(queue)) 1631 mq_map = set->map[HCTX_TYPE_POLL].mq_map; 1632 1633 if (WARN_ON(!mq_map)) 1634 goto out; 1635 1636 /* Search for the least used cpu from the mq_map */ 1637 io_cpu = WORK_CPU_UNBOUND; 1638 for_each_online_cpu(cpu) { 1639 int num_queues = atomic_read(&nvme_tcp_cpu_queues[cpu]); 1640 1641 if (mq_map[cpu] != qid) 1642 continue; 1643 if (num_queues < min_queues) { 1644 io_cpu = cpu; 1645 min_queues = num_queues; 1646 } 1647 } 1648 if (io_cpu != WORK_CPU_UNBOUND) { 1649 queue->io_cpu = io_cpu; 1650 atomic_inc(&nvme_tcp_cpu_queues[io_cpu]); 1651 set_bit(NVME_TCP_Q_IO_CPU_SET, &queue->flags); 1652 } 1653 out: 1654 dev_dbg(ctrl->ctrl.device, "queue %d: using cpu %d\n", 1655 qid, queue->io_cpu); 1656 } 1657 1658 static void nvme_tcp_tls_done(void *data, int status, key_serial_t pskid) 1659 { 1660 struct nvme_tcp_queue *queue = data; 1661 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1662 int qid = nvme_tcp_queue_id(queue); 1663 struct key *tls_key; 1664 1665 dev_dbg(ctrl->ctrl.device, "queue %d: TLS handshake done, key %x, status %d\n", 1666 qid, pskid, status); 1667 1668 if (status) { 1669 queue->tls_err = -status; 1670 goto out_complete; 1671 } 1672 1673 tls_key = nvme_tls_key_lookup(pskid); 1674 if (IS_ERR(tls_key)) { 1675 dev_warn(ctrl->ctrl.device, "queue %d: Invalid key %x\n", 1676 qid, pskid); 1677 queue->tls_err = -ENOKEY; 1678 } else { 1679 queue->tls_enabled = true; 1680 if (qid == 0) 1681 ctrl->ctrl.tls_pskid = key_serial(tls_key); 1682 key_put(tls_key); 1683 queue->tls_err = 0; 1684 } 1685 1686 out_complete: 1687 complete(&queue->tls_complete); 1688 } 1689 1690 static int nvme_tcp_start_tls(struct nvme_ctrl *nctrl, 1691 struct nvme_tcp_queue *queue, 1692 key_serial_t pskid) 1693 { 1694 int qid = nvme_tcp_queue_id(queue); 1695 int ret; 1696 struct tls_handshake_args args; 1697 unsigned long tmo = tls_handshake_timeout * HZ; 1698 key_serial_t keyring = nvme_keyring_id(); 1699 1700 dev_dbg(nctrl->device, "queue %d: start TLS with key %x\n", 1701 qid, pskid); 1702 memset(&args, 0, sizeof(args)); 1703 args.ta_sock = queue->sock; 1704 args.ta_done = nvme_tcp_tls_done; 1705 args.ta_data = queue; 1706 args.ta_my_peerids[0] = pskid; 1707 args.ta_num_peerids = 1; 1708 if (nctrl->opts->keyring) 1709 keyring = key_serial(nctrl->opts->keyring); 1710 args.ta_keyring = keyring; 1711 args.ta_timeout_ms = tls_handshake_timeout * 1000; 1712 queue->tls_err = -EOPNOTSUPP; 1713 init_completion(&queue->tls_complete); 1714 ret = tls_client_hello_psk(&args, GFP_KERNEL); 1715 if (ret) { 1716 dev_err(nctrl->device, "queue %d: failed to start TLS: %d\n", 1717 qid, ret); 1718 return ret; 1719 } 1720 ret = wait_for_completion_interruptible_timeout(&queue->tls_complete, tmo); 1721 if (ret <= 0) { 1722 if (ret == 0) 1723 ret = -ETIMEDOUT; 1724 1725 dev_err(nctrl->device, 1726 "queue %d: TLS handshake failed, error %d\n", 1727 qid, ret); 1728 tls_handshake_cancel(queue->sock->sk); 1729 } else { 1730 dev_dbg(nctrl->device, 1731 "queue %d: TLS handshake complete, error %d\n", 1732 qid, queue->tls_err); 1733 ret = queue->tls_err; 1734 } 1735 return ret; 1736 } 1737 1738 static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl, int qid, 1739 key_serial_t pskid) 1740 { 1741 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1742 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1743 int ret, rcv_pdu_size; 1744 struct file *sock_file; 1745 1746 mutex_init(&queue->queue_lock); 1747 queue->ctrl = ctrl; 1748 init_llist_head(&queue->req_list); 1749 INIT_LIST_HEAD(&queue->send_list); 1750 mutex_init(&queue->send_mutex); 1751 INIT_WORK(&queue->io_work, nvme_tcp_io_work); 1752 1753 if (qid > 0) 1754 queue->cmnd_capsule_len = nctrl->ioccsz * 16; 1755 else 1756 queue->cmnd_capsule_len = sizeof(struct nvme_command) + 1757 NVME_TCP_ADMIN_CCSZ; 1758 1759 ret = sock_create_kern(current->nsproxy->net_ns, 1760 ctrl->addr.ss_family, SOCK_STREAM, 1761 IPPROTO_TCP, &queue->sock); 1762 if (ret) { 1763 dev_err(nctrl->device, 1764 "failed to create socket: %d\n", ret); 1765 goto err_destroy_mutex; 1766 } 1767 1768 sock_file = sock_alloc_file(queue->sock, O_CLOEXEC, NULL); 1769 if (IS_ERR(sock_file)) { 1770 ret = PTR_ERR(sock_file); 1771 goto err_destroy_mutex; 1772 } 1773 1774 sk_net_refcnt_upgrade(queue->sock->sk); 1775 nvme_tcp_reclassify_socket(queue->sock); 1776 1777 /* Single syn retry */ 1778 tcp_sock_set_syncnt(queue->sock->sk, 1); 1779 1780 /* Set TCP no delay */ 1781 tcp_sock_set_nodelay(queue->sock->sk); 1782 1783 /* 1784 * Cleanup whatever is sitting in the TCP transmit queue on socket 1785 * close. This is done to prevent stale data from being sent should 1786 * the network connection be restored before TCP times out. 1787 */ 1788 sock_no_linger(queue->sock->sk); 1789 1790 if (so_priority > 0) 1791 sock_set_priority(queue->sock->sk, so_priority); 1792 1793 /* Set socket type of service */ 1794 if (nctrl->opts->tos >= 0) 1795 ip_sock_set_tos(queue->sock->sk, nctrl->opts->tos); 1796 1797 /* Set 10 seconds timeout for icresp recvmsg */ 1798 queue->sock->sk->sk_rcvtimeo = 10 * HZ; 1799 1800 queue->sock->sk->sk_allocation = GFP_ATOMIC; 1801 queue->sock->sk->sk_use_task_frag = false; 1802 queue->io_cpu = WORK_CPU_UNBOUND; 1803 queue->request = NULL; 1804 queue->data_remaining = 0; 1805 queue->ddgst_remaining = 0; 1806 queue->pdu_remaining = 0; 1807 queue->pdu_offset = 0; 1808 sk_set_memalloc(queue->sock->sk); 1809 1810 if (nctrl->opts->mask & NVMF_OPT_HOST_TRADDR) { 1811 ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr, 1812 sizeof(ctrl->src_addr)); 1813 if (ret) { 1814 dev_err(nctrl->device, 1815 "failed to bind queue %d socket %d\n", 1816 qid, ret); 1817 goto err_sock; 1818 } 1819 } 1820 1821 if (nctrl->opts->mask & NVMF_OPT_HOST_IFACE) { 1822 char *iface = nctrl->opts->host_iface; 1823 sockptr_t optval = KERNEL_SOCKPTR(iface); 1824 1825 ret = sock_setsockopt(queue->sock, SOL_SOCKET, SO_BINDTODEVICE, 1826 optval, strlen(iface)); 1827 if (ret) { 1828 dev_err(nctrl->device, 1829 "failed to bind to interface %s queue %d err %d\n", 1830 iface, qid, ret); 1831 goto err_sock; 1832 } 1833 } 1834 1835 queue->hdr_digest = nctrl->opts->hdr_digest; 1836 queue->data_digest = nctrl->opts->data_digest; 1837 1838 rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) + 1839 nvme_tcp_hdgst_len(queue); 1840 queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL); 1841 if (!queue->pdu) { 1842 ret = -ENOMEM; 1843 goto err_sock; 1844 } 1845 1846 dev_dbg(nctrl->device, "connecting queue %d\n", 1847 nvme_tcp_queue_id(queue)); 1848 1849 ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr, 1850 sizeof(ctrl->addr), 0); 1851 if (ret) { 1852 dev_err(nctrl->device, 1853 "failed to connect socket: %d\n", ret); 1854 goto err_rcv_pdu; 1855 } 1856 1857 /* If PSKs are configured try to start TLS */ 1858 if (nvme_tcp_tls_configured(nctrl) && pskid) { 1859 ret = nvme_tcp_start_tls(nctrl, queue, pskid); 1860 if (ret) 1861 goto err_init_connect; 1862 } 1863 1864 ret = nvme_tcp_init_connection(queue); 1865 if (ret) 1866 goto err_init_connect; 1867 1868 set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags); 1869 1870 return 0; 1871 1872 err_init_connect: 1873 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 1874 err_rcv_pdu: 1875 kfree(queue->pdu); 1876 err_sock: 1877 /* ->sock will be released by fput() */ 1878 fput(queue->sock->file); 1879 queue->sock = NULL; 1880 err_destroy_mutex: 1881 mutex_destroy(&queue->send_mutex); 1882 mutex_destroy(&queue->queue_lock); 1883 return ret; 1884 } 1885 1886 static void nvme_tcp_restore_sock_ops(struct nvme_tcp_queue *queue) 1887 { 1888 struct socket *sock = queue->sock; 1889 1890 write_lock_bh(&sock->sk->sk_callback_lock); 1891 sock->sk->sk_user_data = NULL; 1892 sock->sk->sk_data_ready = queue->data_ready; 1893 sock->sk->sk_state_change = queue->state_change; 1894 sock->sk->sk_write_space = queue->write_space; 1895 write_unlock_bh(&sock->sk->sk_callback_lock); 1896 } 1897 1898 static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue) 1899 { 1900 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 1901 nvme_tcp_restore_sock_ops(queue); 1902 cancel_work_sync(&queue->io_work); 1903 } 1904 1905 static void nvme_tcp_stop_queue_nowait(struct nvme_ctrl *nctrl, int qid) 1906 { 1907 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1908 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1909 1910 if (!test_bit(NVME_TCP_Q_ALLOCATED, &queue->flags)) 1911 return; 1912 1913 if (test_and_clear_bit(NVME_TCP_Q_IO_CPU_SET, &queue->flags)) 1914 atomic_dec(&nvme_tcp_cpu_queues[queue->io_cpu]); 1915 1916 mutex_lock(&queue->queue_lock); 1917 if (test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags)) 1918 __nvme_tcp_stop_queue(queue); 1919 /* Stopping the queue will disable TLS */ 1920 queue->tls_enabled = false; 1921 mutex_unlock(&queue->queue_lock); 1922 } 1923 1924 static void nvme_tcp_wait_queue(struct nvme_ctrl *nctrl, int qid) 1925 { 1926 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1927 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1928 int timeout = 100; 1929 1930 while (timeout > 0) { 1931 if (!test_bit(NVME_TCP_Q_ALLOCATED, &queue->flags) || 1932 !sk_wmem_alloc_get(queue->sock->sk)) 1933 return; 1934 msleep(2); 1935 timeout -= 2; 1936 } 1937 dev_warn(nctrl->device, 1938 "qid %d: timeout draining sock wmem allocation expired\n", 1939 qid); 1940 } 1941 1942 static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid) 1943 { 1944 nvme_tcp_stop_queue_nowait(nctrl, qid); 1945 nvme_tcp_wait_queue(nctrl, qid); 1946 } 1947 1948 1949 static void nvme_tcp_setup_sock_ops(struct nvme_tcp_queue *queue) 1950 { 1951 write_lock_bh(&queue->sock->sk->sk_callback_lock); 1952 queue->sock->sk->sk_user_data = queue; 1953 queue->state_change = queue->sock->sk->sk_state_change; 1954 queue->data_ready = queue->sock->sk->sk_data_ready; 1955 queue->write_space = queue->sock->sk->sk_write_space; 1956 queue->sock->sk->sk_data_ready = nvme_tcp_data_ready; 1957 queue->sock->sk->sk_state_change = nvme_tcp_state_change; 1958 queue->sock->sk->sk_write_space = nvme_tcp_write_space; 1959 #ifdef CONFIG_NET_RX_BUSY_POLL 1960 queue->sock->sk->sk_ll_usec = 1; 1961 #endif 1962 write_unlock_bh(&queue->sock->sk->sk_callback_lock); 1963 } 1964 1965 static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx) 1966 { 1967 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1968 struct nvme_tcp_queue *queue = &ctrl->queues[idx]; 1969 int ret; 1970 1971 queue->rd_enabled = true; 1972 nvme_tcp_init_recv_ctx(queue); 1973 nvme_tcp_setup_sock_ops(queue); 1974 1975 if (idx) { 1976 nvme_tcp_set_queue_io_cpu(queue); 1977 ret = nvmf_connect_io_queue(nctrl, idx); 1978 } else 1979 ret = nvmf_connect_admin_queue(nctrl); 1980 1981 if (!ret) { 1982 set_bit(NVME_TCP_Q_LIVE, &queue->flags); 1983 } else { 1984 if (test_bit(NVME_TCP_Q_ALLOCATED, &queue->flags)) 1985 __nvme_tcp_stop_queue(queue); 1986 dev_err(nctrl->device, 1987 "failed to connect queue: %d ret=%d\n", idx, ret); 1988 } 1989 return ret; 1990 } 1991 1992 static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl) 1993 { 1994 if (to_tcp_ctrl(ctrl)->async_req.pdu) { 1995 cancel_work_sync(&ctrl->async_event_work); 1996 nvme_tcp_free_async_req(to_tcp_ctrl(ctrl)); 1997 to_tcp_ctrl(ctrl)->async_req.pdu = NULL; 1998 } 1999 2000 nvme_tcp_free_queue(ctrl, 0); 2001 } 2002 2003 static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl) 2004 { 2005 int i; 2006 2007 for (i = 1; i < ctrl->queue_count; i++) 2008 nvme_tcp_free_queue(ctrl, i); 2009 } 2010 2011 static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl) 2012 { 2013 int i; 2014 2015 for (i = 1; i < ctrl->queue_count; i++) 2016 nvme_tcp_stop_queue_nowait(ctrl, i); 2017 for (i = 1; i < ctrl->queue_count; i++) 2018 nvme_tcp_wait_queue(ctrl, i); 2019 } 2020 2021 static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl, 2022 int first, int last) 2023 { 2024 int i, ret; 2025 2026 for (i = first; i < last; i++) { 2027 ret = nvme_tcp_start_queue(ctrl, i); 2028 if (ret) 2029 goto out_stop_queues; 2030 } 2031 2032 return 0; 2033 2034 out_stop_queues: 2035 for (i--; i >= first; i--) 2036 nvme_tcp_stop_queue(ctrl, i); 2037 return ret; 2038 } 2039 2040 static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl) 2041 { 2042 int ret; 2043 key_serial_t pskid = 0; 2044 2045 if (nvme_tcp_tls_configured(ctrl)) { 2046 if (ctrl->opts->tls_key) 2047 pskid = key_serial(ctrl->opts->tls_key); 2048 else if (ctrl->opts->tls) { 2049 pskid = nvme_tls_psk_default(ctrl->opts->keyring, 2050 ctrl->opts->host->nqn, 2051 ctrl->opts->subsysnqn); 2052 if (!pskid) { 2053 dev_err(ctrl->device, "no valid PSK found\n"); 2054 return -ENOKEY; 2055 } 2056 } 2057 } 2058 2059 ret = nvme_tcp_alloc_queue(ctrl, 0, pskid); 2060 if (ret) 2061 return ret; 2062 2063 ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl)); 2064 if (ret) 2065 goto out_free_queue; 2066 2067 return 0; 2068 2069 out_free_queue: 2070 nvme_tcp_free_queue(ctrl, 0); 2071 return ret; 2072 } 2073 2074 static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl) 2075 { 2076 int i, ret; 2077 2078 if (nvme_tcp_tls_configured(ctrl)) { 2079 if (ctrl->opts->concat) { 2080 /* 2081 * The generated PSK is stored in the 2082 * fabric options 2083 */ 2084 if (!ctrl->opts->tls_key) { 2085 dev_err(ctrl->device, "no PSK generated\n"); 2086 return -ENOKEY; 2087 } 2088 if (ctrl->tls_pskid && 2089 ctrl->tls_pskid != key_serial(ctrl->opts->tls_key)) { 2090 dev_err(ctrl->device, "Stale PSK id %08x\n", ctrl->tls_pskid); 2091 ctrl->tls_pskid = 0; 2092 } 2093 } else if (!ctrl->tls_pskid) { 2094 dev_err(ctrl->device, "no PSK negotiated\n"); 2095 return -ENOKEY; 2096 } 2097 } 2098 2099 for (i = 1; i < ctrl->queue_count; i++) { 2100 ret = nvme_tcp_alloc_queue(ctrl, i, 2101 ctrl->tls_pskid); 2102 if (ret) 2103 goto out_free_queues; 2104 } 2105 2106 return 0; 2107 2108 out_free_queues: 2109 for (i--; i >= 1; i--) 2110 nvme_tcp_free_queue(ctrl, i); 2111 2112 return ret; 2113 } 2114 2115 static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl) 2116 { 2117 unsigned int nr_io_queues; 2118 int ret; 2119 2120 nr_io_queues = nvmf_nr_io_queues(ctrl->opts); 2121 ret = nvme_set_queue_count(ctrl, &nr_io_queues); 2122 if (ret) 2123 return ret; 2124 2125 if (nr_io_queues == 0) { 2126 dev_err(ctrl->device, 2127 "unable to set any I/O queues\n"); 2128 return -ENOMEM; 2129 } 2130 2131 ctrl->queue_count = nr_io_queues + 1; 2132 dev_info(ctrl->device, 2133 "creating %d I/O queues.\n", nr_io_queues); 2134 2135 nvmf_set_io_queues(ctrl->opts, nr_io_queues, 2136 to_tcp_ctrl(ctrl)->io_queues); 2137 return __nvme_tcp_alloc_io_queues(ctrl); 2138 } 2139 2140 static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new) 2141 { 2142 int ret, nr_queues; 2143 2144 ret = nvme_tcp_alloc_io_queues(ctrl); 2145 if (ret) 2146 return ret; 2147 2148 if (new) { 2149 ret = nvme_alloc_io_tag_set(ctrl, &to_tcp_ctrl(ctrl)->tag_set, 2150 &nvme_tcp_mq_ops, 2151 ctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2, 2152 sizeof(struct nvme_tcp_request)); 2153 if (ret) 2154 goto out_free_io_queues; 2155 } 2156 2157 /* 2158 * Only start IO queues for which we have allocated the tagset 2159 * and limitted it to the available queues. On reconnects, the 2160 * queue number might have changed. 2161 */ 2162 nr_queues = min(ctrl->tagset->nr_hw_queues + 1, ctrl->queue_count); 2163 ret = nvme_tcp_start_io_queues(ctrl, 1, nr_queues); 2164 if (ret) 2165 goto out_cleanup_connect_q; 2166 2167 if (!new) { 2168 nvme_start_freeze(ctrl); 2169 nvme_unquiesce_io_queues(ctrl); 2170 if (!nvme_wait_freeze_timeout(ctrl, NVME_IO_TIMEOUT)) { 2171 /* 2172 * If we timed out waiting for freeze we are likely to 2173 * be stuck. Fail the controller initialization just 2174 * to be safe. 2175 */ 2176 ret = -ENODEV; 2177 nvme_unfreeze(ctrl); 2178 goto out_wait_freeze_timed_out; 2179 } 2180 blk_mq_update_nr_hw_queues(ctrl->tagset, 2181 ctrl->queue_count - 1); 2182 nvme_unfreeze(ctrl); 2183 } 2184 2185 /* 2186 * If the number of queues has increased (reconnect case) 2187 * start all new queues now. 2188 */ 2189 ret = nvme_tcp_start_io_queues(ctrl, nr_queues, 2190 ctrl->tagset->nr_hw_queues + 1); 2191 if (ret) 2192 goto out_wait_freeze_timed_out; 2193 2194 return 0; 2195 2196 out_wait_freeze_timed_out: 2197 nvme_quiesce_io_queues(ctrl); 2198 nvme_sync_io_queues(ctrl); 2199 nvme_tcp_stop_io_queues(ctrl); 2200 out_cleanup_connect_q: 2201 nvme_cancel_tagset(ctrl); 2202 if (new) 2203 nvme_remove_io_tag_set(ctrl); 2204 out_free_io_queues: 2205 nvme_tcp_free_io_queues(ctrl); 2206 return ret; 2207 } 2208 2209 static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new) 2210 { 2211 int error; 2212 2213 error = nvme_tcp_alloc_admin_queue(ctrl); 2214 if (error) 2215 return error; 2216 2217 if (new) { 2218 error = nvme_alloc_admin_tag_set(ctrl, 2219 &to_tcp_ctrl(ctrl)->admin_tag_set, 2220 &nvme_tcp_admin_mq_ops, 2221 sizeof(struct nvme_tcp_request)); 2222 if (error) 2223 goto out_free_queue; 2224 } 2225 2226 error = nvme_tcp_start_queue(ctrl, 0); 2227 if (error) 2228 goto out_cleanup_tagset; 2229 2230 error = nvme_enable_ctrl(ctrl); 2231 if (error) 2232 goto out_stop_queue; 2233 2234 nvme_unquiesce_admin_queue(ctrl); 2235 2236 error = nvme_init_ctrl_finish(ctrl, false); 2237 if (error) 2238 goto out_quiesce_queue; 2239 2240 return 0; 2241 2242 out_quiesce_queue: 2243 nvme_quiesce_admin_queue(ctrl); 2244 blk_sync_queue(ctrl->admin_q); 2245 out_stop_queue: 2246 nvme_tcp_stop_queue(ctrl, 0); 2247 nvme_cancel_admin_tagset(ctrl); 2248 out_cleanup_tagset: 2249 if (new) 2250 nvme_remove_admin_tag_set(ctrl); 2251 out_free_queue: 2252 nvme_tcp_free_admin_queue(ctrl); 2253 return error; 2254 } 2255 2256 static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl, 2257 bool remove) 2258 { 2259 nvme_quiesce_admin_queue(ctrl); 2260 blk_sync_queue(ctrl->admin_q); 2261 nvme_tcp_stop_queue(ctrl, 0); 2262 nvme_cancel_admin_tagset(ctrl); 2263 if (remove) { 2264 nvme_unquiesce_admin_queue(ctrl); 2265 nvme_remove_admin_tag_set(ctrl); 2266 } 2267 nvme_tcp_free_admin_queue(ctrl); 2268 if (ctrl->tls_pskid) { 2269 dev_dbg(ctrl->device, "Wipe negotiated TLS_PSK %08x\n", 2270 ctrl->tls_pskid); 2271 ctrl->tls_pskid = 0; 2272 } 2273 } 2274 2275 static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl, 2276 bool remove) 2277 { 2278 if (ctrl->queue_count <= 1) 2279 return; 2280 nvme_quiesce_io_queues(ctrl); 2281 nvme_sync_io_queues(ctrl); 2282 nvme_tcp_stop_io_queues(ctrl); 2283 nvme_cancel_tagset(ctrl); 2284 if (remove) { 2285 nvme_unquiesce_io_queues(ctrl); 2286 nvme_remove_io_tag_set(ctrl); 2287 } 2288 nvme_tcp_free_io_queues(ctrl); 2289 } 2290 2291 static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl, 2292 int status) 2293 { 2294 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl); 2295 2296 /* If we are resetting/deleting then do nothing */ 2297 if (state != NVME_CTRL_CONNECTING) { 2298 WARN_ON_ONCE(state == NVME_CTRL_NEW || state == NVME_CTRL_LIVE); 2299 return; 2300 } 2301 2302 if (nvmf_should_reconnect(ctrl, status)) { 2303 dev_info(ctrl->device, "Reconnecting in %d seconds...\n", 2304 ctrl->opts->reconnect_delay); 2305 queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work, 2306 ctrl->opts->reconnect_delay * HZ); 2307 } else { 2308 dev_info(ctrl->device, "Removing controller (%d)...\n", 2309 status); 2310 nvme_delete_ctrl(ctrl); 2311 } 2312 } 2313 2314 /* 2315 * The TLS key is set by secure concatenation after negotiation has been 2316 * completed on the admin queue. We need to revoke the key when: 2317 * - concatenation is enabled (otherwise it's a static key set by the user) 2318 * and 2319 * - the generated key is present in ctrl->tls_key (otherwise there's nothing 2320 * to revoke) 2321 * and 2322 * - a valid PSK key ID has been set in ctrl->tls_pskid (otherwise TLS 2323 * negotiation has not run). 2324 * 2325 * We cannot always revoke the key as nvme_tcp_alloc_admin_queue() is called 2326 * twice during secure concatenation, once on a 'normal' connection to run the 2327 * DH-HMAC-CHAP negotiation (which generates the key, so it _must not_ be set), 2328 * and once after the negotiation (which uses the key, so it _must_ be set). 2329 */ 2330 static bool nvme_tcp_key_revoke_needed(struct nvme_ctrl *ctrl) 2331 { 2332 return ctrl->opts->concat && ctrl->opts->tls_key && ctrl->tls_pskid; 2333 } 2334 2335 static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new) 2336 { 2337 struct nvmf_ctrl_options *opts = ctrl->opts; 2338 int ret; 2339 2340 ret = nvme_tcp_configure_admin_queue(ctrl, new); 2341 if (ret) 2342 return ret; 2343 2344 if (ctrl->opts && ctrl->opts->concat && !ctrl->tls_pskid) { 2345 /* See comments for nvme_tcp_key_revoke_needed() */ 2346 dev_dbg(ctrl->device, "restart admin queue for secure concatenation\n"); 2347 nvme_stop_keep_alive(ctrl); 2348 nvme_tcp_teardown_admin_queue(ctrl, false); 2349 ret = nvme_tcp_configure_admin_queue(ctrl, false); 2350 if (ret) 2351 return ret; 2352 } 2353 2354 if (ctrl->icdoff) { 2355 ret = -EOPNOTSUPP; 2356 dev_err(ctrl->device, "icdoff is not supported!\n"); 2357 goto destroy_admin; 2358 } 2359 2360 if (!nvme_ctrl_sgl_supported(ctrl)) { 2361 ret = -EOPNOTSUPP; 2362 dev_err(ctrl->device, "Mandatory sgls are not supported!\n"); 2363 goto destroy_admin; 2364 } 2365 2366 if (opts->queue_size > ctrl->sqsize + 1) 2367 dev_warn(ctrl->device, 2368 "queue_size %zu > ctrl sqsize %u, clamping down\n", 2369 opts->queue_size, ctrl->sqsize + 1); 2370 2371 if (ctrl->sqsize + 1 > ctrl->maxcmd) { 2372 dev_warn(ctrl->device, 2373 "sqsize %u > ctrl maxcmd %u, clamping down\n", 2374 ctrl->sqsize + 1, ctrl->maxcmd); 2375 ctrl->sqsize = ctrl->maxcmd - 1; 2376 } 2377 2378 if (ctrl->queue_count > 1) { 2379 ret = nvme_tcp_configure_io_queues(ctrl, new); 2380 if (ret) 2381 goto destroy_admin; 2382 } 2383 2384 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) { 2385 /* 2386 * state change failure is ok if we started ctrl delete, 2387 * unless we're during creation of a new controller to 2388 * avoid races with teardown flow. 2389 */ 2390 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl); 2391 2392 WARN_ON_ONCE(state != NVME_CTRL_DELETING && 2393 state != NVME_CTRL_DELETING_NOIO); 2394 WARN_ON_ONCE(new); 2395 ret = -EINVAL; 2396 goto destroy_io; 2397 } 2398 2399 nvme_start_ctrl(ctrl); 2400 return 0; 2401 2402 destroy_io: 2403 if (ctrl->queue_count > 1) { 2404 nvme_quiesce_io_queues(ctrl); 2405 nvme_sync_io_queues(ctrl); 2406 nvme_tcp_stop_io_queues(ctrl); 2407 nvme_cancel_tagset(ctrl); 2408 if (new) 2409 nvme_remove_io_tag_set(ctrl); 2410 nvme_tcp_free_io_queues(ctrl); 2411 } 2412 destroy_admin: 2413 nvme_stop_keep_alive(ctrl); 2414 nvme_tcp_teardown_admin_queue(ctrl, new); 2415 return ret; 2416 } 2417 2418 static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work) 2419 { 2420 struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work), 2421 struct nvme_tcp_ctrl, connect_work); 2422 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl; 2423 int ret; 2424 2425 ++ctrl->nr_reconnects; 2426 2427 ret = nvme_tcp_setup_ctrl(ctrl, false); 2428 if (ret) 2429 goto requeue; 2430 2431 dev_info(ctrl->device, "Successfully reconnected (attempt %d/%d)\n", 2432 ctrl->nr_reconnects, ctrl->opts->max_reconnects); 2433 2434 ctrl->nr_reconnects = 0; 2435 2436 return; 2437 2438 requeue: 2439 dev_info(ctrl->device, "Failed reconnect attempt %d/%d\n", 2440 ctrl->nr_reconnects, ctrl->opts->max_reconnects); 2441 nvme_tcp_reconnect_or_remove(ctrl, ret); 2442 } 2443 2444 static void nvme_tcp_error_recovery_work(struct work_struct *work) 2445 { 2446 struct nvme_tcp_ctrl *tcp_ctrl = container_of(work, 2447 struct nvme_tcp_ctrl, err_work); 2448 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl; 2449 2450 if (nvme_tcp_key_revoke_needed(ctrl)) 2451 nvme_auth_revoke_tls_key(ctrl); 2452 nvme_stop_keep_alive(ctrl); 2453 flush_work(&ctrl->async_event_work); 2454 nvme_tcp_teardown_io_queues(ctrl, false); 2455 /* unquiesce to fail fast pending requests */ 2456 nvme_unquiesce_io_queues(ctrl); 2457 nvme_tcp_teardown_admin_queue(ctrl, false); 2458 nvme_unquiesce_admin_queue(ctrl); 2459 nvme_auth_stop(ctrl); 2460 2461 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) { 2462 /* state change failure is ok if we started ctrl delete */ 2463 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl); 2464 2465 WARN_ON_ONCE(state != NVME_CTRL_DELETING && 2466 state != NVME_CTRL_DELETING_NOIO); 2467 return; 2468 } 2469 2470 nvme_tcp_reconnect_or_remove(ctrl, 0); 2471 } 2472 2473 static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown) 2474 { 2475 nvme_tcp_teardown_io_queues(ctrl, shutdown); 2476 nvme_quiesce_admin_queue(ctrl); 2477 nvme_disable_ctrl(ctrl, shutdown); 2478 nvme_tcp_teardown_admin_queue(ctrl, shutdown); 2479 } 2480 2481 static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl) 2482 { 2483 nvme_tcp_teardown_ctrl(ctrl, true); 2484 } 2485 2486 static void nvme_reset_ctrl_work(struct work_struct *work) 2487 { 2488 struct nvme_ctrl *ctrl = 2489 container_of(work, struct nvme_ctrl, reset_work); 2490 int ret; 2491 2492 if (nvme_tcp_key_revoke_needed(ctrl)) 2493 nvme_auth_revoke_tls_key(ctrl); 2494 nvme_stop_ctrl(ctrl); 2495 nvme_tcp_teardown_ctrl(ctrl, false); 2496 2497 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) { 2498 /* state change failure is ok if we started ctrl delete */ 2499 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl); 2500 2501 WARN_ON_ONCE(state != NVME_CTRL_DELETING && 2502 state != NVME_CTRL_DELETING_NOIO); 2503 return; 2504 } 2505 2506 ret = nvme_tcp_setup_ctrl(ctrl, false); 2507 if (ret) 2508 goto out_fail; 2509 2510 return; 2511 2512 out_fail: 2513 ++ctrl->nr_reconnects; 2514 nvme_tcp_reconnect_or_remove(ctrl, ret); 2515 } 2516 2517 static void nvme_tcp_stop_ctrl(struct nvme_ctrl *ctrl) 2518 { 2519 flush_work(&to_tcp_ctrl(ctrl)->err_work); 2520 cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work); 2521 } 2522 2523 static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl) 2524 { 2525 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 2526 2527 if (list_empty(&ctrl->list)) 2528 goto free_ctrl; 2529 2530 mutex_lock(&nvme_tcp_ctrl_mutex); 2531 list_del(&ctrl->list); 2532 mutex_unlock(&nvme_tcp_ctrl_mutex); 2533 2534 nvmf_free_options(nctrl->opts); 2535 free_ctrl: 2536 kfree(ctrl->queues); 2537 kfree(ctrl); 2538 } 2539 2540 static void nvme_tcp_set_sg_null(struct nvme_command *c) 2541 { 2542 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 2543 2544 sg->addr = 0; 2545 sg->length = 0; 2546 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) | 2547 NVME_SGL_FMT_TRANSPORT_A; 2548 } 2549 2550 static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue, 2551 struct nvme_command *c, u32 data_len) 2552 { 2553 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 2554 2555 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff); 2556 sg->length = cpu_to_le32(data_len); 2557 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET; 2558 } 2559 2560 static void nvme_tcp_set_sg_host_data(struct nvme_command *c, 2561 u32 data_len) 2562 { 2563 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 2564 2565 sg->addr = 0; 2566 sg->length = cpu_to_le32(data_len); 2567 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) | 2568 NVME_SGL_FMT_TRANSPORT_A; 2569 } 2570 2571 static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg) 2572 { 2573 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg); 2574 struct nvme_tcp_queue *queue = &ctrl->queues[0]; 2575 struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu; 2576 struct nvme_command *cmd = &pdu->cmd; 2577 u8 hdgst = nvme_tcp_hdgst_len(queue); 2578 2579 memset(pdu, 0, sizeof(*pdu)); 2580 pdu->hdr.type = nvme_tcp_cmd; 2581 if (queue->hdr_digest) 2582 pdu->hdr.flags |= NVME_TCP_F_HDGST; 2583 pdu->hdr.hlen = sizeof(*pdu); 2584 pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst); 2585 2586 cmd->common.opcode = nvme_admin_async_event; 2587 cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH; 2588 cmd->common.flags |= NVME_CMD_SGL_METABUF; 2589 nvme_tcp_set_sg_null(cmd); 2590 2591 ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU; 2592 ctrl->async_req.offset = 0; 2593 ctrl->async_req.curr_bio = NULL; 2594 ctrl->async_req.data_len = 0; 2595 2596 nvme_tcp_queue_request(&ctrl->async_req, true, true); 2597 } 2598 2599 static void nvme_tcp_complete_timed_out(struct request *rq) 2600 { 2601 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2602 struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl; 2603 2604 nvme_tcp_stop_queue(ctrl, nvme_tcp_queue_id(req->queue)); 2605 nvmf_complete_timed_out_request(rq); 2606 } 2607 2608 static enum blk_eh_timer_return nvme_tcp_timeout(struct request *rq) 2609 { 2610 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2611 struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl; 2612 struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req); 2613 struct nvme_command *cmd = &pdu->cmd; 2614 int qid = nvme_tcp_queue_id(req->queue); 2615 2616 dev_warn(ctrl->device, 2617 "I/O tag %d (%04x) type %d opcode %#x (%s) QID %d timeout\n", 2618 rq->tag, nvme_cid(rq), pdu->hdr.type, cmd->common.opcode, 2619 nvme_fabrics_opcode_str(qid, cmd), qid); 2620 2621 if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE) { 2622 /* 2623 * If we are resetting, connecting or deleting we should 2624 * complete immediately because we may block controller 2625 * teardown or setup sequence 2626 * - ctrl disable/shutdown fabrics requests 2627 * - connect requests 2628 * - initialization admin requests 2629 * - I/O requests that entered after unquiescing and 2630 * the controller stopped responding 2631 * 2632 * All other requests should be cancelled by the error 2633 * recovery work, so it's fine that we fail it here. 2634 */ 2635 nvme_tcp_complete_timed_out(rq); 2636 return BLK_EH_DONE; 2637 } 2638 2639 /* 2640 * LIVE state should trigger the normal error recovery which will 2641 * handle completing this request. 2642 */ 2643 nvme_tcp_error_recovery(ctrl); 2644 return BLK_EH_RESET_TIMER; 2645 } 2646 2647 static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue, 2648 struct request *rq) 2649 { 2650 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2651 struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req); 2652 struct nvme_command *c = &pdu->cmd; 2653 2654 c->common.flags |= NVME_CMD_SGL_METABUF; 2655 2656 if (!blk_rq_nr_phys_segments(rq)) 2657 nvme_tcp_set_sg_null(c); 2658 else if (rq_data_dir(rq) == WRITE && 2659 req->data_len <= nvme_tcp_inline_data_size(req)) 2660 nvme_tcp_set_sg_inline(queue, c, req->data_len); 2661 else 2662 nvme_tcp_set_sg_host_data(c, req->data_len); 2663 2664 return 0; 2665 } 2666 2667 static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns, 2668 struct request *rq) 2669 { 2670 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2671 struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req); 2672 struct nvme_tcp_queue *queue = req->queue; 2673 u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0; 2674 blk_status_t ret; 2675 2676 ret = nvme_setup_cmd(ns, rq); 2677 if (ret) 2678 return ret; 2679 2680 req->state = NVME_TCP_SEND_CMD_PDU; 2681 req->status = cpu_to_le16(NVME_SC_SUCCESS); 2682 req->offset = 0; 2683 req->data_sent = 0; 2684 req->pdu_len = 0; 2685 req->pdu_sent = 0; 2686 req->h2cdata_left = 0; 2687 req->data_len = blk_rq_nr_phys_segments(rq) ? 2688 blk_rq_payload_bytes(rq) : 0; 2689 req->curr_bio = rq->bio; 2690 if (req->curr_bio && req->data_len) 2691 nvme_tcp_init_iter(req, rq_data_dir(rq)); 2692 2693 if (rq_data_dir(rq) == WRITE && 2694 req->data_len <= nvme_tcp_inline_data_size(req)) 2695 req->pdu_len = req->data_len; 2696 2697 pdu->hdr.type = nvme_tcp_cmd; 2698 pdu->hdr.flags = 0; 2699 if (queue->hdr_digest) 2700 pdu->hdr.flags |= NVME_TCP_F_HDGST; 2701 if (queue->data_digest && req->pdu_len) { 2702 pdu->hdr.flags |= NVME_TCP_F_DDGST; 2703 ddgst = nvme_tcp_ddgst_len(queue); 2704 } 2705 pdu->hdr.hlen = sizeof(*pdu); 2706 pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0; 2707 pdu->hdr.plen = 2708 cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst); 2709 2710 ret = nvme_tcp_map_data(queue, rq); 2711 if (unlikely(ret)) { 2712 nvme_cleanup_cmd(rq); 2713 dev_err(queue->ctrl->ctrl.device, 2714 "Failed to map data (%d)\n", ret); 2715 return ret; 2716 } 2717 2718 return 0; 2719 } 2720 2721 static void nvme_tcp_commit_rqs(struct blk_mq_hw_ctx *hctx) 2722 { 2723 struct nvme_tcp_queue *queue = hctx->driver_data; 2724 2725 if (!llist_empty(&queue->req_list)) 2726 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 2727 } 2728 2729 static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx, 2730 const struct blk_mq_queue_data *bd) 2731 { 2732 struct nvme_ns *ns = hctx->queue->queuedata; 2733 struct nvme_tcp_queue *queue = hctx->driver_data; 2734 struct request *rq = bd->rq; 2735 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2736 bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags); 2737 blk_status_t ret; 2738 2739 if (!nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready)) 2740 return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq); 2741 2742 ret = nvme_tcp_setup_cmd_pdu(ns, rq); 2743 if (unlikely(ret)) 2744 return ret; 2745 2746 nvme_start_request(rq); 2747 2748 nvme_tcp_queue_request(req, true, bd->last); 2749 2750 return BLK_STS_OK; 2751 } 2752 2753 static void nvme_tcp_map_queues(struct blk_mq_tag_set *set) 2754 { 2755 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(set->driver_data); 2756 2757 nvmf_map_queues(set, &ctrl->ctrl, ctrl->io_queues); 2758 } 2759 2760 static int nvme_tcp_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob) 2761 { 2762 struct nvme_tcp_queue *queue = hctx->driver_data; 2763 struct sock *sk = queue->sock->sk; 2764 int ret; 2765 2766 if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags)) 2767 return 0; 2768 2769 set_bit(NVME_TCP_Q_POLLING, &queue->flags); 2770 if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue)) 2771 sk_busy_loop(sk, true); 2772 ret = nvme_tcp_try_recv(queue); 2773 clear_bit(NVME_TCP_Q_POLLING, &queue->flags); 2774 return ret < 0 ? ret : queue->nr_cqe; 2775 } 2776 2777 static int nvme_tcp_get_address(struct nvme_ctrl *ctrl, char *buf, int size) 2778 { 2779 struct nvme_tcp_queue *queue = &to_tcp_ctrl(ctrl)->queues[0]; 2780 struct sockaddr_storage src_addr; 2781 int ret, len; 2782 2783 len = nvmf_get_address(ctrl, buf, size); 2784 2785 if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags)) 2786 return len; 2787 2788 mutex_lock(&queue->queue_lock); 2789 2790 ret = kernel_getsockname(queue->sock, (struct sockaddr *)&src_addr); 2791 if (ret > 0) { 2792 if (len > 0) 2793 len--; /* strip trailing newline */ 2794 len += scnprintf(buf + len, size - len, "%ssrc_addr=%pISc\n", 2795 (len) ? "," : "", &src_addr); 2796 } 2797 2798 mutex_unlock(&queue->queue_lock); 2799 2800 return len; 2801 } 2802 2803 static const struct blk_mq_ops nvme_tcp_mq_ops = { 2804 .queue_rq = nvme_tcp_queue_rq, 2805 .commit_rqs = nvme_tcp_commit_rqs, 2806 .complete = nvme_complete_rq, 2807 .init_request = nvme_tcp_init_request, 2808 .exit_request = nvme_tcp_exit_request, 2809 .init_hctx = nvme_tcp_init_hctx, 2810 .timeout = nvme_tcp_timeout, 2811 .map_queues = nvme_tcp_map_queues, 2812 .poll = nvme_tcp_poll, 2813 }; 2814 2815 static const struct blk_mq_ops nvme_tcp_admin_mq_ops = { 2816 .queue_rq = nvme_tcp_queue_rq, 2817 .complete = nvme_complete_rq, 2818 .init_request = nvme_tcp_init_request, 2819 .exit_request = nvme_tcp_exit_request, 2820 .init_hctx = nvme_tcp_init_admin_hctx, 2821 .timeout = nvme_tcp_timeout, 2822 }; 2823 2824 static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = { 2825 .name = "tcp", 2826 .module = THIS_MODULE, 2827 .flags = NVME_F_FABRICS | NVME_F_BLOCKING, 2828 .reg_read32 = nvmf_reg_read32, 2829 .reg_read64 = nvmf_reg_read64, 2830 .reg_write32 = nvmf_reg_write32, 2831 .subsystem_reset = nvmf_subsystem_reset, 2832 .free_ctrl = nvme_tcp_free_ctrl, 2833 .submit_async_event = nvme_tcp_submit_async_event, 2834 .delete_ctrl = nvme_tcp_delete_ctrl, 2835 .get_address = nvme_tcp_get_address, 2836 .stop_ctrl = nvme_tcp_stop_ctrl, 2837 }; 2838 2839 static bool 2840 nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts) 2841 { 2842 struct nvme_tcp_ctrl *ctrl; 2843 bool found = false; 2844 2845 mutex_lock(&nvme_tcp_ctrl_mutex); 2846 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) { 2847 found = nvmf_ip_options_match(&ctrl->ctrl, opts); 2848 if (found) 2849 break; 2850 } 2851 mutex_unlock(&nvme_tcp_ctrl_mutex); 2852 2853 return found; 2854 } 2855 2856 static struct nvme_tcp_ctrl *nvme_tcp_alloc_ctrl(struct device *dev, 2857 struct nvmf_ctrl_options *opts) 2858 { 2859 struct nvme_tcp_ctrl *ctrl; 2860 int ret; 2861 2862 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 2863 if (!ctrl) 2864 return ERR_PTR(-ENOMEM); 2865 2866 INIT_LIST_HEAD(&ctrl->list); 2867 ctrl->ctrl.opts = opts; 2868 ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues + 2869 opts->nr_poll_queues + 1; 2870 ctrl->ctrl.sqsize = opts->queue_size - 1; 2871 ctrl->ctrl.kato = opts->kato; 2872 2873 INIT_DELAYED_WORK(&ctrl->connect_work, 2874 nvme_tcp_reconnect_ctrl_work); 2875 INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work); 2876 INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work); 2877 2878 if (!(opts->mask & NVMF_OPT_TRSVCID)) { 2879 opts->trsvcid = 2880 kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL); 2881 if (!opts->trsvcid) { 2882 ret = -ENOMEM; 2883 goto out_free_ctrl; 2884 } 2885 opts->mask |= NVMF_OPT_TRSVCID; 2886 } 2887 2888 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 2889 opts->traddr, opts->trsvcid, &ctrl->addr); 2890 if (ret) { 2891 pr_err("malformed address passed: %s:%s\n", 2892 opts->traddr, opts->trsvcid); 2893 goto out_free_ctrl; 2894 } 2895 2896 if (opts->mask & NVMF_OPT_HOST_TRADDR) { 2897 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 2898 opts->host_traddr, NULL, &ctrl->src_addr); 2899 if (ret) { 2900 pr_err("malformed src address passed: %s\n", 2901 opts->host_traddr); 2902 goto out_free_ctrl; 2903 } 2904 } 2905 2906 if (opts->mask & NVMF_OPT_HOST_IFACE) { 2907 if (!__dev_get_by_name(&init_net, opts->host_iface)) { 2908 pr_err("invalid interface passed: %s\n", 2909 opts->host_iface); 2910 ret = -ENODEV; 2911 goto out_free_ctrl; 2912 } 2913 } 2914 2915 if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) { 2916 ret = -EALREADY; 2917 goto out_free_ctrl; 2918 } 2919 2920 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues), 2921 GFP_KERNEL); 2922 if (!ctrl->queues) { 2923 ret = -ENOMEM; 2924 goto out_free_ctrl; 2925 } 2926 2927 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0); 2928 if (ret) 2929 goto out_kfree_queues; 2930 2931 return ctrl; 2932 out_kfree_queues: 2933 kfree(ctrl->queues); 2934 out_free_ctrl: 2935 kfree(ctrl); 2936 return ERR_PTR(ret); 2937 } 2938 2939 static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev, 2940 struct nvmf_ctrl_options *opts) 2941 { 2942 struct nvme_tcp_ctrl *ctrl; 2943 int ret; 2944 2945 ctrl = nvme_tcp_alloc_ctrl(dev, opts); 2946 if (IS_ERR(ctrl)) 2947 return ERR_CAST(ctrl); 2948 2949 ret = nvme_add_ctrl(&ctrl->ctrl); 2950 if (ret) 2951 goto out_put_ctrl; 2952 2953 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) { 2954 WARN_ON_ONCE(1); 2955 ret = -EINTR; 2956 goto out_uninit_ctrl; 2957 } 2958 2959 ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true); 2960 if (ret) 2961 goto out_uninit_ctrl; 2962 2963 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp, hostnqn: %s\n", 2964 nvmf_ctrl_subsysnqn(&ctrl->ctrl), &ctrl->addr, opts->host->nqn); 2965 2966 mutex_lock(&nvme_tcp_ctrl_mutex); 2967 list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list); 2968 mutex_unlock(&nvme_tcp_ctrl_mutex); 2969 2970 return &ctrl->ctrl; 2971 2972 out_uninit_ctrl: 2973 nvme_uninit_ctrl(&ctrl->ctrl); 2974 out_put_ctrl: 2975 nvme_put_ctrl(&ctrl->ctrl); 2976 if (ret > 0) 2977 ret = -EIO; 2978 return ERR_PTR(ret); 2979 } 2980 2981 static struct nvmf_transport_ops nvme_tcp_transport = { 2982 .name = "tcp", 2983 .module = THIS_MODULE, 2984 .required_opts = NVMF_OPT_TRADDR, 2985 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY | 2986 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO | 2987 NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST | 2988 NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES | 2989 NVMF_OPT_TOS | NVMF_OPT_HOST_IFACE | NVMF_OPT_TLS | 2990 NVMF_OPT_KEYRING | NVMF_OPT_TLS_KEY | NVMF_OPT_CONCAT, 2991 .create_ctrl = nvme_tcp_create_ctrl, 2992 }; 2993 2994 static int __init nvme_tcp_init_module(void) 2995 { 2996 unsigned int wq_flags = WQ_MEM_RECLAIM | WQ_HIGHPRI | WQ_SYSFS; 2997 int cpu; 2998 2999 BUILD_BUG_ON(sizeof(struct nvme_tcp_hdr) != 8); 3000 BUILD_BUG_ON(sizeof(struct nvme_tcp_cmd_pdu) != 72); 3001 BUILD_BUG_ON(sizeof(struct nvme_tcp_data_pdu) != 24); 3002 BUILD_BUG_ON(sizeof(struct nvme_tcp_rsp_pdu) != 24); 3003 BUILD_BUG_ON(sizeof(struct nvme_tcp_r2t_pdu) != 24); 3004 BUILD_BUG_ON(sizeof(struct nvme_tcp_icreq_pdu) != 128); 3005 BUILD_BUG_ON(sizeof(struct nvme_tcp_icresp_pdu) != 128); 3006 BUILD_BUG_ON(sizeof(struct nvme_tcp_term_pdu) != 24); 3007 3008 if (wq_unbound) 3009 wq_flags |= WQ_UNBOUND; 3010 3011 nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq", wq_flags, 0); 3012 if (!nvme_tcp_wq) 3013 return -ENOMEM; 3014 3015 for_each_possible_cpu(cpu) 3016 atomic_set(&nvme_tcp_cpu_queues[cpu], 0); 3017 3018 nvmf_register_transport(&nvme_tcp_transport); 3019 return 0; 3020 } 3021 3022 static void __exit nvme_tcp_cleanup_module(void) 3023 { 3024 struct nvme_tcp_ctrl *ctrl; 3025 3026 nvmf_unregister_transport(&nvme_tcp_transport); 3027 3028 mutex_lock(&nvme_tcp_ctrl_mutex); 3029 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) 3030 nvme_delete_ctrl(&ctrl->ctrl); 3031 mutex_unlock(&nvme_tcp_ctrl_mutex); 3032 flush_workqueue(nvme_delete_wq); 3033 3034 destroy_workqueue(nvme_tcp_wq); 3035 } 3036 3037 module_init(nvme_tcp_init_module); 3038 module_exit(nvme_tcp_cleanup_module); 3039 3040 MODULE_DESCRIPTION("NVMe host TCP transport driver"); 3041 MODULE_LICENSE("GPL v2"); 3042