1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVMe over Fabrics TCP host. 4 * Copyright (c) 2018 Lightbits Labs. All rights reserved. 5 */ 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 #include <linux/module.h> 8 #include <linux/init.h> 9 #include <linux/slab.h> 10 #include <linux/err.h> 11 #include <linux/crc32.h> 12 #include <linux/nvme-tcp.h> 13 #include <linux/nvme-keyring.h> 14 #include <net/sock.h> 15 #include <net/tcp.h> 16 #include <net/tls.h> 17 #include <net/tls_prot.h> 18 #include <net/handshake.h> 19 #include <linux/blk-mq.h> 20 #include <net/busy_poll.h> 21 #include <trace/events/sock.h> 22 23 #include "nvme.h" 24 #include "fabrics.h" 25 26 struct nvme_tcp_queue; 27 28 /* Define the socket priority to use for connections were it is desirable 29 * that the NIC consider performing optimized packet processing or filtering. 30 * A non-zero value being sufficient to indicate general consideration of any 31 * possible optimization. Making it a module param allows for alternative 32 * values that may be unique for some NIC implementations. 33 */ 34 static int so_priority; 35 module_param(so_priority, int, 0644); 36 MODULE_PARM_DESC(so_priority, "nvme tcp socket optimize priority"); 37 38 /* 39 * Use the unbound workqueue for nvme_tcp_wq, then we can set the cpu affinity 40 * from sysfs. 41 */ 42 static bool wq_unbound; 43 module_param(wq_unbound, bool, 0644); 44 MODULE_PARM_DESC(wq_unbound, "Use unbound workqueue for nvme-tcp IO context (default false)"); 45 46 /* 47 * TLS handshake timeout 48 */ 49 static int tls_handshake_timeout = 10; 50 #ifdef CONFIG_NVME_TCP_TLS 51 module_param(tls_handshake_timeout, int, 0644); 52 MODULE_PARM_DESC(tls_handshake_timeout, 53 "nvme TLS handshake timeout in seconds (default 10)"); 54 #endif 55 56 static atomic_t nvme_tcp_cpu_queues[NR_CPUS]; 57 58 #ifdef CONFIG_DEBUG_LOCK_ALLOC 59 /* lockdep can detect a circular dependency of the form 60 * sk_lock -> mmap_lock (page fault) -> fs locks -> sk_lock 61 * because dependencies are tracked for both nvme-tcp and user contexts. Using 62 * a separate class prevents lockdep from conflating nvme-tcp socket use with 63 * user-space socket API use. 64 */ 65 static struct lock_class_key nvme_tcp_sk_key[2]; 66 static struct lock_class_key nvme_tcp_slock_key[2]; 67 68 static void nvme_tcp_reclassify_socket(struct socket *sock) 69 { 70 struct sock *sk = sock->sk; 71 72 if (WARN_ON_ONCE(!sock_allow_reclassification(sk))) 73 return; 74 75 switch (sk->sk_family) { 76 case AF_INET: 77 sock_lock_init_class_and_name(sk, "slock-AF_INET-NVME", 78 &nvme_tcp_slock_key[0], 79 "sk_lock-AF_INET-NVME", 80 &nvme_tcp_sk_key[0]); 81 break; 82 case AF_INET6: 83 sock_lock_init_class_and_name(sk, "slock-AF_INET6-NVME", 84 &nvme_tcp_slock_key[1], 85 "sk_lock-AF_INET6-NVME", 86 &nvme_tcp_sk_key[1]); 87 break; 88 default: 89 WARN_ON_ONCE(1); 90 } 91 } 92 #else 93 static void nvme_tcp_reclassify_socket(struct socket *sock) { } 94 #endif 95 96 enum nvme_tcp_send_state { 97 NVME_TCP_SEND_CMD_PDU = 0, 98 NVME_TCP_SEND_H2C_PDU, 99 NVME_TCP_SEND_DATA, 100 NVME_TCP_SEND_DDGST, 101 }; 102 103 struct nvme_tcp_request { 104 struct nvme_request req; 105 void *pdu; 106 struct nvme_tcp_queue *queue; 107 u32 data_len; 108 u32 pdu_len; 109 u32 pdu_sent; 110 u32 h2cdata_left; 111 u32 h2cdata_offset; 112 u16 ttag; 113 __le16 status; 114 struct list_head entry; 115 struct llist_node lentry; 116 __le32 ddgst; 117 118 struct bio *curr_bio; 119 struct iov_iter iter; 120 121 /* send state */ 122 size_t offset; 123 size_t data_sent; 124 enum nvme_tcp_send_state state; 125 }; 126 127 enum nvme_tcp_queue_flags { 128 NVME_TCP_Q_ALLOCATED = 0, 129 NVME_TCP_Q_LIVE = 1, 130 NVME_TCP_Q_POLLING = 2, 131 NVME_TCP_Q_IO_CPU_SET = 3, 132 }; 133 134 enum nvme_tcp_recv_state { 135 NVME_TCP_RECV_PDU = 0, 136 NVME_TCP_RECV_DATA, 137 NVME_TCP_RECV_DDGST, 138 }; 139 140 struct nvme_tcp_ctrl; 141 struct nvme_tcp_queue { 142 struct socket *sock; 143 struct work_struct io_work; 144 int io_cpu; 145 146 struct mutex queue_lock; 147 struct mutex send_mutex; 148 struct llist_head req_list; 149 struct list_head send_list; 150 151 /* recv state */ 152 void *pdu; 153 int pdu_remaining; 154 int pdu_offset; 155 size_t data_remaining; 156 size_t ddgst_remaining; 157 unsigned int nr_cqe; 158 159 /* send state */ 160 struct nvme_tcp_request *request; 161 162 u32 maxh2cdata; 163 size_t cmnd_capsule_len; 164 struct nvme_tcp_ctrl *ctrl; 165 unsigned long flags; 166 bool rd_enabled; 167 168 bool hdr_digest; 169 bool data_digest; 170 bool tls_enabled; 171 u32 rcv_crc; 172 u32 snd_crc; 173 __le32 exp_ddgst; 174 __le32 recv_ddgst; 175 struct completion tls_complete; 176 int tls_err; 177 struct page_frag_cache pf_cache; 178 179 void (*state_change)(struct sock *); 180 void (*data_ready)(struct sock *); 181 void (*write_space)(struct sock *); 182 }; 183 184 struct nvme_tcp_ctrl { 185 /* read only in the hot path */ 186 struct nvme_tcp_queue *queues; 187 struct blk_mq_tag_set tag_set; 188 189 /* other member variables */ 190 struct list_head list; 191 struct blk_mq_tag_set admin_tag_set; 192 struct sockaddr_storage addr; 193 struct sockaddr_storage src_addr; 194 struct nvme_ctrl ctrl; 195 196 struct work_struct err_work; 197 struct delayed_work connect_work; 198 struct nvme_tcp_request async_req; 199 u32 io_queues[HCTX_MAX_TYPES]; 200 }; 201 202 static LIST_HEAD(nvme_tcp_ctrl_list); 203 static DEFINE_MUTEX(nvme_tcp_ctrl_mutex); 204 static struct workqueue_struct *nvme_tcp_wq; 205 static const struct blk_mq_ops nvme_tcp_mq_ops; 206 static const struct blk_mq_ops nvme_tcp_admin_mq_ops; 207 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue); 208 209 static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl) 210 { 211 return container_of(ctrl, struct nvme_tcp_ctrl, ctrl); 212 } 213 214 static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue) 215 { 216 return queue - queue->ctrl->queues; 217 } 218 219 static inline bool nvme_tcp_recv_pdu_supported(enum nvme_tcp_pdu_type type) 220 { 221 switch (type) { 222 case nvme_tcp_c2h_term: 223 case nvme_tcp_c2h_data: 224 case nvme_tcp_r2t: 225 case nvme_tcp_rsp: 226 return true; 227 default: 228 return false; 229 } 230 } 231 232 /* 233 * Check if the queue is TLS encrypted 234 */ 235 static inline bool nvme_tcp_queue_tls(struct nvme_tcp_queue *queue) 236 { 237 if (!IS_ENABLED(CONFIG_NVME_TCP_TLS)) 238 return 0; 239 240 return queue->tls_enabled; 241 } 242 243 /* 244 * Check if TLS is configured for the controller. 245 */ 246 static inline bool nvme_tcp_tls_configured(struct nvme_ctrl *ctrl) 247 { 248 if (!IS_ENABLED(CONFIG_NVME_TCP_TLS)) 249 return 0; 250 251 return ctrl->opts->tls || ctrl->opts->concat; 252 } 253 254 static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue) 255 { 256 u32 queue_idx = nvme_tcp_queue_id(queue); 257 258 if (queue_idx == 0) 259 return queue->ctrl->admin_tag_set.tags[queue_idx]; 260 return queue->ctrl->tag_set.tags[queue_idx - 1]; 261 } 262 263 static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue) 264 { 265 return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0; 266 } 267 268 static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue) 269 { 270 return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0; 271 } 272 273 static inline void *nvme_tcp_req_cmd_pdu(struct nvme_tcp_request *req) 274 { 275 return req->pdu; 276 } 277 278 static inline void *nvme_tcp_req_data_pdu(struct nvme_tcp_request *req) 279 { 280 /* use the pdu space in the back for the data pdu */ 281 return req->pdu + sizeof(struct nvme_tcp_cmd_pdu) - 282 sizeof(struct nvme_tcp_data_pdu); 283 } 284 285 static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_request *req) 286 { 287 if (nvme_is_fabrics(req->req.cmd)) 288 return NVME_TCP_ADMIN_CCSZ; 289 return req->queue->cmnd_capsule_len - sizeof(struct nvme_command); 290 } 291 292 static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req) 293 { 294 return req == &req->queue->ctrl->async_req; 295 } 296 297 static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req) 298 { 299 struct request *rq; 300 301 if (unlikely(nvme_tcp_async_req(req))) 302 return false; /* async events don't have a request */ 303 304 rq = blk_mq_rq_from_pdu(req); 305 306 return rq_data_dir(rq) == WRITE && req->data_len && 307 req->data_len <= nvme_tcp_inline_data_size(req); 308 } 309 310 static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req) 311 { 312 return req->iter.bvec->bv_page; 313 } 314 315 static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req) 316 { 317 return req->iter.bvec->bv_offset + req->iter.iov_offset; 318 } 319 320 static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req) 321 { 322 return min_t(size_t, iov_iter_single_seg_count(&req->iter), 323 req->pdu_len - req->pdu_sent); 324 } 325 326 static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req) 327 { 328 return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ? 329 req->pdu_len - req->pdu_sent : 0; 330 } 331 332 static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req, 333 int len) 334 { 335 return nvme_tcp_pdu_data_left(req) <= len; 336 } 337 338 static void nvme_tcp_init_iter(struct nvme_tcp_request *req, 339 unsigned int dir) 340 { 341 struct request *rq = blk_mq_rq_from_pdu(req); 342 struct bio_vec *vec; 343 unsigned int size; 344 int nr_bvec; 345 size_t offset; 346 347 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) { 348 vec = &rq->special_vec; 349 nr_bvec = 1; 350 size = blk_rq_payload_bytes(rq); 351 offset = 0; 352 } else { 353 struct bio *bio = req->curr_bio; 354 struct bvec_iter bi; 355 struct bio_vec bv; 356 357 vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); 358 nr_bvec = 0; 359 bio_for_each_bvec(bv, bio, bi) { 360 nr_bvec++; 361 } 362 size = bio->bi_iter.bi_size; 363 offset = bio->bi_iter.bi_bvec_done; 364 } 365 366 iov_iter_bvec(&req->iter, dir, vec, nr_bvec, size); 367 req->iter.iov_offset = offset; 368 } 369 370 static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req, 371 int len) 372 { 373 req->data_sent += len; 374 req->pdu_sent += len; 375 iov_iter_advance(&req->iter, len); 376 if (!iov_iter_count(&req->iter) && 377 req->data_sent < req->data_len) { 378 req->curr_bio = req->curr_bio->bi_next; 379 nvme_tcp_init_iter(req, ITER_SOURCE); 380 } 381 } 382 383 static inline void nvme_tcp_send_all(struct nvme_tcp_queue *queue) 384 { 385 int ret; 386 387 /* drain the send queue as much as we can... */ 388 do { 389 ret = nvme_tcp_try_send(queue); 390 } while (ret > 0); 391 } 392 393 static inline bool nvme_tcp_queue_has_pending(struct nvme_tcp_queue *queue) 394 { 395 return !list_empty(&queue->send_list) || 396 !llist_empty(&queue->req_list); 397 } 398 399 static inline bool nvme_tcp_queue_more(struct nvme_tcp_queue *queue) 400 { 401 return !nvme_tcp_queue_tls(queue) && 402 nvme_tcp_queue_has_pending(queue); 403 } 404 405 static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req, 406 bool last) 407 { 408 struct nvme_tcp_queue *queue = req->queue; 409 bool empty; 410 411 empty = llist_add(&req->lentry, &queue->req_list) && 412 list_empty(&queue->send_list) && !queue->request; 413 414 /* 415 * if we're the first on the send_list and we can try to send 416 * directly, otherwise queue io_work. Also, only do that if we 417 * are on the same cpu, so we don't introduce contention. 418 */ 419 if (queue->io_cpu == raw_smp_processor_id() && 420 empty && mutex_trylock(&queue->send_mutex)) { 421 nvme_tcp_send_all(queue); 422 mutex_unlock(&queue->send_mutex); 423 } 424 425 if (last && nvme_tcp_queue_has_pending(queue)) 426 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 427 } 428 429 static void nvme_tcp_process_req_list(struct nvme_tcp_queue *queue) 430 { 431 struct nvme_tcp_request *req; 432 struct llist_node *node; 433 434 for (node = llist_del_all(&queue->req_list); node; node = node->next) { 435 req = llist_entry(node, struct nvme_tcp_request, lentry); 436 list_add(&req->entry, &queue->send_list); 437 } 438 } 439 440 static inline struct nvme_tcp_request * 441 nvme_tcp_fetch_request(struct nvme_tcp_queue *queue) 442 { 443 struct nvme_tcp_request *req; 444 445 req = list_first_entry_or_null(&queue->send_list, 446 struct nvme_tcp_request, entry); 447 if (!req) { 448 nvme_tcp_process_req_list(queue); 449 req = list_first_entry_or_null(&queue->send_list, 450 struct nvme_tcp_request, entry); 451 if (unlikely(!req)) 452 return NULL; 453 } 454 455 list_del_init(&req->entry); 456 init_llist_node(&req->lentry); 457 return req; 458 } 459 460 #define NVME_TCP_CRC_SEED (~0) 461 462 static inline void nvme_tcp_ddgst_update(u32 *crcp, 463 struct page *page, size_t off, size_t len) 464 { 465 page += off / PAGE_SIZE; 466 off %= PAGE_SIZE; 467 while (len) { 468 const void *vaddr = kmap_local_page(page); 469 size_t n = min(len, (size_t)PAGE_SIZE - off); 470 471 *crcp = crc32c(*crcp, vaddr + off, n); 472 kunmap_local(vaddr); 473 page++; 474 off = 0; 475 len -= n; 476 } 477 } 478 479 static inline __le32 nvme_tcp_ddgst_final(u32 crc) 480 { 481 return cpu_to_le32(~crc); 482 } 483 484 static inline __le32 nvme_tcp_hdgst(const void *pdu, size_t len) 485 { 486 return cpu_to_le32(~crc32c(NVME_TCP_CRC_SEED, pdu, len)); 487 } 488 489 static inline void nvme_tcp_set_hdgst(void *pdu, size_t len) 490 { 491 *(__le32 *)(pdu + len) = nvme_tcp_hdgst(pdu, len); 492 } 493 494 static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue, 495 void *pdu, size_t pdu_len) 496 { 497 struct nvme_tcp_hdr *hdr = pdu; 498 __le32 recv_digest; 499 __le32 exp_digest; 500 501 if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) { 502 dev_err(queue->ctrl->ctrl.device, 503 "queue %d: header digest flag is cleared\n", 504 nvme_tcp_queue_id(queue)); 505 return -EPROTO; 506 } 507 508 recv_digest = *(__le32 *)(pdu + hdr->hlen); 509 exp_digest = nvme_tcp_hdgst(pdu, pdu_len); 510 if (recv_digest != exp_digest) { 511 dev_err(queue->ctrl->ctrl.device, 512 "header digest error: recv %#x expected %#x\n", 513 le32_to_cpu(recv_digest), le32_to_cpu(exp_digest)); 514 return -EIO; 515 } 516 517 return 0; 518 } 519 520 static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu) 521 { 522 struct nvme_tcp_hdr *hdr = pdu; 523 u8 digest_len = nvme_tcp_hdgst_len(queue); 524 u32 len; 525 526 len = le32_to_cpu(hdr->plen) - hdr->hlen - 527 ((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0); 528 529 if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) { 530 dev_err(queue->ctrl->ctrl.device, 531 "queue %d: data digest flag is cleared\n", 532 nvme_tcp_queue_id(queue)); 533 return -EPROTO; 534 } 535 queue->rcv_crc = NVME_TCP_CRC_SEED; 536 537 return 0; 538 } 539 540 static void nvme_tcp_exit_request(struct blk_mq_tag_set *set, 541 struct request *rq, unsigned int hctx_idx) 542 { 543 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 544 545 page_frag_free(req->pdu); 546 } 547 548 static int nvme_tcp_init_request(struct blk_mq_tag_set *set, 549 struct request *rq, unsigned int hctx_idx, 550 unsigned int numa_node) 551 { 552 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(set->driver_data); 553 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 554 struct nvme_tcp_cmd_pdu *pdu; 555 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; 556 struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx]; 557 u8 hdgst = nvme_tcp_hdgst_len(queue); 558 559 req->pdu = page_frag_alloc(&queue->pf_cache, 560 sizeof(struct nvme_tcp_cmd_pdu) + hdgst, 561 GFP_KERNEL | __GFP_ZERO); 562 if (!req->pdu) 563 return -ENOMEM; 564 565 pdu = req->pdu; 566 req->queue = queue; 567 nvme_req(rq)->ctrl = &ctrl->ctrl; 568 nvme_req(rq)->cmd = &pdu->cmd; 569 init_llist_node(&req->lentry); 570 INIT_LIST_HEAD(&req->entry); 571 572 return 0; 573 } 574 575 static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 576 unsigned int hctx_idx) 577 { 578 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(data); 579 struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1]; 580 581 hctx->driver_data = queue; 582 return 0; 583 } 584 585 static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, 586 unsigned int hctx_idx) 587 { 588 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(data); 589 struct nvme_tcp_queue *queue = &ctrl->queues[0]; 590 591 hctx->driver_data = queue; 592 return 0; 593 } 594 595 static enum nvme_tcp_recv_state 596 nvme_tcp_recv_state(struct nvme_tcp_queue *queue) 597 { 598 return (queue->pdu_remaining) ? NVME_TCP_RECV_PDU : 599 (queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST : 600 NVME_TCP_RECV_DATA; 601 } 602 603 static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue) 604 { 605 queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) + 606 nvme_tcp_hdgst_len(queue); 607 queue->pdu_offset = 0; 608 queue->data_remaining = -1; 609 queue->ddgst_remaining = 0; 610 } 611 612 static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl) 613 { 614 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 615 return; 616 617 dev_warn(ctrl->device, "starting error recovery\n"); 618 queue_work(nvme_reset_wq, &to_tcp_ctrl(ctrl)->err_work); 619 } 620 621 static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue, 622 struct nvme_completion *cqe) 623 { 624 struct nvme_tcp_request *req; 625 struct request *rq; 626 627 rq = nvme_find_rq(nvme_tcp_tagset(queue), cqe->command_id); 628 if (!rq) { 629 dev_err(queue->ctrl->ctrl.device, 630 "got bad cqe.command_id %#x on queue %d\n", 631 cqe->command_id, nvme_tcp_queue_id(queue)); 632 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 633 return -EINVAL; 634 } 635 636 req = blk_mq_rq_to_pdu(rq); 637 if (req->status == cpu_to_le16(NVME_SC_SUCCESS)) 638 req->status = cqe->status; 639 640 if (!nvme_try_complete_req(rq, req->status, cqe->result)) 641 nvme_complete_rq(rq); 642 queue->nr_cqe++; 643 644 return 0; 645 } 646 647 static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue, 648 struct nvme_tcp_data_pdu *pdu) 649 { 650 struct request *rq; 651 652 rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id); 653 if (!rq) { 654 dev_err(queue->ctrl->ctrl.device, 655 "got bad c2hdata.command_id %#x on queue %d\n", 656 pdu->command_id, nvme_tcp_queue_id(queue)); 657 return -ENOENT; 658 } 659 660 if (!blk_rq_payload_bytes(rq)) { 661 dev_err(queue->ctrl->ctrl.device, 662 "queue %d tag %#x unexpected data\n", 663 nvme_tcp_queue_id(queue), rq->tag); 664 return -EIO; 665 } 666 667 queue->data_remaining = le32_to_cpu(pdu->data_length); 668 669 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS && 670 unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) { 671 dev_err(queue->ctrl->ctrl.device, 672 "queue %d tag %#x SUCCESS set but not last PDU\n", 673 nvme_tcp_queue_id(queue), rq->tag); 674 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 675 return -EPROTO; 676 } 677 678 return 0; 679 } 680 681 static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue, 682 struct nvme_tcp_rsp_pdu *pdu) 683 { 684 struct nvme_completion *cqe = &pdu->cqe; 685 int ret = 0; 686 687 /* 688 * AEN requests are special as they don't time out and can 689 * survive any kind of queue freeze and often don't respond to 690 * aborts. We don't even bother to allocate a struct request 691 * for them but rather special case them here. 692 */ 693 if (unlikely(nvme_is_aen_req(nvme_tcp_queue_id(queue), 694 cqe->command_id))) 695 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status, 696 &cqe->result); 697 else 698 ret = nvme_tcp_process_nvme_cqe(queue, cqe); 699 700 return ret; 701 } 702 703 static void nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req) 704 { 705 struct nvme_tcp_data_pdu *data = nvme_tcp_req_data_pdu(req); 706 struct nvme_tcp_queue *queue = req->queue; 707 struct request *rq = blk_mq_rq_from_pdu(req); 708 u32 h2cdata_sent = req->pdu_len; 709 u8 hdgst = nvme_tcp_hdgst_len(queue); 710 u8 ddgst = nvme_tcp_ddgst_len(queue); 711 712 req->state = NVME_TCP_SEND_H2C_PDU; 713 req->offset = 0; 714 req->pdu_len = min(req->h2cdata_left, queue->maxh2cdata); 715 req->pdu_sent = 0; 716 req->h2cdata_left -= req->pdu_len; 717 req->h2cdata_offset += h2cdata_sent; 718 719 memset(data, 0, sizeof(*data)); 720 data->hdr.type = nvme_tcp_h2c_data; 721 if (!req->h2cdata_left) 722 data->hdr.flags = NVME_TCP_F_DATA_LAST; 723 if (queue->hdr_digest) 724 data->hdr.flags |= NVME_TCP_F_HDGST; 725 if (queue->data_digest) 726 data->hdr.flags |= NVME_TCP_F_DDGST; 727 data->hdr.hlen = sizeof(*data); 728 data->hdr.pdo = data->hdr.hlen + hdgst; 729 data->hdr.plen = 730 cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst); 731 data->ttag = req->ttag; 732 data->command_id = nvme_cid(rq); 733 data->data_offset = cpu_to_le32(req->h2cdata_offset); 734 data->data_length = cpu_to_le32(req->pdu_len); 735 } 736 737 static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue, 738 struct nvme_tcp_r2t_pdu *pdu) 739 { 740 struct nvme_tcp_request *req; 741 struct request *rq; 742 u32 r2t_length = le32_to_cpu(pdu->r2t_length); 743 u32 r2t_offset = le32_to_cpu(pdu->r2t_offset); 744 745 rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id); 746 if (!rq) { 747 dev_err(queue->ctrl->ctrl.device, 748 "got bad r2t.command_id %#x on queue %d\n", 749 pdu->command_id, nvme_tcp_queue_id(queue)); 750 return -ENOENT; 751 } 752 req = blk_mq_rq_to_pdu(rq); 753 754 if (unlikely(!r2t_length)) { 755 dev_err(queue->ctrl->ctrl.device, 756 "req %d r2t len is %u, probably a bug...\n", 757 rq->tag, r2t_length); 758 return -EPROTO; 759 } 760 761 if (unlikely(req->data_sent + r2t_length > req->data_len)) { 762 dev_err(queue->ctrl->ctrl.device, 763 "req %d r2t len %u exceeded data len %u (%zu sent)\n", 764 rq->tag, r2t_length, req->data_len, req->data_sent); 765 return -EPROTO; 766 } 767 768 if (unlikely(r2t_offset < req->data_sent)) { 769 dev_err(queue->ctrl->ctrl.device, 770 "req %d unexpected r2t offset %u (expected %zu)\n", 771 rq->tag, r2t_offset, req->data_sent); 772 return -EPROTO; 773 } 774 775 if (llist_on_list(&req->lentry) || 776 !list_empty(&req->entry)) { 777 dev_err(queue->ctrl->ctrl.device, 778 "req %d unexpected r2t while processing request\n", 779 rq->tag); 780 return -EPROTO; 781 } 782 783 req->pdu_len = 0; 784 req->h2cdata_left = r2t_length; 785 req->h2cdata_offset = r2t_offset; 786 req->ttag = pdu->ttag; 787 788 nvme_tcp_setup_h2c_data_pdu(req); 789 790 llist_add(&req->lentry, &queue->req_list); 791 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 792 793 return 0; 794 } 795 796 static void nvme_tcp_handle_c2h_term(struct nvme_tcp_queue *queue, 797 struct nvme_tcp_term_pdu *pdu) 798 { 799 u16 fes; 800 const char *msg; 801 u32 plen = le32_to_cpu(pdu->hdr.plen); 802 803 static const char * const msg_table[] = { 804 [NVME_TCP_FES_INVALID_PDU_HDR] = "Invalid PDU Header Field", 805 [NVME_TCP_FES_PDU_SEQ_ERR] = "PDU Sequence Error", 806 [NVME_TCP_FES_HDR_DIGEST_ERR] = "Header Digest Error", 807 [NVME_TCP_FES_DATA_OUT_OF_RANGE] = "Data Transfer Out Of Range", 808 [NVME_TCP_FES_DATA_LIMIT_EXCEEDED] = "Data Transfer Limit Exceeded", 809 [NVME_TCP_FES_UNSUPPORTED_PARAM] = "Unsupported Parameter", 810 }; 811 812 if (plen < NVME_TCP_MIN_C2HTERM_PLEN || 813 plen > NVME_TCP_MAX_C2HTERM_PLEN) { 814 dev_err(queue->ctrl->ctrl.device, 815 "Received a malformed C2HTermReq PDU (plen = %u)\n", 816 plen); 817 return; 818 } 819 820 fes = le16_to_cpu(pdu->fes); 821 if (fes && fes < ARRAY_SIZE(msg_table)) 822 msg = msg_table[fes]; 823 else 824 msg = "Unknown"; 825 826 dev_err(queue->ctrl->ctrl.device, 827 "Received C2HTermReq (FES = %s)\n", msg); 828 } 829 830 static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb, 831 unsigned int *offset, size_t *len) 832 { 833 struct nvme_tcp_hdr *hdr; 834 char *pdu = queue->pdu; 835 size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining); 836 int ret; 837 838 ret = skb_copy_bits(skb, *offset, 839 &pdu[queue->pdu_offset], rcv_len); 840 if (unlikely(ret)) 841 return ret; 842 843 queue->pdu_remaining -= rcv_len; 844 queue->pdu_offset += rcv_len; 845 *offset += rcv_len; 846 *len -= rcv_len; 847 if (queue->pdu_remaining) 848 return 0; 849 850 hdr = queue->pdu; 851 if (unlikely(hdr->hlen != sizeof(struct nvme_tcp_rsp_pdu))) { 852 if (!nvme_tcp_recv_pdu_supported(hdr->type)) 853 goto unsupported_pdu; 854 855 dev_err(queue->ctrl->ctrl.device, 856 "pdu type %d has unexpected header length (%d)\n", 857 hdr->type, hdr->hlen); 858 return -EPROTO; 859 } 860 861 if (unlikely(hdr->type == nvme_tcp_c2h_term)) { 862 /* 863 * C2HTermReq never includes Header or Data digests. 864 * Skip the checks. 865 */ 866 nvme_tcp_handle_c2h_term(queue, (void *)queue->pdu); 867 return -EINVAL; 868 } 869 870 if (queue->hdr_digest) { 871 ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen); 872 if (unlikely(ret)) 873 return ret; 874 } 875 876 877 if (queue->data_digest) { 878 ret = nvme_tcp_check_ddgst(queue, queue->pdu); 879 if (unlikely(ret)) 880 return ret; 881 } 882 883 switch (hdr->type) { 884 case nvme_tcp_c2h_data: 885 return nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu); 886 case nvme_tcp_rsp: 887 nvme_tcp_init_recv_ctx(queue); 888 return nvme_tcp_handle_comp(queue, (void *)queue->pdu); 889 case nvme_tcp_r2t: 890 nvme_tcp_init_recv_ctx(queue); 891 return nvme_tcp_handle_r2t(queue, (void *)queue->pdu); 892 default: 893 goto unsupported_pdu; 894 } 895 896 unsupported_pdu: 897 dev_err(queue->ctrl->ctrl.device, 898 "unsupported pdu type (%d)\n", hdr->type); 899 return -EINVAL; 900 } 901 902 static inline void nvme_tcp_end_request(struct request *rq, u16 status) 903 { 904 union nvme_result res = {}; 905 906 if (!nvme_try_complete_req(rq, cpu_to_le16(status << 1), res)) 907 nvme_complete_rq(rq); 908 } 909 910 static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb, 911 unsigned int *offset, size_t *len) 912 { 913 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu; 914 struct request *rq = 915 nvme_cid_to_rq(nvme_tcp_tagset(queue), pdu->command_id); 916 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 917 918 while (true) { 919 int recv_len, ret; 920 921 recv_len = min_t(size_t, *len, queue->data_remaining); 922 if (!recv_len) 923 break; 924 925 if (!iov_iter_count(&req->iter)) { 926 req->curr_bio = req->curr_bio->bi_next; 927 928 /* 929 * If we don`t have any bios it means that controller 930 * sent more data than we requested, hence error 931 */ 932 if (!req->curr_bio) { 933 dev_err(queue->ctrl->ctrl.device, 934 "queue %d no space in request %#x", 935 nvme_tcp_queue_id(queue), rq->tag); 936 nvme_tcp_init_recv_ctx(queue); 937 return -EIO; 938 } 939 nvme_tcp_init_iter(req, ITER_DEST); 940 } 941 942 /* we can read only from what is left in this bio */ 943 recv_len = min_t(size_t, recv_len, 944 iov_iter_count(&req->iter)); 945 946 if (queue->data_digest) 947 ret = skb_copy_and_crc32c_datagram_iter(skb, *offset, 948 &req->iter, recv_len, &queue->rcv_crc); 949 else 950 ret = skb_copy_datagram_iter(skb, *offset, 951 &req->iter, recv_len); 952 if (ret) { 953 dev_err(queue->ctrl->ctrl.device, 954 "queue %d failed to copy request %#x data", 955 nvme_tcp_queue_id(queue), rq->tag); 956 return ret; 957 } 958 959 *len -= recv_len; 960 *offset += recv_len; 961 queue->data_remaining -= recv_len; 962 } 963 964 if (!queue->data_remaining) { 965 if (queue->data_digest) { 966 queue->exp_ddgst = nvme_tcp_ddgst_final(queue->rcv_crc); 967 queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH; 968 } else { 969 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) { 970 nvme_tcp_end_request(rq, 971 le16_to_cpu(req->status)); 972 queue->nr_cqe++; 973 } 974 nvme_tcp_init_recv_ctx(queue); 975 } 976 } 977 978 return 0; 979 } 980 981 static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue, 982 struct sk_buff *skb, unsigned int *offset, size_t *len) 983 { 984 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu; 985 char *ddgst = (char *)&queue->recv_ddgst; 986 size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining); 987 off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining; 988 int ret; 989 990 ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len); 991 if (unlikely(ret)) 992 return ret; 993 994 queue->ddgst_remaining -= recv_len; 995 *offset += recv_len; 996 *len -= recv_len; 997 if (queue->ddgst_remaining) 998 return 0; 999 1000 if (queue->recv_ddgst != queue->exp_ddgst) { 1001 struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue), 1002 pdu->command_id); 1003 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 1004 1005 req->status = cpu_to_le16(NVME_SC_DATA_XFER_ERROR); 1006 1007 dev_err(queue->ctrl->ctrl.device, 1008 "data digest error: recv %#x expected %#x\n", 1009 le32_to_cpu(queue->recv_ddgst), 1010 le32_to_cpu(queue->exp_ddgst)); 1011 } 1012 1013 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) { 1014 struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue), 1015 pdu->command_id); 1016 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 1017 1018 nvme_tcp_end_request(rq, le16_to_cpu(req->status)); 1019 queue->nr_cqe++; 1020 } 1021 1022 nvme_tcp_init_recv_ctx(queue); 1023 return 0; 1024 } 1025 1026 static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb, 1027 unsigned int offset, size_t len) 1028 { 1029 struct nvme_tcp_queue *queue = desc->arg.data; 1030 size_t consumed = len; 1031 int result; 1032 1033 if (unlikely(!queue->rd_enabled)) 1034 return -EFAULT; 1035 1036 while (len) { 1037 switch (nvme_tcp_recv_state(queue)) { 1038 case NVME_TCP_RECV_PDU: 1039 result = nvme_tcp_recv_pdu(queue, skb, &offset, &len); 1040 break; 1041 case NVME_TCP_RECV_DATA: 1042 result = nvme_tcp_recv_data(queue, skb, &offset, &len); 1043 break; 1044 case NVME_TCP_RECV_DDGST: 1045 result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len); 1046 break; 1047 default: 1048 result = -EFAULT; 1049 } 1050 if (result) { 1051 dev_err(queue->ctrl->ctrl.device, 1052 "receive failed: %d\n", result); 1053 queue->rd_enabled = false; 1054 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 1055 return result; 1056 } 1057 } 1058 1059 return consumed; 1060 } 1061 1062 static void nvme_tcp_data_ready(struct sock *sk) 1063 { 1064 struct nvme_tcp_queue *queue; 1065 1066 trace_sk_data_ready(sk); 1067 1068 read_lock_bh(&sk->sk_callback_lock); 1069 queue = sk->sk_user_data; 1070 if (likely(queue && queue->rd_enabled) && 1071 !test_bit(NVME_TCP_Q_POLLING, &queue->flags)) 1072 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 1073 read_unlock_bh(&sk->sk_callback_lock); 1074 } 1075 1076 static void nvme_tcp_write_space(struct sock *sk) 1077 { 1078 struct nvme_tcp_queue *queue; 1079 1080 read_lock_bh(&sk->sk_callback_lock); 1081 queue = sk->sk_user_data; 1082 if (likely(queue && sk_stream_is_writeable(sk))) { 1083 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1084 /* Ensure pending TLS partial records are retried */ 1085 if (nvme_tcp_queue_tls(queue)) 1086 queue->write_space(sk); 1087 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 1088 } 1089 read_unlock_bh(&sk->sk_callback_lock); 1090 } 1091 1092 static void nvme_tcp_state_change(struct sock *sk) 1093 { 1094 struct nvme_tcp_queue *queue; 1095 1096 read_lock_bh(&sk->sk_callback_lock); 1097 queue = sk->sk_user_data; 1098 if (!queue) 1099 goto done; 1100 1101 switch (sk->sk_state) { 1102 case TCP_CLOSE: 1103 case TCP_CLOSE_WAIT: 1104 case TCP_LAST_ACK: 1105 case TCP_FIN_WAIT1: 1106 case TCP_FIN_WAIT2: 1107 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 1108 break; 1109 default: 1110 dev_info(queue->ctrl->ctrl.device, 1111 "queue %d socket state %d\n", 1112 nvme_tcp_queue_id(queue), sk->sk_state); 1113 } 1114 1115 queue->state_change(sk); 1116 done: 1117 read_unlock_bh(&sk->sk_callback_lock); 1118 } 1119 1120 static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue) 1121 { 1122 queue->request = NULL; 1123 } 1124 1125 static void nvme_tcp_fail_request(struct nvme_tcp_request *req) 1126 { 1127 if (nvme_tcp_async_req(req)) { 1128 union nvme_result res = {}; 1129 1130 nvme_complete_async_event(&req->queue->ctrl->ctrl, 1131 cpu_to_le16(NVME_SC_HOST_PATH_ERROR), &res); 1132 } else { 1133 nvme_tcp_end_request(blk_mq_rq_from_pdu(req), 1134 NVME_SC_HOST_PATH_ERROR); 1135 } 1136 } 1137 1138 static int nvme_tcp_try_send_data(struct nvme_tcp_request *req) 1139 { 1140 struct nvme_tcp_queue *queue = req->queue; 1141 int req_data_len = req->data_len; 1142 u32 h2cdata_left = req->h2cdata_left; 1143 1144 while (true) { 1145 struct bio_vec bvec; 1146 struct msghdr msg = { 1147 .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, 1148 }; 1149 struct page *page = nvme_tcp_req_cur_page(req); 1150 size_t offset = nvme_tcp_req_cur_offset(req); 1151 size_t len = nvme_tcp_req_cur_length(req); 1152 bool last = nvme_tcp_pdu_last_send(req, len); 1153 int req_data_sent = req->data_sent; 1154 int ret; 1155 1156 if (last && !queue->data_digest && !nvme_tcp_queue_more(queue)) 1157 msg.msg_flags |= MSG_EOR; 1158 else 1159 msg.msg_flags |= MSG_MORE; 1160 1161 if (!sendpages_ok(page, len, offset)) 1162 msg.msg_flags &= ~MSG_SPLICE_PAGES; 1163 1164 bvec_set_page(&bvec, page, len, offset); 1165 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len); 1166 ret = sock_sendmsg(queue->sock, &msg); 1167 if (ret <= 0) 1168 return ret; 1169 1170 if (queue->data_digest) 1171 nvme_tcp_ddgst_update(&queue->snd_crc, page, 1172 offset, ret); 1173 1174 /* 1175 * update the request iterator except for the last payload send 1176 * in the request where we don't want to modify it as we may 1177 * compete with the RX path completing the request. 1178 */ 1179 if (req_data_sent + ret < req_data_len) 1180 nvme_tcp_advance_req(req, ret); 1181 1182 /* fully successful last send in current PDU */ 1183 if (last && ret == len) { 1184 if (queue->data_digest) { 1185 req->ddgst = 1186 nvme_tcp_ddgst_final(queue->snd_crc); 1187 req->state = NVME_TCP_SEND_DDGST; 1188 req->offset = 0; 1189 } else { 1190 if (h2cdata_left) 1191 nvme_tcp_setup_h2c_data_pdu(req); 1192 else 1193 nvme_tcp_done_send_req(queue); 1194 } 1195 return 1; 1196 } 1197 } 1198 return -EAGAIN; 1199 } 1200 1201 static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req) 1202 { 1203 struct nvme_tcp_queue *queue = req->queue; 1204 struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req); 1205 struct bio_vec bvec; 1206 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, }; 1207 bool inline_data = nvme_tcp_has_inline_data(req); 1208 u8 hdgst = nvme_tcp_hdgst_len(queue); 1209 int len = sizeof(*pdu) + hdgst - req->offset; 1210 int ret; 1211 1212 if (inline_data || nvme_tcp_queue_more(queue)) 1213 msg.msg_flags |= MSG_MORE; 1214 else 1215 msg.msg_flags |= MSG_EOR; 1216 1217 if (queue->hdr_digest && !req->offset) 1218 nvme_tcp_set_hdgst(pdu, sizeof(*pdu)); 1219 1220 bvec_set_virt(&bvec, (void *)pdu + req->offset, len); 1221 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len); 1222 ret = sock_sendmsg(queue->sock, &msg); 1223 if (unlikely(ret <= 0)) 1224 return ret; 1225 1226 len -= ret; 1227 if (!len) { 1228 if (inline_data) { 1229 req->state = NVME_TCP_SEND_DATA; 1230 if (queue->data_digest) 1231 queue->snd_crc = NVME_TCP_CRC_SEED; 1232 } else { 1233 nvme_tcp_done_send_req(queue); 1234 } 1235 return 1; 1236 } 1237 req->offset += ret; 1238 1239 return -EAGAIN; 1240 } 1241 1242 static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req) 1243 { 1244 struct nvme_tcp_queue *queue = req->queue; 1245 struct nvme_tcp_data_pdu *pdu = nvme_tcp_req_data_pdu(req); 1246 struct bio_vec bvec; 1247 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_MORE, }; 1248 u8 hdgst = nvme_tcp_hdgst_len(queue); 1249 int len = sizeof(*pdu) - req->offset + hdgst; 1250 int ret; 1251 1252 if (queue->hdr_digest && !req->offset) 1253 nvme_tcp_set_hdgst(pdu, sizeof(*pdu)); 1254 1255 if (!req->h2cdata_left) 1256 msg.msg_flags |= MSG_SPLICE_PAGES; 1257 1258 bvec_set_virt(&bvec, (void *)pdu + req->offset, len); 1259 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len); 1260 ret = sock_sendmsg(queue->sock, &msg); 1261 if (unlikely(ret <= 0)) 1262 return ret; 1263 1264 len -= ret; 1265 if (!len) { 1266 req->state = NVME_TCP_SEND_DATA; 1267 if (queue->data_digest) 1268 queue->snd_crc = NVME_TCP_CRC_SEED; 1269 return 1; 1270 } 1271 req->offset += ret; 1272 1273 return -EAGAIN; 1274 } 1275 1276 static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req) 1277 { 1278 struct nvme_tcp_queue *queue = req->queue; 1279 size_t offset = req->offset; 1280 u32 h2cdata_left = req->h2cdata_left; 1281 int ret; 1282 struct msghdr msg = { .msg_flags = MSG_DONTWAIT }; 1283 struct kvec iov = { 1284 .iov_base = (u8 *)&req->ddgst + req->offset, 1285 .iov_len = NVME_TCP_DIGEST_LENGTH - req->offset 1286 }; 1287 1288 if (nvme_tcp_queue_more(queue)) 1289 msg.msg_flags |= MSG_MORE; 1290 else 1291 msg.msg_flags |= MSG_EOR; 1292 1293 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len); 1294 if (unlikely(ret <= 0)) 1295 return ret; 1296 1297 if (offset + ret == NVME_TCP_DIGEST_LENGTH) { 1298 if (h2cdata_left) 1299 nvme_tcp_setup_h2c_data_pdu(req); 1300 else 1301 nvme_tcp_done_send_req(queue); 1302 return 1; 1303 } 1304 1305 req->offset += ret; 1306 return -EAGAIN; 1307 } 1308 1309 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue) 1310 { 1311 struct nvme_tcp_request *req; 1312 unsigned int noreclaim_flag; 1313 int ret = 1; 1314 1315 if (!queue->request) { 1316 queue->request = nvme_tcp_fetch_request(queue); 1317 if (!queue->request) 1318 return 0; 1319 } 1320 req = queue->request; 1321 1322 noreclaim_flag = memalloc_noreclaim_save(); 1323 if (req->state == NVME_TCP_SEND_CMD_PDU) { 1324 ret = nvme_tcp_try_send_cmd_pdu(req); 1325 if (ret <= 0) 1326 goto done; 1327 if (!nvme_tcp_has_inline_data(req)) 1328 goto out; 1329 } 1330 1331 if (req->state == NVME_TCP_SEND_H2C_PDU) { 1332 ret = nvme_tcp_try_send_data_pdu(req); 1333 if (ret <= 0) 1334 goto done; 1335 } 1336 1337 if (req->state == NVME_TCP_SEND_DATA) { 1338 ret = nvme_tcp_try_send_data(req); 1339 if (ret <= 0) 1340 goto done; 1341 } 1342 1343 if (req->state == NVME_TCP_SEND_DDGST) 1344 ret = nvme_tcp_try_send_ddgst(req); 1345 done: 1346 if (ret == -EAGAIN) { 1347 ret = 0; 1348 } else if (ret < 0) { 1349 dev_err(queue->ctrl->ctrl.device, 1350 "failed to send request %d\n", ret); 1351 nvme_tcp_fail_request(queue->request); 1352 nvme_tcp_done_send_req(queue); 1353 } 1354 out: 1355 memalloc_noreclaim_restore(noreclaim_flag); 1356 return ret; 1357 } 1358 1359 static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue) 1360 { 1361 struct socket *sock = queue->sock; 1362 struct sock *sk = sock->sk; 1363 read_descriptor_t rd_desc; 1364 int consumed; 1365 1366 rd_desc.arg.data = queue; 1367 rd_desc.count = 1; 1368 lock_sock(sk); 1369 queue->nr_cqe = 0; 1370 consumed = sock->ops->read_sock(sk, &rd_desc, nvme_tcp_recv_skb); 1371 release_sock(sk); 1372 return consumed == -EAGAIN ? 0 : consumed; 1373 } 1374 1375 static void nvme_tcp_io_work(struct work_struct *w) 1376 { 1377 struct nvme_tcp_queue *queue = 1378 container_of(w, struct nvme_tcp_queue, io_work); 1379 unsigned long deadline = jiffies + msecs_to_jiffies(1); 1380 1381 do { 1382 bool pending = false; 1383 int result; 1384 1385 if (mutex_trylock(&queue->send_mutex)) { 1386 result = nvme_tcp_try_send(queue); 1387 mutex_unlock(&queue->send_mutex); 1388 if (result > 0) 1389 pending = true; 1390 else if (unlikely(result < 0)) 1391 break; 1392 } 1393 1394 result = nvme_tcp_try_recv(queue); 1395 if (result > 0) 1396 pending = true; 1397 else if (unlikely(result < 0)) 1398 return; 1399 1400 /* did we get some space after spending time in recv? */ 1401 if (nvme_tcp_queue_has_pending(queue) && 1402 sk_stream_is_writeable(queue->sock->sk)) 1403 pending = true; 1404 1405 if (!pending || !queue->rd_enabled) 1406 return; 1407 1408 } while (!time_after(jiffies, deadline)); /* quota is exhausted */ 1409 1410 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 1411 } 1412 1413 static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl) 1414 { 1415 struct nvme_tcp_request *async = &ctrl->async_req; 1416 1417 page_frag_free(async->pdu); 1418 } 1419 1420 static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl) 1421 { 1422 struct nvme_tcp_queue *queue = &ctrl->queues[0]; 1423 struct nvme_tcp_request *async = &ctrl->async_req; 1424 u8 hdgst = nvme_tcp_hdgst_len(queue); 1425 1426 async->pdu = page_frag_alloc(&queue->pf_cache, 1427 sizeof(struct nvme_tcp_cmd_pdu) + hdgst, 1428 GFP_KERNEL | __GFP_ZERO); 1429 if (!async->pdu) 1430 return -ENOMEM; 1431 1432 async->queue = &ctrl->queues[0]; 1433 return 0; 1434 } 1435 1436 static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid) 1437 { 1438 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1439 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1440 unsigned int noreclaim_flag; 1441 1442 if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags)) 1443 return; 1444 1445 page_frag_cache_drain(&queue->pf_cache); 1446 1447 noreclaim_flag = memalloc_noreclaim_save(); 1448 /* ->sock will be released by fput() */ 1449 fput(queue->sock->file); 1450 queue->sock = NULL; 1451 memalloc_noreclaim_restore(noreclaim_flag); 1452 1453 kfree(queue->pdu); 1454 mutex_destroy(&queue->send_mutex); 1455 mutex_destroy(&queue->queue_lock); 1456 } 1457 1458 static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue) 1459 { 1460 struct nvme_tcp_icreq_pdu *icreq; 1461 struct nvme_tcp_icresp_pdu *icresp; 1462 char cbuf[CMSG_LEN(sizeof(char))] = {}; 1463 u8 ctype; 1464 struct msghdr msg = {}; 1465 struct kvec iov; 1466 bool ctrl_hdgst, ctrl_ddgst; 1467 u32 maxh2cdata; 1468 int ret; 1469 1470 icreq = kzalloc(sizeof(*icreq), GFP_KERNEL); 1471 if (!icreq) 1472 return -ENOMEM; 1473 1474 icresp = kzalloc(sizeof(*icresp), GFP_KERNEL); 1475 if (!icresp) { 1476 ret = -ENOMEM; 1477 goto free_icreq; 1478 } 1479 1480 icreq->hdr.type = nvme_tcp_icreq; 1481 icreq->hdr.hlen = sizeof(*icreq); 1482 icreq->hdr.pdo = 0; 1483 icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen); 1484 icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0); 1485 icreq->maxr2t = 0; /* single inflight r2t supported */ 1486 icreq->hpda = 0; /* no alignment constraint */ 1487 if (queue->hdr_digest) 1488 icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE; 1489 if (queue->data_digest) 1490 icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE; 1491 1492 iov.iov_base = icreq; 1493 iov.iov_len = sizeof(*icreq); 1494 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len); 1495 if (ret < 0) { 1496 pr_warn("queue %d: failed to send icreq, error %d\n", 1497 nvme_tcp_queue_id(queue), ret); 1498 goto free_icresp; 1499 } 1500 1501 memset(&msg, 0, sizeof(msg)); 1502 iov.iov_base = icresp; 1503 iov.iov_len = sizeof(*icresp); 1504 if (nvme_tcp_queue_tls(queue)) { 1505 msg.msg_control = cbuf; 1506 msg.msg_controllen = sizeof(cbuf); 1507 } 1508 msg.msg_flags = MSG_WAITALL; 1509 ret = kernel_recvmsg(queue->sock, &msg, &iov, 1, 1510 iov.iov_len, msg.msg_flags); 1511 if (ret >= 0 && ret < sizeof(*icresp)) 1512 ret = -ECONNRESET; 1513 if (ret < 0) { 1514 pr_warn("queue %d: failed to receive icresp, error %d\n", 1515 nvme_tcp_queue_id(queue), ret); 1516 goto free_icresp; 1517 } 1518 ret = -ENOTCONN; 1519 if (nvme_tcp_queue_tls(queue)) { 1520 ctype = tls_get_record_type(queue->sock->sk, 1521 (struct cmsghdr *)cbuf); 1522 if (ctype != TLS_RECORD_TYPE_DATA) { 1523 pr_err("queue %d: unhandled TLS record %d\n", 1524 nvme_tcp_queue_id(queue), ctype); 1525 goto free_icresp; 1526 } 1527 } 1528 ret = -EINVAL; 1529 if (icresp->hdr.type != nvme_tcp_icresp) { 1530 pr_err("queue %d: bad type returned %d\n", 1531 nvme_tcp_queue_id(queue), icresp->hdr.type); 1532 goto free_icresp; 1533 } 1534 1535 if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) { 1536 pr_err("queue %d: bad pdu length returned %d\n", 1537 nvme_tcp_queue_id(queue), icresp->hdr.plen); 1538 goto free_icresp; 1539 } 1540 1541 if (icresp->pfv != NVME_TCP_PFV_1_0) { 1542 pr_err("queue %d: bad pfv returned %d\n", 1543 nvme_tcp_queue_id(queue), icresp->pfv); 1544 goto free_icresp; 1545 } 1546 1547 ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE); 1548 if ((queue->data_digest && !ctrl_ddgst) || 1549 (!queue->data_digest && ctrl_ddgst)) { 1550 pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n", 1551 nvme_tcp_queue_id(queue), 1552 queue->data_digest ? "enabled" : "disabled", 1553 ctrl_ddgst ? "enabled" : "disabled"); 1554 goto free_icresp; 1555 } 1556 1557 ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE); 1558 if ((queue->hdr_digest && !ctrl_hdgst) || 1559 (!queue->hdr_digest && ctrl_hdgst)) { 1560 pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n", 1561 nvme_tcp_queue_id(queue), 1562 queue->hdr_digest ? "enabled" : "disabled", 1563 ctrl_hdgst ? "enabled" : "disabled"); 1564 goto free_icresp; 1565 } 1566 1567 if (icresp->cpda != 0) { 1568 pr_err("queue %d: unsupported cpda returned %d\n", 1569 nvme_tcp_queue_id(queue), icresp->cpda); 1570 goto free_icresp; 1571 } 1572 1573 maxh2cdata = le32_to_cpu(icresp->maxdata); 1574 if ((maxh2cdata % 4) || (maxh2cdata < NVME_TCP_MIN_MAXH2CDATA)) { 1575 pr_err("queue %d: invalid maxh2cdata returned %u\n", 1576 nvme_tcp_queue_id(queue), maxh2cdata); 1577 goto free_icresp; 1578 } 1579 queue->maxh2cdata = maxh2cdata; 1580 1581 ret = 0; 1582 free_icresp: 1583 kfree(icresp); 1584 free_icreq: 1585 kfree(icreq); 1586 return ret; 1587 } 1588 1589 static bool nvme_tcp_admin_queue(struct nvme_tcp_queue *queue) 1590 { 1591 return nvme_tcp_queue_id(queue) == 0; 1592 } 1593 1594 static bool nvme_tcp_default_queue(struct nvme_tcp_queue *queue) 1595 { 1596 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1597 int qid = nvme_tcp_queue_id(queue); 1598 1599 return !nvme_tcp_admin_queue(queue) && 1600 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT]; 1601 } 1602 1603 static bool nvme_tcp_read_queue(struct nvme_tcp_queue *queue) 1604 { 1605 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1606 int qid = nvme_tcp_queue_id(queue); 1607 1608 return !nvme_tcp_admin_queue(queue) && 1609 !nvme_tcp_default_queue(queue) && 1610 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] + 1611 ctrl->io_queues[HCTX_TYPE_READ]; 1612 } 1613 1614 static bool nvme_tcp_poll_queue(struct nvme_tcp_queue *queue) 1615 { 1616 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1617 int qid = nvme_tcp_queue_id(queue); 1618 1619 return !nvme_tcp_admin_queue(queue) && 1620 !nvme_tcp_default_queue(queue) && 1621 !nvme_tcp_read_queue(queue) && 1622 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] + 1623 ctrl->io_queues[HCTX_TYPE_READ] + 1624 ctrl->io_queues[HCTX_TYPE_POLL]; 1625 } 1626 1627 /* 1628 * Track the number of queues assigned to each cpu using a global per-cpu 1629 * counter and select the least used cpu from the mq_map. Our goal is to spread 1630 * different controllers I/O threads across different cpu cores. 1631 * 1632 * Note that the accounting is not 100% perfect, but we don't need to be, we're 1633 * simply putting our best effort to select the best candidate cpu core that we 1634 * find at any given point. 1635 */ 1636 static void nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue *queue) 1637 { 1638 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1639 struct blk_mq_tag_set *set = &ctrl->tag_set; 1640 int qid = nvme_tcp_queue_id(queue) - 1; 1641 unsigned int *mq_map = NULL; 1642 int cpu, min_queues = INT_MAX, io_cpu; 1643 1644 if (wq_unbound) 1645 goto out; 1646 1647 if (nvme_tcp_default_queue(queue)) 1648 mq_map = set->map[HCTX_TYPE_DEFAULT].mq_map; 1649 else if (nvme_tcp_read_queue(queue)) 1650 mq_map = set->map[HCTX_TYPE_READ].mq_map; 1651 else if (nvme_tcp_poll_queue(queue)) 1652 mq_map = set->map[HCTX_TYPE_POLL].mq_map; 1653 1654 if (WARN_ON(!mq_map)) 1655 goto out; 1656 1657 /* Search for the least used cpu from the mq_map */ 1658 io_cpu = WORK_CPU_UNBOUND; 1659 for_each_online_cpu(cpu) { 1660 int num_queues = atomic_read(&nvme_tcp_cpu_queues[cpu]); 1661 1662 if (mq_map[cpu] != qid) 1663 continue; 1664 if (num_queues < min_queues) { 1665 io_cpu = cpu; 1666 min_queues = num_queues; 1667 } 1668 } 1669 if (io_cpu != WORK_CPU_UNBOUND) { 1670 queue->io_cpu = io_cpu; 1671 atomic_inc(&nvme_tcp_cpu_queues[io_cpu]); 1672 set_bit(NVME_TCP_Q_IO_CPU_SET, &queue->flags); 1673 } 1674 out: 1675 dev_dbg(ctrl->ctrl.device, "queue %d: using cpu %d\n", 1676 qid, queue->io_cpu); 1677 } 1678 1679 static void nvme_tcp_tls_done(void *data, int status, key_serial_t pskid) 1680 { 1681 struct nvme_tcp_queue *queue = data; 1682 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1683 int qid = nvme_tcp_queue_id(queue); 1684 struct key *tls_key; 1685 1686 dev_dbg(ctrl->ctrl.device, "queue %d: TLS handshake done, key %x, status %d\n", 1687 qid, pskid, status); 1688 1689 if (status) { 1690 queue->tls_err = -status; 1691 goto out_complete; 1692 } 1693 1694 tls_key = nvme_tls_key_lookup(pskid); 1695 if (IS_ERR(tls_key)) { 1696 dev_warn(ctrl->ctrl.device, "queue %d: Invalid key %x\n", 1697 qid, pskid); 1698 queue->tls_err = -ENOKEY; 1699 } else { 1700 queue->tls_enabled = true; 1701 if (qid == 0) 1702 ctrl->ctrl.tls_pskid = key_serial(tls_key); 1703 key_put(tls_key); 1704 queue->tls_err = 0; 1705 } 1706 1707 out_complete: 1708 complete(&queue->tls_complete); 1709 } 1710 1711 static int nvme_tcp_start_tls(struct nvme_ctrl *nctrl, 1712 struct nvme_tcp_queue *queue, 1713 key_serial_t pskid) 1714 { 1715 int qid = nvme_tcp_queue_id(queue); 1716 int ret; 1717 struct tls_handshake_args args; 1718 unsigned long tmo = tls_handshake_timeout * HZ; 1719 key_serial_t keyring = nvme_keyring_id(); 1720 1721 dev_dbg(nctrl->device, "queue %d: start TLS with key %x\n", 1722 qid, pskid); 1723 memset(&args, 0, sizeof(args)); 1724 args.ta_sock = queue->sock; 1725 args.ta_done = nvme_tcp_tls_done; 1726 args.ta_data = queue; 1727 args.ta_my_peerids[0] = pskid; 1728 args.ta_num_peerids = 1; 1729 if (nctrl->opts->keyring) 1730 keyring = key_serial(nctrl->opts->keyring); 1731 args.ta_keyring = keyring; 1732 args.ta_timeout_ms = tls_handshake_timeout * 1000; 1733 queue->tls_err = -EOPNOTSUPP; 1734 init_completion(&queue->tls_complete); 1735 ret = tls_client_hello_psk(&args, GFP_KERNEL); 1736 if (ret) { 1737 dev_err(nctrl->device, "queue %d: failed to start TLS: %d\n", 1738 qid, ret); 1739 return ret; 1740 } 1741 ret = wait_for_completion_interruptible_timeout(&queue->tls_complete, tmo); 1742 if (ret <= 0) { 1743 if (ret == 0) 1744 ret = -ETIMEDOUT; 1745 1746 dev_err(nctrl->device, 1747 "queue %d: TLS handshake failed, error %d\n", 1748 qid, ret); 1749 tls_handshake_cancel(queue->sock->sk); 1750 } else { 1751 if (queue->tls_err) { 1752 dev_err(nctrl->device, 1753 "queue %d: TLS handshake complete, error %d\n", 1754 qid, queue->tls_err); 1755 } else { 1756 dev_dbg(nctrl->device, 1757 "queue %d: TLS handshake complete\n", qid); 1758 } 1759 ret = queue->tls_err; 1760 } 1761 return ret; 1762 } 1763 1764 static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl, int qid, 1765 key_serial_t pskid) 1766 { 1767 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1768 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1769 int ret, rcv_pdu_size; 1770 struct file *sock_file; 1771 1772 mutex_init(&queue->queue_lock); 1773 queue->ctrl = ctrl; 1774 init_llist_head(&queue->req_list); 1775 INIT_LIST_HEAD(&queue->send_list); 1776 mutex_init(&queue->send_mutex); 1777 INIT_WORK(&queue->io_work, nvme_tcp_io_work); 1778 1779 if (qid > 0) 1780 queue->cmnd_capsule_len = nctrl->ioccsz * 16; 1781 else 1782 queue->cmnd_capsule_len = sizeof(struct nvme_command) + 1783 NVME_TCP_ADMIN_CCSZ; 1784 1785 ret = sock_create_kern(current->nsproxy->net_ns, 1786 ctrl->addr.ss_family, SOCK_STREAM, 1787 IPPROTO_TCP, &queue->sock); 1788 if (ret) { 1789 dev_err(nctrl->device, 1790 "failed to create socket: %d\n", ret); 1791 goto err_destroy_mutex; 1792 } 1793 1794 sock_file = sock_alloc_file(queue->sock, O_CLOEXEC, NULL); 1795 if (IS_ERR(sock_file)) { 1796 ret = PTR_ERR(sock_file); 1797 goto err_destroy_mutex; 1798 } 1799 1800 sk_net_refcnt_upgrade(queue->sock->sk); 1801 nvme_tcp_reclassify_socket(queue->sock); 1802 1803 /* Single syn retry */ 1804 tcp_sock_set_syncnt(queue->sock->sk, 1); 1805 1806 /* Set TCP no delay */ 1807 tcp_sock_set_nodelay(queue->sock->sk); 1808 1809 /* 1810 * Cleanup whatever is sitting in the TCP transmit queue on socket 1811 * close. This is done to prevent stale data from being sent should 1812 * the network connection be restored before TCP times out. 1813 */ 1814 sock_no_linger(queue->sock->sk); 1815 1816 if (so_priority > 0) 1817 sock_set_priority(queue->sock->sk, so_priority); 1818 1819 /* Set socket type of service */ 1820 if (nctrl->opts->tos >= 0) 1821 ip_sock_set_tos(queue->sock->sk, nctrl->opts->tos); 1822 1823 /* Set 10 seconds timeout for icresp recvmsg */ 1824 queue->sock->sk->sk_rcvtimeo = 10 * HZ; 1825 1826 queue->sock->sk->sk_allocation = GFP_ATOMIC; 1827 queue->sock->sk->sk_use_task_frag = false; 1828 queue->io_cpu = WORK_CPU_UNBOUND; 1829 queue->request = NULL; 1830 queue->data_remaining = 0; 1831 queue->ddgst_remaining = 0; 1832 queue->pdu_remaining = 0; 1833 queue->pdu_offset = 0; 1834 sk_set_memalloc(queue->sock->sk); 1835 1836 if (nctrl->opts->mask & NVMF_OPT_HOST_TRADDR) { 1837 ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr, 1838 sizeof(ctrl->src_addr)); 1839 if (ret) { 1840 dev_err(nctrl->device, 1841 "failed to bind queue %d socket %d\n", 1842 qid, ret); 1843 goto err_sock; 1844 } 1845 } 1846 1847 if (nctrl->opts->mask & NVMF_OPT_HOST_IFACE) { 1848 char *iface = nctrl->opts->host_iface; 1849 sockptr_t optval = KERNEL_SOCKPTR(iface); 1850 1851 ret = sock_setsockopt(queue->sock, SOL_SOCKET, SO_BINDTODEVICE, 1852 optval, strlen(iface)); 1853 if (ret) { 1854 dev_err(nctrl->device, 1855 "failed to bind to interface %s queue %d err %d\n", 1856 iface, qid, ret); 1857 goto err_sock; 1858 } 1859 } 1860 1861 queue->hdr_digest = nctrl->opts->hdr_digest; 1862 queue->data_digest = nctrl->opts->data_digest; 1863 1864 rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) + 1865 nvme_tcp_hdgst_len(queue); 1866 queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL); 1867 if (!queue->pdu) { 1868 ret = -ENOMEM; 1869 goto err_sock; 1870 } 1871 1872 dev_dbg(nctrl->device, "connecting queue %d\n", 1873 nvme_tcp_queue_id(queue)); 1874 1875 ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr, 1876 sizeof(ctrl->addr), 0); 1877 if (ret) { 1878 dev_err(nctrl->device, 1879 "failed to connect socket: %d\n", ret); 1880 goto err_rcv_pdu; 1881 } 1882 1883 /* If PSKs are configured try to start TLS */ 1884 if (nvme_tcp_tls_configured(nctrl) && pskid) { 1885 ret = nvme_tcp_start_tls(nctrl, queue, pskid); 1886 if (ret) 1887 goto err_init_connect; 1888 } 1889 1890 ret = nvme_tcp_init_connection(queue); 1891 if (ret) 1892 goto err_init_connect; 1893 1894 set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags); 1895 1896 return 0; 1897 1898 err_init_connect: 1899 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 1900 err_rcv_pdu: 1901 kfree(queue->pdu); 1902 err_sock: 1903 /* ->sock will be released by fput() */ 1904 fput(queue->sock->file); 1905 queue->sock = NULL; 1906 err_destroy_mutex: 1907 mutex_destroy(&queue->send_mutex); 1908 mutex_destroy(&queue->queue_lock); 1909 return ret; 1910 } 1911 1912 static void nvme_tcp_restore_sock_ops(struct nvme_tcp_queue *queue) 1913 { 1914 struct socket *sock = queue->sock; 1915 1916 write_lock_bh(&sock->sk->sk_callback_lock); 1917 sock->sk->sk_user_data = NULL; 1918 sock->sk->sk_data_ready = queue->data_ready; 1919 sock->sk->sk_state_change = queue->state_change; 1920 sock->sk->sk_write_space = queue->write_space; 1921 write_unlock_bh(&sock->sk->sk_callback_lock); 1922 } 1923 1924 static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue) 1925 { 1926 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 1927 nvme_tcp_restore_sock_ops(queue); 1928 cancel_work_sync(&queue->io_work); 1929 } 1930 1931 static void nvme_tcp_stop_queue_nowait(struct nvme_ctrl *nctrl, int qid) 1932 { 1933 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1934 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1935 1936 if (!test_bit(NVME_TCP_Q_ALLOCATED, &queue->flags)) 1937 return; 1938 1939 if (test_and_clear_bit(NVME_TCP_Q_IO_CPU_SET, &queue->flags)) 1940 atomic_dec(&nvme_tcp_cpu_queues[queue->io_cpu]); 1941 1942 mutex_lock(&queue->queue_lock); 1943 if (test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags)) 1944 __nvme_tcp_stop_queue(queue); 1945 /* Stopping the queue will disable TLS */ 1946 queue->tls_enabled = false; 1947 mutex_unlock(&queue->queue_lock); 1948 } 1949 1950 static void nvme_tcp_wait_queue(struct nvme_ctrl *nctrl, int qid) 1951 { 1952 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1953 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1954 int timeout = 100; 1955 1956 while (timeout > 0) { 1957 if (!test_bit(NVME_TCP_Q_ALLOCATED, &queue->flags) || 1958 !sk_wmem_alloc_get(queue->sock->sk)) 1959 return; 1960 msleep(2); 1961 timeout -= 2; 1962 } 1963 dev_warn(nctrl->device, 1964 "qid %d: timeout draining sock wmem allocation expired\n", 1965 qid); 1966 } 1967 1968 static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid) 1969 { 1970 nvme_tcp_stop_queue_nowait(nctrl, qid); 1971 nvme_tcp_wait_queue(nctrl, qid); 1972 } 1973 1974 1975 static void nvme_tcp_setup_sock_ops(struct nvme_tcp_queue *queue) 1976 { 1977 write_lock_bh(&queue->sock->sk->sk_callback_lock); 1978 queue->sock->sk->sk_user_data = queue; 1979 queue->state_change = queue->sock->sk->sk_state_change; 1980 queue->data_ready = queue->sock->sk->sk_data_ready; 1981 queue->write_space = queue->sock->sk->sk_write_space; 1982 queue->sock->sk->sk_data_ready = nvme_tcp_data_ready; 1983 queue->sock->sk->sk_state_change = nvme_tcp_state_change; 1984 queue->sock->sk->sk_write_space = nvme_tcp_write_space; 1985 #ifdef CONFIG_NET_RX_BUSY_POLL 1986 queue->sock->sk->sk_ll_usec = 1; 1987 #endif 1988 write_unlock_bh(&queue->sock->sk->sk_callback_lock); 1989 } 1990 1991 static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx) 1992 { 1993 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1994 struct nvme_tcp_queue *queue = &ctrl->queues[idx]; 1995 int ret; 1996 1997 queue->rd_enabled = true; 1998 nvme_tcp_init_recv_ctx(queue); 1999 nvme_tcp_setup_sock_ops(queue); 2000 2001 if (idx) { 2002 nvme_tcp_set_queue_io_cpu(queue); 2003 ret = nvmf_connect_io_queue(nctrl, idx); 2004 } else 2005 ret = nvmf_connect_admin_queue(nctrl); 2006 2007 if (!ret) { 2008 set_bit(NVME_TCP_Q_LIVE, &queue->flags); 2009 } else { 2010 if (test_bit(NVME_TCP_Q_ALLOCATED, &queue->flags)) 2011 __nvme_tcp_stop_queue(queue); 2012 dev_err(nctrl->device, 2013 "failed to connect queue: %d ret=%d\n", idx, ret); 2014 } 2015 return ret; 2016 } 2017 2018 static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl) 2019 { 2020 if (to_tcp_ctrl(ctrl)->async_req.pdu) { 2021 cancel_work_sync(&ctrl->async_event_work); 2022 nvme_tcp_free_async_req(to_tcp_ctrl(ctrl)); 2023 to_tcp_ctrl(ctrl)->async_req.pdu = NULL; 2024 } 2025 2026 nvme_tcp_free_queue(ctrl, 0); 2027 } 2028 2029 static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl) 2030 { 2031 int i; 2032 2033 for (i = 1; i < ctrl->queue_count; i++) 2034 nvme_tcp_free_queue(ctrl, i); 2035 } 2036 2037 static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl) 2038 { 2039 int i; 2040 2041 for (i = 1; i < ctrl->queue_count; i++) 2042 nvme_tcp_stop_queue_nowait(ctrl, i); 2043 for (i = 1; i < ctrl->queue_count; i++) 2044 nvme_tcp_wait_queue(ctrl, i); 2045 } 2046 2047 static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl, 2048 int first, int last) 2049 { 2050 int i, ret; 2051 2052 for (i = first; i < last; i++) { 2053 ret = nvme_tcp_start_queue(ctrl, i); 2054 if (ret) 2055 goto out_stop_queues; 2056 } 2057 2058 return 0; 2059 2060 out_stop_queues: 2061 for (i--; i >= first; i--) 2062 nvme_tcp_stop_queue(ctrl, i); 2063 return ret; 2064 } 2065 2066 static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl) 2067 { 2068 int ret; 2069 key_serial_t pskid = 0; 2070 2071 if (nvme_tcp_tls_configured(ctrl)) { 2072 if (ctrl->opts->tls_key) 2073 pskid = key_serial(ctrl->opts->tls_key); 2074 else if (ctrl->opts->tls) { 2075 pskid = nvme_tls_psk_default(ctrl->opts->keyring, 2076 ctrl->opts->host->nqn, 2077 ctrl->opts->subsysnqn); 2078 if (!pskid) { 2079 dev_err(ctrl->device, "no valid PSK found\n"); 2080 return -ENOKEY; 2081 } 2082 } 2083 } 2084 2085 ret = nvme_tcp_alloc_queue(ctrl, 0, pskid); 2086 if (ret) 2087 return ret; 2088 2089 ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl)); 2090 if (ret) 2091 goto out_free_queue; 2092 2093 return 0; 2094 2095 out_free_queue: 2096 nvme_tcp_free_queue(ctrl, 0); 2097 return ret; 2098 } 2099 2100 static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl) 2101 { 2102 int i, ret; 2103 2104 if (nvme_tcp_tls_configured(ctrl)) { 2105 if (ctrl->opts->concat) { 2106 /* 2107 * The generated PSK is stored in the 2108 * fabric options 2109 */ 2110 if (!ctrl->opts->tls_key) { 2111 dev_err(ctrl->device, "no PSK generated\n"); 2112 return -ENOKEY; 2113 } 2114 if (ctrl->tls_pskid && 2115 ctrl->tls_pskid != key_serial(ctrl->opts->tls_key)) { 2116 dev_err(ctrl->device, "Stale PSK id %08x\n", ctrl->tls_pskid); 2117 ctrl->tls_pskid = 0; 2118 } 2119 } else if (!ctrl->tls_pskid) { 2120 dev_err(ctrl->device, "no PSK negotiated\n"); 2121 return -ENOKEY; 2122 } 2123 } 2124 2125 for (i = 1; i < ctrl->queue_count; i++) { 2126 ret = nvme_tcp_alloc_queue(ctrl, i, 2127 ctrl->tls_pskid); 2128 if (ret) 2129 goto out_free_queues; 2130 } 2131 2132 return 0; 2133 2134 out_free_queues: 2135 for (i--; i >= 1; i--) 2136 nvme_tcp_free_queue(ctrl, i); 2137 2138 return ret; 2139 } 2140 2141 static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl) 2142 { 2143 unsigned int nr_io_queues; 2144 int ret; 2145 2146 nr_io_queues = nvmf_nr_io_queues(ctrl->opts); 2147 ret = nvme_set_queue_count(ctrl, &nr_io_queues); 2148 if (ret) 2149 return ret; 2150 2151 if (nr_io_queues == 0) { 2152 dev_err(ctrl->device, 2153 "unable to set any I/O queues\n"); 2154 return -ENOMEM; 2155 } 2156 2157 ctrl->queue_count = nr_io_queues + 1; 2158 dev_info(ctrl->device, 2159 "creating %d I/O queues.\n", nr_io_queues); 2160 2161 nvmf_set_io_queues(ctrl->opts, nr_io_queues, 2162 to_tcp_ctrl(ctrl)->io_queues); 2163 return __nvme_tcp_alloc_io_queues(ctrl); 2164 } 2165 2166 static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new) 2167 { 2168 int ret, nr_queues; 2169 2170 ret = nvme_tcp_alloc_io_queues(ctrl); 2171 if (ret) 2172 return ret; 2173 2174 if (new) { 2175 ret = nvme_alloc_io_tag_set(ctrl, &to_tcp_ctrl(ctrl)->tag_set, 2176 &nvme_tcp_mq_ops, 2177 ctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2, 2178 sizeof(struct nvme_tcp_request)); 2179 if (ret) 2180 goto out_free_io_queues; 2181 } 2182 2183 /* 2184 * Only start IO queues for which we have allocated the tagset 2185 * and limited it to the available queues. On reconnects, the 2186 * queue number might have changed. 2187 */ 2188 nr_queues = min(ctrl->tagset->nr_hw_queues + 1, ctrl->queue_count); 2189 ret = nvme_tcp_start_io_queues(ctrl, 1, nr_queues); 2190 if (ret) 2191 goto out_cleanup_connect_q; 2192 2193 if (!new) { 2194 nvme_start_freeze(ctrl); 2195 nvme_unquiesce_io_queues(ctrl); 2196 if (!nvme_wait_freeze_timeout(ctrl, NVME_IO_TIMEOUT)) { 2197 /* 2198 * If we timed out waiting for freeze we are likely to 2199 * be stuck. Fail the controller initialization just 2200 * to be safe. 2201 */ 2202 ret = -ENODEV; 2203 nvme_unfreeze(ctrl); 2204 goto out_wait_freeze_timed_out; 2205 } 2206 blk_mq_update_nr_hw_queues(ctrl->tagset, 2207 ctrl->queue_count - 1); 2208 nvme_unfreeze(ctrl); 2209 } 2210 2211 /* 2212 * If the number of queues has increased (reconnect case) 2213 * start all new queues now. 2214 */ 2215 ret = nvme_tcp_start_io_queues(ctrl, nr_queues, 2216 ctrl->tagset->nr_hw_queues + 1); 2217 if (ret) 2218 goto out_wait_freeze_timed_out; 2219 2220 return 0; 2221 2222 out_wait_freeze_timed_out: 2223 nvme_quiesce_io_queues(ctrl); 2224 nvme_sync_io_queues(ctrl); 2225 nvme_tcp_stop_io_queues(ctrl); 2226 out_cleanup_connect_q: 2227 nvme_cancel_tagset(ctrl); 2228 if (new) 2229 nvme_remove_io_tag_set(ctrl); 2230 out_free_io_queues: 2231 nvme_tcp_free_io_queues(ctrl); 2232 return ret; 2233 } 2234 2235 static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new) 2236 { 2237 int error; 2238 2239 error = nvme_tcp_alloc_admin_queue(ctrl); 2240 if (error) 2241 return error; 2242 2243 if (new) { 2244 error = nvme_alloc_admin_tag_set(ctrl, 2245 &to_tcp_ctrl(ctrl)->admin_tag_set, 2246 &nvme_tcp_admin_mq_ops, 2247 sizeof(struct nvme_tcp_request)); 2248 if (error) 2249 goto out_free_queue; 2250 } 2251 2252 error = nvme_tcp_start_queue(ctrl, 0); 2253 if (error) 2254 goto out_cleanup_tagset; 2255 2256 if (ctrl->opts->concat && !ctrl->tls_pskid) 2257 return 0; 2258 2259 error = nvme_enable_ctrl(ctrl); 2260 if (error) 2261 goto out_stop_queue; 2262 2263 nvme_unquiesce_admin_queue(ctrl); 2264 2265 error = nvme_init_ctrl_finish(ctrl, false); 2266 if (error) 2267 goto out_quiesce_queue; 2268 2269 return 0; 2270 2271 out_quiesce_queue: 2272 nvme_quiesce_admin_queue(ctrl); 2273 blk_sync_queue(ctrl->admin_q); 2274 out_stop_queue: 2275 nvme_tcp_stop_queue(ctrl, 0); 2276 nvme_cancel_admin_tagset(ctrl); 2277 out_cleanup_tagset: 2278 if (new) 2279 nvme_remove_admin_tag_set(ctrl); 2280 out_free_queue: 2281 nvme_tcp_free_admin_queue(ctrl); 2282 return error; 2283 } 2284 2285 static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl, 2286 bool remove) 2287 { 2288 nvme_quiesce_admin_queue(ctrl); 2289 blk_sync_queue(ctrl->admin_q); 2290 nvme_tcp_stop_queue(ctrl, 0); 2291 nvme_cancel_admin_tagset(ctrl); 2292 if (remove) { 2293 nvme_unquiesce_admin_queue(ctrl); 2294 nvme_remove_admin_tag_set(ctrl); 2295 } 2296 nvme_tcp_free_admin_queue(ctrl); 2297 if (ctrl->tls_pskid) { 2298 dev_dbg(ctrl->device, "Wipe negotiated TLS_PSK %08x\n", 2299 ctrl->tls_pskid); 2300 ctrl->tls_pskid = 0; 2301 } 2302 } 2303 2304 static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl, 2305 bool remove) 2306 { 2307 if (ctrl->queue_count <= 1) 2308 return; 2309 nvme_quiesce_io_queues(ctrl); 2310 nvme_sync_io_queues(ctrl); 2311 nvme_tcp_stop_io_queues(ctrl); 2312 nvme_cancel_tagset(ctrl); 2313 if (remove) { 2314 nvme_unquiesce_io_queues(ctrl); 2315 nvme_remove_io_tag_set(ctrl); 2316 } 2317 nvme_tcp_free_io_queues(ctrl); 2318 } 2319 2320 static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl, 2321 int status) 2322 { 2323 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl); 2324 2325 /* If we are resetting/deleting then do nothing */ 2326 if (state != NVME_CTRL_CONNECTING) { 2327 WARN_ON_ONCE(state == NVME_CTRL_NEW || state == NVME_CTRL_LIVE); 2328 return; 2329 } 2330 2331 if (nvmf_should_reconnect(ctrl, status)) { 2332 dev_info(ctrl->device, "Reconnecting in %d seconds...\n", 2333 ctrl->opts->reconnect_delay); 2334 queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work, 2335 ctrl->opts->reconnect_delay * HZ); 2336 } else { 2337 dev_info(ctrl->device, "Removing controller (%d)...\n", 2338 status); 2339 nvme_delete_ctrl(ctrl); 2340 } 2341 } 2342 2343 /* 2344 * The TLS key is set by secure concatenation after negotiation has been 2345 * completed on the admin queue. We need to revoke the key when: 2346 * - concatenation is enabled (otherwise it's a static key set by the user) 2347 * and 2348 * - the generated key is present in ctrl->tls_key (otherwise there's nothing 2349 * to revoke) 2350 * and 2351 * - a valid PSK key ID has been set in ctrl->tls_pskid (otherwise TLS 2352 * negotiation has not run). 2353 * 2354 * We cannot always revoke the key as nvme_tcp_alloc_admin_queue() is called 2355 * twice during secure concatenation, once on a 'normal' connection to run the 2356 * DH-HMAC-CHAP negotiation (which generates the key, so it _must not_ be set), 2357 * and once after the negotiation (which uses the key, so it _must_ be set). 2358 */ 2359 static bool nvme_tcp_key_revoke_needed(struct nvme_ctrl *ctrl) 2360 { 2361 return ctrl->opts->concat && ctrl->opts->tls_key && ctrl->tls_pskid; 2362 } 2363 2364 static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new) 2365 { 2366 struct nvmf_ctrl_options *opts = ctrl->opts; 2367 int ret; 2368 2369 ret = nvme_tcp_configure_admin_queue(ctrl, new); 2370 if (ret) 2371 return ret; 2372 2373 if (ctrl->opts->concat && !ctrl->tls_pskid) { 2374 /* See comments for nvme_tcp_key_revoke_needed() */ 2375 dev_dbg(ctrl->device, "restart admin queue for secure concatenation\n"); 2376 nvme_stop_keep_alive(ctrl); 2377 nvme_tcp_teardown_admin_queue(ctrl, false); 2378 ret = nvme_tcp_configure_admin_queue(ctrl, false); 2379 if (ret) 2380 goto destroy_admin; 2381 } 2382 2383 if (ctrl->icdoff) { 2384 ret = -EOPNOTSUPP; 2385 dev_err(ctrl->device, "icdoff is not supported!\n"); 2386 goto destroy_admin; 2387 } 2388 2389 if (!nvme_ctrl_sgl_supported(ctrl)) { 2390 ret = -EOPNOTSUPP; 2391 dev_err(ctrl->device, "Mandatory sgls are not supported!\n"); 2392 goto destroy_admin; 2393 } 2394 2395 if (opts->queue_size > ctrl->sqsize + 1) 2396 dev_warn(ctrl->device, 2397 "queue_size %zu > ctrl sqsize %u, clamping down\n", 2398 opts->queue_size, ctrl->sqsize + 1); 2399 2400 if (ctrl->sqsize + 1 > ctrl->maxcmd) { 2401 dev_warn(ctrl->device, 2402 "sqsize %u > ctrl maxcmd %u, clamping down\n", 2403 ctrl->sqsize + 1, ctrl->maxcmd); 2404 ctrl->sqsize = ctrl->maxcmd - 1; 2405 } 2406 2407 if (ctrl->queue_count > 1) { 2408 ret = nvme_tcp_configure_io_queues(ctrl, new); 2409 if (ret) 2410 goto destroy_admin; 2411 } 2412 2413 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) { 2414 /* 2415 * state change failure is ok if we started ctrl delete, 2416 * unless we're during creation of a new controller to 2417 * avoid races with teardown flow. 2418 */ 2419 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl); 2420 2421 WARN_ON_ONCE(state != NVME_CTRL_DELETING && 2422 state != NVME_CTRL_DELETING_NOIO); 2423 WARN_ON_ONCE(new); 2424 ret = -EINVAL; 2425 goto destroy_io; 2426 } 2427 2428 nvme_start_ctrl(ctrl); 2429 return 0; 2430 2431 destroy_io: 2432 if (ctrl->queue_count > 1) { 2433 nvme_quiesce_io_queues(ctrl); 2434 nvme_sync_io_queues(ctrl); 2435 nvme_tcp_stop_io_queues(ctrl); 2436 nvme_cancel_tagset(ctrl); 2437 if (new) 2438 nvme_remove_io_tag_set(ctrl); 2439 nvme_tcp_free_io_queues(ctrl); 2440 } 2441 destroy_admin: 2442 nvme_stop_keep_alive(ctrl); 2443 nvme_tcp_teardown_admin_queue(ctrl, new); 2444 return ret; 2445 } 2446 2447 static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work) 2448 { 2449 struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work), 2450 struct nvme_tcp_ctrl, connect_work); 2451 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl; 2452 int ret; 2453 2454 ++ctrl->nr_reconnects; 2455 2456 ret = nvme_tcp_setup_ctrl(ctrl, false); 2457 if (ret) 2458 goto requeue; 2459 2460 dev_info(ctrl->device, "Successfully reconnected (attempt %d/%d)\n", 2461 ctrl->nr_reconnects, ctrl->opts->max_reconnects); 2462 2463 ctrl->nr_reconnects = 0; 2464 2465 return; 2466 2467 requeue: 2468 dev_info(ctrl->device, "Failed reconnect attempt %d/%d\n", 2469 ctrl->nr_reconnects, ctrl->opts->max_reconnects); 2470 nvme_tcp_reconnect_or_remove(ctrl, ret); 2471 } 2472 2473 static void nvme_tcp_error_recovery_work(struct work_struct *work) 2474 { 2475 struct nvme_tcp_ctrl *tcp_ctrl = container_of(work, 2476 struct nvme_tcp_ctrl, err_work); 2477 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl; 2478 2479 if (nvme_tcp_key_revoke_needed(ctrl)) 2480 nvme_auth_revoke_tls_key(ctrl); 2481 nvme_stop_keep_alive(ctrl); 2482 flush_work(&ctrl->async_event_work); 2483 nvme_tcp_teardown_io_queues(ctrl, false); 2484 /* unquiesce to fail fast pending requests */ 2485 nvme_unquiesce_io_queues(ctrl); 2486 nvme_tcp_teardown_admin_queue(ctrl, false); 2487 nvme_unquiesce_admin_queue(ctrl); 2488 nvme_auth_stop(ctrl); 2489 2490 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) { 2491 /* state change failure is ok if we started ctrl delete */ 2492 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl); 2493 2494 WARN_ON_ONCE(state != NVME_CTRL_DELETING && 2495 state != NVME_CTRL_DELETING_NOIO); 2496 return; 2497 } 2498 2499 nvme_tcp_reconnect_or_remove(ctrl, 0); 2500 } 2501 2502 static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown) 2503 { 2504 nvme_tcp_teardown_io_queues(ctrl, shutdown); 2505 nvme_quiesce_admin_queue(ctrl); 2506 nvme_disable_ctrl(ctrl, shutdown); 2507 nvme_tcp_teardown_admin_queue(ctrl, shutdown); 2508 } 2509 2510 static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl) 2511 { 2512 nvme_tcp_teardown_ctrl(ctrl, true); 2513 } 2514 2515 static void nvme_reset_ctrl_work(struct work_struct *work) 2516 { 2517 struct nvme_ctrl *ctrl = 2518 container_of(work, struct nvme_ctrl, reset_work); 2519 int ret; 2520 2521 if (nvme_tcp_key_revoke_needed(ctrl)) 2522 nvme_auth_revoke_tls_key(ctrl); 2523 nvme_stop_ctrl(ctrl); 2524 nvme_tcp_teardown_ctrl(ctrl, false); 2525 2526 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) { 2527 /* state change failure is ok if we started ctrl delete */ 2528 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl); 2529 2530 WARN_ON_ONCE(state != NVME_CTRL_DELETING && 2531 state != NVME_CTRL_DELETING_NOIO); 2532 return; 2533 } 2534 2535 ret = nvme_tcp_setup_ctrl(ctrl, false); 2536 if (ret) 2537 goto out_fail; 2538 2539 return; 2540 2541 out_fail: 2542 ++ctrl->nr_reconnects; 2543 nvme_tcp_reconnect_or_remove(ctrl, ret); 2544 } 2545 2546 static void nvme_tcp_stop_ctrl(struct nvme_ctrl *ctrl) 2547 { 2548 flush_work(&to_tcp_ctrl(ctrl)->err_work); 2549 cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work); 2550 } 2551 2552 static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl) 2553 { 2554 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 2555 2556 if (list_empty(&ctrl->list)) 2557 goto free_ctrl; 2558 2559 mutex_lock(&nvme_tcp_ctrl_mutex); 2560 list_del(&ctrl->list); 2561 mutex_unlock(&nvme_tcp_ctrl_mutex); 2562 2563 nvmf_free_options(nctrl->opts); 2564 free_ctrl: 2565 kfree(ctrl->queues); 2566 kfree(ctrl); 2567 } 2568 2569 static void nvme_tcp_set_sg_null(struct nvme_command *c) 2570 { 2571 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 2572 2573 sg->addr = 0; 2574 sg->length = 0; 2575 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) | 2576 NVME_SGL_FMT_TRANSPORT_A; 2577 } 2578 2579 static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue, 2580 struct nvme_command *c, u32 data_len) 2581 { 2582 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 2583 2584 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff); 2585 sg->length = cpu_to_le32(data_len); 2586 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET; 2587 } 2588 2589 static void nvme_tcp_set_sg_host_data(struct nvme_command *c, 2590 u32 data_len) 2591 { 2592 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 2593 2594 sg->addr = 0; 2595 sg->length = cpu_to_le32(data_len); 2596 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) | 2597 NVME_SGL_FMT_TRANSPORT_A; 2598 } 2599 2600 static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg) 2601 { 2602 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg); 2603 struct nvme_tcp_queue *queue = &ctrl->queues[0]; 2604 struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu; 2605 struct nvme_command *cmd = &pdu->cmd; 2606 u8 hdgst = nvme_tcp_hdgst_len(queue); 2607 2608 memset(pdu, 0, sizeof(*pdu)); 2609 pdu->hdr.type = nvme_tcp_cmd; 2610 if (queue->hdr_digest) 2611 pdu->hdr.flags |= NVME_TCP_F_HDGST; 2612 pdu->hdr.hlen = sizeof(*pdu); 2613 pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst); 2614 2615 cmd->common.opcode = nvme_admin_async_event; 2616 cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH; 2617 cmd->common.flags |= NVME_CMD_SGL_METABUF; 2618 nvme_tcp_set_sg_null(cmd); 2619 2620 ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU; 2621 ctrl->async_req.offset = 0; 2622 ctrl->async_req.curr_bio = NULL; 2623 ctrl->async_req.data_len = 0; 2624 init_llist_node(&ctrl->async_req.lentry); 2625 INIT_LIST_HEAD(&ctrl->async_req.entry); 2626 2627 nvme_tcp_queue_request(&ctrl->async_req, true); 2628 } 2629 2630 static void nvme_tcp_complete_timed_out(struct request *rq) 2631 { 2632 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2633 struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl; 2634 2635 nvme_tcp_stop_queue(ctrl, nvme_tcp_queue_id(req->queue)); 2636 nvmf_complete_timed_out_request(rq); 2637 } 2638 2639 static enum blk_eh_timer_return nvme_tcp_timeout(struct request *rq) 2640 { 2641 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2642 struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl; 2643 struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req); 2644 struct nvme_command *cmd = &pdu->cmd; 2645 int qid = nvme_tcp_queue_id(req->queue); 2646 2647 dev_warn(ctrl->device, 2648 "I/O tag %d (%04x) type %d opcode %#x (%s) QID %d timeout\n", 2649 rq->tag, nvme_cid(rq), pdu->hdr.type, cmd->common.opcode, 2650 nvme_fabrics_opcode_str(qid, cmd), qid); 2651 2652 if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE) { 2653 /* 2654 * If we are resetting, connecting or deleting we should 2655 * complete immediately because we may block controller 2656 * teardown or setup sequence 2657 * - ctrl disable/shutdown fabrics requests 2658 * - connect requests 2659 * - initialization admin requests 2660 * - I/O requests that entered after unquiescing and 2661 * the controller stopped responding 2662 * 2663 * All other requests should be cancelled by the error 2664 * recovery work, so it's fine that we fail it here. 2665 */ 2666 nvme_tcp_complete_timed_out(rq); 2667 return BLK_EH_DONE; 2668 } 2669 2670 /* 2671 * LIVE state should trigger the normal error recovery which will 2672 * handle completing this request. 2673 */ 2674 nvme_tcp_error_recovery(ctrl); 2675 return BLK_EH_RESET_TIMER; 2676 } 2677 2678 static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue, 2679 struct request *rq) 2680 { 2681 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2682 struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req); 2683 struct nvme_command *c = &pdu->cmd; 2684 2685 c->common.flags |= NVME_CMD_SGL_METABUF; 2686 2687 if (!blk_rq_nr_phys_segments(rq)) 2688 nvme_tcp_set_sg_null(c); 2689 else if (rq_data_dir(rq) == WRITE && 2690 req->data_len <= nvme_tcp_inline_data_size(req)) 2691 nvme_tcp_set_sg_inline(queue, c, req->data_len); 2692 else 2693 nvme_tcp_set_sg_host_data(c, req->data_len); 2694 2695 return 0; 2696 } 2697 2698 static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns, 2699 struct request *rq) 2700 { 2701 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2702 struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req); 2703 struct nvme_tcp_queue *queue = req->queue; 2704 u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0; 2705 blk_status_t ret; 2706 2707 ret = nvme_setup_cmd(ns, rq); 2708 if (ret) 2709 return ret; 2710 2711 req->state = NVME_TCP_SEND_CMD_PDU; 2712 req->status = cpu_to_le16(NVME_SC_SUCCESS); 2713 req->offset = 0; 2714 req->data_sent = 0; 2715 req->pdu_len = 0; 2716 req->pdu_sent = 0; 2717 req->h2cdata_left = 0; 2718 req->data_len = blk_rq_nr_phys_segments(rq) ? 2719 blk_rq_payload_bytes(rq) : 0; 2720 req->curr_bio = rq->bio; 2721 if (req->curr_bio && req->data_len) 2722 nvme_tcp_init_iter(req, rq_data_dir(rq)); 2723 2724 if (rq_data_dir(rq) == WRITE && 2725 req->data_len <= nvme_tcp_inline_data_size(req)) 2726 req->pdu_len = req->data_len; 2727 2728 pdu->hdr.type = nvme_tcp_cmd; 2729 pdu->hdr.flags = 0; 2730 if (queue->hdr_digest) 2731 pdu->hdr.flags |= NVME_TCP_F_HDGST; 2732 if (queue->data_digest && req->pdu_len) { 2733 pdu->hdr.flags |= NVME_TCP_F_DDGST; 2734 ddgst = nvme_tcp_ddgst_len(queue); 2735 } 2736 pdu->hdr.hlen = sizeof(*pdu); 2737 pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0; 2738 pdu->hdr.plen = 2739 cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst); 2740 2741 ret = nvme_tcp_map_data(queue, rq); 2742 if (unlikely(ret)) { 2743 nvme_cleanup_cmd(rq); 2744 dev_err(queue->ctrl->ctrl.device, 2745 "Failed to map data (%d)\n", ret); 2746 return ret; 2747 } 2748 2749 return 0; 2750 } 2751 2752 static void nvme_tcp_commit_rqs(struct blk_mq_hw_ctx *hctx) 2753 { 2754 struct nvme_tcp_queue *queue = hctx->driver_data; 2755 2756 if (!llist_empty(&queue->req_list)) 2757 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 2758 } 2759 2760 static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx, 2761 const struct blk_mq_queue_data *bd) 2762 { 2763 struct nvme_ns *ns = hctx->queue->queuedata; 2764 struct nvme_tcp_queue *queue = hctx->driver_data; 2765 struct request *rq = bd->rq; 2766 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2767 bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags); 2768 blk_status_t ret; 2769 2770 if (!nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready)) 2771 return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq); 2772 2773 ret = nvme_tcp_setup_cmd_pdu(ns, rq); 2774 if (unlikely(ret)) 2775 return ret; 2776 2777 nvme_start_request(rq); 2778 2779 nvme_tcp_queue_request(req, bd->last); 2780 2781 return BLK_STS_OK; 2782 } 2783 2784 static void nvme_tcp_map_queues(struct blk_mq_tag_set *set) 2785 { 2786 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(set->driver_data); 2787 2788 nvmf_map_queues(set, &ctrl->ctrl, ctrl->io_queues); 2789 } 2790 2791 static int nvme_tcp_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob) 2792 { 2793 struct nvme_tcp_queue *queue = hctx->driver_data; 2794 struct sock *sk = queue->sock->sk; 2795 int ret; 2796 2797 if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags)) 2798 return 0; 2799 2800 set_bit(NVME_TCP_Q_POLLING, &queue->flags); 2801 if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue)) 2802 sk_busy_loop(sk, true); 2803 ret = nvme_tcp_try_recv(queue); 2804 clear_bit(NVME_TCP_Q_POLLING, &queue->flags); 2805 return ret < 0 ? ret : queue->nr_cqe; 2806 } 2807 2808 static int nvme_tcp_get_address(struct nvme_ctrl *ctrl, char *buf, int size) 2809 { 2810 struct nvme_tcp_queue *queue = &to_tcp_ctrl(ctrl)->queues[0]; 2811 struct sockaddr_storage src_addr; 2812 int ret, len; 2813 2814 len = nvmf_get_address(ctrl, buf, size); 2815 2816 if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags)) 2817 return len; 2818 2819 mutex_lock(&queue->queue_lock); 2820 2821 ret = kernel_getsockname(queue->sock, (struct sockaddr *)&src_addr); 2822 if (ret > 0) { 2823 if (len > 0) 2824 len--; /* strip trailing newline */ 2825 len += scnprintf(buf + len, size - len, "%ssrc_addr=%pISc\n", 2826 (len) ? "," : "", &src_addr); 2827 } 2828 2829 mutex_unlock(&queue->queue_lock); 2830 2831 return len; 2832 } 2833 2834 static const struct blk_mq_ops nvme_tcp_mq_ops = { 2835 .queue_rq = nvme_tcp_queue_rq, 2836 .commit_rqs = nvme_tcp_commit_rqs, 2837 .complete = nvme_complete_rq, 2838 .init_request = nvme_tcp_init_request, 2839 .exit_request = nvme_tcp_exit_request, 2840 .init_hctx = nvme_tcp_init_hctx, 2841 .timeout = nvme_tcp_timeout, 2842 .map_queues = nvme_tcp_map_queues, 2843 .poll = nvme_tcp_poll, 2844 }; 2845 2846 static const struct blk_mq_ops nvme_tcp_admin_mq_ops = { 2847 .queue_rq = nvme_tcp_queue_rq, 2848 .complete = nvme_complete_rq, 2849 .init_request = nvme_tcp_init_request, 2850 .exit_request = nvme_tcp_exit_request, 2851 .init_hctx = nvme_tcp_init_admin_hctx, 2852 .timeout = nvme_tcp_timeout, 2853 }; 2854 2855 static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = { 2856 .name = "tcp", 2857 .module = THIS_MODULE, 2858 .flags = NVME_F_FABRICS | NVME_F_BLOCKING, 2859 .reg_read32 = nvmf_reg_read32, 2860 .reg_read64 = nvmf_reg_read64, 2861 .reg_write32 = nvmf_reg_write32, 2862 .subsystem_reset = nvmf_subsystem_reset, 2863 .free_ctrl = nvme_tcp_free_ctrl, 2864 .submit_async_event = nvme_tcp_submit_async_event, 2865 .delete_ctrl = nvme_tcp_delete_ctrl, 2866 .get_address = nvme_tcp_get_address, 2867 .stop_ctrl = nvme_tcp_stop_ctrl, 2868 }; 2869 2870 static bool 2871 nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts) 2872 { 2873 struct nvme_tcp_ctrl *ctrl; 2874 bool found = false; 2875 2876 mutex_lock(&nvme_tcp_ctrl_mutex); 2877 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) { 2878 found = nvmf_ip_options_match(&ctrl->ctrl, opts); 2879 if (found) 2880 break; 2881 } 2882 mutex_unlock(&nvme_tcp_ctrl_mutex); 2883 2884 return found; 2885 } 2886 2887 static struct nvme_tcp_ctrl *nvme_tcp_alloc_ctrl(struct device *dev, 2888 struct nvmf_ctrl_options *opts) 2889 { 2890 struct nvme_tcp_ctrl *ctrl; 2891 int ret; 2892 2893 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 2894 if (!ctrl) 2895 return ERR_PTR(-ENOMEM); 2896 2897 INIT_LIST_HEAD(&ctrl->list); 2898 ctrl->ctrl.opts = opts; 2899 ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues + 2900 opts->nr_poll_queues + 1; 2901 ctrl->ctrl.sqsize = opts->queue_size - 1; 2902 ctrl->ctrl.kato = opts->kato; 2903 2904 INIT_DELAYED_WORK(&ctrl->connect_work, 2905 nvme_tcp_reconnect_ctrl_work); 2906 INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work); 2907 INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work); 2908 2909 if (!(opts->mask & NVMF_OPT_TRSVCID)) { 2910 opts->trsvcid = 2911 kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL); 2912 if (!opts->trsvcid) { 2913 ret = -ENOMEM; 2914 goto out_free_ctrl; 2915 } 2916 opts->mask |= NVMF_OPT_TRSVCID; 2917 } 2918 2919 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 2920 opts->traddr, opts->trsvcid, &ctrl->addr); 2921 if (ret) { 2922 pr_err("malformed address passed: %s:%s\n", 2923 opts->traddr, opts->trsvcid); 2924 goto out_free_ctrl; 2925 } 2926 2927 if (opts->mask & NVMF_OPT_HOST_TRADDR) { 2928 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 2929 opts->host_traddr, NULL, &ctrl->src_addr); 2930 if (ret) { 2931 pr_err("malformed src address passed: %s\n", 2932 opts->host_traddr); 2933 goto out_free_ctrl; 2934 } 2935 } 2936 2937 if (opts->mask & NVMF_OPT_HOST_IFACE) { 2938 if (!__dev_get_by_name(&init_net, opts->host_iface)) { 2939 pr_err("invalid interface passed: %s\n", 2940 opts->host_iface); 2941 ret = -ENODEV; 2942 goto out_free_ctrl; 2943 } 2944 } 2945 2946 if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) { 2947 ret = -EALREADY; 2948 goto out_free_ctrl; 2949 } 2950 2951 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues), 2952 GFP_KERNEL); 2953 if (!ctrl->queues) { 2954 ret = -ENOMEM; 2955 goto out_free_ctrl; 2956 } 2957 2958 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0); 2959 if (ret) 2960 goto out_kfree_queues; 2961 2962 return ctrl; 2963 out_kfree_queues: 2964 kfree(ctrl->queues); 2965 out_free_ctrl: 2966 kfree(ctrl); 2967 return ERR_PTR(ret); 2968 } 2969 2970 static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev, 2971 struct nvmf_ctrl_options *opts) 2972 { 2973 struct nvme_tcp_ctrl *ctrl; 2974 int ret; 2975 2976 ctrl = nvme_tcp_alloc_ctrl(dev, opts); 2977 if (IS_ERR(ctrl)) 2978 return ERR_CAST(ctrl); 2979 2980 ret = nvme_add_ctrl(&ctrl->ctrl); 2981 if (ret) 2982 goto out_put_ctrl; 2983 2984 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) { 2985 WARN_ON_ONCE(1); 2986 ret = -EINTR; 2987 goto out_uninit_ctrl; 2988 } 2989 2990 ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true); 2991 if (ret) 2992 goto out_uninit_ctrl; 2993 2994 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp, hostnqn: %s\n", 2995 nvmf_ctrl_subsysnqn(&ctrl->ctrl), &ctrl->addr, opts->host->nqn); 2996 2997 mutex_lock(&nvme_tcp_ctrl_mutex); 2998 list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list); 2999 mutex_unlock(&nvme_tcp_ctrl_mutex); 3000 3001 return &ctrl->ctrl; 3002 3003 out_uninit_ctrl: 3004 nvme_uninit_ctrl(&ctrl->ctrl); 3005 out_put_ctrl: 3006 nvme_put_ctrl(&ctrl->ctrl); 3007 if (ret > 0) 3008 ret = -EIO; 3009 return ERR_PTR(ret); 3010 } 3011 3012 static struct nvmf_transport_ops nvme_tcp_transport = { 3013 .name = "tcp", 3014 .module = THIS_MODULE, 3015 .required_opts = NVMF_OPT_TRADDR, 3016 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY | 3017 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO | 3018 NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST | 3019 NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES | 3020 NVMF_OPT_TOS | NVMF_OPT_HOST_IFACE | NVMF_OPT_TLS | 3021 NVMF_OPT_KEYRING | NVMF_OPT_TLS_KEY | NVMF_OPT_CONCAT, 3022 .create_ctrl = nvme_tcp_create_ctrl, 3023 }; 3024 3025 static int __init nvme_tcp_init_module(void) 3026 { 3027 unsigned int wq_flags = WQ_MEM_RECLAIM | WQ_HIGHPRI | WQ_SYSFS; 3028 int cpu; 3029 3030 BUILD_BUG_ON(sizeof(struct nvme_tcp_hdr) != 8); 3031 BUILD_BUG_ON(sizeof(struct nvme_tcp_cmd_pdu) != 72); 3032 BUILD_BUG_ON(sizeof(struct nvme_tcp_data_pdu) != 24); 3033 BUILD_BUG_ON(sizeof(struct nvme_tcp_rsp_pdu) != 24); 3034 BUILD_BUG_ON(sizeof(struct nvme_tcp_r2t_pdu) != 24); 3035 BUILD_BUG_ON(sizeof(struct nvme_tcp_icreq_pdu) != 128); 3036 BUILD_BUG_ON(sizeof(struct nvme_tcp_icresp_pdu) != 128); 3037 BUILD_BUG_ON(sizeof(struct nvme_tcp_term_pdu) != 24); 3038 3039 if (wq_unbound) 3040 wq_flags |= WQ_UNBOUND; 3041 3042 nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq", wq_flags, 0); 3043 if (!nvme_tcp_wq) 3044 return -ENOMEM; 3045 3046 for_each_possible_cpu(cpu) 3047 atomic_set(&nvme_tcp_cpu_queues[cpu], 0); 3048 3049 nvmf_register_transport(&nvme_tcp_transport); 3050 return 0; 3051 } 3052 3053 static void __exit nvme_tcp_cleanup_module(void) 3054 { 3055 struct nvme_tcp_ctrl *ctrl; 3056 3057 nvmf_unregister_transport(&nvme_tcp_transport); 3058 3059 mutex_lock(&nvme_tcp_ctrl_mutex); 3060 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) 3061 nvme_delete_ctrl(&ctrl->ctrl); 3062 mutex_unlock(&nvme_tcp_ctrl_mutex); 3063 flush_workqueue(nvme_delete_wq); 3064 3065 destroy_workqueue(nvme_tcp_wq); 3066 } 3067 3068 module_init(nvme_tcp_init_module); 3069 module_exit(nvme_tcp_cleanup_module); 3070 3071 MODULE_DESCRIPTION("NVMe host TCP transport driver"); 3072 MODULE_LICENSE("GPL v2"); 3073