1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVMe over Fabrics TCP host. 4 * Copyright (c) 2018 Lightbits Labs. All rights reserved. 5 */ 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 #include <linux/module.h> 8 #include <linux/init.h> 9 #include <linux/slab.h> 10 #include <linux/err.h> 11 #include <linux/key.h> 12 #include <linux/nvme-tcp.h> 13 #include <linux/nvme-keyring.h> 14 #include <net/sock.h> 15 #include <net/tcp.h> 16 #include <net/tls.h> 17 #include <net/tls_prot.h> 18 #include <net/handshake.h> 19 #include <linux/blk-mq.h> 20 #include <crypto/hash.h> 21 #include <net/busy_poll.h> 22 #include <trace/events/sock.h> 23 24 #include "nvme.h" 25 #include "fabrics.h" 26 27 struct nvme_tcp_queue; 28 29 /* Define the socket priority to use for connections were it is desirable 30 * that the NIC consider performing optimized packet processing or filtering. 31 * A non-zero value being sufficient to indicate general consideration of any 32 * possible optimization. Making it a module param allows for alternative 33 * values that may be unique for some NIC implementations. 34 */ 35 static int so_priority; 36 module_param(so_priority, int, 0644); 37 MODULE_PARM_DESC(so_priority, "nvme tcp socket optimize priority"); 38 39 #ifdef CONFIG_NVME_TCP_TLS 40 /* 41 * TLS handshake timeout 42 */ 43 static int tls_handshake_timeout = 10; 44 module_param(tls_handshake_timeout, int, 0644); 45 MODULE_PARM_DESC(tls_handshake_timeout, 46 "nvme TLS handshake timeout in seconds (default 10)"); 47 #endif 48 49 #ifdef CONFIG_DEBUG_LOCK_ALLOC 50 /* lockdep can detect a circular dependency of the form 51 * sk_lock -> mmap_lock (page fault) -> fs locks -> sk_lock 52 * because dependencies are tracked for both nvme-tcp and user contexts. Using 53 * a separate class prevents lockdep from conflating nvme-tcp socket use with 54 * user-space socket API use. 55 */ 56 static struct lock_class_key nvme_tcp_sk_key[2]; 57 static struct lock_class_key nvme_tcp_slock_key[2]; 58 59 static void nvme_tcp_reclassify_socket(struct socket *sock) 60 { 61 struct sock *sk = sock->sk; 62 63 if (WARN_ON_ONCE(!sock_allow_reclassification(sk))) 64 return; 65 66 switch (sk->sk_family) { 67 case AF_INET: 68 sock_lock_init_class_and_name(sk, "slock-AF_INET-NVME", 69 &nvme_tcp_slock_key[0], 70 "sk_lock-AF_INET-NVME", 71 &nvme_tcp_sk_key[0]); 72 break; 73 case AF_INET6: 74 sock_lock_init_class_and_name(sk, "slock-AF_INET6-NVME", 75 &nvme_tcp_slock_key[1], 76 "sk_lock-AF_INET6-NVME", 77 &nvme_tcp_sk_key[1]); 78 break; 79 default: 80 WARN_ON_ONCE(1); 81 } 82 } 83 #else 84 static void nvme_tcp_reclassify_socket(struct socket *sock) { } 85 #endif 86 87 enum nvme_tcp_send_state { 88 NVME_TCP_SEND_CMD_PDU = 0, 89 NVME_TCP_SEND_H2C_PDU, 90 NVME_TCP_SEND_DATA, 91 NVME_TCP_SEND_DDGST, 92 }; 93 94 struct nvme_tcp_request { 95 struct nvme_request req; 96 void *pdu; 97 struct nvme_tcp_queue *queue; 98 u32 data_len; 99 u32 pdu_len; 100 u32 pdu_sent; 101 u32 h2cdata_left; 102 u32 h2cdata_offset; 103 u16 ttag; 104 __le16 status; 105 struct list_head entry; 106 struct llist_node lentry; 107 __le32 ddgst; 108 109 struct bio *curr_bio; 110 struct iov_iter iter; 111 112 /* send state */ 113 size_t offset; 114 size_t data_sent; 115 enum nvme_tcp_send_state state; 116 }; 117 118 enum nvme_tcp_queue_flags { 119 NVME_TCP_Q_ALLOCATED = 0, 120 NVME_TCP_Q_LIVE = 1, 121 NVME_TCP_Q_POLLING = 2, 122 }; 123 124 enum nvme_tcp_recv_state { 125 NVME_TCP_RECV_PDU = 0, 126 NVME_TCP_RECV_DATA, 127 NVME_TCP_RECV_DDGST, 128 }; 129 130 struct nvme_tcp_ctrl; 131 struct nvme_tcp_queue { 132 struct socket *sock; 133 struct work_struct io_work; 134 int io_cpu; 135 136 struct mutex queue_lock; 137 struct mutex send_mutex; 138 struct llist_head req_list; 139 struct list_head send_list; 140 141 /* recv state */ 142 void *pdu; 143 int pdu_remaining; 144 int pdu_offset; 145 size_t data_remaining; 146 size_t ddgst_remaining; 147 unsigned int nr_cqe; 148 149 /* send state */ 150 struct nvme_tcp_request *request; 151 152 u32 maxh2cdata; 153 size_t cmnd_capsule_len; 154 struct nvme_tcp_ctrl *ctrl; 155 unsigned long flags; 156 bool rd_enabled; 157 158 bool hdr_digest; 159 bool data_digest; 160 struct ahash_request *rcv_hash; 161 struct ahash_request *snd_hash; 162 __le32 exp_ddgst; 163 __le32 recv_ddgst; 164 #ifdef CONFIG_NVME_TCP_TLS 165 struct completion tls_complete; 166 int tls_err; 167 #endif 168 struct page_frag_cache pf_cache; 169 170 void (*state_change)(struct sock *); 171 void (*data_ready)(struct sock *); 172 void (*write_space)(struct sock *); 173 }; 174 175 struct nvme_tcp_ctrl { 176 /* read only in the hot path */ 177 struct nvme_tcp_queue *queues; 178 struct blk_mq_tag_set tag_set; 179 180 /* other member variables */ 181 struct list_head list; 182 struct blk_mq_tag_set admin_tag_set; 183 struct sockaddr_storage addr; 184 struct sockaddr_storage src_addr; 185 struct nvme_ctrl ctrl; 186 187 struct work_struct err_work; 188 struct delayed_work connect_work; 189 struct nvme_tcp_request async_req; 190 u32 io_queues[HCTX_MAX_TYPES]; 191 }; 192 193 static LIST_HEAD(nvme_tcp_ctrl_list); 194 static DEFINE_MUTEX(nvme_tcp_ctrl_mutex); 195 static struct workqueue_struct *nvme_tcp_wq; 196 static const struct blk_mq_ops nvme_tcp_mq_ops; 197 static const struct blk_mq_ops nvme_tcp_admin_mq_ops; 198 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue); 199 200 static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl) 201 { 202 return container_of(ctrl, struct nvme_tcp_ctrl, ctrl); 203 } 204 205 static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue) 206 { 207 return queue - queue->ctrl->queues; 208 } 209 210 static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue) 211 { 212 u32 queue_idx = nvme_tcp_queue_id(queue); 213 214 if (queue_idx == 0) 215 return queue->ctrl->admin_tag_set.tags[queue_idx]; 216 return queue->ctrl->tag_set.tags[queue_idx - 1]; 217 } 218 219 static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue) 220 { 221 return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0; 222 } 223 224 static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue) 225 { 226 return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0; 227 } 228 229 static inline void *nvme_tcp_req_cmd_pdu(struct nvme_tcp_request *req) 230 { 231 return req->pdu; 232 } 233 234 static inline void *nvme_tcp_req_data_pdu(struct nvme_tcp_request *req) 235 { 236 /* use the pdu space in the back for the data pdu */ 237 return req->pdu + sizeof(struct nvme_tcp_cmd_pdu) - 238 sizeof(struct nvme_tcp_data_pdu); 239 } 240 241 static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_request *req) 242 { 243 if (nvme_is_fabrics(req->req.cmd)) 244 return NVME_TCP_ADMIN_CCSZ; 245 return req->queue->cmnd_capsule_len - sizeof(struct nvme_command); 246 } 247 248 static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req) 249 { 250 return req == &req->queue->ctrl->async_req; 251 } 252 253 static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req) 254 { 255 struct request *rq; 256 257 if (unlikely(nvme_tcp_async_req(req))) 258 return false; /* async events don't have a request */ 259 260 rq = blk_mq_rq_from_pdu(req); 261 262 return rq_data_dir(rq) == WRITE && req->data_len && 263 req->data_len <= nvme_tcp_inline_data_size(req); 264 } 265 266 static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req) 267 { 268 return req->iter.bvec->bv_page; 269 } 270 271 static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req) 272 { 273 return req->iter.bvec->bv_offset + req->iter.iov_offset; 274 } 275 276 static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req) 277 { 278 return min_t(size_t, iov_iter_single_seg_count(&req->iter), 279 req->pdu_len - req->pdu_sent); 280 } 281 282 static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req) 283 { 284 return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ? 285 req->pdu_len - req->pdu_sent : 0; 286 } 287 288 static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req, 289 int len) 290 { 291 return nvme_tcp_pdu_data_left(req) <= len; 292 } 293 294 static void nvme_tcp_init_iter(struct nvme_tcp_request *req, 295 unsigned int dir) 296 { 297 struct request *rq = blk_mq_rq_from_pdu(req); 298 struct bio_vec *vec; 299 unsigned int size; 300 int nr_bvec; 301 size_t offset; 302 303 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) { 304 vec = &rq->special_vec; 305 nr_bvec = 1; 306 size = blk_rq_payload_bytes(rq); 307 offset = 0; 308 } else { 309 struct bio *bio = req->curr_bio; 310 struct bvec_iter bi; 311 struct bio_vec bv; 312 313 vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); 314 nr_bvec = 0; 315 bio_for_each_bvec(bv, bio, bi) { 316 nr_bvec++; 317 } 318 size = bio->bi_iter.bi_size; 319 offset = bio->bi_iter.bi_bvec_done; 320 } 321 322 iov_iter_bvec(&req->iter, dir, vec, nr_bvec, size); 323 req->iter.iov_offset = offset; 324 } 325 326 static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req, 327 int len) 328 { 329 req->data_sent += len; 330 req->pdu_sent += len; 331 iov_iter_advance(&req->iter, len); 332 if (!iov_iter_count(&req->iter) && 333 req->data_sent < req->data_len) { 334 req->curr_bio = req->curr_bio->bi_next; 335 nvme_tcp_init_iter(req, ITER_SOURCE); 336 } 337 } 338 339 static inline void nvme_tcp_send_all(struct nvme_tcp_queue *queue) 340 { 341 int ret; 342 343 /* drain the send queue as much as we can... */ 344 do { 345 ret = nvme_tcp_try_send(queue); 346 } while (ret > 0); 347 } 348 349 static inline bool nvme_tcp_queue_more(struct nvme_tcp_queue *queue) 350 { 351 return !list_empty(&queue->send_list) || 352 !llist_empty(&queue->req_list); 353 } 354 355 static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req, 356 bool sync, bool last) 357 { 358 struct nvme_tcp_queue *queue = req->queue; 359 bool empty; 360 361 empty = llist_add(&req->lentry, &queue->req_list) && 362 list_empty(&queue->send_list) && !queue->request; 363 364 /* 365 * if we're the first on the send_list and we can try to send 366 * directly, otherwise queue io_work. Also, only do that if we 367 * are on the same cpu, so we don't introduce contention. 368 */ 369 if (queue->io_cpu == raw_smp_processor_id() && 370 sync && empty && mutex_trylock(&queue->send_mutex)) { 371 nvme_tcp_send_all(queue); 372 mutex_unlock(&queue->send_mutex); 373 } 374 375 if (last && nvme_tcp_queue_more(queue)) 376 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 377 } 378 379 static void nvme_tcp_process_req_list(struct nvme_tcp_queue *queue) 380 { 381 struct nvme_tcp_request *req; 382 struct llist_node *node; 383 384 for (node = llist_del_all(&queue->req_list); node; node = node->next) { 385 req = llist_entry(node, struct nvme_tcp_request, lentry); 386 list_add(&req->entry, &queue->send_list); 387 } 388 } 389 390 static inline struct nvme_tcp_request * 391 nvme_tcp_fetch_request(struct nvme_tcp_queue *queue) 392 { 393 struct nvme_tcp_request *req; 394 395 req = list_first_entry_or_null(&queue->send_list, 396 struct nvme_tcp_request, entry); 397 if (!req) { 398 nvme_tcp_process_req_list(queue); 399 req = list_first_entry_or_null(&queue->send_list, 400 struct nvme_tcp_request, entry); 401 if (unlikely(!req)) 402 return NULL; 403 } 404 405 list_del(&req->entry); 406 return req; 407 } 408 409 static inline void nvme_tcp_ddgst_final(struct ahash_request *hash, 410 __le32 *dgst) 411 { 412 ahash_request_set_crypt(hash, NULL, (u8 *)dgst, 0); 413 crypto_ahash_final(hash); 414 } 415 416 static inline void nvme_tcp_ddgst_update(struct ahash_request *hash, 417 struct page *page, off_t off, size_t len) 418 { 419 struct scatterlist sg; 420 421 sg_init_table(&sg, 1); 422 sg_set_page(&sg, page, len, off); 423 ahash_request_set_crypt(hash, &sg, NULL, len); 424 crypto_ahash_update(hash); 425 } 426 427 static inline void nvme_tcp_hdgst(struct ahash_request *hash, 428 void *pdu, size_t len) 429 { 430 struct scatterlist sg; 431 432 sg_init_one(&sg, pdu, len); 433 ahash_request_set_crypt(hash, &sg, pdu + len, len); 434 crypto_ahash_digest(hash); 435 } 436 437 static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue, 438 void *pdu, size_t pdu_len) 439 { 440 struct nvme_tcp_hdr *hdr = pdu; 441 __le32 recv_digest; 442 __le32 exp_digest; 443 444 if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) { 445 dev_err(queue->ctrl->ctrl.device, 446 "queue %d: header digest flag is cleared\n", 447 nvme_tcp_queue_id(queue)); 448 return -EPROTO; 449 } 450 451 recv_digest = *(__le32 *)(pdu + hdr->hlen); 452 nvme_tcp_hdgst(queue->rcv_hash, pdu, pdu_len); 453 exp_digest = *(__le32 *)(pdu + hdr->hlen); 454 if (recv_digest != exp_digest) { 455 dev_err(queue->ctrl->ctrl.device, 456 "header digest error: recv %#x expected %#x\n", 457 le32_to_cpu(recv_digest), le32_to_cpu(exp_digest)); 458 return -EIO; 459 } 460 461 return 0; 462 } 463 464 static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu) 465 { 466 struct nvme_tcp_hdr *hdr = pdu; 467 u8 digest_len = nvme_tcp_hdgst_len(queue); 468 u32 len; 469 470 len = le32_to_cpu(hdr->plen) - hdr->hlen - 471 ((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0); 472 473 if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) { 474 dev_err(queue->ctrl->ctrl.device, 475 "queue %d: data digest flag is cleared\n", 476 nvme_tcp_queue_id(queue)); 477 return -EPROTO; 478 } 479 crypto_ahash_init(queue->rcv_hash); 480 481 return 0; 482 } 483 484 static void nvme_tcp_exit_request(struct blk_mq_tag_set *set, 485 struct request *rq, unsigned int hctx_idx) 486 { 487 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 488 489 page_frag_free(req->pdu); 490 } 491 492 static int nvme_tcp_init_request(struct blk_mq_tag_set *set, 493 struct request *rq, unsigned int hctx_idx, 494 unsigned int numa_node) 495 { 496 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(set->driver_data); 497 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 498 struct nvme_tcp_cmd_pdu *pdu; 499 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; 500 struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx]; 501 u8 hdgst = nvme_tcp_hdgst_len(queue); 502 503 req->pdu = page_frag_alloc(&queue->pf_cache, 504 sizeof(struct nvme_tcp_cmd_pdu) + hdgst, 505 GFP_KERNEL | __GFP_ZERO); 506 if (!req->pdu) 507 return -ENOMEM; 508 509 pdu = req->pdu; 510 req->queue = queue; 511 nvme_req(rq)->ctrl = &ctrl->ctrl; 512 nvme_req(rq)->cmd = &pdu->cmd; 513 514 return 0; 515 } 516 517 static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 518 unsigned int hctx_idx) 519 { 520 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(data); 521 struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1]; 522 523 hctx->driver_data = queue; 524 return 0; 525 } 526 527 static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, 528 unsigned int hctx_idx) 529 { 530 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(data); 531 struct nvme_tcp_queue *queue = &ctrl->queues[0]; 532 533 hctx->driver_data = queue; 534 return 0; 535 } 536 537 static enum nvme_tcp_recv_state 538 nvme_tcp_recv_state(struct nvme_tcp_queue *queue) 539 { 540 return (queue->pdu_remaining) ? NVME_TCP_RECV_PDU : 541 (queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST : 542 NVME_TCP_RECV_DATA; 543 } 544 545 static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue) 546 { 547 queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) + 548 nvme_tcp_hdgst_len(queue); 549 queue->pdu_offset = 0; 550 queue->data_remaining = -1; 551 queue->ddgst_remaining = 0; 552 } 553 554 static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl) 555 { 556 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 557 return; 558 559 dev_warn(ctrl->device, "starting error recovery\n"); 560 queue_work(nvme_reset_wq, &to_tcp_ctrl(ctrl)->err_work); 561 } 562 563 static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue, 564 struct nvme_completion *cqe) 565 { 566 struct nvme_tcp_request *req; 567 struct request *rq; 568 569 rq = nvme_find_rq(nvme_tcp_tagset(queue), cqe->command_id); 570 if (!rq) { 571 dev_err(queue->ctrl->ctrl.device, 572 "got bad cqe.command_id %#x on queue %d\n", 573 cqe->command_id, nvme_tcp_queue_id(queue)); 574 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 575 return -EINVAL; 576 } 577 578 req = blk_mq_rq_to_pdu(rq); 579 if (req->status == cpu_to_le16(NVME_SC_SUCCESS)) 580 req->status = cqe->status; 581 582 if (!nvme_try_complete_req(rq, req->status, cqe->result)) 583 nvme_complete_rq(rq); 584 queue->nr_cqe++; 585 586 return 0; 587 } 588 589 static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue, 590 struct nvme_tcp_data_pdu *pdu) 591 { 592 struct request *rq; 593 594 rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id); 595 if (!rq) { 596 dev_err(queue->ctrl->ctrl.device, 597 "got bad c2hdata.command_id %#x on queue %d\n", 598 pdu->command_id, nvme_tcp_queue_id(queue)); 599 return -ENOENT; 600 } 601 602 if (!blk_rq_payload_bytes(rq)) { 603 dev_err(queue->ctrl->ctrl.device, 604 "queue %d tag %#x unexpected data\n", 605 nvme_tcp_queue_id(queue), rq->tag); 606 return -EIO; 607 } 608 609 queue->data_remaining = le32_to_cpu(pdu->data_length); 610 611 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS && 612 unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) { 613 dev_err(queue->ctrl->ctrl.device, 614 "queue %d tag %#x SUCCESS set but not last PDU\n", 615 nvme_tcp_queue_id(queue), rq->tag); 616 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 617 return -EPROTO; 618 } 619 620 return 0; 621 } 622 623 static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue, 624 struct nvme_tcp_rsp_pdu *pdu) 625 { 626 struct nvme_completion *cqe = &pdu->cqe; 627 int ret = 0; 628 629 /* 630 * AEN requests are special as they don't time out and can 631 * survive any kind of queue freeze and often don't respond to 632 * aborts. We don't even bother to allocate a struct request 633 * for them but rather special case them here. 634 */ 635 if (unlikely(nvme_is_aen_req(nvme_tcp_queue_id(queue), 636 cqe->command_id))) 637 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status, 638 &cqe->result); 639 else 640 ret = nvme_tcp_process_nvme_cqe(queue, cqe); 641 642 return ret; 643 } 644 645 static void nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req) 646 { 647 struct nvme_tcp_data_pdu *data = nvme_tcp_req_data_pdu(req); 648 struct nvme_tcp_queue *queue = req->queue; 649 struct request *rq = blk_mq_rq_from_pdu(req); 650 u32 h2cdata_sent = req->pdu_len; 651 u8 hdgst = nvme_tcp_hdgst_len(queue); 652 u8 ddgst = nvme_tcp_ddgst_len(queue); 653 654 req->state = NVME_TCP_SEND_H2C_PDU; 655 req->offset = 0; 656 req->pdu_len = min(req->h2cdata_left, queue->maxh2cdata); 657 req->pdu_sent = 0; 658 req->h2cdata_left -= req->pdu_len; 659 req->h2cdata_offset += h2cdata_sent; 660 661 memset(data, 0, sizeof(*data)); 662 data->hdr.type = nvme_tcp_h2c_data; 663 if (!req->h2cdata_left) 664 data->hdr.flags = NVME_TCP_F_DATA_LAST; 665 if (queue->hdr_digest) 666 data->hdr.flags |= NVME_TCP_F_HDGST; 667 if (queue->data_digest) 668 data->hdr.flags |= NVME_TCP_F_DDGST; 669 data->hdr.hlen = sizeof(*data); 670 data->hdr.pdo = data->hdr.hlen + hdgst; 671 data->hdr.plen = 672 cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst); 673 data->ttag = req->ttag; 674 data->command_id = nvme_cid(rq); 675 data->data_offset = cpu_to_le32(req->h2cdata_offset); 676 data->data_length = cpu_to_le32(req->pdu_len); 677 } 678 679 static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue, 680 struct nvme_tcp_r2t_pdu *pdu) 681 { 682 struct nvme_tcp_request *req; 683 struct request *rq; 684 u32 r2t_length = le32_to_cpu(pdu->r2t_length); 685 u32 r2t_offset = le32_to_cpu(pdu->r2t_offset); 686 687 rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id); 688 if (!rq) { 689 dev_err(queue->ctrl->ctrl.device, 690 "got bad r2t.command_id %#x on queue %d\n", 691 pdu->command_id, nvme_tcp_queue_id(queue)); 692 return -ENOENT; 693 } 694 req = blk_mq_rq_to_pdu(rq); 695 696 if (unlikely(!r2t_length)) { 697 dev_err(queue->ctrl->ctrl.device, 698 "req %d r2t len is %u, probably a bug...\n", 699 rq->tag, r2t_length); 700 return -EPROTO; 701 } 702 703 if (unlikely(req->data_sent + r2t_length > req->data_len)) { 704 dev_err(queue->ctrl->ctrl.device, 705 "req %d r2t len %u exceeded data len %u (%zu sent)\n", 706 rq->tag, r2t_length, req->data_len, req->data_sent); 707 return -EPROTO; 708 } 709 710 if (unlikely(r2t_offset < req->data_sent)) { 711 dev_err(queue->ctrl->ctrl.device, 712 "req %d unexpected r2t offset %u (expected %zu)\n", 713 rq->tag, r2t_offset, req->data_sent); 714 return -EPROTO; 715 } 716 717 req->pdu_len = 0; 718 req->h2cdata_left = r2t_length; 719 req->h2cdata_offset = r2t_offset; 720 req->ttag = pdu->ttag; 721 722 nvme_tcp_setup_h2c_data_pdu(req); 723 nvme_tcp_queue_request(req, false, true); 724 725 return 0; 726 } 727 728 static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb, 729 unsigned int *offset, size_t *len) 730 { 731 struct nvme_tcp_hdr *hdr; 732 char *pdu = queue->pdu; 733 size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining); 734 int ret; 735 736 ret = skb_copy_bits(skb, *offset, 737 &pdu[queue->pdu_offset], rcv_len); 738 if (unlikely(ret)) 739 return ret; 740 741 queue->pdu_remaining -= rcv_len; 742 queue->pdu_offset += rcv_len; 743 *offset += rcv_len; 744 *len -= rcv_len; 745 if (queue->pdu_remaining) 746 return 0; 747 748 hdr = queue->pdu; 749 if (queue->hdr_digest) { 750 ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen); 751 if (unlikely(ret)) 752 return ret; 753 } 754 755 756 if (queue->data_digest) { 757 ret = nvme_tcp_check_ddgst(queue, queue->pdu); 758 if (unlikely(ret)) 759 return ret; 760 } 761 762 switch (hdr->type) { 763 case nvme_tcp_c2h_data: 764 return nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu); 765 case nvme_tcp_rsp: 766 nvme_tcp_init_recv_ctx(queue); 767 return nvme_tcp_handle_comp(queue, (void *)queue->pdu); 768 case nvme_tcp_r2t: 769 nvme_tcp_init_recv_ctx(queue); 770 return nvme_tcp_handle_r2t(queue, (void *)queue->pdu); 771 default: 772 dev_err(queue->ctrl->ctrl.device, 773 "unsupported pdu type (%d)\n", hdr->type); 774 return -EINVAL; 775 } 776 } 777 778 static inline void nvme_tcp_end_request(struct request *rq, u16 status) 779 { 780 union nvme_result res = {}; 781 782 if (!nvme_try_complete_req(rq, cpu_to_le16(status << 1), res)) 783 nvme_complete_rq(rq); 784 } 785 786 static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb, 787 unsigned int *offset, size_t *len) 788 { 789 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu; 790 struct request *rq = 791 nvme_cid_to_rq(nvme_tcp_tagset(queue), pdu->command_id); 792 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 793 794 while (true) { 795 int recv_len, ret; 796 797 recv_len = min_t(size_t, *len, queue->data_remaining); 798 if (!recv_len) 799 break; 800 801 if (!iov_iter_count(&req->iter)) { 802 req->curr_bio = req->curr_bio->bi_next; 803 804 /* 805 * If we don`t have any bios it means that controller 806 * sent more data than we requested, hence error 807 */ 808 if (!req->curr_bio) { 809 dev_err(queue->ctrl->ctrl.device, 810 "queue %d no space in request %#x", 811 nvme_tcp_queue_id(queue), rq->tag); 812 nvme_tcp_init_recv_ctx(queue); 813 return -EIO; 814 } 815 nvme_tcp_init_iter(req, ITER_DEST); 816 } 817 818 /* we can read only from what is left in this bio */ 819 recv_len = min_t(size_t, recv_len, 820 iov_iter_count(&req->iter)); 821 822 if (queue->data_digest) 823 ret = skb_copy_and_hash_datagram_iter(skb, *offset, 824 &req->iter, recv_len, queue->rcv_hash); 825 else 826 ret = skb_copy_datagram_iter(skb, *offset, 827 &req->iter, recv_len); 828 if (ret) { 829 dev_err(queue->ctrl->ctrl.device, 830 "queue %d failed to copy request %#x data", 831 nvme_tcp_queue_id(queue), rq->tag); 832 return ret; 833 } 834 835 *len -= recv_len; 836 *offset += recv_len; 837 queue->data_remaining -= recv_len; 838 } 839 840 if (!queue->data_remaining) { 841 if (queue->data_digest) { 842 nvme_tcp_ddgst_final(queue->rcv_hash, &queue->exp_ddgst); 843 queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH; 844 } else { 845 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) { 846 nvme_tcp_end_request(rq, 847 le16_to_cpu(req->status)); 848 queue->nr_cqe++; 849 } 850 nvme_tcp_init_recv_ctx(queue); 851 } 852 } 853 854 return 0; 855 } 856 857 static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue, 858 struct sk_buff *skb, unsigned int *offset, size_t *len) 859 { 860 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu; 861 char *ddgst = (char *)&queue->recv_ddgst; 862 size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining); 863 off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining; 864 int ret; 865 866 ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len); 867 if (unlikely(ret)) 868 return ret; 869 870 queue->ddgst_remaining -= recv_len; 871 *offset += recv_len; 872 *len -= recv_len; 873 if (queue->ddgst_remaining) 874 return 0; 875 876 if (queue->recv_ddgst != queue->exp_ddgst) { 877 struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue), 878 pdu->command_id); 879 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 880 881 req->status = cpu_to_le16(NVME_SC_DATA_XFER_ERROR); 882 883 dev_err(queue->ctrl->ctrl.device, 884 "data digest error: recv %#x expected %#x\n", 885 le32_to_cpu(queue->recv_ddgst), 886 le32_to_cpu(queue->exp_ddgst)); 887 } 888 889 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) { 890 struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue), 891 pdu->command_id); 892 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 893 894 nvme_tcp_end_request(rq, le16_to_cpu(req->status)); 895 queue->nr_cqe++; 896 } 897 898 nvme_tcp_init_recv_ctx(queue); 899 return 0; 900 } 901 902 static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb, 903 unsigned int offset, size_t len) 904 { 905 struct nvme_tcp_queue *queue = desc->arg.data; 906 size_t consumed = len; 907 int result; 908 909 if (unlikely(!queue->rd_enabled)) 910 return -EFAULT; 911 912 while (len) { 913 switch (nvme_tcp_recv_state(queue)) { 914 case NVME_TCP_RECV_PDU: 915 result = nvme_tcp_recv_pdu(queue, skb, &offset, &len); 916 break; 917 case NVME_TCP_RECV_DATA: 918 result = nvme_tcp_recv_data(queue, skb, &offset, &len); 919 break; 920 case NVME_TCP_RECV_DDGST: 921 result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len); 922 break; 923 default: 924 result = -EFAULT; 925 } 926 if (result) { 927 dev_err(queue->ctrl->ctrl.device, 928 "receive failed: %d\n", result); 929 queue->rd_enabled = false; 930 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 931 return result; 932 } 933 } 934 935 return consumed; 936 } 937 938 static void nvme_tcp_data_ready(struct sock *sk) 939 { 940 struct nvme_tcp_queue *queue; 941 942 trace_sk_data_ready(sk); 943 944 read_lock_bh(&sk->sk_callback_lock); 945 queue = sk->sk_user_data; 946 if (likely(queue && queue->rd_enabled) && 947 !test_bit(NVME_TCP_Q_POLLING, &queue->flags)) 948 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 949 read_unlock_bh(&sk->sk_callback_lock); 950 } 951 952 static void nvme_tcp_write_space(struct sock *sk) 953 { 954 struct nvme_tcp_queue *queue; 955 956 read_lock_bh(&sk->sk_callback_lock); 957 queue = sk->sk_user_data; 958 if (likely(queue && sk_stream_is_writeable(sk))) { 959 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 960 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 961 } 962 read_unlock_bh(&sk->sk_callback_lock); 963 } 964 965 static void nvme_tcp_state_change(struct sock *sk) 966 { 967 struct nvme_tcp_queue *queue; 968 969 read_lock_bh(&sk->sk_callback_lock); 970 queue = sk->sk_user_data; 971 if (!queue) 972 goto done; 973 974 switch (sk->sk_state) { 975 case TCP_CLOSE: 976 case TCP_CLOSE_WAIT: 977 case TCP_LAST_ACK: 978 case TCP_FIN_WAIT1: 979 case TCP_FIN_WAIT2: 980 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 981 break; 982 default: 983 dev_info(queue->ctrl->ctrl.device, 984 "queue %d socket state %d\n", 985 nvme_tcp_queue_id(queue), sk->sk_state); 986 } 987 988 queue->state_change(sk); 989 done: 990 read_unlock_bh(&sk->sk_callback_lock); 991 } 992 993 static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue) 994 { 995 queue->request = NULL; 996 } 997 998 static void nvme_tcp_fail_request(struct nvme_tcp_request *req) 999 { 1000 if (nvme_tcp_async_req(req)) { 1001 union nvme_result res = {}; 1002 1003 nvme_complete_async_event(&req->queue->ctrl->ctrl, 1004 cpu_to_le16(NVME_SC_HOST_PATH_ERROR), &res); 1005 } else { 1006 nvme_tcp_end_request(blk_mq_rq_from_pdu(req), 1007 NVME_SC_HOST_PATH_ERROR); 1008 } 1009 } 1010 1011 static int nvme_tcp_try_send_data(struct nvme_tcp_request *req) 1012 { 1013 struct nvme_tcp_queue *queue = req->queue; 1014 int req_data_len = req->data_len; 1015 u32 h2cdata_left = req->h2cdata_left; 1016 1017 while (true) { 1018 struct bio_vec bvec; 1019 struct msghdr msg = { 1020 .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, 1021 }; 1022 struct page *page = nvme_tcp_req_cur_page(req); 1023 size_t offset = nvme_tcp_req_cur_offset(req); 1024 size_t len = nvme_tcp_req_cur_length(req); 1025 bool last = nvme_tcp_pdu_last_send(req, len); 1026 int req_data_sent = req->data_sent; 1027 int ret; 1028 1029 if (last && !queue->data_digest && !nvme_tcp_queue_more(queue)) 1030 msg.msg_flags |= MSG_EOR; 1031 else 1032 msg.msg_flags |= MSG_MORE; 1033 1034 if (!sendpage_ok(page)) 1035 msg.msg_flags &= ~MSG_SPLICE_PAGES; 1036 1037 bvec_set_page(&bvec, page, len, offset); 1038 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len); 1039 ret = sock_sendmsg(queue->sock, &msg); 1040 if (ret <= 0) 1041 return ret; 1042 1043 if (queue->data_digest) 1044 nvme_tcp_ddgst_update(queue->snd_hash, page, 1045 offset, ret); 1046 1047 /* 1048 * update the request iterator except for the last payload send 1049 * in the request where we don't want to modify it as we may 1050 * compete with the RX path completing the request. 1051 */ 1052 if (req_data_sent + ret < req_data_len) 1053 nvme_tcp_advance_req(req, ret); 1054 1055 /* fully successful last send in current PDU */ 1056 if (last && ret == len) { 1057 if (queue->data_digest) { 1058 nvme_tcp_ddgst_final(queue->snd_hash, 1059 &req->ddgst); 1060 req->state = NVME_TCP_SEND_DDGST; 1061 req->offset = 0; 1062 } else { 1063 if (h2cdata_left) 1064 nvme_tcp_setup_h2c_data_pdu(req); 1065 else 1066 nvme_tcp_done_send_req(queue); 1067 } 1068 return 1; 1069 } 1070 } 1071 return -EAGAIN; 1072 } 1073 1074 static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req) 1075 { 1076 struct nvme_tcp_queue *queue = req->queue; 1077 struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req); 1078 struct bio_vec bvec; 1079 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, }; 1080 bool inline_data = nvme_tcp_has_inline_data(req); 1081 u8 hdgst = nvme_tcp_hdgst_len(queue); 1082 int len = sizeof(*pdu) + hdgst - req->offset; 1083 int ret; 1084 1085 if (inline_data || nvme_tcp_queue_more(queue)) 1086 msg.msg_flags |= MSG_MORE; 1087 else 1088 msg.msg_flags |= MSG_EOR; 1089 1090 if (queue->hdr_digest && !req->offset) 1091 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); 1092 1093 bvec_set_virt(&bvec, (void *)pdu + req->offset, len); 1094 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len); 1095 ret = sock_sendmsg(queue->sock, &msg); 1096 if (unlikely(ret <= 0)) 1097 return ret; 1098 1099 len -= ret; 1100 if (!len) { 1101 if (inline_data) { 1102 req->state = NVME_TCP_SEND_DATA; 1103 if (queue->data_digest) 1104 crypto_ahash_init(queue->snd_hash); 1105 } else { 1106 nvme_tcp_done_send_req(queue); 1107 } 1108 return 1; 1109 } 1110 req->offset += ret; 1111 1112 return -EAGAIN; 1113 } 1114 1115 static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req) 1116 { 1117 struct nvme_tcp_queue *queue = req->queue; 1118 struct nvme_tcp_data_pdu *pdu = nvme_tcp_req_data_pdu(req); 1119 struct bio_vec bvec; 1120 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_MORE, }; 1121 u8 hdgst = nvme_tcp_hdgst_len(queue); 1122 int len = sizeof(*pdu) - req->offset + hdgst; 1123 int ret; 1124 1125 if (queue->hdr_digest && !req->offset) 1126 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); 1127 1128 if (!req->h2cdata_left) 1129 msg.msg_flags |= MSG_SPLICE_PAGES; 1130 1131 bvec_set_virt(&bvec, (void *)pdu + req->offset, len); 1132 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len); 1133 ret = sock_sendmsg(queue->sock, &msg); 1134 if (unlikely(ret <= 0)) 1135 return ret; 1136 1137 len -= ret; 1138 if (!len) { 1139 req->state = NVME_TCP_SEND_DATA; 1140 if (queue->data_digest) 1141 crypto_ahash_init(queue->snd_hash); 1142 return 1; 1143 } 1144 req->offset += ret; 1145 1146 return -EAGAIN; 1147 } 1148 1149 static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req) 1150 { 1151 struct nvme_tcp_queue *queue = req->queue; 1152 size_t offset = req->offset; 1153 u32 h2cdata_left = req->h2cdata_left; 1154 int ret; 1155 struct msghdr msg = { .msg_flags = MSG_DONTWAIT }; 1156 struct kvec iov = { 1157 .iov_base = (u8 *)&req->ddgst + req->offset, 1158 .iov_len = NVME_TCP_DIGEST_LENGTH - req->offset 1159 }; 1160 1161 if (nvme_tcp_queue_more(queue)) 1162 msg.msg_flags |= MSG_MORE; 1163 else 1164 msg.msg_flags |= MSG_EOR; 1165 1166 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len); 1167 if (unlikely(ret <= 0)) 1168 return ret; 1169 1170 if (offset + ret == NVME_TCP_DIGEST_LENGTH) { 1171 if (h2cdata_left) 1172 nvme_tcp_setup_h2c_data_pdu(req); 1173 else 1174 nvme_tcp_done_send_req(queue); 1175 return 1; 1176 } 1177 1178 req->offset += ret; 1179 return -EAGAIN; 1180 } 1181 1182 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue) 1183 { 1184 struct nvme_tcp_request *req; 1185 unsigned int noreclaim_flag; 1186 int ret = 1; 1187 1188 if (!queue->request) { 1189 queue->request = nvme_tcp_fetch_request(queue); 1190 if (!queue->request) 1191 return 0; 1192 } 1193 req = queue->request; 1194 1195 noreclaim_flag = memalloc_noreclaim_save(); 1196 if (req->state == NVME_TCP_SEND_CMD_PDU) { 1197 ret = nvme_tcp_try_send_cmd_pdu(req); 1198 if (ret <= 0) 1199 goto done; 1200 if (!nvme_tcp_has_inline_data(req)) 1201 goto out; 1202 } 1203 1204 if (req->state == NVME_TCP_SEND_H2C_PDU) { 1205 ret = nvme_tcp_try_send_data_pdu(req); 1206 if (ret <= 0) 1207 goto done; 1208 } 1209 1210 if (req->state == NVME_TCP_SEND_DATA) { 1211 ret = nvme_tcp_try_send_data(req); 1212 if (ret <= 0) 1213 goto done; 1214 } 1215 1216 if (req->state == NVME_TCP_SEND_DDGST) 1217 ret = nvme_tcp_try_send_ddgst(req); 1218 done: 1219 if (ret == -EAGAIN) { 1220 ret = 0; 1221 } else if (ret < 0) { 1222 dev_err(queue->ctrl->ctrl.device, 1223 "failed to send request %d\n", ret); 1224 nvme_tcp_fail_request(queue->request); 1225 nvme_tcp_done_send_req(queue); 1226 } 1227 out: 1228 memalloc_noreclaim_restore(noreclaim_flag); 1229 return ret; 1230 } 1231 1232 static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue) 1233 { 1234 struct socket *sock = queue->sock; 1235 struct sock *sk = sock->sk; 1236 read_descriptor_t rd_desc; 1237 int consumed; 1238 1239 rd_desc.arg.data = queue; 1240 rd_desc.count = 1; 1241 lock_sock(sk); 1242 queue->nr_cqe = 0; 1243 consumed = sock->ops->read_sock(sk, &rd_desc, nvme_tcp_recv_skb); 1244 release_sock(sk); 1245 return consumed; 1246 } 1247 1248 static void nvme_tcp_io_work(struct work_struct *w) 1249 { 1250 struct nvme_tcp_queue *queue = 1251 container_of(w, struct nvme_tcp_queue, io_work); 1252 unsigned long deadline = jiffies + msecs_to_jiffies(1); 1253 1254 do { 1255 bool pending = false; 1256 int result; 1257 1258 if (mutex_trylock(&queue->send_mutex)) { 1259 result = nvme_tcp_try_send(queue); 1260 mutex_unlock(&queue->send_mutex); 1261 if (result > 0) 1262 pending = true; 1263 else if (unlikely(result < 0)) 1264 break; 1265 } 1266 1267 result = nvme_tcp_try_recv(queue); 1268 if (result > 0) 1269 pending = true; 1270 else if (unlikely(result < 0)) 1271 return; 1272 1273 if (!pending || !queue->rd_enabled) 1274 return; 1275 1276 } while (!time_after(jiffies, deadline)); /* quota is exhausted */ 1277 1278 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 1279 } 1280 1281 static void nvme_tcp_free_crypto(struct nvme_tcp_queue *queue) 1282 { 1283 struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash); 1284 1285 ahash_request_free(queue->rcv_hash); 1286 ahash_request_free(queue->snd_hash); 1287 crypto_free_ahash(tfm); 1288 } 1289 1290 static int nvme_tcp_alloc_crypto(struct nvme_tcp_queue *queue) 1291 { 1292 struct crypto_ahash *tfm; 1293 1294 tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC); 1295 if (IS_ERR(tfm)) 1296 return PTR_ERR(tfm); 1297 1298 queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL); 1299 if (!queue->snd_hash) 1300 goto free_tfm; 1301 ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL); 1302 1303 queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL); 1304 if (!queue->rcv_hash) 1305 goto free_snd_hash; 1306 ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL); 1307 1308 return 0; 1309 free_snd_hash: 1310 ahash_request_free(queue->snd_hash); 1311 free_tfm: 1312 crypto_free_ahash(tfm); 1313 return -ENOMEM; 1314 } 1315 1316 static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl) 1317 { 1318 struct nvme_tcp_request *async = &ctrl->async_req; 1319 1320 page_frag_free(async->pdu); 1321 } 1322 1323 static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl) 1324 { 1325 struct nvme_tcp_queue *queue = &ctrl->queues[0]; 1326 struct nvme_tcp_request *async = &ctrl->async_req; 1327 u8 hdgst = nvme_tcp_hdgst_len(queue); 1328 1329 async->pdu = page_frag_alloc(&queue->pf_cache, 1330 sizeof(struct nvme_tcp_cmd_pdu) + hdgst, 1331 GFP_KERNEL | __GFP_ZERO); 1332 if (!async->pdu) 1333 return -ENOMEM; 1334 1335 async->queue = &ctrl->queues[0]; 1336 return 0; 1337 } 1338 1339 static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid) 1340 { 1341 struct page *page; 1342 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1343 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1344 unsigned int noreclaim_flag; 1345 1346 if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags)) 1347 return; 1348 1349 if (queue->hdr_digest || queue->data_digest) 1350 nvme_tcp_free_crypto(queue); 1351 1352 if (queue->pf_cache.va) { 1353 page = virt_to_head_page(queue->pf_cache.va); 1354 __page_frag_cache_drain(page, queue->pf_cache.pagecnt_bias); 1355 queue->pf_cache.va = NULL; 1356 } 1357 1358 noreclaim_flag = memalloc_noreclaim_save(); 1359 /* ->sock will be released by fput() */ 1360 fput(queue->sock->file); 1361 queue->sock = NULL; 1362 memalloc_noreclaim_restore(noreclaim_flag); 1363 1364 kfree(queue->pdu); 1365 mutex_destroy(&queue->send_mutex); 1366 mutex_destroy(&queue->queue_lock); 1367 } 1368 1369 static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue) 1370 { 1371 struct nvme_tcp_icreq_pdu *icreq; 1372 struct nvme_tcp_icresp_pdu *icresp; 1373 char cbuf[CMSG_LEN(sizeof(char))] = {}; 1374 u8 ctype; 1375 struct msghdr msg = {}; 1376 struct kvec iov; 1377 bool ctrl_hdgst, ctrl_ddgst; 1378 u32 maxh2cdata; 1379 int ret; 1380 1381 icreq = kzalloc(sizeof(*icreq), GFP_KERNEL); 1382 if (!icreq) 1383 return -ENOMEM; 1384 1385 icresp = kzalloc(sizeof(*icresp), GFP_KERNEL); 1386 if (!icresp) { 1387 ret = -ENOMEM; 1388 goto free_icreq; 1389 } 1390 1391 icreq->hdr.type = nvme_tcp_icreq; 1392 icreq->hdr.hlen = sizeof(*icreq); 1393 icreq->hdr.pdo = 0; 1394 icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen); 1395 icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0); 1396 icreq->maxr2t = 0; /* single inflight r2t supported */ 1397 icreq->hpda = 0; /* no alignment constraint */ 1398 if (queue->hdr_digest) 1399 icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE; 1400 if (queue->data_digest) 1401 icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE; 1402 1403 iov.iov_base = icreq; 1404 iov.iov_len = sizeof(*icreq); 1405 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len); 1406 if (ret < 0) { 1407 pr_warn("queue %d: failed to send icreq, error %d\n", 1408 nvme_tcp_queue_id(queue), ret); 1409 goto free_icresp; 1410 } 1411 1412 memset(&msg, 0, sizeof(msg)); 1413 iov.iov_base = icresp; 1414 iov.iov_len = sizeof(*icresp); 1415 if (queue->ctrl->ctrl.opts->tls) { 1416 msg.msg_control = cbuf; 1417 msg.msg_controllen = sizeof(cbuf); 1418 } 1419 ret = kernel_recvmsg(queue->sock, &msg, &iov, 1, 1420 iov.iov_len, msg.msg_flags); 1421 if (ret < 0) { 1422 pr_warn("queue %d: failed to receive icresp, error %d\n", 1423 nvme_tcp_queue_id(queue), ret); 1424 goto free_icresp; 1425 } 1426 if (queue->ctrl->ctrl.opts->tls) { 1427 ctype = tls_get_record_type(queue->sock->sk, 1428 (struct cmsghdr *)cbuf); 1429 if (ctype != TLS_RECORD_TYPE_DATA) { 1430 pr_err("queue %d: unhandled TLS record %d\n", 1431 nvme_tcp_queue_id(queue), ctype); 1432 return -ENOTCONN; 1433 } 1434 } 1435 ret = -EINVAL; 1436 if (icresp->hdr.type != nvme_tcp_icresp) { 1437 pr_err("queue %d: bad type returned %d\n", 1438 nvme_tcp_queue_id(queue), icresp->hdr.type); 1439 goto free_icresp; 1440 } 1441 1442 if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) { 1443 pr_err("queue %d: bad pdu length returned %d\n", 1444 nvme_tcp_queue_id(queue), icresp->hdr.plen); 1445 goto free_icresp; 1446 } 1447 1448 if (icresp->pfv != NVME_TCP_PFV_1_0) { 1449 pr_err("queue %d: bad pfv returned %d\n", 1450 nvme_tcp_queue_id(queue), icresp->pfv); 1451 goto free_icresp; 1452 } 1453 1454 ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE); 1455 if ((queue->data_digest && !ctrl_ddgst) || 1456 (!queue->data_digest && ctrl_ddgst)) { 1457 pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n", 1458 nvme_tcp_queue_id(queue), 1459 queue->data_digest ? "enabled" : "disabled", 1460 ctrl_ddgst ? "enabled" : "disabled"); 1461 goto free_icresp; 1462 } 1463 1464 ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE); 1465 if ((queue->hdr_digest && !ctrl_hdgst) || 1466 (!queue->hdr_digest && ctrl_hdgst)) { 1467 pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n", 1468 nvme_tcp_queue_id(queue), 1469 queue->hdr_digest ? "enabled" : "disabled", 1470 ctrl_hdgst ? "enabled" : "disabled"); 1471 goto free_icresp; 1472 } 1473 1474 if (icresp->cpda != 0) { 1475 pr_err("queue %d: unsupported cpda returned %d\n", 1476 nvme_tcp_queue_id(queue), icresp->cpda); 1477 goto free_icresp; 1478 } 1479 1480 maxh2cdata = le32_to_cpu(icresp->maxdata); 1481 if ((maxh2cdata % 4) || (maxh2cdata < NVME_TCP_MIN_MAXH2CDATA)) { 1482 pr_err("queue %d: invalid maxh2cdata returned %u\n", 1483 nvme_tcp_queue_id(queue), maxh2cdata); 1484 goto free_icresp; 1485 } 1486 queue->maxh2cdata = maxh2cdata; 1487 1488 ret = 0; 1489 free_icresp: 1490 kfree(icresp); 1491 free_icreq: 1492 kfree(icreq); 1493 return ret; 1494 } 1495 1496 static bool nvme_tcp_admin_queue(struct nvme_tcp_queue *queue) 1497 { 1498 return nvme_tcp_queue_id(queue) == 0; 1499 } 1500 1501 static bool nvme_tcp_default_queue(struct nvme_tcp_queue *queue) 1502 { 1503 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1504 int qid = nvme_tcp_queue_id(queue); 1505 1506 return !nvme_tcp_admin_queue(queue) && 1507 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT]; 1508 } 1509 1510 static bool nvme_tcp_read_queue(struct nvme_tcp_queue *queue) 1511 { 1512 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1513 int qid = nvme_tcp_queue_id(queue); 1514 1515 return !nvme_tcp_admin_queue(queue) && 1516 !nvme_tcp_default_queue(queue) && 1517 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] + 1518 ctrl->io_queues[HCTX_TYPE_READ]; 1519 } 1520 1521 static bool nvme_tcp_poll_queue(struct nvme_tcp_queue *queue) 1522 { 1523 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1524 int qid = nvme_tcp_queue_id(queue); 1525 1526 return !nvme_tcp_admin_queue(queue) && 1527 !nvme_tcp_default_queue(queue) && 1528 !nvme_tcp_read_queue(queue) && 1529 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] + 1530 ctrl->io_queues[HCTX_TYPE_READ] + 1531 ctrl->io_queues[HCTX_TYPE_POLL]; 1532 } 1533 1534 static void nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue *queue) 1535 { 1536 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1537 int qid = nvme_tcp_queue_id(queue); 1538 int n = 0; 1539 1540 if (nvme_tcp_default_queue(queue)) 1541 n = qid - 1; 1542 else if (nvme_tcp_read_queue(queue)) 1543 n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - 1; 1544 else if (nvme_tcp_poll_queue(queue)) 1545 n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - 1546 ctrl->io_queues[HCTX_TYPE_READ] - 1; 1547 queue->io_cpu = cpumask_next_wrap(n - 1, cpu_online_mask, -1, false); 1548 } 1549 1550 #ifdef CONFIG_NVME_TCP_TLS 1551 static void nvme_tcp_tls_done(void *data, int status, key_serial_t pskid) 1552 { 1553 struct nvme_tcp_queue *queue = data; 1554 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1555 int qid = nvme_tcp_queue_id(queue); 1556 struct key *tls_key; 1557 1558 dev_dbg(ctrl->ctrl.device, "queue %d: TLS handshake done, key %x, status %d\n", 1559 qid, pskid, status); 1560 1561 if (status) { 1562 queue->tls_err = -status; 1563 goto out_complete; 1564 } 1565 1566 tls_key = key_lookup(pskid); 1567 if (IS_ERR(tls_key)) { 1568 dev_warn(ctrl->ctrl.device, "queue %d: Invalid key %x\n", 1569 qid, pskid); 1570 queue->tls_err = -ENOKEY; 1571 } else { 1572 ctrl->ctrl.tls_key = tls_key; 1573 queue->tls_err = 0; 1574 } 1575 1576 out_complete: 1577 complete(&queue->tls_complete); 1578 } 1579 1580 static int nvme_tcp_start_tls(struct nvme_ctrl *nctrl, 1581 struct nvme_tcp_queue *queue, 1582 key_serial_t pskid) 1583 { 1584 int qid = nvme_tcp_queue_id(queue); 1585 int ret; 1586 struct tls_handshake_args args; 1587 unsigned long tmo = tls_handshake_timeout * HZ; 1588 key_serial_t keyring = nvme_keyring_id(); 1589 1590 dev_dbg(nctrl->device, "queue %d: start TLS with key %x\n", 1591 qid, pskid); 1592 memset(&args, 0, sizeof(args)); 1593 args.ta_sock = queue->sock; 1594 args.ta_done = nvme_tcp_tls_done; 1595 args.ta_data = queue; 1596 args.ta_my_peerids[0] = pskid; 1597 args.ta_num_peerids = 1; 1598 if (nctrl->opts->keyring) 1599 keyring = key_serial(nctrl->opts->keyring); 1600 args.ta_keyring = keyring; 1601 args.ta_timeout_ms = tls_handshake_timeout * 1000; 1602 queue->tls_err = -EOPNOTSUPP; 1603 init_completion(&queue->tls_complete); 1604 ret = tls_client_hello_psk(&args, GFP_KERNEL); 1605 if (ret) { 1606 dev_err(nctrl->device, "queue %d: failed to start TLS: %d\n", 1607 qid, ret); 1608 return ret; 1609 } 1610 ret = wait_for_completion_interruptible_timeout(&queue->tls_complete, tmo); 1611 if (ret <= 0) { 1612 if (ret == 0) 1613 ret = -ETIMEDOUT; 1614 1615 dev_err(nctrl->device, 1616 "queue %d: TLS handshake failed, error %d\n", 1617 qid, ret); 1618 tls_handshake_cancel(queue->sock->sk); 1619 } else { 1620 dev_dbg(nctrl->device, 1621 "queue %d: TLS handshake complete, error %d\n", 1622 qid, queue->tls_err); 1623 ret = queue->tls_err; 1624 } 1625 return ret; 1626 } 1627 #else 1628 static int nvme_tcp_start_tls(struct nvme_ctrl *nctrl, 1629 struct nvme_tcp_queue *queue, 1630 key_serial_t pskid) 1631 { 1632 return -EPROTONOSUPPORT; 1633 } 1634 #endif 1635 1636 static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl, int qid, 1637 key_serial_t pskid) 1638 { 1639 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1640 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1641 int ret, rcv_pdu_size; 1642 struct file *sock_file; 1643 1644 mutex_init(&queue->queue_lock); 1645 queue->ctrl = ctrl; 1646 init_llist_head(&queue->req_list); 1647 INIT_LIST_HEAD(&queue->send_list); 1648 mutex_init(&queue->send_mutex); 1649 INIT_WORK(&queue->io_work, nvme_tcp_io_work); 1650 1651 if (qid > 0) 1652 queue->cmnd_capsule_len = nctrl->ioccsz * 16; 1653 else 1654 queue->cmnd_capsule_len = sizeof(struct nvme_command) + 1655 NVME_TCP_ADMIN_CCSZ; 1656 1657 ret = sock_create(ctrl->addr.ss_family, SOCK_STREAM, 1658 IPPROTO_TCP, &queue->sock); 1659 if (ret) { 1660 dev_err(nctrl->device, 1661 "failed to create socket: %d\n", ret); 1662 goto err_destroy_mutex; 1663 } 1664 1665 sock_file = sock_alloc_file(queue->sock, O_CLOEXEC, NULL); 1666 if (IS_ERR(sock_file)) { 1667 ret = PTR_ERR(sock_file); 1668 goto err_destroy_mutex; 1669 } 1670 nvme_tcp_reclassify_socket(queue->sock); 1671 1672 /* Single syn retry */ 1673 tcp_sock_set_syncnt(queue->sock->sk, 1); 1674 1675 /* Set TCP no delay */ 1676 tcp_sock_set_nodelay(queue->sock->sk); 1677 1678 /* 1679 * Cleanup whatever is sitting in the TCP transmit queue on socket 1680 * close. This is done to prevent stale data from being sent should 1681 * the network connection be restored before TCP times out. 1682 */ 1683 sock_no_linger(queue->sock->sk); 1684 1685 if (so_priority > 0) 1686 sock_set_priority(queue->sock->sk, so_priority); 1687 1688 /* Set socket type of service */ 1689 if (nctrl->opts->tos >= 0) 1690 ip_sock_set_tos(queue->sock->sk, nctrl->opts->tos); 1691 1692 /* Set 10 seconds timeout for icresp recvmsg */ 1693 queue->sock->sk->sk_rcvtimeo = 10 * HZ; 1694 1695 queue->sock->sk->sk_allocation = GFP_ATOMIC; 1696 queue->sock->sk->sk_use_task_frag = false; 1697 nvme_tcp_set_queue_io_cpu(queue); 1698 queue->request = NULL; 1699 queue->data_remaining = 0; 1700 queue->ddgst_remaining = 0; 1701 queue->pdu_remaining = 0; 1702 queue->pdu_offset = 0; 1703 sk_set_memalloc(queue->sock->sk); 1704 1705 if (nctrl->opts->mask & NVMF_OPT_HOST_TRADDR) { 1706 ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr, 1707 sizeof(ctrl->src_addr)); 1708 if (ret) { 1709 dev_err(nctrl->device, 1710 "failed to bind queue %d socket %d\n", 1711 qid, ret); 1712 goto err_sock; 1713 } 1714 } 1715 1716 if (nctrl->opts->mask & NVMF_OPT_HOST_IFACE) { 1717 char *iface = nctrl->opts->host_iface; 1718 sockptr_t optval = KERNEL_SOCKPTR(iface); 1719 1720 ret = sock_setsockopt(queue->sock, SOL_SOCKET, SO_BINDTODEVICE, 1721 optval, strlen(iface)); 1722 if (ret) { 1723 dev_err(nctrl->device, 1724 "failed to bind to interface %s queue %d err %d\n", 1725 iface, qid, ret); 1726 goto err_sock; 1727 } 1728 } 1729 1730 queue->hdr_digest = nctrl->opts->hdr_digest; 1731 queue->data_digest = nctrl->opts->data_digest; 1732 if (queue->hdr_digest || queue->data_digest) { 1733 ret = nvme_tcp_alloc_crypto(queue); 1734 if (ret) { 1735 dev_err(nctrl->device, 1736 "failed to allocate queue %d crypto\n", qid); 1737 goto err_sock; 1738 } 1739 } 1740 1741 rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) + 1742 nvme_tcp_hdgst_len(queue); 1743 queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL); 1744 if (!queue->pdu) { 1745 ret = -ENOMEM; 1746 goto err_crypto; 1747 } 1748 1749 dev_dbg(nctrl->device, "connecting queue %d\n", 1750 nvme_tcp_queue_id(queue)); 1751 1752 ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr, 1753 sizeof(ctrl->addr), 0); 1754 if (ret) { 1755 dev_err(nctrl->device, 1756 "failed to connect socket: %d\n", ret); 1757 goto err_rcv_pdu; 1758 } 1759 1760 /* If PSKs are configured try to start TLS */ 1761 if (pskid) { 1762 ret = nvme_tcp_start_tls(nctrl, queue, pskid); 1763 if (ret) 1764 goto err_init_connect; 1765 } 1766 1767 ret = nvme_tcp_init_connection(queue); 1768 if (ret) 1769 goto err_init_connect; 1770 1771 set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags); 1772 1773 return 0; 1774 1775 err_init_connect: 1776 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 1777 err_rcv_pdu: 1778 kfree(queue->pdu); 1779 err_crypto: 1780 if (queue->hdr_digest || queue->data_digest) 1781 nvme_tcp_free_crypto(queue); 1782 err_sock: 1783 /* ->sock will be released by fput() */ 1784 fput(queue->sock->file); 1785 queue->sock = NULL; 1786 err_destroy_mutex: 1787 mutex_destroy(&queue->send_mutex); 1788 mutex_destroy(&queue->queue_lock); 1789 return ret; 1790 } 1791 1792 static void nvme_tcp_restore_sock_ops(struct nvme_tcp_queue *queue) 1793 { 1794 struct socket *sock = queue->sock; 1795 1796 write_lock_bh(&sock->sk->sk_callback_lock); 1797 sock->sk->sk_user_data = NULL; 1798 sock->sk->sk_data_ready = queue->data_ready; 1799 sock->sk->sk_state_change = queue->state_change; 1800 sock->sk->sk_write_space = queue->write_space; 1801 write_unlock_bh(&sock->sk->sk_callback_lock); 1802 } 1803 1804 static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue) 1805 { 1806 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 1807 nvme_tcp_restore_sock_ops(queue); 1808 cancel_work_sync(&queue->io_work); 1809 } 1810 1811 static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid) 1812 { 1813 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1814 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1815 1816 if (!test_bit(NVME_TCP_Q_ALLOCATED, &queue->flags)) 1817 return; 1818 1819 mutex_lock(&queue->queue_lock); 1820 if (test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags)) 1821 __nvme_tcp_stop_queue(queue); 1822 mutex_unlock(&queue->queue_lock); 1823 } 1824 1825 static void nvme_tcp_setup_sock_ops(struct nvme_tcp_queue *queue) 1826 { 1827 write_lock_bh(&queue->sock->sk->sk_callback_lock); 1828 queue->sock->sk->sk_user_data = queue; 1829 queue->state_change = queue->sock->sk->sk_state_change; 1830 queue->data_ready = queue->sock->sk->sk_data_ready; 1831 queue->write_space = queue->sock->sk->sk_write_space; 1832 queue->sock->sk->sk_data_ready = nvme_tcp_data_ready; 1833 queue->sock->sk->sk_state_change = nvme_tcp_state_change; 1834 queue->sock->sk->sk_write_space = nvme_tcp_write_space; 1835 #ifdef CONFIG_NET_RX_BUSY_POLL 1836 queue->sock->sk->sk_ll_usec = 1; 1837 #endif 1838 write_unlock_bh(&queue->sock->sk->sk_callback_lock); 1839 } 1840 1841 static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx) 1842 { 1843 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1844 struct nvme_tcp_queue *queue = &ctrl->queues[idx]; 1845 int ret; 1846 1847 queue->rd_enabled = true; 1848 nvme_tcp_init_recv_ctx(queue); 1849 nvme_tcp_setup_sock_ops(queue); 1850 1851 if (idx) 1852 ret = nvmf_connect_io_queue(nctrl, idx); 1853 else 1854 ret = nvmf_connect_admin_queue(nctrl); 1855 1856 if (!ret) { 1857 set_bit(NVME_TCP_Q_LIVE, &queue->flags); 1858 } else { 1859 if (test_bit(NVME_TCP_Q_ALLOCATED, &queue->flags)) 1860 __nvme_tcp_stop_queue(queue); 1861 dev_err(nctrl->device, 1862 "failed to connect queue: %d ret=%d\n", idx, ret); 1863 } 1864 return ret; 1865 } 1866 1867 static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl) 1868 { 1869 if (to_tcp_ctrl(ctrl)->async_req.pdu) { 1870 cancel_work_sync(&ctrl->async_event_work); 1871 nvme_tcp_free_async_req(to_tcp_ctrl(ctrl)); 1872 to_tcp_ctrl(ctrl)->async_req.pdu = NULL; 1873 } 1874 1875 nvme_tcp_free_queue(ctrl, 0); 1876 } 1877 1878 static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl) 1879 { 1880 int i; 1881 1882 for (i = 1; i < ctrl->queue_count; i++) 1883 nvme_tcp_free_queue(ctrl, i); 1884 } 1885 1886 static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl) 1887 { 1888 int i; 1889 1890 for (i = 1; i < ctrl->queue_count; i++) 1891 nvme_tcp_stop_queue(ctrl, i); 1892 } 1893 1894 static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl, 1895 int first, int last) 1896 { 1897 int i, ret; 1898 1899 for (i = first; i < last; i++) { 1900 ret = nvme_tcp_start_queue(ctrl, i); 1901 if (ret) 1902 goto out_stop_queues; 1903 } 1904 1905 return 0; 1906 1907 out_stop_queues: 1908 for (i--; i >= first; i--) 1909 nvme_tcp_stop_queue(ctrl, i); 1910 return ret; 1911 } 1912 1913 static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl) 1914 { 1915 int ret; 1916 key_serial_t pskid = 0; 1917 1918 if (ctrl->opts->tls) { 1919 if (ctrl->opts->tls_key) 1920 pskid = key_serial(ctrl->opts->tls_key); 1921 else 1922 pskid = nvme_tls_psk_default(ctrl->opts->keyring, 1923 ctrl->opts->host->nqn, 1924 ctrl->opts->subsysnqn); 1925 if (!pskid) { 1926 dev_err(ctrl->device, "no valid PSK found\n"); 1927 ret = -ENOKEY; 1928 goto out_free_queue; 1929 } 1930 } 1931 1932 ret = nvme_tcp_alloc_queue(ctrl, 0, pskid); 1933 if (ret) 1934 goto out_free_queue; 1935 1936 ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl)); 1937 if (ret) 1938 goto out_free_queue; 1939 1940 return 0; 1941 1942 out_free_queue: 1943 nvme_tcp_free_queue(ctrl, 0); 1944 return ret; 1945 } 1946 1947 static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl) 1948 { 1949 int i, ret; 1950 1951 if (ctrl->opts->tls && !ctrl->tls_key) { 1952 dev_err(ctrl->device, "no PSK negotiated\n"); 1953 return -ENOKEY; 1954 } 1955 for (i = 1; i < ctrl->queue_count; i++) { 1956 ret = nvme_tcp_alloc_queue(ctrl, i, 1957 key_serial(ctrl->tls_key)); 1958 if (ret) 1959 goto out_free_queues; 1960 } 1961 1962 return 0; 1963 1964 out_free_queues: 1965 for (i--; i >= 1; i--) 1966 nvme_tcp_free_queue(ctrl, i); 1967 1968 return ret; 1969 } 1970 1971 static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl) 1972 { 1973 unsigned int nr_io_queues; 1974 int ret; 1975 1976 nr_io_queues = nvmf_nr_io_queues(ctrl->opts); 1977 ret = nvme_set_queue_count(ctrl, &nr_io_queues); 1978 if (ret) 1979 return ret; 1980 1981 if (nr_io_queues == 0) { 1982 dev_err(ctrl->device, 1983 "unable to set any I/O queues\n"); 1984 return -ENOMEM; 1985 } 1986 1987 ctrl->queue_count = nr_io_queues + 1; 1988 dev_info(ctrl->device, 1989 "creating %d I/O queues.\n", nr_io_queues); 1990 1991 nvmf_set_io_queues(ctrl->opts, nr_io_queues, 1992 to_tcp_ctrl(ctrl)->io_queues); 1993 return __nvme_tcp_alloc_io_queues(ctrl); 1994 } 1995 1996 static void nvme_tcp_destroy_io_queues(struct nvme_ctrl *ctrl, bool remove) 1997 { 1998 nvme_tcp_stop_io_queues(ctrl); 1999 if (remove) 2000 nvme_remove_io_tag_set(ctrl); 2001 nvme_tcp_free_io_queues(ctrl); 2002 } 2003 2004 static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new) 2005 { 2006 int ret, nr_queues; 2007 2008 ret = nvme_tcp_alloc_io_queues(ctrl); 2009 if (ret) 2010 return ret; 2011 2012 if (new) { 2013 ret = nvme_alloc_io_tag_set(ctrl, &to_tcp_ctrl(ctrl)->tag_set, 2014 &nvme_tcp_mq_ops, 2015 ctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2, 2016 sizeof(struct nvme_tcp_request)); 2017 if (ret) 2018 goto out_free_io_queues; 2019 } 2020 2021 /* 2022 * Only start IO queues for which we have allocated the tagset 2023 * and limitted it to the available queues. On reconnects, the 2024 * queue number might have changed. 2025 */ 2026 nr_queues = min(ctrl->tagset->nr_hw_queues + 1, ctrl->queue_count); 2027 ret = nvme_tcp_start_io_queues(ctrl, 1, nr_queues); 2028 if (ret) 2029 goto out_cleanup_connect_q; 2030 2031 if (!new) { 2032 nvme_start_freeze(ctrl); 2033 nvme_unquiesce_io_queues(ctrl); 2034 if (!nvme_wait_freeze_timeout(ctrl, NVME_IO_TIMEOUT)) { 2035 /* 2036 * If we timed out waiting for freeze we are likely to 2037 * be stuck. Fail the controller initialization just 2038 * to be safe. 2039 */ 2040 ret = -ENODEV; 2041 nvme_unfreeze(ctrl); 2042 goto out_wait_freeze_timed_out; 2043 } 2044 blk_mq_update_nr_hw_queues(ctrl->tagset, 2045 ctrl->queue_count - 1); 2046 nvme_unfreeze(ctrl); 2047 } 2048 2049 /* 2050 * If the number of queues has increased (reconnect case) 2051 * start all new queues now. 2052 */ 2053 ret = nvme_tcp_start_io_queues(ctrl, nr_queues, 2054 ctrl->tagset->nr_hw_queues + 1); 2055 if (ret) 2056 goto out_wait_freeze_timed_out; 2057 2058 return 0; 2059 2060 out_wait_freeze_timed_out: 2061 nvme_quiesce_io_queues(ctrl); 2062 nvme_sync_io_queues(ctrl); 2063 nvme_tcp_stop_io_queues(ctrl); 2064 out_cleanup_connect_q: 2065 nvme_cancel_tagset(ctrl); 2066 if (new) 2067 nvme_remove_io_tag_set(ctrl); 2068 out_free_io_queues: 2069 nvme_tcp_free_io_queues(ctrl); 2070 return ret; 2071 } 2072 2073 static void nvme_tcp_destroy_admin_queue(struct nvme_ctrl *ctrl, bool remove) 2074 { 2075 nvme_tcp_stop_queue(ctrl, 0); 2076 if (remove) 2077 nvme_remove_admin_tag_set(ctrl); 2078 nvme_tcp_free_admin_queue(ctrl); 2079 } 2080 2081 static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new) 2082 { 2083 int error; 2084 2085 error = nvme_tcp_alloc_admin_queue(ctrl); 2086 if (error) 2087 return error; 2088 2089 if (new) { 2090 error = nvme_alloc_admin_tag_set(ctrl, 2091 &to_tcp_ctrl(ctrl)->admin_tag_set, 2092 &nvme_tcp_admin_mq_ops, 2093 sizeof(struct nvme_tcp_request)); 2094 if (error) 2095 goto out_free_queue; 2096 } 2097 2098 error = nvme_tcp_start_queue(ctrl, 0); 2099 if (error) 2100 goto out_cleanup_tagset; 2101 2102 error = nvme_enable_ctrl(ctrl); 2103 if (error) 2104 goto out_stop_queue; 2105 2106 nvme_unquiesce_admin_queue(ctrl); 2107 2108 error = nvme_init_ctrl_finish(ctrl, false); 2109 if (error) 2110 goto out_quiesce_queue; 2111 2112 return 0; 2113 2114 out_quiesce_queue: 2115 nvme_quiesce_admin_queue(ctrl); 2116 blk_sync_queue(ctrl->admin_q); 2117 out_stop_queue: 2118 nvme_tcp_stop_queue(ctrl, 0); 2119 nvme_cancel_admin_tagset(ctrl); 2120 out_cleanup_tagset: 2121 if (new) 2122 nvme_remove_admin_tag_set(ctrl); 2123 out_free_queue: 2124 nvme_tcp_free_admin_queue(ctrl); 2125 return error; 2126 } 2127 2128 static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl, 2129 bool remove) 2130 { 2131 nvme_quiesce_admin_queue(ctrl); 2132 blk_sync_queue(ctrl->admin_q); 2133 nvme_tcp_stop_queue(ctrl, 0); 2134 nvme_cancel_admin_tagset(ctrl); 2135 if (remove) 2136 nvme_unquiesce_admin_queue(ctrl); 2137 nvme_tcp_destroy_admin_queue(ctrl, remove); 2138 } 2139 2140 static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl, 2141 bool remove) 2142 { 2143 if (ctrl->queue_count <= 1) 2144 return; 2145 nvme_quiesce_admin_queue(ctrl); 2146 nvme_quiesce_io_queues(ctrl); 2147 nvme_sync_io_queues(ctrl); 2148 nvme_tcp_stop_io_queues(ctrl); 2149 nvme_cancel_tagset(ctrl); 2150 if (remove) 2151 nvme_unquiesce_io_queues(ctrl); 2152 nvme_tcp_destroy_io_queues(ctrl, remove); 2153 } 2154 2155 static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl) 2156 { 2157 /* If we are resetting/deleting then do nothing */ 2158 if (ctrl->state != NVME_CTRL_CONNECTING) { 2159 WARN_ON_ONCE(ctrl->state == NVME_CTRL_NEW || 2160 ctrl->state == NVME_CTRL_LIVE); 2161 return; 2162 } 2163 2164 if (nvmf_should_reconnect(ctrl)) { 2165 dev_info(ctrl->device, "Reconnecting in %d seconds...\n", 2166 ctrl->opts->reconnect_delay); 2167 queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work, 2168 ctrl->opts->reconnect_delay * HZ); 2169 } else { 2170 dev_info(ctrl->device, "Removing controller...\n"); 2171 nvme_delete_ctrl(ctrl); 2172 } 2173 } 2174 2175 static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new) 2176 { 2177 struct nvmf_ctrl_options *opts = ctrl->opts; 2178 int ret; 2179 2180 ret = nvme_tcp_configure_admin_queue(ctrl, new); 2181 if (ret) 2182 return ret; 2183 2184 if (ctrl->icdoff) { 2185 ret = -EOPNOTSUPP; 2186 dev_err(ctrl->device, "icdoff is not supported!\n"); 2187 goto destroy_admin; 2188 } 2189 2190 if (!nvme_ctrl_sgl_supported(ctrl)) { 2191 ret = -EOPNOTSUPP; 2192 dev_err(ctrl->device, "Mandatory sgls are not supported!\n"); 2193 goto destroy_admin; 2194 } 2195 2196 if (opts->queue_size > ctrl->sqsize + 1) 2197 dev_warn(ctrl->device, 2198 "queue_size %zu > ctrl sqsize %u, clamping down\n", 2199 opts->queue_size, ctrl->sqsize + 1); 2200 2201 if (ctrl->sqsize + 1 > ctrl->maxcmd) { 2202 dev_warn(ctrl->device, 2203 "sqsize %u > ctrl maxcmd %u, clamping down\n", 2204 ctrl->sqsize + 1, ctrl->maxcmd); 2205 ctrl->sqsize = ctrl->maxcmd - 1; 2206 } 2207 2208 if (ctrl->queue_count > 1) { 2209 ret = nvme_tcp_configure_io_queues(ctrl, new); 2210 if (ret) 2211 goto destroy_admin; 2212 } 2213 2214 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) { 2215 /* 2216 * state change failure is ok if we started ctrl delete, 2217 * unless we're during creation of a new controller to 2218 * avoid races with teardown flow. 2219 */ 2220 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING && 2221 ctrl->state != NVME_CTRL_DELETING_NOIO); 2222 WARN_ON_ONCE(new); 2223 ret = -EINVAL; 2224 goto destroy_io; 2225 } 2226 2227 nvme_start_ctrl(ctrl); 2228 return 0; 2229 2230 destroy_io: 2231 if (ctrl->queue_count > 1) { 2232 nvme_quiesce_io_queues(ctrl); 2233 nvme_sync_io_queues(ctrl); 2234 nvme_tcp_stop_io_queues(ctrl); 2235 nvme_cancel_tagset(ctrl); 2236 nvme_tcp_destroy_io_queues(ctrl, new); 2237 } 2238 destroy_admin: 2239 nvme_quiesce_admin_queue(ctrl); 2240 blk_sync_queue(ctrl->admin_q); 2241 nvme_tcp_stop_queue(ctrl, 0); 2242 nvme_cancel_admin_tagset(ctrl); 2243 nvme_tcp_destroy_admin_queue(ctrl, new); 2244 return ret; 2245 } 2246 2247 static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work) 2248 { 2249 struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work), 2250 struct nvme_tcp_ctrl, connect_work); 2251 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl; 2252 2253 ++ctrl->nr_reconnects; 2254 2255 if (nvme_tcp_setup_ctrl(ctrl, false)) 2256 goto requeue; 2257 2258 dev_info(ctrl->device, "Successfully reconnected (%d attempt)\n", 2259 ctrl->nr_reconnects); 2260 2261 ctrl->nr_reconnects = 0; 2262 2263 return; 2264 2265 requeue: 2266 dev_info(ctrl->device, "Failed reconnect attempt %d\n", 2267 ctrl->nr_reconnects); 2268 nvme_tcp_reconnect_or_remove(ctrl); 2269 } 2270 2271 static void nvme_tcp_error_recovery_work(struct work_struct *work) 2272 { 2273 struct nvme_tcp_ctrl *tcp_ctrl = container_of(work, 2274 struct nvme_tcp_ctrl, err_work); 2275 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl; 2276 2277 nvme_stop_keep_alive(ctrl); 2278 flush_work(&ctrl->async_event_work); 2279 nvme_tcp_teardown_io_queues(ctrl, false); 2280 /* unquiesce to fail fast pending requests */ 2281 nvme_unquiesce_io_queues(ctrl); 2282 nvme_tcp_teardown_admin_queue(ctrl, false); 2283 nvme_unquiesce_admin_queue(ctrl); 2284 nvme_auth_stop(ctrl); 2285 2286 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) { 2287 /* state change failure is ok if we started ctrl delete */ 2288 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING && 2289 ctrl->state != NVME_CTRL_DELETING_NOIO); 2290 return; 2291 } 2292 2293 nvme_tcp_reconnect_or_remove(ctrl); 2294 } 2295 2296 static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown) 2297 { 2298 nvme_tcp_teardown_io_queues(ctrl, shutdown); 2299 nvme_quiesce_admin_queue(ctrl); 2300 nvme_disable_ctrl(ctrl, shutdown); 2301 nvme_tcp_teardown_admin_queue(ctrl, shutdown); 2302 } 2303 2304 static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl) 2305 { 2306 nvme_tcp_teardown_ctrl(ctrl, true); 2307 } 2308 2309 static void nvme_reset_ctrl_work(struct work_struct *work) 2310 { 2311 struct nvme_ctrl *ctrl = 2312 container_of(work, struct nvme_ctrl, reset_work); 2313 2314 nvme_stop_ctrl(ctrl); 2315 nvme_tcp_teardown_ctrl(ctrl, false); 2316 2317 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) { 2318 /* state change failure is ok if we started ctrl delete */ 2319 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING && 2320 ctrl->state != NVME_CTRL_DELETING_NOIO); 2321 return; 2322 } 2323 2324 if (nvme_tcp_setup_ctrl(ctrl, false)) 2325 goto out_fail; 2326 2327 return; 2328 2329 out_fail: 2330 ++ctrl->nr_reconnects; 2331 nvme_tcp_reconnect_or_remove(ctrl); 2332 } 2333 2334 static void nvme_tcp_stop_ctrl(struct nvme_ctrl *ctrl) 2335 { 2336 flush_work(&to_tcp_ctrl(ctrl)->err_work); 2337 cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work); 2338 } 2339 2340 static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl) 2341 { 2342 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 2343 2344 if (list_empty(&ctrl->list)) 2345 goto free_ctrl; 2346 2347 mutex_lock(&nvme_tcp_ctrl_mutex); 2348 list_del(&ctrl->list); 2349 mutex_unlock(&nvme_tcp_ctrl_mutex); 2350 2351 nvmf_free_options(nctrl->opts); 2352 free_ctrl: 2353 kfree(ctrl->queues); 2354 kfree(ctrl); 2355 } 2356 2357 static void nvme_tcp_set_sg_null(struct nvme_command *c) 2358 { 2359 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 2360 2361 sg->addr = 0; 2362 sg->length = 0; 2363 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) | 2364 NVME_SGL_FMT_TRANSPORT_A; 2365 } 2366 2367 static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue, 2368 struct nvme_command *c, u32 data_len) 2369 { 2370 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 2371 2372 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff); 2373 sg->length = cpu_to_le32(data_len); 2374 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET; 2375 } 2376 2377 static void nvme_tcp_set_sg_host_data(struct nvme_command *c, 2378 u32 data_len) 2379 { 2380 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 2381 2382 sg->addr = 0; 2383 sg->length = cpu_to_le32(data_len); 2384 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) | 2385 NVME_SGL_FMT_TRANSPORT_A; 2386 } 2387 2388 static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg) 2389 { 2390 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg); 2391 struct nvme_tcp_queue *queue = &ctrl->queues[0]; 2392 struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu; 2393 struct nvme_command *cmd = &pdu->cmd; 2394 u8 hdgst = nvme_tcp_hdgst_len(queue); 2395 2396 memset(pdu, 0, sizeof(*pdu)); 2397 pdu->hdr.type = nvme_tcp_cmd; 2398 if (queue->hdr_digest) 2399 pdu->hdr.flags |= NVME_TCP_F_HDGST; 2400 pdu->hdr.hlen = sizeof(*pdu); 2401 pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst); 2402 2403 cmd->common.opcode = nvme_admin_async_event; 2404 cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH; 2405 cmd->common.flags |= NVME_CMD_SGL_METABUF; 2406 nvme_tcp_set_sg_null(cmd); 2407 2408 ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU; 2409 ctrl->async_req.offset = 0; 2410 ctrl->async_req.curr_bio = NULL; 2411 ctrl->async_req.data_len = 0; 2412 2413 nvme_tcp_queue_request(&ctrl->async_req, true, true); 2414 } 2415 2416 static void nvme_tcp_complete_timed_out(struct request *rq) 2417 { 2418 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2419 struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl; 2420 2421 nvme_tcp_stop_queue(ctrl, nvme_tcp_queue_id(req->queue)); 2422 nvmf_complete_timed_out_request(rq); 2423 } 2424 2425 static enum blk_eh_timer_return nvme_tcp_timeout(struct request *rq) 2426 { 2427 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2428 struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl; 2429 struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req); 2430 u8 opc = pdu->cmd.common.opcode, fctype = pdu->cmd.fabrics.fctype; 2431 int qid = nvme_tcp_queue_id(req->queue); 2432 2433 dev_warn(ctrl->device, 2434 "queue %d: timeout cid %#x type %d opcode %#x (%s)\n", 2435 nvme_tcp_queue_id(req->queue), nvme_cid(rq), pdu->hdr.type, 2436 opc, nvme_opcode_str(qid, opc, fctype)); 2437 2438 if (ctrl->state != NVME_CTRL_LIVE) { 2439 /* 2440 * If we are resetting, connecting or deleting we should 2441 * complete immediately because we may block controller 2442 * teardown or setup sequence 2443 * - ctrl disable/shutdown fabrics requests 2444 * - connect requests 2445 * - initialization admin requests 2446 * - I/O requests that entered after unquiescing and 2447 * the controller stopped responding 2448 * 2449 * All other requests should be cancelled by the error 2450 * recovery work, so it's fine that we fail it here. 2451 */ 2452 nvme_tcp_complete_timed_out(rq); 2453 return BLK_EH_DONE; 2454 } 2455 2456 /* 2457 * LIVE state should trigger the normal error recovery which will 2458 * handle completing this request. 2459 */ 2460 nvme_tcp_error_recovery(ctrl); 2461 return BLK_EH_RESET_TIMER; 2462 } 2463 2464 static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue, 2465 struct request *rq) 2466 { 2467 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2468 struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req); 2469 struct nvme_command *c = &pdu->cmd; 2470 2471 c->common.flags |= NVME_CMD_SGL_METABUF; 2472 2473 if (!blk_rq_nr_phys_segments(rq)) 2474 nvme_tcp_set_sg_null(c); 2475 else if (rq_data_dir(rq) == WRITE && 2476 req->data_len <= nvme_tcp_inline_data_size(req)) 2477 nvme_tcp_set_sg_inline(queue, c, req->data_len); 2478 else 2479 nvme_tcp_set_sg_host_data(c, req->data_len); 2480 2481 return 0; 2482 } 2483 2484 static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns, 2485 struct request *rq) 2486 { 2487 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2488 struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req); 2489 struct nvme_tcp_queue *queue = req->queue; 2490 u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0; 2491 blk_status_t ret; 2492 2493 ret = nvme_setup_cmd(ns, rq); 2494 if (ret) 2495 return ret; 2496 2497 req->state = NVME_TCP_SEND_CMD_PDU; 2498 req->status = cpu_to_le16(NVME_SC_SUCCESS); 2499 req->offset = 0; 2500 req->data_sent = 0; 2501 req->pdu_len = 0; 2502 req->pdu_sent = 0; 2503 req->h2cdata_left = 0; 2504 req->data_len = blk_rq_nr_phys_segments(rq) ? 2505 blk_rq_payload_bytes(rq) : 0; 2506 req->curr_bio = rq->bio; 2507 if (req->curr_bio && req->data_len) 2508 nvme_tcp_init_iter(req, rq_data_dir(rq)); 2509 2510 if (rq_data_dir(rq) == WRITE && 2511 req->data_len <= nvme_tcp_inline_data_size(req)) 2512 req->pdu_len = req->data_len; 2513 2514 pdu->hdr.type = nvme_tcp_cmd; 2515 pdu->hdr.flags = 0; 2516 if (queue->hdr_digest) 2517 pdu->hdr.flags |= NVME_TCP_F_HDGST; 2518 if (queue->data_digest && req->pdu_len) { 2519 pdu->hdr.flags |= NVME_TCP_F_DDGST; 2520 ddgst = nvme_tcp_ddgst_len(queue); 2521 } 2522 pdu->hdr.hlen = sizeof(*pdu); 2523 pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0; 2524 pdu->hdr.plen = 2525 cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst); 2526 2527 ret = nvme_tcp_map_data(queue, rq); 2528 if (unlikely(ret)) { 2529 nvme_cleanup_cmd(rq); 2530 dev_err(queue->ctrl->ctrl.device, 2531 "Failed to map data (%d)\n", ret); 2532 return ret; 2533 } 2534 2535 return 0; 2536 } 2537 2538 static void nvme_tcp_commit_rqs(struct blk_mq_hw_ctx *hctx) 2539 { 2540 struct nvme_tcp_queue *queue = hctx->driver_data; 2541 2542 if (!llist_empty(&queue->req_list)) 2543 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 2544 } 2545 2546 static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx, 2547 const struct blk_mq_queue_data *bd) 2548 { 2549 struct nvme_ns *ns = hctx->queue->queuedata; 2550 struct nvme_tcp_queue *queue = hctx->driver_data; 2551 struct request *rq = bd->rq; 2552 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2553 bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags); 2554 blk_status_t ret; 2555 2556 if (!nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready)) 2557 return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq); 2558 2559 ret = nvme_tcp_setup_cmd_pdu(ns, rq); 2560 if (unlikely(ret)) 2561 return ret; 2562 2563 nvme_start_request(rq); 2564 2565 nvme_tcp_queue_request(req, true, bd->last); 2566 2567 return BLK_STS_OK; 2568 } 2569 2570 static void nvme_tcp_map_queues(struct blk_mq_tag_set *set) 2571 { 2572 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(set->driver_data); 2573 2574 nvmf_map_queues(set, &ctrl->ctrl, ctrl->io_queues); 2575 } 2576 2577 static int nvme_tcp_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob) 2578 { 2579 struct nvme_tcp_queue *queue = hctx->driver_data; 2580 struct sock *sk = queue->sock->sk; 2581 2582 if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags)) 2583 return 0; 2584 2585 set_bit(NVME_TCP_Q_POLLING, &queue->flags); 2586 if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue)) 2587 sk_busy_loop(sk, true); 2588 nvme_tcp_try_recv(queue); 2589 clear_bit(NVME_TCP_Q_POLLING, &queue->flags); 2590 return queue->nr_cqe; 2591 } 2592 2593 static int nvme_tcp_get_address(struct nvme_ctrl *ctrl, char *buf, int size) 2594 { 2595 struct nvme_tcp_queue *queue = &to_tcp_ctrl(ctrl)->queues[0]; 2596 struct sockaddr_storage src_addr; 2597 int ret, len; 2598 2599 len = nvmf_get_address(ctrl, buf, size); 2600 2601 mutex_lock(&queue->queue_lock); 2602 2603 if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags)) 2604 goto done; 2605 ret = kernel_getsockname(queue->sock, (struct sockaddr *)&src_addr); 2606 if (ret > 0) { 2607 if (len > 0) 2608 len--; /* strip trailing newline */ 2609 len += scnprintf(buf + len, size - len, "%ssrc_addr=%pISc\n", 2610 (len) ? "," : "", &src_addr); 2611 } 2612 done: 2613 mutex_unlock(&queue->queue_lock); 2614 2615 return len; 2616 } 2617 2618 static const struct blk_mq_ops nvme_tcp_mq_ops = { 2619 .queue_rq = nvme_tcp_queue_rq, 2620 .commit_rqs = nvme_tcp_commit_rqs, 2621 .complete = nvme_complete_rq, 2622 .init_request = nvme_tcp_init_request, 2623 .exit_request = nvme_tcp_exit_request, 2624 .init_hctx = nvme_tcp_init_hctx, 2625 .timeout = nvme_tcp_timeout, 2626 .map_queues = nvme_tcp_map_queues, 2627 .poll = nvme_tcp_poll, 2628 }; 2629 2630 static const struct blk_mq_ops nvme_tcp_admin_mq_ops = { 2631 .queue_rq = nvme_tcp_queue_rq, 2632 .complete = nvme_complete_rq, 2633 .init_request = nvme_tcp_init_request, 2634 .exit_request = nvme_tcp_exit_request, 2635 .init_hctx = nvme_tcp_init_admin_hctx, 2636 .timeout = nvme_tcp_timeout, 2637 }; 2638 2639 static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = { 2640 .name = "tcp", 2641 .module = THIS_MODULE, 2642 .flags = NVME_F_FABRICS | NVME_F_BLOCKING, 2643 .reg_read32 = nvmf_reg_read32, 2644 .reg_read64 = nvmf_reg_read64, 2645 .reg_write32 = nvmf_reg_write32, 2646 .free_ctrl = nvme_tcp_free_ctrl, 2647 .submit_async_event = nvme_tcp_submit_async_event, 2648 .delete_ctrl = nvme_tcp_delete_ctrl, 2649 .get_address = nvme_tcp_get_address, 2650 .stop_ctrl = nvme_tcp_stop_ctrl, 2651 }; 2652 2653 static bool 2654 nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts) 2655 { 2656 struct nvme_tcp_ctrl *ctrl; 2657 bool found = false; 2658 2659 mutex_lock(&nvme_tcp_ctrl_mutex); 2660 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) { 2661 found = nvmf_ip_options_match(&ctrl->ctrl, opts); 2662 if (found) 2663 break; 2664 } 2665 mutex_unlock(&nvme_tcp_ctrl_mutex); 2666 2667 return found; 2668 } 2669 2670 static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev, 2671 struct nvmf_ctrl_options *opts) 2672 { 2673 struct nvme_tcp_ctrl *ctrl; 2674 int ret; 2675 2676 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 2677 if (!ctrl) 2678 return ERR_PTR(-ENOMEM); 2679 2680 INIT_LIST_HEAD(&ctrl->list); 2681 ctrl->ctrl.opts = opts; 2682 ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues + 2683 opts->nr_poll_queues + 1; 2684 ctrl->ctrl.sqsize = opts->queue_size - 1; 2685 ctrl->ctrl.kato = opts->kato; 2686 2687 INIT_DELAYED_WORK(&ctrl->connect_work, 2688 nvme_tcp_reconnect_ctrl_work); 2689 INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work); 2690 INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work); 2691 2692 if (!(opts->mask & NVMF_OPT_TRSVCID)) { 2693 opts->trsvcid = 2694 kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL); 2695 if (!opts->trsvcid) { 2696 ret = -ENOMEM; 2697 goto out_free_ctrl; 2698 } 2699 opts->mask |= NVMF_OPT_TRSVCID; 2700 } 2701 2702 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 2703 opts->traddr, opts->trsvcid, &ctrl->addr); 2704 if (ret) { 2705 pr_err("malformed address passed: %s:%s\n", 2706 opts->traddr, opts->trsvcid); 2707 goto out_free_ctrl; 2708 } 2709 2710 if (opts->mask & NVMF_OPT_HOST_TRADDR) { 2711 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 2712 opts->host_traddr, NULL, &ctrl->src_addr); 2713 if (ret) { 2714 pr_err("malformed src address passed: %s\n", 2715 opts->host_traddr); 2716 goto out_free_ctrl; 2717 } 2718 } 2719 2720 if (opts->mask & NVMF_OPT_HOST_IFACE) { 2721 if (!__dev_get_by_name(&init_net, opts->host_iface)) { 2722 pr_err("invalid interface passed: %s\n", 2723 opts->host_iface); 2724 ret = -ENODEV; 2725 goto out_free_ctrl; 2726 } 2727 } 2728 2729 if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) { 2730 ret = -EALREADY; 2731 goto out_free_ctrl; 2732 } 2733 2734 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues), 2735 GFP_KERNEL); 2736 if (!ctrl->queues) { 2737 ret = -ENOMEM; 2738 goto out_free_ctrl; 2739 } 2740 2741 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0); 2742 if (ret) 2743 goto out_kfree_queues; 2744 2745 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) { 2746 WARN_ON_ONCE(1); 2747 ret = -EINTR; 2748 goto out_uninit_ctrl; 2749 } 2750 2751 ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true); 2752 if (ret) 2753 goto out_uninit_ctrl; 2754 2755 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n", 2756 nvmf_ctrl_subsysnqn(&ctrl->ctrl), &ctrl->addr); 2757 2758 mutex_lock(&nvme_tcp_ctrl_mutex); 2759 list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list); 2760 mutex_unlock(&nvme_tcp_ctrl_mutex); 2761 2762 return &ctrl->ctrl; 2763 2764 out_uninit_ctrl: 2765 nvme_uninit_ctrl(&ctrl->ctrl); 2766 nvme_put_ctrl(&ctrl->ctrl); 2767 if (ret > 0) 2768 ret = -EIO; 2769 return ERR_PTR(ret); 2770 out_kfree_queues: 2771 kfree(ctrl->queues); 2772 out_free_ctrl: 2773 kfree(ctrl); 2774 return ERR_PTR(ret); 2775 } 2776 2777 static struct nvmf_transport_ops nvme_tcp_transport = { 2778 .name = "tcp", 2779 .module = THIS_MODULE, 2780 .required_opts = NVMF_OPT_TRADDR, 2781 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY | 2782 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO | 2783 NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST | 2784 NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES | 2785 NVMF_OPT_TOS | NVMF_OPT_HOST_IFACE | NVMF_OPT_TLS | 2786 NVMF_OPT_KEYRING | NVMF_OPT_TLS_KEY, 2787 .create_ctrl = nvme_tcp_create_ctrl, 2788 }; 2789 2790 static int __init nvme_tcp_init_module(void) 2791 { 2792 BUILD_BUG_ON(sizeof(struct nvme_tcp_hdr) != 8); 2793 BUILD_BUG_ON(sizeof(struct nvme_tcp_cmd_pdu) != 72); 2794 BUILD_BUG_ON(sizeof(struct nvme_tcp_data_pdu) != 24); 2795 BUILD_BUG_ON(sizeof(struct nvme_tcp_rsp_pdu) != 24); 2796 BUILD_BUG_ON(sizeof(struct nvme_tcp_r2t_pdu) != 24); 2797 BUILD_BUG_ON(sizeof(struct nvme_tcp_icreq_pdu) != 128); 2798 BUILD_BUG_ON(sizeof(struct nvme_tcp_icresp_pdu) != 128); 2799 BUILD_BUG_ON(sizeof(struct nvme_tcp_term_pdu) != 24); 2800 2801 nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq", 2802 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 2803 if (!nvme_tcp_wq) 2804 return -ENOMEM; 2805 2806 nvmf_register_transport(&nvme_tcp_transport); 2807 return 0; 2808 } 2809 2810 static void __exit nvme_tcp_cleanup_module(void) 2811 { 2812 struct nvme_tcp_ctrl *ctrl; 2813 2814 nvmf_unregister_transport(&nvme_tcp_transport); 2815 2816 mutex_lock(&nvme_tcp_ctrl_mutex); 2817 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) 2818 nvme_delete_ctrl(&ctrl->ctrl); 2819 mutex_unlock(&nvme_tcp_ctrl_mutex); 2820 flush_workqueue(nvme_delete_wq); 2821 2822 destroy_workqueue(nvme_tcp_wq); 2823 } 2824 2825 module_init(nvme_tcp_init_module); 2826 module_exit(nvme_tcp_cleanup_module); 2827 2828 MODULE_LICENSE("GPL v2"); 2829