1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVMe over Fabrics TCP host. 4 * Copyright (c) 2018 Lightbits Labs. All rights reserved. 5 */ 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 #include <linux/module.h> 8 #include <linux/init.h> 9 #include <linux/slab.h> 10 #include <linux/err.h> 11 #include <linux/key.h> 12 #include <linux/nvme-tcp.h> 13 #include <linux/nvme-keyring.h> 14 #include <net/sock.h> 15 #include <net/tcp.h> 16 #include <net/tls.h> 17 #include <net/tls_prot.h> 18 #include <net/handshake.h> 19 #include <linux/blk-mq.h> 20 #include <crypto/hash.h> 21 #include <net/busy_poll.h> 22 #include <trace/events/sock.h> 23 24 #include "nvme.h" 25 #include "fabrics.h" 26 27 struct nvme_tcp_queue; 28 29 /* Define the socket priority to use for connections were it is desirable 30 * that the NIC consider performing optimized packet processing or filtering. 31 * A non-zero value being sufficient to indicate general consideration of any 32 * possible optimization. Making it a module param allows for alternative 33 * values that may be unique for some NIC implementations. 34 */ 35 static int so_priority; 36 module_param(so_priority, int, 0644); 37 MODULE_PARM_DESC(so_priority, "nvme tcp socket optimize priority"); 38 39 /* 40 * Use the unbound workqueue for nvme_tcp_wq, then we can set the cpu affinity 41 * from sysfs. 42 */ 43 static bool wq_unbound; 44 module_param(wq_unbound, bool, 0644); 45 MODULE_PARM_DESC(wq_unbound, "Use unbound workqueue for nvme-tcp IO context (default false)"); 46 47 /* 48 * TLS handshake timeout 49 */ 50 static int tls_handshake_timeout = 10; 51 #ifdef CONFIG_NVME_TCP_TLS 52 module_param(tls_handshake_timeout, int, 0644); 53 MODULE_PARM_DESC(tls_handshake_timeout, 54 "nvme TLS handshake timeout in seconds (default 10)"); 55 #endif 56 57 static atomic_t nvme_tcp_cpu_queues[NR_CPUS]; 58 59 #ifdef CONFIG_DEBUG_LOCK_ALLOC 60 /* lockdep can detect a circular dependency of the form 61 * sk_lock -> mmap_lock (page fault) -> fs locks -> sk_lock 62 * because dependencies are tracked for both nvme-tcp and user contexts. Using 63 * a separate class prevents lockdep from conflating nvme-tcp socket use with 64 * user-space socket API use. 65 */ 66 static struct lock_class_key nvme_tcp_sk_key[2]; 67 static struct lock_class_key nvme_tcp_slock_key[2]; 68 69 static void nvme_tcp_reclassify_socket(struct socket *sock) 70 { 71 struct sock *sk = sock->sk; 72 73 if (WARN_ON_ONCE(!sock_allow_reclassification(sk))) 74 return; 75 76 switch (sk->sk_family) { 77 case AF_INET: 78 sock_lock_init_class_and_name(sk, "slock-AF_INET-NVME", 79 &nvme_tcp_slock_key[0], 80 "sk_lock-AF_INET-NVME", 81 &nvme_tcp_sk_key[0]); 82 break; 83 case AF_INET6: 84 sock_lock_init_class_and_name(sk, "slock-AF_INET6-NVME", 85 &nvme_tcp_slock_key[1], 86 "sk_lock-AF_INET6-NVME", 87 &nvme_tcp_sk_key[1]); 88 break; 89 default: 90 WARN_ON_ONCE(1); 91 } 92 } 93 #else 94 static void nvme_tcp_reclassify_socket(struct socket *sock) { } 95 #endif 96 97 enum nvme_tcp_send_state { 98 NVME_TCP_SEND_CMD_PDU = 0, 99 NVME_TCP_SEND_H2C_PDU, 100 NVME_TCP_SEND_DATA, 101 NVME_TCP_SEND_DDGST, 102 }; 103 104 struct nvme_tcp_request { 105 struct nvme_request req; 106 void *pdu; 107 struct nvme_tcp_queue *queue; 108 u32 data_len; 109 u32 pdu_len; 110 u32 pdu_sent; 111 u32 h2cdata_left; 112 u32 h2cdata_offset; 113 u16 ttag; 114 __le16 status; 115 struct list_head entry; 116 struct llist_node lentry; 117 __le32 ddgst; 118 119 struct bio *curr_bio; 120 struct iov_iter iter; 121 122 /* send state */ 123 size_t offset; 124 size_t data_sent; 125 enum nvme_tcp_send_state state; 126 }; 127 128 enum nvme_tcp_queue_flags { 129 NVME_TCP_Q_ALLOCATED = 0, 130 NVME_TCP_Q_LIVE = 1, 131 NVME_TCP_Q_POLLING = 2, 132 NVME_TCP_Q_IO_CPU_SET = 3, 133 }; 134 135 enum nvme_tcp_recv_state { 136 NVME_TCP_RECV_PDU = 0, 137 NVME_TCP_RECV_DATA, 138 NVME_TCP_RECV_DDGST, 139 }; 140 141 struct nvme_tcp_ctrl; 142 struct nvme_tcp_queue { 143 struct socket *sock; 144 struct work_struct io_work; 145 int io_cpu; 146 147 struct mutex queue_lock; 148 struct mutex send_mutex; 149 struct llist_head req_list; 150 struct list_head send_list; 151 152 /* recv state */ 153 void *pdu; 154 int pdu_remaining; 155 int pdu_offset; 156 size_t data_remaining; 157 size_t ddgst_remaining; 158 unsigned int nr_cqe; 159 160 /* send state */ 161 struct nvme_tcp_request *request; 162 163 u32 maxh2cdata; 164 size_t cmnd_capsule_len; 165 struct nvme_tcp_ctrl *ctrl; 166 unsigned long flags; 167 bool rd_enabled; 168 169 bool hdr_digest; 170 bool data_digest; 171 bool tls_enabled; 172 struct ahash_request *rcv_hash; 173 struct ahash_request *snd_hash; 174 __le32 exp_ddgst; 175 __le32 recv_ddgst; 176 struct completion tls_complete; 177 int tls_err; 178 struct page_frag_cache pf_cache; 179 180 void (*state_change)(struct sock *); 181 void (*data_ready)(struct sock *); 182 void (*write_space)(struct sock *); 183 }; 184 185 struct nvme_tcp_ctrl { 186 /* read only in the hot path */ 187 struct nvme_tcp_queue *queues; 188 struct blk_mq_tag_set tag_set; 189 190 /* other member variables */ 191 struct list_head list; 192 struct blk_mq_tag_set admin_tag_set; 193 struct sockaddr_storage addr; 194 struct sockaddr_storage src_addr; 195 struct nvme_ctrl ctrl; 196 197 struct work_struct err_work; 198 struct delayed_work connect_work; 199 struct nvme_tcp_request async_req; 200 u32 io_queues[HCTX_MAX_TYPES]; 201 }; 202 203 static LIST_HEAD(nvme_tcp_ctrl_list); 204 static DEFINE_MUTEX(nvme_tcp_ctrl_mutex); 205 static struct workqueue_struct *nvme_tcp_wq; 206 static const struct blk_mq_ops nvme_tcp_mq_ops; 207 static const struct blk_mq_ops nvme_tcp_admin_mq_ops; 208 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue); 209 210 static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl) 211 { 212 return container_of(ctrl, struct nvme_tcp_ctrl, ctrl); 213 } 214 215 static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue) 216 { 217 return queue - queue->ctrl->queues; 218 } 219 220 static inline bool nvme_tcp_recv_pdu_supported(enum nvme_tcp_pdu_type type) 221 { 222 switch (type) { 223 case nvme_tcp_c2h_term: 224 case nvme_tcp_c2h_data: 225 case nvme_tcp_r2t: 226 case nvme_tcp_rsp: 227 return true; 228 default: 229 return false; 230 } 231 } 232 233 /* 234 * Check if the queue is TLS encrypted 235 */ 236 static inline bool nvme_tcp_queue_tls(struct nvme_tcp_queue *queue) 237 { 238 if (!IS_ENABLED(CONFIG_NVME_TCP_TLS)) 239 return 0; 240 241 return queue->tls_enabled; 242 } 243 244 /* 245 * Check if TLS is configured for the controller. 246 */ 247 static inline bool nvme_tcp_tls_configured(struct nvme_ctrl *ctrl) 248 { 249 if (!IS_ENABLED(CONFIG_NVME_TCP_TLS)) 250 return 0; 251 252 return ctrl->opts->tls; 253 } 254 255 static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue) 256 { 257 u32 queue_idx = nvme_tcp_queue_id(queue); 258 259 if (queue_idx == 0) 260 return queue->ctrl->admin_tag_set.tags[queue_idx]; 261 return queue->ctrl->tag_set.tags[queue_idx - 1]; 262 } 263 264 static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue) 265 { 266 return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0; 267 } 268 269 static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue) 270 { 271 return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0; 272 } 273 274 static inline void *nvme_tcp_req_cmd_pdu(struct nvme_tcp_request *req) 275 { 276 return req->pdu; 277 } 278 279 static inline void *nvme_tcp_req_data_pdu(struct nvme_tcp_request *req) 280 { 281 /* use the pdu space in the back for the data pdu */ 282 return req->pdu + sizeof(struct nvme_tcp_cmd_pdu) - 283 sizeof(struct nvme_tcp_data_pdu); 284 } 285 286 static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_request *req) 287 { 288 if (nvme_is_fabrics(req->req.cmd)) 289 return NVME_TCP_ADMIN_CCSZ; 290 return req->queue->cmnd_capsule_len - sizeof(struct nvme_command); 291 } 292 293 static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req) 294 { 295 return req == &req->queue->ctrl->async_req; 296 } 297 298 static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req) 299 { 300 struct request *rq; 301 302 if (unlikely(nvme_tcp_async_req(req))) 303 return false; /* async events don't have a request */ 304 305 rq = blk_mq_rq_from_pdu(req); 306 307 return rq_data_dir(rq) == WRITE && req->data_len && 308 req->data_len <= nvme_tcp_inline_data_size(req); 309 } 310 311 static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req) 312 { 313 return req->iter.bvec->bv_page; 314 } 315 316 static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req) 317 { 318 return req->iter.bvec->bv_offset + req->iter.iov_offset; 319 } 320 321 static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req) 322 { 323 return min_t(size_t, iov_iter_single_seg_count(&req->iter), 324 req->pdu_len - req->pdu_sent); 325 } 326 327 static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req) 328 { 329 return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ? 330 req->pdu_len - req->pdu_sent : 0; 331 } 332 333 static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req, 334 int len) 335 { 336 return nvme_tcp_pdu_data_left(req) <= len; 337 } 338 339 static void nvme_tcp_init_iter(struct nvme_tcp_request *req, 340 unsigned int dir) 341 { 342 struct request *rq = blk_mq_rq_from_pdu(req); 343 struct bio_vec *vec; 344 unsigned int size; 345 int nr_bvec; 346 size_t offset; 347 348 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) { 349 vec = &rq->special_vec; 350 nr_bvec = 1; 351 size = blk_rq_payload_bytes(rq); 352 offset = 0; 353 } else { 354 struct bio *bio = req->curr_bio; 355 struct bvec_iter bi; 356 struct bio_vec bv; 357 358 vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); 359 nr_bvec = 0; 360 bio_for_each_bvec(bv, bio, bi) { 361 nr_bvec++; 362 } 363 size = bio->bi_iter.bi_size; 364 offset = bio->bi_iter.bi_bvec_done; 365 } 366 367 iov_iter_bvec(&req->iter, dir, vec, nr_bvec, size); 368 req->iter.iov_offset = offset; 369 } 370 371 static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req, 372 int len) 373 { 374 req->data_sent += len; 375 req->pdu_sent += len; 376 iov_iter_advance(&req->iter, len); 377 if (!iov_iter_count(&req->iter) && 378 req->data_sent < req->data_len) { 379 req->curr_bio = req->curr_bio->bi_next; 380 nvme_tcp_init_iter(req, ITER_SOURCE); 381 } 382 } 383 384 static inline void nvme_tcp_send_all(struct nvme_tcp_queue *queue) 385 { 386 int ret; 387 388 /* drain the send queue as much as we can... */ 389 do { 390 ret = nvme_tcp_try_send(queue); 391 } while (ret > 0); 392 } 393 394 static inline bool nvme_tcp_queue_has_pending(struct nvme_tcp_queue *queue) 395 { 396 return !list_empty(&queue->send_list) || 397 !llist_empty(&queue->req_list); 398 } 399 400 static inline bool nvme_tcp_queue_more(struct nvme_tcp_queue *queue) 401 { 402 return !nvme_tcp_queue_tls(queue) && 403 nvme_tcp_queue_has_pending(queue); 404 } 405 406 static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req, 407 bool sync, bool last) 408 { 409 struct nvme_tcp_queue *queue = req->queue; 410 bool empty; 411 412 empty = llist_add(&req->lentry, &queue->req_list) && 413 list_empty(&queue->send_list) && !queue->request; 414 415 /* 416 * if we're the first on the send_list and we can try to send 417 * directly, otherwise queue io_work. Also, only do that if we 418 * are on the same cpu, so we don't introduce contention. 419 */ 420 if (queue->io_cpu == raw_smp_processor_id() && 421 sync && empty && mutex_trylock(&queue->send_mutex)) { 422 nvme_tcp_send_all(queue); 423 mutex_unlock(&queue->send_mutex); 424 } 425 426 if (last && nvme_tcp_queue_has_pending(queue)) 427 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 428 } 429 430 static void nvme_tcp_process_req_list(struct nvme_tcp_queue *queue) 431 { 432 struct nvme_tcp_request *req; 433 struct llist_node *node; 434 435 for (node = llist_del_all(&queue->req_list); node; node = node->next) { 436 req = llist_entry(node, struct nvme_tcp_request, lentry); 437 list_add(&req->entry, &queue->send_list); 438 } 439 } 440 441 static inline struct nvme_tcp_request * 442 nvme_tcp_fetch_request(struct nvme_tcp_queue *queue) 443 { 444 struct nvme_tcp_request *req; 445 446 req = list_first_entry_or_null(&queue->send_list, 447 struct nvme_tcp_request, entry); 448 if (!req) { 449 nvme_tcp_process_req_list(queue); 450 req = list_first_entry_or_null(&queue->send_list, 451 struct nvme_tcp_request, entry); 452 if (unlikely(!req)) 453 return NULL; 454 } 455 456 list_del(&req->entry); 457 return req; 458 } 459 460 static inline void nvme_tcp_ddgst_final(struct ahash_request *hash, 461 __le32 *dgst) 462 { 463 ahash_request_set_crypt(hash, NULL, (u8 *)dgst, 0); 464 crypto_ahash_final(hash); 465 } 466 467 static inline void nvme_tcp_ddgst_update(struct ahash_request *hash, 468 struct page *page, off_t off, size_t len) 469 { 470 struct scatterlist sg; 471 472 sg_init_table(&sg, 1); 473 sg_set_page(&sg, page, len, off); 474 ahash_request_set_crypt(hash, &sg, NULL, len); 475 crypto_ahash_update(hash); 476 } 477 478 static inline void nvme_tcp_hdgst(struct ahash_request *hash, 479 void *pdu, size_t len) 480 { 481 struct scatterlist sg; 482 483 sg_init_one(&sg, pdu, len); 484 ahash_request_set_crypt(hash, &sg, pdu + len, len); 485 crypto_ahash_digest(hash); 486 } 487 488 static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue, 489 void *pdu, size_t pdu_len) 490 { 491 struct nvme_tcp_hdr *hdr = pdu; 492 __le32 recv_digest; 493 __le32 exp_digest; 494 495 if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) { 496 dev_err(queue->ctrl->ctrl.device, 497 "queue %d: header digest flag is cleared\n", 498 nvme_tcp_queue_id(queue)); 499 return -EPROTO; 500 } 501 502 recv_digest = *(__le32 *)(pdu + hdr->hlen); 503 nvme_tcp_hdgst(queue->rcv_hash, pdu, pdu_len); 504 exp_digest = *(__le32 *)(pdu + hdr->hlen); 505 if (recv_digest != exp_digest) { 506 dev_err(queue->ctrl->ctrl.device, 507 "header digest error: recv %#x expected %#x\n", 508 le32_to_cpu(recv_digest), le32_to_cpu(exp_digest)); 509 return -EIO; 510 } 511 512 return 0; 513 } 514 515 static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu) 516 { 517 struct nvme_tcp_hdr *hdr = pdu; 518 u8 digest_len = nvme_tcp_hdgst_len(queue); 519 u32 len; 520 521 len = le32_to_cpu(hdr->plen) - hdr->hlen - 522 ((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0); 523 524 if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) { 525 dev_err(queue->ctrl->ctrl.device, 526 "queue %d: data digest flag is cleared\n", 527 nvme_tcp_queue_id(queue)); 528 return -EPROTO; 529 } 530 crypto_ahash_init(queue->rcv_hash); 531 532 return 0; 533 } 534 535 static void nvme_tcp_exit_request(struct blk_mq_tag_set *set, 536 struct request *rq, unsigned int hctx_idx) 537 { 538 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 539 540 page_frag_free(req->pdu); 541 } 542 543 static int nvme_tcp_init_request(struct blk_mq_tag_set *set, 544 struct request *rq, unsigned int hctx_idx, 545 unsigned int numa_node) 546 { 547 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(set->driver_data); 548 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 549 struct nvme_tcp_cmd_pdu *pdu; 550 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; 551 struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx]; 552 u8 hdgst = nvme_tcp_hdgst_len(queue); 553 554 req->pdu = page_frag_alloc(&queue->pf_cache, 555 sizeof(struct nvme_tcp_cmd_pdu) + hdgst, 556 GFP_KERNEL | __GFP_ZERO); 557 if (!req->pdu) 558 return -ENOMEM; 559 560 pdu = req->pdu; 561 req->queue = queue; 562 nvme_req(rq)->ctrl = &ctrl->ctrl; 563 nvme_req(rq)->cmd = &pdu->cmd; 564 565 return 0; 566 } 567 568 static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 569 unsigned int hctx_idx) 570 { 571 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(data); 572 struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1]; 573 574 hctx->driver_data = queue; 575 return 0; 576 } 577 578 static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, 579 unsigned int hctx_idx) 580 { 581 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(data); 582 struct nvme_tcp_queue *queue = &ctrl->queues[0]; 583 584 hctx->driver_data = queue; 585 return 0; 586 } 587 588 static enum nvme_tcp_recv_state 589 nvme_tcp_recv_state(struct nvme_tcp_queue *queue) 590 { 591 return (queue->pdu_remaining) ? NVME_TCP_RECV_PDU : 592 (queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST : 593 NVME_TCP_RECV_DATA; 594 } 595 596 static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue) 597 { 598 queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) + 599 nvme_tcp_hdgst_len(queue); 600 queue->pdu_offset = 0; 601 queue->data_remaining = -1; 602 queue->ddgst_remaining = 0; 603 } 604 605 static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl) 606 { 607 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 608 return; 609 610 dev_warn(ctrl->device, "starting error recovery\n"); 611 queue_work(nvme_reset_wq, &to_tcp_ctrl(ctrl)->err_work); 612 } 613 614 static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue, 615 struct nvme_completion *cqe) 616 { 617 struct nvme_tcp_request *req; 618 struct request *rq; 619 620 rq = nvme_find_rq(nvme_tcp_tagset(queue), cqe->command_id); 621 if (!rq) { 622 dev_err(queue->ctrl->ctrl.device, 623 "got bad cqe.command_id %#x on queue %d\n", 624 cqe->command_id, nvme_tcp_queue_id(queue)); 625 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 626 return -EINVAL; 627 } 628 629 req = blk_mq_rq_to_pdu(rq); 630 if (req->status == cpu_to_le16(NVME_SC_SUCCESS)) 631 req->status = cqe->status; 632 633 if (!nvme_try_complete_req(rq, req->status, cqe->result)) 634 nvme_complete_rq(rq); 635 queue->nr_cqe++; 636 637 return 0; 638 } 639 640 static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue, 641 struct nvme_tcp_data_pdu *pdu) 642 { 643 struct request *rq; 644 645 rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id); 646 if (!rq) { 647 dev_err(queue->ctrl->ctrl.device, 648 "got bad c2hdata.command_id %#x on queue %d\n", 649 pdu->command_id, nvme_tcp_queue_id(queue)); 650 return -ENOENT; 651 } 652 653 if (!blk_rq_payload_bytes(rq)) { 654 dev_err(queue->ctrl->ctrl.device, 655 "queue %d tag %#x unexpected data\n", 656 nvme_tcp_queue_id(queue), rq->tag); 657 return -EIO; 658 } 659 660 queue->data_remaining = le32_to_cpu(pdu->data_length); 661 662 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS && 663 unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) { 664 dev_err(queue->ctrl->ctrl.device, 665 "queue %d tag %#x SUCCESS set but not last PDU\n", 666 nvme_tcp_queue_id(queue), rq->tag); 667 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 668 return -EPROTO; 669 } 670 671 return 0; 672 } 673 674 static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue, 675 struct nvme_tcp_rsp_pdu *pdu) 676 { 677 struct nvme_completion *cqe = &pdu->cqe; 678 int ret = 0; 679 680 /* 681 * AEN requests are special as they don't time out and can 682 * survive any kind of queue freeze and often don't respond to 683 * aborts. We don't even bother to allocate a struct request 684 * for them but rather special case them here. 685 */ 686 if (unlikely(nvme_is_aen_req(nvme_tcp_queue_id(queue), 687 cqe->command_id))) 688 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status, 689 &cqe->result); 690 else 691 ret = nvme_tcp_process_nvme_cqe(queue, cqe); 692 693 return ret; 694 } 695 696 static void nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req) 697 { 698 struct nvme_tcp_data_pdu *data = nvme_tcp_req_data_pdu(req); 699 struct nvme_tcp_queue *queue = req->queue; 700 struct request *rq = blk_mq_rq_from_pdu(req); 701 u32 h2cdata_sent = req->pdu_len; 702 u8 hdgst = nvme_tcp_hdgst_len(queue); 703 u8 ddgst = nvme_tcp_ddgst_len(queue); 704 705 req->state = NVME_TCP_SEND_H2C_PDU; 706 req->offset = 0; 707 req->pdu_len = min(req->h2cdata_left, queue->maxh2cdata); 708 req->pdu_sent = 0; 709 req->h2cdata_left -= req->pdu_len; 710 req->h2cdata_offset += h2cdata_sent; 711 712 memset(data, 0, sizeof(*data)); 713 data->hdr.type = nvme_tcp_h2c_data; 714 if (!req->h2cdata_left) 715 data->hdr.flags = NVME_TCP_F_DATA_LAST; 716 if (queue->hdr_digest) 717 data->hdr.flags |= NVME_TCP_F_HDGST; 718 if (queue->data_digest) 719 data->hdr.flags |= NVME_TCP_F_DDGST; 720 data->hdr.hlen = sizeof(*data); 721 data->hdr.pdo = data->hdr.hlen + hdgst; 722 data->hdr.plen = 723 cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst); 724 data->ttag = req->ttag; 725 data->command_id = nvme_cid(rq); 726 data->data_offset = cpu_to_le32(req->h2cdata_offset); 727 data->data_length = cpu_to_le32(req->pdu_len); 728 } 729 730 static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue, 731 struct nvme_tcp_r2t_pdu *pdu) 732 { 733 struct nvme_tcp_request *req; 734 struct request *rq; 735 u32 r2t_length = le32_to_cpu(pdu->r2t_length); 736 u32 r2t_offset = le32_to_cpu(pdu->r2t_offset); 737 738 rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id); 739 if (!rq) { 740 dev_err(queue->ctrl->ctrl.device, 741 "got bad r2t.command_id %#x on queue %d\n", 742 pdu->command_id, nvme_tcp_queue_id(queue)); 743 return -ENOENT; 744 } 745 req = blk_mq_rq_to_pdu(rq); 746 747 if (unlikely(!r2t_length)) { 748 dev_err(queue->ctrl->ctrl.device, 749 "req %d r2t len is %u, probably a bug...\n", 750 rq->tag, r2t_length); 751 return -EPROTO; 752 } 753 754 if (unlikely(req->data_sent + r2t_length > req->data_len)) { 755 dev_err(queue->ctrl->ctrl.device, 756 "req %d r2t len %u exceeded data len %u (%zu sent)\n", 757 rq->tag, r2t_length, req->data_len, req->data_sent); 758 return -EPROTO; 759 } 760 761 if (unlikely(r2t_offset < req->data_sent)) { 762 dev_err(queue->ctrl->ctrl.device, 763 "req %d unexpected r2t offset %u (expected %zu)\n", 764 rq->tag, r2t_offset, req->data_sent); 765 return -EPROTO; 766 } 767 768 req->pdu_len = 0; 769 req->h2cdata_left = r2t_length; 770 req->h2cdata_offset = r2t_offset; 771 req->ttag = pdu->ttag; 772 773 nvme_tcp_setup_h2c_data_pdu(req); 774 nvme_tcp_queue_request(req, false, true); 775 776 return 0; 777 } 778 779 static void nvme_tcp_handle_c2h_term(struct nvme_tcp_queue *queue, 780 struct nvme_tcp_term_pdu *pdu) 781 { 782 u16 fes; 783 const char *msg; 784 u32 plen = le32_to_cpu(pdu->hdr.plen); 785 786 static const char * const msg_table[] = { 787 [NVME_TCP_FES_INVALID_PDU_HDR] = "Invalid PDU Header Field", 788 [NVME_TCP_FES_PDU_SEQ_ERR] = "PDU Sequence Error", 789 [NVME_TCP_FES_HDR_DIGEST_ERR] = "Header Digest Error", 790 [NVME_TCP_FES_DATA_OUT_OF_RANGE] = "Data Transfer Out Of Range", 791 [NVME_TCP_FES_DATA_LIMIT_EXCEEDED] = "Data Transfer Limit Exceeded", 792 [NVME_TCP_FES_UNSUPPORTED_PARAM] = "Unsupported Parameter", 793 }; 794 795 if (plen < NVME_TCP_MIN_C2HTERM_PLEN || 796 plen > NVME_TCP_MAX_C2HTERM_PLEN) { 797 dev_err(queue->ctrl->ctrl.device, 798 "Received a malformed C2HTermReq PDU (plen = %u)\n", 799 plen); 800 return; 801 } 802 803 fes = le16_to_cpu(pdu->fes); 804 if (fes && fes < ARRAY_SIZE(msg_table)) 805 msg = msg_table[fes]; 806 else 807 msg = "Unknown"; 808 809 dev_err(queue->ctrl->ctrl.device, 810 "Received C2HTermReq (FES = %s)\n", msg); 811 } 812 813 static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb, 814 unsigned int *offset, size_t *len) 815 { 816 struct nvme_tcp_hdr *hdr; 817 char *pdu = queue->pdu; 818 size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining); 819 int ret; 820 821 ret = skb_copy_bits(skb, *offset, 822 &pdu[queue->pdu_offset], rcv_len); 823 if (unlikely(ret)) 824 return ret; 825 826 queue->pdu_remaining -= rcv_len; 827 queue->pdu_offset += rcv_len; 828 *offset += rcv_len; 829 *len -= rcv_len; 830 if (queue->pdu_remaining) 831 return 0; 832 833 hdr = queue->pdu; 834 if (unlikely(hdr->hlen != sizeof(struct nvme_tcp_rsp_pdu))) { 835 if (!nvme_tcp_recv_pdu_supported(hdr->type)) 836 goto unsupported_pdu; 837 838 dev_err(queue->ctrl->ctrl.device, 839 "pdu type %d has unexpected header length (%d)\n", 840 hdr->type, hdr->hlen); 841 return -EPROTO; 842 } 843 844 if (unlikely(hdr->type == nvme_tcp_c2h_term)) { 845 /* 846 * C2HTermReq never includes Header or Data digests. 847 * Skip the checks. 848 */ 849 nvme_tcp_handle_c2h_term(queue, (void *)queue->pdu); 850 return -EINVAL; 851 } 852 853 if (queue->hdr_digest) { 854 ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen); 855 if (unlikely(ret)) 856 return ret; 857 } 858 859 860 if (queue->data_digest) { 861 ret = nvme_tcp_check_ddgst(queue, queue->pdu); 862 if (unlikely(ret)) 863 return ret; 864 } 865 866 switch (hdr->type) { 867 case nvme_tcp_c2h_data: 868 return nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu); 869 case nvme_tcp_rsp: 870 nvme_tcp_init_recv_ctx(queue); 871 return nvme_tcp_handle_comp(queue, (void *)queue->pdu); 872 case nvme_tcp_r2t: 873 nvme_tcp_init_recv_ctx(queue); 874 return nvme_tcp_handle_r2t(queue, (void *)queue->pdu); 875 default: 876 goto unsupported_pdu; 877 } 878 879 unsupported_pdu: 880 dev_err(queue->ctrl->ctrl.device, 881 "unsupported pdu type (%d)\n", hdr->type); 882 return -EINVAL; 883 } 884 885 static inline void nvme_tcp_end_request(struct request *rq, u16 status) 886 { 887 union nvme_result res = {}; 888 889 if (!nvme_try_complete_req(rq, cpu_to_le16(status << 1), res)) 890 nvme_complete_rq(rq); 891 } 892 893 static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb, 894 unsigned int *offset, size_t *len) 895 { 896 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu; 897 struct request *rq = 898 nvme_cid_to_rq(nvme_tcp_tagset(queue), pdu->command_id); 899 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 900 901 while (true) { 902 int recv_len, ret; 903 904 recv_len = min_t(size_t, *len, queue->data_remaining); 905 if (!recv_len) 906 break; 907 908 if (!iov_iter_count(&req->iter)) { 909 req->curr_bio = req->curr_bio->bi_next; 910 911 /* 912 * If we don`t have any bios it means that controller 913 * sent more data than we requested, hence error 914 */ 915 if (!req->curr_bio) { 916 dev_err(queue->ctrl->ctrl.device, 917 "queue %d no space in request %#x", 918 nvme_tcp_queue_id(queue), rq->tag); 919 nvme_tcp_init_recv_ctx(queue); 920 return -EIO; 921 } 922 nvme_tcp_init_iter(req, ITER_DEST); 923 } 924 925 /* we can read only from what is left in this bio */ 926 recv_len = min_t(size_t, recv_len, 927 iov_iter_count(&req->iter)); 928 929 if (queue->data_digest) 930 ret = skb_copy_and_hash_datagram_iter(skb, *offset, 931 &req->iter, recv_len, queue->rcv_hash); 932 else 933 ret = skb_copy_datagram_iter(skb, *offset, 934 &req->iter, recv_len); 935 if (ret) { 936 dev_err(queue->ctrl->ctrl.device, 937 "queue %d failed to copy request %#x data", 938 nvme_tcp_queue_id(queue), rq->tag); 939 return ret; 940 } 941 942 *len -= recv_len; 943 *offset += recv_len; 944 queue->data_remaining -= recv_len; 945 } 946 947 if (!queue->data_remaining) { 948 if (queue->data_digest) { 949 nvme_tcp_ddgst_final(queue->rcv_hash, &queue->exp_ddgst); 950 queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH; 951 } else { 952 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) { 953 nvme_tcp_end_request(rq, 954 le16_to_cpu(req->status)); 955 queue->nr_cqe++; 956 } 957 nvme_tcp_init_recv_ctx(queue); 958 } 959 } 960 961 return 0; 962 } 963 964 static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue, 965 struct sk_buff *skb, unsigned int *offset, size_t *len) 966 { 967 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu; 968 char *ddgst = (char *)&queue->recv_ddgst; 969 size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining); 970 off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining; 971 int ret; 972 973 ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len); 974 if (unlikely(ret)) 975 return ret; 976 977 queue->ddgst_remaining -= recv_len; 978 *offset += recv_len; 979 *len -= recv_len; 980 if (queue->ddgst_remaining) 981 return 0; 982 983 if (queue->recv_ddgst != queue->exp_ddgst) { 984 struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue), 985 pdu->command_id); 986 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 987 988 req->status = cpu_to_le16(NVME_SC_DATA_XFER_ERROR); 989 990 dev_err(queue->ctrl->ctrl.device, 991 "data digest error: recv %#x expected %#x\n", 992 le32_to_cpu(queue->recv_ddgst), 993 le32_to_cpu(queue->exp_ddgst)); 994 } 995 996 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) { 997 struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue), 998 pdu->command_id); 999 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 1000 1001 nvme_tcp_end_request(rq, le16_to_cpu(req->status)); 1002 queue->nr_cqe++; 1003 } 1004 1005 nvme_tcp_init_recv_ctx(queue); 1006 return 0; 1007 } 1008 1009 static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb, 1010 unsigned int offset, size_t len) 1011 { 1012 struct nvme_tcp_queue *queue = desc->arg.data; 1013 size_t consumed = len; 1014 int result; 1015 1016 if (unlikely(!queue->rd_enabled)) 1017 return -EFAULT; 1018 1019 while (len) { 1020 switch (nvme_tcp_recv_state(queue)) { 1021 case NVME_TCP_RECV_PDU: 1022 result = nvme_tcp_recv_pdu(queue, skb, &offset, &len); 1023 break; 1024 case NVME_TCP_RECV_DATA: 1025 result = nvme_tcp_recv_data(queue, skb, &offset, &len); 1026 break; 1027 case NVME_TCP_RECV_DDGST: 1028 result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len); 1029 break; 1030 default: 1031 result = -EFAULT; 1032 } 1033 if (result) { 1034 dev_err(queue->ctrl->ctrl.device, 1035 "receive failed: %d\n", result); 1036 queue->rd_enabled = false; 1037 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 1038 return result; 1039 } 1040 } 1041 1042 return consumed; 1043 } 1044 1045 static void nvme_tcp_data_ready(struct sock *sk) 1046 { 1047 struct nvme_tcp_queue *queue; 1048 1049 trace_sk_data_ready(sk); 1050 1051 read_lock_bh(&sk->sk_callback_lock); 1052 queue = sk->sk_user_data; 1053 if (likely(queue && queue->rd_enabled) && 1054 !test_bit(NVME_TCP_Q_POLLING, &queue->flags)) 1055 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 1056 read_unlock_bh(&sk->sk_callback_lock); 1057 } 1058 1059 static void nvme_tcp_write_space(struct sock *sk) 1060 { 1061 struct nvme_tcp_queue *queue; 1062 1063 read_lock_bh(&sk->sk_callback_lock); 1064 queue = sk->sk_user_data; 1065 if (likely(queue && sk_stream_is_writeable(sk))) { 1066 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1067 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 1068 } 1069 read_unlock_bh(&sk->sk_callback_lock); 1070 } 1071 1072 static void nvme_tcp_state_change(struct sock *sk) 1073 { 1074 struct nvme_tcp_queue *queue; 1075 1076 read_lock_bh(&sk->sk_callback_lock); 1077 queue = sk->sk_user_data; 1078 if (!queue) 1079 goto done; 1080 1081 switch (sk->sk_state) { 1082 case TCP_CLOSE: 1083 case TCP_CLOSE_WAIT: 1084 case TCP_LAST_ACK: 1085 case TCP_FIN_WAIT1: 1086 case TCP_FIN_WAIT2: 1087 nvme_tcp_error_recovery(&queue->ctrl->ctrl); 1088 break; 1089 default: 1090 dev_info(queue->ctrl->ctrl.device, 1091 "queue %d socket state %d\n", 1092 nvme_tcp_queue_id(queue), sk->sk_state); 1093 } 1094 1095 queue->state_change(sk); 1096 done: 1097 read_unlock_bh(&sk->sk_callback_lock); 1098 } 1099 1100 static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue) 1101 { 1102 queue->request = NULL; 1103 } 1104 1105 static void nvme_tcp_fail_request(struct nvme_tcp_request *req) 1106 { 1107 if (nvme_tcp_async_req(req)) { 1108 union nvme_result res = {}; 1109 1110 nvme_complete_async_event(&req->queue->ctrl->ctrl, 1111 cpu_to_le16(NVME_SC_HOST_PATH_ERROR), &res); 1112 } else { 1113 nvme_tcp_end_request(blk_mq_rq_from_pdu(req), 1114 NVME_SC_HOST_PATH_ERROR); 1115 } 1116 } 1117 1118 static int nvme_tcp_try_send_data(struct nvme_tcp_request *req) 1119 { 1120 struct nvme_tcp_queue *queue = req->queue; 1121 int req_data_len = req->data_len; 1122 u32 h2cdata_left = req->h2cdata_left; 1123 1124 while (true) { 1125 struct bio_vec bvec; 1126 struct msghdr msg = { 1127 .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, 1128 }; 1129 struct page *page = nvme_tcp_req_cur_page(req); 1130 size_t offset = nvme_tcp_req_cur_offset(req); 1131 size_t len = nvme_tcp_req_cur_length(req); 1132 bool last = nvme_tcp_pdu_last_send(req, len); 1133 int req_data_sent = req->data_sent; 1134 int ret; 1135 1136 if (last && !queue->data_digest && !nvme_tcp_queue_more(queue)) 1137 msg.msg_flags |= MSG_EOR; 1138 else 1139 msg.msg_flags |= MSG_MORE; 1140 1141 if (!sendpages_ok(page, len, offset)) 1142 msg.msg_flags &= ~MSG_SPLICE_PAGES; 1143 1144 bvec_set_page(&bvec, page, len, offset); 1145 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len); 1146 ret = sock_sendmsg(queue->sock, &msg); 1147 if (ret <= 0) 1148 return ret; 1149 1150 if (queue->data_digest) 1151 nvme_tcp_ddgst_update(queue->snd_hash, page, 1152 offset, ret); 1153 1154 /* 1155 * update the request iterator except for the last payload send 1156 * in the request where we don't want to modify it as we may 1157 * compete with the RX path completing the request. 1158 */ 1159 if (req_data_sent + ret < req_data_len) 1160 nvme_tcp_advance_req(req, ret); 1161 1162 /* fully successful last send in current PDU */ 1163 if (last && ret == len) { 1164 if (queue->data_digest) { 1165 nvme_tcp_ddgst_final(queue->snd_hash, 1166 &req->ddgst); 1167 req->state = NVME_TCP_SEND_DDGST; 1168 req->offset = 0; 1169 } else { 1170 if (h2cdata_left) 1171 nvme_tcp_setup_h2c_data_pdu(req); 1172 else 1173 nvme_tcp_done_send_req(queue); 1174 } 1175 return 1; 1176 } 1177 } 1178 return -EAGAIN; 1179 } 1180 1181 static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req) 1182 { 1183 struct nvme_tcp_queue *queue = req->queue; 1184 struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req); 1185 struct bio_vec bvec; 1186 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, }; 1187 bool inline_data = nvme_tcp_has_inline_data(req); 1188 u8 hdgst = nvme_tcp_hdgst_len(queue); 1189 int len = sizeof(*pdu) + hdgst - req->offset; 1190 int ret; 1191 1192 if (inline_data || nvme_tcp_queue_more(queue)) 1193 msg.msg_flags |= MSG_MORE; 1194 else 1195 msg.msg_flags |= MSG_EOR; 1196 1197 if (queue->hdr_digest && !req->offset) 1198 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); 1199 1200 bvec_set_virt(&bvec, (void *)pdu + req->offset, len); 1201 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len); 1202 ret = sock_sendmsg(queue->sock, &msg); 1203 if (unlikely(ret <= 0)) 1204 return ret; 1205 1206 len -= ret; 1207 if (!len) { 1208 if (inline_data) { 1209 req->state = NVME_TCP_SEND_DATA; 1210 if (queue->data_digest) 1211 crypto_ahash_init(queue->snd_hash); 1212 } else { 1213 nvme_tcp_done_send_req(queue); 1214 } 1215 return 1; 1216 } 1217 req->offset += ret; 1218 1219 return -EAGAIN; 1220 } 1221 1222 static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req) 1223 { 1224 struct nvme_tcp_queue *queue = req->queue; 1225 struct nvme_tcp_data_pdu *pdu = nvme_tcp_req_data_pdu(req); 1226 struct bio_vec bvec; 1227 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_MORE, }; 1228 u8 hdgst = nvme_tcp_hdgst_len(queue); 1229 int len = sizeof(*pdu) - req->offset + hdgst; 1230 int ret; 1231 1232 if (queue->hdr_digest && !req->offset) 1233 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu)); 1234 1235 if (!req->h2cdata_left) 1236 msg.msg_flags |= MSG_SPLICE_PAGES; 1237 1238 bvec_set_virt(&bvec, (void *)pdu + req->offset, len); 1239 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len); 1240 ret = sock_sendmsg(queue->sock, &msg); 1241 if (unlikely(ret <= 0)) 1242 return ret; 1243 1244 len -= ret; 1245 if (!len) { 1246 req->state = NVME_TCP_SEND_DATA; 1247 if (queue->data_digest) 1248 crypto_ahash_init(queue->snd_hash); 1249 return 1; 1250 } 1251 req->offset += ret; 1252 1253 return -EAGAIN; 1254 } 1255 1256 static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req) 1257 { 1258 struct nvme_tcp_queue *queue = req->queue; 1259 size_t offset = req->offset; 1260 u32 h2cdata_left = req->h2cdata_left; 1261 int ret; 1262 struct msghdr msg = { .msg_flags = MSG_DONTWAIT }; 1263 struct kvec iov = { 1264 .iov_base = (u8 *)&req->ddgst + req->offset, 1265 .iov_len = NVME_TCP_DIGEST_LENGTH - req->offset 1266 }; 1267 1268 if (nvme_tcp_queue_more(queue)) 1269 msg.msg_flags |= MSG_MORE; 1270 else 1271 msg.msg_flags |= MSG_EOR; 1272 1273 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len); 1274 if (unlikely(ret <= 0)) 1275 return ret; 1276 1277 if (offset + ret == NVME_TCP_DIGEST_LENGTH) { 1278 if (h2cdata_left) 1279 nvme_tcp_setup_h2c_data_pdu(req); 1280 else 1281 nvme_tcp_done_send_req(queue); 1282 return 1; 1283 } 1284 1285 req->offset += ret; 1286 return -EAGAIN; 1287 } 1288 1289 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue) 1290 { 1291 struct nvme_tcp_request *req; 1292 unsigned int noreclaim_flag; 1293 int ret = 1; 1294 1295 if (!queue->request) { 1296 queue->request = nvme_tcp_fetch_request(queue); 1297 if (!queue->request) 1298 return 0; 1299 } 1300 req = queue->request; 1301 1302 noreclaim_flag = memalloc_noreclaim_save(); 1303 if (req->state == NVME_TCP_SEND_CMD_PDU) { 1304 ret = nvme_tcp_try_send_cmd_pdu(req); 1305 if (ret <= 0) 1306 goto done; 1307 if (!nvme_tcp_has_inline_data(req)) 1308 goto out; 1309 } 1310 1311 if (req->state == NVME_TCP_SEND_H2C_PDU) { 1312 ret = nvme_tcp_try_send_data_pdu(req); 1313 if (ret <= 0) 1314 goto done; 1315 } 1316 1317 if (req->state == NVME_TCP_SEND_DATA) { 1318 ret = nvme_tcp_try_send_data(req); 1319 if (ret <= 0) 1320 goto done; 1321 } 1322 1323 if (req->state == NVME_TCP_SEND_DDGST) 1324 ret = nvme_tcp_try_send_ddgst(req); 1325 done: 1326 if (ret == -EAGAIN) { 1327 ret = 0; 1328 } else if (ret < 0) { 1329 dev_err(queue->ctrl->ctrl.device, 1330 "failed to send request %d\n", ret); 1331 nvme_tcp_fail_request(queue->request); 1332 nvme_tcp_done_send_req(queue); 1333 } 1334 out: 1335 memalloc_noreclaim_restore(noreclaim_flag); 1336 return ret; 1337 } 1338 1339 static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue) 1340 { 1341 struct socket *sock = queue->sock; 1342 struct sock *sk = sock->sk; 1343 read_descriptor_t rd_desc; 1344 int consumed; 1345 1346 rd_desc.arg.data = queue; 1347 rd_desc.count = 1; 1348 lock_sock(sk); 1349 queue->nr_cqe = 0; 1350 consumed = sock->ops->read_sock(sk, &rd_desc, nvme_tcp_recv_skb); 1351 release_sock(sk); 1352 return consumed; 1353 } 1354 1355 static void nvme_tcp_io_work(struct work_struct *w) 1356 { 1357 struct nvme_tcp_queue *queue = 1358 container_of(w, struct nvme_tcp_queue, io_work); 1359 unsigned long deadline = jiffies + msecs_to_jiffies(1); 1360 1361 do { 1362 bool pending = false; 1363 int result; 1364 1365 if (mutex_trylock(&queue->send_mutex)) { 1366 result = nvme_tcp_try_send(queue); 1367 mutex_unlock(&queue->send_mutex); 1368 if (result > 0) 1369 pending = true; 1370 else if (unlikely(result < 0)) 1371 break; 1372 } 1373 1374 result = nvme_tcp_try_recv(queue); 1375 if (result > 0) 1376 pending = true; 1377 else if (unlikely(result < 0)) 1378 return; 1379 1380 if (!pending || !queue->rd_enabled) 1381 return; 1382 1383 } while (!time_after(jiffies, deadline)); /* quota is exhausted */ 1384 1385 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 1386 } 1387 1388 static void nvme_tcp_free_crypto(struct nvme_tcp_queue *queue) 1389 { 1390 struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash); 1391 1392 ahash_request_free(queue->rcv_hash); 1393 ahash_request_free(queue->snd_hash); 1394 crypto_free_ahash(tfm); 1395 } 1396 1397 static int nvme_tcp_alloc_crypto(struct nvme_tcp_queue *queue) 1398 { 1399 struct crypto_ahash *tfm; 1400 1401 tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC); 1402 if (IS_ERR(tfm)) 1403 return PTR_ERR(tfm); 1404 1405 queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL); 1406 if (!queue->snd_hash) 1407 goto free_tfm; 1408 ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL); 1409 1410 queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL); 1411 if (!queue->rcv_hash) 1412 goto free_snd_hash; 1413 ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL); 1414 1415 return 0; 1416 free_snd_hash: 1417 ahash_request_free(queue->snd_hash); 1418 free_tfm: 1419 crypto_free_ahash(tfm); 1420 return -ENOMEM; 1421 } 1422 1423 static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl) 1424 { 1425 struct nvme_tcp_request *async = &ctrl->async_req; 1426 1427 page_frag_free(async->pdu); 1428 } 1429 1430 static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl) 1431 { 1432 struct nvme_tcp_queue *queue = &ctrl->queues[0]; 1433 struct nvme_tcp_request *async = &ctrl->async_req; 1434 u8 hdgst = nvme_tcp_hdgst_len(queue); 1435 1436 async->pdu = page_frag_alloc(&queue->pf_cache, 1437 sizeof(struct nvme_tcp_cmd_pdu) + hdgst, 1438 GFP_KERNEL | __GFP_ZERO); 1439 if (!async->pdu) 1440 return -ENOMEM; 1441 1442 async->queue = &ctrl->queues[0]; 1443 return 0; 1444 } 1445 1446 static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid) 1447 { 1448 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1449 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1450 unsigned int noreclaim_flag; 1451 1452 if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags)) 1453 return; 1454 1455 if (queue->hdr_digest || queue->data_digest) 1456 nvme_tcp_free_crypto(queue); 1457 1458 page_frag_cache_drain(&queue->pf_cache); 1459 1460 noreclaim_flag = memalloc_noreclaim_save(); 1461 /* ->sock will be released by fput() */ 1462 fput(queue->sock->file); 1463 queue->sock = NULL; 1464 memalloc_noreclaim_restore(noreclaim_flag); 1465 1466 kfree(queue->pdu); 1467 mutex_destroy(&queue->send_mutex); 1468 mutex_destroy(&queue->queue_lock); 1469 } 1470 1471 static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue) 1472 { 1473 struct nvme_tcp_icreq_pdu *icreq; 1474 struct nvme_tcp_icresp_pdu *icresp; 1475 char cbuf[CMSG_LEN(sizeof(char))] = {}; 1476 u8 ctype; 1477 struct msghdr msg = {}; 1478 struct kvec iov; 1479 bool ctrl_hdgst, ctrl_ddgst; 1480 u32 maxh2cdata; 1481 int ret; 1482 1483 icreq = kzalloc(sizeof(*icreq), GFP_KERNEL); 1484 if (!icreq) 1485 return -ENOMEM; 1486 1487 icresp = kzalloc(sizeof(*icresp), GFP_KERNEL); 1488 if (!icresp) { 1489 ret = -ENOMEM; 1490 goto free_icreq; 1491 } 1492 1493 icreq->hdr.type = nvme_tcp_icreq; 1494 icreq->hdr.hlen = sizeof(*icreq); 1495 icreq->hdr.pdo = 0; 1496 icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen); 1497 icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0); 1498 icreq->maxr2t = 0; /* single inflight r2t supported */ 1499 icreq->hpda = 0; /* no alignment constraint */ 1500 if (queue->hdr_digest) 1501 icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE; 1502 if (queue->data_digest) 1503 icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE; 1504 1505 iov.iov_base = icreq; 1506 iov.iov_len = sizeof(*icreq); 1507 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len); 1508 if (ret < 0) { 1509 pr_warn("queue %d: failed to send icreq, error %d\n", 1510 nvme_tcp_queue_id(queue), ret); 1511 goto free_icresp; 1512 } 1513 1514 memset(&msg, 0, sizeof(msg)); 1515 iov.iov_base = icresp; 1516 iov.iov_len = sizeof(*icresp); 1517 if (nvme_tcp_queue_tls(queue)) { 1518 msg.msg_control = cbuf; 1519 msg.msg_controllen = sizeof(cbuf); 1520 } 1521 msg.msg_flags = MSG_WAITALL; 1522 ret = kernel_recvmsg(queue->sock, &msg, &iov, 1, 1523 iov.iov_len, msg.msg_flags); 1524 if (ret >= 0 && ret < sizeof(*icresp)) 1525 ret = -ECONNRESET; 1526 if (ret < 0) { 1527 pr_warn("queue %d: failed to receive icresp, error %d\n", 1528 nvme_tcp_queue_id(queue), ret); 1529 goto free_icresp; 1530 } 1531 ret = -ENOTCONN; 1532 if (nvme_tcp_queue_tls(queue)) { 1533 ctype = tls_get_record_type(queue->sock->sk, 1534 (struct cmsghdr *)cbuf); 1535 if (ctype != TLS_RECORD_TYPE_DATA) { 1536 pr_err("queue %d: unhandled TLS record %d\n", 1537 nvme_tcp_queue_id(queue), ctype); 1538 goto free_icresp; 1539 } 1540 } 1541 ret = -EINVAL; 1542 if (icresp->hdr.type != nvme_tcp_icresp) { 1543 pr_err("queue %d: bad type returned %d\n", 1544 nvme_tcp_queue_id(queue), icresp->hdr.type); 1545 goto free_icresp; 1546 } 1547 1548 if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) { 1549 pr_err("queue %d: bad pdu length returned %d\n", 1550 nvme_tcp_queue_id(queue), icresp->hdr.plen); 1551 goto free_icresp; 1552 } 1553 1554 if (icresp->pfv != NVME_TCP_PFV_1_0) { 1555 pr_err("queue %d: bad pfv returned %d\n", 1556 nvme_tcp_queue_id(queue), icresp->pfv); 1557 goto free_icresp; 1558 } 1559 1560 ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE); 1561 if ((queue->data_digest && !ctrl_ddgst) || 1562 (!queue->data_digest && ctrl_ddgst)) { 1563 pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n", 1564 nvme_tcp_queue_id(queue), 1565 queue->data_digest ? "enabled" : "disabled", 1566 ctrl_ddgst ? "enabled" : "disabled"); 1567 goto free_icresp; 1568 } 1569 1570 ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE); 1571 if ((queue->hdr_digest && !ctrl_hdgst) || 1572 (!queue->hdr_digest && ctrl_hdgst)) { 1573 pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n", 1574 nvme_tcp_queue_id(queue), 1575 queue->hdr_digest ? "enabled" : "disabled", 1576 ctrl_hdgst ? "enabled" : "disabled"); 1577 goto free_icresp; 1578 } 1579 1580 if (icresp->cpda != 0) { 1581 pr_err("queue %d: unsupported cpda returned %d\n", 1582 nvme_tcp_queue_id(queue), icresp->cpda); 1583 goto free_icresp; 1584 } 1585 1586 maxh2cdata = le32_to_cpu(icresp->maxdata); 1587 if ((maxh2cdata % 4) || (maxh2cdata < NVME_TCP_MIN_MAXH2CDATA)) { 1588 pr_err("queue %d: invalid maxh2cdata returned %u\n", 1589 nvme_tcp_queue_id(queue), maxh2cdata); 1590 goto free_icresp; 1591 } 1592 queue->maxh2cdata = maxh2cdata; 1593 1594 ret = 0; 1595 free_icresp: 1596 kfree(icresp); 1597 free_icreq: 1598 kfree(icreq); 1599 return ret; 1600 } 1601 1602 static bool nvme_tcp_admin_queue(struct nvme_tcp_queue *queue) 1603 { 1604 return nvme_tcp_queue_id(queue) == 0; 1605 } 1606 1607 static bool nvme_tcp_default_queue(struct nvme_tcp_queue *queue) 1608 { 1609 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1610 int qid = nvme_tcp_queue_id(queue); 1611 1612 return !nvme_tcp_admin_queue(queue) && 1613 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT]; 1614 } 1615 1616 static bool nvme_tcp_read_queue(struct nvme_tcp_queue *queue) 1617 { 1618 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1619 int qid = nvme_tcp_queue_id(queue); 1620 1621 return !nvme_tcp_admin_queue(queue) && 1622 !nvme_tcp_default_queue(queue) && 1623 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] + 1624 ctrl->io_queues[HCTX_TYPE_READ]; 1625 } 1626 1627 static bool nvme_tcp_poll_queue(struct nvme_tcp_queue *queue) 1628 { 1629 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1630 int qid = nvme_tcp_queue_id(queue); 1631 1632 return !nvme_tcp_admin_queue(queue) && 1633 !nvme_tcp_default_queue(queue) && 1634 !nvme_tcp_read_queue(queue) && 1635 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] + 1636 ctrl->io_queues[HCTX_TYPE_READ] + 1637 ctrl->io_queues[HCTX_TYPE_POLL]; 1638 } 1639 1640 /* 1641 * Track the number of queues assigned to each cpu using a global per-cpu 1642 * counter and select the least used cpu from the mq_map. Our goal is to spread 1643 * different controllers I/O threads across different cpu cores. 1644 * 1645 * Note that the accounting is not 100% perfect, but we don't need to be, we're 1646 * simply putting our best effort to select the best candidate cpu core that we 1647 * find at any given point. 1648 */ 1649 static void nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue *queue) 1650 { 1651 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1652 struct blk_mq_tag_set *set = &ctrl->tag_set; 1653 int qid = nvme_tcp_queue_id(queue) - 1; 1654 unsigned int *mq_map = NULL; 1655 int cpu, min_queues = INT_MAX, io_cpu; 1656 1657 if (wq_unbound) 1658 goto out; 1659 1660 if (nvme_tcp_default_queue(queue)) 1661 mq_map = set->map[HCTX_TYPE_DEFAULT].mq_map; 1662 else if (nvme_tcp_read_queue(queue)) 1663 mq_map = set->map[HCTX_TYPE_READ].mq_map; 1664 else if (nvme_tcp_poll_queue(queue)) 1665 mq_map = set->map[HCTX_TYPE_POLL].mq_map; 1666 1667 if (WARN_ON(!mq_map)) 1668 goto out; 1669 1670 /* Search for the least used cpu from the mq_map */ 1671 io_cpu = WORK_CPU_UNBOUND; 1672 for_each_online_cpu(cpu) { 1673 int num_queues = atomic_read(&nvme_tcp_cpu_queues[cpu]); 1674 1675 if (mq_map[cpu] != qid) 1676 continue; 1677 if (num_queues < min_queues) { 1678 io_cpu = cpu; 1679 min_queues = num_queues; 1680 } 1681 } 1682 if (io_cpu != WORK_CPU_UNBOUND) { 1683 queue->io_cpu = io_cpu; 1684 atomic_inc(&nvme_tcp_cpu_queues[io_cpu]); 1685 set_bit(NVME_TCP_Q_IO_CPU_SET, &queue->flags); 1686 } 1687 out: 1688 dev_dbg(ctrl->ctrl.device, "queue %d: using cpu %d\n", 1689 qid, queue->io_cpu); 1690 } 1691 1692 static void nvme_tcp_tls_done(void *data, int status, key_serial_t pskid) 1693 { 1694 struct nvme_tcp_queue *queue = data; 1695 struct nvme_tcp_ctrl *ctrl = queue->ctrl; 1696 int qid = nvme_tcp_queue_id(queue); 1697 struct key *tls_key; 1698 1699 dev_dbg(ctrl->ctrl.device, "queue %d: TLS handshake done, key %x, status %d\n", 1700 qid, pskid, status); 1701 1702 if (status) { 1703 queue->tls_err = -status; 1704 goto out_complete; 1705 } 1706 1707 tls_key = nvme_tls_key_lookup(pskid); 1708 if (IS_ERR(tls_key)) { 1709 dev_warn(ctrl->ctrl.device, "queue %d: Invalid key %x\n", 1710 qid, pskid); 1711 queue->tls_err = -ENOKEY; 1712 } else { 1713 queue->tls_enabled = true; 1714 if (qid == 0) 1715 ctrl->ctrl.tls_pskid = key_serial(tls_key); 1716 key_put(tls_key); 1717 queue->tls_err = 0; 1718 } 1719 1720 out_complete: 1721 complete(&queue->tls_complete); 1722 } 1723 1724 static int nvme_tcp_start_tls(struct nvme_ctrl *nctrl, 1725 struct nvme_tcp_queue *queue, 1726 key_serial_t pskid) 1727 { 1728 int qid = nvme_tcp_queue_id(queue); 1729 int ret; 1730 struct tls_handshake_args args; 1731 unsigned long tmo = tls_handshake_timeout * HZ; 1732 key_serial_t keyring = nvme_keyring_id(); 1733 1734 dev_dbg(nctrl->device, "queue %d: start TLS with key %x\n", 1735 qid, pskid); 1736 memset(&args, 0, sizeof(args)); 1737 args.ta_sock = queue->sock; 1738 args.ta_done = nvme_tcp_tls_done; 1739 args.ta_data = queue; 1740 args.ta_my_peerids[0] = pskid; 1741 args.ta_num_peerids = 1; 1742 if (nctrl->opts->keyring) 1743 keyring = key_serial(nctrl->opts->keyring); 1744 args.ta_keyring = keyring; 1745 args.ta_timeout_ms = tls_handshake_timeout * 1000; 1746 queue->tls_err = -EOPNOTSUPP; 1747 init_completion(&queue->tls_complete); 1748 ret = tls_client_hello_psk(&args, GFP_KERNEL); 1749 if (ret) { 1750 dev_err(nctrl->device, "queue %d: failed to start TLS: %d\n", 1751 qid, ret); 1752 return ret; 1753 } 1754 ret = wait_for_completion_interruptible_timeout(&queue->tls_complete, tmo); 1755 if (ret <= 0) { 1756 if (ret == 0) 1757 ret = -ETIMEDOUT; 1758 1759 dev_err(nctrl->device, 1760 "queue %d: TLS handshake failed, error %d\n", 1761 qid, ret); 1762 tls_handshake_cancel(queue->sock->sk); 1763 } else { 1764 dev_dbg(nctrl->device, 1765 "queue %d: TLS handshake complete, error %d\n", 1766 qid, queue->tls_err); 1767 ret = queue->tls_err; 1768 } 1769 return ret; 1770 } 1771 1772 static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl, int qid, 1773 key_serial_t pskid) 1774 { 1775 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1776 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1777 int ret, rcv_pdu_size; 1778 struct file *sock_file; 1779 1780 mutex_init(&queue->queue_lock); 1781 queue->ctrl = ctrl; 1782 init_llist_head(&queue->req_list); 1783 INIT_LIST_HEAD(&queue->send_list); 1784 mutex_init(&queue->send_mutex); 1785 INIT_WORK(&queue->io_work, nvme_tcp_io_work); 1786 1787 if (qid > 0) 1788 queue->cmnd_capsule_len = nctrl->ioccsz * 16; 1789 else 1790 queue->cmnd_capsule_len = sizeof(struct nvme_command) + 1791 NVME_TCP_ADMIN_CCSZ; 1792 1793 ret = sock_create(ctrl->addr.ss_family, SOCK_STREAM, 1794 IPPROTO_TCP, &queue->sock); 1795 if (ret) { 1796 dev_err(nctrl->device, 1797 "failed to create socket: %d\n", ret); 1798 goto err_destroy_mutex; 1799 } 1800 1801 sock_file = sock_alloc_file(queue->sock, O_CLOEXEC, NULL); 1802 if (IS_ERR(sock_file)) { 1803 ret = PTR_ERR(sock_file); 1804 goto err_destroy_mutex; 1805 } 1806 nvme_tcp_reclassify_socket(queue->sock); 1807 1808 /* Single syn retry */ 1809 tcp_sock_set_syncnt(queue->sock->sk, 1); 1810 1811 /* Set TCP no delay */ 1812 tcp_sock_set_nodelay(queue->sock->sk); 1813 1814 /* 1815 * Cleanup whatever is sitting in the TCP transmit queue on socket 1816 * close. This is done to prevent stale data from being sent should 1817 * the network connection be restored before TCP times out. 1818 */ 1819 sock_no_linger(queue->sock->sk); 1820 1821 if (so_priority > 0) 1822 sock_set_priority(queue->sock->sk, so_priority); 1823 1824 /* Set socket type of service */ 1825 if (nctrl->opts->tos >= 0) 1826 ip_sock_set_tos(queue->sock->sk, nctrl->opts->tos); 1827 1828 /* Set 10 seconds timeout for icresp recvmsg */ 1829 queue->sock->sk->sk_rcvtimeo = 10 * HZ; 1830 1831 queue->sock->sk->sk_allocation = GFP_ATOMIC; 1832 queue->sock->sk->sk_use_task_frag = false; 1833 queue->io_cpu = WORK_CPU_UNBOUND; 1834 queue->request = NULL; 1835 queue->data_remaining = 0; 1836 queue->ddgst_remaining = 0; 1837 queue->pdu_remaining = 0; 1838 queue->pdu_offset = 0; 1839 sk_set_memalloc(queue->sock->sk); 1840 1841 if (nctrl->opts->mask & NVMF_OPT_HOST_TRADDR) { 1842 ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr, 1843 sizeof(ctrl->src_addr)); 1844 if (ret) { 1845 dev_err(nctrl->device, 1846 "failed to bind queue %d socket %d\n", 1847 qid, ret); 1848 goto err_sock; 1849 } 1850 } 1851 1852 if (nctrl->opts->mask & NVMF_OPT_HOST_IFACE) { 1853 char *iface = nctrl->opts->host_iface; 1854 sockptr_t optval = KERNEL_SOCKPTR(iface); 1855 1856 ret = sock_setsockopt(queue->sock, SOL_SOCKET, SO_BINDTODEVICE, 1857 optval, strlen(iface)); 1858 if (ret) { 1859 dev_err(nctrl->device, 1860 "failed to bind to interface %s queue %d err %d\n", 1861 iface, qid, ret); 1862 goto err_sock; 1863 } 1864 } 1865 1866 queue->hdr_digest = nctrl->opts->hdr_digest; 1867 queue->data_digest = nctrl->opts->data_digest; 1868 if (queue->hdr_digest || queue->data_digest) { 1869 ret = nvme_tcp_alloc_crypto(queue); 1870 if (ret) { 1871 dev_err(nctrl->device, 1872 "failed to allocate queue %d crypto\n", qid); 1873 goto err_sock; 1874 } 1875 } 1876 1877 rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) + 1878 nvme_tcp_hdgst_len(queue); 1879 queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL); 1880 if (!queue->pdu) { 1881 ret = -ENOMEM; 1882 goto err_crypto; 1883 } 1884 1885 dev_dbg(nctrl->device, "connecting queue %d\n", 1886 nvme_tcp_queue_id(queue)); 1887 1888 ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr, 1889 sizeof(ctrl->addr), 0); 1890 if (ret) { 1891 dev_err(nctrl->device, 1892 "failed to connect socket: %d\n", ret); 1893 goto err_rcv_pdu; 1894 } 1895 1896 /* If PSKs are configured try to start TLS */ 1897 if (nvme_tcp_tls_configured(nctrl) && pskid) { 1898 ret = nvme_tcp_start_tls(nctrl, queue, pskid); 1899 if (ret) 1900 goto err_init_connect; 1901 } 1902 1903 ret = nvme_tcp_init_connection(queue); 1904 if (ret) 1905 goto err_init_connect; 1906 1907 set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags); 1908 1909 return 0; 1910 1911 err_init_connect: 1912 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 1913 err_rcv_pdu: 1914 kfree(queue->pdu); 1915 err_crypto: 1916 if (queue->hdr_digest || queue->data_digest) 1917 nvme_tcp_free_crypto(queue); 1918 err_sock: 1919 /* ->sock will be released by fput() */ 1920 fput(queue->sock->file); 1921 queue->sock = NULL; 1922 err_destroy_mutex: 1923 mutex_destroy(&queue->send_mutex); 1924 mutex_destroy(&queue->queue_lock); 1925 return ret; 1926 } 1927 1928 static void nvme_tcp_restore_sock_ops(struct nvme_tcp_queue *queue) 1929 { 1930 struct socket *sock = queue->sock; 1931 1932 write_lock_bh(&sock->sk->sk_callback_lock); 1933 sock->sk->sk_user_data = NULL; 1934 sock->sk->sk_data_ready = queue->data_ready; 1935 sock->sk->sk_state_change = queue->state_change; 1936 sock->sk->sk_write_space = queue->write_space; 1937 write_unlock_bh(&sock->sk->sk_callback_lock); 1938 } 1939 1940 static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue) 1941 { 1942 kernel_sock_shutdown(queue->sock, SHUT_RDWR); 1943 nvme_tcp_restore_sock_ops(queue); 1944 cancel_work_sync(&queue->io_work); 1945 } 1946 1947 static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid) 1948 { 1949 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1950 struct nvme_tcp_queue *queue = &ctrl->queues[qid]; 1951 1952 if (!test_bit(NVME_TCP_Q_ALLOCATED, &queue->flags)) 1953 return; 1954 1955 if (test_and_clear_bit(NVME_TCP_Q_IO_CPU_SET, &queue->flags)) 1956 atomic_dec(&nvme_tcp_cpu_queues[queue->io_cpu]); 1957 1958 mutex_lock(&queue->queue_lock); 1959 if (test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags)) 1960 __nvme_tcp_stop_queue(queue); 1961 /* Stopping the queue will disable TLS */ 1962 queue->tls_enabled = false; 1963 mutex_unlock(&queue->queue_lock); 1964 } 1965 1966 static void nvme_tcp_setup_sock_ops(struct nvme_tcp_queue *queue) 1967 { 1968 write_lock_bh(&queue->sock->sk->sk_callback_lock); 1969 queue->sock->sk->sk_user_data = queue; 1970 queue->state_change = queue->sock->sk->sk_state_change; 1971 queue->data_ready = queue->sock->sk->sk_data_ready; 1972 queue->write_space = queue->sock->sk->sk_write_space; 1973 queue->sock->sk->sk_data_ready = nvme_tcp_data_ready; 1974 queue->sock->sk->sk_state_change = nvme_tcp_state_change; 1975 queue->sock->sk->sk_write_space = nvme_tcp_write_space; 1976 #ifdef CONFIG_NET_RX_BUSY_POLL 1977 queue->sock->sk->sk_ll_usec = 1; 1978 #endif 1979 write_unlock_bh(&queue->sock->sk->sk_callback_lock); 1980 } 1981 1982 static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx) 1983 { 1984 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 1985 struct nvme_tcp_queue *queue = &ctrl->queues[idx]; 1986 int ret; 1987 1988 queue->rd_enabled = true; 1989 nvme_tcp_init_recv_ctx(queue); 1990 nvme_tcp_setup_sock_ops(queue); 1991 1992 if (idx) { 1993 nvme_tcp_set_queue_io_cpu(queue); 1994 ret = nvmf_connect_io_queue(nctrl, idx); 1995 } else 1996 ret = nvmf_connect_admin_queue(nctrl); 1997 1998 if (!ret) { 1999 set_bit(NVME_TCP_Q_LIVE, &queue->flags); 2000 } else { 2001 if (test_bit(NVME_TCP_Q_ALLOCATED, &queue->flags)) 2002 __nvme_tcp_stop_queue(queue); 2003 dev_err(nctrl->device, 2004 "failed to connect queue: %d ret=%d\n", idx, ret); 2005 } 2006 return ret; 2007 } 2008 2009 static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl) 2010 { 2011 if (to_tcp_ctrl(ctrl)->async_req.pdu) { 2012 cancel_work_sync(&ctrl->async_event_work); 2013 nvme_tcp_free_async_req(to_tcp_ctrl(ctrl)); 2014 to_tcp_ctrl(ctrl)->async_req.pdu = NULL; 2015 } 2016 2017 nvme_tcp_free_queue(ctrl, 0); 2018 } 2019 2020 static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl) 2021 { 2022 int i; 2023 2024 for (i = 1; i < ctrl->queue_count; i++) 2025 nvme_tcp_free_queue(ctrl, i); 2026 } 2027 2028 static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl) 2029 { 2030 int i; 2031 2032 for (i = 1; i < ctrl->queue_count; i++) 2033 nvme_tcp_stop_queue(ctrl, i); 2034 } 2035 2036 static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl, 2037 int first, int last) 2038 { 2039 int i, ret; 2040 2041 for (i = first; i < last; i++) { 2042 ret = nvme_tcp_start_queue(ctrl, i); 2043 if (ret) 2044 goto out_stop_queues; 2045 } 2046 2047 return 0; 2048 2049 out_stop_queues: 2050 for (i--; i >= first; i--) 2051 nvme_tcp_stop_queue(ctrl, i); 2052 return ret; 2053 } 2054 2055 static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl) 2056 { 2057 int ret; 2058 key_serial_t pskid = 0; 2059 2060 if (nvme_tcp_tls_configured(ctrl)) { 2061 if (ctrl->opts->tls_key) 2062 pskid = key_serial(ctrl->opts->tls_key); 2063 else { 2064 pskid = nvme_tls_psk_default(ctrl->opts->keyring, 2065 ctrl->opts->host->nqn, 2066 ctrl->opts->subsysnqn); 2067 if (!pskid) { 2068 dev_err(ctrl->device, "no valid PSK found\n"); 2069 return -ENOKEY; 2070 } 2071 } 2072 } 2073 2074 ret = nvme_tcp_alloc_queue(ctrl, 0, pskid); 2075 if (ret) 2076 return ret; 2077 2078 ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl)); 2079 if (ret) 2080 goto out_free_queue; 2081 2082 return 0; 2083 2084 out_free_queue: 2085 nvme_tcp_free_queue(ctrl, 0); 2086 return ret; 2087 } 2088 2089 static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl) 2090 { 2091 int i, ret; 2092 2093 if (nvme_tcp_tls_configured(ctrl) && !ctrl->tls_pskid) { 2094 dev_err(ctrl->device, "no PSK negotiated\n"); 2095 return -ENOKEY; 2096 } 2097 2098 for (i = 1; i < ctrl->queue_count; i++) { 2099 ret = nvme_tcp_alloc_queue(ctrl, i, 2100 ctrl->tls_pskid); 2101 if (ret) 2102 goto out_free_queues; 2103 } 2104 2105 return 0; 2106 2107 out_free_queues: 2108 for (i--; i >= 1; i--) 2109 nvme_tcp_free_queue(ctrl, i); 2110 2111 return ret; 2112 } 2113 2114 static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl) 2115 { 2116 unsigned int nr_io_queues; 2117 int ret; 2118 2119 nr_io_queues = nvmf_nr_io_queues(ctrl->opts); 2120 ret = nvme_set_queue_count(ctrl, &nr_io_queues); 2121 if (ret) 2122 return ret; 2123 2124 if (nr_io_queues == 0) { 2125 dev_err(ctrl->device, 2126 "unable to set any I/O queues\n"); 2127 return -ENOMEM; 2128 } 2129 2130 ctrl->queue_count = nr_io_queues + 1; 2131 dev_info(ctrl->device, 2132 "creating %d I/O queues.\n", nr_io_queues); 2133 2134 nvmf_set_io_queues(ctrl->opts, nr_io_queues, 2135 to_tcp_ctrl(ctrl)->io_queues); 2136 return __nvme_tcp_alloc_io_queues(ctrl); 2137 } 2138 2139 static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new) 2140 { 2141 int ret, nr_queues; 2142 2143 ret = nvme_tcp_alloc_io_queues(ctrl); 2144 if (ret) 2145 return ret; 2146 2147 if (new) { 2148 ret = nvme_alloc_io_tag_set(ctrl, &to_tcp_ctrl(ctrl)->tag_set, 2149 &nvme_tcp_mq_ops, 2150 ctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2, 2151 sizeof(struct nvme_tcp_request)); 2152 if (ret) 2153 goto out_free_io_queues; 2154 } 2155 2156 /* 2157 * Only start IO queues for which we have allocated the tagset 2158 * and limitted it to the available queues. On reconnects, the 2159 * queue number might have changed. 2160 */ 2161 nr_queues = min(ctrl->tagset->nr_hw_queues + 1, ctrl->queue_count); 2162 ret = nvme_tcp_start_io_queues(ctrl, 1, nr_queues); 2163 if (ret) 2164 goto out_cleanup_connect_q; 2165 2166 if (!new) { 2167 nvme_start_freeze(ctrl); 2168 nvme_unquiesce_io_queues(ctrl); 2169 if (!nvme_wait_freeze_timeout(ctrl, NVME_IO_TIMEOUT)) { 2170 /* 2171 * If we timed out waiting for freeze we are likely to 2172 * be stuck. Fail the controller initialization just 2173 * to be safe. 2174 */ 2175 ret = -ENODEV; 2176 nvme_unfreeze(ctrl); 2177 goto out_wait_freeze_timed_out; 2178 } 2179 blk_mq_update_nr_hw_queues(ctrl->tagset, 2180 ctrl->queue_count - 1); 2181 nvme_unfreeze(ctrl); 2182 } 2183 2184 /* 2185 * If the number of queues has increased (reconnect case) 2186 * start all new queues now. 2187 */ 2188 ret = nvme_tcp_start_io_queues(ctrl, nr_queues, 2189 ctrl->tagset->nr_hw_queues + 1); 2190 if (ret) 2191 goto out_wait_freeze_timed_out; 2192 2193 return 0; 2194 2195 out_wait_freeze_timed_out: 2196 nvme_quiesce_io_queues(ctrl); 2197 nvme_sync_io_queues(ctrl); 2198 nvme_tcp_stop_io_queues(ctrl); 2199 out_cleanup_connect_q: 2200 nvme_cancel_tagset(ctrl); 2201 if (new) 2202 nvme_remove_io_tag_set(ctrl); 2203 out_free_io_queues: 2204 nvme_tcp_free_io_queues(ctrl); 2205 return ret; 2206 } 2207 2208 static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new) 2209 { 2210 int error; 2211 2212 error = nvme_tcp_alloc_admin_queue(ctrl); 2213 if (error) 2214 return error; 2215 2216 if (new) { 2217 error = nvme_alloc_admin_tag_set(ctrl, 2218 &to_tcp_ctrl(ctrl)->admin_tag_set, 2219 &nvme_tcp_admin_mq_ops, 2220 sizeof(struct nvme_tcp_request)); 2221 if (error) 2222 goto out_free_queue; 2223 } 2224 2225 error = nvme_tcp_start_queue(ctrl, 0); 2226 if (error) 2227 goto out_cleanup_tagset; 2228 2229 error = nvme_enable_ctrl(ctrl); 2230 if (error) 2231 goto out_stop_queue; 2232 2233 nvme_unquiesce_admin_queue(ctrl); 2234 2235 error = nvme_init_ctrl_finish(ctrl, false); 2236 if (error) 2237 goto out_quiesce_queue; 2238 2239 return 0; 2240 2241 out_quiesce_queue: 2242 nvme_quiesce_admin_queue(ctrl); 2243 blk_sync_queue(ctrl->admin_q); 2244 out_stop_queue: 2245 nvme_tcp_stop_queue(ctrl, 0); 2246 nvme_cancel_admin_tagset(ctrl); 2247 out_cleanup_tagset: 2248 if (new) 2249 nvme_remove_admin_tag_set(ctrl); 2250 out_free_queue: 2251 nvme_tcp_free_admin_queue(ctrl); 2252 return error; 2253 } 2254 2255 static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl, 2256 bool remove) 2257 { 2258 nvme_quiesce_admin_queue(ctrl); 2259 blk_sync_queue(ctrl->admin_q); 2260 nvme_tcp_stop_queue(ctrl, 0); 2261 nvme_cancel_admin_tagset(ctrl); 2262 if (remove) { 2263 nvme_unquiesce_admin_queue(ctrl); 2264 nvme_remove_admin_tag_set(ctrl); 2265 } 2266 nvme_tcp_free_admin_queue(ctrl); 2267 if (ctrl->tls_pskid) { 2268 dev_dbg(ctrl->device, "Wipe negotiated TLS_PSK %08x\n", 2269 ctrl->tls_pskid); 2270 ctrl->tls_pskid = 0; 2271 } 2272 } 2273 2274 static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl, 2275 bool remove) 2276 { 2277 if (ctrl->queue_count <= 1) 2278 return; 2279 nvme_quiesce_io_queues(ctrl); 2280 nvme_sync_io_queues(ctrl); 2281 nvme_tcp_stop_io_queues(ctrl); 2282 nvme_cancel_tagset(ctrl); 2283 if (remove) { 2284 nvme_unquiesce_io_queues(ctrl); 2285 nvme_remove_io_tag_set(ctrl); 2286 } 2287 nvme_tcp_free_io_queues(ctrl); 2288 } 2289 2290 static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl, 2291 int status) 2292 { 2293 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl); 2294 2295 /* If we are resetting/deleting then do nothing */ 2296 if (state != NVME_CTRL_CONNECTING) { 2297 WARN_ON_ONCE(state == NVME_CTRL_NEW || state == NVME_CTRL_LIVE); 2298 return; 2299 } 2300 2301 if (nvmf_should_reconnect(ctrl, status)) { 2302 dev_info(ctrl->device, "Reconnecting in %d seconds...\n", 2303 ctrl->opts->reconnect_delay); 2304 queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work, 2305 ctrl->opts->reconnect_delay * HZ); 2306 } else { 2307 dev_info(ctrl->device, "Removing controller (%d)...\n", 2308 status); 2309 nvme_delete_ctrl(ctrl); 2310 } 2311 } 2312 2313 static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new) 2314 { 2315 struct nvmf_ctrl_options *opts = ctrl->opts; 2316 int ret; 2317 2318 ret = nvme_tcp_configure_admin_queue(ctrl, new); 2319 if (ret) 2320 return ret; 2321 2322 if (ctrl->icdoff) { 2323 ret = -EOPNOTSUPP; 2324 dev_err(ctrl->device, "icdoff is not supported!\n"); 2325 goto destroy_admin; 2326 } 2327 2328 if (!nvme_ctrl_sgl_supported(ctrl)) { 2329 ret = -EOPNOTSUPP; 2330 dev_err(ctrl->device, "Mandatory sgls are not supported!\n"); 2331 goto destroy_admin; 2332 } 2333 2334 if (opts->queue_size > ctrl->sqsize + 1) 2335 dev_warn(ctrl->device, 2336 "queue_size %zu > ctrl sqsize %u, clamping down\n", 2337 opts->queue_size, ctrl->sqsize + 1); 2338 2339 if (ctrl->sqsize + 1 > ctrl->maxcmd) { 2340 dev_warn(ctrl->device, 2341 "sqsize %u > ctrl maxcmd %u, clamping down\n", 2342 ctrl->sqsize + 1, ctrl->maxcmd); 2343 ctrl->sqsize = ctrl->maxcmd - 1; 2344 } 2345 2346 if (ctrl->queue_count > 1) { 2347 ret = nvme_tcp_configure_io_queues(ctrl, new); 2348 if (ret) 2349 goto destroy_admin; 2350 } 2351 2352 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) { 2353 /* 2354 * state change failure is ok if we started ctrl delete, 2355 * unless we're during creation of a new controller to 2356 * avoid races with teardown flow. 2357 */ 2358 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl); 2359 2360 WARN_ON_ONCE(state != NVME_CTRL_DELETING && 2361 state != NVME_CTRL_DELETING_NOIO); 2362 WARN_ON_ONCE(new); 2363 ret = -EINVAL; 2364 goto destroy_io; 2365 } 2366 2367 nvme_start_ctrl(ctrl); 2368 return 0; 2369 2370 destroy_io: 2371 if (ctrl->queue_count > 1) { 2372 nvme_quiesce_io_queues(ctrl); 2373 nvme_sync_io_queues(ctrl); 2374 nvme_tcp_stop_io_queues(ctrl); 2375 nvme_cancel_tagset(ctrl); 2376 if (new) 2377 nvme_remove_io_tag_set(ctrl); 2378 nvme_tcp_free_io_queues(ctrl); 2379 } 2380 destroy_admin: 2381 nvme_stop_keep_alive(ctrl); 2382 nvme_tcp_teardown_admin_queue(ctrl, new); 2383 return ret; 2384 } 2385 2386 static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work) 2387 { 2388 struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work), 2389 struct nvme_tcp_ctrl, connect_work); 2390 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl; 2391 int ret; 2392 2393 ++ctrl->nr_reconnects; 2394 2395 ret = nvme_tcp_setup_ctrl(ctrl, false); 2396 if (ret) 2397 goto requeue; 2398 2399 dev_info(ctrl->device, "Successfully reconnected (attempt %d/%d)\n", 2400 ctrl->nr_reconnects, ctrl->opts->max_reconnects); 2401 2402 ctrl->nr_reconnects = 0; 2403 2404 return; 2405 2406 requeue: 2407 dev_info(ctrl->device, "Failed reconnect attempt %d/%d\n", 2408 ctrl->nr_reconnects, ctrl->opts->max_reconnects); 2409 nvme_tcp_reconnect_or_remove(ctrl, ret); 2410 } 2411 2412 static void nvme_tcp_error_recovery_work(struct work_struct *work) 2413 { 2414 struct nvme_tcp_ctrl *tcp_ctrl = container_of(work, 2415 struct nvme_tcp_ctrl, err_work); 2416 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl; 2417 2418 nvme_stop_keep_alive(ctrl); 2419 flush_work(&ctrl->async_event_work); 2420 nvme_tcp_teardown_io_queues(ctrl, false); 2421 /* unquiesce to fail fast pending requests */ 2422 nvme_unquiesce_io_queues(ctrl); 2423 nvme_tcp_teardown_admin_queue(ctrl, false); 2424 nvme_unquiesce_admin_queue(ctrl); 2425 nvme_auth_stop(ctrl); 2426 2427 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) { 2428 /* state change failure is ok if we started ctrl delete */ 2429 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl); 2430 2431 WARN_ON_ONCE(state != NVME_CTRL_DELETING && 2432 state != NVME_CTRL_DELETING_NOIO); 2433 return; 2434 } 2435 2436 nvme_tcp_reconnect_or_remove(ctrl, 0); 2437 } 2438 2439 static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown) 2440 { 2441 nvme_tcp_teardown_io_queues(ctrl, shutdown); 2442 nvme_quiesce_admin_queue(ctrl); 2443 nvme_disable_ctrl(ctrl, shutdown); 2444 nvme_tcp_teardown_admin_queue(ctrl, shutdown); 2445 } 2446 2447 static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl) 2448 { 2449 nvme_tcp_teardown_ctrl(ctrl, true); 2450 } 2451 2452 static void nvme_reset_ctrl_work(struct work_struct *work) 2453 { 2454 struct nvme_ctrl *ctrl = 2455 container_of(work, struct nvme_ctrl, reset_work); 2456 int ret; 2457 2458 nvme_stop_ctrl(ctrl); 2459 nvme_tcp_teardown_ctrl(ctrl, false); 2460 2461 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) { 2462 /* state change failure is ok if we started ctrl delete */ 2463 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl); 2464 2465 WARN_ON_ONCE(state != NVME_CTRL_DELETING && 2466 state != NVME_CTRL_DELETING_NOIO); 2467 return; 2468 } 2469 2470 ret = nvme_tcp_setup_ctrl(ctrl, false); 2471 if (ret) 2472 goto out_fail; 2473 2474 return; 2475 2476 out_fail: 2477 ++ctrl->nr_reconnects; 2478 nvme_tcp_reconnect_or_remove(ctrl, ret); 2479 } 2480 2481 static void nvme_tcp_stop_ctrl(struct nvme_ctrl *ctrl) 2482 { 2483 flush_work(&to_tcp_ctrl(ctrl)->err_work); 2484 cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work); 2485 } 2486 2487 static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl) 2488 { 2489 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl); 2490 2491 if (list_empty(&ctrl->list)) 2492 goto free_ctrl; 2493 2494 mutex_lock(&nvme_tcp_ctrl_mutex); 2495 list_del(&ctrl->list); 2496 mutex_unlock(&nvme_tcp_ctrl_mutex); 2497 2498 nvmf_free_options(nctrl->opts); 2499 free_ctrl: 2500 kfree(ctrl->queues); 2501 kfree(ctrl); 2502 } 2503 2504 static void nvme_tcp_set_sg_null(struct nvme_command *c) 2505 { 2506 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 2507 2508 sg->addr = 0; 2509 sg->length = 0; 2510 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) | 2511 NVME_SGL_FMT_TRANSPORT_A; 2512 } 2513 2514 static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue, 2515 struct nvme_command *c, u32 data_len) 2516 { 2517 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 2518 2519 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff); 2520 sg->length = cpu_to_le32(data_len); 2521 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET; 2522 } 2523 2524 static void nvme_tcp_set_sg_host_data(struct nvme_command *c, 2525 u32 data_len) 2526 { 2527 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 2528 2529 sg->addr = 0; 2530 sg->length = cpu_to_le32(data_len); 2531 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) | 2532 NVME_SGL_FMT_TRANSPORT_A; 2533 } 2534 2535 static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg) 2536 { 2537 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg); 2538 struct nvme_tcp_queue *queue = &ctrl->queues[0]; 2539 struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu; 2540 struct nvme_command *cmd = &pdu->cmd; 2541 u8 hdgst = nvme_tcp_hdgst_len(queue); 2542 2543 memset(pdu, 0, sizeof(*pdu)); 2544 pdu->hdr.type = nvme_tcp_cmd; 2545 if (queue->hdr_digest) 2546 pdu->hdr.flags |= NVME_TCP_F_HDGST; 2547 pdu->hdr.hlen = sizeof(*pdu); 2548 pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst); 2549 2550 cmd->common.opcode = nvme_admin_async_event; 2551 cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH; 2552 cmd->common.flags |= NVME_CMD_SGL_METABUF; 2553 nvme_tcp_set_sg_null(cmd); 2554 2555 ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU; 2556 ctrl->async_req.offset = 0; 2557 ctrl->async_req.curr_bio = NULL; 2558 ctrl->async_req.data_len = 0; 2559 2560 nvme_tcp_queue_request(&ctrl->async_req, true, true); 2561 } 2562 2563 static void nvme_tcp_complete_timed_out(struct request *rq) 2564 { 2565 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2566 struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl; 2567 2568 nvme_tcp_stop_queue(ctrl, nvme_tcp_queue_id(req->queue)); 2569 nvmf_complete_timed_out_request(rq); 2570 } 2571 2572 static enum blk_eh_timer_return nvme_tcp_timeout(struct request *rq) 2573 { 2574 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2575 struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl; 2576 struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req); 2577 struct nvme_command *cmd = &pdu->cmd; 2578 int qid = nvme_tcp_queue_id(req->queue); 2579 2580 dev_warn(ctrl->device, 2581 "I/O tag %d (%04x) type %d opcode %#x (%s) QID %d timeout\n", 2582 rq->tag, nvme_cid(rq), pdu->hdr.type, cmd->common.opcode, 2583 nvme_fabrics_opcode_str(qid, cmd), qid); 2584 2585 if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE) { 2586 /* 2587 * If we are resetting, connecting or deleting we should 2588 * complete immediately because we may block controller 2589 * teardown or setup sequence 2590 * - ctrl disable/shutdown fabrics requests 2591 * - connect requests 2592 * - initialization admin requests 2593 * - I/O requests that entered after unquiescing and 2594 * the controller stopped responding 2595 * 2596 * All other requests should be cancelled by the error 2597 * recovery work, so it's fine that we fail it here. 2598 */ 2599 nvme_tcp_complete_timed_out(rq); 2600 return BLK_EH_DONE; 2601 } 2602 2603 /* 2604 * LIVE state should trigger the normal error recovery which will 2605 * handle completing this request. 2606 */ 2607 nvme_tcp_error_recovery(ctrl); 2608 return BLK_EH_RESET_TIMER; 2609 } 2610 2611 static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue, 2612 struct request *rq) 2613 { 2614 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2615 struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req); 2616 struct nvme_command *c = &pdu->cmd; 2617 2618 c->common.flags |= NVME_CMD_SGL_METABUF; 2619 2620 if (!blk_rq_nr_phys_segments(rq)) 2621 nvme_tcp_set_sg_null(c); 2622 else if (rq_data_dir(rq) == WRITE && 2623 req->data_len <= nvme_tcp_inline_data_size(req)) 2624 nvme_tcp_set_sg_inline(queue, c, req->data_len); 2625 else 2626 nvme_tcp_set_sg_host_data(c, req->data_len); 2627 2628 return 0; 2629 } 2630 2631 static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns, 2632 struct request *rq) 2633 { 2634 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2635 struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req); 2636 struct nvme_tcp_queue *queue = req->queue; 2637 u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0; 2638 blk_status_t ret; 2639 2640 ret = nvme_setup_cmd(ns, rq); 2641 if (ret) 2642 return ret; 2643 2644 req->state = NVME_TCP_SEND_CMD_PDU; 2645 req->status = cpu_to_le16(NVME_SC_SUCCESS); 2646 req->offset = 0; 2647 req->data_sent = 0; 2648 req->pdu_len = 0; 2649 req->pdu_sent = 0; 2650 req->h2cdata_left = 0; 2651 req->data_len = blk_rq_nr_phys_segments(rq) ? 2652 blk_rq_payload_bytes(rq) : 0; 2653 req->curr_bio = rq->bio; 2654 if (req->curr_bio && req->data_len) 2655 nvme_tcp_init_iter(req, rq_data_dir(rq)); 2656 2657 if (rq_data_dir(rq) == WRITE && 2658 req->data_len <= nvme_tcp_inline_data_size(req)) 2659 req->pdu_len = req->data_len; 2660 2661 pdu->hdr.type = nvme_tcp_cmd; 2662 pdu->hdr.flags = 0; 2663 if (queue->hdr_digest) 2664 pdu->hdr.flags |= NVME_TCP_F_HDGST; 2665 if (queue->data_digest && req->pdu_len) { 2666 pdu->hdr.flags |= NVME_TCP_F_DDGST; 2667 ddgst = nvme_tcp_ddgst_len(queue); 2668 } 2669 pdu->hdr.hlen = sizeof(*pdu); 2670 pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0; 2671 pdu->hdr.plen = 2672 cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst); 2673 2674 ret = nvme_tcp_map_data(queue, rq); 2675 if (unlikely(ret)) { 2676 nvme_cleanup_cmd(rq); 2677 dev_err(queue->ctrl->ctrl.device, 2678 "Failed to map data (%d)\n", ret); 2679 return ret; 2680 } 2681 2682 return 0; 2683 } 2684 2685 static void nvme_tcp_commit_rqs(struct blk_mq_hw_ctx *hctx) 2686 { 2687 struct nvme_tcp_queue *queue = hctx->driver_data; 2688 2689 if (!llist_empty(&queue->req_list)) 2690 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work); 2691 } 2692 2693 static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx, 2694 const struct blk_mq_queue_data *bd) 2695 { 2696 struct nvme_ns *ns = hctx->queue->queuedata; 2697 struct nvme_tcp_queue *queue = hctx->driver_data; 2698 struct request *rq = bd->rq; 2699 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq); 2700 bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags); 2701 blk_status_t ret; 2702 2703 if (!nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready)) 2704 return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq); 2705 2706 ret = nvme_tcp_setup_cmd_pdu(ns, rq); 2707 if (unlikely(ret)) 2708 return ret; 2709 2710 nvme_start_request(rq); 2711 2712 nvme_tcp_queue_request(req, true, bd->last); 2713 2714 return BLK_STS_OK; 2715 } 2716 2717 static void nvme_tcp_map_queues(struct blk_mq_tag_set *set) 2718 { 2719 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(set->driver_data); 2720 2721 nvmf_map_queues(set, &ctrl->ctrl, ctrl->io_queues); 2722 } 2723 2724 static int nvme_tcp_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob) 2725 { 2726 struct nvme_tcp_queue *queue = hctx->driver_data; 2727 struct sock *sk = queue->sock->sk; 2728 int ret; 2729 2730 if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags)) 2731 return 0; 2732 2733 set_bit(NVME_TCP_Q_POLLING, &queue->flags); 2734 if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue)) 2735 sk_busy_loop(sk, true); 2736 ret = nvme_tcp_try_recv(queue); 2737 clear_bit(NVME_TCP_Q_POLLING, &queue->flags); 2738 return ret < 0 ? ret : queue->nr_cqe; 2739 } 2740 2741 static int nvme_tcp_get_address(struct nvme_ctrl *ctrl, char *buf, int size) 2742 { 2743 struct nvme_tcp_queue *queue = &to_tcp_ctrl(ctrl)->queues[0]; 2744 struct sockaddr_storage src_addr; 2745 int ret, len; 2746 2747 len = nvmf_get_address(ctrl, buf, size); 2748 2749 if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags)) 2750 return len; 2751 2752 mutex_lock(&queue->queue_lock); 2753 2754 ret = kernel_getsockname(queue->sock, (struct sockaddr *)&src_addr); 2755 if (ret > 0) { 2756 if (len > 0) 2757 len--; /* strip trailing newline */ 2758 len += scnprintf(buf + len, size - len, "%ssrc_addr=%pISc\n", 2759 (len) ? "," : "", &src_addr); 2760 } 2761 2762 mutex_unlock(&queue->queue_lock); 2763 2764 return len; 2765 } 2766 2767 static const struct blk_mq_ops nvme_tcp_mq_ops = { 2768 .queue_rq = nvme_tcp_queue_rq, 2769 .commit_rqs = nvme_tcp_commit_rqs, 2770 .complete = nvme_complete_rq, 2771 .init_request = nvme_tcp_init_request, 2772 .exit_request = nvme_tcp_exit_request, 2773 .init_hctx = nvme_tcp_init_hctx, 2774 .timeout = nvme_tcp_timeout, 2775 .map_queues = nvme_tcp_map_queues, 2776 .poll = nvme_tcp_poll, 2777 }; 2778 2779 static const struct blk_mq_ops nvme_tcp_admin_mq_ops = { 2780 .queue_rq = nvme_tcp_queue_rq, 2781 .complete = nvme_complete_rq, 2782 .init_request = nvme_tcp_init_request, 2783 .exit_request = nvme_tcp_exit_request, 2784 .init_hctx = nvme_tcp_init_admin_hctx, 2785 .timeout = nvme_tcp_timeout, 2786 }; 2787 2788 static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = { 2789 .name = "tcp", 2790 .module = THIS_MODULE, 2791 .flags = NVME_F_FABRICS | NVME_F_BLOCKING, 2792 .reg_read32 = nvmf_reg_read32, 2793 .reg_read64 = nvmf_reg_read64, 2794 .reg_write32 = nvmf_reg_write32, 2795 .subsystem_reset = nvmf_subsystem_reset, 2796 .free_ctrl = nvme_tcp_free_ctrl, 2797 .submit_async_event = nvme_tcp_submit_async_event, 2798 .delete_ctrl = nvme_tcp_delete_ctrl, 2799 .get_address = nvme_tcp_get_address, 2800 .stop_ctrl = nvme_tcp_stop_ctrl, 2801 }; 2802 2803 static bool 2804 nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts) 2805 { 2806 struct nvme_tcp_ctrl *ctrl; 2807 bool found = false; 2808 2809 mutex_lock(&nvme_tcp_ctrl_mutex); 2810 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) { 2811 found = nvmf_ip_options_match(&ctrl->ctrl, opts); 2812 if (found) 2813 break; 2814 } 2815 mutex_unlock(&nvme_tcp_ctrl_mutex); 2816 2817 return found; 2818 } 2819 2820 static struct nvme_tcp_ctrl *nvme_tcp_alloc_ctrl(struct device *dev, 2821 struct nvmf_ctrl_options *opts) 2822 { 2823 struct nvme_tcp_ctrl *ctrl; 2824 int ret; 2825 2826 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 2827 if (!ctrl) 2828 return ERR_PTR(-ENOMEM); 2829 2830 INIT_LIST_HEAD(&ctrl->list); 2831 ctrl->ctrl.opts = opts; 2832 ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues + 2833 opts->nr_poll_queues + 1; 2834 ctrl->ctrl.sqsize = opts->queue_size - 1; 2835 ctrl->ctrl.kato = opts->kato; 2836 2837 INIT_DELAYED_WORK(&ctrl->connect_work, 2838 nvme_tcp_reconnect_ctrl_work); 2839 INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work); 2840 INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work); 2841 2842 if (!(opts->mask & NVMF_OPT_TRSVCID)) { 2843 opts->trsvcid = 2844 kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL); 2845 if (!opts->trsvcid) { 2846 ret = -ENOMEM; 2847 goto out_free_ctrl; 2848 } 2849 opts->mask |= NVMF_OPT_TRSVCID; 2850 } 2851 2852 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 2853 opts->traddr, opts->trsvcid, &ctrl->addr); 2854 if (ret) { 2855 pr_err("malformed address passed: %s:%s\n", 2856 opts->traddr, opts->trsvcid); 2857 goto out_free_ctrl; 2858 } 2859 2860 if (opts->mask & NVMF_OPT_HOST_TRADDR) { 2861 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 2862 opts->host_traddr, NULL, &ctrl->src_addr); 2863 if (ret) { 2864 pr_err("malformed src address passed: %s\n", 2865 opts->host_traddr); 2866 goto out_free_ctrl; 2867 } 2868 } 2869 2870 if (opts->mask & NVMF_OPT_HOST_IFACE) { 2871 if (!__dev_get_by_name(&init_net, opts->host_iface)) { 2872 pr_err("invalid interface passed: %s\n", 2873 opts->host_iface); 2874 ret = -ENODEV; 2875 goto out_free_ctrl; 2876 } 2877 } 2878 2879 if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) { 2880 ret = -EALREADY; 2881 goto out_free_ctrl; 2882 } 2883 2884 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues), 2885 GFP_KERNEL); 2886 if (!ctrl->queues) { 2887 ret = -ENOMEM; 2888 goto out_free_ctrl; 2889 } 2890 2891 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0); 2892 if (ret) 2893 goto out_kfree_queues; 2894 2895 return ctrl; 2896 out_kfree_queues: 2897 kfree(ctrl->queues); 2898 out_free_ctrl: 2899 kfree(ctrl); 2900 return ERR_PTR(ret); 2901 } 2902 2903 static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev, 2904 struct nvmf_ctrl_options *opts) 2905 { 2906 struct nvme_tcp_ctrl *ctrl; 2907 int ret; 2908 2909 ctrl = nvme_tcp_alloc_ctrl(dev, opts); 2910 if (IS_ERR(ctrl)) 2911 return ERR_CAST(ctrl); 2912 2913 ret = nvme_add_ctrl(&ctrl->ctrl); 2914 if (ret) 2915 goto out_put_ctrl; 2916 2917 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) { 2918 WARN_ON_ONCE(1); 2919 ret = -EINTR; 2920 goto out_uninit_ctrl; 2921 } 2922 2923 ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true); 2924 if (ret) 2925 goto out_uninit_ctrl; 2926 2927 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp, hostnqn: %s\n", 2928 nvmf_ctrl_subsysnqn(&ctrl->ctrl), &ctrl->addr, opts->host->nqn); 2929 2930 mutex_lock(&nvme_tcp_ctrl_mutex); 2931 list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list); 2932 mutex_unlock(&nvme_tcp_ctrl_mutex); 2933 2934 return &ctrl->ctrl; 2935 2936 out_uninit_ctrl: 2937 nvme_uninit_ctrl(&ctrl->ctrl); 2938 out_put_ctrl: 2939 nvme_put_ctrl(&ctrl->ctrl); 2940 if (ret > 0) 2941 ret = -EIO; 2942 return ERR_PTR(ret); 2943 } 2944 2945 static struct nvmf_transport_ops nvme_tcp_transport = { 2946 .name = "tcp", 2947 .module = THIS_MODULE, 2948 .required_opts = NVMF_OPT_TRADDR, 2949 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY | 2950 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO | 2951 NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST | 2952 NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES | 2953 NVMF_OPT_TOS | NVMF_OPT_HOST_IFACE | NVMF_OPT_TLS | 2954 NVMF_OPT_KEYRING | NVMF_OPT_TLS_KEY, 2955 .create_ctrl = nvme_tcp_create_ctrl, 2956 }; 2957 2958 static int __init nvme_tcp_init_module(void) 2959 { 2960 unsigned int wq_flags = WQ_MEM_RECLAIM | WQ_HIGHPRI | WQ_SYSFS; 2961 int cpu; 2962 2963 BUILD_BUG_ON(sizeof(struct nvme_tcp_hdr) != 8); 2964 BUILD_BUG_ON(sizeof(struct nvme_tcp_cmd_pdu) != 72); 2965 BUILD_BUG_ON(sizeof(struct nvme_tcp_data_pdu) != 24); 2966 BUILD_BUG_ON(sizeof(struct nvme_tcp_rsp_pdu) != 24); 2967 BUILD_BUG_ON(sizeof(struct nvme_tcp_r2t_pdu) != 24); 2968 BUILD_BUG_ON(sizeof(struct nvme_tcp_icreq_pdu) != 128); 2969 BUILD_BUG_ON(sizeof(struct nvme_tcp_icresp_pdu) != 128); 2970 BUILD_BUG_ON(sizeof(struct nvme_tcp_term_pdu) != 24); 2971 2972 if (wq_unbound) 2973 wq_flags |= WQ_UNBOUND; 2974 2975 nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq", wq_flags, 0); 2976 if (!nvme_tcp_wq) 2977 return -ENOMEM; 2978 2979 for_each_possible_cpu(cpu) 2980 atomic_set(&nvme_tcp_cpu_queues[cpu], 0); 2981 2982 nvmf_register_transport(&nvme_tcp_transport); 2983 return 0; 2984 } 2985 2986 static void __exit nvme_tcp_cleanup_module(void) 2987 { 2988 struct nvme_tcp_ctrl *ctrl; 2989 2990 nvmf_unregister_transport(&nvme_tcp_transport); 2991 2992 mutex_lock(&nvme_tcp_ctrl_mutex); 2993 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) 2994 nvme_delete_ctrl(&ctrl->ctrl); 2995 mutex_unlock(&nvme_tcp_ctrl_mutex); 2996 flush_workqueue(nvme_delete_wq); 2997 2998 destroy_workqueue(nvme_tcp_wq); 2999 } 3000 3001 module_init(nvme_tcp_init_module); 3002 module_exit(nvme_tcp_cleanup_module); 3003 3004 MODULE_DESCRIPTION("NVMe host TCP transport driver"); 3005 MODULE_LICENSE("GPL v2"); 3006