1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * NVMe over Fabrics TCP host.
4 * Copyright (c) 2018 Lightbits Labs. All rights reserved.
5 */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/err.h>
11 #include <linux/crc32.h>
12 #include <linux/nvme-tcp.h>
13 #include <linux/nvme-keyring.h>
14 #include <net/sock.h>
15 #include <net/tcp.h>
16 #include <net/tls.h>
17 #include <net/tls_prot.h>
18 #include <net/handshake.h>
19 #include <linux/blk-mq.h>
20 #include <net/busy_poll.h>
21 #include <trace/events/sock.h>
22
23 #include "nvme.h"
24 #include "fabrics.h"
25
26 struct nvme_tcp_queue;
27
28 /* Define the socket priority to use for connections were it is desirable
29 * that the NIC consider performing optimized packet processing or filtering.
30 * A non-zero value being sufficient to indicate general consideration of any
31 * possible optimization. Making it a module param allows for alternative
32 * values that may be unique for some NIC implementations.
33 */
34 static int so_priority;
35 module_param(so_priority, int, 0644);
36 MODULE_PARM_DESC(so_priority, "nvme tcp socket optimize priority");
37
38 /*
39 * Use the unbound workqueue for nvme_tcp_wq, then we can set the cpu affinity
40 * from sysfs.
41 */
42 static bool wq_unbound;
43 module_param(wq_unbound, bool, 0644);
44 MODULE_PARM_DESC(wq_unbound, "Use unbound workqueue for nvme-tcp IO context (default false)");
45
46 /*
47 * TLS handshake timeout
48 */
49 static int tls_handshake_timeout = 10;
50 #ifdef CONFIG_NVME_TCP_TLS
51 module_param(tls_handshake_timeout, int, 0644);
52 MODULE_PARM_DESC(tls_handshake_timeout,
53 "nvme TLS handshake timeout in seconds (default 10)");
54 #endif
55
56 static atomic_t nvme_tcp_cpu_queues[NR_CPUS];
57
58 #ifdef CONFIG_DEBUG_LOCK_ALLOC
59 /* lockdep can detect a circular dependency of the form
60 * sk_lock -> mmap_lock (page fault) -> fs locks -> sk_lock
61 * because dependencies are tracked for both nvme-tcp and user contexts. Using
62 * a separate class prevents lockdep from conflating nvme-tcp socket use with
63 * user-space socket API use.
64 */
65 static struct lock_class_key nvme_tcp_sk_key[2];
66 static struct lock_class_key nvme_tcp_slock_key[2];
67
nvme_tcp_reclassify_socket(struct socket * sock)68 static void nvme_tcp_reclassify_socket(struct socket *sock)
69 {
70 struct sock *sk = sock->sk;
71
72 if (WARN_ON_ONCE(!sock_allow_reclassification(sk)))
73 return;
74
75 switch (sk->sk_family) {
76 case AF_INET:
77 sock_lock_init_class_and_name(sk, "slock-AF_INET-NVME",
78 &nvme_tcp_slock_key[0],
79 "sk_lock-AF_INET-NVME",
80 &nvme_tcp_sk_key[0]);
81 break;
82 case AF_INET6:
83 sock_lock_init_class_and_name(sk, "slock-AF_INET6-NVME",
84 &nvme_tcp_slock_key[1],
85 "sk_lock-AF_INET6-NVME",
86 &nvme_tcp_sk_key[1]);
87 break;
88 default:
89 WARN_ON_ONCE(1);
90 }
91 }
92 #else
nvme_tcp_reclassify_socket(struct socket * sock)93 static void nvme_tcp_reclassify_socket(struct socket *sock) { }
94 #endif
95
96 enum nvme_tcp_send_state {
97 NVME_TCP_SEND_CMD_PDU = 0,
98 NVME_TCP_SEND_H2C_PDU,
99 NVME_TCP_SEND_DATA,
100 NVME_TCP_SEND_DDGST,
101 };
102
103 struct nvme_tcp_request {
104 struct nvme_request req;
105 void *pdu;
106 struct nvme_tcp_queue *queue;
107 u32 data_len;
108 u32 pdu_len;
109 u32 pdu_sent;
110 u32 h2cdata_left;
111 u32 h2cdata_offset;
112 u16 ttag;
113 __le16 status;
114 struct list_head entry;
115 struct llist_node lentry;
116 __le32 ddgst;
117
118 struct bio *curr_bio;
119 struct iov_iter iter;
120
121 /* send state */
122 size_t offset;
123 size_t data_sent;
124 enum nvme_tcp_send_state state;
125 };
126
127 enum nvme_tcp_queue_flags {
128 NVME_TCP_Q_ALLOCATED = 0,
129 NVME_TCP_Q_LIVE = 1,
130 NVME_TCP_Q_POLLING = 2,
131 NVME_TCP_Q_IO_CPU_SET = 3,
132 };
133
134 enum nvme_tcp_recv_state {
135 NVME_TCP_RECV_PDU = 0,
136 NVME_TCP_RECV_DATA,
137 NVME_TCP_RECV_DDGST,
138 };
139
140 struct nvme_tcp_ctrl;
141 struct nvme_tcp_queue {
142 struct socket *sock;
143 struct work_struct io_work;
144 int io_cpu;
145
146 struct mutex queue_lock;
147 struct mutex send_mutex;
148 struct llist_head req_list;
149 struct list_head send_list;
150
151 /* recv state */
152 void *pdu;
153 int pdu_remaining;
154 int pdu_offset;
155 size_t data_remaining;
156 size_t ddgst_remaining;
157 unsigned int nr_cqe;
158
159 /* send state */
160 struct nvme_tcp_request *request;
161
162 u32 maxh2cdata;
163 size_t cmnd_capsule_len;
164 struct nvme_tcp_ctrl *ctrl;
165 unsigned long flags;
166 bool rd_enabled;
167
168 bool hdr_digest;
169 bool data_digest;
170 bool tls_enabled;
171 u32 rcv_crc;
172 u32 snd_crc;
173 __le32 exp_ddgst;
174 __le32 recv_ddgst;
175 struct completion tls_complete;
176 int tls_err;
177 struct page_frag_cache pf_cache;
178
179 void (*state_change)(struct sock *);
180 void (*data_ready)(struct sock *);
181 void (*write_space)(struct sock *);
182 };
183
184 struct nvme_tcp_ctrl {
185 /* read only in the hot path */
186 struct nvme_tcp_queue *queues;
187 struct blk_mq_tag_set tag_set;
188
189 /* other member variables */
190 struct list_head list;
191 struct blk_mq_tag_set admin_tag_set;
192 struct sockaddr_storage addr;
193 struct sockaddr_storage src_addr;
194 struct nvme_ctrl ctrl;
195
196 struct work_struct err_work;
197 struct delayed_work connect_work;
198 struct nvme_tcp_request async_req;
199 u32 io_queues[HCTX_MAX_TYPES];
200 };
201
202 static LIST_HEAD(nvme_tcp_ctrl_list);
203 static DEFINE_MUTEX(nvme_tcp_ctrl_mutex);
204 static struct workqueue_struct *nvme_tcp_wq;
205 static const struct blk_mq_ops nvme_tcp_mq_ops;
206 static const struct blk_mq_ops nvme_tcp_admin_mq_ops;
207 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue);
208
to_tcp_ctrl(struct nvme_ctrl * ctrl)209 static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl)
210 {
211 return container_of(ctrl, struct nvme_tcp_ctrl, ctrl);
212 }
213
nvme_tcp_queue_id(struct nvme_tcp_queue * queue)214 static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue)
215 {
216 return queue - queue->ctrl->queues;
217 }
218
nvme_tcp_recv_pdu_supported(enum nvme_tcp_pdu_type type)219 static inline bool nvme_tcp_recv_pdu_supported(enum nvme_tcp_pdu_type type)
220 {
221 switch (type) {
222 case nvme_tcp_c2h_term:
223 case nvme_tcp_c2h_data:
224 case nvme_tcp_r2t:
225 case nvme_tcp_rsp:
226 return true;
227 default:
228 return false;
229 }
230 }
231
232 /*
233 * Check if the queue is TLS encrypted
234 */
nvme_tcp_queue_tls(struct nvme_tcp_queue * queue)235 static inline bool nvme_tcp_queue_tls(struct nvme_tcp_queue *queue)
236 {
237 if (!IS_ENABLED(CONFIG_NVME_TCP_TLS))
238 return 0;
239
240 return queue->tls_enabled;
241 }
242
243 /*
244 * Check if TLS is configured for the controller.
245 */
nvme_tcp_tls_configured(struct nvme_ctrl * ctrl)246 static inline bool nvme_tcp_tls_configured(struct nvme_ctrl *ctrl)
247 {
248 if (!IS_ENABLED(CONFIG_NVME_TCP_TLS))
249 return 0;
250
251 return ctrl->opts->tls || ctrl->opts->concat;
252 }
253
nvme_tcp_tagset(struct nvme_tcp_queue * queue)254 static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue)
255 {
256 u32 queue_idx = nvme_tcp_queue_id(queue);
257
258 if (queue_idx == 0)
259 return queue->ctrl->admin_tag_set.tags[queue_idx];
260 return queue->ctrl->tag_set.tags[queue_idx - 1];
261 }
262
nvme_tcp_hdgst_len(struct nvme_tcp_queue * queue)263 static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue)
264 {
265 return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
266 }
267
nvme_tcp_ddgst_len(struct nvme_tcp_queue * queue)268 static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue)
269 {
270 return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
271 }
272
nvme_tcp_req_cmd_pdu(struct nvme_tcp_request * req)273 static inline void *nvme_tcp_req_cmd_pdu(struct nvme_tcp_request *req)
274 {
275 return req->pdu;
276 }
277
nvme_tcp_req_data_pdu(struct nvme_tcp_request * req)278 static inline void *nvme_tcp_req_data_pdu(struct nvme_tcp_request *req)
279 {
280 /* use the pdu space in the back for the data pdu */
281 return req->pdu + sizeof(struct nvme_tcp_cmd_pdu) -
282 sizeof(struct nvme_tcp_data_pdu);
283 }
284
nvme_tcp_inline_data_size(struct nvme_tcp_request * req)285 static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_request *req)
286 {
287 if (nvme_is_fabrics(req->req.cmd))
288 return NVME_TCP_ADMIN_CCSZ;
289 return req->queue->cmnd_capsule_len - sizeof(struct nvme_command);
290 }
291
nvme_tcp_async_req(struct nvme_tcp_request * req)292 static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req)
293 {
294 return req == &req->queue->ctrl->async_req;
295 }
296
nvme_tcp_has_inline_data(struct nvme_tcp_request * req)297 static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req)
298 {
299 struct request *rq;
300
301 if (unlikely(nvme_tcp_async_req(req)))
302 return false; /* async events don't have a request */
303
304 rq = blk_mq_rq_from_pdu(req);
305
306 return rq_data_dir(rq) == WRITE && req->data_len &&
307 req->data_len <= nvme_tcp_inline_data_size(req);
308 }
309
nvme_tcp_req_cur_page(struct nvme_tcp_request * req)310 static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req)
311 {
312 return req->iter.bvec->bv_page;
313 }
314
nvme_tcp_req_cur_offset(struct nvme_tcp_request * req)315 static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req)
316 {
317 return req->iter.bvec->bv_offset + req->iter.iov_offset;
318 }
319
nvme_tcp_req_cur_length(struct nvme_tcp_request * req)320 static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req)
321 {
322 return min_t(size_t, iov_iter_single_seg_count(&req->iter),
323 req->pdu_len - req->pdu_sent);
324 }
325
nvme_tcp_pdu_data_left(struct nvme_tcp_request * req)326 static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req)
327 {
328 return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ?
329 req->pdu_len - req->pdu_sent : 0;
330 }
331
nvme_tcp_pdu_last_send(struct nvme_tcp_request * req,int len)332 static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req,
333 int len)
334 {
335 return nvme_tcp_pdu_data_left(req) <= len;
336 }
337
nvme_tcp_init_iter(struct nvme_tcp_request * req,unsigned int dir)338 static void nvme_tcp_init_iter(struct nvme_tcp_request *req,
339 unsigned int dir)
340 {
341 struct request *rq = blk_mq_rq_from_pdu(req);
342 struct bio_vec *vec;
343 unsigned int size;
344 int nr_bvec;
345 size_t offset;
346
347 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) {
348 vec = &rq->special_vec;
349 nr_bvec = 1;
350 size = blk_rq_payload_bytes(rq);
351 offset = 0;
352 } else {
353 struct bio *bio = req->curr_bio;
354 struct bvec_iter bi;
355 struct bio_vec bv;
356
357 vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
358 nr_bvec = 0;
359 bio_for_each_bvec(bv, bio, bi) {
360 nr_bvec++;
361 }
362 size = bio->bi_iter.bi_size;
363 offset = bio->bi_iter.bi_bvec_done;
364 }
365
366 iov_iter_bvec(&req->iter, dir, vec, nr_bvec, size);
367 req->iter.iov_offset = offset;
368 }
369
nvme_tcp_advance_req(struct nvme_tcp_request * req,int len)370 static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req,
371 int len)
372 {
373 req->data_sent += len;
374 req->pdu_sent += len;
375 iov_iter_advance(&req->iter, len);
376 if (!iov_iter_count(&req->iter) &&
377 req->data_sent < req->data_len) {
378 req->curr_bio = req->curr_bio->bi_next;
379 nvme_tcp_init_iter(req, ITER_SOURCE);
380 }
381 }
382
nvme_tcp_send_all(struct nvme_tcp_queue * queue)383 static inline void nvme_tcp_send_all(struct nvme_tcp_queue *queue)
384 {
385 int ret;
386
387 /* drain the send queue as much as we can... */
388 do {
389 ret = nvme_tcp_try_send(queue);
390 } while (ret > 0);
391 }
392
nvme_tcp_queue_has_pending(struct nvme_tcp_queue * queue)393 static inline bool nvme_tcp_queue_has_pending(struct nvme_tcp_queue *queue)
394 {
395 return !list_empty(&queue->send_list) ||
396 !llist_empty(&queue->req_list);
397 }
398
nvme_tcp_queue_more(struct nvme_tcp_queue * queue)399 static inline bool nvme_tcp_queue_more(struct nvme_tcp_queue *queue)
400 {
401 return !nvme_tcp_queue_tls(queue) &&
402 nvme_tcp_queue_has_pending(queue);
403 }
404
nvme_tcp_queue_request(struct nvme_tcp_request * req,bool last)405 static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req,
406 bool last)
407 {
408 struct nvme_tcp_queue *queue = req->queue;
409 bool empty;
410
411 empty = llist_add(&req->lentry, &queue->req_list) &&
412 list_empty(&queue->send_list) && !queue->request;
413
414 /*
415 * if we're the first on the send_list and we can try to send
416 * directly, otherwise queue io_work. Also, only do that if we
417 * are on the same cpu, so we don't introduce contention.
418 */
419 if (queue->io_cpu == raw_smp_processor_id() &&
420 empty && mutex_trylock(&queue->send_mutex)) {
421 nvme_tcp_send_all(queue);
422 mutex_unlock(&queue->send_mutex);
423 }
424
425 if (last && nvme_tcp_queue_has_pending(queue))
426 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
427 }
428
nvme_tcp_process_req_list(struct nvme_tcp_queue * queue)429 static void nvme_tcp_process_req_list(struct nvme_tcp_queue *queue)
430 {
431 struct nvme_tcp_request *req;
432 struct llist_node *node;
433
434 for (node = llist_del_all(&queue->req_list); node; node = node->next) {
435 req = llist_entry(node, struct nvme_tcp_request, lentry);
436 list_add(&req->entry, &queue->send_list);
437 }
438 }
439
440 static inline struct nvme_tcp_request *
nvme_tcp_fetch_request(struct nvme_tcp_queue * queue)441 nvme_tcp_fetch_request(struct nvme_tcp_queue *queue)
442 {
443 struct nvme_tcp_request *req;
444
445 req = list_first_entry_or_null(&queue->send_list,
446 struct nvme_tcp_request, entry);
447 if (!req) {
448 nvme_tcp_process_req_list(queue);
449 req = list_first_entry_or_null(&queue->send_list,
450 struct nvme_tcp_request, entry);
451 if (unlikely(!req))
452 return NULL;
453 }
454
455 list_del_init(&req->entry);
456 init_llist_node(&req->lentry);
457 return req;
458 }
459
460 #define NVME_TCP_CRC_SEED (~0)
461
nvme_tcp_ddgst_update(u32 * crcp,struct page * page,size_t off,size_t len)462 static inline void nvme_tcp_ddgst_update(u32 *crcp,
463 struct page *page, size_t off, size_t len)
464 {
465 page += off / PAGE_SIZE;
466 off %= PAGE_SIZE;
467 while (len) {
468 const void *vaddr = kmap_local_page(page);
469 size_t n = min(len, (size_t)PAGE_SIZE - off);
470
471 *crcp = crc32c(*crcp, vaddr + off, n);
472 kunmap_local(vaddr);
473 page++;
474 off = 0;
475 len -= n;
476 }
477 }
478
nvme_tcp_ddgst_final(u32 crc)479 static inline __le32 nvme_tcp_ddgst_final(u32 crc)
480 {
481 return cpu_to_le32(~crc);
482 }
483
nvme_tcp_hdgst(const void * pdu,size_t len)484 static inline __le32 nvme_tcp_hdgst(const void *pdu, size_t len)
485 {
486 return cpu_to_le32(~crc32c(NVME_TCP_CRC_SEED, pdu, len));
487 }
488
nvme_tcp_set_hdgst(void * pdu,size_t len)489 static inline void nvme_tcp_set_hdgst(void *pdu, size_t len)
490 {
491 *(__le32 *)(pdu + len) = nvme_tcp_hdgst(pdu, len);
492 }
493
nvme_tcp_verify_hdgst(struct nvme_tcp_queue * queue,void * pdu,size_t pdu_len)494 static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue,
495 void *pdu, size_t pdu_len)
496 {
497 struct nvme_tcp_hdr *hdr = pdu;
498 __le32 recv_digest;
499 __le32 exp_digest;
500
501 if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
502 dev_err(queue->ctrl->ctrl.device,
503 "queue %d: header digest flag is cleared\n",
504 nvme_tcp_queue_id(queue));
505 return -EPROTO;
506 }
507
508 recv_digest = *(__le32 *)(pdu + hdr->hlen);
509 exp_digest = nvme_tcp_hdgst(pdu, pdu_len);
510 if (recv_digest != exp_digest) {
511 dev_err(queue->ctrl->ctrl.device,
512 "header digest error: recv %#x expected %#x\n",
513 le32_to_cpu(recv_digest), le32_to_cpu(exp_digest));
514 return -EIO;
515 }
516
517 return 0;
518 }
519
nvme_tcp_check_ddgst(struct nvme_tcp_queue * queue,void * pdu)520 static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu)
521 {
522 struct nvme_tcp_hdr *hdr = pdu;
523 u8 digest_len = nvme_tcp_hdgst_len(queue);
524 u32 len;
525
526 len = le32_to_cpu(hdr->plen) - hdr->hlen -
527 ((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0);
528
529 if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
530 dev_err(queue->ctrl->ctrl.device,
531 "queue %d: data digest flag is cleared\n",
532 nvme_tcp_queue_id(queue));
533 return -EPROTO;
534 }
535 queue->rcv_crc = NVME_TCP_CRC_SEED;
536
537 return 0;
538 }
539
nvme_tcp_exit_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx)540 static void nvme_tcp_exit_request(struct blk_mq_tag_set *set,
541 struct request *rq, unsigned int hctx_idx)
542 {
543 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
544
545 page_frag_free(req->pdu);
546 }
547
nvme_tcp_init_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx,unsigned int numa_node)548 static int nvme_tcp_init_request(struct blk_mq_tag_set *set,
549 struct request *rq, unsigned int hctx_idx,
550 unsigned int numa_node)
551 {
552 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(set->driver_data);
553 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
554 struct nvme_tcp_cmd_pdu *pdu;
555 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
556 struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx];
557 u8 hdgst = nvme_tcp_hdgst_len(queue);
558
559 req->pdu = page_frag_alloc(&queue->pf_cache,
560 sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
561 GFP_KERNEL | __GFP_ZERO);
562 if (!req->pdu)
563 return -ENOMEM;
564
565 pdu = req->pdu;
566 req->queue = queue;
567 nvme_req(rq)->ctrl = &ctrl->ctrl;
568 nvme_req(rq)->cmd = &pdu->cmd;
569 init_llist_node(&req->lentry);
570 INIT_LIST_HEAD(&req->entry);
571
572 return 0;
573 }
574
nvme_tcp_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)575 static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
576 unsigned int hctx_idx)
577 {
578 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(data);
579 struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1];
580
581 hctx->driver_data = queue;
582 return 0;
583 }
584
nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)585 static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
586 unsigned int hctx_idx)
587 {
588 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(data);
589 struct nvme_tcp_queue *queue = &ctrl->queues[0];
590
591 hctx->driver_data = queue;
592 return 0;
593 }
594
595 static enum nvme_tcp_recv_state
nvme_tcp_recv_state(struct nvme_tcp_queue * queue)596 nvme_tcp_recv_state(struct nvme_tcp_queue *queue)
597 {
598 return (queue->pdu_remaining) ? NVME_TCP_RECV_PDU :
599 (queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST :
600 NVME_TCP_RECV_DATA;
601 }
602
nvme_tcp_init_recv_ctx(struct nvme_tcp_queue * queue)603 static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue)
604 {
605 queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) +
606 nvme_tcp_hdgst_len(queue);
607 queue->pdu_offset = 0;
608 queue->data_remaining = -1;
609 queue->ddgst_remaining = 0;
610 }
611
nvme_tcp_error_recovery(struct nvme_ctrl * ctrl)612 static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl)
613 {
614 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
615 return;
616
617 dev_warn(ctrl->device, "starting error recovery\n");
618 queue_work(nvme_reset_wq, &to_tcp_ctrl(ctrl)->err_work);
619 }
620
nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue * queue,struct nvme_completion * cqe)621 static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue,
622 struct nvme_completion *cqe)
623 {
624 struct nvme_tcp_request *req;
625 struct request *rq;
626
627 rq = nvme_find_rq(nvme_tcp_tagset(queue), cqe->command_id);
628 if (!rq) {
629 dev_err(queue->ctrl->ctrl.device,
630 "got bad cqe.command_id %#x on queue %d\n",
631 cqe->command_id, nvme_tcp_queue_id(queue));
632 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
633 return -EINVAL;
634 }
635
636 req = blk_mq_rq_to_pdu(rq);
637 if (req->status == cpu_to_le16(NVME_SC_SUCCESS))
638 req->status = cqe->status;
639
640 if (!nvme_try_complete_req(rq, req->status, cqe->result))
641 nvme_complete_rq(rq);
642 queue->nr_cqe++;
643
644 return 0;
645 }
646
nvme_tcp_handle_c2h_data(struct nvme_tcp_queue * queue,struct nvme_tcp_data_pdu * pdu)647 static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue,
648 struct nvme_tcp_data_pdu *pdu)
649 {
650 struct request *rq;
651
652 rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id);
653 if (!rq) {
654 dev_err(queue->ctrl->ctrl.device,
655 "got bad c2hdata.command_id %#x on queue %d\n",
656 pdu->command_id, nvme_tcp_queue_id(queue));
657 return -ENOENT;
658 }
659
660 if (!blk_rq_payload_bytes(rq)) {
661 dev_err(queue->ctrl->ctrl.device,
662 "queue %d tag %#x unexpected data\n",
663 nvme_tcp_queue_id(queue), rq->tag);
664 return -EIO;
665 }
666
667 queue->data_remaining = le32_to_cpu(pdu->data_length);
668
669 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS &&
670 unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) {
671 dev_err(queue->ctrl->ctrl.device,
672 "queue %d tag %#x SUCCESS set but not last PDU\n",
673 nvme_tcp_queue_id(queue), rq->tag);
674 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
675 return -EPROTO;
676 }
677
678 return 0;
679 }
680
nvme_tcp_handle_comp(struct nvme_tcp_queue * queue,struct nvme_tcp_rsp_pdu * pdu)681 static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue,
682 struct nvme_tcp_rsp_pdu *pdu)
683 {
684 struct nvme_completion *cqe = &pdu->cqe;
685 int ret = 0;
686
687 /*
688 * AEN requests are special as they don't time out and can
689 * survive any kind of queue freeze and often don't respond to
690 * aborts. We don't even bother to allocate a struct request
691 * for them but rather special case them here.
692 */
693 if (unlikely(nvme_is_aen_req(nvme_tcp_queue_id(queue),
694 cqe->command_id)))
695 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
696 &cqe->result);
697 else
698 ret = nvme_tcp_process_nvme_cqe(queue, cqe);
699
700 return ret;
701 }
702
nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request * req)703 static void nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req)
704 {
705 struct nvme_tcp_data_pdu *data = nvme_tcp_req_data_pdu(req);
706 struct nvme_tcp_queue *queue = req->queue;
707 struct request *rq = blk_mq_rq_from_pdu(req);
708 u32 h2cdata_sent = req->pdu_len;
709 u8 hdgst = nvme_tcp_hdgst_len(queue);
710 u8 ddgst = nvme_tcp_ddgst_len(queue);
711
712 req->state = NVME_TCP_SEND_H2C_PDU;
713 req->offset = 0;
714 req->pdu_len = min(req->h2cdata_left, queue->maxh2cdata);
715 req->pdu_sent = 0;
716 req->h2cdata_left -= req->pdu_len;
717 req->h2cdata_offset += h2cdata_sent;
718
719 memset(data, 0, sizeof(*data));
720 data->hdr.type = nvme_tcp_h2c_data;
721 if (!req->h2cdata_left)
722 data->hdr.flags = NVME_TCP_F_DATA_LAST;
723 if (queue->hdr_digest)
724 data->hdr.flags |= NVME_TCP_F_HDGST;
725 if (queue->data_digest)
726 data->hdr.flags |= NVME_TCP_F_DDGST;
727 data->hdr.hlen = sizeof(*data);
728 data->hdr.pdo = data->hdr.hlen + hdgst;
729 data->hdr.plen =
730 cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst);
731 data->ttag = req->ttag;
732 data->command_id = nvme_cid(rq);
733 data->data_offset = cpu_to_le32(req->h2cdata_offset);
734 data->data_length = cpu_to_le32(req->pdu_len);
735 }
736
nvme_tcp_handle_r2t(struct nvme_tcp_queue * queue,struct nvme_tcp_r2t_pdu * pdu)737 static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue,
738 struct nvme_tcp_r2t_pdu *pdu)
739 {
740 struct nvme_tcp_request *req;
741 struct request *rq;
742 u32 r2t_length = le32_to_cpu(pdu->r2t_length);
743 u32 r2t_offset = le32_to_cpu(pdu->r2t_offset);
744
745 rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id);
746 if (!rq) {
747 dev_err(queue->ctrl->ctrl.device,
748 "got bad r2t.command_id %#x on queue %d\n",
749 pdu->command_id, nvme_tcp_queue_id(queue));
750 return -ENOENT;
751 }
752 req = blk_mq_rq_to_pdu(rq);
753
754 if (unlikely(!r2t_length)) {
755 dev_err(queue->ctrl->ctrl.device,
756 "req %d r2t len is %u, probably a bug...\n",
757 rq->tag, r2t_length);
758 return -EPROTO;
759 }
760
761 if (unlikely(req->data_sent + r2t_length > req->data_len)) {
762 dev_err(queue->ctrl->ctrl.device,
763 "req %d r2t len %u exceeded data len %u (%zu sent)\n",
764 rq->tag, r2t_length, req->data_len, req->data_sent);
765 return -EPROTO;
766 }
767
768 if (unlikely(r2t_offset < req->data_sent)) {
769 dev_err(queue->ctrl->ctrl.device,
770 "req %d unexpected r2t offset %u (expected %zu)\n",
771 rq->tag, r2t_offset, req->data_sent);
772 return -EPROTO;
773 }
774
775 if (llist_on_list(&req->lentry) ||
776 !list_empty(&req->entry)) {
777 dev_err(queue->ctrl->ctrl.device,
778 "req %d unexpected r2t while processing request\n",
779 rq->tag);
780 return -EPROTO;
781 }
782
783 req->pdu_len = 0;
784 req->h2cdata_left = r2t_length;
785 req->h2cdata_offset = r2t_offset;
786 req->ttag = pdu->ttag;
787
788 nvme_tcp_setup_h2c_data_pdu(req);
789
790 llist_add(&req->lentry, &queue->req_list);
791 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
792
793 return 0;
794 }
795
nvme_tcp_handle_c2h_term(struct nvme_tcp_queue * queue,struct nvme_tcp_term_pdu * pdu)796 static void nvme_tcp_handle_c2h_term(struct nvme_tcp_queue *queue,
797 struct nvme_tcp_term_pdu *pdu)
798 {
799 u16 fes;
800 const char *msg;
801 u32 plen = le32_to_cpu(pdu->hdr.plen);
802
803 static const char * const msg_table[] = {
804 [NVME_TCP_FES_INVALID_PDU_HDR] = "Invalid PDU Header Field",
805 [NVME_TCP_FES_PDU_SEQ_ERR] = "PDU Sequence Error",
806 [NVME_TCP_FES_HDR_DIGEST_ERR] = "Header Digest Error",
807 [NVME_TCP_FES_DATA_OUT_OF_RANGE] = "Data Transfer Out Of Range",
808 [NVME_TCP_FES_DATA_LIMIT_EXCEEDED] = "Data Transfer Limit Exceeded",
809 [NVME_TCP_FES_UNSUPPORTED_PARAM] = "Unsupported Parameter",
810 };
811
812 if (plen < NVME_TCP_MIN_C2HTERM_PLEN ||
813 plen > NVME_TCP_MAX_C2HTERM_PLEN) {
814 dev_err(queue->ctrl->ctrl.device,
815 "Received a malformed C2HTermReq PDU (plen = %u)\n",
816 plen);
817 return;
818 }
819
820 fes = le16_to_cpu(pdu->fes);
821 if (fes && fes < ARRAY_SIZE(msg_table))
822 msg = msg_table[fes];
823 else
824 msg = "Unknown";
825
826 dev_err(queue->ctrl->ctrl.device,
827 "Received C2HTermReq (FES = %s)\n", msg);
828 }
829
nvme_tcp_recv_pdu(struct nvme_tcp_queue * queue,struct sk_buff * skb,unsigned int * offset,size_t * len)830 static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb,
831 unsigned int *offset, size_t *len)
832 {
833 struct nvme_tcp_hdr *hdr;
834 char *pdu = queue->pdu;
835 size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining);
836 int ret;
837
838 ret = skb_copy_bits(skb, *offset,
839 &pdu[queue->pdu_offset], rcv_len);
840 if (unlikely(ret))
841 return ret;
842
843 queue->pdu_remaining -= rcv_len;
844 queue->pdu_offset += rcv_len;
845 *offset += rcv_len;
846 *len -= rcv_len;
847 if (queue->pdu_remaining)
848 return 0;
849
850 hdr = queue->pdu;
851 if (unlikely(hdr->hlen != sizeof(struct nvme_tcp_rsp_pdu))) {
852 if (!nvme_tcp_recv_pdu_supported(hdr->type))
853 goto unsupported_pdu;
854
855 dev_err(queue->ctrl->ctrl.device,
856 "pdu type %d has unexpected header length (%d)\n",
857 hdr->type, hdr->hlen);
858 return -EPROTO;
859 }
860
861 if (unlikely(hdr->type == nvme_tcp_c2h_term)) {
862 /*
863 * C2HTermReq never includes Header or Data digests.
864 * Skip the checks.
865 */
866 nvme_tcp_handle_c2h_term(queue, (void *)queue->pdu);
867 return -EINVAL;
868 }
869
870 if (queue->hdr_digest) {
871 ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen);
872 if (unlikely(ret))
873 return ret;
874 }
875
876
877 if (queue->data_digest) {
878 ret = nvme_tcp_check_ddgst(queue, queue->pdu);
879 if (unlikely(ret))
880 return ret;
881 }
882
883 switch (hdr->type) {
884 case nvme_tcp_c2h_data:
885 return nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu);
886 case nvme_tcp_rsp:
887 nvme_tcp_init_recv_ctx(queue);
888 return nvme_tcp_handle_comp(queue, (void *)queue->pdu);
889 case nvme_tcp_r2t:
890 nvme_tcp_init_recv_ctx(queue);
891 return nvme_tcp_handle_r2t(queue, (void *)queue->pdu);
892 default:
893 goto unsupported_pdu;
894 }
895
896 unsupported_pdu:
897 dev_err(queue->ctrl->ctrl.device,
898 "unsupported pdu type (%d)\n", hdr->type);
899 return -EINVAL;
900 }
901
nvme_tcp_end_request(struct request * rq,u16 status)902 static inline void nvme_tcp_end_request(struct request *rq, u16 status)
903 {
904 union nvme_result res = {};
905
906 if (!nvme_try_complete_req(rq, cpu_to_le16(status << 1), res))
907 nvme_complete_rq(rq);
908 }
909
nvme_tcp_recv_data(struct nvme_tcp_queue * queue,struct sk_buff * skb,unsigned int * offset,size_t * len)910 static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb,
911 unsigned int *offset, size_t *len)
912 {
913 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
914 struct request *rq =
915 nvme_cid_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
916 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
917
918 while (true) {
919 int recv_len, ret;
920
921 recv_len = min_t(size_t, *len, queue->data_remaining);
922 if (!recv_len)
923 break;
924
925 if (!iov_iter_count(&req->iter)) {
926 req->curr_bio = req->curr_bio->bi_next;
927
928 /*
929 * If we don`t have any bios it means that controller
930 * sent more data than we requested, hence error
931 */
932 if (!req->curr_bio) {
933 dev_err(queue->ctrl->ctrl.device,
934 "queue %d no space in request %#x",
935 nvme_tcp_queue_id(queue), rq->tag);
936 nvme_tcp_init_recv_ctx(queue);
937 return -EIO;
938 }
939 nvme_tcp_init_iter(req, ITER_DEST);
940 }
941
942 /* we can read only from what is left in this bio */
943 recv_len = min_t(size_t, recv_len,
944 iov_iter_count(&req->iter));
945
946 if (queue->data_digest)
947 ret = skb_copy_and_crc32c_datagram_iter(skb, *offset,
948 &req->iter, recv_len, &queue->rcv_crc);
949 else
950 ret = skb_copy_datagram_iter(skb, *offset,
951 &req->iter, recv_len);
952 if (ret) {
953 dev_err(queue->ctrl->ctrl.device,
954 "queue %d failed to copy request %#x data",
955 nvme_tcp_queue_id(queue), rq->tag);
956 return ret;
957 }
958
959 *len -= recv_len;
960 *offset += recv_len;
961 queue->data_remaining -= recv_len;
962 }
963
964 if (!queue->data_remaining) {
965 if (queue->data_digest) {
966 queue->exp_ddgst = nvme_tcp_ddgst_final(queue->rcv_crc);
967 queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH;
968 } else {
969 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
970 nvme_tcp_end_request(rq,
971 le16_to_cpu(req->status));
972 queue->nr_cqe++;
973 }
974 nvme_tcp_init_recv_ctx(queue);
975 }
976 }
977
978 return 0;
979 }
980
nvme_tcp_recv_ddgst(struct nvme_tcp_queue * queue,struct sk_buff * skb,unsigned int * offset,size_t * len)981 static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue,
982 struct sk_buff *skb, unsigned int *offset, size_t *len)
983 {
984 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
985 char *ddgst = (char *)&queue->recv_ddgst;
986 size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining);
987 off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining;
988 int ret;
989
990 ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len);
991 if (unlikely(ret))
992 return ret;
993
994 queue->ddgst_remaining -= recv_len;
995 *offset += recv_len;
996 *len -= recv_len;
997 if (queue->ddgst_remaining)
998 return 0;
999
1000 if (queue->recv_ddgst != queue->exp_ddgst) {
1001 struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue),
1002 pdu->command_id);
1003 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
1004
1005 req->status = cpu_to_le16(NVME_SC_DATA_XFER_ERROR);
1006
1007 dev_err(queue->ctrl->ctrl.device,
1008 "data digest error: recv %#x expected %#x\n",
1009 le32_to_cpu(queue->recv_ddgst),
1010 le32_to_cpu(queue->exp_ddgst));
1011 }
1012
1013 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
1014 struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue),
1015 pdu->command_id);
1016 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
1017
1018 nvme_tcp_end_request(rq, le16_to_cpu(req->status));
1019 queue->nr_cqe++;
1020 }
1021
1022 nvme_tcp_init_recv_ctx(queue);
1023 return 0;
1024 }
1025
nvme_tcp_recv_skb(read_descriptor_t * desc,struct sk_buff * skb,unsigned int offset,size_t len)1026 static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb,
1027 unsigned int offset, size_t len)
1028 {
1029 struct nvme_tcp_queue *queue = desc->arg.data;
1030 size_t consumed = len;
1031 int result;
1032
1033 if (unlikely(!queue->rd_enabled))
1034 return -EFAULT;
1035
1036 while (len) {
1037 switch (nvme_tcp_recv_state(queue)) {
1038 case NVME_TCP_RECV_PDU:
1039 result = nvme_tcp_recv_pdu(queue, skb, &offset, &len);
1040 break;
1041 case NVME_TCP_RECV_DATA:
1042 result = nvme_tcp_recv_data(queue, skb, &offset, &len);
1043 break;
1044 case NVME_TCP_RECV_DDGST:
1045 result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len);
1046 break;
1047 default:
1048 result = -EFAULT;
1049 }
1050 if (result) {
1051 dev_err(queue->ctrl->ctrl.device,
1052 "receive failed: %d\n", result);
1053 queue->rd_enabled = false;
1054 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
1055 return result;
1056 }
1057 }
1058
1059 return consumed;
1060 }
1061
nvme_tcp_data_ready(struct sock * sk)1062 static void nvme_tcp_data_ready(struct sock *sk)
1063 {
1064 struct nvme_tcp_queue *queue;
1065
1066 trace_sk_data_ready(sk);
1067
1068 read_lock_bh(&sk->sk_callback_lock);
1069 queue = sk->sk_user_data;
1070 if (likely(queue && queue->rd_enabled) &&
1071 !test_bit(NVME_TCP_Q_POLLING, &queue->flags))
1072 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
1073 read_unlock_bh(&sk->sk_callback_lock);
1074 }
1075
nvme_tcp_write_space(struct sock * sk)1076 static void nvme_tcp_write_space(struct sock *sk)
1077 {
1078 struct nvme_tcp_queue *queue;
1079
1080 read_lock_bh(&sk->sk_callback_lock);
1081 queue = sk->sk_user_data;
1082 if (likely(queue && sk_stream_is_writeable(sk))) {
1083 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1084 /* Ensure pending TLS partial records are retried */
1085 if (nvme_tcp_queue_tls(queue))
1086 queue->write_space(sk);
1087 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
1088 }
1089 read_unlock_bh(&sk->sk_callback_lock);
1090 }
1091
nvme_tcp_state_change(struct sock * sk)1092 static void nvme_tcp_state_change(struct sock *sk)
1093 {
1094 struct nvme_tcp_queue *queue;
1095
1096 read_lock_bh(&sk->sk_callback_lock);
1097 queue = sk->sk_user_data;
1098 if (!queue)
1099 goto done;
1100
1101 switch (sk->sk_state) {
1102 case TCP_CLOSE:
1103 case TCP_CLOSE_WAIT:
1104 case TCP_LAST_ACK:
1105 case TCP_FIN_WAIT1:
1106 case TCP_FIN_WAIT2:
1107 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
1108 break;
1109 default:
1110 dev_info(queue->ctrl->ctrl.device,
1111 "queue %d socket state %d\n",
1112 nvme_tcp_queue_id(queue), sk->sk_state);
1113 }
1114
1115 queue->state_change(sk);
1116 done:
1117 read_unlock_bh(&sk->sk_callback_lock);
1118 }
1119
nvme_tcp_done_send_req(struct nvme_tcp_queue * queue)1120 static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue)
1121 {
1122 queue->request = NULL;
1123 }
1124
nvme_tcp_fail_request(struct nvme_tcp_request * req)1125 static void nvme_tcp_fail_request(struct nvme_tcp_request *req)
1126 {
1127 if (nvme_tcp_async_req(req)) {
1128 union nvme_result res = {};
1129
1130 nvme_complete_async_event(&req->queue->ctrl->ctrl,
1131 cpu_to_le16(NVME_SC_HOST_PATH_ERROR), &res);
1132 } else {
1133 nvme_tcp_end_request(blk_mq_rq_from_pdu(req),
1134 NVME_SC_HOST_PATH_ERROR);
1135 }
1136 }
1137
nvme_tcp_try_send_data(struct nvme_tcp_request * req)1138 static int nvme_tcp_try_send_data(struct nvme_tcp_request *req)
1139 {
1140 struct nvme_tcp_queue *queue = req->queue;
1141 int req_data_len = req->data_len;
1142 u32 h2cdata_left = req->h2cdata_left;
1143
1144 while (true) {
1145 struct bio_vec bvec;
1146 struct msghdr msg = {
1147 .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES,
1148 };
1149 struct page *page = nvme_tcp_req_cur_page(req);
1150 size_t offset = nvme_tcp_req_cur_offset(req);
1151 size_t len = nvme_tcp_req_cur_length(req);
1152 bool last = nvme_tcp_pdu_last_send(req, len);
1153 int req_data_sent = req->data_sent;
1154 int ret;
1155
1156 if (last && !queue->data_digest && !nvme_tcp_queue_more(queue))
1157 msg.msg_flags |= MSG_EOR;
1158 else
1159 msg.msg_flags |= MSG_MORE;
1160
1161 if (!sendpages_ok(page, len, offset))
1162 msg.msg_flags &= ~MSG_SPLICE_PAGES;
1163
1164 bvec_set_page(&bvec, page, len, offset);
1165 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len);
1166 ret = sock_sendmsg(queue->sock, &msg);
1167 if (ret <= 0)
1168 return ret;
1169
1170 if (queue->data_digest)
1171 nvme_tcp_ddgst_update(&queue->snd_crc, page,
1172 offset, ret);
1173
1174 /*
1175 * update the request iterator except for the last payload send
1176 * in the request where we don't want to modify it as we may
1177 * compete with the RX path completing the request.
1178 */
1179 if (req_data_sent + ret < req_data_len)
1180 nvme_tcp_advance_req(req, ret);
1181
1182 /* fully successful last send in current PDU */
1183 if (last && ret == len) {
1184 if (queue->data_digest) {
1185 req->ddgst =
1186 nvme_tcp_ddgst_final(queue->snd_crc);
1187 req->state = NVME_TCP_SEND_DDGST;
1188 req->offset = 0;
1189 } else {
1190 if (h2cdata_left)
1191 nvme_tcp_setup_h2c_data_pdu(req);
1192 else
1193 nvme_tcp_done_send_req(queue);
1194 }
1195 return 1;
1196 }
1197 }
1198 return -EAGAIN;
1199 }
1200
nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request * req)1201 static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req)
1202 {
1203 struct nvme_tcp_queue *queue = req->queue;
1204 struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req);
1205 struct bio_vec bvec;
1206 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, };
1207 bool inline_data = nvme_tcp_has_inline_data(req);
1208 u8 hdgst = nvme_tcp_hdgst_len(queue);
1209 int len = sizeof(*pdu) + hdgst - req->offset;
1210 int ret;
1211
1212 if (inline_data || nvme_tcp_queue_more(queue))
1213 msg.msg_flags |= MSG_MORE;
1214 else
1215 msg.msg_flags |= MSG_EOR;
1216
1217 if (queue->hdr_digest && !req->offset)
1218 nvme_tcp_set_hdgst(pdu, sizeof(*pdu));
1219
1220 bvec_set_virt(&bvec, (void *)pdu + req->offset, len);
1221 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len);
1222 ret = sock_sendmsg(queue->sock, &msg);
1223 if (unlikely(ret <= 0))
1224 return ret;
1225
1226 len -= ret;
1227 if (!len) {
1228 if (inline_data) {
1229 req->state = NVME_TCP_SEND_DATA;
1230 if (queue->data_digest)
1231 queue->snd_crc = NVME_TCP_CRC_SEED;
1232 } else {
1233 nvme_tcp_done_send_req(queue);
1234 }
1235 return 1;
1236 }
1237 req->offset += ret;
1238
1239 return -EAGAIN;
1240 }
1241
nvme_tcp_try_send_data_pdu(struct nvme_tcp_request * req)1242 static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req)
1243 {
1244 struct nvme_tcp_queue *queue = req->queue;
1245 struct nvme_tcp_data_pdu *pdu = nvme_tcp_req_data_pdu(req);
1246 struct bio_vec bvec;
1247 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_MORE, };
1248 u8 hdgst = nvme_tcp_hdgst_len(queue);
1249 int len = sizeof(*pdu) - req->offset + hdgst;
1250 int ret;
1251
1252 if (queue->hdr_digest && !req->offset)
1253 nvme_tcp_set_hdgst(pdu, sizeof(*pdu));
1254
1255 if (!req->h2cdata_left)
1256 msg.msg_flags |= MSG_SPLICE_PAGES;
1257
1258 bvec_set_virt(&bvec, (void *)pdu + req->offset, len);
1259 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len);
1260 ret = sock_sendmsg(queue->sock, &msg);
1261 if (unlikely(ret <= 0))
1262 return ret;
1263
1264 len -= ret;
1265 if (!len) {
1266 req->state = NVME_TCP_SEND_DATA;
1267 if (queue->data_digest)
1268 queue->snd_crc = NVME_TCP_CRC_SEED;
1269 return 1;
1270 }
1271 req->offset += ret;
1272
1273 return -EAGAIN;
1274 }
1275
nvme_tcp_try_send_ddgst(struct nvme_tcp_request * req)1276 static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req)
1277 {
1278 struct nvme_tcp_queue *queue = req->queue;
1279 size_t offset = req->offset;
1280 u32 h2cdata_left = req->h2cdata_left;
1281 int ret;
1282 struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1283 struct kvec iov = {
1284 .iov_base = (u8 *)&req->ddgst + req->offset,
1285 .iov_len = NVME_TCP_DIGEST_LENGTH - req->offset
1286 };
1287
1288 if (nvme_tcp_queue_more(queue))
1289 msg.msg_flags |= MSG_MORE;
1290 else
1291 msg.msg_flags |= MSG_EOR;
1292
1293 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1294 if (unlikely(ret <= 0))
1295 return ret;
1296
1297 if (offset + ret == NVME_TCP_DIGEST_LENGTH) {
1298 if (h2cdata_left)
1299 nvme_tcp_setup_h2c_data_pdu(req);
1300 else
1301 nvme_tcp_done_send_req(queue);
1302 return 1;
1303 }
1304
1305 req->offset += ret;
1306 return -EAGAIN;
1307 }
1308
nvme_tcp_try_send(struct nvme_tcp_queue * queue)1309 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue)
1310 {
1311 struct nvme_tcp_request *req;
1312 unsigned int noreclaim_flag;
1313 int ret = 1;
1314
1315 if (!queue->request) {
1316 queue->request = nvme_tcp_fetch_request(queue);
1317 if (!queue->request)
1318 return 0;
1319 }
1320 req = queue->request;
1321
1322 noreclaim_flag = memalloc_noreclaim_save();
1323 if (req->state == NVME_TCP_SEND_CMD_PDU) {
1324 ret = nvme_tcp_try_send_cmd_pdu(req);
1325 if (ret <= 0)
1326 goto done;
1327 if (!nvme_tcp_has_inline_data(req))
1328 goto out;
1329 }
1330
1331 if (req->state == NVME_TCP_SEND_H2C_PDU) {
1332 ret = nvme_tcp_try_send_data_pdu(req);
1333 if (ret <= 0)
1334 goto done;
1335 }
1336
1337 if (req->state == NVME_TCP_SEND_DATA) {
1338 ret = nvme_tcp_try_send_data(req);
1339 if (ret <= 0)
1340 goto done;
1341 }
1342
1343 if (req->state == NVME_TCP_SEND_DDGST)
1344 ret = nvme_tcp_try_send_ddgst(req);
1345 done:
1346 if (ret == -EAGAIN) {
1347 ret = 0;
1348 } else if (ret < 0) {
1349 dev_err(queue->ctrl->ctrl.device,
1350 "failed to send request %d\n", ret);
1351 nvme_tcp_fail_request(queue->request);
1352 nvme_tcp_done_send_req(queue);
1353 }
1354 out:
1355 memalloc_noreclaim_restore(noreclaim_flag);
1356 return ret;
1357 }
1358
nvme_tcp_try_recv(struct nvme_tcp_queue * queue)1359 static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue)
1360 {
1361 struct socket *sock = queue->sock;
1362 struct sock *sk = sock->sk;
1363 read_descriptor_t rd_desc;
1364 int consumed;
1365
1366 rd_desc.arg.data = queue;
1367 rd_desc.count = 1;
1368 lock_sock(sk);
1369 queue->nr_cqe = 0;
1370 consumed = sock->ops->read_sock(sk, &rd_desc, nvme_tcp_recv_skb);
1371 release_sock(sk);
1372 return consumed == -EAGAIN ? 0 : consumed;
1373 }
1374
nvme_tcp_io_work(struct work_struct * w)1375 static void nvme_tcp_io_work(struct work_struct *w)
1376 {
1377 struct nvme_tcp_queue *queue =
1378 container_of(w, struct nvme_tcp_queue, io_work);
1379 unsigned long deadline = jiffies + msecs_to_jiffies(1);
1380
1381 do {
1382 bool pending = false;
1383 int result;
1384
1385 if (mutex_trylock(&queue->send_mutex)) {
1386 result = nvme_tcp_try_send(queue);
1387 mutex_unlock(&queue->send_mutex);
1388 if (result > 0)
1389 pending = true;
1390 else if (unlikely(result < 0))
1391 break;
1392 }
1393
1394 result = nvme_tcp_try_recv(queue);
1395 if (result > 0)
1396 pending = true;
1397 else if (unlikely(result < 0))
1398 return;
1399
1400 /* did we get some space after spending time in recv? */
1401 if (nvme_tcp_queue_has_pending(queue) &&
1402 sk_stream_is_writeable(queue->sock->sk))
1403 pending = true;
1404
1405 if (!pending || !queue->rd_enabled)
1406 return;
1407
1408 } while (!time_after(jiffies, deadline)); /* quota is exhausted */
1409
1410 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
1411 }
1412
nvme_tcp_free_async_req(struct nvme_tcp_ctrl * ctrl)1413 static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl)
1414 {
1415 struct nvme_tcp_request *async = &ctrl->async_req;
1416
1417 page_frag_free(async->pdu);
1418 }
1419
nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl * ctrl)1420 static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl)
1421 {
1422 struct nvme_tcp_queue *queue = &ctrl->queues[0];
1423 struct nvme_tcp_request *async = &ctrl->async_req;
1424 u8 hdgst = nvme_tcp_hdgst_len(queue);
1425
1426 async->pdu = page_frag_alloc(&queue->pf_cache,
1427 sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
1428 GFP_KERNEL | __GFP_ZERO);
1429 if (!async->pdu)
1430 return -ENOMEM;
1431
1432 async->queue = &ctrl->queues[0];
1433 return 0;
1434 }
1435
nvme_tcp_free_queue(struct nvme_ctrl * nctrl,int qid)1436 static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid)
1437 {
1438 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1439 struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1440 unsigned int noreclaim_flag;
1441
1442 if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1443 return;
1444
1445 page_frag_cache_drain(&queue->pf_cache);
1446
1447 noreclaim_flag = memalloc_noreclaim_save();
1448 /* ->sock will be released by fput() */
1449 fput(queue->sock->file);
1450 queue->sock = NULL;
1451 memalloc_noreclaim_restore(noreclaim_flag);
1452
1453 kfree(queue->pdu);
1454 mutex_destroy(&queue->send_mutex);
1455 mutex_destroy(&queue->queue_lock);
1456 }
1457
nvme_tcp_init_connection(struct nvme_tcp_queue * queue)1458 static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue)
1459 {
1460 struct nvme_tcp_icreq_pdu *icreq;
1461 struct nvme_tcp_icresp_pdu *icresp;
1462 char cbuf[CMSG_LEN(sizeof(char))] = {};
1463 u8 ctype;
1464 struct msghdr msg = {};
1465 struct kvec iov;
1466 bool ctrl_hdgst, ctrl_ddgst;
1467 u32 maxh2cdata;
1468 int ret;
1469
1470 icreq = kzalloc(sizeof(*icreq), GFP_KERNEL);
1471 if (!icreq)
1472 return -ENOMEM;
1473
1474 icresp = kzalloc(sizeof(*icresp), GFP_KERNEL);
1475 if (!icresp) {
1476 ret = -ENOMEM;
1477 goto free_icreq;
1478 }
1479
1480 icreq->hdr.type = nvme_tcp_icreq;
1481 icreq->hdr.hlen = sizeof(*icreq);
1482 icreq->hdr.pdo = 0;
1483 icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen);
1484 icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
1485 icreq->maxr2t = 0; /* single inflight r2t supported */
1486 icreq->hpda = 0; /* no alignment constraint */
1487 if (queue->hdr_digest)
1488 icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
1489 if (queue->data_digest)
1490 icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
1491
1492 iov.iov_base = icreq;
1493 iov.iov_len = sizeof(*icreq);
1494 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1495 if (ret < 0) {
1496 pr_warn("queue %d: failed to send icreq, error %d\n",
1497 nvme_tcp_queue_id(queue), ret);
1498 goto free_icresp;
1499 }
1500
1501 memset(&msg, 0, sizeof(msg));
1502 iov.iov_base = icresp;
1503 iov.iov_len = sizeof(*icresp);
1504 if (nvme_tcp_queue_tls(queue)) {
1505 msg.msg_control = cbuf;
1506 msg.msg_controllen = sizeof(cbuf);
1507 }
1508 msg.msg_flags = MSG_WAITALL;
1509 ret = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1510 iov.iov_len, msg.msg_flags);
1511 if (ret >= 0 && ret < sizeof(*icresp))
1512 ret = -ECONNRESET;
1513 if (ret < 0) {
1514 pr_warn("queue %d: failed to receive icresp, error %d\n",
1515 nvme_tcp_queue_id(queue), ret);
1516 goto free_icresp;
1517 }
1518 ret = -ENOTCONN;
1519 if (nvme_tcp_queue_tls(queue)) {
1520 ctype = tls_get_record_type(queue->sock->sk,
1521 (struct cmsghdr *)cbuf);
1522 if (ctype != TLS_RECORD_TYPE_DATA) {
1523 pr_err("queue %d: unhandled TLS record %d\n",
1524 nvme_tcp_queue_id(queue), ctype);
1525 goto free_icresp;
1526 }
1527 }
1528 ret = -EINVAL;
1529 if (icresp->hdr.type != nvme_tcp_icresp) {
1530 pr_err("queue %d: bad type returned %d\n",
1531 nvme_tcp_queue_id(queue), icresp->hdr.type);
1532 goto free_icresp;
1533 }
1534
1535 if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) {
1536 pr_err("queue %d: bad pdu length returned %d\n",
1537 nvme_tcp_queue_id(queue), icresp->hdr.plen);
1538 goto free_icresp;
1539 }
1540
1541 if (icresp->pfv != NVME_TCP_PFV_1_0) {
1542 pr_err("queue %d: bad pfv returned %d\n",
1543 nvme_tcp_queue_id(queue), icresp->pfv);
1544 goto free_icresp;
1545 }
1546
1547 ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE);
1548 if ((queue->data_digest && !ctrl_ddgst) ||
1549 (!queue->data_digest && ctrl_ddgst)) {
1550 pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n",
1551 nvme_tcp_queue_id(queue),
1552 queue->data_digest ? "enabled" : "disabled",
1553 ctrl_ddgst ? "enabled" : "disabled");
1554 goto free_icresp;
1555 }
1556
1557 ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE);
1558 if ((queue->hdr_digest && !ctrl_hdgst) ||
1559 (!queue->hdr_digest && ctrl_hdgst)) {
1560 pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n",
1561 nvme_tcp_queue_id(queue),
1562 queue->hdr_digest ? "enabled" : "disabled",
1563 ctrl_hdgst ? "enabled" : "disabled");
1564 goto free_icresp;
1565 }
1566
1567 if (icresp->cpda != 0) {
1568 pr_err("queue %d: unsupported cpda returned %d\n",
1569 nvme_tcp_queue_id(queue), icresp->cpda);
1570 goto free_icresp;
1571 }
1572
1573 maxh2cdata = le32_to_cpu(icresp->maxdata);
1574 if ((maxh2cdata % 4) || (maxh2cdata < NVME_TCP_MIN_MAXH2CDATA)) {
1575 pr_err("queue %d: invalid maxh2cdata returned %u\n",
1576 nvme_tcp_queue_id(queue), maxh2cdata);
1577 goto free_icresp;
1578 }
1579 queue->maxh2cdata = maxh2cdata;
1580
1581 ret = 0;
1582 free_icresp:
1583 kfree(icresp);
1584 free_icreq:
1585 kfree(icreq);
1586 return ret;
1587 }
1588
nvme_tcp_admin_queue(struct nvme_tcp_queue * queue)1589 static bool nvme_tcp_admin_queue(struct nvme_tcp_queue *queue)
1590 {
1591 return nvme_tcp_queue_id(queue) == 0;
1592 }
1593
nvme_tcp_default_queue(struct nvme_tcp_queue * queue)1594 static bool nvme_tcp_default_queue(struct nvme_tcp_queue *queue)
1595 {
1596 struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1597 int qid = nvme_tcp_queue_id(queue);
1598
1599 return !nvme_tcp_admin_queue(queue) &&
1600 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT];
1601 }
1602
nvme_tcp_read_queue(struct nvme_tcp_queue * queue)1603 static bool nvme_tcp_read_queue(struct nvme_tcp_queue *queue)
1604 {
1605 struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1606 int qid = nvme_tcp_queue_id(queue);
1607
1608 return !nvme_tcp_admin_queue(queue) &&
1609 !nvme_tcp_default_queue(queue) &&
1610 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1611 ctrl->io_queues[HCTX_TYPE_READ];
1612 }
1613
nvme_tcp_poll_queue(struct nvme_tcp_queue * queue)1614 static bool nvme_tcp_poll_queue(struct nvme_tcp_queue *queue)
1615 {
1616 struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1617 int qid = nvme_tcp_queue_id(queue);
1618
1619 return !nvme_tcp_admin_queue(queue) &&
1620 !nvme_tcp_default_queue(queue) &&
1621 !nvme_tcp_read_queue(queue) &&
1622 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1623 ctrl->io_queues[HCTX_TYPE_READ] +
1624 ctrl->io_queues[HCTX_TYPE_POLL];
1625 }
1626
1627 /*
1628 * Track the number of queues assigned to each cpu using a global per-cpu
1629 * counter and select the least used cpu from the mq_map. Our goal is to spread
1630 * different controllers I/O threads across different cpu cores.
1631 *
1632 * Note that the accounting is not 100% perfect, but we don't need to be, we're
1633 * simply putting our best effort to select the best candidate cpu core that we
1634 * find at any given point.
1635 */
nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue * queue)1636 static void nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue *queue)
1637 {
1638 struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1639 struct blk_mq_tag_set *set = &ctrl->tag_set;
1640 int qid = nvme_tcp_queue_id(queue) - 1;
1641 unsigned int *mq_map = NULL;
1642 int cpu, min_queues = INT_MAX, io_cpu;
1643
1644 if (wq_unbound)
1645 goto out;
1646
1647 if (nvme_tcp_default_queue(queue))
1648 mq_map = set->map[HCTX_TYPE_DEFAULT].mq_map;
1649 else if (nvme_tcp_read_queue(queue))
1650 mq_map = set->map[HCTX_TYPE_READ].mq_map;
1651 else if (nvme_tcp_poll_queue(queue))
1652 mq_map = set->map[HCTX_TYPE_POLL].mq_map;
1653
1654 if (WARN_ON(!mq_map))
1655 goto out;
1656
1657 /* Search for the least used cpu from the mq_map */
1658 io_cpu = WORK_CPU_UNBOUND;
1659 for_each_online_cpu(cpu) {
1660 int num_queues = atomic_read(&nvme_tcp_cpu_queues[cpu]);
1661
1662 if (mq_map[cpu] != qid)
1663 continue;
1664 if (num_queues < min_queues) {
1665 io_cpu = cpu;
1666 min_queues = num_queues;
1667 }
1668 }
1669 if (io_cpu != WORK_CPU_UNBOUND) {
1670 queue->io_cpu = io_cpu;
1671 atomic_inc(&nvme_tcp_cpu_queues[io_cpu]);
1672 set_bit(NVME_TCP_Q_IO_CPU_SET, &queue->flags);
1673 }
1674 out:
1675 dev_dbg(ctrl->ctrl.device, "queue %d: using cpu %d\n",
1676 qid, queue->io_cpu);
1677 }
1678
nvme_tcp_tls_done(void * data,int status,key_serial_t pskid)1679 static void nvme_tcp_tls_done(void *data, int status, key_serial_t pskid)
1680 {
1681 struct nvme_tcp_queue *queue = data;
1682 struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1683 int qid = nvme_tcp_queue_id(queue);
1684 struct key *tls_key;
1685
1686 dev_dbg(ctrl->ctrl.device, "queue %d: TLS handshake done, key %x, status %d\n",
1687 qid, pskid, status);
1688
1689 if (status) {
1690 queue->tls_err = -status;
1691 goto out_complete;
1692 }
1693
1694 tls_key = nvme_tls_key_lookup(pskid);
1695 if (IS_ERR(tls_key)) {
1696 dev_warn(ctrl->ctrl.device, "queue %d: Invalid key %x\n",
1697 qid, pskid);
1698 queue->tls_err = -ENOKEY;
1699 } else {
1700 queue->tls_enabled = true;
1701 if (qid == 0)
1702 ctrl->ctrl.tls_pskid = key_serial(tls_key);
1703 key_put(tls_key);
1704 queue->tls_err = 0;
1705 }
1706
1707 out_complete:
1708 complete(&queue->tls_complete);
1709 }
1710
nvme_tcp_start_tls(struct nvme_ctrl * nctrl,struct nvme_tcp_queue * queue,key_serial_t pskid)1711 static int nvme_tcp_start_tls(struct nvme_ctrl *nctrl,
1712 struct nvme_tcp_queue *queue,
1713 key_serial_t pskid)
1714 {
1715 int qid = nvme_tcp_queue_id(queue);
1716 int ret;
1717 struct tls_handshake_args args;
1718 unsigned long tmo = tls_handshake_timeout * HZ;
1719 key_serial_t keyring = nvme_keyring_id();
1720
1721 dev_dbg(nctrl->device, "queue %d: start TLS with key %x\n",
1722 qid, pskid);
1723 memset(&args, 0, sizeof(args));
1724 args.ta_sock = queue->sock;
1725 args.ta_done = nvme_tcp_tls_done;
1726 args.ta_data = queue;
1727 args.ta_my_peerids[0] = pskid;
1728 args.ta_num_peerids = 1;
1729 if (nctrl->opts->keyring)
1730 keyring = key_serial(nctrl->opts->keyring);
1731 args.ta_keyring = keyring;
1732 args.ta_timeout_ms = tls_handshake_timeout * 1000;
1733 queue->tls_err = -EOPNOTSUPP;
1734 init_completion(&queue->tls_complete);
1735 ret = tls_client_hello_psk(&args, GFP_KERNEL);
1736 if (ret) {
1737 dev_err(nctrl->device, "queue %d: failed to start TLS: %d\n",
1738 qid, ret);
1739 return ret;
1740 }
1741 ret = wait_for_completion_interruptible_timeout(&queue->tls_complete, tmo);
1742 if (ret <= 0) {
1743 if (ret == 0)
1744 ret = -ETIMEDOUT;
1745
1746 dev_err(nctrl->device,
1747 "queue %d: TLS handshake failed, error %d\n",
1748 qid, ret);
1749 tls_handshake_cancel(queue->sock->sk);
1750 } else {
1751 if (queue->tls_err) {
1752 dev_err(nctrl->device,
1753 "queue %d: TLS handshake complete, error %d\n",
1754 qid, queue->tls_err);
1755 } else {
1756 dev_dbg(nctrl->device,
1757 "queue %d: TLS handshake complete\n", qid);
1758 }
1759 ret = queue->tls_err;
1760 }
1761 return ret;
1762 }
1763
nvme_tcp_alloc_queue(struct nvme_ctrl * nctrl,int qid,key_serial_t pskid)1764 static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl, int qid,
1765 key_serial_t pskid)
1766 {
1767 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1768 struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1769 int ret, rcv_pdu_size;
1770 struct file *sock_file;
1771
1772 mutex_init(&queue->queue_lock);
1773 queue->ctrl = ctrl;
1774 init_llist_head(&queue->req_list);
1775 INIT_LIST_HEAD(&queue->send_list);
1776 mutex_init(&queue->send_mutex);
1777 INIT_WORK(&queue->io_work, nvme_tcp_io_work);
1778
1779 if (qid > 0)
1780 queue->cmnd_capsule_len = nctrl->ioccsz * 16;
1781 else
1782 queue->cmnd_capsule_len = sizeof(struct nvme_command) +
1783 NVME_TCP_ADMIN_CCSZ;
1784
1785 ret = sock_create_kern(current->nsproxy->net_ns,
1786 ctrl->addr.ss_family, SOCK_STREAM,
1787 IPPROTO_TCP, &queue->sock);
1788 if (ret) {
1789 dev_err(nctrl->device,
1790 "failed to create socket: %d\n", ret);
1791 goto err_destroy_mutex;
1792 }
1793
1794 sock_file = sock_alloc_file(queue->sock, O_CLOEXEC, NULL);
1795 if (IS_ERR(sock_file)) {
1796 ret = PTR_ERR(sock_file);
1797 goto err_destroy_mutex;
1798 }
1799
1800 sk_net_refcnt_upgrade(queue->sock->sk);
1801 nvme_tcp_reclassify_socket(queue->sock);
1802
1803 /* Single syn retry */
1804 tcp_sock_set_syncnt(queue->sock->sk, 1);
1805
1806 /* Set TCP no delay */
1807 tcp_sock_set_nodelay(queue->sock->sk);
1808
1809 /*
1810 * Cleanup whatever is sitting in the TCP transmit queue on socket
1811 * close. This is done to prevent stale data from being sent should
1812 * the network connection be restored before TCP times out.
1813 */
1814 sock_no_linger(queue->sock->sk);
1815
1816 if (so_priority > 0)
1817 sock_set_priority(queue->sock->sk, so_priority);
1818
1819 /* Set socket type of service */
1820 if (nctrl->opts->tos >= 0)
1821 ip_sock_set_tos(queue->sock->sk, nctrl->opts->tos);
1822
1823 /* Set 10 seconds timeout for icresp recvmsg */
1824 queue->sock->sk->sk_rcvtimeo = 10 * HZ;
1825
1826 queue->sock->sk->sk_allocation = GFP_ATOMIC;
1827 queue->sock->sk->sk_use_task_frag = false;
1828 queue->io_cpu = WORK_CPU_UNBOUND;
1829 queue->request = NULL;
1830 queue->data_remaining = 0;
1831 queue->ddgst_remaining = 0;
1832 queue->pdu_remaining = 0;
1833 queue->pdu_offset = 0;
1834 sk_set_memalloc(queue->sock->sk);
1835
1836 if (nctrl->opts->mask & NVMF_OPT_HOST_TRADDR) {
1837 ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr,
1838 sizeof(ctrl->src_addr));
1839 if (ret) {
1840 dev_err(nctrl->device,
1841 "failed to bind queue %d socket %d\n",
1842 qid, ret);
1843 goto err_sock;
1844 }
1845 }
1846
1847 if (nctrl->opts->mask & NVMF_OPT_HOST_IFACE) {
1848 char *iface = nctrl->opts->host_iface;
1849 sockptr_t optval = KERNEL_SOCKPTR(iface);
1850
1851 ret = sock_setsockopt(queue->sock, SOL_SOCKET, SO_BINDTODEVICE,
1852 optval, strlen(iface));
1853 if (ret) {
1854 dev_err(nctrl->device,
1855 "failed to bind to interface %s queue %d err %d\n",
1856 iface, qid, ret);
1857 goto err_sock;
1858 }
1859 }
1860
1861 queue->hdr_digest = nctrl->opts->hdr_digest;
1862 queue->data_digest = nctrl->opts->data_digest;
1863
1864 rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) +
1865 nvme_tcp_hdgst_len(queue);
1866 queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL);
1867 if (!queue->pdu) {
1868 ret = -ENOMEM;
1869 goto err_sock;
1870 }
1871
1872 dev_dbg(nctrl->device, "connecting queue %d\n",
1873 nvme_tcp_queue_id(queue));
1874
1875 ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr,
1876 sizeof(ctrl->addr), 0);
1877 if (ret) {
1878 dev_err(nctrl->device,
1879 "failed to connect socket: %d\n", ret);
1880 goto err_rcv_pdu;
1881 }
1882
1883 /* If PSKs are configured try to start TLS */
1884 if (nvme_tcp_tls_configured(nctrl) && pskid) {
1885 ret = nvme_tcp_start_tls(nctrl, queue, pskid);
1886 if (ret)
1887 goto err_init_connect;
1888 }
1889
1890 ret = nvme_tcp_init_connection(queue);
1891 if (ret)
1892 goto err_init_connect;
1893
1894 set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags);
1895
1896 return 0;
1897
1898 err_init_connect:
1899 kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1900 err_rcv_pdu:
1901 kfree(queue->pdu);
1902 err_sock:
1903 /* ->sock will be released by fput() */
1904 fput(queue->sock->file);
1905 queue->sock = NULL;
1906 err_destroy_mutex:
1907 mutex_destroy(&queue->send_mutex);
1908 mutex_destroy(&queue->queue_lock);
1909 return ret;
1910 }
1911
nvme_tcp_restore_sock_ops(struct nvme_tcp_queue * queue)1912 static void nvme_tcp_restore_sock_ops(struct nvme_tcp_queue *queue)
1913 {
1914 struct socket *sock = queue->sock;
1915
1916 write_lock_bh(&sock->sk->sk_callback_lock);
1917 sock->sk->sk_user_data = NULL;
1918 sock->sk->sk_data_ready = queue->data_ready;
1919 sock->sk->sk_state_change = queue->state_change;
1920 sock->sk->sk_write_space = queue->write_space;
1921 write_unlock_bh(&sock->sk->sk_callback_lock);
1922 }
1923
__nvme_tcp_stop_queue(struct nvme_tcp_queue * queue)1924 static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue)
1925 {
1926 kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1927 nvme_tcp_restore_sock_ops(queue);
1928 cancel_work_sync(&queue->io_work);
1929 }
1930
nvme_tcp_stop_queue_nowait(struct nvme_ctrl * nctrl,int qid)1931 static void nvme_tcp_stop_queue_nowait(struct nvme_ctrl *nctrl, int qid)
1932 {
1933 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1934 struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1935
1936 if (!test_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1937 return;
1938
1939 if (test_and_clear_bit(NVME_TCP_Q_IO_CPU_SET, &queue->flags))
1940 atomic_dec(&nvme_tcp_cpu_queues[queue->io_cpu]);
1941
1942 mutex_lock(&queue->queue_lock);
1943 if (test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags))
1944 __nvme_tcp_stop_queue(queue);
1945 /* Stopping the queue will disable TLS */
1946 queue->tls_enabled = false;
1947 mutex_unlock(&queue->queue_lock);
1948 }
1949
nvme_tcp_wait_queue(struct nvme_ctrl * nctrl,int qid)1950 static void nvme_tcp_wait_queue(struct nvme_ctrl *nctrl, int qid)
1951 {
1952 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1953 struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1954 int timeout = 100;
1955
1956 while (timeout > 0) {
1957 if (!test_bit(NVME_TCP_Q_ALLOCATED, &queue->flags) ||
1958 !sk_wmem_alloc_get(queue->sock->sk))
1959 return;
1960 msleep(2);
1961 timeout -= 2;
1962 }
1963 dev_warn(nctrl->device,
1964 "qid %d: timeout draining sock wmem allocation expired\n",
1965 qid);
1966 }
1967
nvme_tcp_stop_queue(struct nvme_ctrl * nctrl,int qid)1968 static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid)
1969 {
1970 nvme_tcp_stop_queue_nowait(nctrl, qid);
1971 nvme_tcp_wait_queue(nctrl, qid);
1972 }
1973
1974
nvme_tcp_setup_sock_ops(struct nvme_tcp_queue * queue)1975 static void nvme_tcp_setup_sock_ops(struct nvme_tcp_queue *queue)
1976 {
1977 write_lock_bh(&queue->sock->sk->sk_callback_lock);
1978 queue->sock->sk->sk_user_data = queue;
1979 queue->state_change = queue->sock->sk->sk_state_change;
1980 queue->data_ready = queue->sock->sk->sk_data_ready;
1981 queue->write_space = queue->sock->sk->sk_write_space;
1982 queue->sock->sk->sk_data_ready = nvme_tcp_data_ready;
1983 queue->sock->sk->sk_state_change = nvme_tcp_state_change;
1984 queue->sock->sk->sk_write_space = nvme_tcp_write_space;
1985 #ifdef CONFIG_NET_RX_BUSY_POLL
1986 queue->sock->sk->sk_ll_usec = 1;
1987 #endif
1988 write_unlock_bh(&queue->sock->sk->sk_callback_lock);
1989 }
1990
nvme_tcp_start_queue(struct nvme_ctrl * nctrl,int idx)1991 static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx)
1992 {
1993 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1994 struct nvme_tcp_queue *queue = &ctrl->queues[idx];
1995 int ret;
1996
1997 queue->rd_enabled = true;
1998 nvme_tcp_init_recv_ctx(queue);
1999 nvme_tcp_setup_sock_ops(queue);
2000
2001 if (idx) {
2002 nvme_tcp_set_queue_io_cpu(queue);
2003 ret = nvmf_connect_io_queue(nctrl, idx);
2004 } else
2005 ret = nvmf_connect_admin_queue(nctrl);
2006
2007 if (!ret) {
2008 set_bit(NVME_TCP_Q_LIVE, &queue->flags);
2009 } else {
2010 if (test_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
2011 __nvme_tcp_stop_queue(queue);
2012 dev_err(nctrl->device,
2013 "failed to connect queue: %d ret=%d\n", idx, ret);
2014 }
2015 return ret;
2016 }
2017
nvme_tcp_free_admin_queue(struct nvme_ctrl * ctrl)2018 static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl)
2019 {
2020 if (to_tcp_ctrl(ctrl)->async_req.pdu) {
2021 cancel_work_sync(&ctrl->async_event_work);
2022 nvme_tcp_free_async_req(to_tcp_ctrl(ctrl));
2023 to_tcp_ctrl(ctrl)->async_req.pdu = NULL;
2024 }
2025
2026 nvme_tcp_free_queue(ctrl, 0);
2027 }
2028
nvme_tcp_free_io_queues(struct nvme_ctrl * ctrl)2029 static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl)
2030 {
2031 int i;
2032
2033 for (i = 1; i < ctrl->queue_count; i++)
2034 nvme_tcp_free_queue(ctrl, i);
2035 }
2036
nvme_tcp_stop_io_queues(struct nvme_ctrl * ctrl)2037 static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl)
2038 {
2039 int i;
2040
2041 for (i = 1; i < ctrl->queue_count; i++)
2042 nvme_tcp_stop_queue_nowait(ctrl, i);
2043 for (i = 1; i < ctrl->queue_count; i++)
2044 nvme_tcp_wait_queue(ctrl, i);
2045 }
2046
nvme_tcp_start_io_queues(struct nvme_ctrl * ctrl,int first,int last)2047 static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl,
2048 int first, int last)
2049 {
2050 int i, ret;
2051
2052 for (i = first; i < last; i++) {
2053 ret = nvme_tcp_start_queue(ctrl, i);
2054 if (ret)
2055 goto out_stop_queues;
2056 }
2057
2058 return 0;
2059
2060 out_stop_queues:
2061 for (i--; i >= first; i--)
2062 nvme_tcp_stop_queue(ctrl, i);
2063 return ret;
2064 }
2065
nvme_tcp_alloc_admin_queue(struct nvme_ctrl * ctrl)2066 static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl)
2067 {
2068 int ret;
2069 key_serial_t pskid = 0;
2070
2071 if (nvme_tcp_tls_configured(ctrl)) {
2072 if (ctrl->opts->tls_key)
2073 pskid = key_serial(ctrl->opts->tls_key);
2074 else if (ctrl->opts->tls) {
2075 pskid = nvme_tls_psk_default(ctrl->opts->keyring,
2076 ctrl->opts->host->nqn,
2077 ctrl->opts->subsysnqn);
2078 if (!pskid) {
2079 dev_err(ctrl->device, "no valid PSK found\n");
2080 return -ENOKEY;
2081 }
2082 }
2083 }
2084
2085 ret = nvme_tcp_alloc_queue(ctrl, 0, pskid);
2086 if (ret)
2087 return ret;
2088
2089 ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl));
2090 if (ret)
2091 goto out_free_queue;
2092
2093 return 0;
2094
2095 out_free_queue:
2096 nvme_tcp_free_queue(ctrl, 0);
2097 return ret;
2098 }
2099
__nvme_tcp_alloc_io_queues(struct nvme_ctrl * ctrl)2100 static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
2101 {
2102 int i, ret;
2103
2104 if (nvme_tcp_tls_configured(ctrl)) {
2105 if (ctrl->opts->concat) {
2106 /*
2107 * The generated PSK is stored in the
2108 * fabric options
2109 */
2110 if (!ctrl->opts->tls_key) {
2111 dev_err(ctrl->device, "no PSK generated\n");
2112 return -ENOKEY;
2113 }
2114 if (ctrl->tls_pskid &&
2115 ctrl->tls_pskid != key_serial(ctrl->opts->tls_key)) {
2116 dev_err(ctrl->device, "Stale PSK id %08x\n", ctrl->tls_pskid);
2117 ctrl->tls_pskid = 0;
2118 }
2119 } else if (!ctrl->tls_pskid) {
2120 dev_err(ctrl->device, "no PSK negotiated\n");
2121 return -ENOKEY;
2122 }
2123 }
2124
2125 for (i = 1; i < ctrl->queue_count; i++) {
2126 ret = nvme_tcp_alloc_queue(ctrl, i,
2127 ctrl->tls_pskid);
2128 if (ret)
2129 goto out_free_queues;
2130 }
2131
2132 return 0;
2133
2134 out_free_queues:
2135 for (i--; i >= 1; i--)
2136 nvme_tcp_free_queue(ctrl, i);
2137
2138 return ret;
2139 }
2140
nvme_tcp_alloc_io_queues(struct nvme_ctrl * ctrl)2141 static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
2142 {
2143 unsigned int nr_io_queues;
2144 int ret;
2145
2146 nr_io_queues = nvmf_nr_io_queues(ctrl->opts);
2147 ret = nvme_set_queue_count(ctrl, &nr_io_queues);
2148 if (ret)
2149 return ret;
2150
2151 if (nr_io_queues == 0) {
2152 dev_err(ctrl->device,
2153 "unable to set any I/O queues\n");
2154 return -ENOMEM;
2155 }
2156
2157 ctrl->queue_count = nr_io_queues + 1;
2158 dev_info(ctrl->device,
2159 "creating %d I/O queues.\n", nr_io_queues);
2160
2161 nvmf_set_io_queues(ctrl->opts, nr_io_queues,
2162 to_tcp_ctrl(ctrl)->io_queues);
2163 return __nvme_tcp_alloc_io_queues(ctrl);
2164 }
2165
nvme_tcp_configure_io_queues(struct nvme_ctrl * ctrl,bool new)2166 static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new)
2167 {
2168 int ret, nr_queues;
2169
2170 ret = nvme_tcp_alloc_io_queues(ctrl);
2171 if (ret)
2172 return ret;
2173
2174 if (new) {
2175 ret = nvme_alloc_io_tag_set(ctrl, &to_tcp_ctrl(ctrl)->tag_set,
2176 &nvme_tcp_mq_ops,
2177 ctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2,
2178 sizeof(struct nvme_tcp_request));
2179 if (ret)
2180 goto out_free_io_queues;
2181 }
2182
2183 /*
2184 * Only start IO queues for which we have allocated the tagset
2185 * and limited it to the available queues. On reconnects, the
2186 * queue number might have changed.
2187 */
2188 nr_queues = min(ctrl->tagset->nr_hw_queues + 1, ctrl->queue_count);
2189 ret = nvme_tcp_start_io_queues(ctrl, 1, nr_queues);
2190 if (ret)
2191 goto out_cleanup_connect_q;
2192
2193 if (!new) {
2194 nvme_start_freeze(ctrl);
2195 nvme_unquiesce_io_queues(ctrl);
2196 if (!nvme_wait_freeze_timeout(ctrl, NVME_IO_TIMEOUT)) {
2197 /*
2198 * If we timed out waiting for freeze we are likely to
2199 * be stuck. Fail the controller initialization just
2200 * to be safe.
2201 */
2202 ret = -ENODEV;
2203 nvme_unfreeze(ctrl);
2204 goto out_wait_freeze_timed_out;
2205 }
2206 blk_mq_update_nr_hw_queues(ctrl->tagset,
2207 ctrl->queue_count - 1);
2208 nvme_unfreeze(ctrl);
2209 }
2210
2211 /*
2212 * If the number of queues has increased (reconnect case)
2213 * start all new queues now.
2214 */
2215 ret = nvme_tcp_start_io_queues(ctrl, nr_queues,
2216 ctrl->tagset->nr_hw_queues + 1);
2217 if (ret)
2218 goto out_wait_freeze_timed_out;
2219
2220 return 0;
2221
2222 out_wait_freeze_timed_out:
2223 nvme_quiesce_io_queues(ctrl);
2224 nvme_sync_io_queues(ctrl);
2225 nvme_tcp_stop_io_queues(ctrl);
2226 out_cleanup_connect_q:
2227 nvme_cancel_tagset(ctrl);
2228 if (new)
2229 nvme_remove_io_tag_set(ctrl);
2230 out_free_io_queues:
2231 nvme_tcp_free_io_queues(ctrl);
2232 return ret;
2233 }
2234
nvme_tcp_configure_admin_queue(struct nvme_ctrl * ctrl,bool new)2235 static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new)
2236 {
2237 int error;
2238
2239 error = nvme_tcp_alloc_admin_queue(ctrl);
2240 if (error)
2241 return error;
2242
2243 if (new) {
2244 error = nvme_alloc_admin_tag_set(ctrl,
2245 &to_tcp_ctrl(ctrl)->admin_tag_set,
2246 &nvme_tcp_admin_mq_ops,
2247 sizeof(struct nvme_tcp_request));
2248 if (error)
2249 goto out_free_queue;
2250 }
2251
2252 error = nvme_tcp_start_queue(ctrl, 0);
2253 if (error)
2254 goto out_cleanup_tagset;
2255
2256 if (ctrl->opts->concat && !ctrl->tls_pskid)
2257 return 0;
2258
2259 error = nvme_enable_ctrl(ctrl);
2260 if (error)
2261 goto out_stop_queue;
2262
2263 nvme_unquiesce_admin_queue(ctrl);
2264
2265 error = nvme_init_ctrl_finish(ctrl, false);
2266 if (error)
2267 goto out_quiesce_queue;
2268
2269 return 0;
2270
2271 out_quiesce_queue:
2272 nvme_quiesce_admin_queue(ctrl);
2273 blk_sync_queue(ctrl->admin_q);
2274 out_stop_queue:
2275 nvme_tcp_stop_queue(ctrl, 0);
2276 nvme_cancel_admin_tagset(ctrl);
2277 out_cleanup_tagset:
2278 if (new)
2279 nvme_remove_admin_tag_set(ctrl);
2280 out_free_queue:
2281 nvme_tcp_free_admin_queue(ctrl);
2282 return error;
2283 }
2284
nvme_tcp_teardown_admin_queue(struct nvme_ctrl * ctrl,bool remove)2285 static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl,
2286 bool remove)
2287 {
2288 nvme_quiesce_admin_queue(ctrl);
2289 blk_sync_queue(ctrl->admin_q);
2290 nvme_tcp_stop_queue(ctrl, 0);
2291 nvme_cancel_admin_tagset(ctrl);
2292 if (remove) {
2293 nvme_unquiesce_admin_queue(ctrl);
2294 nvme_remove_admin_tag_set(ctrl);
2295 }
2296 nvme_tcp_free_admin_queue(ctrl);
2297 if (ctrl->tls_pskid) {
2298 dev_dbg(ctrl->device, "Wipe negotiated TLS_PSK %08x\n",
2299 ctrl->tls_pskid);
2300 ctrl->tls_pskid = 0;
2301 }
2302 }
2303
nvme_tcp_teardown_io_queues(struct nvme_ctrl * ctrl,bool remove)2304 static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl,
2305 bool remove)
2306 {
2307 if (ctrl->queue_count <= 1)
2308 return;
2309 nvme_quiesce_io_queues(ctrl);
2310 nvme_sync_io_queues(ctrl);
2311 nvme_tcp_stop_io_queues(ctrl);
2312 nvme_cancel_tagset(ctrl);
2313 if (remove) {
2314 nvme_unquiesce_io_queues(ctrl);
2315 nvme_remove_io_tag_set(ctrl);
2316 }
2317 nvme_tcp_free_io_queues(ctrl);
2318 }
2319
nvme_tcp_reconnect_or_remove(struct nvme_ctrl * ctrl,int status)2320 static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl,
2321 int status)
2322 {
2323 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
2324
2325 /* If we are resetting/deleting then do nothing */
2326 if (state != NVME_CTRL_CONNECTING) {
2327 WARN_ON_ONCE(state == NVME_CTRL_NEW || state == NVME_CTRL_LIVE);
2328 return;
2329 }
2330
2331 if (nvmf_should_reconnect(ctrl, status)) {
2332 dev_info(ctrl->device, "Reconnecting in %d seconds...\n",
2333 ctrl->opts->reconnect_delay);
2334 queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work,
2335 ctrl->opts->reconnect_delay * HZ);
2336 } else {
2337 dev_info(ctrl->device, "Removing controller (%d)...\n",
2338 status);
2339 nvme_delete_ctrl(ctrl);
2340 }
2341 }
2342
2343 /*
2344 * The TLS key is set by secure concatenation after negotiation has been
2345 * completed on the admin queue. We need to revoke the key when:
2346 * - concatenation is enabled (otherwise it's a static key set by the user)
2347 * and
2348 * - the generated key is present in ctrl->tls_key (otherwise there's nothing
2349 * to revoke)
2350 * and
2351 * - a valid PSK key ID has been set in ctrl->tls_pskid (otherwise TLS
2352 * negotiation has not run).
2353 *
2354 * We cannot always revoke the key as nvme_tcp_alloc_admin_queue() is called
2355 * twice during secure concatenation, once on a 'normal' connection to run the
2356 * DH-HMAC-CHAP negotiation (which generates the key, so it _must not_ be set),
2357 * and once after the negotiation (which uses the key, so it _must_ be set).
2358 */
nvme_tcp_key_revoke_needed(struct nvme_ctrl * ctrl)2359 static bool nvme_tcp_key_revoke_needed(struct nvme_ctrl *ctrl)
2360 {
2361 return ctrl->opts->concat && ctrl->opts->tls_key && ctrl->tls_pskid;
2362 }
2363
nvme_tcp_setup_ctrl(struct nvme_ctrl * ctrl,bool new)2364 static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new)
2365 {
2366 struct nvmf_ctrl_options *opts = ctrl->opts;
2367 int ret;
2368
2369 ret = nvme_tcp_configure_admin_queue(ctrl, new);
2370 if (ret)
2371 return ret;
2372
2373 if (ctrl->opts->concat && !ctrl->tls_pskid) {
2374 /* See comments for nvme_tcp_key_revoke_needed() */
2375 dev_dbg(ctrl->device, "restart admin queue for secure concatenation\n");
2376 nvme_stop_keep_alive(ctrl);
2377 nvme_tcp_teardown_admin_queue(ctrl, false);
2378 ret = nvme_tcp_configure_admin_queue(ctrl, false);
2379 if (ret)
2380 goto destroy_admin;
2381 }
2382
2383 if (ctrl->icdoff) {
2384 ret = -EOPNOTSUPP;
2385 dev_err(ctrl->device, "icdoff is not supported!\n");
2386 goto destroy_admin;
2387 }
2388
2389 if (!nvme_ctrl_sgl_supported(ctrl)) {
2390 ret = -EOPNOTSUPP;
2391 dev_err(ctrl->device, "Mandatory sgls are not supported!\n");
2392 goto destroy_admin;
2393 }
2394
2395 if (opts->queue_size > ctrl->sqsize + 1)
2396 dev_warn(ctrl->device,
2397 "queue_size %zu > ctrl sqsize %u, clamping down\n",
2398 opts->queue_size, ctrl->sqsize + 1);
2399
2400 if (ctrl->sqsize + 1 > ctrl->maxcmd) {
2401 dev_warn(ctrl->device,
2402 "sqsize %u > ctrl maxcmd %u, clamping down\n",
2403 ctrl->sqsize + 1, ctrl->maxcmd);
2404 ctrl->sqsize = ctrl->maxcmd - 1;
2405 }
2406
2407 if (ctrl->queue_count > 1) {
2408 ret = nvme_tcp_configure_io_queues(ctrl, new);
2409 if (ret)
2410 goto destroy_admin;
2411 }
2412
2413 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) {
2414 /*
2415 * state change failure is ok if we started ctrl delete,
2416 * unless we're during creation of a new controller to
2417 * avoid races with teardown flow.
2418 */
2419 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
2420
2421 WARN_ON_ONCE(state != NVME_CTRL_DELETING &&
2422 state != NVME_CTRL_DELETING_NOIO);
2423 WARN_ON_ONCE(new);
2424 ret = -EINVAL;
2425 goto destroy_io;
2426 }
2427
2428 nvme_start_ctrl(ctrl);
2429 return 0;
2430
2431 destroy_io:
2432 if (ctrl->queue_count > 1) {
2433 nvme_quiesce_io_queues(ctrl);
2434 nvme_sync_io_queues(ctrl);
2435 nvme_tcp_stop_io_queues(ctrl);
2436 nvme_cancel_tagset(ctrl);
2437 if (new)
2438 nvme_remove_io_tag_set(ctrl);
2439 nvme_tcp_free_io_queues(ctrl);
2440 }
2441 destroy_admin:
2442 nvme_stop_keep_alive(ctrl);
2443 nvme_tcp_teardown_admin_queue(ctrl, new);
2444 return ret;
2445 }
2446
nvme_tcp_reconnect_ctrl_work(struct work_struct * work)2447 static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work)
2448 {
2449 struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work),
2450 struct nvme_tcp_ctrl, connect_work);
2451 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2452 int ret;
2453
2454 ++ctrl->nr_reconnects;
2455
2456 ret = nvme_tcp_setup_ctrl(ctrl, false);
2457 if (ret)
2458 goto requeue;
2459
2460 dev_info(ctrl->device, "Successfully reconnected (attempt %d/%d)\n",
2461 ctrl->nr_reconnects, ctrl->opts->max_reconnects);
2462
2463 ctrl->nr_reconnects = 0;
2464
2465 return;
2466
2467 requeue:
2468 dev_info(ctrl->device, "Failed reconnect attempt %d/%d\n",
2469 ctrl->nr_reconnects, ctrl->opts->max_reconnects);
2470 nvme_tcp_reconnect_or_remove(ctrl, ret);
2471 }
2472
nvme_tcp_error_recovery_work(struct work_struct * work)2473 static void nvme_tcp_error_recovery_work(struct work_struct *work)
2474 {
2475 struct nvme_tcp_ctrl *tcp_ctrl = container_of(work,
2476 struct nvme_tcp_ctrl, err_work);
2477 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2478
2479 if (nvme_tcp_key_revoke_needed(ctrl))
2480 nvme_auth_revoke_tls_key(ctrl);
2481 nvme_stop_keep_alive(ctrl);
2482 flush_work(&ctrl->async_event_work);
2483 nvme_tcp_teardown_io_queues(ctrl, false);
2484 /* unquiesce to fail fast pending requests */
2485 nvme_unquiesce_io_queues(ctrl);
2486 nvme_tcp_teardown_admin_queue(ctrl, false);
2487 nvme_unquiesce_admin_queue(ctrl);
2488 nvme_auth_stop(ctrl);
2489
2490 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2491 /* state change failure is ok if we started ctrl delete */
2492 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
2493
2494 WARN_ON_ONCE(state != NVME_CTRL_DELETING &&
2495 state != NVME_CTRL_DELETING_NOIO);
2496 return;
2497 }
2498
2499 nvme_tcp_reconnect_or_remove(ctrl, 0);
2500 }
2501
nvme_tcp_teardown_ctrl(struct nvme_ctrl * ctrl,bool shutdown)2502 static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
2503 {
2504 nvme_tcp_teardown_io_queues(ctrl, shutdown);
2505 nvme_quiesce_admin_queue(ctrl);
2506 nvme_disable_ctrl(ctrl, shutdown);
2507 nvme_tcp_teardown_admin_queue(ctrl, shutdown);
2508 }
2509
nvme_tcp_delete_ctrl(struct nvme_ctrl * ctrl)2510 static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl)
2511 {
2512 nvme_tcp_teardown_ctrl(ctrl, true);
2513 }
2514
nvme_reset_ctrl_work(struct work_struct * work)2515 static void nvme_reset_ctrl_work(struct work_struct *work)
2516 {
2517 struct nvme_ctrl *ctrl =
2518 container_of(work, struct nvme_ctrl, reset_work);
2519 int ret;
2520
2521 if (nvme_tcp_key_revoke_needed(ctrl))
2522 nvme_auth_revoke_tls_key(ctrl);
2523 nvme_stop_ctrl(ctrl);
2524 nvme_tcp_teardown_ctrl(ctrl, false);
2525
2526 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2527 /* state change failure is ok if we started ctrl delete */
2528 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
2529
2530 WARN_ON_ONCE(state != NVME_CTRL_DELETING &&
2531 state != NVME_CTRL_DELETING_NOIO);
2532 return;
2533 }
2534
2535 ret = nvme_tcp_setup_ctrl(ctrl, false);
2536 if (ret)
2537 goto out_fail;
2538
2539 return;
2540
2541 out_fail:
2542 ++ctrl->nr_reconnects;
2543 nvme_tcp_reconnect_or_remove(ctrl, ret);
2544 }
2545
nvme_tcp_stop_ctrl(struct nvme_ctrl * ctrl)2546 static void nvme_tcp_stop_ctrl(struct nvme_ctrl *ctrl)
2547 {
2548 flush_work(&to_tcp_ctrl(ctrl)->err_work);
2549 cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work);
2550 }
2551
nvme_tcp_free_ctrl(struct nvme_ctrl * nctrl)2552 static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl)
2553 {
2554 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
2555
2556 if (list_empty(&ctrl->list))
2557 goto free_ctrl;
2558
2559 mutex_lock(&nvme_tcp_ctrl_mutex);
2560 list_del(&ctrl->list);
2561 mutex_unlock(&nvme_tcp_ctrl_mutex);
2562
2563 nvmf_free_options(nctrl->opts);
2564 free_ctrl:
2565 kfree(ctrl->queues);
2566 kfree(ctrl);
2567 }
2568
nvme_tcp_set_sg_null(struct nvme_command * c)2569 static void nvme_tcp_set_sg_null(struct nvme_command *c)
2570 {
2571 struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2572
2573 sg->addr = 0;
2574 sg->length = 0;
2575 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2576 NVME_SGL_FMT_TRANSPORT_A;
2577 }
2578
nvme_tcp_set_sg_inline(struct nvme_tcp_queue * queue,struct nvme_command * c,u32 data_len)2579 static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue,
2580 struct nvme_command *c, u32 data_len)
2581 {
2582 struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2583
2584 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
2585 sg->length = cpu_to_le32(data_len);
2586 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
2587 }
2588
nvme_tcp_set_sg_host_data(struct nvme_command * c,u32 data_len)2589 static void nvme_tcp_set_sg_host_data(struct nvme_command *c,
2590 u32 data_len)
2591 {
2592 struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2593
2594 sg->addr = 0;
2595 sg->length = cpu_to_le32(data_len);
2596 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2597 NVME_SGL_FMT_TRANSPORT_A;
2598 }
2599
nvme_tcp_submit_async_event(struct nvme_ctrl * arg)2600 static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg)
2601 {
2602 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg);
2603 struct nvme_tcp_queue *queue = &ctrl->queues[0];
2604 struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu;
2605 struct nvme_command *cmd = &pdu->cmd;
2606 u8 hdgst = nvme_tcp_hdgst_len(queue);
2607
2608 memset(pdu, 0, sizeof(*pdu));
2609 pdu->hdr.type = nvme_tcp_cmd;
2610 if (queue->hdr_digest)
2611 pdu->hdr.flags |= NVME_TCP_F_HDGST;
2612 pdu->hdr.hlen = sizeof(*pdu);
2613 pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
2614
2615 cmd->common.opcode = nvme_admin_async_event;
2616 cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
2617 cmd->common.flags |= NVME_CMD_SGL_METABUF;
2618 nvme_tcp_set_sg_null(cmd);
2619
2620 ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU;
2621 ctrl->async_req.offset = 0;
2622 ctrl->async_req.curr_bio = NULL;
2623 ctrl->async_req.data_len = 0;
2624 init_llist_node(&ctrl->async_req.lentry);
2625 INIT_LIST_HEAD(&ctrl->async_req.entry);
2626
2627 nvme_tcp_queue_request(&ctrl->async_req, true);
2628 }
2629
nvme_tcp_complete_timed_out(struct request * rq)2630 static void nvme_tcp_complete_timed_out(struct request *rq)
2631 {
2632 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2633 struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2634
2635 nvme_tcp_stop_queue(ctrl, nvme_tcp_queue_id(req->queue));
2636 nvmf_complete_timed_out_request(rq);
2637 }
2638
nvme_tcp_timeout(struct request * rq)2639 static enum blk_eh_timer_return nvme_tcp_timeout(struct request *rq)
2640 {
2641 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2642 struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2643 struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req);
2644 struct nvme_command *cmd = &pdu->cmd;
2645 int qid = nvme_tcp_queue_id(req->queue);
2646
2647 dev_warn(ctrl->device,
2648 "I/O tag %d (%04x) type %d opcode %#x (%s) QID %d timeout\n",
2649 rq->tag, nvme_cid(rq), pdu->hdr.type, cmd->common.opcode,
2650 nvme_fabrics_opcode_str(qid, cmd), qid);
2651
2652 if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE) {
2653 /*
2654 * If we are resetting, connecting or deleting we should
2655 * complete immediately because we may block controller
2656 * teardown or setup sequence
2657 * - ctrl disable/shutdown fabrics requests
2658 * - connect requests
2659 * - initialization admin requests
2660 * - I/O requests that entered after unquiescing and
2661 * the controller stopped responding
2662 *
2663 * All other requests should be cancelled by the error
2664 * recovery work, so it's fine that we fail it here.
2665 */
2666 nvme_tcp_complete_timed_out(rq);
2667 return BLK_EH_DONE;
2668 }
2669
2670 /*
2671 * LIVE state should trigger the normal error recovery which will
2672 * handle completing this request.
2673 */
2674 nvme_tcp_error_recovery(ctrl);
2675 return BLK_EH_RESET_TIMER;
2676 }
2677
nvme_tcp_map_data(struct nvme_tcp_queue * queue,struct request * rq)2678 static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue,
2679 struct request *rq)
2680 {
2681 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2682 struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req);
2683 struct nvme_command *c = &pdu->cmd;
2684
2685 c->common.flags |= NVME_CMD_SGL_METABUF;
2686
2687 if (!blk_rq_nr_phys_segments(rq))
2688 nvme_tcp_set_sg_null(c);
2689 else if (rq_data_dir(rq) == WRITE &&
2690 req->data_len <= nvme_tcp_inline_data_size(req))
2691 nvme_tcp_set_sg_inline(queue, c, req->data_len);
2692 else
2693 nvme_tcp_set_sg_host_data(c, req->data_len);
2694
2695 return 0;
2696 }
2697
nvme_tcp_setup_cmd_pdu(struct nvme_ns * ns,struct request * rq)2698 static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns,
2699 struct request *rq)
2700 {
2701 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2702 struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req);
2703 struct nvme_tcp_queue *queue = req->queue;
2704 u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0;
2705 blk_status_t ret;
2706
2707 ret = nvme_setup_cmd(ns, rq);
2708 if (ret)
2709 return ret;
2710
2711 req->state = NVME_TCP_SEND_CMD_PDU;
2712 req->status = cpu_to_le16(NVME_SC_SUCCESS);
2713 req->offset = 0;
2714 req->data_sent = 0;
2715 req->pdu_len = 0;
2716 req->pdu_sent = 0;
2717 req->h2cdata_left = 0;
2718 req->data_len = blk_rq_nr_phys_segments(rq) ?
2719 blk_rq_payload_bytes(rq) : 0;
2720 req->curr_bio = rq->bio;
2721 if (req->curr_bio && req->data_len)
2722 nvme_tcp_init_iter(req, rq_data_dir(rq));
2723
2724 if (rq_data_dir(rq) == WRITE &&
2725 req->data_len <= nvme_tcp_inline_data_size(req))
2726 req->pdu_len = req->data_len;
2727
2728 pdu->hdr.type = nvme_tcp_cmd;
2729 pdu->hdr.flags = 0;
2730 if (queue->hdr_digest)
2731 pdu->hdr.flags |= NVME_TCP_F_HDGST;
2732 if (queue->data_digest && req->pdu_len) {
2733 pdu->hdr.flags |= NVME_TCP_F_DDGST;
2734 ddgst = nvme_tcp_ddgst_len(queue);
2735 }
2736 pdu->hdr.hlen = sizeof(*pdu);
2737 pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0;
2738 pdu->hdr.plen =
2739 cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst);
2740
2741 ret = nvme_tcp_map_data(queue, rq);
2742 if (unlikely(ret)) {
2743 nvme_cleanup_cmd(rq);
2744 dev_err(queue->ctrl->ctrl.device,
2745 "Failed to map data (%d)\n", ret);
2746 return ret;
2747 }
2748
2749 return 0;
2750 }
2751
nvme_tcp_commit_rqs(struct blk_mq_hw_ctx * hctx)2752 static void nvme_tcp_commit_rqs(struct blk_mq_hw_ctx *hctx)
2753 {
2754 struct nvme_tcp_queue *queue = hctx->driver_data;
2755
2756 if (!llist_empty(&queue->req_list))
2757 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
2758 }
2759
nvme_tcp_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)2760 static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx,
2761 const struct blk_mq_queue_data *bd)
2762 {
2763 struct nvme_ns *ns = hctx->queue->queuedata;
2764 struct nvme_tcp_queue *queue = hctx->driver_data;
2765 struct request *rq = bd->rq;
2766 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2767 bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags);
2768 blk_status_t ret;
2769
2770 if (!nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2771 return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq);
2772
2773 ret = nvme_tcp_setup_cmd_pdu(ns, rq);
2774 if (unlikely(ret))
2775 return ret;
2776
2777 nvme_start_request(rq);
2778
2779 nvme_tcp_queue_request(req, bd->last);
2780
2781 return BLK_STS_OK;
2782 }
2783
nvme_tcp_map_queues(struct blk_mq_tag_set * set)2784 static void nvme_tcp_map_queues(struct blk_mq_tag_set *set)
2785 {
2786 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(set->driver_data);
2787
2788 nvmf_map_queues(set, &ctrl->ctrl, ctrl->io_queues);
2789 }
2790
nvme_tcp_poll(struct blk_mq_hw_ctx * hctx,struct io_comp_batch * iob)2791 static int nvme_tcp_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
2792 {
2793 struct nvme_tcp_queue *queue = hctx->driver_data;
2794 struct sock *sk = queue->sock->sk;
2795 int ret;
2796
2797 if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags))
2798 return 0;
2799
2800 set_bit(NVME_TCP_Q_POLLING, &queue->flags);
2801 if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue))
2802 sk_busy_loop(sk, true);
2803 ret = nvme_tcp_try_recv(queue);
2804 clear_bit(NVME_TCP_Q_POLLING, &queue->flags);
2805 return ret < 0 ? ret : queue->nr_cqe;
2806 }
2807
nvme_tcp_get_address(struct nvme_ctrl * ctrl,char * buf,int size)2808 static int nvme_tcp_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2809 {
2810 struct nvme_tcp_queue *queue = &to_tcp_ctrl(ctrl)->queues[0];
2811 struct sockaddr_storage src_addr;
2812 int ret, len;
2813
2814 len = nvmf_get_address(ctrl, buf, size);
2815
2816 if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags))
2817 return len;
2818
2819 mutex_lock(&queue->queue_lock);
2820
2821 ret = kernel_getsockname(queue->sock, (struct sockaddr *)&src_addr);
2822 if (ret > 0) {
2823 if (len > 0)
2824 len--; /* strip trailing newline */
2825 len += scnprintf(buf + len, size - len, "%ssrc_addr=%pISc\n",
2826 (len) ? "," : "", &src_addr);
2827 }
2828
2829 mutex_unlock(&queue->queue_lock);
2830
2831 return len;
2832 }
2833
2834 static const struct blk_mq_ops nvme_tcp_mq_ops = {
2835 .queue_rq = nvme_tcp_queue_rq,
2836 .commit_rqs = nvme_tcp_commit_rqs,
2837 .complete = nvme_complete_rq,
2838 .init_request = nvme_tcp_init_request,
2839 .exit_request = nvme_tcp_exit_request,
2840 .init_hctx = nvme_tcp_init_hctx,
2841 .timeout = nvme_tcp_timeout,
2842 .map_queues = nvme_tcp_map_queues,
2843 .poll = nvme_tcp_poll,
2844 };
2845
2846 static const struct blk_mq_ops nvme_tcp_admin_mq_ops = {
2847 .queue_rq = nvme_tcp_queue_rq,
2848 .complete = nvme_complete_rq,
2849 .init_request = nvme_tcp_init_request,
2850 .exit_request = nvme_tcp_exit_request,
2851 .init_hctx = nvme_tcp_init_admin_hctx,
2852 .timeout = nvme_tcp_timeout,
2853 };
2854
2855 static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = {
2856 .name = "tcp",
2857 .module = THIS_MODULE,
2858 .flags = NVME_F_FABRICS | NVME_F_BLOCKING,
2859 .reg_read32 = nvmf_reg_read32,
2860 .reg_read64 = nvmf_reg_read64,
2861 .reg_write32 = nvmf_reg_write32,
2862 .subsystem_reset = nvmf_subsystem_reset,
2863 .free_ctrl = nvme_tcp_free_ctrl,
2864 .submit_async_event = nvme_tcp_submit_async_event,
2865 .delete_ctrl = nvme_tcp_delete_ctrl,
2866 .get_address = nvme_tcp_get_address,
2867 .stop_ctrl = nvme_tcp_stop_ctrl,
2868 };
2869
2870 static bool
nvme_tcp_existing_controller(struct nvmf_ctrl_options * opts)2871 nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts)
2872 {
2873 struct nvme_tcp_ctrl *ctrl;
2874 bool found = false;
2875
2876 mutex_lock(&nvme_tcp_ctrl_mutex);
2877 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) {
2878 found = nvmf_ip_options_match(&ctrl->ctrl, opts);
2879 if (found)
2880 break;
2881 }
2882 mutex_unlock(&nvme_tcp_ctrl_mutex);
2883
2884 return found;
2885 }
2886
nvme_tcp_alloc_ctrl(struct device * dev,struct nvmf_ctrl_options * opts)2887 static struct nvme_tcp_ctrl *nvme_tcp_alloc_ctrl(struct device *dev,
2888 struct nvmf_ctrl_options *opts)
2889 {
2890 struct nvme_tcp_ctrl *ctrl;
2891 int ret;
2892
2893 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2894 if (!ctrl)
2895 return ERR_PTR(-ENOMEM);
2896
2897 INIT_LIST_HEAD(&ctrl->list);
2898 ctrl->ctrl.opts = opts;
2899 ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2900 opts->nr_poll_queues + 1;
2901 ctrl->ctrl.sqsize = opts->queue_size - 1;
2902 ctrl->ctrl.kato = opts->kato;
2903
2904 INIT_DELAYED_WORK(&ctrl->connect_work,
2905 nvme_tcp_reconnect_ctrl_work);
2906 INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work);
2907 INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work);
2908
2909 if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2910 opts->trsvcid =
2911 kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL);
2912 if (!opts->trsvcid) {
2913 ret = -ENOMEM;
2914 goto out_free_ctrl;
2915 }
2916 opts->mask |= NVMF_OPT_TRSVCID;
2917 }
2918
2919 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2920 opts->traddr, opts->trsvcid, &ctrl->addr);
2921 if (ret) {
2922 pr_err("malformed address passed: %s:%s\n",
2923 opts->traddr, opts->trsvcid);
2924 goto out_free_ctrl;
2925 }
2926
2927 if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2928 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2929 opts->host_traddr, NULL, &ctrl->src_addr);
2930 if (ret) {
2931 pr_err("malformed src address passed: %s\n",
2932 opts->host_traddr);
2933 goto out_free_ctrl;
2934 }
2935 }
2936
2937 if (opts->mask & NVMF_OPT_HOST_IFACE) {
2938 if (!__dev_get_by_name(&init_net, opts->host_iface)) {
2939 pr_err("invalid interface passed: %s\n",
2940 opts->host_iface);
2941 ret = -ENODEV;
2942 goto out_free_ctrl;
2943 }
2944 }
2945
2946 if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) {
2947 ret = -EALREADY;
2948 goto out_free_ctrl;
2949 }
2950
2951 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2952 GFP_KERNEL);
2953 if (!ctrl->queues) {
2954 ret = -ENOMEM;
2955 goto out_free_ctrl;
2956 }
2957
2958 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0);
2959 if (ret)
2960 goto out_kfree_queues;
2961
2962 return ctrl;
2963 out_kfree_queues:
2964 kfree(ctrl->queues);
2965 out_free_ctrl:
2966 kfree(ctrl);
2967 return ERR_PTR(ret);
2968 }
2969
nvme_tcp_create_ctrl(struct device * dev,struct nvmf_ctrl_options * opts)2970 static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev,
2971 struct nvmf_ctrl_options *opts)
2972 {
2973 struct nvme_tcp_ctrl *ctrl;
2974 int ret;
2975
2976 ctrl = nvme_tcp_alloc_ctrl(dev, opts);
2977 if (IS_ERR(ctrl))
2978 return ERR_CAST(ctrl);
2979
2980 ret = nvme_add_ctrl(&ctrl->ctrl);
2981 if (ret)
2982 goto out_put_ctrl;
2983
2984 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2985 WARN_ON_ONCE(1);
2986 ret = -EINTR;
2987 goto out_uninit_ctrl;
2988 }
2989
2990 ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true);
2991 if (ret)
2992 goto out_uninit_ctrl;
2993
2994 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp, hostnqn: %s\n",
2995 nvmf_ctrl_subsysnqn(&ctrl->ctrl), &ctrl->addr, opts->host->nqn);
2996
2997 mutex_lock(&nvme_tcp_ctrl_mutex);
2998 list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list);
2999 mutex_unlock(&nvme_tcp_ctrl_mutex);
3000
3001 return &ctrl->ctrl;
3002
3003 out_uninit_ctrl:
3004 nvme_uninit_ctrl(&ctrl->ctrl);
3005 out_put_ctrl:
3006 nvme_put_ctrl(&ctrl->ctrl);
3007 if (ret > 0)
3008 ret = -EIO;
3009 return ERR_PTR(ret);
3010 }
3011
3012 static struct nvmf_transport_ops nvme_tcp_transport = {
3013 .name = "tcp",
3014 .module = THIS_MODULE,
3015 .required_opts = NVMF_OPT_TRADDR,
3016 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
3017 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
3018 NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST |
3019 NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
3020 NVMF_OPT_TOS | NVMF_OPT_HOST_IFACE | NVMF_OPT_TLS |
3021 NVMF_OPT_KEYRING | NVMF_OPT_TLS_KEY | NVMF_OPT_CONCAT,
3022 .create_ctrl = nvme_tcp_create_ctrl,
3023 };
3024
nvme_tcp_init_module(void)3025 static int __init nvme_tcp_init_module(void)
3026 {
3027 unsigned int wq_flags = WQ_MEM_RECLAIM | WQ_HIGHPRI | WQ_SYSFS;
3028 int cpu;
3029
3030 BUILD_BUG_ON(sizeof(struct nvme_tcp_hdr) != 8);
3031 BUILD_BUG_ON(sizeof(struct nvme_tcp_cmd_pdu) != 72);
3032 BUILD_BUG_ON(sizeof(struct nvme_tcp_data_pdu) != 24);
3033 BUILD_BUG_ON(sizeof(struct nvme_tcp_rsp_pdu) != 24);
3034 BUILD_BUG_ON(sizeof(struct nvme_tcp_r2t_pdu) != 24);
3035 BUILD_BUG_ON(sizeof(struct nvme_tcp_icreq_pdu) != 128);
3036 BUILD_BUG_ON(sizeof(struct nvme_tcp_icresp_pdu) != 128);
3037 BUILD_BUG_ON(sizeof(struct nvme_tcp_term_pdu) != 24);
3038
3039 if (wq_unbound)
3040 wq_flags |= WQ_UNBOUND;
3041
3042 nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq", wq_flags, 0);
3043 if (!nvme_tcp_wq)
3044 return -ENOMEM;
3045
3046 for_each_possible_cpu(cpu)
3047 atomic_set(&nvme_tcp_cpu_queues[cpu], 0);
3048
3049 nvmf_register_transport(&nvme_tcp_transport);
3050 return 0;
3051 }
3052
nvme_tcp_cleanup_module(void)3053 static void __exit nvme_tcp_cleanup_module(void)
3054 {
3055 struct nvme_tcp_ctrl *ctrl;
3056
3057 nvmf_unregister_transport(&nvme_tcp_transport);
3058
3059 mutex_lock(&nvme_tcp_ctrl_mutex);
3060 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list)
3061 nvme_delete_ctrl(&ctrl->ctrl);
3062 mutex_unlock(&nvme_tcp_ctrl_mutex);
3063 flush_workqueue(nvme_delete_wq);
3064
3065 destroy_workqueue(nvme_tcp_wq);
3066 }
3067
3068 module_init(nvme_tcp_init_module);
3069 module_exit(nvme_tcp_cleanup_module);
3070
3071 MODULE_DESCRIPTION("NVMe host TCP transport driver");
3072 MODULE_LICENSE("GPL v2");
3073