1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVMe over Fabrics RDMA host code. 4 * Copyright (c) 2015-2016 HGST, a Western Digital Company. 5 */ 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 #include <linux/module.h> 8 #include <linux/init.h> 9 #include <linux/slab.h> 10 #include <rdma/mr_pool.h> 11 #include <linux/err.h> 12 #include <linux/string.h> 13 #include <linux/atomic.h> 14 #include <linux/blk-mq.h> 15 #include <linux/blk-integrity.h> 16 #include <linux/types.h> 17 #include <linux/list.h> 18 #include <linux/mutex.h> 19 #include <linux/scatterlist.h> 20 #include <linux/nvme.h> 21 #include <asm/unaligned.h> 22 23 #include <rdma/ib_verbs.h> 24 #include <rdma/rdma_cm.h> 25 #include <linux/nvme-rdma.h> 26 27 #include "nvme.h" 28 #include "fabrics.h" 29 30 31 #define NVME_RDMA_CM_TIMEOUT_MS 3000 /* 3 second */ 32 33 #define NVME_RDMA_MAX_SEGMENTS 256 34 35 #define NVME_RDMA_MAX_INLINE_SEGMENTS 4 36 37 #define NVME_RDMA_DATA_SGL_SIZE \ 38 (sizeof(struct scatterlist) * NVME_INLINE_SG_CNT) 39 #define NVME_RDMA_METADATA_SGL_SIZE \ 40 (sizeof(struct scatterlist) * NVME_INLINE_METADATA_SG_CNT) 41 42 struct nvme_rdma_device { 43 struct ib_device *dev; 44 struct ib_pd *pd; 45 struct kref ref; 46 struct list_head entry; 47 unsigned int num_inline_segments; 48 }; 49 50 struct nvme_rdma_qe { 51 struct ib_cqe cqe; 52 void *data; 53 u64 dma; 54 }; 55 56 struct nvme_rdma_sgl { 57 int nents; 58 struct sg_table sg_table; 59 }; 60 61 struct nvme_rdma_queue; 62 struct nvme_rdma_request { 63 struct nvme_request req; 64 struct ib_mr *mr; 65 struct nvme_rdma_qe sqe; 66 union nvme_result result; 67 __le16 status; 68 refcount_t ref; 69 struct ib_sge sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS]; 70 u32 num_sge; 71 struct ib_reg_wr reg_wr; 72 struct ib_cqe reg_cqe; 73 struct nvme_rdma_queue *queue; 74 struct nvme_rdma_sgl data_sgl; 75 struct nvme_rdma_sgl *metadata_sgl; 76 bool use_sig_mr; 77 }; 78 79 enum nvme_rdma_queue_flags { 80 NVME_RDMA_Q_ALLOCATED = 0, 81 NVME_RDMA_Q_LIVE = 1, 82 NVME_RDMA_Q_TR_READY = 2, 83 }; 84 85 struct nvme_rdma_queue { 86 struct nvme_rdma_qe *rsp_ring; 87 int queue_size; 88 size_t cmnd_capsule_len; 89 struct nvme_rdma_ctrl *ctrl; 90 struct nvme_rdma_device *device; 91 struct ib_cq *ib_cq; 92 struct ib_qp *qp; 93 94 unsigned long flags; 95 struct rdma_cm_id *cm_id; 96 int cm_error; 97 struct completion cm_done; 98 bool pi_support; 99 int cq_size; 100 struct mutex queue_lock; 101 }; 102 103 struct nvme_rdma_ctrl { 104 /* read only in the hot path */ 105 struct nvme_rdma_queue *queues; 106 107 /* other member variables */ 108 struct blk_mq_tag_set tag_set; 109 struct work_struct err_work; 110 111 struct nvme_rdma_qe async_event_sqe; 112 113 struct delayed_work reconnect_work; 114 115 struct list_head list; 116 117 struct blk_mq_tag_set admin_tag_set; 118 struct nvme_rdma_device *device; 119 120 u32 max_fr_pages; 121 122 struct sockaddr_storage addr; 123 struct sockaddr_storage src_addr; 124 125 struct nvme_ctrl ctrl; 126 bool use_inline_data; 127 u32 io_queues[HCTX_MAX_TYPES]; 128 }; 129 130 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl) 131 { 132 return container_of(ctrl, struct nvme_rdma_ctrl, ctrl); 133 } 134 135 static LIST_HEAD(device_list); 136 static DEFINE_MUTEX(device_list_mutex); 137 138 static LIST_HEAD(nvme_rdma_ctrl_list); 139 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex); 140 141 /* 142 * Disabling this option makes small I/O goes faster, but is fundamentally 143 * unsafe. With it turned off we will have to register a global rkey that 144 * allows read and write access to all physical memory. 145 */ 146 static bool register_always = true; 147 module_param(register_always, bool, 0444); 148 MODULE_PARM_DESC(register_always, 149 "Use memory registration even for contiguous memory regions"); 150 151 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id, 152 struct rdma_cm_event *event); 153 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc); 154 static void nvme_rdma_complete_rq(struct request *rq); 155 156 static const struct blk_mq_ops nvme_rdma_mq_ops; 157 static const struct blk_mq_ops nvme_rdma_admin_mq_ops; 158 159 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue) 160 { 161 return queue - queue->ctrl->queues; 162 } 163 164 static bool nvme_rdma_poll_queue(struct nvme_rdma_queue *queue) 165 { 166 return nvme_rdma_queue_idx(queue) > 167 queue->ctrl->io_queues[HCTX_TYPE_DEFAULT] + 168 queue->ctrl->io_queues[HCTX_TYPE_READ]; 169 } 170 171 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue) 172 { 173 return queue->cmnd_capsule_len - sizeof(struct nvme_command); 174 } 175 176 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe, 177 size_t capsule_size, enum dma_data_direction dir) 178 { 179 ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir); 180 kfree(qe->data); 181 } 182 183 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe, 184 size_t capsule_size, enum dma_data_direction dir) 185 { 186 qe->data = kzalloc(capsule_size, GFP_KERNEL); 187 if (!qe->data) 188 return -ENOMEM; 189 190 qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir); 191 if (ib_dma_mapping_error(ibdev, qe->dma)) { 192 kfree(qe->data); 193 qe->data = NULL; 194 return -ENOMEM; 195 } 196 197 return 0; 198 } 199 200 static void nvme_rdma_free_ring(struct ib_device *ibdev, 201 struct nvme_rdma_qe *ring, size_t ib_queue_size, 202 size_t capsule_size, enum dma_data_direction dir) 203 { 204 int i; 205 206 for (i = 0; i < ib_queue_size; i++) 207 nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir); 208 kfree(ring); 209 } 210 211 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev, 212 size_t ib_queue_size, size_t capsule_size, 213 enum dma_data_direction dir) 214 { 215 struct nvme_rdma_qe *ring; 216 int i; 217 218 ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL); 219 if (!ring) 220 return NULL; 221 222 /* 223 * Bind the CQEs (post recv buffers) DMA mapping to the RDMA queue 224 * lifetime. It's safe, since any chage in the underlying RDMA device 225 * will issue error recovery and queue re-creation. 226 */ 227 for (i = 0; i < ib_queue_size; i++) { 228 if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir)) 229 goto out_free_ring; 230 } 231 232 return ring; 233 234 out_free_ring: 235 nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir); 236 return NULL; 237 } 238 239 static void nvme_rdma_qp_event(struct ib_event *event, void *context) 240 { 241 pr_debug("QP event %s (%d)\n", 242 ib_event_msg(event->event), event->event); 243 244 } 245 246 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue) 247 { 248 int ret; 249 250 ret = wait_for_completion_interruptible(&queue->cm_done); 251 if (ret) 252 return ret; 253 WARN_ON_ONCE(queue->cm_error > 0); 254 return queue->cm_error; 255 } 256 257 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor) 258 { 259 struct nvme_rdma_device *dev = queue->device; 260 struct ib_qp_init_attr init_attr; 261 int ret; 262 263 memset(&init_attr, 0, sizeof(init_attr)); 264 init_attr.event_handler = nvme_rdma_qp_event; 265 /* +1 for drain */ 266 init_attr.cap.max_send_wr = factor * queue->queue_size + 1; 267 /* +1 for drain */ 268 init_attr.cap.max_recv_wr = queue->queue_size + 1; 269 init_attr.cap.max_recv_sge = 1; 270 init_attr.cap.max_send_sge = 1 + dev->num_inline_segments; 271 init_attr.sq_sig_type = IB_SIGNAL_REQ_WR; 272 init_attr.qp_type = IB_QPT_RC; 273 init_attr.send_cq = queue->ib_cq; 274 init_attr.recv_cq = queue->ib_cq; 275 if (queue->pi_support) 276 init_attr.create_flags |= IB_QP_CREATE_INTEGRITY_EN; 277 init_attr.qp_context = queue; 278 279 ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr); 280 281 queue->qp = queue->cm_id->qp; 282 return ret; 283 } 284 285 static void nvme_rdma_exit_request(struct blk_mq_tag_set *set, 286 struct request *rq, unsigned int hctx_idx) 287 { 288 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 289 290 kfree(req->sqe.data); 291 } 292 293 static int nvme_rdma_init_request(struct blk_mq_tag_set *set, 294 struct request *rq, unsigned int hctx_idx, 295 unsigned int numa_node) 296 { 297 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(set->driver_data); 298 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 299 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; 300 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx]; 301 302 nvme_req(rq)->ctrl = &ctrl->ctrl; 303 req->sqe.data = kzalloc(sizeof(struct nvme_command), GFP_KERNEL); 304 if (!req->sqe.data) 305 return -ENOMEM; 306 307 /* metadata nvme_rdma_sgl struct is located after command's data SGL */ 308 if (queue->pi_support) 309 req->metadata_sgl = (void *)nvme_req(rq) + 310 sizeof(struct nvme_rdma_request) + 311 NVME_RDMA_DATA_SGL_SIZE; 312 313 req->queue = queue; 314 nvme_req(rq)->cmd = req->sqe.data; 315 316 return 0; 317 } 318 319 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 320 unsigned int hctx_idx) 321 { 322 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(data); 323 struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1]; 324 325 BUG_ON(hctx_idx >= ctrl->ctrl.queue_count); 326 327 hctx->driver_data = queue; 328 return 0; 329 } 330 331 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, 332 unsigned int hctx_idx) 333 { 334 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(data); 335 struct nvme_rdma_queue *queue = &ctrl->queues[0]; 336 337 BUG_ON(hctx_idx != 0); 338 339 hctx->driver_data = queue; 340 return 0; 341 } 342 343 static void nvme_rdma_free_dev(struct kref *ref) 344 { 345 struct nvme_rdma_device *ndev = 346 container_of(ref, struct nvme_rdma_device, ref); 347 348 mutex_lock(&device_list_mutex); 349 list_del(&ndev->entry); 350 mutex_unlock(&device_list_mutex); 351 352 ib_dealloc_pd(ndev->pd); 353 kfree(ndev); 354 } 355 356 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev) 357 { 358 kref_put(&dev->ref, nvme_rdma_free_dev); 359 } 360 361 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev) 362 { 363 return kref_get_unless_zero(&dev->ref); 364 } 365 366 static struct nvme_rdma_device * 367 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id) 368 { 369 struct nvme_rdma_device *ndev; 370 371 mutex_lock(&device_list_mutex); 372 list_for_each_entry(ndev, &device_list, entry) { 373 if (ndev->dev->node_guid == cm_id->device->node_guid && 374 nvme_rdma_dev_get(ndev)) 375 goto out_unlock; 376 } 377 378 ndev = kzalloc(sizeof(*ndev), GFP_KERNEL); 379 if (!ndev) 380 goto out_err; 381 382 ndev->dev = cm_id->device; 383 kref_init(&ndev->ref); 384 385 ndev->pd = ib_alloc_pd(ndev->dev, 386 register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY); 387 if (IS_ERR(ndev->pd)) 388 goto out_free_dev; 389 390 if (!(ndev->dev->attrs.device_cap_flags & 391 IB_DEVICE_MEM_MGT_EXTENSIONS)) { 392 dev_err(&ndev->dev->dev, 393 "Memory registrations not supported.\n"); 394 goto out_free_pd; 395 } 396 397 ndev->num_inline_segments = min(NVME_RDMA_MAX_INLINE_SEGMENTS, 398 ndev->dev->attrs.max_send_sge - 1); 399 list_add(&ndev->entry, &device_list); 400 out_unlock: 401 mutex_unlock(&device_list_mutex); 402 return ndev; 403 404 out_free_pd: 405 ib_dealloc_pd(ndev->pd); 406 out_free_dev: 407 kfree(ndev); 408 out_err: 409 mutex_unlock(&device_list_mutex); 410 return NULL; 411 } 412 413 static void nvme_rdma_free_cq(struct nvme_rdma_queue *queue) 414 { 415 if (nvme_rdma_poll_queue(queue)) 416 ib_free_cq(queue->ib_cq); 417 else 418 ib_cq_pool_put(queue->ib_cq, queue->cq_size); 419 } 420 421 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue) 422 { 423 struct nvme_rdma_device *dev; 424 struct ib_device *ibdev; 425 426 if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags)) 427 return; 428 429 dev = queue->device; 430 ibdev = dev->dev; 431 432 if (queue->pi_support) 433 ib_mr_pool_destroy(queue->qp, &queue->qp->sig_mrs); 434 ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs); 435 436 /* 437 * The cm_id object might have been destroyed during RDMA connection 438 * establishment error flow to avoid getting other cma events, thus 439 * the destruction of the QP shouldn't use rdma_cm API. 440 */ 441 ib_destroy_qp(queue->qp); 442 nvme_rdma_free_cq(queue); 443 444 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size, 445 sizeof(struct nvme_completion), DMA_FROM_DEVICE); 446 447 nvme_rdma_dev_put(dev); 448 } 449 450 static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev, bool pi_support) 451 { 452 u32 max_page_list_len; 453 454 if (pi_support) 455 max_page_list_len = ibdev->attrs.max_pi_fast_reg_page_list_len; 456 else 457 max_page_list_len = ibdev->attrs.max_fast_reg_page_list_len; 458 459 return min_t(u32, NVME_RDMA_MAX_SEGMENTS, max_page_list_len - 1); 460 } 461 462 static int nvme_rdma_create_cq(struct ib_device *ibdev, 463 struct nvme_rdma_queue *queue) 464 { 465 int ret, comp_vector, idx = nvme_rdma_queue_idx(queue); 466 467 /* 468 * Spread I/O queues completion vectors according their queue index. 469 * Admin queues can always go on completion vector 0. 470 */ 471 comp_vector = (idx == 0 ? idx : idx - 1) % ibdev->num_comp_vectors; 472 473 /* Polling queues need direct cq polling context */ 474 if (nvme_rdma_poll_queue(queue)) 475 queue->ib_cq = ib_alloc_cq(ibdev, queue, queue->cq_size, 476 comp_vector, IB_POLL_DIRECT); 477 else 478 queue->ib_cq = ib_cq_pool_get(ibdev, queue->cq_size, 479 comp_vector, IB_POLL_SOFTIRQ); 480 481 if (IS_ERR(queue->ib_cq)) { 482 ret = PTR_ERR(queue->ib_cq); 483 return ret; 484 } 485 486 return 0; 487 } 488 489 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue) 490 { 491 struct ib_device *ibdev; 492 const int send_wr_factor = 3; /* MR, SEND, INV */ 493 const int cq_factor = send_wr_factor + 1; /* + RECV */ 494 int ret, pages_per_mr; 495 496 queue->device = nvme_rdma_find_get_device(queue->cm_id); 497 if (!queue->device) { 498 dev_err(queue->cm_id->device->dev.parent, 499 "no client data found!\n"); 500 return -ECONNREFUSED; 501 } 502 ibdev = queue->device->dev; 503 504 /* +1 for ib_stop_cq */ 505 queue->cq_size = cq_factor * queue->queue_size + 1; 506 507 ret = nvme_rdma_create_cq(ibdev, queue); 508 if (ret) 509 goto out_put_dev; 510 511 ret = nvme_rdma_create_qp(queue, send_wr_factor); 512 if (ret) 513 goto out_destroy_ib_cq; 514 515 queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size, 516 sizeof(struct nvme_completion), DMA_FROM_DEVICE); 517 if (!queue->rsp_ring) { 518 ret = -ENOMEM; 519 goto out_destroy_qp; 520 } 521 522 /* 523 * Currently we don't use SG_GAPS MR's so if the first entry is 524 * misaligned we'll end up using two entries for a single data page, 525 * so one additional entry is required. 526 */ 527 pages_per_mr = nvme_rdma_get_max_fr_pages(ibdev, queue->pi_support) + 1; 528 ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs, 529 queue->queue_size, 530 IB_MR_TYPE_MEM_REG, 531 pages_per_mr, 0); 532 if (ret) { 533 dev_err(queue->ctrl->ctrl.device, 534 "failed to initialize MR pool sized %d for QID %d\n", 535 queue->queue_size, nvme_rdma_queue_idx(queue)); 536 goto out_destroy_ring; 537 } 538 539 if (queue->pi_support) { 540 ret = ib_mr_pool_init(queue->qp, &queue->qp->sig_mrs, 541 queue->queue_size, IB_MR_TYPE_INTEGRITY, 542 pages_per_mr, pages_per_mr); 543 if (ret) { 544 dev_err(queue->ctrl->ctrl.device, 545 "failed to initialize PI MR pool sized %d for QID %d\n", 546 queue->queue_size, nvme_rdma_queue_idx(queue)); 547 goto out_destroy_mr_pool; 548 } 549 } 550 551 set_bit(NVME_RDMA_Q_TR_READY, &queue->flags); 552 553 return 0; 554 555 out_destroy_mr_pool: 556 ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs); 557 out_destroy_ring: 558 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size, 559 sizeof(struct nvme_completion), DMA_FROM_DEVICE); 560 out_destroy_qp: 561 rdma_destroy_qp(queue->cm_id); 562 out_destroy_ib_cq: 563 nvme_rdma_free_cq(queue); 564 out_put_dev: 565 nvme_rdma_dev_put(queue->device); 566 return ret; 567 } 568 569 static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl, 570 int idx, size_t queue_size) 571 { 572 struct nvme_rdma_queue *queue; 573 struct sockaddr *src_addr = NULL; 574 int ret; 575 576 queue = &ctrl->queues[idx]; 577 mutex_init(&queue->queue_lock); 578 queue->ctrl = ctrl; 579 if (idx && ctrl->ctrl.max_integrity_segments) 580 queue->pi_support = true; 581 else 582 queue->pi_support = false; 583 init_completion(&queue->cm_done); 584 585 if (idx > 0) 586 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16; 587 else 588 queue->cmnd_capsule_len = sizeof(struct nvme_command); 589 590 queue->queue_size = queue_size; 591 592 queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue, 593 RDMA_PS_TCP, IB_QPT_RC); 594 if (IS_ERR(queue->cm_id)) { 595 dev_info(ctrl->ctrl.device, 596 "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id)); 597 ret = PTR_ERR(queue->cm_id); 598 goto out_destroy_mutex; 599 } 600 601 if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR) 602 src_addr = (struct sockaddr *)&ctrl->src_addr; 603 604 queue->cm_error = -ETIMEDOUT; 605 ret = rdma_resolve_addr(queue->cm_id, src_addr, 606 (struct sockaddr *)&ctrl->addr, 607 NVME_RDMA_CM_TIMEOUT_MS); 608 if (ret) { 609 dev_info(ctrl->ctrl.device, 610 "rdma_resolve_addr failed (%d).\n", ret); 611 goto out_destroy_cm_id; 612 } 613 614 ret = nvme_rdma_wait_for_cm(queue); 615 if (ret) { 616 dev_info(ctrl->ctrl.device, 617 "rdma connection establishment failed (%d)\n", ret); 618 goto out_destroy_cm_id; 619 } 620 621 set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags); 622 623 return 0; 624 625 out_destroy_cm_id: 626 rdma_destroy_id(queue->cm_id); 627 nvme_rdma_destroy_queue_ib(queue); 628 out_destroy_mutex: 629 mutex_destroy(&queue->queue_lock); 630 return ret; 631 } 632 633 static void __nvme_rdma_stop_queue(struct nvme_rdma_queue *queue) 634 { 635 rdma_disconnect(queue->cm_id); 636 ib_drain_qp(queue->qp); 637 } 638 639 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue) 640 { 641 mutex_lock(&queue->queue_lock); 642 if (test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags)) 643 __nvme_rdma_stop_queue(queue); 644 mutex_unlock(&queue->queue_lock); 645 } 646 647 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue) 648 { 649 if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags)) 650 return; 651 652 rdma_destroy_id(queue->cm_id); 653 nvme_rdma_destroy_queue_ib(queue); 654 mutex_destroy(&queue->queue_lock); 655 } 656 657 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl) 658 { 659 int i; 660 661 for (i = 1; i < ctrl->ctrl.queue_count; i++) 662 nvme_rdma_free_queue(&ctrl->queues[i]); 663 } 664 665 static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl) 666 { 667 int i; 668 669 for (i = 1; i < ctrl->ctrl.queue_count; i++) 670 nvme_rdma_stop_queue(&ctrl->queues[i]); 671 } 672 673 static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx) 674 { 675 struct nvme_rdma_queue *queue = &ctrl->queues[idx]; 676 int ret; 677 678 if (idx) 679 ret = nvmf_connect_io_queue(&ctrl->ctrl, idx); 680 else 681 ret = nvmf_connect_admin_queue(&ctrl->ctrl); 682 683 if (!ret) { 684 set_bit(NVME_RDMA_Q_LIVE, &queue->flags); 685 } else { 686 if (test_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags)) 687 __nvme_rdma_stop_queue(queue); 688 dev_info(ctrl->ctrl.device, 689 "failed to connect queue: %d ret=%d\n", idx, ret); 690 } 691 return ret; 692 } 693 694 static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl, 695 int first, int last) 696 { 697 int i, ret = 0; 698 699 for (i = first; i < last; i++) { 700 ret = nvme_rdma_start_queue(ctrl, i); 701 if (ret) 702 goto out_stop_queues; 703 } 704 705 return 0; 706 707 out_stop_queues: 708 for (i--; i >= first; i--) 709 nvme_rdma_stop_queue(&ctrl->queues[i]); 710 return ret; 711 } 712 713 static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl) 714 { 715 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 716 struct ib_device *ibdev = ctrl->device->dev; 717 unsigned int nr_io_queues, nr_default_queues; 718 unsigned int nr_read_queues, nr_poll_queues; 719 int i, ret; 720 721 nr_read_queues = min_t(unsigned int, ibdev->num_comp_vectors, 722 min(opts->nr_io_queues, num_online_cpus())); 723 nr_default_queues = min_t(unsigned int, ibdev->num_comp_vectors, 724 min(opts->nr_write_queues, num_online_cpus())); 725 nr_poll_queues = min(opts->nr_poll_queues, num_online_cpus()); 726 nr_io_queues = nr_read_queues + nr_default_queues + nr_poll_queues; 727 728 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues); 729 if (ret) 730 return ret; 731 732 if (nr_io_queues == 0) { 733 dev_err(ctrl->ctrl.device, 734 "unable to set any I/O queues\n"); 735 return -ENOMEM; 736 } 737 738 ctrl->ctrl.queue_count = nr_io_queues + 1; 739 dev_info(ctrl->ctrl.device, 740 "creating %d I/O queues.\n", nr_io_queues); 741 742 if (opts->nr_write_queues && nr_read_queues < nr_io_queues) { 743 /* 744 * separate read/write queues 745 * hand out dedicated default queues only after we have 746 * sufficient read queues. 747 */ 748 ctrl->io_queues[HCTX_TYPE_READ] = nr_read_queues; 749 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ]; 750 ctrl->io_queues[HCTX_TYPE_DEFAULT] = 751 min(nr_default_queues, nr_io_queues); 752 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT]; 753 } else { 754 /* 755 * shared read/write queues 756 * either no write queues were requested, or we don't have 757 * sufficient queue count to have dedicated default queues. 758 */ 759 ctrl->io_queues[HCTX_TYPE_DEFAULT] = 760 min(nr_read_queues, nr_io_queues); 761 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT]; 762 } 763 764 if (opts->nr_poll_queues && nr_io_queues) { 765 /* map dedicated poll queues only if we have queues left */ 766 ctrl->io_queues[HCTX_TYPE_POLL] = 767 min(nr_poll_queues, nr_io_queues); 768 } 769 770 for (i = 1; i < ctrl->ctrl.queue_count; i++) { 771 ret = nvme_rdma_alloc_queue(ctrl, i, 772 ctrl->ctrl.sqsize + 1); 773 if (ret) 774 goto out_free_queues; 775 } 776 777 return 0; 778 779 out_free_queues: 780 for (i--; i >= 1; i--) 781 nvme_rdma_free_queue(&ctrl->queues[i]); 782 783 return ret; 784 } 785 786 static int nvme_rdma_alloc_tag_set(struct nvme_ctrl *ctrl) 787 { 788 unsigned int cmd_size = sizeof(struct nvme_rdma_request) + 789 NVME_RDMA_DATA_SGL_SIZE; 790 791 if (ctrl->max_integrity_segments) 792 cmd_size += sizeof(struct nvme_rdma_sgl) + 793 NVME_RDMA_METADATA_SGL_SIZE; 794 795 return nvme_alloc_io_tag_set(ctrl, &to_rdma_ctrl(ctrl)->tag_set, 796 &nvme_rdma_mq_ops, 797 ctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2, 798 cmd_size); 799 } 800 801 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl) 802 { 803 if (ctrl->async_event_sqe.data) { 804 cancel_work_sync(&ctrl->ctrl.async_event_work); 805 nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe, 806 sizeof(struct nvme_command), DMA_TO_DEVICE); 807 ctrl->async_event_sqe.data = NULL; 808 } 809 nvme_rdma_free_queue(&ctrl->queues[0]); 810 } 811 812 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl, 813 bool new) 814 { 815 bool pi_capable = false; 816 int error; 817 818 error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH); 819 if (error) 820 return error; 821 822 ctrl->device = ctrl->queues[0].device; 823 ctrl->ctrl.numa_node = ibdev_to_node(ctrl->device->dev); 824 825 /* T10-PI support */ 826 if (ctrl->device->dev->attrs.kernel_cap_flags & 827 IBK_INTEGRITY_HANDOVER) 828 pi_capable = true; 829 830 ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev, 831 pi_capable); 832 833 /* 834 * Bind the async event SQE DMA mapping to the admin queue lifetime. 835 * It's safe, since any chage in the underlying RDMA device will issue 836 * error recovery and queue re-creation. 837 */ 838 error = nvme_rdma_alloc_qe(ctrl->device->dev, &ctrl->async_event_sqe, 839 sizeof(struct nvme_command), DMA_TO_DEVICE); 840 if (error) 841 goto out_free_queue; 842 843 if (new) { 844 error = nvme_alloc_admin_tag_set(&ctrl->ctrl, 845 &ctrl->admin_tag_set, &nvme_rdma_admin_mq_ops, 846 sizeof(struct nvme_rdma_request) + 847 NVME_RDMA_DATA_SGL_SIZE); 848 if (error) 849 goto out_free_async_qe; 850 851 } 852 853 error = nvme_rdma_start_queue(ctrl, 0); 854 if (error) 855 goto out_remove_admin_tag_set; 856 857 error = nvme_enable_ctrl(&ctrl->ctrl); 858 if (error) 859 goto out_stop_queue; 860 861 ctrl->ctrl.max_segments = ctrl->max_fr_pages; 862 ctrl->ctrl.max_hw_sectors = ctrl->max_fr_pages << (ilog2(SZ_4K) - 9); 863 if (pi_capable) 864 ctrl->ctrl.max_integrity_segments = ctrl->max_fr_pages; 865 else 866 ctrl->ctrl.max_integrity_segments = 0; 867 868 nvme_unquiesce_admin_queue(&ctrl->ctrl); 869 870 error = nvme_init_ctrl_finish(&ctrl->ctrl, false); 871 if (error) 872 goto out_quiesce_queue; 873 874 return 0; 875 876 out_quiesce_queue: 877 nvme_quiesce_admin_queue(&ctrl->ctrl); 878 blk_sync_queue(ctrl->ctrl.admin_q); 879 out_stop_queue: 880 nvme_rdma_stop_queue(&ctrl->queues[0]); 881 nvme_cancel_admin_tagset(&ctrl->ctrl); 882 out_remove_admin_tag_set: 883 if (new) 884 nvme_remove_admin_tag_set(&ctrl->ctrl); 885 out_free_async_qe: 886 if (ctrl->async_event_sqe.data) { 887 nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe, 888 sizeof(struct nvme_command), DMA_TO_DEVICE); 889 ctrl->async_event_sqe.data = NULL; 890 } 891 out_free_queue: 892 nvme_rdma_free_queue(&ctrl->queues[0]); 893 return error; 894 } 895 896 static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new) 897 { 898 int ret, nr_queues; 899 900 ret = nvme_rdma_alloc_io_queues(ctrl); 901 if (ret) 902 return ret; 903 904 if (new) { 905 ret = nvme_rdma_alloc_tag_set(&ctrl->ctrl); 906 if (ret) 907 goto out_free_io_queues; 908 } 909 910 /* 911 * Only start IO queues for which we have allocated the tagset 912 * and limitted it to the available queues. On reconnects, the 913 * queue number might have changed. 914 */ 915 nr_queues = min(ctrl->tag_set.nr_hw_queues + 1, ctrl->ctrl.queue_count); 916 ret = nvme_rdma_start_io_queues(ctrl, 1, nr_queues); 917 if (ret) 918 goto out_cleanup_tagset; 919 920 if (!new) { 921 nvme_unquiesce_io_queues(&ctrl->ctrl); 922 if (!nvme_wait_freeze_timeout(&ctrl->ctrl, NVME_IO_TIMEOUT)) { 923 /* 924 * If we timed out waiting for freeze we are likely to 925 * be stuck. Fail the controller initialization just 926 * to be safe. 927 */ 928 ret = -ENODEV; 929 goto out_wait_freeze_timed_out; 930 } 931 blk_mq_update_nr_hw_queues(ctrl->ctrl.tagset, 932 ctrl->ctrl.queue_count - 1); 933 nvme_unfreeze(&ctrl->ctrl); 934 } 935 936 /* 937 * If the number of queues has increased (reconnect case) 938 * start all new queues now. 939 */ 940 ret = nvme_rdma_start_io_queues(ctrl, nr_queues, 941 ctrl->tag_set.nr_hw_queues + 1); 942 if (ret) 943 goto out_wait_freeze_timed_out; 944 945 return 0; 946 947 out_wait_freeze_timed_out: 948 nvme_quiesce_io_queues(&ctrl->ctrl); 949 nvme_sync_io_queues(&ctrl->ctrl); 950 nvme_rdma_stop_io_queues(ctrl); 951 out_cleanup_tagset: 952 nvme_cancel_tagset(&ctrl->ctrl); 953 if (new) 954 nvme_remove_io_tag_set(&ctrl->ctrl); 955 out_free_io_queues: 956 nvme_rdma_free_io_queues(ctrl); 957 return ret; 958 } 959 960 static void nvme_rdma_teardown_admin_queue(struct nvme_rdma_ctrl *ctrl, 961 bool remove) 962 { 963 nvme_quiesce_admin_queue(&ctrl->ctrl); 964 blk_sync_queue(ctrl->ctrl.admin_q); 965 nvme_rdma_stop_queue(&ctrl->queues[0]); 966 nvme_cancel_admin_tagset(&ctrl->ctrl); 967 if (remove) { 968 nvme_unquiesce_admin_queue(&ctrl->ctrl); 969 nvme_remove_admin_tag_set(&ctrl->ctrl); 970 } 971 nvme_rdma_destroy_admin_queue(ctrl); 972 } 973 974 static void nvme_rdma_teardown_io_queues(struct nvme_rdma_ctrl *ctrl, 975 bool remove) 976 { 977 if (ctrl->ctrl.queue_count > 1) { 978 nvme_start_freeze(&ctrl->ctrl); 979 nvme_quiesce_io_queues(&ctrl->ctrl); 980 nvme_sync_io_queues(&ctrl->ctrl); 981 nvme_rdma_stop_io_queues(ctrl); 982 nvme_cancel_tagset(&ctrl->ctrl); 983 if (remove) { 984 nvme_unquiesce_io_queues(&ctrl->ctrl); 985 nvme_remove_io_tag_set(&ctrl->ctrl); 986 } 987 nvme_rdma_free_io_queues(ctrl); 988 } 989 } 990 991 static void nvme_rdma_stop_ctrl(struct nvme_ctrl *nctrl) 992 { 993 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 994 995 flush_work(&ctrl->err_work); 996 cancel_delayed_work_sync(&ctrl->reconnect_work); 997 } 998 999 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl) 1000 { 1001 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 1002 1003 if (list_empty(&ctrl->list)) 1004 goto free_ctrl; 1005 1006 mutex_lock(&nvme_rdma_ctrl_mutex); 1007 list_del(&ctrl->list); 1008 mutex_unlock(&nvme_rdma_ctrl_mutex); 1009 1010 nvmf_free_options(nctrl->opts); 1011 free_ctrl: 1012 kfree(ctrl->queues); 1013 kfree(ctrl); 1014 } 1015 1016 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl) 1017 { 1018 /* If we are resetting/deleting then do nothing */ 1019 if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) { 1020 WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW || 1021 ctrl->ctrl.state == NVME_CTRL_LIVE); 1022 return; 1023 } 1024 1025 if (nvmf_should_reconnect(&ctrl->ctrl)) { 1026 dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n", 1027 ctrl->ctrl.opts->reconnect_delay); 1028 queue_delayed_work(nvme_wq, &ctrl->reconnect_work, 1029 ctrl->ctrl.opts->reconnect_delay * HZ); 1030 } else { 1031 nvme_delete_ctrl(&ctrl->ctrl); 1032 } 1033 } 1034 1035 static int nvme_rdma_setup_ctrl(struct nvme_rdma_ctrl *ctrl, bool new) 1036 { 1037 int ret; 1038 bool changed; 1039 1040 ret = nvme_rdma_configure_admin_queue(ctrl, new); 1041 if (ret) 1042 return ret; 1043 1044 if (ctrl->ctrl.icdoff) { 1045 ret = -EOPNOTSUPP; 1046 dev_err(ctrl->ctrl.device, "icdoff is not supported!\n"); 1047 goto destroy_admin; 1048 } 1049 1050 if (!(ctrl->ctrl.sgls & (1 << 2))) { 1051 ret = -EOPNOTSUPP; 1052 dev_err(ctrl->ctrl.device, 1053 "Mandatory keyed sgls are not supported!\n"); 1054 goto destroy_admin; 1055 } 1056 1057 if (ctrl->ctrl.opts->queue_size > ctrl->ctrl.sqsize + 1) { 1058 dev_warn(ctrl->ctrl.device, 1059 "queue_size %zu > ctrl sqsize %u, clamping down\n", 1060 ctrl->ctrl.opts->queue_size, ctrl->ctrl.sqsize + 1); 1061 } 1062 1063 if (ctrl->ctrl.sqsize + 1 > NVME_RDMA_MAX_QUEUE_SIZE) { 1064 dev_warn(ctrl->ctrl.device, 1065 "ctrl sqsize %u > max queue size %u, clamping down\n", 1066 ctrl->ctrl.sqsize + 1, NVME_RDMA_MAX_QUEUE_SIZE); 1067 ctrl->ctrl.sqsize = NVME_RDMA_MAX_QUEUE_SIZE - 1; 1068 } 1069 1070 if (ctrl->ctrl.sqsize + 1 > ctrl->ctrl.maxcmd) { 1071 dev_warn(ctrl->ctrl.device, 1072 "sqsize %u > ctrl maxcmd %u, clamping down\n", 1073 ctrl->ctrl.sqsize + 1, ctrl->ctrl.maxcmd); 1074 ctrl->ctrl.sqsize = ctrl->ctrl.maxcmd - 1; 1075 } 1076 1077 if (ctrl->ctrl.sgls & (1 << 20)) 1078 ctrl->use_inline_data = true; 1079 1080 if (ctrl->ctrl.queue_count > 1) { 1081 ret = nvme_rdma_configure_io_queues(ctrl, new); 1082 if (ret) 1083 goto destroy_admin; 1084 } 1085 1086 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); 1087 if (!changed) { 1088 /* 1089 * state change failure is ok if we started ctrl delete, 1090 * unless we're during creation of a new controller to 1091 * avoid races with teardown flow. 1092 */ 1093 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING && 1094 ctrl->ctrl.state != NVME_CTRL_DELETING_NOIO); 1095 WARN_ON_ONCE(new); 1096 ret = -EINVAL; 1097 goto destroy_io; 1098 } 1099 1100 nvme_start_ctrl(&ctrl->ctrl); 1101 return 0; 1102 1103 destroy_io: 1104 if (ctrl->ctrl.queue_count > 1) { 1105 nvme_quiesce_io_queues(&ctrl->ctrl); 1106 nvme_sync_io_queues(&ctrl->ctrl); 1107 nvme_rdma_stop_io_queues(ctrl); 1108 nvme_cancel_tagset(&ctrl->ctrl); 1109 if (new) 1110 nvme_remove_io_tag_set(&ctrl->ctrl); 1111 nvme_rdma_free_io_queues(ctrl); 1112 } 1113 destroy_admin: 1114 nvme_quiesce_admin_queue(&ctrl->ctrl); 1115 blk_sync_queue(ctrl->ctrl.admin_q); 1116 nvme_rdma_stop_queue(&ctrl->queues[0]); 1117 nvme_cancel_admin_tagset(&ctrl->ctrl); 1118 if (new) 1119 nvme_remove_admin_tag_set(&ctrl->ctrl); 1120 nvme_rdma_destroy_admin_queue(ctrl); 1121 return ret; 1122 } 1123 1124 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work) 1125 { 1126 struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work), 1127 struct nvme_rdma_ctrl, reconnect_work); 1128 1129 ++ctrl->ctrl.nr_reconnects; 1130 1131 if (nvme_rdma_setup_ctrl(ctrl, false)) 1132 goto requeue; 1133 1134 dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n", 1135 ctrl->ctrl.nr_reconnects); 1136 1137 ctrl->ctrl.nr_reconnects = 0; 1138 1139 return; 1140 1141 requeue: 1142 dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n", 1143 ctrl->ctrl.nr_reconnects); 1144 nvme_rdma_reconnect_or_remove(ctrl); 1145 } 1146 1147 static void nvme_rdma_error_recovery_work(struct work_struct *work) 1148 { 1149 struct nvme_rdma_ctrl *ctrl = container_of(work, 1150 struct nvme_rdma_ctrl, err_work); 1151 1152 nvme_stop_keep_alive(&ctrl->ctrl); 1153 flush_work(&ctrl->ctrl.async_event_work); 1154 nvme_rdma_teardown_io_queues(ctrl, false); 1155 nvme_unquiesce_io_queues(&ctrl->ctrl); 1156 nvme_rdma_teardown_admin_queue(ctrl, false); 1157 nvme_unquiesce_admin_queue(&ctrl->ctrl); 1158 nvme_auth_stop(&ctrl->ctrl); 1159 1160 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) { 1161 /* state change failure is ok if we started ctrl delete */ 1162 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING && 1163 ctrl->ctrl.state != NVME_CTRL_DELETING_NOIO); 1164 return; 1165 } 1166 1167 nvme_rdma_reconnect_or_remove(ctrl); 1168 } 1169 1170 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl) 1171 { 1172 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING)) 1173 return; 1174 1175 dev_warn(ctrl->ctrl.device, "starting error recovery\n"); 1176 queue_work(nvme_reset_wq, &ctrl->err_work); 1177 } 1178 1179 static void nvme_rdma_end_request(struct nvme_rdma_request *req) 1180 { 1181 struct request *rq = blk_mq_rq_from_pdu(req); 1182 1183 if (!refcount_dec_and_test(&req->ref)) 1184 return; 1185 if (!nvme_try_complete_req(rq, req->status, req->result)) 1186 nvme_rdma_complete_rq(rq); 1187 } 1188 1189 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc, 1190 const char *op) 1191 { 1192 struct nvme_rdma_queue *queue = wc->qp->qp_context; 1193 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 1194 1195 if (ctrl->ctrl.state == NVME_CTRL_LIVE) 1196 dev_info(ctrl->ctrl.device, 1197 "%s for CQE 0x%p failed with status %s (%d)\n", 1198 op, wc->wr_cqe, 1199 ib_wc_status_msg(wc->status), wc->status); 1200 nvme_rdma_error_recovery(ctrl); 1201 } 1202 1203 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc) 1204 { 1205 if (unlikely(wc->status != IB_WC_SUCCESS)) 1206 nvme_rdma_wr_error(cq, wc, "MEMREG"); 1207 } 1208 1209 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc) 1210 { 1211 struct nvme_rdma_request *req = 1212 container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe); 1213 1214 if (unlikely(wc->status != IB_WC_SUCCESS)) 1215 nvme_rdma_wr_error(cq, wc, "LOCAL_INV"); 1216 else 1217 nvme_rdma_end_request(req); 1218 } 1219 1220 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue, 1221 struct nvme_rdma_request *req) 1222 { 1223 struct ib_send_wr wr = { 1224 .opcode = IB_WR_LOCAL_INV, 1225 .next = NULL, 1226 .num_sge = 0, 1227 .send_flags = IB_SEND_SIGNALED, 1228 .ex.invalidate_rkey = req->mr->rkey, 1229 }; 1230 1231 req->reg_cqe.done = nvme_rdma_inv_rkey_done; 1232 wr.wr_cqe = &req->reg_cqe; 1233 1234 return ib_post_send(queue->qp, &wr, NULL); 1235 } 1236 1237 static void nvme_rdma_dma_unmap_req(struct ib_device *ibdev, struct request *rq) 1238 { 1239 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1240 1241 if (blk_integrity_rq(rq)) { 1242 ib_dma_unmap_sg(ibdev, req->metadata_sgl->sg_table.sgl, 1243 req->metadata_sgl->nents, rq_dma_dir(rq)); 1244 sg_free_table_chained(&req->metadata_sgl->sg_table, 1245 NVME_INLINE_METADATA_SG_CNT); 1246 } 1247 1248 ib_dma_unmap_sg(ibdev, req->data_sgl.sg_table.sgl, req->data_sgl.nents, 1249 rq_dma_dir(rq)); 1250 sg_free_table_chained(&req->data_sgl.sg_table, NVME_INLINE_SG_CNT); 1251 } 1252 1253 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue, 1254 struct request *rq) 1255 { 1256 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1257 struct nvme_rdma_device *dev = queue->device; 1258 struct ib_device *ibdev = dev->dev; 1259 struct list_head *pool = &queue->qp->rdma_mrs; 1260 1261 if (!blk_rq_nr_phys_segments(rq)) 1262 return; 1263 1264 if (req->use_sig_mr) 1265 pool = &queue->qp->sig_mrs; 1266 1267 if (req->mr) { 1268 ib_mr_pool_put(queue->qp, pool, req->mr); 1269 req->mr = NULL; 1270 } 1271 1272 nvme_rdma_dma_unmap_req(ibdev, rq); 1273 } 1274 1275 static int nvme_rdma_set_sg_null(struct nvme_command *c) 1276 { 1277 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 1278 1279 sg->addr = 0; 1280 put_unaligned_le24(0, sg->length); 1281 put_unaligned_le32(0, sg->key); 1282 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4; 1283 return 0; 1284 } 1285 1286 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue, 1287 struct nvme_rdma_request *req, struct nvme_command *c, 1288 int count) 1289 { 1290 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 1291 struct ib_sge *sge = &req->sge[1]; 1292 struct scatterlist *sgl; 1293 u32 len = 0; 1294 int i; 1295 1296 for_each_sg(req->data_sgl.sg_table.sgl, sgl, count, i) { 1297 sge->addr = sg_dma_address(sgl); 1298 sge->length = sg_dma_len(sgl); 1299 sge->lkey = queue->device->pd->local_dma_lkey; 1300 len += sge->length; 1301 sge++; 1302 } 1303 1304 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff); 1305 sg->length = cpu_to_le32(len); 1306 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET; 1307 1308 req->num_sge += count; 1309 return 0; 1310 } 1311 1312 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue, 1313 struct nvme_rdma_request *req, struct nvme_command *c) 1314 { 1315 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 1316 1317 sg->addr = cpu_to_le64(sg_dma_address(req->data_sgl.sg_table.sgl)); 1318 put_unaligned_le24(sg_dma_len(req->data_sgl.sg_table.sgl), sg->length); 1319 put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key); 1320 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4; 1321 return 0; 1322 } 1323 1324 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue, 1325 struct nvme_rdma_request *req, struct nvme_command *c, 1326 int count) 1327 { 1328 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 1329 int nr; 1330 1331 req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs); 1332 if (WARN_ON_ONCE(!req->mr)) 1333 return -EAGAIN; 1334 1335 /* 1336 * Align the MR to a 4K page size to match the ctrl page size and 1337 * the block virtual boundary. 1338 */ 1339 nr = ib_map_mr_sg(req->mr, req->data_sgl.sg_table.sgl, count, NULL, 1340 SZ_4K); 1341 if (unlikely(nr < count)) { 1342 ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr); 1343 req->mr = NULL; 1344 if (nr < 0) 1345 return nr; 1346 return -EINVAL; 1347 } 1348 1349 ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey)); 1350 1351 req->reg_cqe.done = nvme_rdma_memreg_done; 1352 memset(&req->reg_wr, 0, sizeof(req->reg_wr)); 1353 req->reg_wr.wr.opcode = IB_WR_REG_MR; 1354 req->reg_wr.wr.wr_cqe = &req->reg_cqe; 1355 req->reg_wr.wr.num_sge = 0; 1356 req->reg_wr.mr = req->mr; 1357 req->reg_wr.key = req->mr->rkey; 1358 req->reg_wr.access = IB_ACCESS_LOCAL_WRITE | 1359 IB_ACCESS_REMOTE_READ | 1360 IB_ACCESS_REMOTE_WRITE; 1361 1362 sg->addr = cpu_to_le64(req->mr->iova); 1363 put_unaligned_le24(req->mr->length, sg->length); 1364 put_unaligned_le32(req->mr->rkey, sg->key); 1365 sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) | 1366 NVME_SGL_FMT_INVALIDATE; 1367 1368 return 0; 1369 } 1370 1371 static void nvme_rdma_set_sig_domain(struct blk_integrity *bi, 1372 struct nvme_command *cmd, struct ib_sig_domain *domain, 1373 u16 control, u8 pi_type) 1374 { 1375 domain->sig_type = IB_SIG_TYPE_T10_DIF; 1376 domain->sig.dif.bg_type = IB_T10DIF_CRC; 1377 domain->sig.dif.pi_interval = 1 << bi->interval_exp; 1378 domain->sig.dif.ref_tag = le32_to_cpu(cmd->rw.reftag); 1379 if (control & NVME_RW_PRINFO_PRCHK_REF) 1380 domain->sig.dif.ref_remap = true; 1381 1382 domain->sig.dif.app_tag = le16_to_cpu(cmd->rw.apptag); 1383 domain->sig.dif.apptag_check_mask = le16_to_cpu(cmd->rw.appmask); 1384 domain->sig.dif.app_escape = true; 1385 if (pi_type == NVME_NS_DPS_PI_TYPE3) 1386 domain->sig.dif.ref_escape = true; 1387 } 1388 1389 static void nvme_rdma_set_sig_attrs(struct blk_integrity *bi, 1390 struct nvme_command *cmd, struct ib_sig_attrs *sig_attrs, 1391 u8 pi_type) 1392 { 1393 u16 control = le16_to_cpu(cmd->rw.control); 1394 1395 memset(sig_attrs, 0, sizeof(*sig_attrs)); 1396 if (control & NVME_RW_PRINFO_PRACT) { 1397 /* for WRITE_INSERT/READ_STRIP no memory domain */ 1398 sig_attrs->mem.sig_type = IB_SIG_TYPE_NONE; 1399 nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control, 1400 pi_type); 1401 /* Clear the PRACT bit since HCA will generate/verify the PI */ 1402 control &= ~NVME_RW_PRINFO_PRACT; 1403 cmd->rw.control = cpu_to_le16(control); 1404 } else { 1405 /* for WRITE_PASS/READ_PASS both wire/memory domains exist */ 1406 nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control, 1407 pi_type); 1408 nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control, 1409 pi_type); 1410 } 1411 } 1412 1413 static void nvme_rdma_set_prot_checks(struct nvme_command *cmd, u8 *mask) 1414 { 1415 *mask = 0; 1416 if (le16_to_cpu(cmd->rw.control) & NVME_RW_PRINFO_PRCHK_REF) 1417 *mask |= IB_SIG_CHECK_REFTAG; 1418 if (le16_to_cpu(cmd->rw.control) & NVME_RW_PRINFO_PRCHK_GUARD) 1419 *mask |= IB_SIG_CHECK_GUARD; 1420 } 1421 1422 static void nvme_rdma_sig_done(struct ib_cq *cq, struct ib_wc *wc) 1423 { 1424 if (unlikely(wc->status != IB_WC_SUCCESS)) 1425 nvme_rdma_wr_error(cq, wc, "SIG"); 1426 } 1427 1428 static int nvme_rdma_map_sg_pi(struct nvme_rdma_queue *queue, 1429 struct nvme_rdma_request *req, struct nvme_command *c, 1430 int count, int pi_count) 1431 { 1432 struct nvme_rdma_sgl *sgl = &req->data_sgl; 1433 struct ib_reg_wr *wr = &req->reg_wr; 1434 struct request *rq = blk_mq_rq_from_pdu(req); 1435 struct nvme_ns *ns = rq->q->queuedata; 1436 struct bio *bio = rq->bio; 1437 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 1438 int nr; 1439 1440 req->mr = ib_mr_pool_get(queue->qp, &queue->qp->sig_mrs); 1441 if (WARN_ON_ONCE(!req->mr)) 1442 return -EAGAIN; 1443 1444 nr = ib_map_mr_sg_pi(req->mr, sgl->sg_table.sgl, count, NULL, 1445 req->metadata_sgl->sg_table.sgl, pi_count, NULL, 1446 SZ_4K); 1447 if (unlikely(nr)) 1448 goto mr_put; 1449 1450 nvme_rdma_set_sig_attrs(blk_get_integrity(bio->bi_bdev->bd_disk), c, 1451 req->mr->sig_attrs, ns->pi_type); 1452 nvme_rdma_set_prot_checks(c, &req->mr->sig_attrs->check_mask); 1453 1454 ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey)); 1455 1456 req->reg_cqe.done = nvme_rdma_sig_done; 1457 memset(wr, 0, sizeof(*wr)); 1458 wr->wr.opcode = IB_WR_REG_MR_INTEGRITY; 1459 wr->wr.wr_cqe = &req->reg_cqe; 1460 wr->wr.num_sge = 0; 1461 wr->wr.send_flags = 0; 1462 wr->mr = req->mr; 1463 wr->key = req->mr->rkey; 1464 wr->access = IB_ACCESS_LOCAL_WRITE | 1465 IB_ACCESS_REMOTE_READ | 1466 IB_ACCESS_REMOTE_WRITE; 1467 1468 sg->addr = cpu_to_le64(req->mr->iova); 1469 put_unaligned_le24(req->mr->length, sg->length); 1470 put_unaligned_le32(req->mr->rkey, sg->key); 1471 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4; 1472 1473 return 0; 1474 1475 mr_put: 1476 ib_mr_pool_put(queue->qp, &queue->qp->sig_mrs, req->mr); 1477 req->mr = NULL; 1478 if (nr < 0) 1479 return nr; 1480 return -EINVAL; 1481 } 1482 1483 static int nvme_rdma_dma_map_req(struct ib_device *ibdev, struct request *rq, 1484 int *count, int *pi_count) 1485 { 1486 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1487 int ret; 1488 1489 req->data_sgl.sg_table.sgl = (struct scatterlist *)(req + 1); 1490 ret = sg_alloc_table_chained(&req->data_sgl.sg_table, 1491 blk_rq_nr_phys_segments(rq), req->data_sgl.sg_table.sgl, 1492 NVME_INLINE_SG_CNT); 1493 if (ret) 1494 return -ENOMEM; 1495 1496 req->data_sgl.nents = blk_rq_map_sg(rq->q, rq, 1497 req->data_sgl.sg_table.sgl); 1498 1499 *count = ib_dma_map_sg(ibdev, req->data_sgl.sg_table.sgl, 1500 req->data_sgl.nents, rq_dma_dir(rq)); 1501 if (unlikely(*count <= 0)) { 1502 ret = -EIO; 1503 goto out_free_table; 1504 } 1505 1506 if (blk_integrity_rq(rq)) { 1507 req->metadata_sgl->sg_table.sgl = 1508 (struct scatterlist *)(req->metadata_sgl + 1); 1509 ret = sg_alloc_table_chained(&req->metadata_sgl->sg_table, 1510 blk_rq_count_integrity_sg(rq->q, rq->bio), 1511 req->metadata_sgl->sg_table.sgl, 1512 NVME_INLINE_METADATA_SG_CNT); 1513 if (unlikely(ret)) { 1514 ret = -ENOMEM; 1515 goto out_unmap_sg; 1516 } 1517 1518 req->metadata_sgl->nents = blk_rq_map_integrity_sg(rq->q, 1519 rq->bio, req->metadata_sgl->sg_table.sgl); 1520 *pi_count = ib_dma_map_sg(ibdev, 1521 req->metadata_sgl->sg_table.sgl, 1522 req->metadata_sgl->nents, 1523 rq_dma_dir(rq)); 1524 if (unlikely(*pi_count <= 0)) { 1525 ret = -EIO; 1526 goto out_free_pi_table; 1527 } 1528 } 1529 1530 return 0; 1531 1532 out_free_pi_table: 1533 sg_free_table_chained(&req->metadata_sgl->sg_table, 1534 NVME_INLINE_METADATA_SG_CNT); 1535 out_unmap_sg: 1536 ib_dma_unmap_sg(ibdev, req->data_sgl.sg_table.sgl, req->data_sgl.nents, 1537 rq_dma_dir(rq)); 1538 out_free_table: 1539 sg_free_table_chained(&req->data_sgl.sg_table, NVME_INLINE_SG_CNT); 1540 return ret; 1541 } 1542 1543 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue, 1544 struct request *rq, struct nvme_command *c) 1545 { 1546 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1547 struct nvme_rdma_device *dev = queue->device; 1548 struct ib_device *ibdev = dev->dev; 1549 int pi_count = 0; 1550 int count, ret; 1551 1552 req->num_sge = 1; 1553 refcount_set(&req->ref, 2); /* send and recv completions */ 1554 1555 c->common.flags |= NVME_CMD_SGL_METABUF; 1556 1557 if (!blk_rq_nr_phys_segments(rq)) 1558 return nvme_rdma_set_sg_null(c); 1559 1560 ret = nvme_rdma_dma_map_req(ibdev, rq, &count, &pi_count); 1561 if (unlikely(ret)) 1562 return ret; 1563 1564 if (req->use_sig_mr) { 1565 ret = nvme_rdma_map_sg_pi(queue, req, c, count, pi_count); 1566 goto out; 1567 } 1568 1569 if (count <= dev->num_inline_segments) { 1570 if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) && 1571 queue->ctrl->use_inline_data && 1572 blk_rq_payload_bytes(rq) <= 1573 nvme_rdma_inline_data_size(queue)) { 1574 ret = nvme_rdma_map_sg_inline(queue, req, c, count); 1575 goto out; 1576 } 1577 1578 if (count == 1 && dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) { 1579 ret = nvme_rdma_map_sg_single(queue, req, c); 1580 goto out; 1581 } 1582 } 1583 1584 ret = nvme_rdma_map_sg_fr(queue, req, c, count); 1585 out: 1586 if (unlikely(ret)) 1587 goto out_dma_unmap_req; 1588 1589 return 0; 1590 1591 out_dma_unmap_req: 1592 nvme_rdma_dma_unmap_req(ibdev, rq); 1593 return ret; 1594 } 1595 1596 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc) 1597 { 1598 struct nvme_rdma_qe *qe = 1599 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe); 1600 struct nvme_rdma_request *req = 1601 container_of(qe, struct nvme_rdma_request, sqe); 1602 1603 if (unlikely(wc->status != IB_WC_SUCCESS)) 1604 nvme_rdma_wr_error(cq, wc, "SEND"); 1605 else 1606 nvme_rdma_end_request(req); 1607 } 1608 1609 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue, 1610 struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge, 1611 struct ib_send_wr *first) 1612 { 1613 struct ib_send_wr wr; 1614 int ret; 1615 1616 sge->addr = qe->dma; 1617 sge->length = sizeof(struct nvme_command); 1618 sge->lkey = queue->device->pd->local_dma_lkey; 1619 1620 wr.next = NULL; 1621 wr.wr_cqe = &qe->cqe; 1622 wr.sg_list = sge; 1623 wr.num_sge = num_sge; 1624 wr.opcode = IB_WR_SEND; 1625 wr.send_flags = IB_SEND_SIGNALED; 1626 1627 if (first) 1628 first->next = ≀ 1629 else 1630 first = ≀ 1631 1632 ret = ib_post_send(queue->qp, first, NULL); 1633 if (unlikely(ret)) { 1634 dev_err(queue->ctrl->ctrl.device, 1635 "%s failed with error code %d\n", __func__, ret); 1636 } 1637 return ret; 1638 } 1639 1640 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue, 1641 struct nvme_rdma_qe *qe) 1642 { 1643 struct ib_recv_wr wr; 1644 struct ib_sge list; 1645 int ret; 1646 1647 list.addr = qe->dma; 1648 list.length = sizeof(struct nvme_completion); 1649 list.lkey = queue->device->pd->local_dma_lkey; 1650 1651 qe->cqe.done = nvme_rdma_recv_done; 1652 1653 wr.next = NULL; 1654 wr.wr_cqe = &qe->cqe; 1655 wr.sg_list = &list; 1656 wr.num_sge = 1; 1657 1658 ret = ib_post_recv(queue->qp, &wr, NULL); 1659 if (unlikely(ret)) { 1660 dev_err(queue->ctrl->ctrl.device, 1661 "%s failed with error code %d\n", __func__, ret); 1662 } 1663 return ret; 1664 } 1665 1666 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue) 1667 { 1668 u32 queue_idx = nvme_rdma_queue_idx(queue); 1669 1670 if (queue_idx == 0) 1671 return queue->ctrl->admin_tag_set.tags[queue_idx]; 1672 return queue->ctrl->tag_set.tags[queue_idx - 1]; 1673 } 1674 1675 static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc) 1676 { 1677 if (unlikely(wc->status != IB_WC_SUCCESS)) 1678 nvme_rdma_wr_error(cq, wc, "ASYNC"); 1679 } 1680 1681 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg) 1682 { 1683 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg); 1684 struct nvme_rdma_queue *queue = &ctrl->queues[0]; 1685 struct ib_device *dev = queue->device->dev; 1686 struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe; 1687 struct nvme_command *cmd = sqe->data; 1688 struct ib_sge sge; 1689 int ret; 1690 1691 ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE); 1692 1693 memset(cmd, 0, sizeof(*cmd)); 1694 cmd->common.opcode = nvme_admin_async_event; 1695 cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH; 1696 cmd->common.flags |= NVME_CMD_SGL_METABUF; 1697 nvme_rdma_set_sg_null(cmd); 1698 1699 sqe->cqe.done = nvme_rdma_async_done; 1700 1701 ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd), 1702 DMA_TO_DEVICE); 1703 1704 ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL); 1705 WARN_ON_ONCE(ret); 1706 } 1707 1708 static void nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue, 1709 struct nvme_completion *cqe, struct ib_wc *wc) 1710 { 1711 struct request *rq; 1712 struct nvme_rdma_request *req; 1713 1714 rq = nvme_find_rq(nvme_rdma_tagset(queue), cqe->command_id); 1715 if (!rq) { 1716 dev_err(queue->ctrl->ctrl.device, 1717 "got bad command_id %#x on QP %#x\n", 1718 cqe->command_id, queue->qp->qp_num); 1719 nvme_rdma_error_recovery(queue->ctrl); 1720 return; 1721 } 1722 req = blk_mq_rq_to_pdu(rq); 1723 1724 req->status = cqe->status; 1725 req->result = cqe->result; 1726 1727 if (wc->wc_flags & IB_WC_WITH_INVALIDATE) { 1728 if (unlikely(!req->mr || 1729 wc->ex.invalidate_rkey != req->mr->rkey)) { 1730 dev_err(queue->ctrl->ctrl.device, 1731 "Bogus remote invalidation for rkey %#x\n", 1732 req->mr ? req->mr->rkey : 0); 1733 nvme_rdma_error_recovery(queue->ctrl); 1734 } 1735 } else if (req->mr) { 1736 int ret; 1737 1738 ret = nvme_rdma_inv_rkey(queue, req); 1739 if (unlikely(ret < 0)) { 1740 dev_err(queue->ctrl->ctrl.device, 1741 "Queueing INV WR for rkey %#x failed (%d)\n", 1742 req->mr->rkey, ret); 1743 nvme_rdma_error_recovery(queue->ctrl); 1744 } 1745 /* the local invalidation completion will end the request */ 1746 return; 1747 } 1748 1749 nvme_rdma_end_request(req); 1750 } 1751 1752 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc) 1753 { 1754 struct nvme_rdma_qe *qe = 1755 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe); 1756 struct nvme_rdma_queue *queue = wc->qp->qp_context; 1757 struct ib_device *ibdev = queue->device->dev; 1758 struct nvme_completion *cqe = qe->data; 1759 const size_t len = sizeof(struct nvme_completion); 1760 1761 if (unlikely(wc->status != IB_WC_SUCCESS)) { 1762 nvme_rdma_wr_error(cq, wc, "RECV"); 1763 return; 1764 } 1765 1766 /* sanity checking for received data length */ 1767 if (unlikely(wc->byte_len < len)) { 1768 dev_err(queue->ctrl->ctrl.device, 1769 "Unexpected nvme completion length(%d)\n", wc->byte_len); 1770 nvme_rdma_error_recovery(queue->ctrl); 1771 return; 1772 } 1773 1774 ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE); 1775 /* 1776 * AEN requests are special as they don't time out and can 1777 * survive any kind of queue freeze and often don't respond to 1778 * aborts. We don't even bother to allocate a struct request 1779 * for them but rather special case them here. 1780 */ 1781 if (unlikely(nvme_is_aen_req(nvme_rdma_queue_idx(queue), 1782 cqe->command_id))) 1783 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status, 1784 &cqe->result); 1785 else 1786 nvme_rdma_process_nvme_rsp(queue, cqe, wc); 1787 ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE); 1788 1789 nvme_rdma_post_recv(queue, qe); 1790 } 1791 1792 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue) 1793 { 1794 int ret, i; 1795 1796 for (i = 0; i < queue->queue_size; i++) { 1797 ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]); 1798 if (ret) 1799 return ret; 1800 } 1801 1802 return 0; 1803 } 1804 1805 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue, 1806 struct rdma_cm_event *ev) 1807 { 1808 struct rdma_cm_id *cm_id = queue->cm_id; 1809 int status = ev->status; 1810 const char *rej_msg; 1811 const struct nvme_rdma_cm_rej *rej_data; 1812 u8 rej_data_len; 1813 1814 rej_msg = rdma_reject_msg(cm_id, status); 1815 rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len); 1816 1817 if (rej_data && rej_data_len >= sizeof(u16)) { 1818 u16 sts = le16_to_cpu(rej_data->sts); 1819 1820 dev_err(queue->ctrl->ctrl.device, 1821 "Connect rejected: status %d (%s) nvme status %d (%s).\n", 1822 status, rej_msg, sts, nvme_rdma_cm_msg(sts)); 1823 } else { 1824 dev_err(queue->ctrl->ctrl.device, 1825 "Connect rejected: status %d (%s).\n", status, rej_msg); 1826 } 1827 1828 return -ECONNRESET; 1829 } 1830 1831 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue) 1832 { 1833 struct nvme_ctrl *ctrl = &queue->ctrl->ctrl; 1834 int ret; 1835 1836 ret = nvme_rdma_create_queue_ib(queue); 1837 if (ret) 1838 return ret; 1839 1840 if (ctrl->opts->tos >= 0) 1841 rdma_set_service_type(queue->cm_id, ctrl->opts->tos); 1842 ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CM_TIMEOUT_MS); 1843 if (ret) { 1844 dev_err(ctrl->device, "rdma_resolve_route failed (%d).\n", 1845 queue->cm_error); 1846 goto out_destroy_queue; 1847 } 1848 1849 return 0; 1850 1851 out_destroy_queue: 1852 nvme_rdma_destroy_queue_ib(queue); 1853 return ret; 1854 } 1855 1856 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue) 1857 { 1858 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 1859 struct rdma_conn_param param = { }; 1860 struct nvme_rdma_cm_req priv = { }; 1861 int ret; 1862 1863 param.qp_num = queue->qp->qp_num; 1864 param.flow_control = 1; 1865 1866 param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom; 1867 /* maximum retry count */ 1868 param.retry_count = 7; 1869 param.rnr_retry_count = 7; 1870 param.private_data = &priv; 1871 param.private_data_len = sizeof(priv); 1872 1873 priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0); 1874 priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue)); 1875 /* 1876 * set the admin queue depth to the minimum size 1877 * specified by the Fabrics standard. 1878 */ 1879 if (priv.qid == 0) { 1880 priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH); 1881 priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1); 1882 } else { 1883 /* 1884 * current interpretation of the fabrics spec 1885 * is at minimum you make hrqsize sqsize+1, or a 1886 * 1's based representation of sqsize. 1887 */ 1888 priv.hrqsize = cpu_to_le16(queue->queue_size); 1889 priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize); 1890 } 1891 1892 ret = rdma_connect_locked(queue->cm_id, ¶m); 1893 if (ret) { 1894 dev_err(ctrl->ctrl.device, 1895 "rdma_connect_locked failed (%d).\n", ret); 1896 return ret; 1897 } 1898 1899 return 0; 1900 } 1901 1902 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id, 1903 struct rdma_cm_event *ev) 1904 { 1905 struct nvme_rdma_queue *queue = cm_id->context; 1906 int cm_error = 0; 1907 1908 dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n", 1909 rdma_event_msg(ev->event), ev->event, 1910 ev->status, cm_id); 1911 1912 switch (ev->event) { 1913 case RDMA_CM_EVENT_ADDR_RESOLVED: 1914 cm_error = nvme_rdma_addr_resolved(queue); 1915 break; 1916 case RDMA_CM_EVENT_ROUTE_RESOLVED: 1917 cm_error = nvme_rdma_route_resolved(queue); 1918 break; 1919 case RDMA_CM_EVENT_ESTABLISHED: 1920 queue->cm_error = nvme_rdma_conn_established(queue); 1921 /* complete cm_done regardless of success/failure */ 1922 complete(&queue->cm_done); 1923 return 0; 1924 case RDMA_CM_EVENT_REJECTED: 1925 cm_error = nvme_rdma_conn_rejected(queue, ev); 1926 break; 1927 case RDMA_CM_EVENT_ROUTE_ERROR: 1928 case RDMA_CM_EVENT_CONNECT_ERROR: 1929 case RDMA_CM_EVENT_UNREACHABLE: 1930 case RDMA_CM_EVENT_ADDR_ERROR: 1931 dev_dbg(queue->ctrl->ctrl.device, 1932 "CM error event %d\n", ev->event); 1933 cm_error = -ECONNRESET; 1934 break; 1935 case RDMA_CM_EVENT_DISCONNECTED: 1936 case RDMA_CM_EVENT_ADDR_CHANGE: 1937 case RDMA_CM_EVENT_TIMEWAIT_EXIT: 1938 dev_dbg(queue->ctrl->ctrl.device, 1939 "disconnect received - connection closed\n"); 1940 nvme_rdma_error_recovery(queue->ctrl); 1941 break; 1942 case RDMA_CM_EVENT_DEVICE_REMOVAL: 1943 /* device removal is handled via the ib_client API */ 1944 break; 1945 default: 1946 dev_err(queue->ctrl->ctrl.device, 1947 "Unexpected RDMA CM event (%d)\n", ev->event); 1948 nvme_rdma_error_recovery(queue->ctrl); 1949 break; 1950 } 1951 1952 if (cm_error) { 1953 queue->cm_error = cm_error; 1954 complete(&queue->cm_done); 1955 } 1956 1957 return 0; 1958 } 1959 1960 static void nvme_rdma_complete_timed_out(struct request *rq) 1961 { 1962 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1963 struct nvme_rdma_queue *queue = req->queue; 1964 1965 nvme_rdma_stop_queue(queue); 1966 nvmf_complete_timed_out_request(rq); 1967 } 1968 1969 static enum blk_eh_timer_return nvme_rdma_timeout(struct request *rq) 1970 { 1971 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1972 struct nvme_rdma_queue *queue = req->queue; 1973 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 1974 1975 dev_warn(ctrl->ctrl.device, "I/O %d QID %d timeout\n", 1976 rq->tag, nvme_rdma_queue_idx(queue)); 1977 1978 if (ctrl->ctrl.state != NVME_CTRL_LIVE) { 1979 /* 1980 * If we are resetting, connecting or deleting we should 1981 * complete immediately because we may block controller 1982 * teardown or setup sequence 1983 * - ctrl disable/shutdown fabrics requests 1984 * - connect requests 1985 * - initialization admin requests 1986 * - I/O requests that entered after unquiescing and 1987 * the controller stopped responding 1988 * 1989 * All other requests should be cancelled by the error 1990 * recovery work, so it's fine that we fail it here. 1991 */ 1992 nvme_rdma_complete_timed_out(rq); 1993 return BLK_EH_DONE; 1994 } 1995 1996 /* 1997 * LIVE state should trigger the normal error recovery which will 1998 * handle completing this request. 1999 */ 2000 nvme_rdma_error_recovery(ctrl); 2001 return BLK_EH_RESET_TIMER; 2002 } 2003 2004 static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx, 2005 const struct blk_mq_queue_data *bd) 2006 { 2007 struct nvme_ns *ns = hctx->queue->queuedata; 2008 struct nvme_rdma_queue *queue = hctx->driver_data; 2009 struct request *rq = bd->rq; 2010 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 2011 struct nvme_rdma_qe *sqe = &req->sqe; 2012 struct nvme_command *c = nvme_req(rq)->cmd; 2013 struct ib_device *dev; 2014 bool queue_ready = test_bit(NVME_RDMA_Q_LIVE, &queue->flags); 2015 blk_status_t ret; 2016 int err; 2017 2018 WARN_ON_ONCE(rq->tag < 0); 2019 2020 if (!nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready)) 2021 return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq); 2022 2023 dev = queue->device->dev; 2024 2025 req->sqe.dma = ib_dma_map_single(dev, req->sqe.data, 2026 sizeof(struct nvme_command), 2027 DMA_TO_DEVICE); 2028 err = ib_dma_mapping_error(dev, req->sqe.dma); 2029 if (unlikely(err)) 2030 return BLK_STS_RESOURCE; 2031 2032 ib_dma_sync_single_for_cpu(dev, sqe->dma, 2033 sizeof(struct nvme_command), DMA_TO_DEVICE); 2034 2035 ret = nvme_setup_cmd(ns, rq); 2036 if (ret) 2037 goto unmap_qe; 2038 2039 nvme_start_request(rq); 2040 2041 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) && 2042 queue->pi_support && 2043 (c->common.opcode == nvme_cmd_write || 2044 c->common.opcode == nvme_cmd_read) && 2045 nvme_ns_has_pi(ns)) 2046 req->use_sig_mr = true; 2047 else 2048 req->use_sig_mr = false; 2049 2050 err = nvme_rdma_map_data(queue, rq, c); 2051 if (unlikely(err < 0)) { 2052 dev_err(queue->ctrl->ctrl.device, 2053 "Failed to map data (%d)\n", err); 2054 goto err; 2055 } 2056 2057 sqe->cqe.done = nvme_rdma_send_done; 2058 2059 ib_dma_sync_single_for_device(dev, sqe->dma, 2060 sizeof(struct nvme_command), DMA_TO_DEVICE); 2061 2062 err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge, 2063 req->mr ? &req->reg_wr.wr : NULL); 2064 if (unlikely(err)) 2065 goto err_unmap; 2066 2067 return BLK_STS_OK; 2068 2069 err_unmap: 2070 nvme_rdma_unmap_data(queue, rq); 2071 err: 2072 if (err == -EIO) 2073 ret = nvme_host_path_error(rq); 2074 else if (err == -ENOMEM || err == -EAGAIN) 2075 ret = BLK_STS_RESOURCE; 2076 else 2077 ret = BLK_STS_IOERR; 2078 nvme_cleanup_cmd(rq); 2079 unmap_qe: 2080 ib_dma_unmap_single(dev, req->sqe.dma, sizeof(struct nvme_command), 2081 DMA_TO_DEVICE); 2082 return ret; 2083 } 2084 2085 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob) 2086 { 2087 struct nvme_rdma_queue *queue = hctx->driver_data; 2088 2089 return ib_process_cq_direct(queue->ib_cq, -1); 2090 } 2091 2092 static void nvme_rdma_check_pi_status(struct nvme_rdma_request *req) 2093 { 2094 struct request *rq = blk_mq_rq_from_pdu(req); 2095 struct ib_mr_status mr_status; 2096 int ret; 2097 2098 ret = ib_check_mr_status(req->mr, IB_MR_CHECK_SIG_STATUS, &mr_status); 2099 if (ret) { 2100 pr_err("ib_check_mr_status failed, ret %d\n", ret); 2101 nvme_req(rq)->status = NVME_SC_INVALID_PI; 2102 return; 2103 } 2104 2105 if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) { 2106 switch (mr_status.sig_err.err_type) { 2107 case IB_SIG_BAD_GUARD: 2108 nvme_req(rq)->status = NVME_SC_GUARD_CHECK; 2109 break; 2110 case IB_SIG_BAD_REFTAG: 2111 nvme_req(rq)->status = NVME_SC_REFTAG_CHECK; 2112 break; 2113 case IB_SIG_BAD_APPTAG: 2114 nvme_req(rq)->status = NVME_SC_APPTAG_CHECK; 2115 break; 2116 } 2117 pr_err("PI error found type %d expected 0x%x vs actual 0x%x\n", 2118 mr_status.sig_err.err_type, mr_status.sig_err.expected, 2119 mr_status.sig_err.actual); 2120 } 2121 } 2122 2123 static void nvme_rdma_complete_rq(struct request *rq) 2124 { 2125 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 2126 struct nvme_rdma_queue *queue = req->queue; 2127 struct ib_device *ibdev = queue->device->dev; 2128 2129 if (req->use_sig_mr) 2130 nvme_rdma_check_pi_status(req); 2131 2132 nvme_rdma_unmap_data(queue, rq); 2133 ib_dma_unmap_single(ibdev, req->sqe.dma, sizeof(struct nvme_command), 2134 DMA_TO_DEVICE); 2135 nvme_complete_rq(rq); 2136 } 2137 2138 static void nvme_rdma_map_queues(struct blk_mq_tag_set *set) 2139 { 2140 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(set->driver_data); 2141 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 2142 2143 if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) { 2144 /* separate read/write queues */ 2145 set->map[HCTX_TYPE_DEFAULT].nr_queues = 2146 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2147 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0; 2148 set->map[HCTX_TYPE_READ].nr_queues = 2149 ctrl->io_queues[HCTX_TYPE_READ]; 2150 set->map[HCTX_TYPE_READ].queue_offset = 2151 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2152 } else { 2153 /* shared read/write queues */ 2154 set->map[HCTX_TYPE_DEFAULT].nr_queues = 2155 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2156 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0; 2157 set->map[HCTX_TYPE_READ].nr_queues = 2158 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2159 set->map[HCTX_TYPE_READ].queue_offset = 0; 2160 } 2161 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 2162 blk_mq_map_queues(&set->map[HCTX_TYPE_READ]); 2163 2164 if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) { 2165 /* map dedicated poll queues only if we have queues left */ 2166 set->map[HCTX_TYPE_POLL].nr_queues = 2167 ctrl->io_queues[HCTX_TYPE_POLL]; 2168 set->map[HCTX_TYPE_POLL].queue_offset = 2169 ctrl->io_queues[HCTX_TYPE_DEFAULT] + 2170 ctrl->io_queues[HCTX_TYPE_READ]; 2171 blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]); 2172 } 2173 2174 dev_info(ctrl->ctrl.device, 2175 "mapped %d/%d/%d default/read/poll queues.\n", 2176 ctrl->io_queues[HCTX_TYPE_DEFAULT], 2177 ctrl->io_queues[HCTX_TYPE_READ], 2178 ctrl->io_queues[HCTX_TYPE_POLL]); 2179 } 2180 2181 static const struct blk_mq_ops nvme_rdma_mq_ops = { 2182 .queue_rq = nvme_rdma_queue_rq, 2183 .complete = nvme_rdma_complete_rq, 2184 .init_request = nvme_rdma_init_request, 2185 .exit_request = nvme_rdma_exit_request, 2186 .init_hctx = nvme_rdma_init_hctx, 2187 .timeout = nvme_rdma_timeout, 2188 .map_queues = nvme_rdma_map_queues, 2189 .poll = nvme_rdma_poll, 2190 }; 2191 2192 static const struct blk_mq_ops nvme_rdma_admin_mq_ops = { 2193 .queue_rq = nvme_rdma_queue_rq, 2194 .complete = nvme_rdma_complete_rq, 2195 .init_request = nvme_rdma_init_request, 2196 .exit_request = nvme_rdma_exit_request, 2197 .init_hctx = nvme_rdma_init_admin_hctx, 2198 .timeout = nvme_rdma_timeout, 2199 }; 2200 2201 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown) 2202 { 2203 nvme_rdma_teardown_io_queues(ctrl, shutdown); 2204 nvme_quiesce_admin_queue(&ctrl->ctrl); 2205 nvme_disable_ctrl(&ctrl->ctrl, shutdown); 2206 nvme_rdma_teardown_admin_queue(ctrl, shutdown); 2207 } 2208 2209 static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl) 2210 { 2211 nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true); 2212 } 2213 2214 static void nvme_rdma_reset_ctrl_work(struct work_struct *work) 2215 { 2216 struct nvme_rdma_ctrl *ctrl = 2217 container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work); 2218 2219 nvme_stop_ctrl(&ctrl->ctrl); 2220 nvme_rdma_shutdown_ctrl(ctrl, false); 2221 2222 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) { 2223 /* state change failure should never happen */ 2224 WARN_ON_ONCE(1); 2225 return; 2226 } 2227 2228 if (nvme_rdma_setup_ctrl(ctrl, false)) 2229 goto out_fail; 2230 2231 return; 2232 2233 out_fail: 2234 ++ctrl->ctrl.nr_reconnects; 2235 nvme_rdma_reconnect_or_remove(ctrl); 2236 } 2237 2238 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = { 2239 .name = "rdma", 2240 .module = THIS_MODULE, 2241 .flags = NVME_F_FABRICS | NVME_F_METADATA_SUPPORTED, 2242 .reg_read32 = nvmf_reg_read32, 2243 .reg_read64 = nvmf_reg_read64, 2244 .reg_write32 = nvmf_reg_write32, 2245 .free_ctrl = nvme_rdma_free_ctrl, 2246 .submit_async_event = nvme_rdma_submit_async_event, 2247 .delete_ctrl = nvme_rdma_delete_ctrl, 2248 .get_address = nvmf_get_address, 2249 .stop_ctrl = nvme_rdma_stop_ctrl, 2250 }; 2251 2252 /* 2253 * Fails a connection request if it matches an existing controller 2254 * (association) with the same tuple: 2255 * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN> 2256 * 2257 * if local address is not specified in the request, it will match an 2258 * existing controller with all the other parameters the same and no 2259 * local port address specified as well. 2260 * 2261 * The ports don't need to be compared as they are intrinsically 2262 * already matched by the port pointers supplied. 2263 */ 2264 static bool 2265 nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts) 2266 { 2267 struct nvme_rdma_ctrl *ctrl; 2268 bool found = false; 2269 2270 mutex_lock(&nvme_rdma_ctrl_mutex); 2271 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) { 2272 found = nvmf_ip_options_match(&ctrl->ctrl, opts); 2273 if (found) 2274 break; 2275 } 2276 mutex_unlock(&nvme_rdma_ctrl_mutex); 2277 2278 return found; 2279 } 2280 2281 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev, 2282 struct nvmf_ctrl_options *opts) 2283 { 2284 struct nvme_rdma_ctrl *ctrl; 2285 int ret; 2286 bool changed; 2287 2288 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 2289 if (!ctrl) 2290 return ERR_PTR(-ENOMEM); 2291 ctrl->ctrl.opts = opts; 2292 INIT_LIST_HEAD(&ctrl->list); 2293 2294 if (!(opts->mask & NVMF_OPT_TRSVCID)) { 2295 opts->trsvcid = 2296 kstrdup(__stringify(NVME_RDMA_IP_PORT), GFP_KERNEL); 2297 if (!opts->trsvcid) { 2298 ret = -ENOMEM; 2299 goto out_free_ctrl; 2300 } 2301 opts->mask |= NVMF_OPT_TRSVCID; 2302 } 2303 2304 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 2305 opts->traddr, opts->trsvcid, &ctrl->addr); 2306 if (ret) { 2307 pr_err("malformed address passed: %s:%s\n", 2308 opts->traddr, opts->trsvcid); 2309 goto out_free_ctrl; 2310 } 2311 2312 if (opts->mask & NVMF_OPT_HOST_TRADDR) { 2313 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 2314 opts->host_traddr, NULL, &ctrl->src_addr); 2315 if (ret) { 2316 pr_err("malformed src address passed: %s\n", 2317 opts->host_traddr); 2318 goto out_free_ctrl; 2319 } 2320 } 2321 2322 if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) { 2323 ret = -EALREADY; 2324 goto out_free_ctrl; 2325 } 2326 2327 INIT_DELAYED_WORK(&ctrl->reconnect_work, 2328 nvme_rdma_reconnect_ctrl_work); 2329 INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work); 2330 INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work); 2331 2332 ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues + 2333 opts->nr_poll_queues + 1; 2334 ctrl->ctrl.sqsize = opts->queue_size - 1; 2335 ctrl->ctrl.kato = opts->kato; 2336 2337 ret = -ENOMEM; 2338 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues), 2339 GFP_KERNEL); 2340 if (!ctrl->queues) 2341 goto out_free_ctrl; 2342 2343 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops, 2344 0 /* no quirks, we're perfect! */); 2345 if (ret) 2346 goto out_kfree_queues; 2347 2348 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING); 2349 WARN_ON_ONCE(!changed); 2350 2351 ret = nvme_rdma_setup_ctrl(ctrl, true); 2352 if (ret) 2353 goto out_uninit_ctrl; 2354 2355 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n", 2356 nvmf_ctrl_subsysnqn(&ctrl->ctrl), &ctrl->addr); 2357 2358 mutex_lock(&nvme_rdma_ctrl_mutex); 2359 list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list); 2360 mutex_unlock(&nvme_rdma_ctrl_mutex); 2361 2362 return &ctrl->ctrl; 2363 2364 out_uninit_ctrl: 2365 nvme_uninit_ctrl(&ctrl->ctrl); 2366 nvme_put_ctrl(&ctrl->ctrl); 2367 if (ret > 0) 2368 ret = -EIO; 2369 return ERR_PTR(ret); 2370 out_kfree_queues: 2371 kfree(ctrl->queues); 2372 out_free_ctrl: 2373 kfree(ctrl); 2374 return ERR_PTR(ret); 2375 } 2376 2377 static struct nvmf_transport_ops nvme_rdma_transport = { 2378 .name = "rdma", 2379 .module = THIS_MODULE, 2380 .required_opts = NVMF_OPT_TRADDR, 2381 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY | 2382 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO | 2383 NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES | 2384 NVMF_OPT_TOS, 2385 .create_ctrl = nvme_rdma_create_ctrl, 2386 }; 2387 2388 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data) 2389 { 2390 struct nvme_rdma_ctrl *ctrl; 2391 struct nvme_rdma_device *ndev; 2392 bool found = false; 2393 2394 mutex_lock(&device_list_mutex); 2395 list_for_each_entry(ndev, &device_list, entry) { 2396 if (ndev->dev == ib_device) { 2397 found = true; 2398 break; 2399 } 2400 } 2401 mutex_unlock(&device_list_mutex); 2402 2403 if (!found) 2404 return; 2405 2406 /* Delete all controllers using this device */ 2407 mutex_lock(&nvme_rdma_ctrl_mutex); 2408 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) { 2409 if (ctrl->device->dev != ib_device) 2410 continue; 2411 nvme_delete_ctrl(&ctrl->ctrl); 2412 } 2413 mutex_unlock(&nvme_rdma_ctrl_mutex); 2414 2415 flush_workqueue(nvme_delete_wq); 2416 } 2417 2418 static struct ib_client nvme_rdma_ib_client = { 2419 .name = "nvme_rdma", 2420 .remove = nvme_rdma_remove_one 2421 }; 2422 2423 static int __init nvme_rdma_init_module(void) 2424 { 2425 int ret; 2426 2427 ret = ib_register_client(&nvme_rdma_ib_client); 2428 if (ret) 2429 return ret; 2430 2431 ret = nvmf_register_transport(&nvme_rdma_transport); 2432 if (ret) 2433 goto err_unreg_client; 2434 2435 return 0; 2436 2437 err_unreg_client: 2438 ib_unregister_client(&nvme_rdma_ib_client); 2439 return ret; 2440 } 2441 2442 static void __exit nvme_rdma_cleanup_module(void) 2443 { 2444 struct nvme_rdma_ctrl *ctrl; 2445 2446 nvmf_unregister_transport(&nvme_rdma_transport); 2447 ib_unregister_client(&nvme_rdma_ib_client); 2448 2449 mutex_lock(&nvme_rdma_ctrl_mutex); 2450 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) 2451 nvme_delete_ctrl(&ctrl->ctrl); 2452 mutex_unlock(&nvme_rdma_ctrl_mutex); 2453 flush_workqueue(nvme_delete_wq); 2454 } 2455 2456 module_init(nvme_rdma_init_module); 2457 module_exit(nvme_rdma_cleanup_module); 2458 2459 MODULE_LICENSE("GPL v2"); 2460