1 /* 2 * NVMe over Fabrics RDMA host code. 3 * Copyright (c) 2015-2016 HGST, a Western Digital Company. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 */ 14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 15 #include <linux/module.h> 16 #include <linux/init.h> 17 #include <linux/slab.h> 18 #include <linux/err.h> 19 #include <linux/string.h> 20 #include <linux/atomic.h> 21 #include <linux/blk-mq.h> 22 #include <linux/blk-mq-rdma.h> 23 #include <linux/types.h> 24 #include <linux/list.h> 25 #include <linux/mutex.h> 26 #include <linux/scatterlist.h> 27 #include <linux/nvme.h> 28 #include <asm/unaligned.h> 29 30 #include <rdma/ib_verbs.h> 31 #include <rdma/rdma_cm.h> 32 #include <linux/nvme-rdma.h> 33 34 #include "nvme.h" 35 #include "fabrics.h" 36 37 38 #define NVME_RDMA_CONNECT_TIMEOUT_MS 3000 /* 3 second */ 39 40 #define NVME_RDMA_MAX_SEGMENTS 256 41 42 #define NVME_RDMA_MAX_INLINE_SEGMENTS 1 43 44 struct nvme_rdma_device { 45 struct ib_device *dev; 46 struct ib_pd *pd; 47 struct kref ref; 48 struct list_head entry; 49 }; 50 51 struct nvme_rdma_qe { 52 struct ib_cqe cqe; 53 void *data; 54 u64 dma; 55 }; 56 57 struct nvme_rdma_queue; 58 struct nvme_rdma_request { 59 struct nvme_request req; 60 struct ib_mr *mr; 61 struct nvme_rdma_qe sqe; 62 struct ib_sge sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS]; 63 u32 num_sge; 64 int nents; 65 bool inline_data; 66 struct ib_reg_wr reg_wr; 67 struct ib_cqe reg_cqe; 68 struct nvme_rdma_queue *queue; 69 struct sg_table sg_table; 70 struct scatterlist first_sgl[]; 71 }; 72 73 enum nvme_rdma_queue_flags { 74 NVME_RDMA_Q_ALLOCATED = 0, 75 NVME_RDMA_Q_LIVE = 1, 76 }; 77 78 struct nvme_rdma_queue { 79 struct nvme_rdma_qe *rsp_ring; 80 atomic_t sig_count; 81 int queue_size; 82 size_t cmnd_capsule_len; 83 struct nvme_rdma_ctrl *ctrl; 84 struct nvme_rdma_device *device; 85 struct ib_cq *ib_cq; 86 struct ib_qp *qp; 87 88 unsigned long flags; 89 struct rdma_cm_id *cm_id; 90 int cm_error; 91 struct completion cm_done; 92 }; 93 94 struct nvme_rdma_ctrl { 95 /* read only in the hot path */ 96 struct nvme_rdma_queue *queues; 97 98 /* other member variables */ 99 struct blk_mq_tag_set tag_set; 100 struct work_struct err_work; 101 102 struct nvme_rdma_qe async_event_sqe; 103 104 struct delayed_work reconnect_work; 105 106 struct list_head list; 107 108 struct blk_mq_tag_set admin_tag_set; 109 struct nvme_rdma_device *device; 110 111 u32 max_fr_pages; 112 113 struct sockaddr_storage addr; 114 struct sockaddr_storage src_addr; 115 116 struct nvme_ctrl ctrl; 117 }; 118 119 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl) 120 { 121 return container_of(ctrl, struct nvme_rdma_ctrl, ctrl); 122 } 123 124 static LIST_HEAD(device_list); 125 static DEFINE_MUTEX(device_list_mutex); 126 127 static LIST_HEAD(nvme_rdma_ctrl_list); 128 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex); 129 130 /* 131 * Disabling this option makes small I/O goes faster, but is fundamentally 132 * unsafe. With it turned off we will have to register a global rkey that 133 * allows read and write access to all physical memory. 134 */ 135 static bool register_always = true; 136 module_param(register_always, bool, 0444); 137 MODULE_PARM_DESC(register_always, 138 "Use memory registration even for contiguous memory regions"); 139 140 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id, 141 struct rdma_cm_event *event); 142 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc); 143 144 static const struct blk_mq_ops nvme_rdma_mq_ops; 145 static const struct blk_mq_ops nvme_rdma_admin_mq_ops; 146 147 /* XXX: really should move to a generic header sooner or later.. */ 148 static inline void put_unaligned_le24(u32 val, u8 *p) 149 { 150 *p++ = val; 151 *p++ = val >> 8; 152 *p++ = val >> 16; 153 } 154 155 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue) 156 { 157 return queue - queue->ctrl->queues; 158 } 159 160 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue) 161 { 162 return queue->cmnd_capsule_len - sizeof(struct nvme_command); 163 } 164 165 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe, 166 size_t capsule_size, enum dma_data_direction dir) 167 { 168 ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir); 169 kfree(qe->data); 170 } 171 172 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe, 173 size_t capsule_size, enum dma_data_direction dir) 174 { 175 qe->data = kzalloc(capsule_size, GFP_KERNEL); 176 if (!qe->data) 177 return -ENOMEM; 178 179 qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir); 180 if (ib_dma_mapping_error(ibdev, qe->dma)) { 181 kfree(qe->data); 182 return -ENOMEM; 183 } 184 185 return 0; 186 } 187 188 static void nvme_rdma_free_ring(struct ib_device *ibdev, 189 struct nvme_rdma_qe *ring, size_t ib_queue_size, 190 size_t capsule_size, enum dma_data_direction dir) 191 { 192 int i; 193 194 for (i = 0; i < ib_queue_size; i++) 195 nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir); 196 kfree(ring); 197 } 198 199 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev, 200 size_t ib_queue_size, size_t capsule_size, 201 enum dma_data_direction dir) 202 { 203 struct nvme_rdma_qe *ring; 204 int i; 205 206 ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL); 207 if (!ring) 208 return NULL; 209 210 for (i = 0; i < ib_queue_size; i++) { 211 if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir)) 212 goto out_free_ring; 213 } 214 215 return ring; 216 217 out_free_ring: 218 nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir); 219 return NULL; 220 } 221 222 static void nvme_rdma_qp_event(struct ib_event *event, void *context) 223 { 224 pr_debug("QP event %s (%d)\n", 225 ib_event_msg(event->event), event->event); 226 227 } 228 229 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue) 230 { 231 wait_for_completion_interruptible_timeout(&queue->cm_done, 232 msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1); 233 return queue->cm_error; 234 } 235 236 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor) 237 { 238 struct nvme_rdma_device *dev = queue->device; 239 struct ib_qp_init_attr init_attr; 240 int ret; 241 242 memset(&init_attr, 0, sizeof(init_attr)); 243 init_attr.event_handler = nvme_rdma_qp_event; 244 /* +1 for drain */ 245 init_attr.cap.max_send_wr = factor * queue->queue_size + 1; 246 /* +1 for drain */ 247 init_attr.cap.max_recv_wr = queue->queue_size + 1; 248 init_attr.cap.max_recv_sge = 1; 249 init_attr.cap.max_send_sge = 1 + NVME_RDMA_MAX_INLINE_SEGMENTS; 250 init_attr.sq_sig_type = IB_SIGNAL_REQ_WR; 251 init_attr.qp_type = IB_QPT_RC; 252 init_attr.send_cq = queue->ib_cq; 253 init_attr.recv_cq = queue->ib_cq; 254 255 ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr); 256 257 queue->qp = queue->cm_id->qp; 258 return ret; 259 } 260 261 static int nvme_rdma_reinit_request(void *data, struct request *rq) 262 { 263 struct nvme_rdma_ctrl *ctrl = data; 264 struct nvme_rdma_device *dev = ctrl->device; 265 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 266 int ret = 0; 267 268 if (WARN_ON_ONCE(!req->mr)) 269 return 0; 270 271 ib_dereg_mr(req->mr); 272 273 req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG, 274 ctrl->max_fr_pages); 275 if (IS_ERR(req->mr)) { 276 ret = PTR_ERR(req->mr); 277 req->mr = NULL; 278 goto out; 279 } 280 281 req->mr->need_inval = false; 282 283 out: 284 return ret; 285 } 286 287 static void nvme_rdma_exit_request(struct blk_mq_tag_set *set, 288 struct request *rq, unsigned int hctx_idx) 289 { 290 struct nvme_rdma_ctrl *ctrl = set->driver_data; 291 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 292 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; 293 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx]; 294 struct nvme_rdma_device *dev = queue->device; 295 296 if (req->mr) 297 ib_dereg_mr(req->mr); 298 299 nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command), 300 DMA_TO_DEVICE); 301 } 302 303 static int nvme_rdma_init_request(struct blk_mq_tag_set *set, 304 struct request *rq, unsigned int hctx_idx, 305 unsigned int numa_node) 306 { 307 struct nvme_rdma_ctrl *ctrl = set->driver_data; 308 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 309 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; 310 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx]; 311 struct nvme_rdma_device *dev = queue->device; 312 struct ib_device *ibdev = dev->dev; 313 int ret; 314 315 ret = nvme_rdma_alloc_qe(ibdev, &req->sqe, sizeof(struct nvme_command), 316 DMA_TO_DEVICE); 317 if (ret) 318 return ret; 319 320 req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG, 321 ctrl->max_fr_pages); 322 if (IS_ERR(req->mr)) { 323 ret = PTR_ERR(req->mr); 324 goto out_free_qe; 325 } 326 327 req->queue = queue; 328 329 return 0; 330 331 out_free_qe: 332 nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command), 333 DMA_TO_DEVICE); 334 return -ENOMEM; 335 } 336 337 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 338 unsigned int hctx_idx) 339 { 340 struct nvme_rdma_ctrl *ctrl = data; 341 struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1]; 342 343 BUG_ON(hctx_idx >= ctrl->ctrl.queue_count); 344 345 hctx->driver_data = queue; 346 return 0; 347 } 348 349 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, 350 unsigned int hctx_idx) 351 { 352 struct nvme_rdma_ctrl *ctrl = data; 353 struct nvme_rdma_queue *queue = &ctrl->queues[0]; 354 355 BUG_ON(hctx_idx != 0); 356 357 hctx->driver_data = queue; 358 return 0; 359 } 360 361 static void nvme_rdma_free_dev(struct kref *ref) 362 { 363 struct nvme_rdma_device *ndev = 364 container_of(ref, struct nvme_rdma_device, ref); 365 366 mutex_lock(&device_list_mutex); 367 list_del(&ndev->entry); 368 mutex_unlock(&device_list_mutex); 369 370 ib_dealloc_pd(ndev->pd); 371 kfree(ndev); 372 } 373 374 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev) 375 { 376 kref_put(&dev->ref, nvme_rdma_free_dev); 377 } 378 379 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev) 380 { 381 return kref_get_unless_zero(&dev->ref); 382 } 383 384 static struct nvme_rdma_device * 385 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id) 386 { 387 struct nvme_rdma_device *ndev; 388 389 mutex_lock(&device_list_mutex); 390 list_for_each_entry(ndev, &device_list, entry) { 391 if (ndev->dev->node_guid == cm_id->device->node_guid && 392 nvme_rdma_dev_get(ndev)) 393 goto out_unlock; 394 } 395 396 ndev = kzalloc(sizeof(*ndev), GFP_KERNEL); 397 if (!ndev) 398 goto out_err; 399 400 ndev->dev = cm_id->device; 401 kref_init(&ndev->ref); 402 403 ndev->pd = ib_alloc_pd(ndev->dev, 404 register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY); 405 if (IS_ERR(ndev->pd)) 406 goto out_free_dev; 407 408 if (!(ndev->dev->attrs.device_cap_flags & 409 IB_DEVICE_MEM_MGT_EXTENSIONS)) { 410 dev_err(&ndev->dev->dev, 411 "Memory registrations not supported.\n"); 412 goto out_free_pd; 413 } 414 415 list_add(&ndev->entry, &device_list); 416 out_unlock: 417 mutex_unlock(&device_list_mutex); 418 return ndev; 419 420 out_free_pd: 421 ib_dealloc_pd(ndev->pd); 422 out_free_dev: 423 kfree(ndev); 424 out_err: 425 mutex_unlock(&device_list_mutex); 426 return NULL; 427 } 428 429 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue) 430 { 431 struct nvme_rdma_device *dev = queue->device; 432 struct ib_device *ibdev = dev->dev; 433 434 rdma_destroy_qp(queue->cm_id); 435 ib_free_cq(queue->ib_cq); 436 437 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size, 438 sizeof(struct nvme_completion), DMA_FROM_DEVICE); 439 440 nvme_rdma_dev_put(dev); 441 } 442 443 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue) 444 { 445 struct ib_device *ibdev; 446 const int send_wr_factor = 3; /* MR, SEND, INV */ 447 const int cq_factor = send_wr_factor + 1; /* + RECV */ 448 int comp_vector, idx = nvme_rdma_queue_idx(queue); 449 int ret; 450 451 queue->device = nvme_rdma_find_get_device(queue->cm_id); 452 if (!queue->device) { 453 dev_err(queue->cm_id->device->dev.parent, 454 "no client data found!\n"); 455 return -ECONNREFUSED; 456 } 457 ibdev = queue->device->dev; 458 459 /* 460 * Spread I/O queues completion vectors according their queue index. 461 * Admin queues can always go on completion vector 0. 462 */ 463 comp_vector = idx == 0 ? idx : idx - 1; 464 465 /* +1 for ib_stop_cq */ 466 queue->ib_cq = ib_alloc_cq(ibdev, queue, 467 cq_factor * queue->queue_size + 1, 468 comp_vector, IB_POLL_SOFTIRQ); 469 if (IS_ERR(queue->ib_cq)) { 470 ret = PTR_ERR(queue->ib_cq); 471 goto out_put_dev; 472 } 473 474 ret = nvme_rdma_create_qp(queue, send_wr_factor); 475 if (ret) 476 goto out_destroy_ib_cq; 477 478 queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size, 479 sizeof(struct nvme_completion), DMA_FROM_DEVICE); 480 if (!queue->rsp_ring) { 481 ret = -ENOMEM; 482 goto out_destroy_qp; 483 } 484 485 return 0; 486 487 out_destroy_qp: 488 rdma_destroy_qp(queue->cm_id); 489 out_destroy_ib_cq: 490 ib_free_cq(queue->ib_cq); 491 out_put_dev: 492 nvme_rdma_dev_put(queue->device); 493 return ret; 494 } 495 496 static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl, 497 int idx, size_t queue_size) 498 { 499 struct nvme_rdma_queue *queue; 500 struct sockaddr *src_addr = NULL; 501 int ret; 502 503 queue = &ctrl->queues[idx]; 504 queue->ctrl = ctrl; 505 init_completion(&queue->cm_done); 506 507 if (idx > 0) 508 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16; 509 else 510 queue->cmnd_capsule_len = sizeof(struct nvme_command); 511 512 queue->queue_size = queue_size; 513 atomic_set(&queue->sig_count, 0); 514 515 queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue, 516 RDMA_PS_TCP, IB_QPT_RC); 517 if (IS_ERR(queue->cm_id)) { 518 dev_info(ctrl->ctrl.device, 519 "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id)); 520 return PTR_ERR(queue->cm_id); 521 } 522 523 if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR) 524 src_addr = (struct sockaddr *)&ctrl->src_addr; 525 526 queue->cm_error = -ETIMEDOUT; 527 ret = rdma_resolve_addr(queue->cm_id, src_addr, 528 (struct sockaddr *)&ctrl->addr, 529 NVME_RDMA_CONNECT_TIMEOUT_MS); 530 if (ret) { 531 dev_info(ctrl->ctrl.device, 532 "rdma_resolve_addr failed (%d).\n", ret); 533 goto out_destroy_cm_id; 534 } 535 536 ret = nvme_rdma_wait_for_cm(queue); 537 if (ret) { 538 dev_info(ctrl->ctrl.device, 539 "rdma connection establishment failed (%d)\n", ret); 540 goto out_destroy_cm_id; 541 } 542 543 set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags); 544 545 return 0; 546 547 out_destroy_cm_id: 548 rdma_destroy_id(queue->cm_id); 549 return ret; 550 } 551 552 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue) 553 { 554 if (!test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags)) 555 return; 556 557 rdma_disconnect(queue->cm_id); 558 ib_drain_qp(queue->qp); 559 } 560 561 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue) 562 { 563 if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags)) 564 return; 565 566 if (nvme_rdma_queue_idx(queue) == 0) { 567 nvme_rdma_free_qe(queue->device->dev, 568 &queue->ctrl->async_event_sqe, 569 sizeof(struct nvme_command), DMA_TO_DEVICE); 570 } 571 572 nvme_rdma_destroy_queue_ib(queue); 573 rdma_destroy_id(queue->cm_id); 574 } 575 576 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl) 577 { 578 int i; 579 580 for (i = 1; i < ctrl->ctrl.queue_count; i++) 581 nvme_rdma_free_queue(&ctrl->queues[i]); 582 } 583 584 static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl) 585 { 586 int i; 587 588 for (i = 1; i < ctrl->ctrl.queue_count; i++) 589 nvme_rdma_stop_queue(&ctrl->queues[i]); 590 } 591 592 static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx) 593 { 594 int ret; 595 596 if (idx) 597 ret = nvmf_connect_io_queue(&ctrl->ctrl, idx); 598 else 599 ret = nvmf_connect_admin_queue(&ctrl->ctrl); 600 601 if (!ret) 602 set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[idx].flags); 603 else 604 dev_info(ctrl->ctrl.device, 605 "failed to connect queue: %d ret=%d\n", idx, ret); 606 return ret; 607 } 608 609 static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl) 610 { 611 int i, ret = 0; 612 613 for (i = 1; i < ctrl->ctrl.queue_count; i++) { 614 ret = nvme_rdma_start_queue(ctrl, i); 615 if (ret) 616 goto out_stop_queues; 617 } 618 619 return 0; 620 621 out_stop_queues: 622 for (i--; i >= 1; i--) 623 nvme_rdma_stop_queue(&ctrl->queues[i]); 624 return ret; 625 } 626 627 static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl) 628 { 629 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 630 struct ib_device *ibdev = ctrl->device->dev; 631 unsigned int nr_io_queues; 632 int i, ret; 633 634 nr_io_queues = min(opts->nr_io_queues, num_online_cpus()); 635 636 /* 637 * we map queues according to the device irq vectors for 638 * optimal locality so we don't need more queues than 639 * completion vectors. 640 */ 641 nr_io_queues = min_t(unsigned int, nr_io_queues, 642 ibdev->num_comp_vectors); 643 644 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues); 645 if (ret) 646 return ret; 647 648 ctrl->ctrl.queue_count = nr_io_queues + 1; 649 if (ctrl->ctrl.queue_count < 2) 650 return 0; 651 652 dev_info(ctrl->ctrl.device, 653 "creating %d I/O queues.\n", nr_io_queues); 654 655 for (i = 1; i < ctrl->ctrl.queue_count; i++) { 656 ret = nvme_rdma_alloc_queue(ctrl, i, 657 ctrl->ctrl.sqsize + 1); 658 if (ret) 659 goto out_free_queues; 660 } 661 662 return 0; 663 664 out_free_queues: 665 for (i--; i >= 1; i--) 666 nvme_rdma_free_queue(&ctrl->queues[i]); 667 668 return ret; 669 } 670 671 static void nvme_rdma_free_tagset(struct nvme_ctrl *nctrl, 672 struct blk_mq_tag_set *set) 673 { 674 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 675 676 blk_mq_free_tag_set(set); 677 nvme_rdma_dev_put(ctrl->device); 678 } 679 680 static struct blk_mq_tag_set *nvme_rdma_alloc_tagset(struct nvme_ctrl *nctrl, 681 bool admin) 682 { 683 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 684 struct blk_mq_tag_set *set; 685 int ret; 686 687 if (admin) { 688 set = &ctrl->admin_tag_set; 689 memset(set, 0, sizeof(*set)); 690 set->ops = &nvme_rdma_admin_mq_ops; 691 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH; 692 set->reserved_tags = 2; /* connect + keep-alive */ 693 set->numa_node = NUMA_NO_NODE; 694 set->cmd_size = sizeof(struct nvme_rdma_request) + 695 SG_CHUNK_SIZE * sizeof(struct scatterlist); 696 set->driver_data = ctrl; 697 set->nr_hw_queues = 1; 698 set->timeout = ADMIN_TIMEOUT; 699 set->flags = BLK_MQ_F_NO_SCHED; 700 } else { 701 set = &ctrl->tag_set; 702 memset(set, 0, sizeof(*set)); 703 set->ops = &nvme_rdma_mq_ops; 704 set->queue_depth = nctrl->opts->queue_size; 705 set->reserved_tags = 1; /* fabric connect */ 706 set->numa_node = NUMA_NO_NODE; 707 set->flags = BLK_MQ_F_SHOULD_MERGE; 708 set->cmd_size = sizeof(struct nvme_rdma_request) + 709 SG_CHUNK_SIZE * sizeof(struct scatterlist); 710 set->driver_data = ctrl; 711 set->nr_hw_queues = nctrl->queue_count - 1; 712 set->timeout = NVME_IO_TIMEOUT; 713 } 714 715 ret = blk_mq_alloc_tag_set(set); 716 if (ret) 717 goto out; 718 719 /* 720 * We need a reference on the device as long as the tag_set is alive, 721 * as the MRs in the request structures need a valid ib_device. 722 */ 723 ret = nvme_rdma_dev_get(ctrl->device); 724 if (!ret) { 725 ret = -EINVAL; 726 goto out_free_tagset; 727 } 728 729 return set; 730 731 out_free_tagset: 732 blk_mq_free_tag_set(set); 733 out: 734 return ERR_PTR(ret); 735 } 736 737 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl, 738 bool remove) 739 { 740 nvme_rdma_stop_queue(&ctrl->queues[0]); 741 if (remove) { 742 blk_cleanup_queue(ctrl->ctrl.admin_q); 743 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.admin_tagset); 744 } 745 nvme_rdma_free_queue(&ctrl->queues[0]); 746 } 747 748 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl, 749 bool new) 750 { 751 int error; 752 753 error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH); 754 if (error) 755 return error; 756 757 ctrl->device = ctrl->queues[0].device; 758 759 ctrl->max_fr_pages = min_t(u32, NVME_RDMA_MAX_SEGMENTS, 760 ctrl->device->dev->attrs.max_fast_reg_page_list_len); 761 762 if (new) { 763 ctrl->ctrl.admin_tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, true); 764 if (IS_ERR(ctrl->ctrl.admin_tagset)) { 765 error = PTR_ERR(ctrl->ctrl.admin_tagset); 766 goto out_free_queue; 767 } 768 769 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set); 770 if (IS_ERR(ctrl->ctrl.admin_q)) { 771 error = PTR_ERR(ctrl->ctrl.admin_q); 772 goto out_free_tagset; 773 } 774 } else { 775 error = nvme_reinit_tagset(&ctrl->ctrl, ctrl->ctrl.admin_tagset); 776 if (error) 777 goto out_free_queue; 778 } 779 780 error = nvme_rdma_start_queue(ctrl, 0); 781 if (error) 782 goto out_cleanup_queue; 783 784 error = ctrl->ctrl.ops->reg_read64(&ctrl->ctrl, NVME_REG_CAP, 785 &ctrl->ctrl.cap); 786 if (error) { 787 dev_err(ctrl->ctrl.device, 788 "prop_get NVME_REG_CAP failed\n"); 789 goto out_cleanup_queue; 790 } 791 792 ctrl->ctrl.sqsize = 793 min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap), ctrl->ctrl.sqsize); 794 795 error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap); 796 if (error) 797 goto out_cleanup_queue; 798 799 ctrl->ctrl.max_hw_sectors = 800 (ctrl->max_fr_pages - 1) << (ilog2(SZ_4K) - 9); 801 802 error = nvme_init_identify(&ctrl->ctrl); 803 if (error) 804 goto out_cleanup_queue; 805 806 error = nvme_rdma_alloc_qe(ctrl->queues[0].device->dev, 807 &ctrl->async_event_sqe, sizeof(struct nvme_command), 808 DMA_TO_DEVICE); 809 if (error) 810 goto out_cleanup_queue; 811 812 return 0; 813 814 out_cleanup_queue: 815 if (new) 816 blk_cleanup_queue(ctrl->ctrl.admin_q); 817 out_free_tagset: 818 if (new) 819 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.admin_tagset); 820 out_free_queue: 821 nvme_rdma_free_queue(&ctrl->queues[0]); 822 return error; 823 } 824 825 static void nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl *ctrl, 826 bool remove) 827 { 828 nvme_rdma_stop_io_queues(ctrl); 829 if (remove) { 830 blk_cleanup_queue(ctrl->ctrl.connect_q); 831 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.tagset); 832 } 833 nvme_rdma_free_io_queues(ctrl); 834 } 835 836 static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new) 837 { 838 int ret; 839 840 ret = nvme_rdma_alloc_io_queues(ctrl); 841 if (ret) 842 return ret; 843 844 if (new) { 845 ctrl->ctrl.tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, false); 846 if (IS_ERR(ctrl->ctrl.tagset)) { 847 ret = PTR_ERR(ctrl->ctrl.tagset); 848 goto out_free_io_queues; 849 } 850 851 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set); 852 if (IS_ERR(ctrl->ctrl.connect_q)) { 853 ret = PTR_ERR(ctrl->ctrl.connect_q); 854 goto out_free_tag_set; 855 } 856 } else { 857 ret = nvme_reinit_tagset(&ctrl->ctrl, ctrl->ctrl.tagset); 858 if (ret) 859 goto out_free_io_queues; 860 861 blk_mq_update_nr_hw_queues(&ctrl->tag_set, 862 ctrl->ctrl.queue_count - 1); 863 } 864 865 ret = nvme_rdma_start_io_queues(ctrl); 866 if (ret) 867 goto out_cleanup_connect_q; 868 869 return 0; 870 871 out_cleanup_connect_q: 872 if (new) 873 blk_cleanup_queue(ctrl->ctrl.connect_q); 874 out_free_tag_set: 875 if (new) 876 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.tagset); 877 out_free_io_queues: 878 nvme_rdma_free_io_queues(ctrl); 879 return ret; 880 } 881 882 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl) 883 { 884 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 885 886 if (list_empty(&ctrl->list)) 887 goto free_ctrl; 888 889 mutex_lock(&nvme_rdma_ctrl_mutex); 890 list_del(&ctrl->list); 891 mutex_unlock(&nvme_rdma_ctrl_mutex); 892 893 kfree(ctrl->queues); 894 nvmf_free_options(nctrl->opts); 895 free_ctrl: 896 kfree(ctrl); 897 } 898 899 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl) 900 { 901 /* If we are resetting/deleting then do nothing */ 902 if (ctrl->ctrl.state != NVME_CTRL_RECONNECTING) { 903 WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW || 904 ctrl->ctrl.state == NVME_CTRL_LIVE); 905 return; 906 } 907 908 if (nvmf_should_reconnect(&ctrl->ctrl)) { 909 dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n", 910 ctrl->ctrl.opts->reconnect_delay); 911 queue_delayed_work(nvme_wq, &ctrl->reconnect_work, 912 ctrl->ctrl.opts->reconnect_delay * HZ); 913 } else { 914 dev_info(ctrl->ctrl.device, "Removing controller...\n"); 915 nvme_delete_ctrl(&ctrl->ctrl); 916 } 917 } 918 919 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work) 920 { 921 struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work), 922 struct nvme_rdma_ctrl, reconnect_work); 923 bool changed; 924 int ret; 925 926 ++ctrl->ctrl.nr_reconnects; 927 928 ret = nvme_rdma_configure_admin_queue(ctrl, false); 929 if (ret) 930 goto requeue; 931 932 if (ctrl->ctrl.queue_count > 1) { 933 ret = nvme_rdma_configure_io_queues(ctrl, false); 934 if (ret) 935 goto destroy_admin; 936 } 937 938 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); 939 if (!changed) { 940 /* state change failure is ok if we're in DELETING state */ 941 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING); 942 return; 943 } 944 945 nvme_start_ctrl(&ctrl->ctrl); 946 947 dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n", 948 ctrl->ctrl.nr_reconnects); 949 950 ctrl->ctrl.nr_reconnects = 0; 951 952 return; 953 954 destroy_admin: 955 nvme_rdma_destroy_admin_queue(ctrl, false); 956 requeue: 957 dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n", 958 ctrl->ctrl.nr_reconnects); 959 nvme_rdma_reconnect_or_remove(ctrl); 960 } 961 962 static void nvme_rdma_error_recovery_work(struct work_struct *work) 963 { 964 struct nvme_rdma_ctrl *ctrl = container_of(work, 965 struct nvme_rdma_ctrl, err_work); 966 967 nvme_stop_keep_alive(&ctrl->ctrl); 968 969 if (ctrl->ctrl.queue_count > 1) { 970 nvme_stop_queues(&ctrl->ctrl); 971 blk_mq_tagset_busy_iter(&ctrl->tag_set, 972 nvme_cancel_request, &ctrl->ctrl); 973 nvme_rdma_destroy_io_queues(ctrl, false); 974 } 975 976 blk_mq_quiesce_queue(ctrl->ctrl.admin_q); 977 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set, 978 nvme_cancel_request, &ctrl->ctrl); 979 nvme_rdma_destroy_admin_queue(ctrl, false); 980 981 /* 982 * queues are not a live anymore, so restart the queues to fail fast 983 * new IO 984 */ 985 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q); 986 nvme_start_queues(&ctrl->ctrl); 987 988 nvme_rdma_reconnect_or_remove(ctrl); 989 } 990 991 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl) 992 { 993 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RECONNECTING)) 994 return; 995 996 queue_work(nvme_wq, &ctrl->err_work); 997 } 998 999 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc, 1000 const char *op) 1001 { 1002 struct nvme_rdma_queue *queue = cq->cq_context; 1003 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 1004 1005 if (ctrl->ctrl.state == NVME_CTRL_LIVE) 1006 dev_info(ctrl->ctrl.device, 1007 "%s for CQE 0x%p failed with status %s (%d)\n", 1008 op, wc->wr_cqe, 1009 ib_wc_status_msg(wc->status), wc->status); 1010 nvme_rdma_error_recovery(ctrl); 1011 } 1012 1013 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc) 1014 { 1015 if (unlikely(wc->status != IB_WC_SUCCESS)) 1016 nvme_rdma_wr_error(cq, wc, "MEMREG"); 1017 } 1018 1019 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc) 1020 { 1021 if (unlikely(wc->status != IB_WC_SUCCESS)) 1022 nvme_rdma_wr_error(cq, wc, "LOCAL_INV"); 1023 } 1024 1025 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue, 1026 struct nvme_rdma_request *req) 1027 { 1028 struct ib_send_wr *bad_wr; 1029 struct ib_send_wr wr = { 1030 .opcode = IB_WR_LOCAL_INV, 1031 .next = NULL, 1032 .num_sge = 0, 1033 .send_flags = 0, 1034 .ex.invalidate_rkey = req->mr->rkey, 1035 }; 1036 1037 req->reg_cqe.done = nvme_rdma_inv_rkey_done; 1038 wr.wr_cqe = &req->reg_cqe; 1039 1040 return ib_post_send(queue->qp, &wr, &bad_wr); 1041 } 1042 1043 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue, 1044 struct request *rq) 1045 { 1046 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1047 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 1048 struct nvme_rdma_device *dev = queue->device; 1049 struct ib_device *ibdev = dev->dev; 1050 int res; 1051 1052 if (!blk_rq_bytes(rq)) 1053 return; 1054 1055 if (req->mr->need_inval && test_bit(NVME_RDMA_Q_LIVE, &req->queue->flags)) { 1056 res = nvme_rdma_inv_rkey(queue, req); 1057 if (unlikely(res < 0)) { 1058 dev_err(ctrl->ctrl.device, 1059 "Queueing INV WR for rkey %#x failed (%d)\n", 1060 req->mr->rkey, res); 1061 nvme_rdma_error_recovery(queue->ctrl); 1062 } 1063 } 1064 1065 ib_dma_unmap_sg(ibdev, req->sg_table.sgl, 1066 req->nents, rq_data_dir(rq) == 1067 WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 1068 1069 nvme_cleanup_cmd(rq); 1070 sg_free_table_chained(&req->sg_table, true); 1071 } 1072 1073 static int nvme_rdma_set_sg_null(struct nvme_command *c) 1074 { 1075 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 1076 1077 sg->addr = 0; 1078 put_unaligned_le24(0, sg->length); 1079 put_unaligned_le32(0, sg->key); 1080 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4; 1081 return 0; 1082 } 1083 1084 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue, 1085 struct nvme_rdma_request *req, struct nvme_command *c) 1086 { 1087 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 1088 1089 req->sge[1].addr = sg_dma_address(req->sg_table.sgl); 1090 req->sge[1].length = sg_dma_len(req->sg_table.sgl); 1091 req->sge[1].lkey = queue->device->pd->local_dma_lkey; 1092 1093 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff); 1094 sg->length = cpu_to_le32(sg_dma_len(req->sg_table.sgl)); 1095 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET; 1096 1097 req->inline_data = true; 1098 req->num_sge++; 1099 return 0; 1100 } 1101 1102 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue, 1103 struct nvme_rdma_request *req, struct nvme_command *c) 1104 { 1105 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 1106 1107 sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl)); 1108 put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length); 1109 put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key); 1110 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4; 1111 return 0; 1112 } 1113 1114 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue, 1115 struct nvme_rdma_request *req, struct nvme_command *c, 1116 int count) 1117 { 1118 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 1119 int nr; 1120 1121 /* 1122 * Align the MR to a 4K page size to match the ctrl page size and 1123 * the block virtual boundary. 1124 */ 1125 nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, SZ_4K); 1126 if (unlikely(nr < count)) { 1127 if (nr < 0) 1128 return nr; 1129 return -EINVAL; 1130 } 1131 1132 ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey)); 1133 1134 req->reg_cqe.done = nvme_rdma_memreg_done; 1135 memset(&req->reg_wr, 0, sizeof(req->reg_wr)); 1136 req->reg_wr.wr.opcode = IB_WR_REG_MR; 1137 req->reg_wr.wr.wr_cqe = &req->reg_cqe; 1138 req->reg_wr.wr.num_sge = 0; 1139 req->reg_wr.mr = req->mr; 1140 req->reg_wr.key = req->mr->rkey; 1141 req->reg_wr.access = IB_ACCESS_LOCAL_WRITE | 1142 IB_ACCESS_REMOTE_READ | 1143 IB_ACCESS_REMOTE_WRITE; 1144 1145 req->mr->need_inval = true; 1146 1147 sg->addr = cpu_to_le64(req->mr->iova); 1148 put_unaligned_le24(req->mr->length, sg->length); 1149 put_unaligned_le32(req->mr->rkey, sg->key); 1150 sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) | 1151 NVME_SGL_FMT_INVALIDATE; 1152 1153 return 0; 1154 } 1155 1156 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue, 1157 struct request *rq, struct nvme_command *c) 1158 { 1159 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1160 struct nvme_rdma_device *dev = queue->device; 1161 struct ib_device *ibdev = dev->dev; 1162 int count, ret; 1163 1164 req->num_sge = 1; 1165 req->inline_data = false; 1166 req->mr->need_inval = false; 1167 1168 c->common.flags |= NVME_CMD_SGL_METABUF; 1169 1170 if (!blk_rq_bytes(rq)) 1171 return nvme_rdma_set_sg_null(c); 1172 1173 req->sg_table.sgl = req->first_sgl; 1174 ret = sg_alloc_table_chained(&req->sg_table, 1175 blk_rq_nr_phys_segments(rq), req->sg_table.sgl); 1176 if (ret) 1177 return -ENOMEM; 1178 1179 req->nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl); 1180 1181 count = ib_dma_map_sg(ibdev, req->sg_table.sgl, req->nents, 1182 rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 1183 if (unlikely(count <= 0)) { 1184 sg_free_table_chained(&req->sg_table, true); 1185 return -EIO; 1186 } 1187 1188 if (count == 1) { 1189 if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) && 1190 blk_rq_payload_bytes(rq) <= 1191 nvme_rdma_inline_data_size(queue)) 1192 return nvme_rdma_map_sg_inline(queue, req, c); 1193 1194 if (dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) 1195 return nvme_rdma_map_sg_single(queue, req, c); 1196 } 1197 1198 return nvme_rdma_map_sg_fr(queue, req, c, count); 1199 } 1200 1201 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc) 1202 { 1203 if (unlikely(wc->status != IB_WC_SUCCESS)) 1204 nvme_rdma_wr_error(cq, wc, "SEND"); 1205 } 1206 1207 /* 1208 * We want to signal completion at least every queue depth/2. This returns the 1209 * largest power of two that is not above half of (queue size + 1) to optimize 1210 * (avoid divisions). 1211 */ 1212 static inline bool nvme_rdma_queue_sig_limit(struct nvme_rdma_queue *queue) 1213 { 1214 int limit = 1 << ilog2((queue->queue_size + 1) / 2); 1215 1216 return (atomic_inc_return(&queue->sig_count) & (limit - 1)) == 0; 1217 } 1218 1219 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue, 1220 struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge, 1221 struct ib_send_wr *first, bool flush) 1222 { 1223 struct ib_send_wr wr, *bad_wr; 1224 int ret; 1225 1226 sge->addr = qe->dma; 1227 sge->length = sizeof(struct nvme_command), 1228 sge->lkey = queue->device->pd->local_dma_lkey; 1229 1230 qe->cqe.done = nvme_rdma_send_done; 1231 1232 wr.next = NULL; 1233 wr.wr_cqe = &qe->cqe; 1234 wr.sg_list = sge; 1235 wr.num_sge = num_sge; 1236 wr.opcode = IB_WR_SEND; 1237 wr.send_flags = 0; 1238 1239 /* 1240 * Unsignalled send completions are another giant desaster in the 1241 * IB Verbs spec: If we don't regularly post signalled sends 1242 * the send queue will fill up and only a QP reset will rescue us. 1243 * Would have been way to obvious to handle this in hardware or 1244 * at least the RDMA stack.. 1245 * 1246 * Always signal the flushes. The magic request used for the flush 1247 * sequencer is not allocated in our driver's tagset and it's 1248 * triggered to be freed by blk_cleanup_queue(). So we need to 1249 * always mark it as signaled to ensure that the "wr_cqe", which is 1250 * embedded in request's payload, is not freed when __ib_process_cq() 1251 * calls wr_cqe->done(). 1252 */ 1253 if (nvme_rdma_queue_sig_limit(queue) || flush) 1254 wr.send_flags |= IB_SEND_SIGNALED; 1255 1256 if (first) 1257 first->next = ≀ 1258 else 1259 first = ≀ 1260 1261 ret = ib_post_send(queue->qp, first, &bad_wr); 1262 if (unlikely(ret)) { 1263 dev_err(queue->ctrl->ctrl.device, 1264 "%s failed with error code %d\n", __func__, ret); 1265 } 1266 return ret; 1267 } 1268 1269 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue, 1270 struct nvme_rdma_qe *qe) 1271 { 1272 struct ib_recv_wr wr, *bad_wr; 1273 struct ib_sge list; 1274 int ret; 1275 1276 list.addr = qe->dma; 1277 list.length = sizeof(struct nvme_completion); 1278 list.lkey = queue->device->pd->local_dma_lkey; 1279 1280 qe->cqe.done = nvme_rdma_recv_done; 1281 1282 wr.next = NULL; 1283 wr.wr_cqe = &qe->cqe; 1284 wr.sg_list = &list; 1285 wr.num_sge = 1; 1286 1287 ret = ib_post_recv(queue->qp, &wr, &bad_wr); 1288 if (unlikely(ret)) { 1289 dev_err(queue->ctrl->ctrl.device, 1290 "%s failed with error code %d\n", __func__, ret); 1291 } 1292 return ret; 1293 } 1294 1295 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue) 1296 { 1297 u32 queue_idx = nvme_rdma_queue_idx(queue); 1298 1299 if (queue_idx == 0) 1300 return queue->ctrl->admin_tag_set.tags[queue_idx]; 1301 return queue->ctrl->tag_set.tags[queue_idx - 1]; 1302 } 1303 1304 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg) 1305 { 1306 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg); 1307 struct nvme_rdma_queue *queue = &ctrl->queues[0]; 1308 struct ib_device *dev = queue->device->dev; 1309 struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe; 1310 struct nvme_command *cmd = sqe->data; 1311 struct ib_sge sge; 1312 int ret; 1313 1314 ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE); 1315 1316 memset(cmd, 0, sizeof(*cmd)); 1317 cmd->common.opcode = nvme_admin_async_event; 1318 cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH; 1319 cmd->common.flags |= NVME_CMD_SGL_METABUF; 1320 nvme_rdma_set_sg_null(cmd); 1321 1322 ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd), 1323 DMA_TO_DEVICE); 1324 1325 ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL, false); 1326 WARN_ON_ONCE(ret); 1327 } 1328 1329 static int nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue, 1330 struct nvme_completion *cqe, struct ib_wc *wc, int tag) 1331 { 1332 struct request *rq; 1333 struct nvme_rdma_request *req; 1334 int ret = 0; 1335 1336 rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id); 1337 if (!rq) { 1338 dev_err(queue->ctrl->ctrl.device, 1339 "tag 0x%x on QP %#x not found\n", 1340 cqe->command_id, queue->qp->qp_num); 1341 nvme_rdma_error_recovery(queue->ctrl); 1342 return ret; 1343 } 1344 req = blk_mq_rq_to_pdu(rq); 1345 1346 if (rq->tag == tag) 1347 ret = 1; 1348 1349 if ((wc->wc_flags & IB_WC_WITH_INVALIDATE) && 1350 wc->ex.invalidate_rkey == req->mr->rkey) 1351 req->mr->need_inval = false; 1352 1353 nvme_end_request(rq, cqe->status, cqe->result); 1354 return ret; 1355 } 1356 1357 static int __nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc, int tag) 1358 { 1359 struct nvme_rdma_qe *qe = 1360 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe); 1361 struct nvme_rdma_queue *queue = cq->cq_context; 1362 struct ib_device *ibdev = queue->device->dev; 1363 struct nvme_completion *cqe = qe->data; 1364 const size_t len = sizeof(struct nvme_completion); 1365 int ret = 0; 1366 1367 if (unlikely(wc->status != IB_WC_SUCCESS)) { 1368 nvme_rdma_wr_error(cq, wc, "RECV"); 1369 return 0; 1370 } 1371 1372 ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE); 1373 /* 1374 * AEN requests are special as they don't time out and can 1375 * survive any kind of queue freeze and often don't respond to 1376 * aborts. We don't even bother to allocate a struct request 1377 * for them but rather special case them here. 1378 */ 1379 if (unlikely(nvme_rdma_queue_idx(queue) == 0 && 1380 cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH)) 1381 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status, 1382 &cqe->result); 1383 else 1384 ret = nvme_rdma_process_nvme_rsp(queue, cqe, wc, tag); 1385 ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE); 1386 1387 nvme_rdma_post_recv(queue, qe); 1388 return ret; 1389 } 1390 1391 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc) 1392 { 1393 __nvme_rdma_recv_done(cq, wc, -1); 1394 } 1395 1396 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue) 1397 { 1398 int ret, i; 1399 1400 for (i = 0; i < queue->queue_size; i++) { 1401 ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]); 1402 if (ret) 1403 goto out_destroy_queue_ib; 1404 } 1405 1406 return 0; 1407 1408 out_destroy_queue_ib: 1409 nvme_rdma_destroy_queue_ib(queue); 1410 return ret; 1411 } 1412 1413 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue, 1414 struct rdma_cm_event *ev) 1415 { 1416 struct rdma_cm_id *cm_id = queue->cm_id; 1417 int status = ev->status; 1418 const char *rej_msg; 1419 const struct nvme_rdma_cm_rej *rej_data; 1420 u8 rej_data_len; 1421 1422 rej_msg = rdma_reject_msg(cm_id, status); 1423 rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len); 1424 1425 if (rej_data && rej_data_len >= sizeof(u16)) { 1426 u16 sts = le16_to_cpu(rej_data->sts); 1427 1428 dev_err(queue->ctrl->ctrl.device, 1429 "Connect rejected: status %d (%s) nvme status %d (%s).\n", 1430 status, rej_msg, sts, nvme_rdma_cm_msg(sts)); 1431 } else { 1432 dev_err(queue->ctrl->ctrl.device, 1433 "Connect rejected: status %d (%s).\n", status, rej_msg); 1434 } 1435 1436 return -ECONNRESET; 1437 } 1438 1439 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue) 1440 { 1441 int ret; 1442 1443 ret = nvme_rdma_create_queue_ib(queue); 1444 if (ret) 1445 return ret; 1446 1447 ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS); 1448 if (ret) { 1449 dev_err(queue->ctrl->ctrl.device, 1450 "rdma_resolve_route failed (%d).\n", 1451 queue->cm_error); 1452 goto out_destroy_queue; 1453 } 1454 1455 return 0; 1456 1457 out_destroy_queue: 1458 nvme_rdma_destroy_queue_ib(queue); 1459 return ret; 1460 } 1461 1462 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue) 1463 { 1464 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 1465 struct rdma_conn_param param = { }; 1466 struct nvme_rdma_cm_req priv = { }; 1467 int ret; 1468 1469 param.qp_num = queue->qp->qp_num; 1470 param.flow_control = 1; 1471 1472 param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom; 1473 /* maximum retry count */ 1474 param.retry_count = 7; 1475 param.rnr_retry_count = 7; 1476 param.private_data = &priv; 1477 param.private_data_len = sizeof(priv); 1478 1479 priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0); 1480 priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue)); 1481 /* 1482 * set the admin queue depth to the minimum size 1483 * specified by the Fabrics standard. 1484 */ 1485 if (priv.qid == 0) { 1486 priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH); 1487 priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1); 1488 } else { 1489 /* 1490 * current interpretation of the fabrics spec 1491 * is at minimum you make hrqsize sqsize+1, or a 1492 * 1's based representation of sqsize. 1493 */ 1494 priv.hrqsize = cpu_to_le16(queue->queue_size); 1495 priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize); 1496 } 1497 1498 ret = rdma_connect(queue->cm_id, ¶m); 1499 if (ret) { 1500 dev_err(ctrl->ctrl.device, 1501 "rdma_connect failed (%d).\n", ret); 1502 goto out_destroy_queue_ib; 1503 } 1504 1505 return 0; 1506 1507 out_destroy_queue_ib: 1508 nvme_rdma_destroy_queue_ib(queue); 1509 return ret; 1510 } 1511 1512 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id, 1513 struct rdma_cm_event *ev) 1514 { 1515 struct nvme_rdma_queue *queue = cm_id->context; 1516 int cm_error = 0; 1517 1518 dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n", 1519 rdma_event_msg(ev->event), ev->event, 1520 ev->status, cm_id); 1521 1522 switch (ev->event) { 1523 case RDMA_CM_EVENT_ADDR_RESOLVED: 1524 cm_error = nvme_rdma_addr_resolved(queue); 1525 break; 1526 case RDMA_CM_EVENT_ROUTE_RESOLVED: 1527 cm_error = nvme_rdma_route_resolved(queue); 1528 break; 1529 case RDMA_CM_EVENT_ESTABLISHED: 1530 queue->cm_error = nvme_rdma_conn_established(queue); 1531 /* complete cm_done regardless of success/failure */ 1532 complete(&queue->cm_done); 1533 return 0; 1534 case RDMA_CM_EVENT_REJECTED: 1535 nvme_rdma_destroy_queue_ib(queue); 1536 cm_error = nvme_rdma_conn_rejected(queue, ev); 1537 break; 1538 case RDMA_CM_EVENT_ROUTE_ERROR: 1539 case RDMA_CM_EVENT_CONNECT_ERROR: 1540 case RDMA_CM_EVENT_UNREACHABLE: 1541 nvme_rdma_destroy_queue_ib(queue); 1542 case RDMA_CM_EVENT_ADDR_ERROR: 1543 dev_dbg(queue->ctrl->ctrl.device, 1544 "CM error event %d\n", ev->event); 1545 cm_error = -ECONNRESET; 1546 break; 1547 case RDMA_CM_EVENT_DISCONNECTED: 1548 case RDMA_CM_EVENT_ADDR_CHANGE: 1549 case RDMA_CM_EVENT_TIMEWAIT_EXIT: 1550 dev_dbg(queue->ctrl->ctrl.device, 1551 "disconnect received - connection closed\n"); 1552 nvme_rdma_error_recovery(queue->ctrl); 1553 break; 1554 case RDMA_CM_EVENT_DEVICE_REMOVAL: 1555 /* device removal is handled via the ib_client API */ 1556 break; 1557 default: 1558 dev_err(queue->ctrl->ctrl.device, 1559 "Unexpected RDMA CM event (%d)\n", ev->event); 1560 nvme_rdma_error_recovery(queue->ctrl); 1561 break; 1562 } 1563 1564 if (cm_error) { 1565 queue->cm_error = cm_error; 1566 complete(&queue->cm_done); 1567 } 1568 1569 return 0; 1570 } 1571 1572 static enum blk_eh_timer_return 1573 nvme_rdma_timeout(struct request *rq, bool reserved) 1574 { 1575 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1576 1577 dev_warn(req->queue->ctrl->ctrl.device, 1578 "I/O %d QID %d timeout, reset controller\n", 1579 rq->tag, nvme_rdma_queue_idx(req->queue)); 1580 1581 /* queue error recovery */ 1582 nvme_rdma_error_recovery(req->queue->ctrl); 1583 1584 /* fail with DNR on cmd timeout */ 1585 nvme_req(rq)->status = NVME_SC_ABORT_REQ | NVME_SC_DNR; 1586 1587 return BLK_EH_HANDLED; 1588 } 1589 1590 /* 1591 * We cannot accept any other command until the Connect command has completed. 1592 */ 1593 static inline blk_status_t 1594 nvme_rdma_queue_is_ready(struct nvme_rdma_queue *queue, struct request *rq) 1595 { 1596 if (unlikely(!test_bit(NVME_RDMA_Q_LIVE, &queue->flags))) { 1597 struct nvme_command *cmd = nvme_req(rq)->cmd; 1598 1599 if (!blk_rq_is_passthrough(rq) || 1600 cmd->common.opcode != nvme_fabrics_command || 1601 cmd->fabrics.fctype != nvme_fabrics_type_connect) { 1602 /* 1603 * reconnecting state means transport disruption, which 1604 * can take a long time and even might fail permanently, 1605 * fail fast to give upper layers a chance to failover. 1606 * deleting state means that the ctrl will never accept 1607 * commands again, fail it permanently. 1608 */ 1609 if (queue->ctrl->ctrl.state == NVME_CTRL_RECONNECTING || 1610 queue->ctrl->ctrl.state == NVME_CTRL_DELETING) { 1611 nvme_req(rq)->status = NVME_SC_ABORT_REQ; 1612 return BLK_STS_IOERR; 1613 } 1614 return BLK_STS_RESOURCE; /* try again later */ 1615 } 1616 } 1617 1618 return 0; 1619 } 1620 1621 static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx, 1622 const struct blk_mq_queue_data *bd) 1623 { 1624 struct nvme_ns *ns = hctx->queue->queuedata; 1625 struct nvme_rdma_queue *queue = hctx->driver_data; 1626 struct request *rq = bd->rq; 1627 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1628 struct nvme_rdma_qe *sqe = &req->sqe; 1629 struct nvme_command *c = sqe->data; 1630 bool flush = false; 1631 struct ib_device *dev; 1632 blk_status_t ret; 1633 int err; 1634 1635 WARN_ON_ONCE(rq->tag < 0); 1636 1637 ret = nvme_rdma_queue_is_ready(queue, rq); 1638 if (unlikely(ret)) 1639 return ret; 1640 1641 dev = queue->device->dev; 1642 ib_dma_sync_single_for_cpu(dev, sqe->dma, 1643 sizeof(struct nvme_command), DMA_TO_DEVICE); 1644 1645 ret = nvme_setup_cmd(ns, rq, c); 1646 if (ret) 1647 return ret; 1648 1649 blk_mq_start_request(rq); 1650 1651 err = nvme_rdma_map_data(queue, rq, c); 1652 if (unlikely(err < 0)) { 1653 dev_err(queue->ctrl->ctrl.device, 1654 "Failed to map data (%d)\n", err); 1655 nvme_cleanup_cmd(rq); 1656 goto err; 1657 } 1658 1659 ib_dma_sync_single_for_device(dev, sqe->dma, 1660 sizeof(struct nvme_command), DMA_TO_DEVICE); 1661 1662 if (req_op(rq) == REQ_OP_FLUSH) 1663 flush = true; 1664 err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge, 1665 req->mr->need_inval ? &req->reg_wr.wr : NULL, flush); 1666 if (unlikely(err)) { 1667 nvme_rdma_unmap_data(queue, rq); 1668 goto err; 1669 } 1670 1671 return BLK_STS_OK; 1672 err: 1673 if (err == -ENOMEM || err == -EAGAIN) 1674 return BLK_STS_RESOURCE; 1675 return BLK_STS_IOERR; 1676 } 1677 1678 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag) 1679 { 1680 struct nvme_rdma_queue *queue = hctx->driver_data; 1681 struct ib_cq *cq = queue->ib_cq; 1682 struct ib_wc wc; 1683 int found = 0; 1684 1685 while (ib_poll_cq(cq, 1, &wc) > 0) { 1686 struct ib_cqe *cqe = wc.wr_cqe; 1687 1688 if (cqe) { 1689 if (cqe->done == nvme_rdma_recv_done) 1690 found |= __nvme_rdma_recv_done(cq, &wc, tag); 1691 else 1692 cqe->done(cq, &wc); 1693 } 1694 } 1695 1696 return found; 1697 } 1698 1699 static void nvme_rdma_complete_rq(struct request *rq) 1700 { 1701 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1702 1703 nvme_rdma_unmap_data(req->queue, rq); 1704 nvme_complete_rq(rq); 1705 } 1706 1707 static int nvme_rdma_map_queues(struct blk_mq_tag_set *set) 1708 { 1709 struct nvme_rdma_ctrl *ctrl = set->driver_data; 1710 1711 return blk_mq_rdma_map_queues(set, ctrl->device->dev, 0); 1712 } 1713 1714 static const struct blk_mq_ops nvme_rdma_mq_ops = { 1715 .queue_rq = nvme_rdma_queue_rq, 1716 .complete = nvme_rdma_complete_rq, 1717 .init_request = nvme_rdma_init_request, 1718 .exit_request = nvme_rdma_exit_request, 1719 .init_hctx = nvme_rdma_init_hctx, 1720 .poll = nvme_rdma_poll, 1721 .timeout = nvme_rdma_timeout, 1722 .map_queues = nvme_rdma_map_queues, 1723 }; 1724 1725 static const struct blk_mq_ops nvme_rdma_admin_mq_ops = { 1726 .queue_rq = nvme_rdma_queue_rq, 1727 .complete = nvme_rdma_complete_rq, 1728 .init_request = nvme_rdma_init_request, 1729 .exit_request = nvme_rdma_exit_request, 1730 .init_hctx = nvme_rdma_init_admin_hctx, 1731 .timeout = nvme_rdma_timeout, 1732 }; 1733 1734 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown) 1735 { 1736 cancel_work_sync(&ctrl->err_work); 1737 cancel_delayed_work_sync(&ctrl->reconnect_work); 1738 1739 if (ctrl->ctrl.queue_count > 1) { 1740 nvme_stop_queues(&ctrl->ctrl); 1741 blk_mq_tagset_busy_iter(&ctrl->tag_set, 1742 nvme_cancel_request, &ctrl->ctrl); 1743 nvme_rdma_destroy_io_queues(ctrl, shutdown); 1744 } 1745 1746 if (shutdown) 1747 nvme_shutdown_ctrl(&ctrl->ctrl); 1748 else 1749 nvme_disable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap); 1750 1751 blk_mq_quiesce_queue(ctrl->ctrl.admin_q); 1752 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set, 1753 nvme_cancel_request, &ctrl->ctrl); 1754 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q); 1755 nvme_rdma_destroy_admin_queue(ctrl, shutdown); 1756 } 1757 1758 static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl) 1759 { 1760 nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true); 1761 } 1762 1763 static void nvme_rdma_reset_ctrl_work(struct work_struct *work) 1764 { 1765 struct nvme_rdma_ctrl *ctrl = 1766 container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work); 1767 int ret; 1768 bool changed; 1769 1770 nvme_stop_ctrl(&ctrl->ctrl); 1771 nvme_rdma_shutdown_ctrl(ctrl, false); 1772 1773 ret = nvme_rdma_configure_admin_queue(ctrl, false); 1774 if (ret) 1775 goto out_fail; 1776 1777 if (ctrl->ctrl.queue_count > 1) { 1778 ret = nvme_rdma_configure_io_queues(ctrl, false); 1779 if (ret) 1780 goto out_fail; 1781 } 1782 1783 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); 1784 if (!changed) { 1785 /* state change failure is ok if we're in DELETING state */ 1786 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING); 1787 return; 1788 } 1789 1790 nvme_start_ctrl(&ctrl->ctrl); 1791 1792 return; 1793 1794 out_fail: 1795 dev_warn(ctrl->ctrl.device, "Removing after reset failure\n"); 1796 nvme_remove_namespaces(&ctrl->ctrl); 1797 nvme_rdma_shutdown_ctrl(ctrl, true); 1798 nvme_uninit_ctrl(&ctrl->ctrl); 1799 nvme_put_ctrl(&ctrl->ctrl); 1800 } 1801 1802 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = { 1803 .name = "rdma", 1804 .module = THIS_MODULE, 1805 .flags = NVME_F_FABRICS, 1806 .reg_read32 = nvmf_reg_read32, 1807 .reg_read64 = nvmf_reg_read64, 1808 .reg_write32 = nvmf_reg_write32, 1809 .free_ctrl = nvme_rdma_free_ctrl, 1810 .submit_async_event = nvme_rdma_submit_async_event, 1811 .delete_ctrl = nvme_rdma_delete_ctrl, 1812 .get_address = nvmf_get_address, 1813 .reinit_request = nvme_rdma_reinit_request, 1814 }; 1815 1816 static inline bool 1817 __nvme_rdma_options_match(struct nvme_rdma_ctrl *ctrl, 1818 struct nvmf_ctrl_options *opts) 1819 { 1820 char *stdport = __stringify(NVME_RDMA_IP_PORT); 1821 1822 1823 if (!nvmf_ctlr_matches_baseopts(&ctrl->ctrl, opts) || 1824 strcmp(opts->traddr, ctrl->ctrl.opts->traddr)) 1825 return false; 1826 1827 if (opts->mask & NVMF_OPT_TRSVCID && 1828 ctrl->ctrl.opts->mask & NVMF_OPT_TRSVCID) { 1829 if (strcmp(opts->trsvcid, ctrl->ctrl.opts->trsvcid)) 1830 return false; 1831 } else if (opts->mask & NVMF_OPT_TRSVCID) { 1832 if (strcmp(opts->trsvcid, stdport)) 1833 return false; 1834 } else if (ctrl->ctrl.opts->mask & NVMF_OPT_TRSVCID) { 1835 if (strcmp(stdport, ctrl->ctrl.opts->trsvcid)) 1836 return false; 1837 } 1838 /* else, it's a match as both have stdport. Fall to next checks */ 1839 1840 /* 1841 * checking the local address is rough. In most cases, one 1842 * is not specified and the host port is selected by the stack. 1843 * 1844 * Assume no match if: 1845 * local address is specified and address is not the same 1846 * local address is not specified but remote is, or vice versa 1847 * (admin using specific host_traddr when it matters). 1848 */ 1849 if (opts->mask & NVMF_OPT_HOST_TRADDR && 1850 ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR) { 1851 if (strcmp(opts->host_traddr, ctrl->ctrl.opts->host_traddr)) 1852 return false; 1853 } else if (opts->mask & NVMF_OPT_HOST_TRADDR || 1854 ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR) 1855 return false; 1856 /* 1857 * if neither controller had an host port specified, assume it's 1858 * a match as everything else matched. 1859 */ 1860 1861 return true; 1862 } 1863 1864 /* 1865 * Fails a connection request if it matches an existing controller 1866 * (association) with the same tuple: 1867 * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN> 1868 * 1869 * if local address is not specified in the request, it will match an 1870 * existing controller with all the other parameters the same and no 1871 * local port address specified as well. 1872 * 1873 * The ports don't need to be compared as they are intrinsically 1874 * already matched by the port pointers supplied. 1875 */ 1876 static bool 1877 nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts) 1878 { 1879 struct nvme_rdma_ctrl *ctrl; 1880 bool found = false; 1881 1882 mutex_lock(&nvme_rdma_ctrl_mutex); 1883 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) { 1884 found = __nvme_rdma_options_match(ctrl, opts); 1885 if (found) 1886 break; 1887 } 1888 mutex_unlock(&nvme_rdma_ctrl_mutex); 1889 1890 return found; 1891 } 1892 1893 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev, 1894 struct nvmf_ctrl_options *opts) 1895 { 1896 struct nvme_rdma_ctrl *ctrl; 1897 int ret; 1898 bool changed; 1899 char *port; 1900 1901 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 1902 if (!ctrl) 1903 return ERR_PTR(-ENOMEM); 1904 ctrl->ctrl.opts = opts; 1905 INIT_LIST_HEAD(&ctrl->list); 1906 1907 if (opts->mask & NVMF_OPT_TRSVCID) 1908 port = opts->trsvcid; 1909 else 1910 port = __stringify(NVME_RDMA_IP_PORT); 1911 1912 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 1913 opts->traddr, port, &ctrl->addr); 1914 if (ret) { 1915 pr_err("malformed address passed: %s:%s\n", opts->traddr, port); 1916 goto out_free_ctrl; 1917 } 1918 1919 if (opts->mask & NVMF_OPT_HOST_TRADDR) { 1920 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 1921 opts->host_traddr, NULL, &ctrl->src_addr); 1922 if (ret) { 1923 pr_err("malformed src address passed: %s\n", 1924 opts->host_traddr); 1925 goto out_free_ctrl; 1926 } 1927 } 1928 1929 if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) { 1930 ret = -EALREADY; 1931 goto out_free_ctrl; 1932 } 1933 1934 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops, 1935 0 /* no quirks, we're perfect! */); 1936 if (ret) 1937 goto out_free_ctrl; 1938 1939 INIT_DELAYED_WORK(&ctrl->reconnect_work, 1940 nvme_rdma_reconnect_ctrl_work); 1941 INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work); 1942 INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work); 1943 1944 ctrl->ctrl.queue_count = opts->nr_io_queues + 1; /* +1 for admin queue */ 1945 ctrl->ctrl.sqsize = opts->queue_size - 1; 1946 ctrl->ctrl.kato = opts->kato; 1947 1948 ret = -ENOMEM; 1949 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues), 1950 GFP_KERNEL); 1951 if (!ctrl->queues) 1952 goto out_uninit_ctrl; 1953 1954 ret = nvme_rdma_configure_admin_queue(ctrl, true); 1955 if (ret) 1956 goto out_kfree_queues; 1957 1958 /* sanity check icdoff */ 1959 if (ctrl->ctrl.icdoff) { 1960 dev_err(ctrl->ctrl.device, "icdoff is not supported!\n"); 1961 ret = -EINVAL; 1962 goto out_remove_admin_queue; 1963 } 1964 1965 /* sanity check keyed sgls */ 1966 if (!(ctrl->ctrl.sgls & (1 << 20))) { 1967 dev_err(ctrl->ctrl.device, "Mandatory keyed sgls are not support\n"); 1968 ret = -EINVAL; 1969 goto out_remove_admin_queue; 1970 } 1971 1972 if (opts->queue_size > ctrl->ctrl.maxcmd) { 1973 /* warn if maxcmd is lower than queue_size */ 1974 dev_warn(ctrl->ctrl.device, 1975 "queue_size %zu > ctrl maxcmd %u, clamping down\n", 1976 opts->queue_size, ctrl->ctrl.maxcmd); 1977 opts->queue_size = ctrl->ctrl.maxcmd; 1978 } 1979 1980 if (opts->queue_size > ctrl->ctrl.sqsize + 1) { 1981 /* warn if sqsize is lower than queue_size */ 1982 dev_warn(ctrl->ctrl.device, 1983 "queue_size %zu > ctrl sqsize %u, clamping down\n", 1984 opts->queue_size, ctrl->ctrl.sqsize + 1); 1985 opts->queue_size = ctrl->ctrl.sqsize + 1; 1986 } 1987 1988 if (opts->nr_io_queues) { 1989 ret = nvme_rdma_configure_io_queues(ctrl, true); 1990 if (ret) 1991 goto out_remove_admin_queue; 1992 } 1993 1994 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); 1995 WARN_ON_ONCE(!changed); 1996 1997 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n", 1998 ctrl->ctrl.opts->subsysnqn, &ctrl->addr); 1999 2000 nvme_get_ctrl(&ctrl->ctrl); 2001 2002 mutex_lock(&nvme_rdma_ctrl_mutex); 2003 list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list); 2004 mutex_unlock(&nvme_rdma_ctrl_mutex); 2005 2006 nvme_start_ctrl(&ctrl->ctrl); 2007 2008 return &ctrl->ctrl; 2009 2010 out_remove_admin_queue: 2011 nvme_rdma_destroy_admin_queue(ctrl, true); 2012 out_kfree_queues: 2013 kfree(ctrl->queues); 2014 out_uninit_ctrl: 2015 nvme_uninit_ctrl(&ctrl->ctrl); 2016 nvme_put_ctrl(&ctrl->ctrl); 2017 if (ret > 0) 2018 ret = -EIO; 2019 return ERR_PTR(ret); 2020 out_free_ctrl: 2021 kfree(ctrl); 2022 return ERR_PTR(ret); 2023 } 2024 2025 static struct nvmf_transport_ops nvme_rdma_transport = { 2026 .name = "rdma", 2027 .required_opts = NVMF_OPT_TRADDR, 2028 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY | 2029 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO, 2030 .create_ctrl = nvme_rdma_create_ctrl, 2031 }; 2032 2033 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data) 2034 { 2035 struct nvme_rdma_ctrl *ctrl; 2036 2037 /* Delete all controllers using this device */ 2038 mutex_lock(&nvme_rdma_ctrl_mutex); 2039 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) { 2040 if (ctrl->device->dev != ib_device) 2041 continue; 2042 dev_info(ctrl->ctrl.device, 2043 "Removing ctrl: NQN \"%s\", addr %pISp\n", 2044 ctrl->ctrl.opts->subsysnqn, &ctrl->addr); 2045 nvme_delete_ctrl(&ctrl->ctrl); 2046 } 2047 mutex_unlock(&nvme_rdma_ctrl_mutex); 2048 2049 flush_workqueue(nvme_wq); 2050 } 2051 2052 static struct ib_client nvme_rdma_ib_client = { 2053 .name = "nvme_rdma", 2054 .remove = nvme_rdma_remove_one 2055 }; 2056 2057 static int __init nvme_rdma_init_module(void) 2058 { 2059 int ret; 2060 2061 ret = ib_register_client(&nvme_rdma_ib_client); 2062 if (ret) 2063 return ret; 2064 2065 ret = nvmf_register_transport(&nvme_rdma_transport); 2066 if (ret) 2067 goto err_unreg_client; 2068 2069 return 0; 2070 2071 err_unreg_client: 2072 ib_unregister_client(&nvme_rdma_ib_client); 2073 return ret; 2074 } 2075 2076 static void __exit nvme_rdma_cleanup_module(void) 2077 { 2078 nvmf_unregister_transport(&nvme_rdma_transport); 2079 ib_unregister_client(&nvme_rdma_ib_client); 2080 } 2081 2082 module_init(nvme_rdma_init_module); 2083 module_exit(nvme_rdma_cleanup_module); 2084 2085 MODULE_LICENSE("GPL v2"); 2086