1 /* 2 * NVMe over Fabrics RDMA host code. 3 * Copyright (c) 2015-2016 HGST, a Western Digital Company. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 */ 14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 15 #include <linux/module.h> 16 #include <linux/init.h> 17 #include <linux/slab.h> 18 #include <linux/err.h> 19 #include <linux/string.h> 20 #include <linux/atomic.h> 21 #include <linux/blk-mq.h> 22 #include <linux/types.h> 23 #include <linux/list.h> 24 #include <linux/mutex.h> 25 #include <linux/scatterlist.h> 26 #include <linux/nvme.h> 27 #include <asm/unaligned.h> 28 29 #include <rdma/ib_verbs.h> 30 #include <rdma/rdma_cm.h> 31 #include <linux/nvme-rdma.h> 32 33 #include "nvme.h" 34 #include "fabrics.h" 35 36 37 #define NVME_RDMA_CONNECT_TIMEOUT_MS 3000 /* 3 second */ 38 39 #define NVME_RDMA_MAX_SEGMENT_SIZE 0xffffff /* 24-bit SGL field */ 40 41 #define NVME_RDMA_MAX_SEGMENTS 256 42 43 #define NVME_RDMA_MAX_INLINE_SEGMENTS 1 44 45 /* 46 * We handle AEN commands ourselves and don't even let the 47 * block layer know about them. 48 */ 49 #define NVME_RDMA_NR_AEN_COMMANDS 1 50 #define NVME_RDMA_AQ_BLKMQ_DEPTH \ 51 (NVME_AQ_DEPTH - NVME_RDMA_NR_AEN_COMMANDS) 52 53 struct nvme_rdma_device { 54 struct ib_device *dev; 55 struct ib_pd *pd; 56 struct kref ref; 57 struct list_head entry; 58 }; 59 60 struct nvme_rdma_qe { 61 struct ib_cqe cqe; 62 void *data; 63 u64 dma; 64 }; 65 66 struct nvme_rdma_queue; 67 struct nvme_rdma_request { 68 struct nvme_request req; 69 struct ib_mr *mr; 70 struct nvme_rdma_qe sqe; 71 struct ib_sge sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS]; 72 u32 num_sge; 73 int nents; 74 bool inline_data; 75 struct ib_reg_wr reg_wr; 76 struct ib_cqe reg_cqe; 77 struct nvme_rdma_queue *queue; 78 struct sg_table sg_table; 79 struct scatterlist first_sgl[]; 80 }; 81 82 enum nvme_rdma_queue_flags { 83 NVME_RDMA_Q_LIVE = 0, 84 NVME_RDMA_Q_DELETING = 1, 85 }; 86 87 struct nvme_rdma_queue { 88 struct nvme_rdma_qe *rsp_ring; 89 atomic_t sig_count; 90 int queue_size; 91 size_t cmnd_capsule_len; 92 struct nvme_rdma_ctrl *ctrl; 93 struct nvme_rdma_device *device; 94 struct ib_cq *ib_cq; 95 struct ib_qp *qp; 96 97 unsigned long flags; 98 struct rdma_cm_id *cm_id; 99 int cm_error; 100 struct completion cm_done; 101 }; 102 103 struct nvme_rdma_ctrl { 104 /* read only in the hot path */ 105 struct nvme_rdma_queue *queues; 106 107 /* other member variables */ 108 struct blk_mq_tag_set tag_set; 109 struct work_struct delete_work; 110 struct work_struct err_work; 111 112 struct nvme_rdma_qe async_event_sqe; 113 114 struct delayed_work reconnect_work; 115 116 struct list_head list; 117 118 struct blk_mq_tag_set admin_tag_set; 119 struct nvme_rdma_device *device; 120 121 u32 max_fr_pages; 122 123 struct sockaddr_storage addr; 124 struct sockaddr_storage src_addr; 125 126 struct nvme_ctrl ctrl; 127 }; 128 129 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl) 130 { 131 return container_of(ctrl, struct nvme_rdma_ctrl, ctrl); 132 } 133 134 static LIST_HEAD(device_list); 135 static DEFINE_MUTEX(device_list_mutex); 136 137 static LIST_HEAD(nvme_rdma_ctrl_list); 138 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex); 139 140 /* 141 * Disabling this option makes small I/O goes faster, but is fundamentally 142 * unsafe. With it turned off we will have to register a global rkey that 143 * allows read and write access to all physical memory. 144 */ 145 static bool register_always = true; 146 module_param(register_always, bool, 0444); 147 MODULE_PARM_DESC(register_always, 148 "Use memory registration even for contiguous memory regions"); 149 150 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id, 151 struct rdma_cm_event *event); 152 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc); 153 154 /* XXX: really should move to a generic header sooner or later.. */ 155 static inline void put_unaligned_le24(u32 val, u8 *p) 156 { 157 *p++ = val; 158 *p++ = val >> 8; 159 *p++ = val >> 16; 160 } 161 162 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue) 163 { 164 return queue - queue->ctrl->queues; 165 } 166 167 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue) 168 { 169 return queue->cmnd_capsule_len - sizeof(struct nvme_command); 170 } 171 172 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe, 173 size_t capsule_size, enum dma_data_direction dir) 174 { 175 ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir); 176 kfree(qe->data); 177 } 178 179 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe, 180 size_t capsule_size, enum dma_data_direction dir) 181 { 182 qe->data = kzalloc(capsule_size, GFP_KERNEL); 183 if (!qe->data) 184 return -ENOMEM; 185 186 qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir); 187 if (ib_dma_mapping_error(ibdev, qe->dma)) { 188 kfree(qe->data); 189 return -ENOMEM; 190 } 191 192 return 0; 193 } 194 195 static void nvme_rdma_free_ring(struct ib_device *ibdev, 196 struct nvme_rdma_qe *ring, size_t ib_queue_size, 197 size_t capsule_size, enum dma_data_direction dir) 198 { 199 int i; 200 201 for (i = 0; i < ib_queue_size; i++) 202 nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir); 203 kfree(ring); 204 } 205 206 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev, 207 size_t ib_queue_size, size_t capsule_size, 208 enum dma_data_direction dir) 209 { 210 struct nvme_rdma_qe *ring; 211 int i; 212 213 ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL); 214 if (!ring) 215 return NULL; 216 217 for (i = 0; i < ib_queue_size; i++) { 218 if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir)) 219 goto out_free_ring; 220 } 221 222 return ring; 223 224 out_free_ring: 225 nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir); 226 return NULL; 227 } 228 229 static void nvme_rdma_qp_event(struct ib_event *event, void *context) 230 { 231 pr_debug("QP event %s (%d)\n", 232 ib_event_msg(event->event), event->event); 233 234 } 235 236 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue) 237 { 238 wait_for_completion_interruptible_timeout(&queue->cm_done, 239 msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1); 240 return queue->cm_error; 241 } 242 243 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor) 244 { 245 struct nvme_rdma_device *dev = queue->device; 246 struct ib_qp_init_attr init_attr; 247 int ret; 248 249 memset(&init_attr, 0, sizeof(init_attr)); 250 init_attr.event_handler = nvme_rdma_qp_event; 251 /* +1 for drain */ 252 init_attr.cap.max_send_wr = factor * queue->queue_size + 1; 253 /* +1 for drain */ 254 init_attr.cap.max_recv_wr = queue->queue_size + 1; 255 init_attr.cap.max_recv_sge = 1; 256 init_attr.cap.max_send_sge = 1 + NVME_RDMA_MAX_INLINE_SEGMENTS; 257 init_attr.sq_sig_type = IB_SIGNAL_REQ_WR; 258 init_attr.qp_type = IB_QPT_RC; 259 init_attr.send_cq = queue->ib_cq; 260 init_attr.recv_cq = queue->ib_cq; 261 262 ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr); 263 264 queue->qp = queue->cm_id->qp; 265 return ret; 266 } 267 268 static int nvme_rdma_reinit_request(void *data, struct request *rq) 269 { 270 struct nvme_rdma_ctrl *ctrl = data; 271 struct nvme_rdma_device *dev = ctrl->device; 272 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 273 int ret = 0; 274 275 ib_dereg_mr(req->mr); 276 277 req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG, 278 ctrl->max_fr_pages); 279 if (IS_ERR(req->mr)) { 280 ret = PTR_ERR(req->mr); 281 req->mr = NULL; 282 goto out; 283 } 284 285 req->mr->need_inval = false; 286 287 out: 288 return ret; 289 } 290 291 static void nvme_rdma_exit_request(struct blk_mq_tag_set *set, 292 struct request *rq, unsigned int hctx_idx) 293 { 294 struct nvme_rdma_ctrl *ctrl = set->driver_data; 295 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 296 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; 297 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx]; 298 struct nvme_rdma_device *dev = queue->device; 299 300 if (req->mr) 301 ib_dereg_mr(req->mr); 302 303 nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command), 304 DMA_TO_DEVICE); 305 } 306 307 static int nvme_rdma_init_request(struct blk_mq_tag_set *set, 308 struct request *rq, unsigned int hctx_idx, 309 unsigned int numa_node) 310 { 311 struct nvme_rdma_ctrl *ctrl = set->driver_data; 312 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 313 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; 314 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx]; 315 struct nvme_rdma_device *dev = queue->device; 316 struct ib_device *ibdev = dev->dev; 317 int ret; 318 319 ret = nvme_rdma_alloc_qe(ibdev, &req->sqe, sizeof(struct nvme_command), 320 DMA_TO_DEVICE); 321 if (ret) 322 return ret; 323 324 req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG, 325 ctrl->max_fr_pages); 326 if (IS_ERR(req->mr)) { 327 ret = PTR_ERR(req->mr); 328 goto out_free_qe; 329 } 330 331 req->queue = queue; 332 333 return 0; 334 335 out_free_qe: 336 nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command), 337 DMA_TO_DEVICE); 338 return -ENOMEM; 339 } 340 341 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 342 unsigned int hctx_idx) 343 { 344 struct nvme_rdma_ctrl *ctrl = data; 345 struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1]; 346 347 BUG_ON(hctx_idx >= ctrl->ctrl.queue_count); 348 349 hctx->driver_data = queue; 350 return 0; 351 } 352 353 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, 354 unsigned int hctx_idx) 355 { 356 struct nvme_rdma_ctrl *ctrl = data; 357 struct nvme_rdma_queue *queue = &ctrl->queues[0]; 358 359 BUG_ON(hctx_idx != 0); 360 361 hctx->driver_data = queue; 362 return 0; 363 } 364 365 static void nvme_rdma_free_dev(struct kref *ref) 366 { 367 struct nvme_rdma_device *ndev = 368 container_of(ref, struct nvme_rdma_device, ref); 369 370 mutex_lock(&device_list_mutex); 371 list_del(&ndev->entry); 372 mutex_unlock(&device_list_mutex); 373 374 ib_dealloc_pd(ndev->pd); 375 kfree(ndev); 376 } 377 378 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev) 379 { 380 kref_put(&dev->ref, nvme_rdma_free_dev); 381 } 382 383 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev) 384 { 385 return kref_get_unless_zero(&dev->ref); 386 } 387 388 static struct nvme_rdma_device * 389 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id) 390 { 391 struct nvme_rdma_device *ndev; 392 393 mutex_lock(&device_list_mutex); 394 list_for_each_entry(ndev, &device_list, entry) { 395 if (ndev->dev->node_guid == cm_id->device->node_guid && 396 nvme_rdma_dev_get(ndev)) 397 goto out_unlock; 398 } 399 400 ndev = kzalloc(sizeof(*ndev), GFP_KERNEL); 401 if (!ndev) 402 goto out_err; 403 404 ndev->dev = cm_id->device; 405 kref_init(&ndev->ref); 406 407 ndev->pd = ib_alloc_pd(ndev->dev, 408 register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY); 409 if (IS_ERR(ndev->pd)) 410 goto out_free_dev; 411 412 if (!(ndev->dev->attrs.device_cap_flags & 413 IB_DEVICE_MEM_MGT_EXTENSIONS)) { 414 dev_err(&ndev->dev->dev, 415 "Memory registrations not supported.\n"); 416 goto out_free_pd; 417 } 418 419 list_add(&ndev->entry, &device_list); 420 out_unlock: 421 mutex_unlock(&device_list_mutex); 422 return ndev; 423 424 out_free_pd: 425 ib_dealloc_pd(ndev->pd); 426 out_free_dev: 427 kfree(ndev); 428 out_err: 429 mutex_unlock(&device_list_mutex); 430 return NULL; 431 } 432 433 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue) 434 { 435 struct nvme_rdma_device *dev; 436 struct ib_device *ibdev; 437 438 dev = queue->device; 439 ibdev = dev->dev; 440 rdma_destroy_qp(queue->cm_id); 441 ib_free_cq(queue->ib_cq); 442 443 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size, 444 sizeof(struct nvme_completion), DMA_FROM_DEVICE); 445 446 nvme_rdma_dev_put(dev); 447 } 448 449 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue) 450 { 451 struct ib_device *ibdev; 452 const int send_wr_factor = 3; /* MR, SEND, INV */ 453 const int cq_factor = send_wr_factor + 1; /* + RECV */ 454 int comp_vector, idx = nvme_rdma_queue_idx(queue); 455 int ret; 456 457 queue->device = nvme_rdma_find_get_device(queue->cm_id); 458 if (!queue->device) { 459 dev_err(queue->cm_id->device->dev.parent, 460 "no client data found!\n"); 461 return -ECONNREFUSED; 462 } 463 ibdev = queue->device->dev; 464 465 /* 466 * The admin queue is barely used once the controller is live, so don't 467 * bother to spread it out. 468 */ 469 if (idx == 0) 470 comp_vector = 0; 471 else 472 comp_vector = idx % ibdev->num_comp_vectors; 473 474 475 /* +1 for ib_stop_cq */ 476 queue->ib_cq = ib_alloc_cq(ibdev, queue, 477 cq_factor * queue->queue_size + 1, 478 comp_vector, IB_POLL_SOFTIRQ); 479 if (IS_ERR(queue->ib_cq)) { 480 ret = PTR_ERR(queue->ib_cq); 481 goto out_put_dev; 482 } 483 484 ret = nvme_rdma_create_qp(queue, send_wr_factor); 485 if (ret) 486 goto out_destroy_ib_cq; 487 488 queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size, 489 sizeof(struct nvme_completion), DMA_FROM_DEVICE); 490 if (!queue->rsp_ring) { 491 ret = -ENOMEM; 492 goto out_destroy_qp; 493 } 494 495 return 0; 496 497 out_destroy_qp: 498 ib_destroy_qp(queue->qp); 499 out_destroy_ib_cq: 500 ib_free_cq(queue->ib_cq); 501 out_put_dev: 502 nvme_rdma_dev_put(queue->device); 503 return ret; 504 } 505 506 static int nvme_rdma_init_queue(struct nvme_rdma_ctrl *ctrl, 507 int idx, size_t queue_size) 508 { 509 struct nvme_rdma_queue *queue; 510 struct sockaddr *src_addr = NULL; 511 int ret; 512 513 queue = &ctrl->queues[idx]; 514 queue->ctrl = ctrl; 515 init_completion(&queue->cm_done); 516 517 if (idx > 0) 518 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16; 519 else 520 queue->cmnd_capsule_len = sizeof(struct nvme_command); 521 522 queue->queue_size = queue_size; 523 atomic_set(&queue->sig_count, 0); 524 525 queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue, 526 RDMA_PS_TCP, IB_QPT_RC); 527 if (IS_ERR(queue->cm_id)) { 528 dev_info(ctrl->ctrl.device, 529 "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id)); 530 return PTR_ERR(queue->cm_id); 531 } 532 533 if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR) 534 src_addr = (struct sockaddr *)&ctrl->src_addr; 535 536 queue->cm_error = -ETIMEDOUT; 537 ret = rdma_resolve_addr(queue->cm_id, src_addr, 538 (struct sockaddr *)&ctrl->addr, 539 NVME_RDMA_CONNECT_TIMEOUT_MS); 540 if (ret) { 541 dev_info(ctrl->ctrl.device, 542 "rdma_resolve_addr failed (%d).\n", ret); 543 goto out_destroy_cm_id; 544 } 545 546 ret = nvme_rdma_wait_for_cm(queue); 547 if (ret) { 548 dev_info(ctrl->ctrl.device, 549 "rdma_resolve_addr wait failed (%d).\n", ret); 550 goto out_destroy_cm_id; 551 } 552 553 clear_bit(NVME_RDMA_Q_DELETING, &queue->flags); 554 555 return 0; 556 557 out_destroy_cm_id: 558 rdma_destroy_id(queue->cm_id); 559 return ret; 560 } 561 562 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue) 563 { 564 rdma_disconnect(queue->cm_id); 565 ib_drain_qp(queue->qp); 566 } 567 568 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue) 569 { 570 nvme_rdma_destroy_queue_ib(queue); 571 rdma_destroy_id(queue->cm_id); 572 } 573 574 static void nvme_rdma_stop_and_free_queue(struct nvme_rdma_queue *queue) 575 { 576 if (test_and_set_bit(NVME_RDMA_Q_DELETING, &queue->flags)) 577 return; 578 nvme_rdma_stop_queue(queue); 579 nvme_rdma_free_queue(queue); 580 } 581 582 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl) 583 { 584 int i; 585 586 for (i = 1; i < ctrl->ctrl.queue_count; i++) 587 nvme_rdma_stop_and_free_queue(&ctrl->queues[i]); 588 } 589 590 static int nvme_rdma_connect_io_queues(struct nvme_rdma_ctrl *ctrl) 591 { 592 int i, ret = 0; 593 594 for (i = 1; i < ctrl->ctrl.queue_count; i++) { 595 ret = nvmf_connect_io_queue(&ctrl->ctrl, i); 596 if (ret) { 597 dev_info(ctrl->ctrl.device, 598 "failed to connect i/o queue: %d\n", ret); 599 goto out_free_queues; 600 } 601 set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[i].flags); 602 } 603 604 return 0; 605 606 out_free_queues: 607 nvme_rdma_free_io_queues(ctrl); 608 return ret; 609 } 610 611 static int nvme_rdma_init_io_queues(struct nvme_rdma_ctrl *ctrl) 612 { 613 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 614 unsigned int nr_io_queues; 615 int i, ret; 616 617 nr_io_queues = min(opts->nr_io_queues, num_online_cpus()); 618 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues); 619 if (ret) 620 return ret; 621 622 ctrl->ctrl.queue_count = nr_io_queues + 1; 623 if (ctrl->ctrl.queue_count < 2) 624 return 0; 625 626 dev_info(ctrl->ctrl.device, 627 "creating %d I/O queues.\n", nr_io_queues); 628 629 for (i = 1; i < ctrl->ctrl.queue_count; i++) { 630 ret = nvme_rdma_init_queue(ctrl, i, 631 ctrl->ctrl.opts->queue_size); 632 if (ret) { 633 dev_info(ctrl->ctrl.device, 634 "failed to initialize i/o queue: %d\n", ret); 635 goto out_free_queues; 636 } 637 } 638 639 return 0; 640 641 out_free_queues: 642 for (i--; i >= 1; i--) 643 nvme_rdma_stop_and_free_queue(&ctrl->queues[i]); 644 645 return ret; 646 } 647 648 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl) 649 { 650 nvme_rdma_free_qe(ctrl->queues[0].device->dev, &ctrl->async_event_sqe, 651 sizeof(struct nvme_command), DMA_TO_DEVICE); 652 nvme_rdma_stop_and_free_queue(&ctrl->queues[0]); 653 blk_cleanup_queue(ctrl->ctrl.admin_q); 654 blk_mq_free_tag_set(&ctrl->admin_tag_set); 655 nvme_rdma_dev_put(ctrl->device); 656 } 657 658 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl) 659 { 660 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 661 662 if (list_empty(&ctrl->list)) 663 goto free_ctrl; 664 665 mutex_lock(&nvme_rdma_ctrl_mutex); 666 list_del(&ctrl->list); 667 mutex_unlock(&nvme_rdma_ctrl_mutex); 668 669 kfree(ctrl->queues); 670 nvmf_free_options(nctrl->opts); 671 free_ctrl: 672 kfree(ctrl); 673 } 674 675 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl) 676 { 677 /* If we are resetting/deleting then do nothing */ 678 if (ctrl->ctrl.state != NVME_CTRL_RECONNECTING) { 679 WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW || 680 ctrl->ctrl.state == NVME_CTRL_LIVE); 681 return; 682 } 683 684 if (nvmf_should_reconnect(&ctrl->ctrl)) { 685 dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n", 686 ctrl->ctrl.opts->reconnect_delay); 687 queue_delayed_work(nvme_wq, &ctrl->reconnect_work, 688 ctrl->ctrl.opts->reconnect_delay * HZ); 689 } else { 690 dev_info(ctrl->ctrl.device, "Removing controller...\n"); 691 queue_work(nvme_wq, &ctrl->delete_work); 692 } 693 } 694 695 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work) 696 { 697 struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work), 698 struct nvme_rdma_ctrl, reconnect_work); 699 bool changed; 700 int ret; 701 702 ++ctrl->ctrl.nr_reconnects; 703 704 if (ctrl->ctrl.queue_count > 1) { 705 nvme_rdma_free_io_queues(ctrl); 706 707 ret = blk_mq_reinit_tagset(&ctrl->tag_set); 708 if (ret) 709 goto requeue; 710 } 711 712 nvme_rdma_stop_and_free_queue(&ctrl->queues[0]); 713 714 ret = blk_mq_reinit_tagset(&ctrl->admin_tag_set); 715 if (ret) 716 goto requeue; 717 718 ret = nvme_rdma_init_queue(ctrl, 0, NVME_AQ_DEPTH); 719 if (ret) 720 goto requeue; 721 722 ret = nvmf_connect_admin_queue(&ctrl->ctrl); 723 if (ret) 724 goto requeue; 725 726 set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[0].flags); 727 728 ret = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap); 729 if (ret) 730 goto requeue; 731 732 if (ctrl->ctrl.queue_count > 1) { 733 ret = nvme_rdma_init_io_queues(ctrl); 734 if (ret) 735 goto requeue; 736 737 ret = nvme_rdma_connect_io_queues(ctrl); 738 if (ret) 739 goto requeue; 740 741 blk_mq_update_nr_hw_queues(&ctrl->tag_set, 742 ctrl->ctrl.queue_count - 1); 743 } 744 745 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); 746 WARN_ON_ONCE(!changed); 747 ctrl->ctrl.nr_reconnects = 0; 748 749 nvme_start_ctrl(&ctrl->ctrl); 750 751 dev_info(ctrl->ctrl.device, "Successfully reconnected\n"); 752 753 return; 754 755 requeue: 756 dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n", 757 ctrl->ctrl.nr_reconnects); 758 nvme_rdma_reconnect_or_remove(ctrl); 759 } 760 761 static void nvme_rdma_error_recovery_work(struct work_struct *work) 762 { 763 struct nvme_rdma_ctrl *ctrl = container_of(work, 764 struct nvme_rdma_ctrl, err_work); 765 int i; 766 767 nvme_stop_ctrl(&ctrl->ctrl); 768 769 for (i = 0; i < ctrl->ctrl.queue_count; i++) 770 clear_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[i].flags); 771 772 if (ctrl->ctrl.queue_count > 1) 773 nvme_stop_queues(&ctrl->ctrl); 774 blk_mq_quiesce_queue(ctrl->ctrl.admin_q); 775 776 /* We must take care of fastfail/requeue all our inflight requests */ 777 if (ctrl->ctrl.queue_count > 1) 778 blk_mq_tagset_busy_iter(&ctrl->tag_set, 779 nvme_cancel_request, &ctrl->ctrl); 780 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set, 781 nvme_cancel_request, &ctrl->ctrl); 782 783 /* 784 * queues are not a live anymore, so restart the queues to fail fast 785 * new IO 786 */ 787 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q); 788 nvme_start_queues(&ctrl->ctrl); 789 790 nvme_rdma_reconnect_or_remove(ctrl); 791 } 792 793 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl) 794 { 795 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RECONNECTING)) 796 return; 797 798 queue_work(nvme_wq, &ctrl->err_work); 799 } 800 801 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc, 802 const char *op) 803 { 804 struct nvme_rdma_queue *queue = cq->cq_context; 805 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 806 807 if (ctrl->ctrl.state == NVME_CTRL_LIVE) 808 dev_info(ctrl->ctrl.device, 809 "%s for CQE 0x%p failed with status %s (%d)\n", 810 op, wc->wr_cqe, 811 ib_wc_status_msg(wc->status), wc->status); 812 nvme_rdma_error_recovery(ctrl); 813 } 814 815 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc) 816 { 817 if (unlikely(wc->status != IB_WC_SUCCESS)) 818 nvme_rdma_wr_error(cq, wc, "MEMREG"); 819 } 820 821 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc) 822 { 823 if (unlikely(wc->status != IB_WC_SUCCESS)) 824 nvme_rdma_wr_error(cq, wc, "LOCAL_INV"); 825 } 826 827 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue, 828 struct nvme_rdma_request *req) 829 { 830 struct ib_send_wr *bad_wr; 831 struct ib_send_wr wr = { 832 .opcode = IB_WR_LOCAL_INV, 833 .next = NULL, 834 .num_sge = 0, 835 .send_flags = 0, 836 .ex.invalidate_rkey = req->mr->rkey, 837 }; 838 839 req->reg_cqe.done = nvme_rdma_inv_rkey_done; 840 wr.wr_cqe = &req->reg_cqe; 841 842 return ib_post_send(queue->qp, &wr, &bad_wr); 843 } 844 845 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue, 846 struct request *rq) 847 { 848 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 849 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 850 struct nvme_rdma_device *dev = queue->device; 851 struct ib_device *ibdev = dev->dev; 852 int res; 853 854 if (!blk_rq_bytes(rq)) 855 return; 856 857 if (req->mr->need_inval) { 858 res = nvme_rdma_inv_rkey(queue, req); 859 if (res < 0) { 860 dev_err(ctrl->ctrl.device, 861 "Queueing INV WR for rkey %#x failed (%d)\n", 862 req->mr->rkey, res); 863 nvme_rdma_error_recovery(queue->ctrl); 864 } 865 } 866 867 ib_dma_unmap_sg(ibdev, req->sg_table.sgl, 868 req->nents, rq_data_dir(rq) == 869 WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 870 871 nvme_cleanup_cmd(rq); 872 sg_free_table_chained(&req->sg_table, true); 873 } 874 875 static int nvme_rdma_set_sg_null(struct nvme_command *c) 876 { 877 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 878 879 sg->addr = 0; 880 put_unaligned_le24(0, sg->length); 881 put_unaligned_le32(0, sg->key); 882 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4; 883 return 0; 884 } 885 886 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue, 887 struct nvme_rdma_request *req, struct nvme_command *c) 888 { 889 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 890 891 req->sge[1].addr = sg_dma_address(req->sg_table.sgl); 892 req->sge[1].length = sg_dma_len(req->sg_table.sgl); 893 req->sge[1].lkey = queue->device->pd->local_dma_lkey; 894 895 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff); 896 sg->length = cpu_to_le32(sg_dma_len(req->sg_table.sgl)); 897 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET; 898 899 req->inline_data = true; 900 req->num_sge++; 901 return 0; 902 } 903 904 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue, 905 struct nvme_rdma_request *req, struct nvme_command *c) 906 { 907 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 908 909 sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl)); 910 put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length); 911 put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key); 912 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4; 913 return 0; 914 } 915 916 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue, 917 struct nvme_rdma_request *req, struct nvme_command *c, 918 int count) 919 { 920 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 921 int nr; 922 923 nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, PAGE_SIZE); 924 if (nr < count) { 925 if (nr < 0) 926 return nr; 927 return -EINVAL; 928 } 929 930 ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey)); 931 932 req->reg_cqe.done = nvme_rdma_memreg_done; 933 memset(&req->reg_wr, 0, sizeof(req->reg_wr)); 934 req->reg_wr.wr.opcode = IB_WR_REG_MR; 935 req->reg_wr.wr.wr_cqe = &req->reg_cqe; 936 req->reg_wr.wr.num_sge = 0; 937 req->reg_wr.mr = req->mr; 938 req->reg_wr.key = req->mr->rkey; 939 req->reg_wr.access = IB_ACCESS_LOCAL_WRITE | 940 IB_ACCESS_REMOTE_READ | 941 IB_ACCESS_REMOTE_WRITE; 942 943 req->mr->need_inval = true; 944 945 sg->addr = cpu_to_le64(req->mr->iova); 946 put_unaligned_le24(req->mr->length, sg->length); 947 put_unaligned_le32(req->mr->rkey, sg->key); 948 sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) | 949 NVME_SGL_FMT_INVALIDATE; 950 951 return 0; 952 } 953 954 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue, 955 struct request *rq, struct nvme_command *c) 956 { 957 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 958 struct nvme_rdma_device *dev = queue->device; 959 struct ib_device *ibdev = dev->dev; 960 int count, ret; 961 962 req->num_sge = 1; 963 req->inline_data = false; 964 req->mr->need_inval = false; 965 966 c->common.flags |= NVME_CMD_SGL_METABUF; 967 968 if (!blk_rq_bytes(rq)) 969 return nvme_rdma_set_sg_null(c); 970 971 req->sg_table.sgl = req->first_sgl; 972 ret = sg_alloc_table_chained(&req->sg_table, 973 blk_rq_nr_phys_segments(rq), req->sg_table.sgl); 974 if (ret) 975 return -ENOMEM; 976 977 req->nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl); 978 979 count = ib_dma_map_sg(ibdev, req->sg_table.sgl, req->nents, 980 rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 981 if (unlikely(count <= 0)) { 982 sg_free_table_chained(&req->sg_table, true); 983 return -EIO; 984 } 985 986 if (count == 1) { 987 if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) && 988 blk_rq_payload_bytes(rq) <= 989 nvme_rdma_inline_data_size(queue)) 990 return nvme_rdma_map_sg_inline(queue, req, c); 991 992 if (dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) 993 return nvme_rdma_map_sg_single(queue, req, c); 994 } 995 996 return nvme_rdma_map_sg_fr(queue, req, c, count); 997 } 998 999 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc) 1000 { 1001 if (unlikely(wc->status != IB_WC_SUCCESS)) 1002 nvme_rdma_wr_error(cq, wc, "SEND"); 1003 } 1004 1005 /* 1006 * We want to signal completion at least every queue depth/2. This returns the 1007 * largest power of two that is not above half of (queue size + 1) to optimize 1008 * (avoid divisions). 1009 */ 1010 static inline bool nvme_rdma_queue_sig_limit(struct nvme_rdma_queue *queue) 1011 { 1012 int limit = 1 << ilog2((queue->queue_size + 1) / 2); 1013 1014 return (atomic_inc_return(&queue->sig_count) & (limit - 1)) == 0; 1015 } 1016 1017 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue, 1018 struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge, 1019 struct ib_send_wr *first, bool flush) 1020 { 1021 struct ib_send_wr wr, *bad_wr; 1022 int ret; 1023 1024 sge->addr = qe->dma; 1025 sge->length = sizeof(struct nvme_command), 1026 sge->lkey = queue->device->pd->local_dma_lkey; 1027 1028 qe->cqe.done = nvme_rdma_send_done; 1029 1030 wr.next = NULL; 1031 wr.wr_cqe = &qe->cqe; 1032 wr.sg_list = sge; 1033 wr.num_sge = num_sge; 1034 wr.opcode = IB_WR_SEND; 1035 wr.send_flags = 0; 1036 1037 /* 1038 * Unsignalled send completions are another giant desaster in the 1039 * IB Verbs spec: If we don't regularly post signalled sends 1040 * the send queue will fill up and only a QP reset will rescue us. 1041 * Would have been way to obvious to handle this in hardware or 1042 * at least the RDMA stack.. 1043 * 1044 * Always signal the flushes. The magic request used for the flush 1045 * sequencer is not allocated in our driver's tagset and it's 1046 * triggered to be freed by blk_cleanup_queue(). So we need to 1047 * always mark it as signaled to ensure that the "wr_cqe", which is 1048 * embedded in request's payload, is not freed when __ib_process_cq() 1049 * calls wr_cqe->done(). 1050 */ 1051 if (nvme_rdma_queue_sig_limit(queue) || flush) 1052 wr.send_flags |= IB_SEND_SIGNALED; 1053 1054 if (first) 1055 first->next = ≀ 1056 else 1057 first = ≀ 1058 1059 ret = ib_post_send(queue->qp, first, &bad_wr); 1060 if (ret) { 1061 dev_err(queue->ctrl->ctrl.device, 1062 "%s failed with error code %d\n", __func__, ret); 1063 } 1064 return ret; 1065 } 1066 1067 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue, 1068 struct nvme_rdma_qe *qe) 1069 { 1070 struct ib_recv_wr wr, *bad_wr; 1071 struct ib_sge list; 1072 int ret; 1073 1074 list.addr = qe->dma; 1075 list.length = sizeof(struct nvme_completion); 1076 list.lkey = queue->device->pd->local_dma_lkey; 1077 1078 qe->cqe.done = nvme_rdma_recv_done; 1079 1080 wr.next = NULL; 1081 wr.wr_cqe = &qe->cqe; 1082 wr.sg_list = &list; 1083 wr.num_sge = 1; 1084 1085 ret = ib_post_recv(queue->qp, &wr, &bad_wr); 1086 if (ret) { 1087 dev_err(queue->ctrl->ctrl.device, 1088 "%s failed with error code %d\n", __func__, ret); 1089 } 1090 return ret; 1091 } 1092 1093 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue) 1094 { 1095 u32 queue_idx = nvme_rdma_queue_idx(queue); 1096 1097 if (queue_idx == 0) 1098 return queue->ctrl->admin_tag_set.tags[queue_idx]; 1099 return queue->ctrl->tag_set.tags[queue_idx - 1]; 1100 } 1101 1102 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg, int aer_idx) 1103 { 1104 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg); 1105 struct nvme_rdma_queue *queue = &ctrl->queues[0]; 1106 struct ib_device *dev = queue->device->dev; 1107 struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe; 1108 struct nvme_command *cmd = sqe->data; 1109 struct ib_sge sge; 1110 int ret; 1111 1112 if (WARN_ON_ONCE(aer_idx != 0)) 1113 return; 1114 1115 ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE); 1116 1117 memset(cmd, 0, sizeof(*cmd)); 1118 cmd->common.opcode = nvme_admin_async_event; 1119 cmd->common.command_id = NVME_RDMA_AQ_BLKMQ_DEPTH; 1120 cmd->common.flags |= NVME_CMD_SGL_METABUF; 1121 nvme_rdma_set_sg_null(cmd); 1122 1123 ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd), 1124 DMA_TO_DEVICE); 1125 1126 ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL, false); 1127 WARN_ON_ONCE(ret); 1128 } 1129 1130 static int nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue, 1131 struct nvme_completion *cqe, struct ib_wc *wc, int tag) 1132 { 1133 struct request *rq; 1134 struct nvme_rdma_request *req; 1135 int ret = 0; 1136 1137 rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id); 1138 if (!rq) { 1139 dev_err(queue->ctrl->ctrl.device, 1140 "tag 0x%x on QP %#x not found\n", 1141 cqe->command_id, queue->qp->qp_num); 1142 nvme_rdma_error_recovery(queue->ctrl); 1143 return ret; 1144 } 1145 req = blk_mq_rq_to_pdu(rq); 1146 1147 if (rq->tag == tag) 1148 ret = 1; 1149 1150 if ((wc->wc_flags & IB_WC_WITH_INVALIDATE) && 1151 wc->ex.invalidate_rkey == req->mr->rkey) 1152 req->mr->need_inval = false; 1153 1154 nvme_end_request(rq, cqe->status, cqe->result); 1155 return ret; 1156 } 1157 1158 static int __nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc, int tag) 1159 { 1160 struct nvme_rdma_qe *qe = 1161 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe); 1162 struct nvme_rdma_queue *queue = cq->cq_context; 1163 struct ib_device *ibdev = queue->device->dev; 1164 struct nvme_completion *cqe = qe->data; 1165 const size_t len = sizeof(struct nvme_completion); 1166 int ret = 0; 1167 1168 if (unlikely(wc->status != IB_WC_SUCCESS)) { 1169 nvme_rdma_wr_error(cq, wc, "RECV"); 1170 return 0; 1171 } 1172 1173 ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE); 1174 /* 1175 * AEN requests are special as they don't time out and can 1176 * survive any kind of queue freeze and often don't respond to 1177 * aborts. We don't even bother to allocate a struct request 1178 * for them but rather special case them here. 1179 */ 1180 if (unlikely(nvme_rdma_queue_idx(queue) == 0 && 1181 cqe->command_id >= NVME_RDMA_AQ_BLKMQ_DEPTH)) 1182 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status, 1183 &cqe->result); 1184 else 1185 ret = nvme_rdma_process_nvme_rsp(queue, cqe, wc, tag); 1186 ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE); 1187 1188 nvme_rdma_post_recv(queue, qe); 1189 return ret; 1190 } 1191 1192 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc) 1193 { 1194 __nvme_rdma_recv_done(cq, wc, -1); 1195 } 1196 1197 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue) 1198 { 1199 int ret, i; 1200 1201 for (i = 0; i < queue->queue_size; i++) { 1202 ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]); 1203 if (ret) 1204 goto out_destroy_queue_ib; 1205 } 1206 1207 return 0; 1208 1209 out_destroy_queue_ib: 1210 nvme_rdma_destroy_queue_ib(queue); 1211 return ret; 1212 } 1213 1214 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue, 1215 struct rdma_cm_event *ev) 1216 { 1217 struct rdma_cm_id *cm_id = queue->cm_id; 1218 int status = ev->status; 1219 const char *rej_msg; 1220 const struct nvme_rdma_cm_rej *rej_data; 1221 u8 rej_data_len; 1222 1223 rej_msg = rdma_reject_msg(cm_id, status); 1224 rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len); 1225 1226 if (rej_data && rej_data_len >= sizeof(u16)) { 1227 u16 sts = le16_to_cpu(rej_data->sts); 1228 1229 dev_err(queue->ctrl->ctrl.device, 1230 "Connect rejected: status %d (%s) nvme status %d (%s).\n", 1231 status, rej_msg, sts, nvme_rdma_cm_msg(sts)); 1232 } else { 1233 dev_err(queue->ctrl->ctrl.device, 1234 "Connect rejected: status %d (%s).\n", status, rej_msg); 1235 } 1236 1237 return -ECONNRESET; 1238 } 1239 1240 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue) 1241 { 1242 int ret; 1243 1244 ret = nvme_rdma_create_queue_ib(queue); 1245 if (ret) 1246 return ret; 1247 1248 ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS); 1249 if (ret) { 1250 dev_err(queue->ctrl->ctrl.device, 1251 "rdma_resolve_route failed (%d).\n", 1252 queue->cm_error); 1253 goto out_destroy_queue; 1254 } 1255 1256 return 0; 1257 1258 out_destroy_queue: 1259 nvme_rdma_destroy_queue_ib(queue); 1260 return ret; 1261 } 1262 1263 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue) 1264 { 1265 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 1266 struct rdma_conn_param param = { }; 1267 struct nvme_rdma_cm_req priv = { }; 1268 int ret; 1269 1270 param.qp_num = queue->qp->qp_num; 1271 param.flow_control = 1; 1272 1273 param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom; 1274 /* maximum retry count */ 1275 param.retry_count = 7; 1276 param.rnr_retry_count = 7; 1277 param.private_data = &priv; 1278 param.private_data_len = sizeof(priv); 1279 1280 priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0); 1281 priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue)); 1282 /* 1283 * set the admin queue depth to the minimum size 1284 * specified by the Fabrics standard. 1285 */ 1286 if (priv.qid == 0) { 1287 priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH); 1288 priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1); 1289 } else { 1290 /* 1291 * current interpretation of the fabrics spec 1292 * is at minimum you make hrqsize sqsize+1, or a 1293 * 1's based representation of sqsize. 1294 */ 1295 priv.hrqsize = cpu_to_le16(queue->queue_size); 1296 priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize); 1297 } 1298 1299 ret = rdma_connect(queue->cm_id, ¶m); 1300 if (ret) { 1301 dev_err(ctrl->ctrl.device, 1302 "rdma_connect failed (%d).\n", ret); 1303 goto out_destroy_queue_ib; 1304 } 1305 1306 return 0; 1307 1308 out_destroy_queue_ib: 1309 nvme_rdma_destroy_queue_ib(queue); 1310 return ret; 1311 } 1312 1313 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id, 1314 struct rdma_cm_event *ev) 1315 { 1316 struct nvme_rdma_queue *queue = cm_id->context; 1317 int cm_error = 0; 1318 1319 dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n", 1320 rdma_event_msg(ev->event), ev->event, 1321 ev->status, cm_id); 1322 1323 switch (ev->event) { 1324 case RDMA_CM_EVENT_ADDR_RESOLVED: 1325 cm_error = nvme_rdma_addr_resolved(queue); 1326 break; 1327 case RDMA_CM_EVENT_ROUTE_RESOLVED: 1328 cm_error = nvme_rdma_route_resolved(queue); 1329 break; 1330 case RDMA_CM_EVENT_ESTABLISHED: 1331 queue->cm_error = nvme_rdma_conn_established(queue); 1332 /* complete cm_done regardless of success/failure */ 1333 complete(&queue->cm_done); 1334 return 0; 1335 case RDMA_CM_EVENT_REJECTED: 1336 nvme_rdma_destroy_queue_ib(queue); 1337 cm_error = nvme_rdma_conn_rejected(queue, ev); 1338 break; 1339 case RDMA_CM_EVENT_ROUTE_ERROR: 1340 case RDMA_CM_EVENT_CONNECT_ERROR: 1341 case RDMA_CM_EVENT_UNREACHABLE: 1342 nvme_rdma_destroy_queue_ib(queue); 1343 case RDMA_CM_EVENT_ADDR_ERROR: 1344 dev_dbg(queue->ctrl->ctrl.device, 1345 "CM error event %d\n", ev->event); 1346 cm_error = -ECONNRESET; 1347 break; 1348 case RDMA_CM_EVENT_DISCONNECTED: 1349 case RDMA_CM_EVENT_ADDR_CHANGE: 1350 case RDMA_CM_EVENT_TIMEWAIT_EXIT: 1351 dev_dbg(queue->ctrl->ctrl.device, 1352 "disconnect received - connection closed\n"); 1353 nvme_rdma_error_recovery(queue->ctrl); 1354 break; 1355 case RDMA_CM_EVENT_DEVICE_REMOVAL: 1356 /* device removal is handled via the ib_client API */ 1357 break; 1358 default: 1359 dev_err(queue->ctrl->ctrl.device, 1360 "Unexpected RDMA CM event (%d)\n", ev->event); 1361 nvme_rdma_error_recovery(queue->ctrl); 1362 break; 1363 } 1364 1365 if (cm_error) { 1366 queue->cm_error = cm_error; 1367 complete(&queue->cm_done); 1368 } 1369 1370 return 0; 1371 } 1372 1373 static enum blk_eh_timer_return 1374 nvme_rdma_timeout(struct request *rq, bool reserved) 1375 { 1376 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1377 1378 /* queue error recovery */ 1379 nvme_rdma_error_recovery(req->queue->ctrl); 1380 1381 /* fail with DNR on cmd timeout */ 1382 nvme_req(rq)->status = NVME_SC_ABORT_REQ | NVME_SC_DNR; 1383 1384 return BLK_EH_HANDLED; 1385 } 1386 1387 /* 1388 * We cannot accept any other command until the Connect command has completed. 1389 */ 1390 static inline blk_status_t 1391 nvme_rdma_queue_is_ready(struct nvme_rdma_queue *queue, struct request *rq) 1392 { 1393 if (unlikely(!test_bit(NVME_RDMA_Q_LIVE, &queue->flags))) { 1394 struct nvme_command *cmd = nvme_req(rq)->cmd; 1395 1396 if (!blk_rq_is_passthrough(rq) || 1397 cmd->common.opcode != nvme_fabrics_command || 1398 cmd->fabrics.fctype != nvme_fabrics_type_connect) { 1399 /* 1400 * reconnecting state means transport disruption, which 1401 * can take a long time and even might fail permanently, 1402 * so we can't let incoming I/O be requeued forever. 1403 * fail it fast to allow upper layers a chance to 1404 * failover. 1405 */ 1406 if (queue->ctrl->ctrl.state == NVME_CTRL_RECONNECTING) 1407 return BLK_STS_IOERR; 1408 return BLK_STS_RESOURCE; /* try again later */ 1409 } 1410 } 1411 1412 return 0; 1413 } 1414 1415 static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx, 1416 const struct blk_mq_queue_data *bd) 1417 { 1418 struct nvme_ns *ns = hctx->queue->queuedata; 1419 struct nvme_rdma_queue *queue = hctx->driver_data; 1420 struct request *rq = bd->rq; 1421 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1422 struct nvme_rdma_qe *sqe = &req->sqe; 1423 struct nvme_command *c = sqe->data; 1424 bool flush = false; 1425 struct ib_device *dev; 1426 blk_status_t ret; 1427 int err; 1428 1429 WARN_ON_ONCE(rq->tag < 0); 1430 1431 ret = nvme_rdma_queue_is_ready(queue, rq); 1432 if (unlikely(ret)) 1433 return ret; 1434 1435 dev = queue->device->dev; 1436 ib_dma_sync_single_for_cpu(dev, sqe->dma, 1437 sizeof(struct nvme_command), DMA_TO_DEVICE); 1438 1439 ret = nvme_setup_cmd(ns, rq, c); 1440 if (ret) 1441 return ret; 1442 1443 blk_mq_start_request(rq); 1444 1445 err = nvme_rdma_map_data(queue, rq, c); 1446 if (err < 0) { 1447 dev_err(queue->ctrl->ctrl.device, 1448 "Failed to map data (%d)\n", err); 1449 nvme_cleanup_cmd(rq); 1450 goto err; 1451 } 1452 1453 ib_dma_sync_single_for_device(dev, sqe->dma, 1454 sizeof(struct nvme_command), DMA_TO_DEVICE); 1455 1456 if (req_op(rq) == REQ_OP_FLUSH) 1457 flush = true; 1458 err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge, 1459 req->mr->need_inval ? &req->reg_wr.wr : NULL, flush); 1460 if (err) { 1461 nvme_rdma_unmap_data(queue, rq); 1462 goto err; 1463 } 1464 1465 return BLK_STS_OK; 1466 err: 1467 if (err == -ENOMEM || err == -EAGAIN) 1468 return BLK_STS_RESOURCE; 1469 return BLK_STS_IOERR; 1470 } 1471 1472 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag) 1473 { 1474 struct nvme_rdma_queue *queue = hctx->driver_data; 1475 struct ib_cq *cq = queue->ib_cq; 1476 struct ib_wc wc; 1477 int found = 0; 1478 1479 while (ib_poll_cq(cq, 1, &wc) > 0) { 1480 struct ib_cqe *cqe = wc.wr_cqe; 1481 1482 if (cqe) { 1483 if (cqe->done == nvme_rdma_recv_done) 1484 found |= __nvme_rdma_recv_done(cq, &wc, tag); 1485 else 1486 cqe->done(cq, &wc); 1487 } 1488 } 1489 1490 return found; 1491 } 1492 1493 static void nvme_rdma_complete_rq(struct request *rq) 1494 { 1495 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1496 1497 nvme_rdma_unmap_data(req->queue, rq); 1498 nvme_complete_rq(rq); 1499 } 1500 1501 static const struct blk_mq_ops nvme_rdma_mq_ops = { 1502 .queue_rq = nvme_rdma_queue_rq, 1503 .complete = nvme_rdma_complete_rq, 1504 .init_request = nvme_rdma_init_request, 1505 .exit_request = nvme_rdma_exit_request, 1506 .reinit_request = nvme_rdma_reinit_request, 1507 .init_hctx = nvme_rdma_init_hctx, 1508 .poll = nvme_rdma_poll, 1509 .timeout = nvme_rdma_timeout, 1510 }; 1511 1512 static const struct blk_mq_ops nvme_rdma_admin_mq_ops = { 1513 .queue_rq = nvme_rdma_queue_rq, 1514 .complete = nvme_rdma_complete_rq, 1515 .init_request = nvme_rdma_init_request, 1516 .exit_request = nvme_rdma_exit_request, 1517 .reinit_request = nvme_rdma_reinit_request, 1518 .init_hctx = nvme_rdma_init_admin_hctx, 1519 .timeout = nvme_rdma_timeout, 1520 }; 1521 1522 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl) 1523 { 1524 int error; 1525 1526 error = nvme_rdma_init_queue(ctrl, 0, NVME_AQ_DEPTH); 1527 if (error) 1528 return error; 1529 1530 ctrl->device = ctrl->queues[0].device; 1531 1532 /* 1533 * We need a reference on the device as long as the tag_set is alive, 1534 * as the MRs in the request structures need a valid ib_device. 1535 */ 1536 error = -EINVAL; 1537 if (!nvme_rdma_dev_get(ctrl->device)) 1538 goto out_free_queue; 1539 1540 ctrl->max_fr_pages = min_t(u32, NVME_RDMA_MAX_SEGMENTS, 1541 ctrl->device->dev->attrs.max_fast_reg_page_list_len); 1542 1543 memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set)); 1544 ctrl->admin_tag_set.ops = &nvme_rdma_admin_mq_ops; 1545 ctrl->admin_tag_set.queue_depth = NVME_RDMA_AQ_BLKMQ_DEPTH; 1546 ctrl->admin_tag_set.reserved_tags = 2; /* connect + keep-alive */ 1547 ctrl->admin_tag_set.numa_node = NUMA_NO_NODE; 1548 ctrl->admin_tag_set.cmd_size = sizeof(struct nvme_rdma_request) + 1549 SG_CHUNK_SIZE * sizeof(struct scatterlist); 1550 ctrl->admin_tag_set.driver_data = ctrl; 1551 ctrl->admin_tag_set.nr_hw_queues = 1; 1552 ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT; 1553 1554 error = blk_mq_alloc_tag_set(&ctrl->admin_tag_set); 1555 if (error) 1556 goto out_put_dev; 1557 1558 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set); 1559 if (IS_ERR(ctrl->ctrl.admin_q)) { 1560 error = PTR_ERR(ctrl->ctrl.admin_q); 1561 goto out_free_tagset; 1562 } 1563 1564 error = nvmf_connect_admin_queue(&ctrl->ctrl); 1565 if (error) 1566 goto out_cleanup_queue; 1567 1568 set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[0].flags); 1569 1570 error = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP, 1571 &ctrl->ctrl.cap); 1572 if (error) { 1573 dev_err(ctrl->ctrl.device, 1574 "prop_get NVME_REG_CAP failed\n"); 1575 goto out_cleanup_queue; 1576 } 1577 1578 ctrl->ctrl.sqsize = 1579 min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap), ctrl->ctrl.sqsize); 1580 1581 error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap); 1582 if (error) 1583 goto out_cleanup_queue; 1584 1585 ctrl->ctrl.max_hw_sectors = 1586 (ctrl->max_fr_pages - 1) << (PAGE_SHIFT - 9); 1587 1588 error = nvme_init_identify(&ctrl->ctrl); 1589 if (error) 1590 goto out_cleanup_queue; 1591 1592 error = nvme_rdma_alloc_qe(ctrl->queues[0].device->dev, 1593 &ctrl->async_event_sqe, sizeof(struct nvme_command), 1594 DMA_TO_DEVICE); 1595 if (error) 1596 goto out_cleanup_queue; 1597 1598 return 0; 1599 1600 out_cleanup_queue: 1601 blk_cleanup_queue(ctrl->ctrl.admin_q); 1602 out_free_tagset: 1603 /* disconnect and drain the queue before freeing the tagset */ 1604 nvme_rdma_stop_queue(&ctrl->queues[0]); 1605 blk_mq_free_tag_set(&ctrl->admin_tag_set); 1606 out_put_dev: 1607 nvme_rdma_dev_put(ctrl->device); 1608 out_free_queue: 1609 nvme_rdma_free_queue(&ctrl->queues[0]); 1610 return error; 1611 } 1612 1613 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl) 1614 { 1615 cancel_work_sync(&ctrl->err_work); 1616 cancel_delayed_work_sync(&ctrl->reconnect_work); 1617 1618 if (ctrl->ctrl.queue_count > 1) { 1619 nvme_stop_queues(&ctrl->ctrl); 1620 blk_mq_tagset_busy_iter(&ctrl->tag_set, 1621 nvme_cancel_request, &ctrl->ctrl); 1622 nvme_rdma_free_io_queues(ctrl); 1623 } 1624 1625 if (test_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[0].flags)) 1626 nvme_shutdown_ctrl(&ctrl->ctrl); 1627 1628 blk_mq_quiesce_queue(ctrl->ctrl.admin_q); 1629 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set, 1630 nvme_cancel_request, &ctrl->ctrl); 1631 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q); 1632 nvme_rdma_destroy_admin_queue(ctrl); 1633 } 1634 1635 static void __nvme_rdma_remove_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown) 1636 { 1637 nvme_stop_ctrl(&ctrl->ctrl); 1638 nvme_remove_namespaces(&ctrl->ctrl); 1639 if (shutdown) 1640 nvme_rdma_shutdown_ctrl(ctrl); 1641 1642 nvme_uninit_ctrl(&ctrl->ctrl); 1643 if (ctrl->ctrl.tagset) { 1644 blk_cleanup_queue(ctrl->ctrl.connect_q); 1645 blk_mq_free_tag_set(&ctrl->tag_set); 1646 nvme_rdma_dev_put(ctrl->device); 1647 } 1648 1649 nvme_put_ctrl(&ctrl->ctrl); 1650 } 1651 1652 static void nvme_rdma_del_ctrl_work(struct work_struct *work) 1653 { 1654 struct nvme_rdma_ctrl *ctrl = container_of(work, 1655 struct nvme_rdma_ctrl, delete_work); 1656 1657 __nvme_rdma_remove_ctrl(ctrl, true); 1658 } 1659 1660 static int __nvme_rdma_del_ctrl(struct nvme_rdma_ctrl *ctrl) 1661 { 1662 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING)) 1663 return -EBUSY; 1664 1665 if (!queue_work(nvme_wq, &ctrl->delete_work)) 1666 return -EBUSY; 1667 1668 return 0; 1669 } 1670 1671 static int nvme_rdma_del_ctrl(struct nvme_ctrl *nctrl) 1672 { 1673 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 1674 int ret = 0; 1675 1676 /* 1677 * Keep a reference until all work is flushed since 1678 * __nvme_rdma_del_ctrl can free the ctrl mem 1679 */ 1680 if (!kref_get_unless_zero(&ctrl->ctrl.kref)) 1681 return -EBUSY; 1682 ret = __nvme_rdma_del_ctrl(ctrl); 1683 if (!ret) 1684 flush_work(&ctrl->delete_work); 1685 nvme_put_ctrl(&ctrl->ctrl); 1686 return ret; 1687 } 1688 1689 static void nvme_rdma_remove_ctrl_work(struct work_struct *work) 1690 { 1691 struct nvme_rdma_ctrl *ctrl = container_of(work, 1692 struct nvme_rdma_ctrl, delete_work); 1693 1694 __nvme_rdma_remove_ctrl(ctrl, false); 1695 } 1696 1697 static void nvme_rdma_reset_ctrl_work(struct work_struct *work) 1698 { 1699 struct nvme_rdma_ctrl *ctrl = 1700 container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work); 1701 int ret; 1702 bool changed; 1703 1704 nvme_stop_ctrl(&ctrl->ctrl); 1705 nvme_rdma_shutdown_ctrl(ctrl); 1706 1707 ret = nvme_rdma_configure_admin_queue(ctrl); 1708 if (ret) { 1709 /* ctrl is already shutdown, just remove the ctrl */ 1710 INIT_WORK(&ctrl->delete_work, nvme_rdma_remove_ctrl_work); 1711 goto del_dead_ctrl; 1712 } 1713 1714 if (ctrl->ctrl.queue_count > 1) { 1715 ret = blk_mq_reinit_tagset(&ctrl->tag_set); 1716 if (ret) 1717 goto del_dead_ctrl; 1718 1719 ret = nvme_rdma_init_io_queues(ctrl); 1720 if (ret) 1721 goto del_dead_ctrl; 1722 1723 ret = nvme_rdma_connect_io_queues(ctrl); 1724 if (ret) 1725 goto del_dead_ctrl; 1726 1727 blk_mq_update_nr_hw_queues(&ctrl->tag_set, 1728 ctrl->ctrl.queue_count - 1); 1729 } 1730 1731 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); 1732 WARN_ON_ONCE(!changed); 1733 1734 nvme_start_ctrl(&ctrl->ctrl); 1735 1736 return; 1737 1738 del_dead_ctrl: 1739 /* Deleting this dead controller... */ 1740 dev_warn(ctrl->ctrl.device, "Removing after reset failure\n"); 1741 WARN_ON(!queue_work(nvme_wq, &ctrl->delete_work)); 1742 } 1743 1744 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = { 1745 .name = "rdma", 1746 .module = THIS_MODULE, 1747 .flags = NVME_F_FABRICS, 1748 .reg_read32 = nvmf_reg_read32, 1749 .reg_read64 = nvmf_reg_read64, 1750 .reg_write32 = nvmf_reg_write32, 1751 .free_ctrl = nvme_rdma_free_ctrl, 1752 .submit_async_event = nvme_rdma_submit_async_event, 1753 .delete_ctrl = nvme_rdma_del_ctrl, 1754 .get_address = nvmf_get_address, 1755 }; 1756 1757 static int nvme_rdma_create_io_queues(struct nvme_rdma_ctrl *ctrl) 1758 { 1759 int ret; 1760 1761 ret = nvme_rdma_init_io_queues(ctrl); 1762 if (ret) 1763 return ret; 1764 1765 /* 1766 * We need a reference on the device as long as the tag_set is alive, 1767 * as the MRs in the request structures need a valid ib_device. 1768 */ 1769 ret = -EINVAL; 1770 if (!nvme_rdma_dev_get(ctrl->device)) 1771 goto out_free_io_queues; 1772 1773 memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set)); 1774 ctrl->tag_set.ops = &nvme_rdma_mq_ops; 1775 ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size; 1776 ctrl->tag_set.reserved_tags = 1; /* fabric connect */ 1777 ctrl->tag_set.numa_node = NUMA_NO_NODE; 1778 ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE; 1779 ctrl->tag_set.cmd_size = sizeof(struct nvme_rdma_request) + 1780 SG_CHUNK_SIZE * sizeof(struct scatterlist); 1781 ctrl->tag_set.driver_data = ctrl; 1782 ctrl->tag_set.nr_hw_queues = ctrl->ctrl.queue_count - 1; 1783 ctrl->tag_set.timeout = NVME_IO_TIMEOUT; 1784 1785 ret = blk_mq_alloc_tag_set(&ctrl->tag_set); 1786 if (ret) 1787 goto out_put_dev; 1788 ctrl->ctrl.tagset = &ctrl->tag_set; 1789 1790 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set); 1791 if (IS_ERR(ctrl->ctrl.connect_q)) { 1792 ret = PTR_ERR(ctrl->ctrl.connect_q); 1793 goto out_free_tag_set; 1794 } 1795 1796 ret = nvme_rdma_connect_io_queues(ctrl); 1797 if (ret) 1798 goto out_cleanup_connect_q; 1799 1800 return 0; 1801 1802 out_cleanup_connect_q: 1803 blk_cleanup_queue(ctrl->ctrl.connect_q); 1804 out_free_tag_set: 1805 blk_mq_free_tag_set(&ctrl->tag_set); 1806 out_put_dev: 1807 nvme_rdma_dev_put(ctrl->device); 1808 out_free_io_queues: 1809 nvme_rdma_free_io_queues(ctrl); 1810 return ret; 1811 } 1812 1813 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev, 1814 struct nvmf_ctrl_options *opts) 1815 { 1816 struct nvme_rdma_ctrl *ctrl; 1817 int ret; 1818 bool changed; 1819 char *port; 1820 1821 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 1822 if (!ctrl) 1823 return ERR_PTR(-ENOMEM); 1824 ctrl->ctrl.opts = opts; 1825 INIT_LIST_HEAD(&ctrl->list); 1826 1827 if (opts->mask & NVMF_OPT_TRSVCID) 1828 port = opts->trsvcid; 1829 else 1830 port = __stringify(NVME_RDMA_IP_PORT); 1831 1832 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 1833 opts->traddr, port, &ctrl->addr); 1834 if (ret) { 1835 pr_err("malformed address passed: %s:%s\n", opts->traddr, port); 1836 goto out_free_ctrl; 1837 } 1838 1839 if (opts->mask & NVMF_OPT_HOST_TRADDR) { 1840 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 1841 opts->host_traddr, NULL, &ctrl->src_addr); 1842 if (ret) { 1843 pr_err("malformed src address passed: %s\n", 1844 opts->host_traddr); 1845 goto out_free_ctrl; 1846 } 1847 } 1848 1849 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops, 1850 0 /* no quirks, we're perfect! */); 1851 if (ret) 1852 goto out_free_ctrl; 1853 1854 INIT_DELAYED_WORK(&ctrl->reconnect_work, 1855 nvme_rdma_reconnect_ctrl_work); 1856 INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work); 1857 INIT_WORK(&ctrl->delete_work, nvme_rdma_del_ctrl_work); 1858 INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work); 1859 1860 ctrl->ctrl.queue_count = opts->nr_io_queues + 1; /* +1 for admin queue */ 1861 ctrl->ctrl.sqsize = opts->queue_size - 1; 1862 ctrl->ctrl.kato = opts->kato; 1863 1864 ret = -ENOMEM; 1865 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues), 1866 GFP_KERNEL); 1867 if (!ctrl->queues) 1868 goto out_uninit_ctrl; 1869 1870 ret = nvme_rdma_configure_admin_queue(ctrl); 1871 if (ret) 1872 goto out_kfree_queues; 1873 1874 /* sanity check icdoff */ 1875 if (ctrl->ctrl.icdoff) { 1876 dev_err(ctrl->ctrl.device, "icdoff is not supported!\n"); 1877 ret = -EINVAL; 1878 goto out_remove_admin_queue; 1879 } 1880 1881 /* sanity check keyed sgls */ 1882 if (!(ctrl->ctrl.sgls & (1 << 20))) { 1883 dev_err(ctrl->ctrl.device, "Mandatory keyed sgls are not support\n"); 1884 ret = -EINVAL; 1885 goto out_remove_admin_queue; 1886 } 1887 1888 if (opts->queue_size > ctrl->ctrl.maxcmd) { 1889 /* warn if maxcmd is lower than queue_size */ 1890 dev_warn(ctrl->ctrl.device, 1891 "queue_size %zu > ctrl maxcmd %u, clamping down\n", 1892 opts->queue_size, ctrl->ctrl.maxcmd); 1893 opts->queue_size = ctrl->ctrl.maxcmd; 1894 } 1895 1896 if (opts->queue_size > ctrl->ctrl.sqsize + 1) { 1897 /* warn if sqsize is lower than queue_size */ 1898 dev_warn(ctrl->ctrl.device, 1899 "queue_size %zu > ctrl sqsize %u, clamping down\n", 1900 opts->queue_size, ctrl->ctrl.sqsize + 1); 1901 opts->queue_size = ctrl->ctrl.sqsize + 1; 1902 } 1903 1904 if (opts->nr_io_queues) { 1905 ret = nvme_rdma_create_io_queues(ctrl); 1906 if (ret) 1907 goto out_remove_admin_queue; 1908 } 1909 1910 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); 1911 WARN_ON_ONCE(!changed); 1912 1913 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n", 1914 ctrl->ctrl.opts->subsysnqn, &ctrl->addr); 1915 1916 kref_get(&ctrl->ctrl.kref); 1917 1918 mutex_lock(&nvme_rdma_ctrl_mutex); 1919 list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list); 1920 mutex_unlock(&nvme_rdma_ctrl_mutex); 1921 1922 nvme_start_ctrl(&ctrl->ctrl); 1923 1924 return &ctrl->ctrl; 1925 1926 out_remove_admin_queue: 1927 nvme_rdma_destroy_admin_queue(ctrl); 1928 out_kfree_queues: 1929 kfree(ctrl->queues); 1930 out_uninit_ctrl: 1931 nvme_uninit_ctrl(&ctrl->ctrl); 1932 nvme_put_ctrl(&ctrl->ctrl); 1933 if (ret > 0) 1934 ret = -EIO; 1935 return ERR_PTR(ret); 1936 out_free_ctrl: 1937 kfree(ctrl); 1938 return ERR_PTR(ret); 1939 } 1940 1941 static struct nvmf_transport_ops nvme_rdma_transport = { 1942 .name = "rdma", 1943 .required_opts = NVMF_OPT_TRADDR, 1944 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY | 1945 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO, 1946 .create_ctrl = nvme_rdma_create_ctrl, 1947 }; 1948 1949 static void nvme_rdma_add_one(struct ib_device *ib_device) 1950 { 1951 } 1952 1953 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data) 1954 { 1955 struct nvme_rdma_ctrl *ctrl; 1956 1957 /* Delete all controllers using this device */ 1958 mutex_lock(&nvme_rdma_ctrl_mutex); 1959 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) { 1960 if (ctrl->device->dev != ib_device) 1961 continue; 1962 dev_info(ctrl->ctrl.device, 1963 "Removing ctrl: NQN \"%s\", addr %pISp\n", 1964 ctrl->ctrl.opts->subsysnqn, &ctrl->addr); 1965 __nvme_rdma_del_ctrl(ctrl); 1966 } 1967 mutex_unlock(&nvme_rdma_ctrl_mutex); 1968 1969 flush_workqueue(nvme_wq); 1970 } 1971 1972 static struct ib_client nvme_rdma_ib_client = { 1973 .name = "nvme_rdma", 1974 .add = nvme_rdma_add_one, 1975 .remove = nvme_rdma_remove_one 1976 }; 1977 1978 static int __init nvme_rdma_init_module(void) 1979 { 1980 int ret; 1981 1982 ret = ib_register_client(&nvme_rdma_ib_client); 1983 if (ret) 1984 return ret; 1985 1986 ret = nvmf_register_transport(&nvme_rdma_transport); 1987 if (ret) 1988 goto err_unreg_client; 1989 1990 return 0; 1991 1992 err_unreg_client: 1993 ib_unregister_client(&nvme_rdma_ib_client); 1994 return ret; 1995 } 1996 1997 static void __exit nvme_rdma_cleanup_module(void) 1998 { 1999 nvmf_unregister_transport(&nvme_rdma_transport); 2000 ib_unregister_client(&nvme_rdma_ib_client); 2001 } 2002 2003 module_init(nvme_rdma_init_module); 2004 module_exit(nvme_rdma_cleanup_module); 2005 2006 MODULE_LICENSE("GPL v2"); 2007