xref: /linux/drivers/nvme/host/rdma.c (revision a4cc96d1f0170b779c32c6b2cc58764f5d2cdef0)
1 /*
2  * NVMe over Fabrics RDMA host code.
3  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/err.h>
19 #include <linux/string.h>
20 #include <linux/atomic.h>
21 #include <linux/blk-mq.h>
22 #include <linux/types.h>
23 #include <linux/list.h>
24 #include <linux/mutex.h>
25 #include <linux/scatterlist.h>
26 #include <linux/nvme.h>
27 #include <asm/unaligned.h>
28 
29 #include <rdma/ib_verbs.h>
30 #include <rdma/rdma_cm.h>
31 #include <rdma/ib_cm.h>
32 #include <linux/nvme-rdma.h>
33 
34 #include "nvme.h"
35 #include "fabrics.h"
36 
37 
38 #define NVME_RDMA_CONNECT_TIMEOUT_MS	1000		/* 1 second */
39 
40 #define NVME_RDMA_MAX_SEGMENT_SIZE	0xffffff	/* 24-bit SGL field */
41 
42 #define NVME_RDMA_MAX_SEGMENTS		256
43 
44 #define NVME_RDMA_MAX_INLINE_SEGMENTS	1
45 
46 /*
47  * We handle AEN commands ourselves and don't even let the
48  * block layer know about them.
49  */
50 #define NVME_RDMA_NR_AEN_COMMANDS      1
51 #define NVME_RDMA_AQ_BLKMQ_DEPTH       \
52 	(NVMF_AQ_DEPTH - NVME_RDMA_NR_AEN_COMMANDS)
53 
54 struct nvme_rdma_device {
55 	struct ib_device       *dev;
56 	struct ib_pd	       *pd;
57 	struct ib_mr	       *mr;
58 	struct kref		ref;
59 	struct list_head	entry;
60 };
61 
62 struct nvme_rdma_qe {
63 	struct ib_cqe		cqe;
64 	void			*data;
65 	u64			dma;
66 };
67 
68 struct nvme_rdma_queue;
69 struct nvme_rdma_request {
70 	struct ib_mr		*mr;
71 	struct nvme_rdma_qe	sqe;
72 	struct ib_sge		sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
73 	u32			num_sge;
74 	int			nents;
75 	bool			inline_data;
76 	struct ib_reg_wr	reg_wr;
77 	struct ib_cqe		reg_cqe;
78 	struct nvme_rdma_queue  *queue;
79 	struct sg_table		sg_table;
80 	struct scatterlist	first_sgl[];
81 };
82 
83 enum nvme_rdma_queue_flags {
84 	NVME_RDMA_Q_CONNECTED = (1 << 0),
85 	NVME_RDMA_IB_QUEUE_ALLOCATED = (1 << 1),
86 	NVME_RDMA_Q_DELETING = (1 << 2),
87 };
88 
89 struct nvme_rdma_queue {
90 	struct nvme_rdma_qe	*rsp_ring;
91 	u8			sig_count;
92 	int			queue_size;
93 	size_t			cmnd_capsule_len;
94 	struct nvme_rdma_ctrl	*ctrl;
95 	struct nvme_rdma_device	*device;
96 	struct ib_cq		*ib_cq;
97 	struct ib_qp		*qp;
98 
99 	unsigned long		flags;
100 	struct rdma_cm_id	*cm_id;
101 	int			cm_error;
102 	struct completion	cm_done;
103 };
104 
105 struct nvme_rdma_ctrl {
106 	/* read and written in the hot path */
107 	spinlock_t		lock;
108 
109 	/* read only in the hot path */
110 	struct nvme_rdma_queue	*queues;
111 	u32			queue_count;
112 
113 	/* other member variables */
114 	struct blk_mq_tag_set	tag_set;
115 	struct work_struct	delete_work;
116 	struct work_struct	reset_work;
117 	struct work_struct	err_work;
118 
119 	struct nvme_rdma_qe	async_event_sqe;
120 
121 	int			reconnect_delay;
122 	struct delayed_work	reconnect_work;
123 
124 	struct list_head	list;
125 
126 	struct blk_mq_tag_set	admin_tag_set;
127 	struct nvme_rdma_device	*device;
128 
129 	u64			cap;
130 	u32			max_fr_pages;
131 
132 	union {
133 		struct sockaddr addr;
134 		struct sockaddr_in addr_in;
135 	};
136 
137 	struct nvme_ctrl	ctrl;
138 };
139 
140 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
141 {
142 	return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
143 }
144 
145 static LIST_HEAD(device_list);
146 static DEFINE_MUTEX(device_list_mutex);
147 
148 static LIST_HEAD(nvme_rdma_ctrl_list);
149 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
150 
151 static struct workqueue_struct *nvme_rdma_wq;
152 
153 /*
154  * Disabling this option makes small I/O goes faster, but is fundamentally
155  * unsafe.  With it turned off we will have to register a global rkey that
156  * allows read and write access to all physical memory.
157  */
158 static bool register_always = true;
159 module_param(register_always, bool, 0444);
160 MODULE_PARM_DESC(register_always,
161 	 "Use memory registration even for contiguous memory regions");
162 
163 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
164 		struct rdma_cm_event *event);
165 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
166 
167 /* XXX: really should move to a generic header sooner or later.. */
168 static inline void put_unaligned_le24(u32 val, u8 *p)
169 {
170 	*p++ = val;
171 	*p++ = val >> 8;
172 	*p++ = val >> 16;
173 }
174 
175 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
176 {
177 	return queue - queue->ctrl->queues;
178 }
179 
180 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
181 {
182 	return queue->cmnd_capsule_len - sizeof(struct nvme_command);
183 }
184 
185 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
186 		size_t capsule_size, enum dma_data_direction dir)
187 {
188 	ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
189 	kfree(qe->data);
190 }
191 
192 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
193 		size_t capsule_size, enum dma_data_direction dir)
194 {
195 	qe->data = kzalloc(capsule_size, GFP_KERNEL);
196 	if (!qe->data)
197 		return -ENOMEM;
198 
199 	qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
200 	if (ib_dma_mapping_error(ibdev, qe->dma)) {
201 		kfree(qe->data);
202 		return -ENOMEM;
203 	}
204 
205 	return 0;
206 }
207 
208 static void nvme_rdma_free_ring(struct ib_device *ibdev,
209 		struct nvme_rdma_qe *ring, size_t ib_queue_size,
210 		size_t capsule_size, enum dma_data_direction dir)
211 {
212 	int i;
213 
214 	for (i = 0; i < ib_queue_size; i++)
215 		nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
216 	kfree(ring);
217 }
218 
219 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
220 		size_t ib_queue_size, size_t capsule_size,
221 		enum dma_data_direction dir)
222 {
223 	struct nvme_rdma_qe *ring;
224 	int i;
225 
226 	ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
227 	if (!ring)
228 		return NULL;
229 
230 	for (i = 0; i < ib_queue_size; i++) {
231 		if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
232 			goto out_free_ring;
233 	}
234 
235 	return ring;
236 
237 out_free_ring:
238 	nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
239 	return NULL;
240 }
241 
242 static void nvme_rdma_qp_event(struct ib_event *event, void *context)
243 {
244 	pr_debug("QP event %d\n", event->event);
245 }
246 
247 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
248 {
249 	wait_for_completion_interruptible_timeout(&queue->cm_done,
250 			msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1);
251 	return queue->cm_error;
252 }
253 
254 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
255 {
256 	struct nvme_rdma_device *dev = queue->device;
257 	struct ib_qp_init_attr init_attr;
258 	int ret;
259 
260 	memset(&init_attr, 0, sizeof(init_attr));
261 	init_attr.event_handler = nvme_rdma_qp_event;
262 	/* +1 for drain */
263 	init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
264 	/* +1 for drain */
265 	init_attr.cap.max_recv_wr = queue->queue_size + 1;
266 	init_attr.cap.max_recv_sge = 1;
267 	init_attr.cap.max_send_sge = 1 + NVME_RDMA_MAX_INLINE_SEGMENTS;
268 	init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
269 	init_attr.qp_type = IB_QPT_RC;
270 	init_attr.send_cq = queue->ib_cq;
271 	init_attr.recv_cq = queue->ib_cq;
272 
273 	ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
274 
275 	queue->qp = queue->cm_id->qp;
276 	return ret;
277 }
278 
279 static int nvme_rdma_reinit_request(void *data, struct request *rq)
280 {
281 	struct nvme_rdma_ctrl *ctrl = data;
282 	struct nvme_rdma_device *dev = ctrl->device;
283 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
284 	int ret = 0;
285 
286 	if (!req->mr->need_inval)
287 		goto out;
288 
289 	ib_dereg_mr(req->mr);
290 
291 	req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG,
292 			ctrl->max_fr_pages);
293 	if (IS_ERR(req->mr)) {
294 		ret = PTR_ERR(req->mr);
295 		req->mr = NULL;
296 		goto out;
297 	}
298 
299 	req->mr->need_inval = false;
300 
301 out:
302 	return ret;
303 }
304 
305 static void __nvme_rdma_exit_request(struct nvme_rdma_ctrl *ctrl,
306 		struct request *rq, unsigned int queue_idx)
307 {
308 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
309 	struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
310 	struct nvme_rdma_device *dev = queue->device;
311 
312 	if (req->mr)
313 		ib_dereg_mr(req->mr);
314 
315 	nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
316 			DMA_TO_DEVICE);
317 }
318 
319 static void nvme_rdma_exit_request(void *data, struct request *rq,
320 				unsigned int hctx_idx, unsigned int rq_idx)
321 {
322 	return __nvme_rdma_exit_request(data, rq, hctx_idx + 1);
323 }
324 
325 static void nvme_rdma_exit_admin_request(void *data, struct request *rq,
326 				unsigned int hctx_idx, unsigned int rq_idx)
327 {
328 	return __nvme_rdma_exit_request(data, rq, 0);
329 }
330 
331 static int __nvme_rdma_init_request(struct nvme_rdma_ctrl *ctrl,
332 		struct request *rq, unsigned int queue_idx)
333 {
334 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
335 	struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
336 	struct nvme_rdma_device *dev = queue->device;
337 	struct ib_device *ibdev = dev->dev;
338 	int ret;
339 
340 	BUG_ON(queue_idx >= ctrl->queue_count);
341 
342 	ret = nvme_rdma_alloc_qe(ibdev, &req->sqe, sizeof(struct nvme_command),
343 			DMA_TO_DEVICE);
344 	if (ret)
345 		return ret;
346 
347 	req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG,
348 			ctrl->max_fr_pages);
349 	if (IS_ERR(req->mr)) {
350 		ret = PTR_ERR(req->mr);
351 		goto out_free_qe;
352 	}
353 
354 	req->queue = queue;
355 
356 	return 0;
357 
358 out_free_qe:
359 	nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
360 			DMA_TO_DEVICE);
361 	return -ENOMEM;
362 }
363 
364 static int nvme_rdma_init_request(void *data, struct request *rq,
365 				unsigned int hctx_idx, unsigned int rq_idx,
366 				unsigned int numa_node)
367 {
368 	return __nvme_rdma_init_request(data, rq, hctx_idx + 1);
369 }
370 
371 static int nvme_rdma_init_admin_request(void *data, struct request *rq,
372 				unsigned int hctx_idx, unsigned int rq_idx,
373 				unsigned int numa_node)
374 {
375 	return __nvme_rdma_init_request(data, rq, 0);
376 }
377 
378 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
379 		unsigned int hctx_idx)
380 {
381 	struct nvme_rdma_ctrl *ctrl = data;
382 	struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
383 
384 	BUG_ON(hctx_idx >= ctrl->queue_count);
385 
386 	hctx->driver_data = queue;
387 	return 0;
388 }
389 
390 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
391 		unsigned int hctx_idx)
392 {
393 	struct nvme_rdma_ctrl *ctrl = data;
394 	struct nvme_rdma_queue *queue = &ctrl->queues[0];
395 
396 	BUG_ON(hctx_idx != 0);
397 
398 	hctx->driver_data = queue;
399 	return 0;
400 }
401 
402 static void nvme_rdma_free_dev(struct kref *ref)
403 {
404 	struct nvme_rdma_device *ndev =
405 		container_of(ref, struct nvme_rdma_device, ref);
406 
407 	mutex_lock(&device_list_mutex);
408 	list_del(&ndev->entry);
409 	mutex_unlock(&device_list_mutex);
410 
411 	if (!register_always)
412 		ib_dereg_mr(ndev->mr);
413 	ib_dealloc_pd(ndev->pd);
414 
415 	kfree(ndev);
416 }
417 
418 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
419 {
420 	kref_put(&dev->ref, nvme_rdma_free_dev);
421 }
422 
423 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
424 {
425 	return kref_get_unless_zero(&dev->ref);
426 }
427 
428 static struct nvme_rdma_device *
429 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
430 {
431 	struct nvme_rdma_device *ndev;
432 
433 	mutex_lock(&device_list_mutex);
434 	list_for_each_entry(ndev, &device_list, entry) {
435 		if (ndev->dev->node_guid == cm_id->device->node_guid &&
436 		    nvme_rdma_dev_get(ndev))
437 			goto out_unlock;
438 	}
439 
440 	ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
441 	if (!ndev)
442 		goto out_err;
443 
444 	ndev->dev = cm_id->device;
445 	kref_init(&ndev->ref);
446 
447 	ndev->pd = ib_alloc_pd(ndev->dev);
448 	if (IS_ERR(ndev->pd))
449 		goto out_free_dev;
450 
451 	if (!register_always) {
452 		ndev->mr = ib_get_dma_mr(ndev->pd,
453 					    IB_ACCESS_LOCAL_WRITE |
454 					    IB_ACCESS_REMOTE_READ |
455 					    IB_ACCESS_REMOTE_WRITE);
456 		if (IS_ERR(ndev->mr))
457 			goto out_free_pd;
458 	}
459 
460 	if (!(ndev->dev->attrs.device_cap_flags &
461 	      IB_DEVICE_MEM_MGT_EXTENSIONS)) {
462 		dev_err(&ndev->dev->dev,
463 			"Memory registrations not supported.\n");
464 		goto out_free_mr;
465 	}
466 
467 	list_add(&ndev->entry, &device_list);
468 out_unlock:
469 	mutex_unlock(&device_list_mutex);
470 	return ndev;
471 
472 out_free_mr:
473 	if (!register_always)
474 		ib_dereg_mr(ndev->mr);
475 out_free_pd:
476 	ib_dealloc_pd(ndev->pd);
477 out_free_dev:
478 	kfree(ndev);
479 out_err:
480 	mutex_unlock(&device_list_mutex);
481 	return NULL;
482 }
483 
484 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
485 {
486 	struct nvme_rdma_device *dev;
487 	struct ib_device *ibdev;
488 
489 	if (!test_and_clear_bit(NVME_RDMA_IB_QUEUE_ALLOCATED, &queue->flags))
490 		return;
491 
492 	dev = queue->device;
493 	ibdev = dev->dev;
494 	rdma_destroy_qp(queue->cm_id);
495 	ib_free_cq(queue->ib_cq);
496 
497 	nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
498 			sizeof(struct nvme_completion), DMA_FROM_DEVICE);
499 
500 	nvme_rdma_dev_put(dev);
501 }
502 
503 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue,
504 		struct nvme_rdma_device *dev)
505 {
506 	struct ib_device *ibdev = dev->dev;
507 	const int send_wr_factor = 3;			/* MR, SEND, INV */
508 	const int cq_factor = send_wr_factor + 1;	/* + RECV */
509 	int comp_vector, idx = nvme_rdma_queue_idx(queue);
510 
511 	int ret;
512 
513 	queue->device = dev;
514 
515 	/*
516 	 * The admin queue is barely used once the controller is live, so don't
517 	 * bother to spread it out.
518 	 */
519 	if (idx == 0)
520 		comp_vector = 0;
521 	else
522 		comp_vector = idx % ibdev->num_comp_vectors;
523 
524 
525 	/* +1 for ib_stop_cq */
526 	queue->ib_cq = ib_alloc_cq(dev->dev, queue,
527 				cq_factor * queue->queue_size + 1, comp_vector,
528 				IB_POLL_SOFTIRQ);
529 	if (IS_ERR(queue->ib_cq)) {
530 		ret = PTR_ERR(queue->ib_cq);
531 		goto out;
532 	}
533 
534 	ret = nvme_rdma_create_qp(queue, send_wr_factor);
535 	if (ret)
536 		goto out_destroy_ib_cq;
537 
538 	queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
539 			sizeof(struct nvme_completion), DMA_FROM_DEVICE);
540 	if (!queue->rsp_ring) {
541 		ret = -ENOMEM;
542 		goto out_destroy_qp;
543 	}
544 	set_bit(NVME_RDMA_IB_QUEUE_ALLOCATED, &queue->flags);
545 
546 	return 0;
547 
548 out_destroy_qp:
549 	ib_destroy_qp(queue->qp);
550 out_destroy_ib_cq:
551 	ib_free_cq(queue->ib_cq);
552 out:
553 	return ret;
554 }
555 
556 static int nvme_rdma_init_queue(struct nvme_rdma_ctrl *ctrl,
557 		int idx, size_t queue_size)
558 {
559 	struct nvme_rdma_queue *queue;
560 	int ret;
561 
562 	queue = &ctrl->queues[idx];
563 	queue->ctrl = ctrl;
564 	init_completion(&queue->cm_done);
565 
566 	if (idx > 0)
567 		queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
568 	else
569 		queue->cmnd_capsule_len = sizeof(struct nvme_command);
570 
571 	queue->queue_size = queue_size;
572 
573 	queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
574 			RDMA_PS_TCP, IB_QPT_RC);
575 	if (IS_ERR(queue->cm_id)) {
576 		dev_info(ctrl->ctrl.device,
577 			"failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
578 		return PTR_ERR(queue->cm_id);
579 	}
580 
581 	queue->cm_error = -ETIMEDOUT;
582 	ret = rdma_resolve_addr(queue->cm_id, NULL, &ctrl->addr,
583 			NVME_RDMA_CONNECT_TIMEOUT_MS);
584 	if (ret) {
585 		dev_info(ctrl->ctrl.device,
586 			"rdma_resolve_addr failed (%d).\n", ret);
587 		goto out_destroy_cm_id;
588 	}
589 
590 	ret = nvme_rdma_wait_for_cm(queue);
591 	if (ret) {
592 		dev_info(ctrl->ctrl.device,
593 			"rdma_resolve_addr wait failed (%d).\n", ret);
594 		goto out_destroy_cm_id;
595 	}
596 
597 	clear_bit(NVME_RDMA_Q_DELETING, &queue->flags);
598 	set_bit(NVME_RDMA_Q_CONNECTED, &queue->flags);
599 
600 	return 0;
601 
602 out_destroy_cm_id:
603 	nvme_rdma_destroy_queue_ib(queue);
604 	rdma_destroy_id(queue->cm_id);
605 	return ret;
606 }
607 
608 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
609 {
610 	rdma_disconnect(queue->cm_id);
611 	ib_drain_qp(queue->qp);
612 }
613 
614 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
615 {
616 	nvme_rdma_destroy_queue_ib(queue);
617 	rdma_destroy_id(queue->cm_id);
618 }
619 
620 static void nvme_rdma_stop_and_free_queue(struct nvme_rdma_queue *queue)
621 {
622 	if (test_and_set_bit(NVME_RDMA_Q_DELETING, &queue->flags))
623 		return;
624 	nvme_rdma_stop_queue(queue);
625 	nvme_rdma_free_queue(queue);
626 }
627 
628 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
629 {
630 	int i;
631 
632 	for (i = 1; i < ctrl->queue_count; i++)
633 		nvme_rdma_stop_and_free_queue(&ctrl->queues[i]);
634 }
635 
636 static int nvme_rdma_connect_io_queues(struct nvme_rdma_ctrl *ctrl)
637 {
638 	int i, ret = 0;
639 
640 	for (i = 1; i < ctrl->queue_count; i++) {
641 		ret = nvmf_connect_io_queue(&ctrl->ctrl, i);
642 		if (ret)
643 			break;
644 	}
645 
646 	return ret;
647 }
648 
649 static int nvme_rdma_init_io_queues(struct nvme_rdma_ctrl *ctrl)
650 {
651 	int i, ret;
652 
653 	for (i = 1; i < ctrl->queue_count; i++) {
654 		ret = nvme_rdma_init_queue(ctrl, i,
655 					   ctrl->ctrl.opts->queue_size);
656 		if (ret) {
657 			dev_info(ctrl->ctrl.device,
658 				"failed to initialize i/o queue: %d\n", ret);
659 			goto out_free_queues;
660 		}
661 	}
662 
663 	return 0;
664 
665 out_free_queues:
666 	for (i--; i >= 1; i--)
667 		nvme_rdma_stop_and_free_queue(&ctrl->queues[i]);
668 
669 	return ret;
670 }
671 
672 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl)
673 {
674 	nvme_rdma_free_qe(ctrl->queues[0].device->dev, &ctrl->async_event_sqe,
675 			sizeof(struct nvme_command), DMA_TO_DEVICE);
676 	nvme_rdma_stop_and_free_queue(&ctrl->queues[0]);
677 	blk_cleanup_queue(ctrl->ctrl.admin_q);
678 	blk_mq_free_tag_set(&ctrl->admin_tag_set);
679 	nvme_rdma_dev_put(ctrl->device);
680 }
681 
682 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
683 {
684 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
685 
686 	if (list_empty(&ctrl->list))
687 		goto free_ctrl;
688 
689 	mutex_lock(&nvme_rdma_ctrl_mutex);
690 	list_del(&ctrl->list);
691 	mutex_unlock(&nvme_rdma_ctrl_mutex);
692 
693 	kfree(ctrl->queues);
694 	nvmf_free_options(nctrl->opts);
695 free_ctrl:
696 	kfree(ctrl);
697 }
698 
699 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
700 {
701 	struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
702 			struct nvme_rdma_ctrl, reconnect_work);
703 	bool changed;
704 	int ret;
705 
706 	if (ctrl->queue_count > 1) {
707 		nvme_rdma_free_io_queues(ctrl);
708 
709 		ret = blk_mq_reinit_tagset(&ctrl->tag_set);
710 		if (ret)
711 			goto requeue;
712 	}
713 
714 	nvme_rdma_stop_and_free_queue(&ctrl->queues[0]);
715 
716 	ret = blk_mq_reinit_tagset(&ctrl->admin_tag_set);
717 	if (ret)
718 		goto requeue;
719 
720 	ret = nvme_rdma_init_queue(ctrl, 0, NVMF_AQ_DEPTH);
721 	if (ret)
722 		goto requeue;
723 
724 	blk_mq_start_stopped_hw_queues(ctrl->ctrl.admin_q, true);
725 
726 	ret = nvmf_connect_admin_queue(&ctrl->ctrl);
727 	if (ret)
728 		goto stop_admin_q;
729 
730 	ret = nvme_enable_ctrl(&ctrl->ctrl, ctrl->cap);
731 	if (ret)
732 		goto stop_admin_q;
733 
734 	nvme_start_keep_alive(&ctrl->ctrl);
735 
736 	if (ctrl->queue_count > 1) {
737 		ret = nvme_rdma_init_io_queues(ctrl);
738 		if (ret)
739 			goto stop_admin_q;
740 
741 		ret = nvme_rdma_connect_io_queues(ctrl);
742 		if (ret)
743 			goto stop_admin_q;
744 	}
745 
746 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
747 	WARN_ON_ONCE(!changed);
748 
749 	if (ctrl->queue_count > 1) {
750 		nvme_start_queues(&ctrl->ctrl);
751 		nvme_queue_scan(&ctrl->ctrl);
752 		nvme_queue_async_events(&ctrl->ctrl);
753 	}
754 
755 	dev_info(ctrl->ctrl.device, "Successfully reconnected\n");
756 
757 	return;
758 
759 stop_admin_q:
760 	blk_mq_stop_hw_queues(ctrl->ctrl.admin_q);
761 requeue:
762 	/* Make sure we are not resetting/deleting */
763 	if (ctrl->ctrl.state == NVME_CTRL_RECONNECTING) {
764 		dev_info(ctrl->ctrl.device,
765 			"Failed reconnect attempt, requeueing...\n");
766 		queue_delayed_work(nvme_rdma_wq, &ctrl->reconnect_work,
767 					ctrl->reconnect_delay * HZ);
768 	}
769 }
770 
771 static void nvme_rdma_error_recovery_work(struct work_struct *work)
772 {
773 	struct nvme_rdma_ctrl *ctrl = container_of(work,
774 			struct nvme_rdma_ctrl, err_work);
775 	int i;
776 
777 	nvme_stop_keep_alive(&ctrl->ctrl);
778 
779 	for (i = 0; i < ctrl->queue_count; i++)
780 		clear_bit(NVME_RDMA_Q_CONNECTED, &ctrl->queues[i].flags);
781 
782 	if (ctrl->queue_count > 1)
783 		nvme_stop_queues(&ctrl->ctrl);
784 	blk_mq_stop_hw_queues(ctrl->ctrl.admin_q);
785 
786 	/* We must take care of fastfail/requeue all our inflight requests */
787 	if (ctrl->queue_count > 1)
788 		blk_mq_tagset_busy_iter(&ctrl->tag_set,
789 					nvme_cancel_request, &ctrl->ctrl);
790 	blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
791 				nvme_cancel_request, &ctrl->ctrl);
792 
793 	dev_info(ctrl->ctrl.device, "reconnecting in %d seconds\n",
794 		ctrl->reconnect_delay);
795 
796 	queue_delayed_work(nvme_rdma_wq, &ctrl->reconnect_work,
797 				ctrl->reconnect_delay * HZ);
798 }
799 
800 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
801 {
802 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RECONNECTING))
803 		return;
804 
805 	queue_work(nvme_rdma_wq, &ctrl->err_work);
806 }
807 
808 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
809 		const char *op)
810 {
811 	struct nvme_rdma_queue *queue = cq->cq_context;
812 	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
813 
814 	if (ctrl->ctrl.state == NVME_CTRL_LIVE)
815 		dev_info(ctrl->ctrl.device,
816 			     "%s for CQE 0x%p failed with status %s (%d)\n",
817 			     op, wc->wr_cqe,
818 			     ib_wc_status_msg(wc->status), wc->status);
819 	nvme_rdma_error_recovery(ctrl);
820 }
821 
822 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
823 {
824 	if (unlikely(wc->status != IB_WC_SUCCESS))
825 		nvme_rdma_wr_error(cq, wc, "MEMREG");
826 }
827 
828 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
829 {
830 	if (unlikely(wc->status != IB_WC_SUCCESS))
831 		nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
832 }
833 
834 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
835 		struct nvme_rdma_request *req)
836 {
837 	struct ib_send_wr *bad_wr;
838 	struct ib_send_wr wr = {
839 		.opcode		    = IB_WR_LOCAL_INV,
840 		.next		    = NULL,
841 		.num_sge	    = 0,
842 		.send_flags	    = 0,
843 		.ex.invalidate_rkey = req->mr->rkey,
844 	};
845 
846 	req->reg_cqe.done = nvme_rdma_inv_rkey_done;
847 	wr.wr_cqe = &req->reg_cqe;
848 
849 	return ib_post_send(queue->qp, &wr, &bad_wr);
850 }
851 
852 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
853 		struct request *rq)
854 {
855 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
856 	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
857 	struct nvme_rdma_device *dev = queue->device;
858 	struct ib_device *ibdev = dev->dev;
859 	int res;
860 
861 	if (!blk_rq_bytes(rq))
862 		return;
863 
864 	if (req->mr->need_inval) {
865 		res = nvme_rdma_inv_rkey(queue, req);
866 		if (res < 0) {
867 			dev_err(ctrl->ctrl.device,
868 				"Queueing INV WR for rkey %#x failed (%d)\n",
869 				req->mr->rkey, res);
870 			nvme_rdma_error_recovery(queue->ctrl);
871 		}
872 	}
873 
874 	ib_dma_unmap_sg(ibdev, req->sg_table.sgl,
875 			req->nents, rq_data_dir(rq) ==
876 				    WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
877 
878 	nvme_cleanup_cmd(rq);
879 	sg_free_table_chained(&req->sg_table, true);
880 }
881 
882 static int nvme_rdma_set_sg_null(struct nvme_command *c)
883 {
884 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
885 
886 	sg->addr = 0;
887 	put_unaligned_le24(0, sg->length);
888 	put_unaligned_le32(0, sg->key);
889 	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
890 	return 0;
891 }
892 
893 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
894 		struct nvme_rdma_request *req, struct nvme_command *c)
895 {
896 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
897 
898 	req->sge[1].addr = sg_dma_address(req->sg_table.sgl);
899 	req->sge[1].length = sg_dma_len(req->sg_table.sgl);
900 	req->sge[1].lkey = queue->device->pd->local_dma_lkey;
901 
902 	sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
903 	sg->length = cpu_to_le32(sg_dma_len(req->sg_table.sgl));
904 	sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
905 
906 	req->inline_data = true;
907 	req->num_sge++;
908 	return 0;
909 }
910 
911 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
912 		struct nvme_rdma_request *req, struct nvme_command *c)
913 {
914 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
915 
916 	sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl));
917 	put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length);
918 	put_unaligned_le32(queue->device->mr->rkey, sg->key);
919 	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
920 	return 0;
921 }
922 
923 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
924 		struct nvme_rdma_request *req, struct nvme_command *c,
925 		int count)
926 {
927 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
928 	int nr;
929 
930 	nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, PAGE_SIZE);
931 	if (nr < count) {
932 		if (nr < 0)
933 			return nr;
934 		return -EINVAL;
935 	}
936 
937 	ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
938 
939 	req->reg_cqe.done = nvme_rdma_memreg_done;
940 	memset(&req->reg_wr, 0, sizeof(req->reg_wr));
941 	req->reg_wr.wr.opcode = IB_WR_REG_MR;
942 	req->reg_wr.wr.wr_cqe = &req->reg_cqe;
943 	req->reg_wr.wr.num_sge = 0;
944 	req->reg_wr.mr = req->mr;
945 	req->reg_wr.key = req->mr->rkey;
946 	req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
947 			     IB_ACCESS_REMOTE_READ |
948 			     IB_ACCESS_REMOTE_WRITE;
949 
950 	req->mr->need_inval = true;
951 
952 	sg->addr = cpu_to_le64(req->mr->iova);
953 	put_unaligned_le24(req->mr->length, sg->length);
954 	put_unaligned_le32(req->mr->rkey, sg->key);
955 	sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
956 			NVME_SGL_FMT_INVALIDATE;
957 
958 	return 0;
959 }
960 
961 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
962 		struct request *rq, unsigned int map_len,
963 		struct nvme_command *c)
964 {
965 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
966 	struct nvme_rdma_device *dev = queue->device;
967 	struct ib_device *ibdev = dev->dev;
968 	int nents, count;
969 	int ret;
970 
971 	req->num_sge = 1;
972 	req->inline_data = false;
973 	req->mr->need_inval = false;
974 
975 	c->common.flags |= NVME_CMD_SGL_METABUF;
976 
977 	if (!blk_rq_bytes(rq))
978 		return nvme_rdma_set_sg_null(c);
979 
980 	req->sg_table.sgl = req->first_sgl;
981 	ret = sg_alloc_table_chained(&req->sg_table, rq->nr_phys_segments,
982 				req->sg_table.sgl);
983 	if (ret)
984 		return -ENOMEM;
985 
986 	nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl);
987 	BUG_ON(nents > rq->nr_phys_segments);
988 	req->nents = nents;
989 
990 	count = ib_dma_map_sg(ibdev, req->sg_table.sgl, nents,
991 		    rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
992 	if (unlikely(count <= 0)) {
993 		sg_free_table_chained(&req->sg_table, true);
994 		return -EIO;
995 	}
996 
997 	if (count == 1) {
998 		if (rq_data_dir(rq) == WRITE &&
999 		    map_len <= nvme_rdma_inline_data_size(queue) &&
1000 		    nvme_rdma_queue_idx(queue))
1001 			return nvme_rdma_map_sg_inline(queue, req, c);
1002 
1003 		if (!register_always)
1004 			return nvme_rdma_map_sg_single(queue, req, c);
1005 	}
1006 
1007 	return nvme_rdma_map_sg_fr(queue, req, c, count);
1008 }
1009 
1010 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
1011 {
1012 	if (unlikely(wc->status != IB_WC_SUCCESS))
1013 		nvme_rdma_wr_error(cq, wc, "SEND");
1014 }
1015 
1016 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
1017 		struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
1018 		struct ib_send_wr *first, bool flush)
1019 {
1020 	struct ib_send_wr wr, *bad_wr;
1021 	int ret;
1022 
1023 	sge->addr   = qe->dma;
1024 	sge->length = sizeof(struct nvme_command),
1025 	sge->lkey   = queue->device->pd->local_dma_lkey;
1026 
1027 	qe->cqe.done = nvme_rdma_send_done;
1028 
1029 	wr.next       = NULL;
1030 	wr.wr_cqe     = &qe->cqe;
1031 	wr.sg_list    = sge;
1032 	wr.num_sge    = num_sge;
1033 	wr.opcode     = IB_WR_SEND;
1034 	wr.send_flags = 0;
1035 
1036 	/*
1037 	 * Unsignalled send completions are another giant desaster in the
1038 	 * IB Verbs spec:  If we don't regularly post signalled sends
1039 	 * the send queue will fill up and only a QP reset will rescue us.
1040 	 * Would have been way to obvious to handle this in hardware or
1041 	 * at least the RDMA stack..
1042 	 *
1043 	 * This messy and racy code sniplet is copy and pasted from the iSER
1044 	 * initiator, and the magic '32' comes from there as well.
1045 	 *
1046 	 * Always signal the flushes. The magic request used for the flush
1047 	 * sequencer is not allocated in our driver's tagset and it's
1048 	 * triggered to be freed by blk_cleanup_queue(). So we need to
1049 	 * always mark it as signaled to ensure that the "wr_cqe", which is
1050 	 * embeded in request's payload, is not freed when __ib_process_cq()
1051 	 * calls wr_cqe->done().
1052 	 */
1053 	if ((++queue->sig_count % 32) == 0 || flush)
1054 		wr.send_flags |= IB_SEND_SIGNALED;
1055 
1056 	if (first)
1057 		first->next = &wr;
1058 	else
1059 		first = &wr;
1060 
1061 	ret = ib_post_send(queue->qp, first, &bad_wr);
1062 	if (ret) {
1063 		dev_err(queue->ctrl->ctrl.device,
1064 			     "%s failed with error code %d\n", __func__, ret);
1065 	}
1066 	return ret;
1067 }
1068 
1069 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
1070 		struct nvme_rdma_qe *qe)
1071 {
1072 	struct ib_recv_wr wr, *bad_wr;
1073 	struct ib_sge list;
1074 	int ret;
1075 
1076 	list.addr   = qe->dma;
1077 	list.length = sizeof(struct nvme_completion);
1078 	list.lkey   = queue->device->pd->local_dma_lkey;
1079 
1080 	qe->cqe.done = nvme_rdma_recv_done;
1081 
1082 	wr.next     = NULL;
1083 	wr.wr_cqe   = &qe->cqe;
1084 	wr.sg_list  = &list;
1085 	wr.num_sge  = 1;
1086 
1087 	ret = ib_post_recv(queue->qp, &wr, &bad_wr);
1088 	if (ret) {
1089 		dev_err(queue->ctrl->ctrl.device,
1090 			"%s failed with error code %d\n", __func__, ret);
1091 	}
1092 	return ret;
1093 }
1094 
1095 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
1096 {
1097 	u32 queue_idx = nvme_rdma_queue_idx(queue);
1098 
1099 	if (queue_idx == 0)
1100 		return queue->ctrl->admin_tag_set.tags[queue_idx];
1101 	return queue->ctrl->tag_set.tags[queue_idx - 1];
1102 }
1103 
1104 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg, int aer_idx)
1105 {
1106 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
1107 	struct nvme_rdma_queue *queue = &ctrl->queues[0];
1108 	struct ib_device *dev = queue->device->dev;
1109 	struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
1110 	struct nvme_command *cmd = sqe->data;
1111 	struct ib_sge sge;
1112 	int ret;
1113 
1114 	if (WARN_ON_ONCE(aer_idx != 0))
1115 		return;
1116 
1117 	ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
1118 
1119 	memset(cmd, 0, sizeof(*cmd));
1120 	cmd->common.opcode = nvme_admin_async_event;
1121 	cmd->common.command_id = NVME_RDMA_AQ_BLKMQ_DEPTH;
1122 	cmd->common.flags |= NVME_CMD_SGL_METABUF;
1123 	nvme_rdma_set_sg_null(cmd);
1124 
1125 	ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
1126 			DMA_TO_DEVICE);
1127 
1128 	ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL, false);
1129 	WARN_ON_ONCE(ret);
1130 }
1131 
1132 static int nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
1133 		struct nvme_completion *cqe, struct ib_wc *wc, int tag)
1134 {
1135 	u16 status = le16_to_cpu(cqe->status);
1136 	struct request *rq;
1137 	struct nvme_rdma_request *req;
1138 	int ret = 0;
1139 
1140 	status >>= 1;
1141 
1142 	rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id);
1143 	if (!rq) {
1144 		dev_err(queue->ctrl->ctrl.device,
1145 			"tag 0x%x on QP %#x not found\n",
1146 			cqe->command_id, queue->qp->qp_num);
1147 		nvme_rdma_error_recovery(queue->ctrl);
1148 		return ret;
1149 	}
1150 	req = blk_mq_rq_to_pdu(rq);
1151 
1152 	if (rq->cmd_type == REQ_TYPE_DRV_PRIV && rq->special)
1153 		memcpy(rq->special, cqe, sizeof(*cqe));
1154 
1155 	if (rq->tag == tag)
1156 		ret = 1;
1157 
1158 	if ((wc->wc_flags & IB_WC_WITH_INVALIDATE) &&
1159 	    wc->ex.invalidate_rkey == req->mr->rkey)
1160 		req->mr->need_inval = false;
1161 
1162 	blk_mq_complete_request(rq, status);
1163 
1164 	return ret;
1165 }
1166 
1167 static int __nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc, int tag)
1168 {
1169 	struct nvme_rdma_qe *qe =
1170 		container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1171 	struct nvme_rdma_queue *queue = cq->cq_context;
1172 	struct ib_device *ibdev = queue->device->dev;
1173 	struct nvme_completion *cqe = qe->data;
1174 	const size_t len = sizeof(struct nvme_completion);
1175 	int ret = 0;
1176 
1177 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
1178 		nvme_rdma_wr_error(cq, wc, "RECV");
1179 		return 0;
1180 	}
1181 
1182 	ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1183 	/*
1184 	 * AEN requests are special as they don't time out and can
1185 	 * survive any kind of queue freeze and often don't respond to
1186 	 * aborts.  We don't even bother to allocate a struct request
1187 	 * for them but rather special case them here.
1188 	 */
1189 	if (unlikely(nvme_rdma_queue_idx(queue) == 0 &&
1190 			cqe->command_id >= NVME_RDMA_AQ_BLKMQ_DEPTH))
1191 		nvme_complete_async_event(&queue->ctrl->ctrl, cqe);
1192 	else
1193 		ret = nvme_rdma_process_nvme_rsp(queue, cqe, wc, tag);
1194 	ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1195 
1196 	nvme_rdma_post_recv(queue, qe);
1197 	return ret;
1198 }
1199 
1200 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1201 {
1202 	__nvme_rdma_recv_done(cq, wc, -1);
1203 }
1204 
1205 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
1206 {
1207 	int ret, i;
1208 
1209 	for (i = 0; i < queue->queue_size; i++) {
1210 		ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
1211 		if (ret)
1212 			goto out_destroy_queue_ib;
1213 	}
1214 
1215 	return 0;
1216 
1217 out_destroy_queue_ib:
1218 	nvme_rdma_destroy_queue_ib(queue);
1219 	return ret;
1220 }
1221 
1222 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
1223 		struct rdma_cm_event *ev)
1224 {
1225 	if (ev->param.conn.private_data_len) {
1226 		struct nvme_rdma_cm_rej *rej =
1227 			(struct nvme_rdma_cm_rej *)ev->param.conn.private_data;
1228 
1229 		dev_err(queue->ctrl->ctrl.device,
1230 			"Connect rejected, status %d.", le16_to_cpu(rej->sts));
1231 		/* XXX: Think of something clever to do here... */
1232 	} else {
1233 		dev_err(queue->ctrl->ctrl.device,
1234 			"Connect rejected, no private data.\n");
1235 	}
1236 
1237 	return -ECONNRESET;
1238 }
1239 
1240 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
1241 {
1242 	struct nvme_rdma_device *dev;
1243 	int ret;
1244 
1245 	dev = nvme_rdma_find_get_device(queue->cm_id);
1246 	if (!dev) {
1247 		dev_err(queue->cm_id->device->dma_device,
1248 			"no client data found!\n");
1249 		return -ECONNREFUSED;
1250 	}
1251 
1252 	ret = nvme_rdma_create_queue_ib(queue, dev);
1253 	if (ret) {
1254 		nvme_rdma_dev_put(dev);
1255 		goto out;
1256 	}
1257 
1258 	ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS);
1259 	if (ret) {
1260 		dev_err(queue->ctrl->ctrl.device,
1261 			"rdma_resolve_route failed (%d).\n",
1262 			queue->cm_error);
1263 		goto out_destroy_queue;
1264 	}
1265 
1266 	return 0;
1267 
1268 out_destroy_queue:
1269 	nvme_rdma_destroy_queue_ib(queue);
1270 out:
1271 	return ret;
1272 }
1273 
1274 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
1275 {
1276 	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1277 	struct rdma_conn_param param = { };
1278 	struct nvme_rdma_cm_req priv = { };
1279 	int ret;
1280 
1281 	param.qp_num = queue->qp->qp_num;
1282 	param.flow_control = 1;
1283 
1284 	param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1285 	/* maximum retry count */
1286 	param.retry_count = 7;
1287 	param.rnr_retry_count = 7;
1288 	param.private_data = &priv;
1289 	param.private_data_len = sizeof(priv);
1290 
1291 	priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1292 	priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1293 	/*
1294 	 * set the admin queue depth to the minimum size
1295 	 * specified by the Fabrics standard.
1296 	 */
1297 	if (priv.qid == 0) {
1298 		priv.hrqsize = cpu_to_le16(NVMF_AQ_DEPTH);
1299 		priv.hsqsize = cpu_to_le16(NVMF_AQ_DEPTH - 1);
1300 	} else {
1301 		/*
1302 		 * current interpretation of the fabrics spec
1303 		 * is at minimum you make hrqsize sqsize+1, or a
1304 		 * 1's based representation of sqsize.
1305 		 */
1306 		priv.hrqsize = cpu_to_le16(queue->queue_size);
1307 		priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
1308 	}
1309 
1310 	ret = rdma_connect(queue->cm_id, &param);
1311 	if (ret) {
1312 		dev_err(ctrl->ctrl.device,
1313 			"rdma_connect failed (%d).\n", ret);
1314 		goto out_destroy_queue_ib;
1315 	}
1316 
1317 	return 0;
1318 
1319 out_destroy_queue_ib:
1320 	nvme_rdma_destroy_queue_ib(queue);
1321 	return ret;
1322 }
1323 
1324 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
1325 		struct rdma_cm_event *ev)
1326 {
1327 	struct nvme_rdma_queue *queue = cm_id->context;
1328 	int cm_error = 0;
1329 
1330 	dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
1331 		rdma_event_msg(ev->event), ev->event,
1332 		ev->status, cm_id);
1333 
1334 	switch (ev->event) {
1335 	case RDMA_CM_EVENT_ADDR_RESOLVED:
1336 		cm_error = nvme_rdma_addr_resolved(queue);
1337 		break;
1338 	case RDMA_CM_EVENT_ROUTE_RESOLVED:
1339 		cm_error = nvme_rdma_route_resolved(queue);
1340 		break;
1341 	case RDMA_CM_EVENT_ESTABLISHED:
1342 		queue->cm_error = nvme_rdma_conn_established(queue);
1343 		/* complete cm_done regardless of success/failure */
1344 		complete(&queue->cm_done);
1345 		return 0;
1346 	case RDMA_CM_EVENT_REJECTED:
1347 		cm_error = nvme_rdma_conn_rejected(queue, ev);
1348 		break;
1349 	case RDMA_CM_EVENT_ADDR_ERROR:
1350 	case RDMA_CM_EVENT_ROUTE_ERROR:
1351 	case RDMA_CM_EVENT_CONNECT_ERROR:
1352 	case RDMA_CM_EVENT_UNREACHABLE:
1353 		dev_dbg(queue->ctrl->ctrl.device,
1354 			"CM error event %d\n", ev->event);
1355 		cm_error = -ECONNRESET;
1356 		break;
1357 	case RDMA_CM_EVENT_DISCONNECTED:
1358 	case RDMA_CM_EVENT_ADDR_CHANGE:
1359 	case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1360 		dev_dbg(queue->ctrl->ctrl.device,
1361 			"disconnect received - connection closed\n");
1362 		nvme_rdma_error_recovery(queue->ctrl);
1363 		break;
1364 	case RDMA_CM_EVENT_DEVICE_REMOVAL:
1365 		/* device removal is handled via the ib_client API */
1366 		break;
1367 	default:
1368 		dev_err(queue->ctrl->ctrl.device,
1369 			"Unexpected RDMA CM event (%d)\n", ev->event);
1370 		nvme_rdma_error_recovery(queue->ctrl);
1371 		break;
1372 	}
1373 
1374 	if (cm_error) {
1375 		queue->cm_error = cm_error;
1376 		complete(&queue->cm_done);
1377 	}
1378 
1379 	return 0;
1380 }
1381 
1382 static enum blk_eh_timer_return
1383 nvme_rdma_timeout(struct request *rq, bool reserved)
1384 {
1385 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1386 
1387 	/* queue error recovery */
1388 	nvme_rdma_error_recovery(req->queue->ctrl);
1389 
1390 	/* fail with DNR on cmd timeout */
1391 	rq->errors = NVME_SC_ABORT_REQ | NVME_SC_DNR;
1392 
1393 	return BLK_EH_HANDLED;
1394 }
1395 
1396 static int nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
1397 		const struct blk_mq_queue_data *bd)
1398 {
1399 	struct nvme_ns *ns = hctx->queue->queuedata;
1400 	struct nvme_rdma_queue *queue = hctx->driver_data;
1401 	struct request *rq = bd->rq;
1402 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1403 	struct nvme_rdma_qe *sqe = &req->sqe;
1404 	struct nvme_command *c = sqe->data;
1405 	bool flush = false;
1406 	struct ib_device *dev;
1407 	unsigned int map_len;
1408 	int ret;
1409 
1410 	WARN_ON_ONCE(rq->tag < 0);
1411 
1412 	dev = queue->device->dev;
1413 	ib_dma_sync_single_for_cpu(dev, sqe->dma,
1414 			sizeof(struct nvme_command), DMA_TO_DEVICE);
1415 
1416 	ret = nvme_setup_cmd(ns, rq, c);
1417 	if (ret)
1418 		return ret;
1419 
1420 	c->common.command_id = rq->tag;
1421 	blk_mq_start_request(rq);
1422 
1423 	map_len = nvme_map_len(rq);
1424 	ret = nvme_rdma_map_data(queue, rq, map_len, c);
1425 	if (ret < 0) {
1426 		dev_err(queue->ctrl->ctrl.device,
1427 			     "Failed to map data (%d)\n", ret);
1428 		nvme_cleanup_cmd(rq);
1429 		goto err;
1430 	}
1431 
1432 	ib_dma_sync_single_for_device(dev, sqe->dma,
1433 			sizeof(struct nvme_command), DMA_TO_DEVICE);
1434 
1435 	if (rq->cmd_type == REQ_TYPE_FS && req_op(rq) == REQ_OP_FLUSH)
1436 		flush = true;
1437 	ret = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
1438 			req->mr->need_inval ? &req->reg_wr.wr : NULL, flush);
1439 	if (ret) {
1440 		nvme_rdma_unmap_data(queue, rq);
1441 		goto err;
1442 	}
1443 
1444 	return BLK_MQ_RQ_QUEUE_OK;
1445 err:
1446 	return (ret == -ENOMEM || ret == -EAGAIN) ?
1447 		BLK_MQ_RQ_QUEUE_BUSY : BLK_MQ_RQ_QUEUE_ERROR;
1448 }
1449 
1450 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
1451 {
1452 	struct nvme_rdma_queue *queue = hctx->driver_data;
1453 	struct ib_cq *cq = queue->ib_cq;
1454 	struct ib_wc wc;
1455 	int found = 0;
1456 
1457 	ib_req_notify_cq(cq, IB_CQ_NEXT_COMP);
1458 	while (ib_poll_cq(cq, 1, &wc) > 0) {
1459 		struct ib_cqe *cqe = wc.wr_cqe;
1460 
1461 		if (cqe) {
1462 			if (cqe->done == nvme_rdma_recv_done)
1463 				found |= __nvme_rdma_recv_done(cq, &wc, tag);
1464 			else
1465 				cqe->done(cq, &wc);
1466 		}
1467 	}
1468 
1469 	return found;
1470 }
1471 
1472 static void nvme_rdma_complete_rq(struct request *rq)
1473 {
1474 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1475 	struct nvme_rdma_queue *queue = req->queue;
1476 	int error = 0;
1477 
1478 	nvme_rdma_unmap_data(queue, rq);
1479 
1480 	if (unlikely(rq->errors)) {
1481 		if (nvme_req_needs_retry(rq, rq->errors)) {
1482 			nvme_requeue_req(rq);
1483 			return;
1484 		}
1485 
1486 		if (rq->cmd_type == REQ_TYPE_DRV_PRIV)
1487 			error = rq->errors;
1488 		else
1489 			error = nvme_error_status(rq->errors);
1490 	}
1491 
1492 	blk_mq_end_request(rq, error);
1493 }
1494 
1495 static struct blk_mq_ops nvme_rdma_mq_ops = {
1496 	.queue_rq	= nvme_rdma_queue_rq,
1497 	.complete	= nvme_rdma_complete_rq,
1498 	.map_queue	= blk_mq_map_queue,
1499 	.init_request	= nvme_rdma_init_request,
1500 	.exit_request	= nvme_rdma_exit_request,
1501 	.reinit_request	= nvme_rdma_reinit_request,
1502 	.init_hctx	= nvme_rdma_init_hctx,
1503 	.poll		= nvme_rdma_poll,
1504 	.timeout	= nvme_rdma_timeout,
1505 };
1506 
1507 static struct blk_mq_ops nvme_rdma_admin_mq_ops = {
1508 	.queue_rq	= nvme_rdma_queue_rq,
1509 	.complete	= nvme_rdma_complete_rq,
1510 	.map_queue	= blk_mq_map_queue,
1511 	.init_request	= nvme_rdma_init_admin_request,
1512 	.exit_request	= nvme_rdma_exit_admin_request,
1513 	.reinit_request	= nvme_rdma_reinit_request,
1514 	.init_hctx	= nvme_rdma_init_admin_hctx,
1515 	.timeout	= nvme_rdma_timeout,
1516 };
1517 
1518 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl)
1519 {
1520 	int error;
1521 
1522 	error = nvme_rdma_init_queue(ctrl, 0, NVMF_AQ_DEPTH);
1523 	if (error)
1524 		return error;
1525 
1526 	ctrl->device = ctrl->queues[0].device;
1527 
1528 	/*
1529 	 * We need a reference on the device as long as the tag_set is alive,
1530 	 * as the MRs in the request structures need a valid ib_device.
1531 	 */
1532 	error = -EINVAL;
1533 	if (!nvme_rdma_dev_get(ctrl->device))
1534 		goto out_free_queue;
1535 
1536 	ctrl->max_fr_pages = min_t(u32, NVME_RDMA_MAX_SEGMENTS,
1537 		ctrl->device->dev->attrs.max_fast_reg_page_list_len);
1538 
1539 	memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set));
1540 	ctrl->admin_tag_set.ops = &nvme_rdma_admin_mq_ops;
1541 	ctrl->admin_tag_set.queue_depth = NVME_RDMA_AQ_BLKMQ_DEPTH;
1542 	ctrl->admin_tag_set.reserved_tags = 2; /* connect + keep-alive */
1543 	ctrl->admin_tag_set.numa_node = NUMA_NO_NODE;
1544 	ctrl->admin_tag_set.cmd_size = sizeof(struct nvme_rdma_request) +
1545 		SG_CHUNK_SIZE * sizeof(struct scatterlist);
1546 	ctrl->admin_tag_set.driver_data = ctrl;
1547 	ctrl->admin_tag_set.nr_hw_queues = 1;
1548 	ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT;
1549 
1550 	error = blk_mq_alloc_tag_set(&ctrl->admin_tag_set);
1551 	if (error)
1552 		goto out_put_dev;
1553 
1554 	ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
1555 	if (IS_ERR(ctrl->ctrl.admin_q)) {
1556 		error = PTR_ERR(ctrl->ctrl.admin_q);
1557 		goto out_free_tagset;
1558 	}
1559 
1560 	error = nvmf_connect_admin_queue(&ctrl->ctrl);
1561 	if (error)
1562 		goto out_cleanup_queue;
1563 
1564 	error = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP, &ctrl->cap);
1565 	if (error) {
1566 		dev_err(ctrl->ctrl.device,
1567 			"prop_get NVME_REG_CAP failed\n");
1568 		goto out_cleanup_queue;
1569 	}
1570 
1571 	ctrl->ctrl.sqsize =
1572 		min_t(int, NVME_CAP_MQES(ctrl->cap) + 1, ctrl->ctrl.sqsize);
1573 
1574 	error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->cap);
1575 	if (error)
1576 		goto out_cleanup_queue;
1577 
1578 	ctrl->ctrl.max_hw_sectors =
1579 		(ctrl->max_fr_pages - 1) << (PAGE_SHIFT - 9);
1580 
1581 	error = nvme_init_identify(&ctrl->ctrl);
1582 	if (error)
1583 		goto out_cleanup_queue;
1584 
1585 	error = nvme_rdma_alloc_qe(ctrl->queues[0].device->dev,
1586 			&ctrl->async_event_sqe, sizeof(struct nvme_command),
1587 			DMA_TO_DEVICE);
1588 	if (error)
1589 		goto out_cleanup_queue;
1590 
1591 	nvme_start_keep_alive(&ctrl->ctrl);
1592 
1593 	return 0;
1594 
1595 out_cleanup_queue:
1596 	blk_cleanup_queue(ctrl->ctrl.admin_q);
1597 out_free_tagset:
1598 	/* disconnect and drain the queue before freeing the tagset */
1599 	nvme_rdma_stop_queue(&ctrl->queues[0]);
1600 	blk_mq_free_tag_set(&ctrl->admin_tag_set);
1601 out_put_dev:
1602 	nvme_rdma_dev_put(ctrl->device);
1603 out_free_queue:
1604 	nvme_rdma_free_queue(&ctrl->queues[0]);
1605 	return error;
1606 }
1607 
1608 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl)
1609 {
1610 	nvme_stop_keep_alive(&ctrl->ctrl);
1611 	cancel_work_sync(&ctrl->err_work);
1612 	cancel_delayed_work_sync(&ctrl->reconnect_work);
1613 
1614 	if (ctrl->queue_count > 1) {
1615 		nvme_stop_queues(&ctrl->ctrl);
1616 		blk_mq_tagset_busy_iter(&ctrl->tag_set,
1617 					nvme_cancel_request, &ctrl->ctrl);
1618 		nvme_rdma_free_io_queues(ctrl);
1619 	}
1620 
1621 	if (test_bit(NVME_RDMA_Q_CONNECTED, &ctrl->queues[0].flags))
1622 		nvme_shutdown_ctrl(&ctrl->ctrl);
1623 
1624 	blk_mq_stop_hw_queues(ctrl->ctrl.admin_q);
1625 	blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
1626 				nvme_cancel_request, &ctrl->ctrl);
1627 	nvme_rdma_destroy_admin_queue(ctrl);
1628 }
1629 
1630 static void __nvme_rdma_remove_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
1631 {
1632 	nvme_uninit_ctrl(&ctrl->ctrl);
1633 	if (shutdown)
1634 		nvme_rdma_shutdown_ctrl(ctrl);
1635 
1636 	if (ctrl->ctrl.tagset) {
1637 		blk_cleanup_queue(ctrl->ctrl.connect_q);
1638 		blk_mq_free_tag_set(&ctrl->tag_set);
1639 		nvme_rdma_dev_put(ctrl->device);
1640 	}
1641 
1642 	nvme_put_ctrl(&ctrl->ctrl);
1643 }
1644 
1645 static void nvme_rdma_del_ctrl_work(struct work_struct *work)
1646 {
1647 	struct nvme_rdma_ctrl *ctrl = container_of(work,
1648 				struct nvme_rdma_ctrl, delete_work);
1649 
1650 	__nvme_rdma_remove_ctrl(ctrl, true);
1651 }
1652 
1653 static int __nvme_rdma_del_ctrl(struct nvme_rdma_ctrl *ctrl)
1654 {
1655 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING))
1656 		return -EBUSY;
1657 
1658 	if (!queue_work(nvme_rdma_wq, &ctrl->delete_work))
1659 		return -EBUSY;
1660 
1661 	return 0;
1662 }
1663 
1664 static int nvme_rdma_del_ctrl(struct nvme_ctrl *nctrl)
1665 {
1666 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
1667 	int ret = 0;
1668 
1669 	/*
1670 	 * Keep a reference until all work is flushed since
1671 	 * __nvme_rdma_del_ctrl can free the ctrl mem
1672 	 */
1673 	if (!kref_get_unless_zero(&ctrl->ctrl.kref))
1674 		return -EBUSY;
1675 	ret = __nvme_rdma_del_ctrl(ctrl);
1676 	if (!ret)
1677 		flush_work(&ctrl->delete_work);
1678 	nvme_put_ctrl(&ctrl->ctrl);
1679 	return ret;
1680 }
1681 
1682 static void nvme_rdma_remove_ctrl_work(struct work_struct *work)
1683 {
1684 	struct nvme_rdma_ctrl *ctrl = container_of(work,
1685 				struct nvme_rdma_ctrl, delete_work);
1686 
1687 	__nvme_rdma_remove_ctrl(ctrl, false);
1688 }
1689 
1690 static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
1691 {
1692 	struct nvme_rdma_ctrl *ctrl = container_of(work,
1693 					struct nvme_rdma_ctrl, reset_work);
1694 	int ret;
1695 	bool changed;
1696 
1697 	nvme_rdma_shutdown_ctrl(ctrl);
1698 
1699 	ret = nvme_rdma_configure_admin_queue(ctrl);
1700 	if (ret) {
1701 		/* ctrl is already shutdown, just remove the ctrl */
1702 		INIT_WORK(&ctrl->delete_work, nvme_rdma_remove_ctrl_work);
1703 		goto del_dead_ctrl;
1704 	}
1705 
1706 	if (ctrl->queue_count > 1) {
1707 		ret = blk_mq_reinit_tagset(&ctrl->tag_set);
1708 		if (ret)
1709 			goto del_dead_ctrl;
1710 
1711 		ret = nvme_rdma_init_io_queues(ctrl);
1712 		if (ret)
1713 			goto del_dead_ctrl;
1714 
1715 		ret = nvme_rdma_connect_io_queues(ctrl);
1716 		if (ret)
1717 			goto del_dead_ctrl;
1718 	}
1719 
1720 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1721 	WARN_ON_ONCE(!changed);
1722 
1723 	if (ctrl->queue_count > 1) {
1724 		nvme_start_queues(&ctrl->ctrl);
1725 		nvme_queue_scan(&ctrl->ctrl);
1726 		nvme_queue_async_events(&ctrl->ctrl);
1727 	}
1728 
1729 	return;
1730 
1731 del_dead_ctrl:
1732 	/* Deleting this dead controller... */
1733 	dev_warn(ctrl->ctrl.device, "Removing after reset failure\n");
1734 	WARN_ON(!queue_work(nvme_rdma_wq, &ctrl->delete_work));
1735 }
1736 
1737 static int nvme_rdma_reset_ctrl(struct nvme_ctrl *nctrl)
1738 {
1739 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
1740 
1741 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
1742 		return -EBUSY;
1743 
1744 	if (!queue_work(nvme_rdma_wq, &ctrl->reset_work))
1745 		return -EBUSY;
1746 
1747 	flush_work(&ctrl->reset_work);
1748 
1749 	return 0;
1750 }
1751 
1752 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
1753 	.name			= "rdma",
1754 	.module			= THIS_MODULE,
1755 	.is_fabrics		= true,
1756 	.reg_read32		= nvmf_reg_read32,
1757 	.reg_read64		= nvmf_reg_read64,
1758 	.reg_write32		= nvmf_reg_write32,
1759 	.reset_ctrl		= nvme_rdma_reset_ctrl,
1760 	.free_ctrl		= nvme_rdma_free_ctrl,
1761 	.submit_async_event	= nvme_rdma_submit_async_event,
1762 	.delete_ctrl		= nvme_rdma_del_ctrl,
1763 	.get_subsysnqn		= nvmf_get_subsysnqn,
1764 	.get_address		= nvmf_get_address,
1765 };
1766 
1767 static int nvme_rdma_create_io_queues(struct nvme_rdma_ctrl *ctrl)
1768 {
1769 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
1770 	int ret;
1771 
1772 	ret = nvme_set_queue_count(&ctrl->ctrl, &opts->nr_io_queues);
1773 	if (ret)
1774 		return ret;
1775 
1776 	ctrl->queue_count = opts->nr_io_queues + 1;
1777 	if (ctrl->queue_count < 2)
1778 		return 0;
1779 
1780 	dev_info(ctrl->ctrl.device,
1781 		"creating %d I/O queues.\n", opts->nr_io_queues);
1782 
1783 	ret = nvme_rdma_init_io_queues(ctrl);
1784 	if (ret)
1785 		return ret;
1786 
1787 	/*
1788 	 * We need a reference on the device as long as the tag_set is alive,
1789 	 * as the MRs in the request structures need a valid ib_device.
1790 	 */
1791 	ret = -EINVAL;
1792 	if (!nvme_rdma_dev_get(ctrl->device))
1793 		goto out_free_io_queues;
1794 
1795 	memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set));
1796 	ctrl->tag_set.ops = &nvme_rdma_mq_ops;
1797 	ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size;
1798 	ctrl->tag_set.reserved_tags = 1; /* fabric connect */
1799 	ctrl->tag_set.numa_node = NUMA_NO_NODE;
1800 	ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
1801 	ctrl->tag_set.cmd_size = sizeof(struct nvme_rdma_request) +
1802 		SG_CHUNK_SIZE * sizeof(struct scatterlist);
1803 	ctrl->tag_set.driver_data = ctrl;
1804 	ctrl->tag_set.nr_hw_queues = ctrl->queue_count - 1;
1805 	ctrl->tag_set.timeout = NVME_IO_TIMEOUT;
1806 
1807 	ret = blk_mq_alloc_tag_set(&ctrl->tag_set);
1808 	if (ret)
1809 		goto out_put_dev;
1810 	ctrl->ctrl.tagset = &ctrl->tag_set;
1811 
1812 	ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
1813 	if (IS_ERR(ctrl->ctrl.connect_q)) {
1814 		ret = PTR_ERR(ctrl->ctrl.connect_q);
1815 		goto out_free_tag_set;
1816 	}
1817 
1818 	ret = nvme_rdma_connect_io_queues(ctrl);
1819 	if (ret)
1820 		goto out_cleanup_connect_q;
1821 
1822 	return 0;
1823 
1824 out_cleanup_connect_q:
1825 	blk_cleanup_queue(ctrl->ctrl.connect_q);
1826 out_free_tag_set:
1827 	blk_mq_free_tag_set(&ctrl->tag_set);
1828 out_put_dev:
1829 	nvme_rdma_dev_put(ctrl->device);
1830 out_free_io_queues:
1831 	nvme_rdma_free_io_queues(ctrl);
1832 	return ret;
1833 }
1834 
1835 static int nvme_rdma_parse_ipaddr(struct sockaddr_in *in_addr, char *p)
1836 {
1837 	u8 *addr = (u8 *)&in_addr->sin_addr.s_addr;
1838 	size_t buflen = strlen(p);
1839 
1840 	/* XXX: handle IPv6 addresses */
1841 
1842 	if (buflen > INET_ADDRSTRLEN)
1843 		return -EINVAL;
1844 	if (in4_pton(p, buflen, addr, '\0', NULL) == 0)
1845 		return -EINVAL;
1846 	in_addr->sin_family = AF_INET;
1847 	return 0;
1848 }
1849 
1850 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
1851 		struct nvmf_ctrl_options *opts)
1852 {
1853 	struct nvme_rdma_ctrl *ctrl;
1854 	int ret;
1855 	bool changed;
1856 
1857 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1858 	if (!ctrl)
1859 		return ERR_PTR(-ENOMEM);
1860 	ctrl->ctrl.opts = opts;
1861 	INIT_LIST_HEAD(&ctrl->list);
1862 
1863 	ret = nvme_rdma_parse_ipaddr(&ctrl->addr_in, opts->traddr);
1864 	if (ret) {
1865 		pr_err("malformed IP address passed: %s\n", opts->traddr);
1866 		goto out_free_ctrl;
1867 	}
1868 
1869 	if (opts->mask & NVMF_OPT_TRSVCID) {
1870 		u16 port;
1871 
1872 		ret = kstrtou16(opts->trsvcid, 0, &port);
1873 		if (ret)
1874 			goto out_free_ctrl;
1875 
1876 		ctrl->addr_in.sin_port = cpu_to_be16(port);
1877 	} else {
1878 		ctrl->addr_in.sin_port = cpu_to_be16(NVME_RDMA_IP_PORT);
1879 	}
1880 
1881 	ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
1882 				0 /* no quirks, we're perfect! */);
1883 	if (ret)
1884 		goto out_free_ctrl;
1885 
1886 	ctrl->reconnect_delay = opts->reconnect_delay;
1887 	INIT_DELAYED_WORK(&ctrl->reconnect_work,
1888 			nvme_rdma_reconnect_ctrl_work);
1889 	INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
1890 	INIT_WORK(&ctrl->delete_work, nvme_rdma_del_ctrl_work);
1891 	INIT_WORK(&ctrl->reset_work, nvme_rdma_reset_ctrl_work);
1892 	spin_lock_init(&ctrl->lock);
1893 
1894 	ctrl->queue_count = opts->nr_io_queues + 1; /* +1 for admin queue */
1895 	ctrl->ctrl.sqsize = opts->queue_size - 1;
1896 	ctrl->ctrl.kato = opts->kato;
1897 
1898 	ret = -ENOMEM;
1899 	ctrl->queues = kcalloc(ctrl->queue_count, sizeof(*ctrl->queues),
1900 				GFP_KERNEL);
1901 	if (!ctrl->queues)
1902 		goto out_uninit_ctrl;
1903 
1904 	ret = nvme_rdma_configure_admin_queue(ctrl);
1905 	if (ret)
1906 		goto out_kfree_queues;
1907 
1908 	/* sanity check icdoff */
1909 	if (ctrl->ctrl.icdoff) {
1910 		dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
1911 		goto out_remove_admin_queue;
1912 	}
1913 
1914 	/* sanity check keyed sgls */
1915 	if (!(ctrl->ctrl.sgls & (1 << 20))) {
1916 		dev_err(ctrl->ctrl.device, "Mandatory keyed sgls are not support\n");
1917 		goto out_remove_admin_queue;
1918 	}
1919 
1920 	if (opts->queue_size > ctrl->ctrl.maxcmd) {
1921 		/* warn if maxcmd is lower than queue_size */
1922 		dev_warn(ctrl->ctrl.device,
1923 			"queue_size %zu > ctrl maxcmd %u, clamping down\n",
1924 			opts->queue_size, ctrl->ctrl.maxcmd);
1925 		opts->queue_size = ctrl->ctrl.maxcmd;
1926 	}
1927 
1928 	if (opts->nr_io_queues) {
1929 		ret = nvme_rdma_create_io_queues(ctrl);
1930 		if (ret)
1931 			goto out_remove_admin_queue;
1932 	}
1933 
1934 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1935 	WARN_ON_ONCE(!changed);
1936 
1937 	dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n",
1938 		ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
1939 
1940 	kref_get(&ctrl->ctrl.kref);
1941 
1942 	mutex_lock(&nvme_rdma_ctrl_mutex);
1943 	list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
1944 	mutex_unlock(&nvme_rdma_ctrl_mutex);
1945 
1946 	if (opts->nr_io_queues) {
1947 		nvme_queue_scan(&ctrl->ctrl);
1948 		nvme_queue_async_events(&ctrl->ctrl);
1949 	}
1950 
1951 	return &ctrl->ctrl;
1952 
1953 out_remove_admin_queue:
1954 	nvme_stop_keep_alive(&ctrl->ctrl);
1955 	nvme_rdma_destroy_admin_queue(ctrl);
1956 out_kfree_queues:
1957 	kfree(ctrl->queues);
1958 out_uninit_ctrl:
1959 	nvme_uninit_ctrl(&ctrl->ctrl);
1960 	nvme_put_ctrl(&ctrl->ctrl);
1961 	if (ret > 0)
1962 		ret = -EIO;
1963 	return ERR_PTR(ret);
1964 out_free_ctrl:
1965 	kfree(ctrl);
1966 	return ERR_PTR(ret);
1967 }
1968 
1969 static struct nvmf_transport_ops nvme_rdma_transport = {
1970 	.name		= "rdma",
1971 	.required_opts	= NVMF_OPT_TRADDR,
1972 	.allowed_opts	= NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY,
1973 	.create_ctrl	= nvme_rdma_create_ctrl,
1974 };
1975 
1976 static void nvme_rdma_add_one(struct ib_device *ib_device)
1977 {
1978 }
1979 
1980 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
1981 {
1982 	struct nvme_rdma_ctrl *ctrl;
1983 
1984 	/* Delete all controllers using this device */
1985 	mutex_lock(&nvme_rdma_ctrl_mutex);
1986 	list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
1987 		if (ctrl->device->dev != ib_device)
1988 			continue;
1989 		dev_info(ctrl->ctrl.device,
1990 			"Removing ctrl: NQN \"%s\", addr %pISp\n",
1991 			ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
1992 		__nvme_rdma_del_ctrl(ctrl);
1993 	}
1994 	mutex_unlock(&nvme_rdma_ctrl_mutex);
1995 
1996 	flush_workqueue(nvme_rdma_wq);
1997 }
1998 
1999 static struct ib_client nvme_rdma_ib_client = {
2000 	.name   = "nvme_rdma",
2001 	.add = nvme_rdma_add_one,
2002 	.remove = nvme_rdma_remove_one
2003 };
2004 
2005 static int __init nvme_rdma_init_module(void)
2006 {
2007 	int ret;
2008 
2009 	nvme_rdma_wq = create_workqueue("nvme_rdma_wq");
2010 	if (!nvme_rdma_wq)
2011 		return -ENOMEM;
2012 
2013 	ret = ib_register_client(&nvme_rdma_ib_client);
2014 	if (ret) {
2015 		destroy_workqueue(nvme_rdma_wq);
2016 		return ret;
2017 	}
2018 
2019 	nvmf_register_transport(&nvme_rdma_transport);
2020 	return 0;
2021 }
2022 
2023 static void __exit nvme_rdma_cleanup_module(void)
2024 {
2025 	nvmf_unregister_transport(&nvme_rdma_transport);
2026 	ib_unregister_client(&nvme_rdma_ib_client);
2027 	destroy_workqueue(nvme_rdma_wq);
2028 }
2029 
2030 module_init(nvme_rdma_init_module);
2031 module_exit(nvme_rdma_cleanup_module);
2032 
2033 MODULE_LICENSE("GPL v2");
2034