1 /* 2 * NVMe over Fabrics RDMA host code. 3 * Copyright (c) 2015-2016 HGST, a Western Digital Company. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 */ 14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 15 #include <linux/module.h> 16 #include <linux/init.h> 17 #include <linux/slab.h> 18 #include <linux/err.h> 19 #include <linux/string.h> 20 #include <linux/atomic.h> 21 #include <linux/blk-mq.h> 22 #include <linux/types.h> 23 #include <linux/list.h> 24 #include <linux/mutex.h> 25 #include <linux/scatterlist.h> 26 #include <linux/nvme.h> 27 #include <asm/unaligned.h> 28 29 #include <rdma/ib_verbs.h> 30 #include <rdma/rdma_cm.h> 31 #include <rdma/ib_cm.h> 32 #include <linux/nvme-rdma.h> 33 34 #include "nvme.h" 35 #include "fabrics.h" 36 37 38 #define NVME_RDMA_CONNECT_TIMEOUT_MS 1000 /* 1 second */ 39 40 #define NVME_RDMA_MAX_SEGMENT_SIZE 0xffffff /* 24-bit SGL field */ 41 42 #define NVME_RDMA_MAX_SEGMENTS 256 43 44 #define NVME_RDMA_MAX_INLINE_SEGMENTS 1 45 46 /* 47 * We handle AEN commands ourselves and don't even let the 48 * block layer know about them. 49 */ 50 #define NVME_RDMA_NR_AEN_COMMANDS 1 51 #define NVME_RDMA_AQ_BLKMQ_DEPTH \ 52 (NVMF_AQ_DEPTH - NVME_RDMA_NR_AEN_COMMANDS) 53 54 struct nvme_rdma_device { 55 struct ib_device *dev; 56 struct ib_pd *pd; 57 struct ib_mr *mr; 58 struct kref ref; 59 struct list_head entry; 60 }; 61 62 struct nvme_rdma_qe { 63 struct ib_cqe cqe; 64 void *data; 65 u64 dma; 66 }; 67 68 struct nvme_rdma_queue; 69 struct nvme_rdma_request { 70 struct ib_mr *mr; 71 struct nvme_rdma_qe sqe; 72 struct ib_sge sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS]; 73 u32 num_sge; 74 int nents; 75 bool inline_data; 76 struct ib_reg_wr reg_wr; 77 struct ib_cqe reg_cqe; 78 struct nvme_rdma_queue *queue; 79 struct sg_table sg_table; 80 struct scatterlist first_sgl[]; 81 }; 82 83 enum nvme_rdma_queue_flags { 84 NVME_RDMA_Q_CONNECTED = (1 << 0), 85 NVME_RDMA_IB_QUEUE_ALLOCATED = (1 << 1), 86 NVME_RDMA_Q_DELETING = (1 << 2), 87 }; 88 89 struct nvme_rdma_queue { 90 struct nvme_rdma_qe *rsp_ring; 91 u8 sig_count; 92 int queue_size; 93 size_t cmnd_capsule_len; 94 struct nvme_rdma_ctrl *ctrl; 95 struct nvme_rdma_device *device; 96 struct ib_cq *ib_cq; 97 struct ib_qp *qp; 98 99 unsigned long flags; 100 struct rdma_cm_id *cm_id; 101 int cm_error; 102 struct completion cm_done; 103 }; 104 105 struct nvme_rdma_ctrl { 106 /* read and written in the hot path */ 107 spinlock_t lock; 108 109 /* read only in the hot path */ 110 struct nvme_rdma_queue *queues; 111 u32 queue_count; 112 113 /* other member variables */ 114 struct blk_mq_tag_set tag_set; 115 struct work_struct delete_work; 116 struct work_struct reset_work; 117 struct work_struct err_work; 118 119 struct nvme_rdma_qe async_event_sqe; 120 121 int reconnect_delay; 122 struct delayed_work reconnect_work; 123 124 struct list_head list; 125 126 struct blk_mq_tag_set admin_tag_set; 127 struct nvme_rdma_device *device; 128 129 u64 cap; 130 u32 max_fr_pages; 131 132 union { 133 struct sockaddr addr; 134 struct sockaddr_in addr_in; 135 }; 136 137 struct nvme_ctrl ctrl; 138 }; 139 140 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl) 141 { 142 return container_of(ctrl, struct nvme_rdma_ctrl, ctrl); 143 } 144 145 static LIST_HEAD(device_list); 146 static DEFINE_MUTEX(device_list_mutex); 147 148 static LIST_HEAD(nvme_rdma_ctrl_list); 149 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex); 150 151 static struct workqueue_struct *nvme_rdma_wq; 152 153 /* 154 * Disabling this option makes small I/O goes faster, but is fundamentally 155 * unsafe. With it turned off we will have to register a global rkey that 156 * allows read and write access to all physical memory. 157 */ 158 static bool register_always = true; 159 module_param(register_always, bool, 0444); 160 MODULE_PARM_DESC(register_always, 161 "Use memory registration even for contiguous memory regions"); 162 163 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id, 164 struct rdma_cm_event *event); 165 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc); 166 167 /* XXX: really should move to a generic header sooner or later.. */ 168 static inline void put_unaligned_le24(u32 val, u8 *p) 169 { 170 *p++ = val; 171 *p++ = val >> 8; 172 *p++ = val >> 16; 173 } 174 175 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue) 176 { 177 return queue - queue->ctrl->queues; 178 } 179 180 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue) 181 { 182 return queue->cmnd_capsule_len - sizeof(struct nvme_command); 183 } 184 185 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe, 186 size_t capsule_size, enum dma_data_direction dir) 187 { 188 ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir); 189 kfree(qe->data); 190 } 191 192 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe, 193 size_t capsule_size, enum dma_data_direction dir) 194 { 195 qe->data = kzalloc(capsule_size, GFP_KERNEL); 196 if (!qe->data) 197 return -ENOMEM; 198 199 qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir); 200 if (ib_dma_mapping_error(ibdev, qe->dma)) { 201 kfree(qe->data); 202 return -ENOMEM; 203 } 204 205 return 0; 206 } 207 208 static void nvme_rdma_free_ring(struct ib_device *ibdev, 209 struct nvme_rdma_qe *ring, size_t ib_queue_size, 210 size_t capsule_size, enum dma_data_direction dir) 211 { 212 int i; 213 214 for (i = 0; i < ib_queue_size; i++) 215 nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir); 216 kfree(ring); 217 } 218 219 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev, 220 size_t ib_queue_size, size_t capsule_size, 221 enum dma_data_direction dir) 222 { 223 struct nvme_rdma_qe *ring; 224 int i; 225 226 ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL); 227 if (!ring) 228 return NULL; 229 230 for (i = 0; i < ib_queue_size; i++) { 231 if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir)) 232 goto out_free_ring; 233 } 234 235 return ring; 236 237 out_free_ring: 238 nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir); 239 return NULL; 240 } 241 242 static void nvme_rdma_qp_event(struct ib_event *event, void *context) 243 { 244 pr_debug("QP event %d\n", event->event); 245 } 246 247 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue) 248 { 249 wait_for_completion_interruptible_timeout(&queue->cm_done, 250 msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1); 251 return queue->cm_error; 252 } 253 254 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor) 255 { 256 struct nvme_rdma_device *dev = queue->device; 257 struct ib_qp_init_attr init_attr; 258 int ret; 259 260 memset(&init_attr, 0, sizeof(init_attr)); 261 init_attr.event_handler = nvme_rdma_qp_event; 262 /* +1 for drain */ 263 init_attr.cap.max_send_wr = factor * queue->queue_size + 1; 264 /* +1 for drain */ 265 init_attr.cap.max_recv_wr = queue->queue_size + 1; 266 init_attr.cap.max_recv_sge = 1; 267 init_attr.cap.max_send_sge = 1 + NVME_RDMA_MAX_INLINE_SEGMENTS; 268 init_attr.sq_sig_type = IB_SIGNAL_REQ_WR; 269 init_attr.qp_type = IB_QPT_RC; 270 init_attr.send_cq = queue->ib_cq; 271 init_attr.recv_cq = queue->ib_cq; 272 273 ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr); 274 275 queue->qp = queue->cm_id->qp; 276 return ret; 277 } 278 279 static int nvme_rdma_reinit_request(void *data, struct request *rq) 280 { 281 struct nvme_rdma_ctrl *ctrl = data; 282 struct nvme_rdma_device *dev = ctrl->device; 283 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 284 int ret = 0; 285 286 if (!req->mr->need_inval) 287 goto out; 288 289 ib_dereg_mr(req->mr); 290 291 req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG, 292 ctrl->max_fr_pages); 293 if (IS_ERR(req->mr)) { 294 ret = PTR_ERR(req->mr); 295 req->mr = NULL; 296 goto out; 297 } 298 299 req->mr->need_inval = false; 300 301 out: 302 return ret; 303 } 304 305 static void __nvme_rdma_exit_request(struct nvme_rdma_ctrl *ctrl, 306 struct request *rq, unsigned int queue_idx) 307 { 308 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 309 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx]; 310 struct nvme_rdma_device *dev = queue->device; 311 312 if (req->mr) 313 ib_dereg_mr(req->mr); 314 315 nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command), 316 DMA_TO_DEVICE); 317 } 318 319 static void nvme_rdma_exit_request(void *data, struct request *rq, 320 unsigned int hctx_idx, unsigned int rq_idx) 321 { 322 return __nvme_rdma_exit_request(data, rq, hctx_idx + 1); 323 } 324 325 static void nvme_rdma_exit_admin_request(void *data, struct request *rq, 326 unsigned int hctx_idx, unsigned int rq_idx) 327 { 328 return __nvme_rdma_exit_request(data, rq, 0); 329 } 330 331 static int __nvme_rdma_init_request(struct nvme_rdma_ctrl *ctrl, 332 struct request *rq, unsigned int queue_idx) 333 { 334 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 335 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx]; 336 struct nvme_rdma_device *dev = queue->device; 337 struct ib_device *ibdev = dev->dev; 338 int ret; 339 340 BUG_ON(queue_idx >= ctrl->queue_count); 341 342 ret = nvme_rdma_alloc_qe(ibdev, &req->sqe, sizeof(struct nvme_command), 343 DMA_TO_DEVICE); 344 if (ret) 345 return ret; 346 347 req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG, 348 ctrl->max_fr_pages); 349 if (IS_ERR(req->mr)) { 350 ret = PTR_ERR(req->mr); 351 goto out_free_qe; 352 } 353 354 req->queue = queue; 355 356 return 0; 357 358 out_free_qe: 359 nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command), 360 DMA_TO_DEVICE); 361 return -ENOMEM; 362 } 363 364 static int nvme_rdma_init_request(void *data, struct request *rq, 365 unsigned int hctx_idx, unsigned int rq_idx, 366 unsigned int numa_node) 367 { 368 return __nvme_rdma_init_request(data, rq, hctx_idx + 1); 369 } 370 371 static int nvme_rdma_init_admin_request(void *data, struct request *rq, 372 unsigned int hctx_idx, unsigned int rq_idx, 373 unsigned int numa_node) 374 { 375 return __nvme_rdma_init_request(data, rq, 0); 376 } 377 378 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 379 unsigned int hctx_idx) 380 { 381 struct nvme_rdma_ctrl *ctrl = data; 382 struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1]; 383 384 BUG_ON(hctx_idx >= ctrl->queue_count); 385 386 hctx->driver_data = queue; 387 return 0; 388 } 389 390 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, 391 unsigned int hctx_idx) 392 { 393 struct nvme_rdma_ctrl *ctrl = data; 394 struct nvme_rdma_queue *queue = &ctrl->queues[0]; 395 396 BUG_ON(hctx_idx != 0); 397 398 hctx->driver_data = queue; 399 return 0; 400 } 401 402 static void nvme_rdma_free_dev(struct kref *ref) 403 { 404 struct nvme_rdma_device *ndev = 405 container_of(ref, struct nvme_rdma_device, ref); 406 407 mutex_lock(&device_list_mutex); 408 list_del(&ndev->entry); 409 mutex_unlock(&device_list_mutex); 410 411 if (!register_always) 412 ib_dereg_mr(ndev->mr); 413 ib_dealloc_pd(ndev->pd); 414 415 kfree(ndev); 416 } 417 418 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev) 419 { 420 kref_put(&dev->ref, nvme_rdma_free_dev); 421 } 422 423 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev) 424 { 425 return kref_get_unless_zero(&dev->ref); 426 } 427 428 static struct nvme_rdma_device * 429 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id) 430 { 431 struct nvme_rdma_device *ndev; 432 433 mutex_lock(&device_list_mutex); 434 list_for_each_entry(ndev, &device_list, entry) { 435 if (ndev->dev->node_guid == cm_id->device->node_guid && 436 nvme_rdma_dev_get(ndev)) 437 goto out_unlock; 438 } 439 440 ndev = kzalloc(sizeof(*ndev), GFP_KERNEL); 441 if (!ndev) 442 goto out_err; 443 444 ndev->dev = cm_id->device; 445 kref_init(&ndev->ref); 446 447 ndev->pd = ib_alloc_pd(ndev->dev); 448 if (IS_ERR(ndev->pd)) 449 goto out_free_dev; 450 451 if (!register_always) { 452 ndev->mr = ib_get_dma_mr(ndev->pd, 453 IB_ACCESS_LOCAL_WRITE | 454 IB_ACCESS_REMOTE_READ | 455 IB_ACCESS_REMOTE_WRITE); 456 if (IS_ERR(ndev->mr)) 457 goto out_free_pd; 458 } 459 460 if (!(ndev->dev->attrs.device_cap_flags & 461 IB_DEVICE_MEM_MGT_EXTENSIONS)) { 462 dev_err(&ndev->dev->dev, 463 "Memory registrations not supported.\n"); 464 goto out_free_mr; 465 } 466 467 list_add(&ndev->entry, &device_list); 468 out_unlock: 469 mutex_unlock(&device_list_mutex); 470 return ndev; 471 472 out_free_mr: 473 if (!register_always) 474 ib_dereg_mr(ndev->mr); 475 out_free_pd: 476 ib_dealloc_pd(ndev->pd); 477 out_free_dev: 478 kfree(ndev); 479 out_err: 480 mutex_unlock(&device_list_mutex); 481 return NULL; 482 } 483 484 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue) 485 { 486 struct nvme_rdma_device *dev; 487 struct ib_device *ibdev; 488 489 if (!test_and_clear_bit(NVME_RDMA_IB_QUEUE_ALLOCATED, &queue->flags)) 490 return; 491 492 dev = queue->device; 493 ibdev = dev->dev; 494 rdma_destroy_qp(queue->cm_id); 495 ib_free_cq(queue->ib_cq); 496 497 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size, 498 sizeof(struct nvme_completion), DMA_FROM_DEVICE); 499 500 nvme_rdma_dev_put(dev); 501 } 502 503 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue, 504 struct nvme_rdma_device *dev) 505 { 506 struct ib_device *ibdev = dev->dev; 507 const int send_wr_factor = 3; /* MR, SEND, INV */ 508 const int cq_factor = send_wr_factor + 1; /* + RECV */ 509 int comp_vector, idx = nvme_rdma_queue_idx(queue); 510 511 int ret; 512 513 queue->device = dev; 514 515 /* 516 * The admin queue is barely used once the controller is live, so don't 517 * bother to spread it out. 518 */ 519 if (idx == 0) 520 comp_vector = 0; 521 else 522 comp_vector = idx % ibdev->num_comp_vectors; 523 524 525 /* +1 for ib_stop_cq */ 526 queue->ib_cq = ib_alloc_cq(dev->dev, queue, 527 cq_factor * queue->queue_size + 1, comp_vector, 528 IB_POLL_SOFTIRQ); 529 if (IS_ERR(queue->ib_cq)) { 530 ret = PTR_ERR(queue->ib_cq); 531 goto out; 532 } 533 534 ret = nvme_rdma_create_qp(queue, send_wr_factor); 535 if (ret) 536 goto out_destroy_ib_cq; 537 538 queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size, 539 sizeof(struct nvme_completion), DMA_FROM_DEVICE); 540 if (!queue->rsp_ring) { 541 ret = -ENOMEM; 542 goto out_destroy_qp; 543 } 544 set_bit(NVME_RDMA_IB_QUEUE_ALLOCATED, &queue->flags); 545 546 return 0; 547 548 out_destroy_qp: 549 ib_destroy_qp(queue->qp); 550 out_destroy_ib_cq: 551 ib_free_cq(queue->ib_cq); 552 out: 553 return ret; 554 } 555 556 static int nvme_rdma_init_queue(struct nvme_rdma_ctrl *ctrl, 557 int idx, size_t queue_size) 558 { 559 struct nvme_rdma_queue *queue; 560 int ret; 561 562 queue = &ctrl->queues[idx]; 563 queue->ctrl = ctrl; 564 init_completion(&queue->cm_done); 565 566 if (idx > 0) 567 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16; 568 else 569 queue->cmnd_capsule_len = sizeof(struct nvme_command); 570 571 queue->queue_size = queue_size; 572 573 queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue, 574 RDMA_PS_TCP, IB_QPT_RC); 575 if (IS_ERR(queue->cm_id)) { 576 dev_info(ctrl->ctrl.device, 577 "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id)); 578 return PTR_ERR(queue->cm_id); 579 } 580 581 queue->cm_error = -ETIMEDOUT; 582 ret = rdma_resolve_addr(queue->cm_id, NULL, &ctrl->addr, 583 NVME_RDMA_CONNECT_TIMEOUT_MS); 584 if (ret) { 585 dev_info(ctrl->ctrl.device, 586 "rdma_resolve_addr failed (%d).\n", ret); 587 goto out_destroy_cm_id; 588 } 589 590 ret = nvme_rdma_wait_for_cm(queue); 591 if (ret) { 592 dev_info(ctrl->ctrl.device, 593 "rdma_resolve_addr wait failed (%d).\n", ret); 594 goto out_destroy_cm_id; 595 } 596 597 clear_bit(NVME_RDMA_Q_DELETING, &queue->flags); 598 set_bit(NVME_RDMA_Q_CONNECTED, &queue->flags); 599 600 return 0; 601 602 out_destroy_cm_id: 603 nvme_rdma_destroy_queue_ib(queue); 604 rdma_destroy_id(queue->cm_id); 605 return ret; 606 } 607 608 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue) 609 { 610 rdma_disconnect(queue->cm_id); 611 ib_drain_qp(queue->qp); 612 } 613 614 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue) 615 { 616 nvme_rdma_destroy_queue_ib(queue); 617 rdma_destroy_id(queue->cm_id); 618 } 619 620 static void nvme_rdma_stop_and_free_queue(struct nvme_rdma_queue *queue) 621 { 622 if (test_and_set_bit(NVME_RDMA_Q_DELETING, &queue->flags)) 623 return; 624 nvme_rdma_stop_queue(queue); 625 nvme_rdma_free_queue(queue); 626 } 627 628 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl) 629 { 630 int i; 631 632 for (i = 1; i < ctrl->queue_count; i++) 633 nvme_rdma_stop_and_free_queue(&ctrl->queues[i]); 634 } 635 636 static int nvme_rdma_connect_io_queues(struct nvme_rdma_ctrl *ctrl) 637 { 638 int i, ret = 0; 639 640 for (i = 1; i < ctrl->queue_count; i++) { 641 ret = nvmf_connect_io_queue(&ctrl->ctrl, i); 642 if (ret) 643 break; 644 } 645 646 return ret; 647 } 648 649 static int nvme_rdma_init_io_queues(struct nvme_rdma_ctrl *ctrl) 650 { 651 int i, ret; 652 653 for (i = 1; i < ctrl->queue_count; i++) { 654 ret = nvme_rdma_init_queue(ctrl, i, 655 ctrl->ctrl.opts->queue_size); 656 if (ret) { 657 dev_info(ctrl->ctrl.device, 658 "failed to initialize i/o queue: %d\n", ret); 659 goto out_free_queues; 660 } 661 } 662 663 return 0; 664 665 out_free_queues: 666 for (i--; i >= 1; i--) 667 nvme_rdma_stop_and_free_queue(&ctrl->queues[i]); 668 669 return ret; 670 } 671 672 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl) 673 { 674 nvme_rdma_free_qe(ctrl->queues[0].device->dev, &ctrl->async_event_sqe, 675 sizeof(struct nvme_command), DMA_TO_DEVICE); 676 nvme_rdma_stop_and_free_queue(&ctrl->queues[0]); 677 blk_cleanup_queue(ctrl->ctrl.admin_q); 678 blk_mq_free_tag_set(&ctrl->admin_tag_set); 679 nvme_rdma_dev_put(ctrl->device); 680 } 681 682 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl) 683 { 684 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 685 686 if (list_empty(&ctrl->list)) 687 goto free_ctrl; 688 689 mutex_lock(&nvme_rdma_ctrl_mutex); 690 list_del(&ctrl->list); 691 mutex_unlock(&nvme_rdma_ctrl_mutex); 692 693 kfree(ctrl->queues); 694 nvmf_free_options(nctrl->opts); 695 free_ctrl: 696 kfree(ctrl); 697 } 698 699 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work) 700 { 701 struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work), 702 struct nvme_rdma_ctrl, reconnect_work); 703 bool changed; 704 int ret; 705 706 if (ctrl->queue_count > 1) { 707 nvme_rdma_free_io_queues(ctrl); 708 709 ret = blk_mq_reinit_tagset(&ctrl->tag_set); 710 if (ret) 711 goto requeue; 712 } 713 714 nvme_rdma_stop_and_free_queue(&ctrl->queues[0]); 715 716 ret = blk_mq_reinit_tagset(&ctrl->admin_tag_set); 717 if (ret) 718 goto requeue; 719 720 ret = nvme_rdma_init_queue(ctrl, 0, NVMF_AQ_DEPTH); 721 if (ret) 722 goto requeue; 723 724 blk_mq_start_stopped_hw_queues(ctrl->ctrl.admin_q, true); 725 726 ret = nvmf_connect_admin_queue(&ctrl->ctrl); 727 if (ret) 728 goto stop_admin_q; 729 730 ret = nvme_enable_ctrl(&ctrl->ctrl, ctrl->cap); 731 if (ret) 732 goto stop_admin_q; 733 734 nvme_start_keep_alive(&ctrl->ctrl); 735 736 if (ctrl->queue_count > 1) { 737 ret = nvme_rdma_init_io_queues(ctrl); 738 if (ret) 739 goto stop_admin_q; 740 741 ret = nvme_rdma_connect_io_queues(ctrl); 742 if (ret) 743 goto stop_admin_q; 744 } 745 746 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); 747 WARN_ON_ONCE(!changed); 748 749 if (ctrl->queue_count > 1) { 750 nvme_start_queues(&ctrl->ctrl); 751 nvme_queue_scan(&ctrl->ctrl); 752 nvme_queue_async_events(&ctrl->ctrl); 753 } 754 755 dev_info(ctrl->ctrl.device, "Successfully reconnected\n"); 756 757 return; 758 759 stop_admin_q: 760 blk_mq_stop_hw_queues(ctrl->ctrl.admin_q); 761 requeue: 762 /* Make sure we are not resetting/deleting */ 763 if (ctrl->ctrl.state == NVME_CTRL_RECONNECTING) { 764 dev_info(ctrl->ctrl.device, 765 "Failed reconnect attempt, requeueing...\n"); 766 queue_delayed_work(nvme_rdma_wq, &ctrl->reconnect_work, 767 ctrl->reconnect_delay * HZ); 768 } 769 } 770 771 static void nvme_rdma_error_recovery_work(struct work_struct *work) 772 { 773 struct nvme_rdma_ctrl *ctrl = container_of(work, 774 struct nvme_rdma_ctrl, err_work); 775 int i; 776 777 nvme_stop_keep_alive(&ctrl->ctrl); 778 779 for (i = 0; i < ctrl->queue_count; i++) 780 clear_bit(NVME_RDMA_Q_CONNECTED, &ctrl->queues[i].flags); 781 782 if (ctrl->queue_count > 1) 783 nvme_stop_queues(&ctrl->ctrl); 784 blk_mq_stop_hw_queues(ctrl->ctrl.admin_q); 785 786 /* We must take care of fastfail/requeue all our inflight requests */ 787 if (ctrl->queue_count > 1) 788 blk_mq_tagset_busy_iter(&ctrl->tag_set, 789 nvme_cancel_request, &ctrl->ctrl); 790 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set, 791 nvme_cancel_request, &ctrl->ctrl); 792 793 dev_info(ctrl->ctrl.device, "reconnecting in %d seconds\n", 794 ctrl->reconnect_delay); 795 796 queue_delayed_work(nvme_rdma_wq, &ctrl->reconnect_work, 797 ctrl->reconnect_delay * HZ); 798 } 799 800 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl) 801 { 802 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RECONNECTING)) 803 return; 804 805 queue_work(nvme_rdma_wq, &ctrl->err_work); 806 } 807 808 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc, 809 const char *op) 810 { 811 struct nvme_rdma_queue *queue = cq->cq_context; 812 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 813 814 if (ctrl->ctrl.state == NVME_CTRL_LIVE) 815 dev_info(ctrl->ctrl.device, 816 "%s for CQE 0x%p failed with status %s (%d)\n", 817 op, wc->wr_cqe, 818 ib_wc_status_msg(wc->status), wc->status); 819 nvme_rdma_error_recovery(ctrl); 820 } 821 822 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc) 823 { 824 if (unlikely(wc->status != IB_WC_SUCCESS)) 825 nvme_rdma_wr_error(cq, wc, "MEMREG"); 826 } 827 828 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc) 829 { 830 if (unlikely(wc->status != IB_WC_SUCCESS)) 831 nvme_rdma_wr_error(cq, wc, "LOCAL_INV"); 832 } 833 834 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue, 835 struct nvme_rdma_request *req) 836 { 837 struct ib_send_wr *bad_wr; 838 struct ib_send_wr wr = { 839 .opcode = IB_WR_LOCAL_INV, 840 .next = NULL, 841 .num_sge = 0, 842 .send_flags = 0, 843 .ex.invalidate_rkey = req->mr->rkey, 844 }; 845 846 req->reg_cqe.done = nvme_rdma_inv_rkey_done; 847 wr.wr_cqe = &req->reg_cqe; 848 849 return ib_post_send(queue->qp, &wr, &bad_wr); 850 } 851 852 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue, 853 struct request *rq) 854 { 855 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 856 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 857 struct nvme_rdma_device *dev = queue->device; 858 struct ib_device *ibdev = dev->dev; 859 int res; 860 861 if (!blk_rq_bytes(rq)) 862 return; 863 864 if (req->mr->need_inval) { 865 res = nvme_rdma_inv_rkey(queue, req); 866 if (res < 0) { 867 dev_err(ctrl->ctrl.device, 868 "Queueing INV WR for rkey %#x failed (%d)\n", 869 req->mr->rkey, res); 870 nvme_rdma_error_recovery(queue->ctrl); 871 } 872 } 873 874 ib_dma_unmap_sg(ibdev, req->sg_table.sgl, 875 req->nents, rq_data_dir(rq) == 876 WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 877 878 nvme_cleanup_cmd(rq); 879 sg_free_table_chained(&req->sg_table, true); 880 } 881 882 static int nvme_rdma_set_sg_null(struct nvme_command *c) 883 { 884 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 885 886 sg->addr = 0; 887 put_unaligned_le24(0, sg->length); 888 put_unaligned_le32(0, sg->key); 889 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4; 890 return 0; 891 } 892 893 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue, 894 struct nvme_rdma_request *req, struct nvme_command *c) 895 { 896 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 897 898 req->sge[1].addr = sg_dma_address(req->sg_table.sgl); 899 req->sge[1].length = sg_dma_len(req->sg_table.sgl); 900 req->sge[1].lkey = queue->device->pd->local_dma_lkey; 901 902 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff); 903 sg->length = cpu_to_le32(sg_dma_len(req->sg_table.sgl)); 904 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET; 905 906 req->inline_data = true; 907 req->num_sge++; 908 return 0; 909 } 910 911 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue, 912 struct nvme_rdma_request *req, struct nvme_command *c) 913 { 914 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 915 916 sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl)); 917 put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length); 918 put_unaligned_le32(queue->device->mr->rkey, sg->key); 919 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4; 920 return 0; 921 } 922 923 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue, 924 struct nvme_rdma_request *req, struct nvme_command *c, 925 int count) 926 { 927 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 928 int nr; 929 930 nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, PAGE_SIZE); 931 if (nr < count) { 932 if (nr < 0) 933 return nr; 934 return -EINVAL; 935 } 936 937 ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey)); 938 939 req->reg_cqe.done = nvme_rdma_memreg_done; 940 memset(&req->reg_wr, 0, sizeof(req->reg_wr)); 941 req->reg_wr.wr.opcode = IB_WR_REG_MR; 942 req->reg_wr.wr.wr_cqe = &req->reg_cqe; 943 req->reg_wr.wr.num_sge = 0; 944 req->reg_wr.mr = req->mr; 945 req->reg_wr.key = req->mr->rkey; 946 req->reg_wr.access = IB_ACCESS_LOCAL_WRITE | 947 IB_ACCESS_REMOTE_READ | 948 IB_ACCESS_REMOTE_WRITE; 949 950 req->mr->need_inval = true; 951 952 sg->addr = cpu_to_le64(req->mr->iova); 953 put_unaligned_le24(req->mr->length, sg->length); 954 put_unaligned_le32(req->mr->rkey, sg->key); 955 sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) | 956 NVME_SGL_FMT_INVALIDATE; 957 958 return 0; 959 } 960 961 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue, 962 struct request *rq, unsigned int map_len, 963 struct nvme_command *c) 964 { 965 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 966 struct nvme_rdma_device *dev = queue->device; 967 struct ib_device *ibdev = dev->dev; 968 int nents, count; 969 int ret; 970 971 req->num_sge = 1; 972 req->inline_data = false; 973 req->mr->need_inval = false; 974 975 c->common.flags |= NVME_CMD_SGL_METABUF; 976 977 if (!blk_rq_bytes(rq)) 978 return nvme_rdma_set_sg_null(c); 979 980 req->sg_table.sgl = req->first_sgl; 981 ret = sg_alloc_table_chained(&req->sg_table, rq->nr_phys_segments, 982 req->sg_table.sgl); 983 if (ret) 984 return -ENOMEM; 985 986 nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl); 987 BUG_ON(nents > rq->nr_phys_segments); 988 req->nents = nents; 989 990 count = ib_dma_map_sg(ibdev, req->sg_table.sgl, nents, 991 rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 992 if (unlikely(count <= 0)) { 993 sg_free_table_chained(&req->sg_table, true); 994 return -EIO; 995 } 996 997 if (count == 1) { 998 if (rq_data_dir(rq) == WRITE && 999 map_len <= nvme_rdma_inline_data_size(queue) && 1000 nvme_rdma_queue_idx(queue)) 1001 return nvme_rdma_map_sg_inline(queue, req, c); 1002 1003 if (!register_always) 1004 return nvme_rdma_map_sg_single(queue, req, c); 1005 } 1006 1007 return nvme_rdma_map_sg_fr(queue, req, c, count); 1008 } 1009 1010 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc) 1011 { 1012 if (unlikely(wc->status != IB_WC_SUCCESS)) 1013 nvme_rdma_wr_error(cq, wc, "SEND"); 1014 } 1015 1016 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue, 1017 struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge, 1018 struct ib_send_wr *first, bool flush) 1019 { 1020 struct ib_send_wr wr, *bad_wr; 1021 int ret; 1022 1023 sge->addr = qe->dma; 1024 sge->length = sizeof(struct nvme_command), 1025 sge->lkey = queue->device->pd->local_dma_lkey; 1026 1027 qe->cqe.done = nvme_rdma_send_done; 1028 1029 wr.next = NULL; 1030 wr.wr_cqe = &qe->cqe; 1031 wr.sg_list = sge; 1032 wr.num_sge = num_sge; 1033 wr.opcode = IB_WR_SEND; 1034 wr.send_flags = 0; 1035 1036 /* 1037 * Unsignalled send completions are another giant desaster in the 1038 * IB Verbs spec: If we don't regularly post signalled sends 1039 * the send queue will fill up and only a QP reset will rescue us. 1040 * Would have been way to obvious to handle this in hardware or 1041 * at least the RDMA stack.. 1042 * 1043 * This messy and racy code sniplet is copy and pasted from the iSER 1044 * initiator, and the magic '32' comes from there as well. 1045 * 1046 * Always signal the flushes. The magic request used for the flush 1047 * sequencer is not allocated in our driver's tagset and it's 1048 * triggered to be freed by blk_cleanup_queue(). So we need to 1049 * always mark it as signaled to ensure that the "wr_cqe", which is 1050 * embeded in request's payload, is not freed when __ib_process_cq() 1051 * calls wr_cqe->done(). 1052 */ 1053 if ((++queue->sig_count % 32) == 0 || flush) 1054 wr.send_flags |= IB_SEND_SIGNALED; 1055 1056 if (first) 1057 first->next = ≀ 1058 else 1059 first = ≀ 1060 1061 ret = ib_post_send(queue->qp, first, &bad_wr); 1062 if (ret) { 1063 dev_err(queue->ctrl->ctrl.device, 1064 "%s failed with error code %d\n", __func__, ret); 1065 } 1066 return ret; 1067 } 1068 1069 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue, 1070 struct nvme_rdma_qe *qe) 1071 { 1072 struct ib_recv_wr wr, *bad_wr; 1073 struct ib_sge list; 1074 int ret; 1075 1076 list.addr = qe->dma; 1077 list.length = sizeof(struct nvme_completion); 1078 list.lkey = queue->device->pd->local_dma_lkey; 1079 1080 qe->cqe.done = nvme_rdma_recv_done; 1081 1082 wr.next = NULL; 1083 wr.wr_cqe = &qe->cqe; 1084 wr.sg_list = &list; 1085 wr.num_sge = 1; 1086 1087 ret = ib_post_recv(queue->qp, &wr, &bad_wr); 1088 if (ret) { 1089 dev_err(queue->ctrl->ctrl.device, 1090 "%s failed with error code %d\n", __func__, ret); 1091 } 1092 return ret; 1093 } 1094 1095 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue) 1096 { 1097 u32 queue_idx = nvme_rdma_queue_idx(queue); 1098 1099 if (queue_idx == 0) 1100 return queue->ctrl->admin_tag_set.tags[queue_idx]; 1101 return queue->ctrl->tag_set.tags[queue_idx - 1]; 1102 } 1103 1104 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg, int aer_idx) 1105 { 1106 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg); 1107 struct nvme_rdma_queue *queue = &ctrl->queues[0]; 1108 struct ib_device *dev = queue->device->dev; 1109 struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe; 1110 struct nvme_command *cmd = sqe->data; 1111 struct ib_sge sge; 1112 int ret; 1113 1114 if (WARN_ON_ONCE(aer_idx != 0)) 1115 return; 1116 1117 ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE); 1118 1119 memset(cmd, 0, sizeof(*cmd)); 1120 cmd->common.opcode = nvme_admin_async_event; 1121 cmd->common.command_id = NVME_RDMA_AQ_BLKMQ_DEPTH; 1122 cmd->common.flags |= NVME_CMD_SGL_METABUF; 1123 nvme_rdma_set_sg_null(cmd); 1124 1125 ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd), 1126 DMA_TO_DEVICE); 1127 1128 ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL, false); 1129 WARN_ON_ONCE(ret); 1130 } 1131 1132 static int nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue, 1133 struct nvme_completion *cqe, struct ib_wc *wc, int tag) 1134 { 1135 u16 status = le16_to_cpu(cqe->status); 1136 struct request *rq; 1137 struct nvme_rdma_request *req; 1138 int ret = 0; 1139 1140 status >>= 1; 1141 1142 rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id); 1143 if (!rq) { 1144 dev_err(queue->ctrl->ctrl.device, 1145 "tag 0x%x on QP %#x not found\n", 1146 cqe->command_id, queue->qp->qp_num); 1147 nvme_rdma_error_recovery(queue->ctrl); 1148 return ret; 1149 } 1150 req = blk_mq_rq_to_pdu(rq); 1151 1152 if (rq->cmd_type == REQ_TYPE_DRV_PRIV && rq->special) 1153 memcpy(rq->special, cqe, sizeof(*cqe)); 1154 1155 if (rq->tag == tag) 1156 ret = 1; 1157 1158 if ((wc->wc_flags & IB_WC_WITH_INVALIDATE) && 1159 wc->ex.invalidate_rkey == req->mr->rkey) 1160 req->mr->need_inval = false; 1161 1162 blk_mq_complete_request(rq, status); 1163 1164 return ret; 1165 } 1166 1167 static int __nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc, int tag) 1168 { 1169 struct nvme_rdma_qe *qe = 1170 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe); 1171 struct nvme_rdma_queue *queue = cq->cq_context; 1172 struct ib_device *ibdev = queue->device->dev; 1173 struct nvme_completion *cqe = qe->data; 1174 const size_t len = sizeof(struct nvme_completion); 1175 int ret = 0; 1176 1177 if (unlikely(wc->status != IB_WC_SUCCESS)) { 1178 nvme_rdma_wr_error(cq, wc, "RECV"); 1179 return 0; 1180 } 1181 1182 ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE); 1183 /* 1184 * AEN requests are special as they don't time out and can 1185 * survive any kind of queue freeze and often don't respond to 1186 * aborts. We don't even bother to allocate a struct request 1187 * for them but rather special case them here. 1188 */ 1189 if (unlikely(nvme_rdma_queue_idx(queue) == 0 && 1190 cqe->command_id >= NVME_RDMA_AQ_BLKMQ_DEPTH)) 1191 nvme_complete_async_event(&queue->ctrl->ctrl, cqe); 1192 else 1193 ret = nvme_rdma_process_nvme_rsp(queue, cqe, wc, tag); 1194 ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE); 1195 1196 nvme_rdma_post_recv(queue, qe); 1197 return ret; 1198 } 1199 1200 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc) 1201 { 1202 __nvme_rdma_recv_done(cq, wc, -1); 1203 } 1204 1205 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue) 1206 { 1207 int ret, i; 1208 1209 for (i = 0; i < queue->queue_size; i++) { 1210 ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]); 1211 if (ret) 1212 goto out_destroy_queue_ib; 1213 } 1214 1215 return 0; 1216 1217 out_destroy_queue_ib: 1218 nvme_rdma_destroy_queue_ib(queue); 1219 return ret; 1220 } 1221 1222 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue, 1223 struct rdma_cm_event *ev) 1224 { 1225 if (ev->param.conn.private_data_len) { 1226 struct nvme_rdma_cm_rej *rej = 1227 (struct nvme_rdma_cm_rej *)ev->param.conn.private_data; 1228 1229 dev_err(queue->ctrl->ctrl.device, 1230 "Connect rejected, status %d.", le16_to_cpu(rej->sts)); 1231 /* XXX: Think of something clever to do here... */ 1232 } else { 1233 dev_err(queue->ctrl->ctrl.device, 1234 "Connect rejected, no private data.\n"); 1235 } 1236 1237 return -ECONNRESET; 1238 } 1239 1240 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue) 1241 { 1242 struct nvme_rdma_device *dev; 1243 int ret; 1244 1245 dev = nvme_rdma_find_get_device(queue->cm_id); 1246 if (!dev) { 1247 dev_err(queue->cm_id->device->dma_device, 1248 "no client data found!\n"); 1249 return -ECONNREFUSED; 1250 } 1251 1252 ret = nvme_rdma_create_queue_ib(queue, dev); 1253 if (ret) { 1254 nvme_rdma_dev_put(dev); 1255 goto out; 1256 } 1257 1258 ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS); 1259 if (ret) { 1260 dev_err(queue->ctrl->ctrl.device, 1261 "rdma_resolve_route failed (%d).\n", 1262 queue->cm_error); 1263 goto out_destroy_queue; 1264 } 1265 1266 return 0; 1267 1268 out_destroy_queue: 1269 nvme_rdma_destroy_queue_ib(queue); 1270 out: 1271 return ret; 1272 } 1273 1274 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue) 1275 { 1276 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 1277 struct rdma_conn_param param = { }; 1278 struct nvme_rdma_cm_req priv = { }; 1279 int ret; 1280 1281 param.qp_num = queue->qp->qp_num; 1282 param.flow_control = 1; 1283 1284 param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom; 1285 /* maximum retry count */ 1286 param.retry_count = 7; 1287 param.rnr_retry_count = 7; 1288 param.private_data = &priv; 1289 param.private_data_len = sizeof(priv); 1290 1291 priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0); 1292 priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue)); 1293 /* 1294 * set the admin queue depth to the minimum size 1295 * specified by the Fabrics standard. 1296 */ 1297 if (priv.qid == 0) { 1298 priv.hrqsize = cpu_to_le16(NVMF_AQ_DEPTH); 1299 priv.hsqsize = cpu_to_le16(NVMF_AQ_DEPTH - 1); 1300 } else { 1301 /* 1302 * current interpretation of the fabrics spec 1303 * is at minimum you make hrqsize sqsize+1, or a 1304 * 1's based representation of sqsize. 1305 */ 1306 priv.hrqsize = cpu_to_le16(queue->queue_size); 1307 priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize); 1308 } 1309 1310 ret = rdma_connect(queue->cm_id, ¶m); 1311 if (ret) { 1312 dev_err(ctrl->ctrl.device, 1313 "rdma_connect failed (%d).\n", ret); 1314 goto out_destroy_queue_ib; 1315 } 1316 1317 return 0; 1318 1319 out_destroy_queue_ib: 1320 nvme_rdma_destroy_queue_ib(queue); 1321 return ret; 1322 } 1323 1324 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id, 1325 struct rdma_cm_event *ev) 1326 { 1327 struct nvme_rdma_queue *queue = cm_id->context; 1328 int cm_error = 0; 1329 1330 dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n", 1331 rdma_event_msg(ev->event), ev->event, 1332 ev->status, cm_id); 1333 1334 switch (ev->event) { 1335 case RDMA_CM_EVENT_ADDR_RESOLVED: 1336 cm_error = nvme_rdma_addr_resolved(queue); 1337 break; 1338 case RDMA_CM_EVENT_ROUTE_RESOLVED: 1339 cm_error = nvme_rdma_route_resolved(queue); 1340 break; 1341 case RDMA_CM_EVENT_ESTABLISHED: 1342 queue->cm_error = nvme_rdma_conn_established(queue); 1343 /* complete cm_done regardless of success/failure */ 1344 complete(&queue->cm_done); 1345 return 0; 1346 case RDMA_CM_EVENT_REJECTED: 1347 cm_error = nvme_rdma_conn_rejected(queue, ev); 1348 break; 1349 case RDMA_CM_EVENT_ADDR_ERROR: 1350 case RDMA_CM_EVENT_ROUTE_ERROR: 1351 case RDMA_CM_EVENT_CONNECT_ERROR: 1352 case RDMA_CM_EVENT_UNREACHABLE: 1353 dev_dbg(queue->ctrl->ctrl.device, 1354 "CM error event %d\n", ev->event); 1355 cm_error = -ECONNRESET; 1356 break; 1357 case RDMA_CM_EVENT_DISCONNECTED: 1358 case RDMA_CM_EVENT_ADDR_CHANGE: 1359 case RDMA_CM_EVENT_TIMEWAIT_EXIT: 1360 dev_dbg(queue->ctrl->ctrl.device, 1361 "disconnect received - connection closed\n"); 1362 nvme_rdma_error_recovery(queue->ctrl); 1363 break; 1364 case RDMA_CM_EVENT_DEVICE_REMOVAL: 1365 /* device removal is handled via the ib_client API */ 1366 break; 1367 default: 1368 dev_err(queue->ctrl->ctrl.device, 1369 "Unexpected RDMA CM event (%d)\n", ev->event); 1370 nvme_rdma_error_recovery(queue->ctrl); 1371 break; 1372 } 1373 1374 if (cm_error) { 1375 queue->cm_error = cm_error; 1376 complete(&queue->cm_done); 1377 } 1378 1379 return 0; 1380 } 1381 1382 static enum blk_eh_timer_return 1383 nvme_rdma_timeout(struct request *rq, bool reserved) 1384 { 1385 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1386 1387 /* queue error recovery */ 1388 nvme_rdma_error_recovery(req->queue->ctrl); 1389 1390 /* fail with DNR on cmd timeout */ 1391 rq->errors = NVME_SC_ABORT_REQ | NVME_SC_DNR; 1392 1393 return BLK_EH_HANDLED; 1394 } 1395 1396 static int nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx, 1397 const struct blk_mq_queue_data *bd) 1398 { 1399 struct nvme_ns *ns = hctx->queue->queuedata; 1400 struct nvme_rdma_queue *queue = hctx->driver_data; 1401 struct request *rq = bd->rq; 1402 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1403 struct nvme_rdma_qe *sqe = &req->sqe; 1404 struct nvme_command *c = sqe->data; 1405 bool flush = false; 1406 struct ib_device *dev; 1407 unsigned int map_len; 1408 int ret; 1409 1410 WARN_ON_ONCE(rq->tag < 0); 1411 1412 dev = queue->device->dev; 1413 ib_dma_sync_single_for_cpu(dev, sqe->dma, 1414 sizeof(struct nvme_command), DMA_TO_DEVICE); 1415 1416 ret = nvme_setup_cmd(ns, rq, c); 1417 if (ret) 1418 return ret; 1419 1420 c->common.command_id = rq->tag; 1421 blk_mq_start_request(rq); 1422 1423 map_len = nvme_map_len(rq); 1424 ret = nvme_rdma_map_data(queue, rq, map_len, c); 1425 if (ret < 0) { 1426 dev_err(queue->ctrl->ctrl.device, 1427 "Failed to map data (%d)\n", ret); 1428 nvme_cleanup_cmd(rq); 1429 goto err; 1430 } 1431 1432 ib_dma_sync_single_for_device(dev, sqe->dma, 1433 sizeof(struct nvme_command), DMA_TO_DEVICE); 1434 1435 if (rq->cmd_type == REQ_TYPE_FS && req_op(rq) == REQ_OP_FLUSH) 1436 flush = true; 1437 ret = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge, 1438 req->mr->need_inval ? &req->reg_wr.wr : NULL, flush); 1439 if (ret) { 1440 nvme_rdma_unmap_data(queue, rq); 1441 goto err; 1442 } 1443 1444 return BLK_MQ_RQ_QUEUE_OK; 1445 err: 1446 return (ret == -ENOMEM || ret == -EAGAIN) ? 1447 BLK_MQ_RQ_QUEUE_BUSY : BLK_MQ_RQ_QUEUE_ERROR; 1448 } 1449 1450 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag) 1451 { 1452 struct nvme_rdma_queue *queue = hctx->driver_data; 1453 struct ib_cq *cq = queue->ib_cq; 1454 struct ib_wc wc; 1455 int found = 0; 1456 1457 ib_req_notify_cq(cq, IB_CQ_NEXT_COMP); 1458 while (ib_poll_cq(cq, 1, &wc) > 0) { 1459 struct ib_cqe *cqe = wc.wr_cqe; 1460 1461 if (cqe) { 1462 if (cqe->done == nvme_rdma_recv_done) 1463 found |= __nvme_rdma_recv_done(cq, &wc, tag); 1464 else 1465 cqe->done(cq, &wc); 1466 } 1467 } 1468 1469 return found; 1470 } 1471 1472 static void nvme_rdma_complete_rq(struct request *rq) 1473 { 1474 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1475 struct nvme_rdma_queue *queue = req->queue; 1476 int error = 0; 1477 1478 nvme_rdma_unmap_data(queue, rq); 1479 1480 if (unlikely(rq->errors)) { 1481 if (nvme_req_needs_retry(rq, rq->errors)) { 1482 nvme_requeue_req(rq); 1483 return; 1484 } 1485 1486 if (rq->cmd_type == REQ_TYPE_DRV_PRIV) 1487 error = rq->errors; 1488 else 1489 error = nvme_error_status(rq->errors); 1490 } 1491 1492 blk_mq_end_request(rq, error); 1493 } 1494 1495 static struct blk_mq_ops nvme_rdma_mq_ops = { 1496 .queue_rq = nvme_rdma_queue_rq, 1497 .complete = nvme_rdma_complete_rq, 1498 .map_queue = blk_mq_map_queue, 1499 .init_request = nvme_rdma_init_request, 1500 .exit_request = nvme_rdma_exit_request, 1501 .reinit_request = nvme_rdma_reinit_request, 1502 .init_hctx = nvme_rdma_init_hctx, 1503 .poll = nvme_rdma_poll, 1504 .timeout = nvme_rdma_timeout, 1505 }; 1506 1507 static struct blk_mq_ops nvme_rdma_admin_mq_ops = { 1508 .queue_rq = nvme_rdma_queue_rq, 1509 .complete = nvme_rdma_complete_rq, 1510 .map_queue = blk_mq_map_queue, 1511 .init_request = nvme_rdma_init_admin_request, 1512 .exit_request = nvme_rdma_exit_admin_request, 1513 .reinit_request = nvme_rdma_reinit_request, 1514 .init_hctx = nvme_rdma_init_admin_hctx, 1515 .timeout = nvme_rdma_timeout, 1516 }; 1517 1518 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl) 1519 { 1520 int error; 1521 1522 error = nvme_rdma_init_queue(ctrl, 0, NVMF_AQ_DEPTH); 1523 if (error) 1524 return error; 1525 1526 ctrl->device = ctrl->queues[0].device; 1527 1528 /* 1529 * We need a reference on the device as long as the tag_set is alive, 1530 * as the MRs in the request structures need a valid ib_device. 1531 */ 1532 error = -EINVAL; 1533 if (!nvme_rdma_dev_get(ctrl->device)) 1534 goto out_free_queue; 1535 1536 ctrl->max_fr_pages = min_t(u32, NVME_RDMA_MAX_SEGMENTS, 1537 ctrl->device->dev->attrs.max_fast_reg_page_list_len); 1538 1539 memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set)); 1540 ctrl->admin_tag_set.ops = &nvme_rdma_admin_mq_ops; 1541 ctrl->admin_tag_set.queue_depth = NVME_RDMA_AQ_BLKMQ_DEPTH; 1542 ctrl->admin_tag_set.reserved_tags = 2; /* connect + keep-alive */ 1543 ctrl->admin_tag_set.numa_node = NUMA_NO_NODE; 1544 ctrl->admin_tag_set.cmd_size = sizeof(struct nvme_rdma_request) + 1545 SG_CHUNK_SIZE * sizeof(struct scatterlist); 1546 ctrl->admin_tag_set.driver_data = ctrl; 1547 ctrl->admin_tag_set.nr_hw_queues = 1; 1548 ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT; 1549 1550 error = blk_mq_alloc_tag_set(&ctrl->admin_tag_set); 1551 if (error) 1552 goto out_put_dev; 1553 1554 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set); 1555 if (IS_ERR(ctrl->ctrl.admin_q)) { 1556 error = PTR_ERR(ctrl->ctrl.admin_q); 1557 goto out_free_tagset; 1558 } 1559 1560 error = nvmf_connect_admin_queue(&ctrl->ctrl); 1561 if (error) 1562 goto out_cleanup_queue; 1563 1564 error = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP, &ctrl->cap); 1565 if (error) { 1566 dev_err(ctrl->ctrl.device, 1567 "prop_get NVME_REG_CAP failed\n"); 1568 goto out_cleanup_queue; 1569 } 1570 1571 ctrl->ctrl.sqsize = 1572 min_t(int, NVME_CAP_MQES(ctrl->cap) + 1, ctrl->ctrl.sqsize); 1573 1574 error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->cap); 1575 if (error) 1576 goto out_cleanup_queue; 1577 1578 ctrl->ctrl.max_hw_sectors = 1579 (ctrl->max_fr_pages - 1) << (PAGE_SHIFT - 9); 1580 1581 error = nvme_init_identify(&ctrl->ctrl); 1582 if (error) 1583 goto out_cleanup_queue; 1584 1585 error = nvme_rdma_alloc_qe(ctrl->queues[0].device->dev, 1586 &ctrl->async_event_sqe, sizeof(struct nvme_command), 1587 DMA_TO_DEVICE); 1588 if (error) 1589 goto out_cleanup_queue; 1590 1591 nvme_start_keep_alive(&ctrl->ctrl); 1592 1593 return 0; 1594 1595 out_cleanup_queue: 1596 blk_cleanup_queue(ctrl->ctrl.admin_q); 1597 out_free_tagset: 1598 /* disconnect and drain the queue before freeing the tagset */ 1599 nvme_rdma_stop_queue(&ctrl->queues[0]); 1600 blk_mq_free_tag_set(&ctrl->admin_tag_set); 1601 out_put_dev: 1602 nvme_rdma_dev_put(ctrl->device); 1603 out_free_queue: 1604 nvme_rdma_free_queue(&ctrl->queues[0]); 1605 return error; 1606 } 1607 1608 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl) 1609 { 1610 nvme_stop_keep_alive(&ctrl->ctrl); 1611 cancel_work_sync(&ctrl->err_work); 1612 cancel_delayed_work_sync(&ctrl->reconnect_work); 1613 1614 if (ctrl->queue_count > 1) { 1615 nvme_stop_queues(&ctrl->ctrl); 1616 blk_mq_tagset_busy_iter(&ctrl->tag_set, 1617 nvme_cancel_request, &ctrl->ctrl); 1618 nvme_rdma_free_io_queues(ctrl); 1619 } 1620 1621 if (test_bit(NVME_RDMA_Q_CONNECTED, &ctrl->queues[0].flags)) 1622 nvme_shutdown_ctrl(&ctrl->ctrl); 1623 1624 blk_mq_stop_hw_queues(ctrl->ctrl.admin_q); 1625 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set, 1626 nvme_cancel_request, &ctrl->ctrl); 1627 nvme_rdma_destroy_admin_queue(ctrl); 1628 } 1629 1630 static void __nvme_rdma_remove_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown) 1631 { 1632 nvme_uninit_ctrl(&ctrl->ctrl); 1633 if (shutdown) 1634 nvme_rdma_shutdown_ctrl(ctrl); 1635 1636 if (ctrl->ctrl.tagset) { 1637 blk_cleanup_queue(ctrl->ctrl.connect_q); 1638 blk_mq_free_tag_set(&ctrl->tag_set); 1639 nvme_rdma_dev_put(ctrl->device); 1640 } 1641 1642 nvme_put_ctrl(&ctrl->ctrl); 1643 } 1644 1645 static void nvme_rdma_del_ctrl_work(struct work_struct *work) 1646 { 1647 struct nvme_rdma_ctrl *ctrl = container_of(work, 1648 struct nvme_rdma_ctrl, delete_work); 1649 1650 __nvme_rdma_remove_ctrl(ctrl, true); 1651 } 1652 1653 static int __nvme_rdma_del_ctrl(struct nvme_rdma_ctrl *ctrl) 1654 { 1655 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING)) 1656 return -EBUSY; 1657 1658 if (!queue_work(nvme_rdma_wq, &ctrl->delete_work)) 1659 return -EBUSY; 1660 1661 return 0; 1662 } 1663 1664 static int nvme_rdma_del_ctrl(struct nvme_ctrl *nctrl) 1665 { 1666 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 1667 int ret = 0; 1668 1669 /* 1670 * Keep a reference until all work is flushed since 1671 * __nvme_rdma_del_ctrl can free the ctrl mem 1672 */ 1673 if (!kref_get_unless_zero(&ctrl->ctrl.kref)) 1674 return -EBUSY; 1675 ret = __nvme_rdma_del_ctrl(ctrl); 1676 if (!ret) 1677 flush_work(&ctrl->delete_work); 1678 nvme_put_ctrl(&ctrl->ctrl); 1679 return ret; 1680 } 1681 1682 static void nvme_rdma_remove_ctrl_work(struct work_struct *work) 1683 { 1684 struct nvme_rdma_ctrl *ctrl = container_of(work, 1685 struct nvme_rdma_ctrl, delete_work); 1686 1687 __nvme_rdma_remove_ctrl(ctrl, false); 1688 } 1689 1690 static void nvme_rdma_reset_ctrl_work(struct work_struct *work) 1691 { 1692 struct nvme_rdma_ctrl *ctrl = container_of(work, 1693 struct nvme_rdma_ctrl, reset_work); 1694 int ret; 1695 bool changed; 1696 1697 nvme_rdma_shutdown_ctrl(ctrl); 1698 1699 ret = nvme_rdma_configure_admin_queue(ctrl); 1700 if (ret) { 1701 /* ctrl is already shutdown, just remove the ctrl */ 1702 INIT_WORK(&ctrl->delete_work, nvme_rdma_remove_ctrl_work); 1703 goto del_dead_ctrl; 1704 } 1705 1706 if (ctrl->queue_count > 1) { 1707 ret = blk_mq_reinit_tagset(&ctrl->tag_set); 1708 if (ret) 1709 goto del_dead_ctrl; 1710 1711 ret = nvme_rdma_init_io_queues(ctrl); 1712 if (ret) 1713 goto del_dead_ctrl; 1714 1715 ret = nvme_rdma_connect_io_queues(ctrl); 1716 if (ret) 1717 goto del_dead_ctrl; 1718 } 1719 1720 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); 1721 WARN_ON_ONCE(!changed); 1722 1723 if (ctrl->queue_count > 1) { 1724 nvme_start_queues(&ctrl->ctrl); 1725 nvme_queue_scan(&ctrl->ctrl); 1726 nvme_queue_async_events(&ctrl->ctrl); 1727 } 1728 1729 return; 1730 1731 del_dead_ctrl: 1732 /* Deleting this dead controller... */ 1733 dev_warn(ctrl->ctrl.device, "Removing after reset failure\n"); 1734 WARN_ON(!queue_work(nvme_rdma_wq, &ctrl->delete_work)); 1735 } 1736 1737 static int nvme_rdma_reset_ctrl(struct nvme_ctrl *nctrl) 1738 { 1739 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 1740 1741 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING)) 1742 return -EBUSY; 1743 1744 if (!queue_work(nvme_rdma_wq, &ctrl->reset_work)) 1745 return -EBUSY; 1746 1747 flush_work(&ctrl->reset_work); 1748 1749 return 0; 1750 } 1751 1752 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = { 1753 .name = "rdma", 1754 .module = THIS_MODULE, 1755 .is_fabrics = true, 1756 .reg_read32 = nvmf_reg_read32, 1757 .reg_read64 = nvmf_reg_read64, 1758 .reg_write32 = nvmf_reg_write32, 1759 .reset_ctrl = nvme_rdma_reset_ctrl, 1760 .free_ctrl = nvme_rdma_free_ctrl, 1761 .submit_async_event = nvme_rdma_submit_async_event, 1762 .delete_ctrl = nvme_rdma_del_ctrl, 1763 .get_subsysnqn = nvmf_get_subsysnqn, 1764 .get_address = nvmf_get_address, 1765 }; 1766 1767 static int nvme_rdma_create_io_queues(struct nvme_rdma_ctrl *ctrl) 1768 { 1769 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 1770 int ret; 1771 1772 ret = nvme_set_queue_count(&ctrl->ctrl, &opts->nr_io_queues); 1773 if (ret) 1774 return ret; 1775 1776 ctrl->queue_count = opts->nr_io_queues + 1; 1777 if (ctrl->queue_count < 2) 1778 return 0; 1779 1780 dev_info(ctrl->ctrl.device, 1781 "creating %d I/O queues.\n", opts->nr_io_queues); 1782 1783 ret = nvme_rdma_init_io_queues(ctrl); 1784 if (ret) 1785 return ret; 1786 1787 /* 1788 * We need a reference on the device as long as the tag_set is alive, 1789 * as the MRs in the request structures need a valid ib_device. 1790 */ 1791 ret = -EINVAL; 1792 if (!nvme_rdma_dev_get(ctrl->device)) 1793 goto out_free_io_queues; 1794 1795 memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set)); 1796 ctrl->tag_set.ops = &nvme_rdma_mq_ops; 1797 ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size; 1798 ctrl->tag_set.reserved_tags = 1; /* fabric connect */ 1799 ctrl->tag_set.numa_node = NUMA_NO_NODE; 1800 ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE; 1801 ctrl->tag_set.cmd_size = sizeof(struct nvme_rdma_request) + 1802 SG_CHUNK_SIZE * sizeof(struct scatterlist); 1803 ctrl->tag_set.driver_data = ctrl; 1804 ctrl->tag_set.nr_hw_queues = ctrl->queue_count - 1; 1805 ctrl->tag_set.timeout = NVME_IO_TIMEOUT; 1806 1807 ret = blk_mq_alloc_tag_set(&ctrl->tag_set); 1808 if (ret) 1809 goto out_put_dev; 1810 ctrl->ctrl.tagset = &ctrl->tag_set; 1811 1812 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set); 1813 if (IS_ERR(ctrl->ctrl.connect_q)) { 1814 ret = PTR_ERR(ctrl->ctrl.connect_q); 1815 goto out_free_tag_set; 1816 } 1817 1818 ret = nvme_rdma_connect_io_queues(ctrl); 1819 if (ret) 1820 goto out_cleanup_connect_q; 1821 1822 return 0; 1823 1824 out_cleanup_connect_q: 1825 blk_cleanup_queue(ctrl->ctrl.connect_q); 1826 out_free_tag_set: 1827 blk_mq_free_tag_set(&ctrl->tag_set); 1828 out_put_dev: 1829 nvme_rdma_dev_put(ctrl->device); 1830 out_free_io_queues: 1831 nvme_rdma_free_io_queues(ctrl); 1832 return ret; 1833 } 1834 1835 static int nvme_rdma_parse_ipaddr(struct sockaddr_in *in_addr, char *p) 1836 { 1837 u8 *addr = (u8 *)&in_addr->sin_addr.s_addr; 1838 size_t buflen = strlen(p); 1839 1840 /* XXX: handle IPv6 addresses */ 1841 1842 if (buflen > INET_ADDRSTRLEN) 1843 return -EINVAL; 1844 if (in4_pton(p, buflen, addr, '\0', NULL) == 0) 1845 return -EINVAL; 1846 in_addr->sin_family = AF_INET; 1847 return 0; 1848 } 1849 1850 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev, 1851 struct nvmf_ctrl_options *opts) 1852 { 1853 struct nvme_rdma_ctrl *ctrl; 1854 int ret; 1855 bool changed; 1856 1857 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 1858 if (!ctrl) 1859 return ERR_PTR(-ENOMEM); 1860 ctrl->ctrl.opts = opts; 1861 INIT_LIST_HEAD(&ctrl->list); 1862 1863 ret = nvme_rdma_parse_ipaddr(&ctrl->addr_in, opts->traddr); 1864 if (ret) { 1865 pr_err("malformed IP address passed: %s\n", opts->traddr); 1866 goto out_free_ctrl; 1867 } 1868 1869 if (opts->mask & NVMF_OPT_TRSVCID) { 1870 u16 port; 1871 1872 ret = kstrtou16(opts->trsvcid, 0, &port); 1873 if (ret) 1874 goto out_free_ctrl; 1875 1876 ctrl->addr_in.sin_port = cpu_to_be16(port); 1877 } else { 1878 ctrl->addr_in.sin_port = cpu_to_be16(NVME_RDMA_IP_PORT); 1879 } 1880 1881 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops, 1882 0 /* no quirks, we're perfect! */); 1883 if (ret) 1884 goto out_free_ctrl; 1885 1886 ctrl->reconnect_delay = opts->reconnect_delay; 1887 INIT_DELAYED_WORK(&ctrl->reconnect_work, 1888 nvme_rdma_reconnect_ctrl_work); 1889 INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work); 1890 INIT_WORK(&ctrl->delete_work, nvme_rdma_del_ctrl_work); 1891 INIT_WORK(&ctrl->reset_work, nvme_rdma_reset_ctrl_work); 1892 spin_lock_init(&ctrl->lock); 1893 1894 ctrl->queue_count = opts->nr_io_queues + 1; /* +1 for admin queue */ 1895 ctrl->ctrl.sqsize = opts->queue_size - 1; 1896 ctrl->ctrl.kato = opts->kato; 1897 1898 ret = -ENOMEM; 1899 ctrl->queues = kcalloc(ctrl->queue_count, sizeof(*ctrl->queues), 1900 GFP_KERNEL); 1901 if (!ctrl->queues) 1902 goto out_uninit_ctrl; 1903 1904 ret = nvme_rdma_configure_admin_queue(ctrl); 1905 if (ret) 1906 goto out_kfree_queues; 1907 1908 /* sanity check icdoff */ 1909 if (ctrl->ctrl.icdoff) { 1910 dev_err(ctrl->ctrl.device, "icdoff is not supported!\n"); 1911 goto out_remove_admin_queue; 1912 } 1913 1914 /* sanity check keyed sgls */ 1915 if (!(ctrl->ctrl.sgls & (1 << 20))) { 1916 dev_err(ctrl->ctrl.device, "Mandatory keyed sgls are not support\n"); 1917 goto out_remove_admin_queue; 1918 } 1919 1920 if (opts->queue_size > ctrl->ctrl.maxcmd) { 1921 /* warn if maxcmd is lower than queue_size */ 1922 dev_warn(ctrl->ctrl.device, 1923 "queue_size %zu > ctrl maxcmd %u, clamping down\n", 1924 opts->queue_size, ctrl->ctrl.maxcmd); 1925 opts->queue_size = ctrl->ctrl.maxcmd; 1926 } 1927 1928 if (opts->nr_io_queues) { 1929 ret = nvme_rdma_create_io_queues(ctrl); 1930 if (ret) 1931 goto out_remove_admin_queue; 1932 } 1933 1934 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); 1935 WARN_ON_ONCE(!changed); 1936 1937 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n", 1938 ctrl->ctrl.opts->subsysnqn, &ctrl->addr); 1939 1940 kref_get(&ctrl->ctrl.kref); 1941 1942 mutex_lock(&nvme_rdma_ctrl_mutex); 1943 list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list); 1944 mutex_unlock(&nvme_rdma_ctrl_mutex); 1945 1946 if (opts->nr_io_queues) { 1947 nvme_queue_scan(&ctrl->ctrl); 1948 nvme_queue_async_events(&ctrl->ctrl); 1949 } 1950 1951 return &ctrl->ctrl; 1952 1953 out_remove_admin_queue: 1954 nvme_stop_keep_alive(&ctrl->ctrl); 1955 nvme_rdma_destroy_admin_queue(ctrl); 1956 out_kfree_queues: 1957 kfree(ctrl->queues); 1958 out_uninit_ctrl: 1959 nvme_uninit_ctrl(&ctrl->ctrl); 1960 nvme_put_ctrl(&ctrl->ctrl); 1961 if (ret > 0) 1962 ret = -EIO; 1963 return ERR_PTR(ret); 1964 out_free_ctrl: 1965 kfree(ctrl); 1966 return ERR_PTR(ret); 1967 } 1968 1969 static struct nvmf_transport_ops nvme_rdma_transport = { 1970 .name = "rdma", 1971 .required_opts = NVMF_OPT_TRADDR, 1972 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY, 1973 .create_ctrl = nvme_rdma_create_ctrl, 1974 }; 1975 1976 static void nvme_rdma_add_one(struct ib_device *ib_device) 1977 { 1978 } 1979 1980 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data) 1981 { 1982 struct nvme_rdma_ctrl *ctrl; 1983 1984 /* Delete all controllers using this device */ 1985 mutex_lock(&nvme_rdma_ctrl_mutex); 1986 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) { 1987 if (ctrl->device->dev != ib_device) 1988 continue; 1989 dev_info(ctrl->ctrl.device, 1990 "Removing ctrl: NQN \"%s\", addr %pISp\n", 1991 ctrl->ctrl.opts->subsysnqn, &ctrl->addr); 1992 __nvme_rdma_del_ctrl(ctrl); 1993 } 1994 mutex_unlock(&nvme_rdma_ctrl_mutex); 1995 1996 flush_workqueue(nvme_rdma_wq); 1997 } 1998 1999 static struct ib_client nvme_rdma_ib_client = { 2000 .name = "nvme_rdma", 2001 .add = nvme_rdma_add_one, 2002 .remove = nvme_rdma_remove_one 2003 }; 2004 2005 static int __init nvme_rdma_init_module(void) 2006 { 2007 int ret; 2008 2009 nvme_rdma_wq = create_workqueue("nvme_rdma_wq"); 2010 if (!nvme_rdma_wq) 2011 return -ENOMEM; 2012 2013 ret = ib_register_client(&nvme_rdma_ib_client); 2014 if (ret) { 2015 destroy_workqueue(nvme_rdma_wq); 2016 return ret; 2017 } 2018 2019 nvmf_register_transport(&nvme_rdma_transport); 2020 return 0; 2021 } 2022 2023 static void __exit nvme_rdma_cleanup_module(void) 2024 { 2025 nvmf_unregister_transport(&nvme_rdma_transport); 2026 ib_unregister_client(&nvme_rdma_ib_client); 2027 destroy_workqueue(nvme_rdma_wq); 2028 } 2029 2030 module_init(nvme_rdma_init_module); 2031 module_exit(nvme_rdma_cleanup_module); 2032 2033 MODULE_LICENSE("GPL v2"); 2034