xref: /linux/drivers/nvme/host/rdma.c (revision a44e4f3ab16bc808590763a543a93b6fbf3abcc4)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics RDMA host code.
4  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <rdma/mr_pool.h>
11 #include <linux/err.h>
12 #include <linux/string.h>
13 #include <linux/atomic.h>
14 #include <linux/blk-mq.h>
15 #include <linux/blk-mq-rdma.h>
16 #include <linux/types.h>
17 #include <linux/list.h>
18 #include <linux/mutex.h>
19 #include <linux/scatterlist.h>
20 #include <linux/nvme.h>
21 #include <asm/unaligned.h>
22 
23 #include <rdma/ib_verbs.h>
24 #include <rdma/rdma_cm.h>
25 #include <linux/nvme-rdma.h>
26 
27 #include "nvme.h"
28 #include "fabrics.h"
29 
30 
31 #define NVME_RDMA_CONNECT_TIMEOUT_MS	3000		/* 3 second */
32 
33 #define NVME_RDMA_MAX_SEGMENTS		256
34 
35 #define NVME_RDMA_MAX_INLINE_SEGMENTS	4
36 
37 struct nvme_rdma_device {
38 	struct ib_device	*dev;
39 	struct ib_pd		*pd;
40 	struct kref		ref;
41 	struct list_head	entry;
42 	unsigned int		num_inline_segments;
43 };
44 
45 struct nvme_rdma_qe {
46 	struct ib_cqe		cqe;
47 	void			*data;
48 	u64			dma;
49 };
50 
51 struct nvme_rdma_queue;
52 struct nvme_rdma_request {
53 	struct nvme_request	req;
54 	struct ib_mr		*mr;
55 	struct nvme_rdma_qe	sqe;
56 	union nvme_result	result;
57 	__le16			status;
58 	refcount_t		ref;
59 	struct ib_sge		sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
60 	u32			num_sge;
61 	int			nents;
62 	struct ib_reg_wr	reg_wr;
63 	struct ib_cqe		reg_cqe;
64 	struct nvme_rdma_queue  *queue;
65 	struct sg_table		sg_table;
66 	struct scatterlist	first_sgl[];
67 };
68 
69 enum nvme_rdma_queue_flags {
70 	NVME_RDMA_Q_ALLOCATED		= 0,
71 	NVME_RDMA_Q_LIVE		= 1,
72 	NVME_RDMA_Q_TR_READY		= 2,
73 };
74 
75 struct nvme_rdma_queue {
76 	struct nvme_rdma_qe	*rsp_ring;
77 	int			queue_size;
78 	size_t			cmnd_capsule_len;
79 	struct nvme_rdma_ctrl	*ctrl;
80 	struct nvme_rdma_device	*device;
81 	struct ib_cq		*ib_cq;
82 	struct ib_qp		*qp;
83 
84 	unsigned long		flags;
85 	struct rdma_cm_id	*cm_id;
86 	int			cm_error;
87 	struct completion	cm_done;
88 };
89 
90 struct nvme_rdma_ctrl {
91 	/* read only in the hot path */
92 	struct nvme_rdma_queue	*queues;
93 
94 	/* other member variables */
95 	struct blk_mq_tag_set	tag_set;
96 	struct work_struct	err_work;
97 
98 	struct nvme_rdma_qe	async_event_sqe;
99 
100 	struct delayed_work	reconnect_work;
101 
102 	struct list_head	list;
103 
104 	struct blk_mq_tag_set	admin_tag_set;
105 	struct nvme_rdma_device	*device;
106 
107 	u32			max_fr_pages;
108 
109 	struct sockaddr_storage addr;
110 	struct sockaddr_storage src_addr;
111 
112 	struct nvme_ctrl	ctrl;
113 	bool			use_inline_data;
114 	u32			io_queues[HCTX_MAX_TYPES];
115 };
116 
117 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
118 {
119 	return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
120 }
121 
122 static LIST_HEAD(device_list);
123 static DEFINE_MUTEX(device_list_mutex);
124 
125 static LIST_HEAD(nvme_rdma_ctrl_list);
126 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
127 
128 /*
129  * Disabling this option makes small I/O goes faster, but is fundamentally
130  * unsafe.  With it turned off we will have to register a global rkey that
131  * allows read and write access to all physical memory.
132  */
133 static bool register_always = true;
134 module_param(register_always, bool, 0444);
135 MODULE_PARM_DESC(register_always,
136 	 "Use memory registration even for contiguous memory regions");
137 
138 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
139 		struct rdma_cm_event *event);
140 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
141 
142 static const struct blk_mq_ops nvme_rdma_mq_ops;
143 static const struct blk_mq_ops nvme_rdma_admin_mq_ops;
144 
145 /* XXX: really should move to a generic header sooner or later.. */
146 static inline void put_unaligned_le24(u32 val, u8 *p)
147 {
148 	*p++ = val;
149 	*p++ = val >> 8;
150 	*p++ = val >> 16;
151 }
152 
153 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
154 {
155 	return queue - queue->ctrl->queues;
156 }
157 
158 static bool nvme_rdma_poll_queue(struct nvme_rdma_queue *queue)
159 {
160 	return nvme_rdma_queue_idx(queue) >
161 		queue->ctrl->io_queues[HCTX_TYPE_DEFAULT] +
162 		queue->ctrl->io_queues[HCTX_TYPE_READ];
163 }
164 
165 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
166 {
167 	return queue->cmnd_capsule_len - sizeof(struct nvme_command);
168 }
169 
170 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
171 		size_t capsule_size, enum dma_data_direction dir)
172 {
173 	ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
174 	kfree(qe->data);
175 }
176 
177 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
178 		size_t capsule_size, enum dma_data_direction dir)
179 {
180 	qe->data = kzalloc(capsule_size, GFP_KERNEL);
181 	if (!qe->data)
182 		return -ENOMEM;
183 
184 	qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
185 	if (ib_dma_mapping_error(ibdev, qe->dma)) {
186 		kfree(qe->data);
187 		qe->data = NULL;
188 		return -ENOMEM;
189 	}
190 
191 	return 0;
192 }
193 
194 static void nvme_rdma_free_ring(struct ib_device *ibdev,
195 		struct nvme_rdma_qe *ring, size_t ib_queue_size,
196 		size_t capsule_size, enum dma_data_direction dir)
197 {
198 	int i;
199 
200 	for (i = 0; i < ib_queue_size; i++)
201 		nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
202 	kfree(ring);
203 }
204 
205 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
206 		size_t ib_queue_size, size_t capsule_size,
207 		enum dma_data_direction dir)
208 {
209 	struct nvme_rdma_qe *ring;
210 	int i;
211 
212 	ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
213 	if (!ring)
214 		return NULL;
215 
216 	/*
217 	 * Bind the CQEs (post recv buffers) DMA mapping to the RDMA queue
218 	 * lifetime. It's safe, since any chage in the underlying RDMA device
219 	 * will issue error recovery and queue re-creation.
220 	 */
221 	for (i = 0; i < ib_queue_size; i++) {
222 		if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
223 			goto out_free_ring;
224 	}
225 
226 	return ring;
227 
228 out_free_ring:
229 	nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
230 	return NULL;
231 }
232 
233 static void nvme_rdma_qp_event(struct ib_event *event, void *context)
234 {
235 	pr_debug("QP event %s (%d)\n",
236 		 ib_event_msg(event->event), event->event);
237 
238 }
239 
240 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
241 {
242 	int ret;
243 
244 	ret = wait_for_completion_interruptible_timeout(&queue->cm_done,
245 			msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1);
246 	if (ret < 0)
247 		return ret;
248 	if (ret == 0)
249 		return -ETIMEDOUT;
250 	WARN_ON_ONCE(queue->cm_error > 0);
251 	return queue->cm_error;
252 }
253 
254 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
255 {
256 	struct nvme_rdma_device *dev = queue->device;
257 	struct ib_qp_init_attr init_attr;
258 	int ret;
259 
260 	memset(&init_attr, 0, sizeof(init_attr));
261 	init_attr.event_handler = nvme_rdma_qp_event;
262 	/* +1 for drain */
263 	init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
264 	/* +1 for drain */
265 	init_attr.cap.max_recv_wr = queue->queue_size + 1;
266 	init_attr.cap.max_recv_sge = 1;
267 	init_attr.cap.max_send_sge = 1 + dev->num_inline_segments;
268 	init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
269 	init_attr.qp_type = IB_QPT_RC;
270 	init_attr.send_cq = queue->ib_cq;
271 	init_attr.recv_cq = queue->ib_cq;
272 
273 	ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
274 
275 	queue->qp = queue->cm_id->qp;
276 	return ret;
277 }
278 
279 static void nvme_rdma_exit_request(struct blk_mq_tag_set *set,
280 		struct request *rq, unsigned int hctx_idx)
281 {
282 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
283 
284 	kfree(req->sqe.data);
285 }
286 
287 static int nvme_rdma_init_request(struct blk_mq_tag_set *set,
288 		struct request *rq, unsigned int hctx_idx,
289 		unsigned int numa_node)
290 {
291 	struct nvme_rdma_ctrl *ctrl = set->driver_data;
292 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
293 	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
294 	struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
295 
296 	nvme_req(rq)->ctrl = &ctrl->ctrl;
297 	req->sqe.data = kzalloc(sizeof(struct nvme_command), GFP_KERNEL);
298 	if (!req->sqe.data)
299 		return -ENOMEM;
300 
301 	req->queue = queue;
302 
303 	return 0;
304 }
305 
306 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
307 		unsigned int hctx_idx)
308 {
309 	struct nvme_rdma_ctrl *ctrl = data;
310 	struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
311 
312 	BUG_ON(hctx_idx >= ctrl->ctrl.queue_count);
313 
314 	hctx->driver_data = queue;
315 	return 0;
316 }
317 
318 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
319 		unsigned int hctx_idx)
320 {
321 	struct nvme_rdma_ctrl *ctrl = data;
322 	struct nvme_rdma_queue *queue = &ctrl->queues[0];
323 
324 	BUG_ON(hctx_idx != 0);
325 
326 	hctx->driver_data = queue;
327 	return 0;
328 }
329 
330 static void nvme_rdma_free_dev(struct kref *ref)
331 {
332 	struct nvme_rdma_device *ndev =
333 		container_of(ref, struct nvme_rdma_device, ref);
334 
335 	mutex_lock(&device_list_mutex);
336 	list_del(&ndev->entry);
337 	mutex_unlock(&device_list_mutex);
338 
339 	ib_dealloc_pd(ndev->pd);
340 	kfree(ndev);
341 }
342 
343 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
344 {
345 	kref_put(&dev->ref, nvme_rdma_free_dev);
346 }
347 
348 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
349 {
350 	return kref_get_unless_zero(&dev->ref);
351 }
352 
353 static struct nvme_rdma_device *
354 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
355 {
356 	struct nvme_rdma_device *ndev;
357 
358 	mutex_lock(&device_list_mutex);
359 	list_for_each_entry(ndev, &device_list, entry) {
360 		if (ndev->dev->node_guid == cm_id->device->node_guid &&
361 		    nvme_rdma_dev_get(ndev))
362 			goto out_unlock;
363 	}
364 
365 	ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
366 	if (!ndev)
367 		goto out_err;
368 
369 	ndev->dev = cm_id->device;
370 	kref_init(&ndev->ref);
371 
372 	ndev->pd = ib_alloc_pd(ndev->dev,
373 		register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
374 	if (IS_ERR(ndev->pd))
375 		goto out_free_dev;
376 
377 	if (!(ndev->dev->attrs.device_cap_flags &
378 	      IB_DEVICE_MEM_MGT_EXTENSIONS)) {
379 		dev_err(&ndev->dev->dev,
380 			"Memory registrations not supported.\n");
381 		goto out_free_pd;
382 	}
383 
384 	ndev->num_inline_segments = min(NVME_RDMA_MAX_INLINE_SEGMENTS,
385 					ndev->dev->attrs.max_send_sge - 1);
386 	list_add(&ndev->entry, &device_list);
387 out_unlock:
388 	mutex_unlock(&device_list_mutex);
389 	return ndev;
390 
391 out_free_pd:
392 	ib_dealloc_pd(ndev->pd);
393 out_free_dev:
394 	kfree(ndev);
395 out_err:
396 	mutex_unlock(&device_list_mutex);
397 	return NULL;
398 }
399 
400 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
401 {
402 	struct nvme_rdma_device *dev;
403 	struct ib_device *ibdev;
404 
405 	if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags))
406 		return;
407 
408 	dev = queue->device;
409 	ibdev = dev->dev;
410 
411 	ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
412 
413 	/*
414 	 * The cm_id object might have been destroyed during RDMA connection
415 	 * establishment error flow to avoid getting other cma events, thus
416 	 * the destruction of the QP shouldn't use rdma_cm API.
417 	 */
418 	ib_destroy_qp(queue->qp);
419 	ib_free_cq(queue->ib_cq);
420 
421 	nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
422 			sizeof(struct nvme_completion), DMA_FROM_DEVICE);
423 
424 	nvme_rdma_dev_put(dev);
425 }
426 
427 static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev)
428 {
429 	return min_t(u32, NVME_RDMA_MAX_SEGMENTS,
430 		     ibdev->attrs.max_fast_reg_page_list_len - 1);
431 }
432 
433 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue)
434 {
435 	struct ib_device *ibdev;
436 	const int send_wr_factor = 3;			/* MR, SEND, INV */
437 	const int cq_factor = send_wr_factor + 1;	/* + RECV */
438 	int comp_vector, idx = nvme_rdma_queue_idx(queue);
439 	enum ib_poll_context poll_ctx;
440 	int ret, pages_per_mr;
441 
442 	queue->device = nvme_rdma_find_get_device(queue->cm_id);
443 	if (!queue->device) {
444 		dev_err(queue->cm_id->device->dev.parent,
445 			"no client data found!\n");
446 		return -ECONNREFUSED;
447 	}
448 	ibdev = queue->device->dev;
449 
450 	/*
451 	 * Spread I/O queues completion vectors according their queue index.
452 	 * Admin queues can always go on completion vector 0.
453 	 */
454 	comp_vector = idx == 0 ? idx : idx - 1;
455 
456 	/* Polling queues need direct cq polling context */
457 	if (nvme_rdma_poll_queue(queue))
458 		poll_ctx = IB_POLL_DIRECT;
459 	else
460 		poll_ctx = IB_POLL_SOFTIRQ;
461 
462 	/* +1 for ib_stop_cq */
463 	queue->ib_cq = ib_alloc_cq(ibdev, queue,
464 				cq_factor * queue->queue_size + 1,
465 				comp_vector, poll_ctx);
466 	if (IS_ERR(queue->ib_cq)) {
467 		ret = PTR_ERR(queue->ib_cq);
468 		goto out_put_dev;
469 	}
470 
471 	ret = nvme_rdma_create_qp(queue, send_wr_factor);
472 	if (ret)
473 		goto out_destroy_ib_cq;
474 
475 	queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
476 			sizeof(struct nvme_completion), DMA_FROM_DEVICE);
477 	if (!queue->rsp_ring) {
478 		ret = -ENOMEM;
479 		goto out_destroy_qp;
480 	}
481 
482 	/*
483 	 * Currently we don't use SG_GAPS MR's so if the first entry is
484 	 * misaligned we'll end up using two entries for a single data page,
485 	 * so one additional entry is required.
486 	 */
487 	pages_per_mr = nvme_rdma_get_max_fr_pages(ibdev) + 1;
488 	ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs,
489 			      queue->queue_size,
490 			      IB_MR_TYPE_MEM_REG,
491 			      pages_per_mr, 0);
492 	if (ret) {
493 		dev_err(queue->ctrl->ctrl.device,
494 			"failed to initialize MR pool sized %d for QID %d\n",
495 			queue->queue_size, idx);
496 		goto out_destroy_ring;
497 	}
498 
499 	set_bit(NVME_RDMA_Q_TR_READY, &queue->flags);
500 
501 	return 0;
502 
503 out_destroy_ring:
504 	nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
505 			    sizeof(struct nvme_completion), DMA_FROM_DEVICE);
506 out_destroy_qp:
507 	rdma_destroy_qp(queue->cm_id);
508 out_destroy_ib_cq:
509 	ib_free_cq(queue->ib_cq);
510 out_put_dev:
511 	nvme_rdma_dev_put(queue->device);
512 	return ret;
513 }
514 
515 static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl,
516 		int idx, size_t queue_size)
517 {
518 	struct nvme_rdma_queue *queue;
519 	struct sockaddr *src_addr = NULL;
520 	int ret;
521 
522 	queue = &ctrl->queues[idx];
523 	queue->ctrl = ctrl;
524 	init_completion(&queue->cm_done);
525 
526 	if (idx > 0)
527 		queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
528 	else
529 		queue->cmnd_capsule_len = sizeof(struct nvme_command);
530 
531 	queue->queue_size = queue_size;
532 
533 	queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
534 			RDMA_PS_TCP, IB_QPT_RC);
535 	if (IS_ERR(queue->cm_id)) {
536 		dev_info(ctrl->ctrl.device,
537 			"failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
538 		return PTR_ERR(queue->cm_id);
539 	}
540 
541 	if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
542 		src_addr = (struct sockaddr *)&ctrl->src_addr;
543 
544 	queue->cm_error = -ETIMEDOUT;
545 	ret = rdma_resolve_addr(queue->cm_id, src_addr,
546 			(struct sockaddr *)&ctrl->addr,
547 			NVME_RDMA_CONNECT_TIMEOUT_MS);
548 	if (ret) {
549 		dev_info(ctrl->ctrl.device,
550 			"rdma_resolve_addr failed (%d).\n", ret);
551 		goto out_destroy_cm_id;
552 	}
553 
554 	ret = nvme_rdma_wait_for_cm(queue);
555 	if (ret) {
556 		dev_info(ctrl->ctrl.device,
557 			"rdma connection establishment failed (%d)\n", ret);
558 		goto out_destroy_cm_id;
559 	}
560 
561 	set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags);
562 
563 	return 0;
564 
565 out_destroy_cm_id:
566 	rdma_destroy_id(queue->cm_id);
567 	nvme_rdma_destroy_queue_ib(queue);
568 	return ret;
569 }
570 
571 static void __nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
572 {
573 	rdma_disconnect(queue->cm_id);
574 	ib_drain_qp(queue->qp);
575 }
576 
577 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
578 {
579 	if (!test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags))
580 		return;
581 	__nvme_rdma_stop_queue(queue);
582 }
583 
584 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
585 {
586 	if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
587 		return;
588 
589 	nvme_rdma_destroy_queue_ib(queue);
590 	rdma_destroy_id(queue->cm_id);
591 }
592 
593 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
594 {
595 	int i;
596 
597 	for (i = 1; i < ctrl->ctrl.queue_count; i++)
598 		nvme_rdma_free_queue(&ctrl->queues[i]);
599 }
600 
601 static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl)
602 {
603 	int i;
604 
605 	for (i = 1; i < ctrl->ctrl.queue_count; i++)
606 		nvme_rdma_stop_queue(&ctrl->queues[i]);
607 }
608 
609 static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx)
610 {
611 	struct nvme_rdma_queue *queue = &ctrl->queues[idx];
612 	bool poll = nvme_rdma_poll_queue(queue);
613 	int ret;
614 
615 	if (idx)
616 		ret = nvmf_connect_io_queue(&ctrl->ctrl, idx, poll);
617 	else
618 		ret = nvmf_connect_admin_queue(&ctrl->ctrl);
619 
620 	if (!ret) {
621 		set_bit(NVME_RDMA_Q_LIVE, &queue->flags);
622 	} else {
623 		if (test_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
624 			__nvme_rdma_stop_queue(queue);
625 		dev_info(ctrl->ctrl.device,
626 			"failed to connect queue: %d ret=%d\n", idx, ret);
627 	}
628 	return ret;
629 }
630 
631 static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl)
632 {
633 	int i, ret = 0;
634 
635 	for (i = 1; i < ctrl->ctrl.queue_count; i++) {
636 		ret = nvme_rdma_start_queue(ctrl, i);
637 		if (ret)
638 			goto out_stop_queues;
639 	}
640 
641 	return 0;
642 
643 out_stop_queues:
644 	for (i--; i >= 1; i--)
645 		nvme_rdma_stop_queue(&ctrl->queues[i]);
646 	return ret;
647 }
648 
649 static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl)
650 {
651 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
652 	struct ib_device *ibdev = ctrl->device->dev;
653 	unsigned int nr_io_queues, nr_default_queues;
654 	unsigned int nr_read_queues, nr_poll_queues;
655 	int i, ret;
656 
657 	nr_read_queues = min_t(unsigned int, ibdev->num_comp_vectors,
658 				min(opts->nr_io_queues, num_online_cpus()));
659 	nr_default_queues =  min_t(unsigned int, ibdev->num_comp_vectors,
660 				min(opts->nr_write_queues, num_online_cpus()));
661 	nr_poll_queues = min(opts->nr_poll_queues, num_online_cpus());
662 	nr_io_queues = nr_read_queues + nr_default_queues + nr_poll_queues;
663 
664 	ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
665 	if (ret)
666 		return ret;
667 
668 	ctrl->ctrl.queue_count = nr_io_queues + 1;
669 	if (ctrl->ctrl.queue_count < 2)
670 		return 0;
671 
672 	dev_info(ctrl->ctrl.device,
673 		"creating %d I/O queues.\n", nr_io_queues);
674 
675 	if (opts->nr_write_queues && nr_read_queues < nr_io_queues) {
676 		/*
677 		 * separate read/write queues
678 		 * hand out dedicated default queues only after we have
679 		 * sufficient read queues.
680 		 */
681 		ctrl->io_queues[HCTX_TYPE_READ] = nr_read_queues;
682 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ];
683 		ctrl->io_queues[HCTX_TYPE_DEFAULT] =
684 			min(nr_default_queues, nr_io_queues);
685 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
686 	} else {
687 		/*
688 		 * shared read/write queues
689 		 * either no write queues were requested, or we don't have
690 		 * sufficient queue count to have dedicated default queues.
691 		 */
692 		ctrl->io_queues[HCTX_TYPE_DEFAULT] =
693 			min(nr_read_queues, nr_io_queues);
694 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
695 	}
696 
697 	if (opts->nr_poll_queues && nr_io_queues) {
698 		/* map dedicated poll queues only if we have queues left */
699 		ctrl->io_queues[HCTX_TYPE_POLL] =
700 			min(nr_poll_queues, nr_io_queues);
701 	}
702 
703 	for (i = 1; i < ctrl->ctrl.queue_count; i++) {
704 		ret = nvme_rdma_alloc_queue(ctrl, i,
705 				ctrl->ctrl.sqsize + 1);
706 		if (ret)
707 			goto out_free_queues;
708 	}
709 
710 	return 0;
711 
712 out_free_queues:
713 	for (i--; i >= 1; i--)
714 		nvme_rdma_free_queue(&ctrl->queues[i]);
715 
716 	return ret;
717 }
718 
719 static struct blk_mq_tag_set *nvme_rdma_alloc_tagset(struct nvme_ctrl *nctrl,
720 		bool admin)
721 {
722 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
723 	struct blk_mq_tag_set *set;
724 	int ret;
725 
726 	if (admin) {
727 		set = &ctrl->admin_tag_set;
728 		memset(set, 0, sizeof(*set));
729 		set->ops = &nvme_rdma_admin_mq_ops;
730 		set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
731 		set->reserved_tags = 2; /* connect + keep-alive */
732 		set->numa_node = nctrl->numa_node;
733 		set->cmd_size = sizeof(struct nvme_rdma_request) +
734 			SG_CHUNK_SIZE * sizeof(struct scatterlist);
735 		set->driver_data = ctrl;
736 		set->nr_hw_queues = 1;
737 		set->timeout = ADMIN_TIMEOUT;
738 		set->flags = BLK_MQ_F_NO_SCHED;
739 	} else {
740 		set = &ctrl->tag_set;
741 		memset(set, 0, sizeof(*set));
742 		set->ops = &nvme_rdma_mq_ops;
743 		set->queue_depth = nctrl->sqsize + 1;
744 		set->reserved_tags = 1; /* fabric connect */
745 		set->numa_node = nctrl->numa_node;
746 		set->flags = BLK_MQ_F_SHOULD_MERGE;
747 		set->cmd_size = sizeof(struct nvme_rdma_request) +
748 			SG_CHUNK_SIZE * sizeof(struct scatterlist);
749 		set->driver_data = ctrl;
750 		set->nr_hw_queues = nctrl->queue_count - 1;
751 		set->timeout = NVME_IO_TIMEOUT;
752 		set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2;
753 	}
754 
755 	ret = blk_mq_alloc_tag_set(set);
756 	if (ret)
757 		return ERR_PTR(ret);
758 
759 	return set;
760 }
761 
762 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl,
763 		bool remove)
764 {
765 	if (remove) {
766 		blk_cleanup_queue(ctrl->ctrl.admin_q);
767 		blk_cleanup_queue(ctrl->ctrl.fabrics_q);
768 		blk_mq_free_tag_set(ctrl->ctrl.admin_tagset);
769 	}
770 	if (ctrl->async_event_sqe.data) {
771 		nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
772 				sizeof(struct nvme_command), DMA_TO_DEVICE);
773 		ctrl->async_event_sqe.data = NULL;
774 	}
775 	nvme_rdma_free_queue(&ctrl->queues[0]);
776 }
777 
778 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl,
779 		bool new)
780 {
781 	int error;
782 
783 	error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
784 	if (error)
785 		return error;
786 
787 	ctrl->device = ctrl->queues[0].device;
788 	ctrl->ctrl.numa_node = dev_to_node(ctrl->device->dev->dma_device);
789 
790 	ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev);
791 
792 	/*
793 	 * Bind the async event SQE DMA mapping to the admin queue lifetime.
794 	 * It's safe, since any chage in the underlying RDMA device will issue
795 	 * error recovery and queue re-creation.
796 	 */
797 	error = nvme_rdma_alloc_qe(ctrl->device->dev, &ctrl->async_event_sqe,
798 			sizeof(struct nvme_command), DMA_TO_DEVICE);
799 	if (error)
800 		goto out_free_queue;
801 
802 	if (new) {
803 		ctrl->ctrl.admin_tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, true);
804 		if (IS_ERR(ctrl->ctrl.admin_tagset)) {
805 			error = PTR_ERR(ctrl->ctrl.admin_tagset);
806 			goto out_free_async_qe;
807 		}
808 
809 		ctrl->ctrl.fabrics_q = blk_mq_init_queue(&ctrl->admin_tag_set);
810 		if (IS_ERR(ctrl->ctrl.fabrics_q)) {
811 			error = PTR_ERR(ctrl->ctrl.fabrics_q);
812 			goto out_free_tagset;
813 		}
814 
815 		ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
816 		if (IS_ERR(ctrl->ctrl.admin_q)) {
817 			error = PTR_ERR(ctrl->ctrl.admin_q);
818 			goto out_cleanup_fabrics_q;
819 		}
820 	}
821 
822 	error = nvme_rdma_start_queue(ctrl, 0);
823 	if (error)
824 		goto out_cleanup_queue;
825 
826 	error = nvme_enable_ctrl(&ctrl->ctrl);
827 	if (error)
828 		goto out_stop_queue;
829 
830 	ctrl->ctrl.max_segments = ctrl->max_fr_pages;
831 	ctrl->ctrl.max_hw_sectors = ctrl->max_fr_pages << (ilog2(SZ_4K) - 9);
832 
833 	blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
834 
835 	error = nvme_init_identify(&ctrl->ctrl);
836 	if (error)
837 		goto out_stop_queue;
838 
839 	return 0;
840 
841 out_stop_queue:
842 	nvme_rdma_stop_queue(&ctrl->queues[0]);
843 out_cleanup_queue:
844 	if (new)
845 		blk_cleanup_queue(ctrl->ctrl.admin_q);
846 out_cleanup_fabrics_q:
847 	if (new)
848 		blk_cleanup_queue(ctrl->ctrl.fabrics_q);
849 out_free_tagset:
850 	if (new)
851 		blk_mq_free_tag_set(ctrl->ctrl.admin_tagset);
852 out_free_async_qe:
853 	nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
854 		sizeof(struct nvme_command), DMA_TO_DEVICE);
855 	ctrl->async_event_sqe.data = NULL;
856 out_free_queue:
857 	nvme_rdma_free_queue(&ctrl->queues[0]);
858 	return error;
859 }
860 
861 static void nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl *ctrl,
862 		bool remove)
863 {
864 	if (remove) {
865 		blk_cleanup_queue(ctrl->ctrl.connect_q);
866 		blk_mq_free_tag_set(ctrl->ctrl.tagset);
867 	}
868 	nvme_rdma_free_io_queues(ctrl);
869 }
870 
871 static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new)
872 {
873 	int ret;
874 
875 	ret = nvme_rdma_alloc_io_queues(ctrl);
876 	if (ret)
877 		return ret;
878 
879 	if (new) {
880 		ctrl->ctrl.tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, false);
881 		if (IS_ERR(ctrl->ctrl.tagset)) {
882 			ret = PTR_ERR(ctrl->ctrl.tagset);
883 			goto out_free_io_queues;
884 		}
885 
886 		ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
887 		if (IS_ERR(ctrl->ctrl.connect_q)) {
888 			ret = PTR_ERR(ctrl->ctrl.connect_q);
889 			goto out_free_tag_set;
890 		}
891 	} else {
892 		blk_mq_update_nr_hw_queues(&ctrl->tag_set,
893 			ctrl->ctrl.queue_count - 1);
894 	}
895 
896 	ret = nvme_rdma_start_io_queues(ctrl);
897 	if (ret)
898 		goto out_cleanup_connect_q;
899 
900 	return 0;
901 
902 out_cleanup_connect_q:
903 	if (new)
904 		blk_cleanup_queue(ctrl->ctrl.connect_q);
905 out_free_tag_set:
906 	if (new)
907 		blk_mq_free_tag_set(ctrl->ctrl.tagset);
908 out_free_io_queues:
909 	nvme_rdma_free_io_queues(ctrl);
910 	return ret;
911 }
912 
913 static void nvme_rdma_teardown_admin_queue(struct nvme_rdma_ctrl *ctrl,
914 		bool remove)
915 {
916 	blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
917 	nvme_rdma_stop_queue(&ctrl->queues[0]);
918 	if (ctrl->ctrl.admin_tagset) {
919 		blk_mq_tagset_busy_iter(ctrl->ctrl.admin_tagset,
920 			nvme_cancel_request, &ctrl->ctrl);
921 		blk_mq_tagset_wait_completed_request(ctrl->ctrl.admin_tagset);
922 	}
923 	if (remove)
924 		blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
925 	nvme_rdma_destroy_admin_queue(ctrl, remove);
926 }
927 
928 static void nvme_rdma_teardown_io_queues(struct nvme_rdma_ctrl *ctrl,
929 		bool remove)
930 {
931 	if (ctrl->ctrl.queue_count > 1) {
932 		nvme_stop_queues(&ctrl->ctrl);
933 		nvme_rdma_stop_io_queues(ctrl);
934 		if (ctrl->ctrl.tagset) {
935 			blk_mq_tagset_busy_iter(ctrl->ctrl.tagset,
936 				nvme_cancel_request, &ctrl->ctrl);
937 			blk_mq_tagset_wait_completed_request(ctrl->ctrl.tagset);
938 		}
939 		if (remove)
940 			nvme_start_queues(&ctrl->ctrl);
941 		nvme_rdma_destroy_io_queues(ctrl, remove);
942 	}
943 }
944 
945 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
946 {
947 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
948 
949 	if (list_empty(&ctrl->list))
950 		goto free_ctrl;
951 
952 	mutex_lock(&nvme_rdma_ctrl_mutex);
953 	list_del(&ctrl->list);
954 	mutex_unlock(&nvme_rdma_ctrl_mutex);
955 
956 	nvmf_free_options(nctrl->opts);
957 free_ctrl:
958 	kfree(ctrl->queues);
959 	kfree(ctrl);
960 }
961 
962 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl)
963 {
964 	/* If we are resetting/deleting then do nothing */
965 	if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) {
966 		WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
967 			ctrl->ctrl.state == NVME_CTRL_LIVE);
968 		return;
969 	}
970 
971 	if (nvmf_should_reconnect(&ctrl->ctrl)) {
972 		dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n",
973 			ctrl->ctrl.opts->reconnect_delay);
974 		queue_delayed_work(nvme_wq, &ctrl->reconnect_work,
975 				ctrl->ctrl.opts->reconnect_delay * HZ);
976 	} else {
977 		nvme_delete_ctrl(&ctrl->ctrl);
978 	}
979 }
980 
981 static int nvme_rdma_setup_ctrl(struct nvme_rdma_ctrl *ctrl, bool new)
982 {
983 	int ret = -EINVAL;
984 	bool changed;
985 
986 	ret = nvme_rdma_configure_admin_queue(ctrl, new);
987 	if (ret)
988 		return ret;
989 
990 	if (ctrl->ctrl.icdoff) {
991 		dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
992 		goto destroy_admin;
993 	}
994 
995 	if (!(ctrl->ctrl.sgls & (1 << 2))) {
996 		dev_err(ctrl->ctrl.device,
997 			"Mandatory keyed sgls are not supported!\n");
998 		goto destroy_admin;
999 	}
1000 
1001 	if (ctrl->ctrl.opts->queue_size > ctrl->ctrl.sqsize + 1) {
1002 		dev_warn(ctrl->ctrl.device,
1003 			"queue_size %zu > ctrl sqsize %u, clamping down\n",
1004 			ctrl->ctrl.opts->queue_size, ctrl->ctrl.sqsize + 1);
1005 	}
1006 
1007 	if (ctrl->ctrl.sqsize + 1 > ctrl->ctrl.maxcmd) {
1008 		dev_warn(ctrl->ctrl.device,
1009 			"sqsize %u > ctrl maxcmd %u, clamping down\n",
1010 			ctrl->ctrl.sqsize + 1, ctrl->ctrl.maxcmd);
1011 		ctrl->ctrl.sqsize = ctrl->ctrl.maxcmd - 1;
1012 	}
1013 
1014 	if (ctrl->ctrl.sgls & (1 << 20))
1015 		ctrl->use_inline_data = true;
1016 
1017 	if (ctrl->ctrl.queue_count > 1) {
1018 		ret = nvme_rdma_configure_io_queues(ctrl, new);
1019 		if (ret)
1020 			goto destroy_admin;
1021 	}
1022 
1023 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1024 	if (!changed) {
1025 		/* state change failure is ok if we're in DELETING state */
1026 		WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING);
1027 		ret = -EINVAL;
1028 		goto destroy_io;
1029 	}
1030 
1031 	nvme_start_ctrl(&ctrl->ctrl);
1032 	return 0;
1033 
1034 destroy_io:
1035 	if (ctrl->ctrl.queue_count > 1)
1036 		nvme_rdma_destroy_io_queues(ctrl, new);
1037 destroy_admin:
1038 	nvme_rdma_stop_queue(&ctrl->queues[0]);
1039 	nvme_rdma_destroy_admin_queue(ctrl, new);
1040 	return ret;
1041 }
1042 
1043 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
1044 {
1045 	struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
1046 			struct nvme_rdma_ctrl, reconnect_work);
1047 
1048 	++ctrl->ctrl.nr_reconnects;
1049 
1050 	if (nvme_rdma_setup_ctrl(ctrl, false))
1051 		goto requeue;
1052 
1053 	dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n",
1054 			ctrl->ctrl.nr_reconnects);
1055 
1056 	ctrl->ctrl.nr_reconnects = 0;
1057 
1058 	return;
1059 
1060 requeue:
1061 	dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n",
1062 			ctrl->ctrl.nr_reconnects);
1063 	nvme_rdma_reconnect_or_remove(ctrl);
1064 }
1065 
1066 static void nvme_rdma_error_recovery_work(struct work_struct *work)
1067 {
1068 	struct nvme_rdma_ctrl *ctrl = container_of(work,
1069 			struct nvme_rdma_ctrl, err_work);
1070 
1071 	nvme_stop_keep_alive(&ctrl->ctrl);
1072 	nvme_rdma_teardown_io_queues(ctrl, false);
1073 	nvme_start_queues(&ctrl->ctrl);
1074 	nvme_rdma_teardown_admin_queue(ctrl, false);
1075 	blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
1076 
1077 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
1078 		/* state change failure is ok if we're in DELETING state */
1079 		WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING);
1080 		return;
1081 	}
1082 
1083 	nvme_rdma_reconnect_or_remove(ctrl);
1084 }
1085 
1086 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
1087 {
1088 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
1089 		return;
1090 
1091 	queue_work(nvme_wq, &ctrl->err_work);
1092 }
1093 
1094 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
1095 		const char *op)
1096 {
1097 	struct nvme_rdma_queue *queue = cq->cq_context;
1098 	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1099 
1100 	if (ctrl->ctrl.state == NVME_CTRL_LIVE)
1101 		dev_info(ctrl->ctrl.device,
1102 			     "%s for CQE 0x%p failed with status %s (%d)\n",
1103 			     op, wc->wr_cqe,
1104 			     ib_wc_status_msg(wc->status), wc->status);
1105 	nvme_rdma_error_recovery(ctrl);
1106 }
1107 
1108 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
1109 {
1110 	if (unlikely(wc->status != IB_WC_SUCCESS))
1111 		nvme_rdma_wr_error(cq, wc, "MEMREG");
1112 }
1113 
1114 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
1115 {
1116 	struct nvme_rdma_request *req =
1117 		container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe);
1118 	struct request *rq = blk_mq_rq_from_pdu(req);
1119 
1120 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
1121 		nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
1122 		return;
1123 	}
1124 
1125 	if (refcount_dec_and_test(&req->ref))
1126 		nvme_end_request(rq, req->status, req->result);
1127 
1128 }
1129 
1130 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
1131 		struct nvme_rdma_request *req)
1132 {
1133 	struct ib_send_wr wr = {
1134 		.opcode		    = IB_WR_LOCAL_INV,
1135 		.next		    = NULL,
1136 		.num_sge	    = 0,
1137 		.send_flags	    = IB_SEND_SIGNALED,
1138 		.ex.invalidate_rkey = req->mr->rkey,
1139 	};
1140 
1141 	req->reg_cqe.done = nvme_rdma_inv_rkey_done;
1142 	wr.wr_cqe = &req->reg_cqe;
1143 
1144 	return ib_post_send(queue->qp, &wr, NULL);
1145 }
1146 
1147 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
1148 		struct request *rq)
1149 {
1150 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1151 	struct nvme_rdma_device *dev = queue->device;
1152 	struct ib_device *ibdev = dev->dev;
1153 
1154 	if (!blk_rq_nr_phys_segments(rq))
1155 		return;
1156 
1157 	if (req->mr) {
1158 		ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
1159 		req->mr = NULL;
1160 	}
1161 
1162 	ib_dma_unmap_sg(ibdev, req->sg_table.sgl, req->nents, rq_dma_dir(rq));
1163 
1164 	nvme_cleanup_cmd(rq);
1165 	sg_free_table_chained(&req->sg_table, SG_CHUNK_SIZE);
1166 }
1167 
1168 static int nvme_rdma_set_sg_null(struct nvme_command *c)
1169 {
1170 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1171 
1172 	sg->addr = 0;
1173 	put_unaligned_le24(0, sg->length);
1174 	put_unaligned_le32(0, sg->key);
1175 	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1176 	return 0;
1177 }
1178 
1179 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
1180 		struct nvme_rdma_request *req, struct nvme_command *c,
1181 		int count)
1182 {
1183 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
1184 	struct scatterlist *sgl = req->sg_table.sgl;
1185 	struct ib_sge *sge = &req->sge[1];
1186 	u32 len = 0;
1187 	int i;
1188 
1189 	for (i = 0; i < count; i++, sgl++, sge++) {
1190 		sge->addr = sg_dma_address(sgl);
1191 		sge->length = sg_dma_len(sgl);
1192 		sge->lkey = queue->device->pd->local_dma_lkey;
1193 		len += sge->length;
1194 	}
1195 
1196 	sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
1197 	sg->length = cpu_to_le32(len);
1198 	sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
1199 
1200 	req->num_sge += count;
1201 	return 0;
1202 }
1203 
1204 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
1205 		struct nvme_rdma_request *req, struct nvme_command *c)
1206 {
1207 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1208 
1209 	sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl));
1210 	put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length);
1211 	put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
1212 	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1213 	return 0;
1214 }
1215 
1216 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
1217 		struct nvme_rdma_request *req, struct nvme_command *c,
1218 		int count)
1219 {
1220 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1221 	int nr;
1222 
1223 	req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs);
1224 	if (WARN_ON_ONCE(!req->mr))
1225 		return -EAGAIN;
1226 
1227 	/*
1228 	 * Align the MR to a 4K page size to match the ctrl page size and
1229 	 * the block virtual boundary.
1230 	 */
1231 	nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, SZ_4K);
1232 	if (unlikely(nr < count)) {
1233 		ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
1234 		req->mr = NULL;
1235 		if (nr < 0)
1236 			return nr;
1237 		return -EINVAL;
1238 	}
1239 
1240 	ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1241 
1242 	req->reg_cqe.done = nvme_rdma_memreg_done;
1243 	memset(&req->reg_wr, 0, sizeof(req->reg_wr));
1244 	req->reg_wr.wr.opcode = IB_WR_REG_MR;
1245 	req->reg_wr.wr.wr_cqe = &req->reg_cqe;
1246 	req->reg_wr.wr.num_sge = 0;
1247 	req->reg_wr.mr = req->mr;
1248 	req->reg_wr.key = req->mr->rkey;
1249 	req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
1250 			     IB_ACCESS_REMOTE_READ |
1251 			     IB_ACCESS_REMOTE_WRITE;
1252 
1253 	sg->addr = cpu_to_le64(req->mr->iova);
1254 	put_unaligned_le24(req->mr->length, sg->length);
1255 	put_unaligned_le32(req->mr->rkey, sg->key);
1256 	sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
1257 			NVME_SGL_FMT_INVALIDATE;
1258 
1259 	return 0;
1260 }
1261 
1262 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
1263 		struct request *rq, struct nvme_command *c)
1264 {
1265 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1266 	struct nvme_rdma_device *dev = queue->device;
1267 	struct ib_device *ibdev = dev->dev;
1268 	int count, ret;
1269 
1270 	req->num_sge = 1;
1271 	refcount_set(&req->ref, 2); /* send and recv completions */
1272 
1273 	c->common.flags |= NVME_CMD_SGL_METABUF;
1274 
1275 	if (!blk_rq_nr_phys_segments(rq))
1276 		return nvme_rdma_set_sg_null(c);
1277 
1278 	req->sg_table.sgl = req->first_sgl;
1279 	ret = sg_alloc_table_chained(&req->sg_table,
1280 			blk_rq_nr_phys_segments(rq), req->sg_table.sgl,
1281 			SG_CHUNK_SIZE);
1282 	if (ret)
1283 		return -ENOMEM;
1284 
1285 	req->nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl);
1286 
1287 	count = ib_dma_map_sg(ibdev, req->sg_table.sgl, req->nents,
1288 			      rq_dma_dir(rq));
1289 	if (unlikely(count <= 0)) {
1290 		ret = -EIO;
1291 		goto out_free_table;
1292 	}
1293 
1294 	if (count <= dev->num_inline_segments) {
1295 		if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) &&
1296 		    queue->ctrl->use_inline_data &&
1297 		    blk_rq_payload_bytes(rq) <=
1298 				nvme_rdma_inline_data_size(queue)) {
1299 			ret = nvme_rdma_map_sg_inline(queue, req, c, count);
1300 			goto out;
1301 		}
1302 
1303 		if (count == 1 && dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
1304 			ret = nvme_rdma_map_sg_single(queue, req, c);
1305 			goto out;
1306 		}
1307 	}
1308 
1309 	ret = nvme_rdma_map_sg_fr(queue, req, c, count);
1310 out:
1311 	if (unlikely(ret))
1312 		goto out_unmap_sg;
1313 
1314 	return 0;
1315 
1316 out_unmap_sg:
1317 	ib_dma_unmap_sg(ibdev, req->sg_table.sgl, req->nents, rq_dma_dir(rq));
1318 out_free_table:
1319 	sg_free_table_chained(&req->sg_table, SG_CHUNK_SIZE);
1320 	return ret;
1321 }
1322 
1323 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
1324 {
1325 	struct nvme_rdma_qe *qe =
1326 		container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1327 	struct nvme_rdma_request *req =
1328 		container_of(qe, struct nvme_rdma_request, sqe);
1329 	struct request *rq = blk_mq_rq_from_pdu(req);
1330 
1331 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
1332 		nvme_rdma_wr_error(cq, wc, "SEND");
1333 		return;
1334 	}
1335 
1336 	if (refcount_dec_and_test(&req->ref))
1337 		nvme_end_request(rq, req->status, req->result);
1338 }
1339 
1340 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
1341 		struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
1342 		struct ib_send_wr *first)
1343 {
1344 	struct ib_send_wr wr;
1345 	int ret;
1346 
1347 	sge->addr   = qe->dma;
1348 	sge->length = sizeof(struct nvme_command),
1349 	sge->lkey   = queue->device->pd->local_dma_lkey;
1350 
1351 	wr.next       = NULL;
1352 	wr.wr_cqe     = &qe->cqe;
1353 	wr.sg_list    = sge;
1354 	wr.num_sge    = num_sge;
1355 	wr.opcode     = IB_WR_SEND;
1356 	wr.send_flags = IB_SEND_SIGNALED;
1357 
1358 	if (first)
1359 		first->next = &wr;
1360 	else
1361 		first = &wr;
1362 
1363 	ret = ib_post_send(queue->qp, first, NULL);
1364 	if (unlikely(ret)) {
1365 		dev_err(queue->ctrl->ctrl.device,
1366 			     "%s failed with error code %d\n", __func__, ret);
1367 	}
1368 	return ret;
1369 }
1370 
1371 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
1372 		struct nvme_rdma_qe *qe)
1373 {
1374 	struct ib_recv_wr wr;
1375 	struct ib_sge list;
1376 	int ret;
1377 
1378 	list.addr   = qe->dma;
1379 	list.length = sizeof(struct nvme_completion);
1380 	list.lkey   = queue->device->pd->local_dma_lkey;
1381 
1382 	qe->cqe.done = nvme_rdma_recv_done;
1383 
1384 	wr.next     = NULL;
1385 	wr.wr_cqe   = &qe->cqe;
1386 	wr.sg_list  = &list;
1387 	wr.num_sge  = 1;
1388 
1389 	ret = ib_post_recv(queue->qp, &wr, NULL);
1390 	if (unlikely(ret)) {
1391 		dev_err(queue->ctrl->ctrl.device,
1392 			"%s failed with error code %d\n", __func__, ret);
1393 	}
1394 	return ret;
1395 }
1396 
1397 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
1398 {
1399 	u32 queue_idx = nvme_rdma_queue_idx(queue);
1400 
1401 	if (queue_idx == 0)
1402 		return queue->ctrl->admin_tag_set.tags[queue_idx];
1403 	return queue->ctrl->tag_set.tags[queue_idx - 1];
1404 }
1405 
1406 static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc)
1407 {
1408 	if (unlikely(wc->status != IB_WC_SUCCESS))
1409 		nvme_rdma_wr_error(cq, wc, "ASYNC");
1410 }
1411 
1412 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg)
1413 {
1414 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
1415 	struct nvme_rdma_queue *queue = &ctrl->queues[0];
1416 	struct ib_device *dev = queue->device->dev;
1417 	struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
1418 	struct nvme_command *cmd = sqe->data;
1419 	struct ib_sge sge;
1420 	int ret;
1421 
1422 	ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
1423 
1424 	memset(cmd, 0, sizeof(*cmd));
1425 	cmd->common.opcode = nvme_admin_async_event;
1426 	cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1427 	cmd->common.flags |= NVME_CMD_SGL_METABUF;
1428 	nvme_rdma_set_sg_null(cmd);
1429 
1430 	sqe->cqe.done = nvme_rdma_async_done;
1431 
1432 	ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
1433 			DMA_TO_DEVICE);
1434 
1435 	ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL);
1436 	WARN_ON_ONCE(ret);
1437 }
1438 
1439 static void nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
1440 		struct nvme_completion *cqe, struct ib_wc *wc)
1441 {
1442 	struct request *rq;
1443 	struct nvme_rdma_request *req;
1444 
1445 	rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id);
1446 	if (!rq) {
1447 		dev_err(queue->ctrl->ctrl.device,
1448 			"tag 0x%x on QP %#x not found\n",
1449 			cqe->command_id, queue->qp->qp_num);
1450 		nvme_rdma_error_recovery(queue->ctrl);
1451 		return;
1452 	}
1453 	req = blk_mq_rq_to_pdu(rq);
1454 
1455 	req->status = cqe->status;
1456 	req->result = cqe->result;
1457 
1458 	if (wc->wc_flags & IB_WC_WITH_INVALIDATE) {
1459 		if (unlikely(wc->ex.invalidate_rkey != req->mr->rkey)) {
1460 			dev_err(queue->ctrl->ctrl.device,
1461 				"Bogus remote invalidation for rkey %#x\n",
1462 				req->mr->rkey);
1463 			nvme_rdma_error_recovery(queue->ctrl);
1464 		}
1465 	} else if (req->mr) {
1466 		int ret;
1467 
1468 		ret = nvme_rdma_inv_rkey(queue, req);
1469 		if (unlikely(ret < 0)) {
1470 			dev_err(queue->ctrl->ctrl.device,
1471 				"Queueing INV WR for rkey %#x failed (%d)\n",
1472 				req->mr->rkey, ret);
1473 			nvme_rdma_error_recovery(queue->ctrl);
1474 		}
1475 		/* the local invalidation completion will end the request */
1476 		return;
1477 	}
1478 
1479 	if (refcount_dec_and_test(&req->ref))
1480 		nvme_end_request(rq, req->status, req->result);
1481 }
1482 
1483 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1484 {
1485 	struct nvme_rdma_qe *qe =
1486 		container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1487 	struct nvme_rdma_queue *queue = cq->cq_context;
1488 	struct ib_device *ibdev = queue->device->dev;
1489 	struct nvme_completion *cqe = qe->data;
1490 	const size_t len = sizeof(struct nvme_completion);
1491 
1492 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
1493 		nvme_rdma_wr_error(cq, wc, "RECV");
1494 		return;
1495 	}
1496 
1497 	ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1498 	/*
1499 	 * AEN requests are special as they don't time out and can
1500 	 * survive any kind of queue freeze and often don't respond to
1501 	 * aborts.  We don't even bother to allocate a struct request
1502 	 * for them but rather special case them here.
1503 	 */
1504 	if (unlikely(nvme_rdma_queue_idx(queue) == 0 &&
1505 			cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH))
1506 		nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
1507 				&cqe->result);
1508 	else
1509 		nvme_rdma_process_nvme_rsp(queue, cqe, wc);
1510 	ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1511 
1512 	nvme_rdma_post_recv(queue, qe);
1513 }
1514 
1515 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
1516 {
1517 	int ret, i;
1518 
1519 	for (i = 0; i < queue->queue_size; i++) {
1520 		ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
1521 		if (ret)
1522 			goto out_destroy_queue_ib;
1523 	}
1524 
1525 	return 0;
1526 
1527 out_destroy_queue_ib:
1528 	nvme_rdma_destroy_queue_ib(queue);
1529 	return ret;
1530 }
1531 
1532 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
1533 		struct rdma_cm_event *ev)
1534 {
1535 	struct rdma_cm_id *cm_id = queue->cm_id;
1536 	int status = ev->status;
1537 	const char *rej_msg;
1538 	const struct nvme_rdma_cm_rej *rej_data;
1539 	u8 rej_data_len;
1540 
1541 	rej_msg = rdma_reject_msg(cm_id, status);
1542 	rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len);
1543 
1544 	if (rej_data && rej_data_len >= sizeof(u16)) {
1545 		u16 sts = le16_to_cpu(rej_data->sts);
1546 
1547 		dev_err(queue->ctrl->ctrl.device,
1548 		      "Connect rejected: status %d (%s) nvme status %d (%s).\n",
1549 		      status, rej_msg, sts, nvme_rdma_cm_msg(sts));
1550 	} else {
1551 		dev_err(queue->ctrl->ctrl.device,
1552 			"Connect rejected: status %d (%s).\n", status, rej_msg);
1553 	}
1554 
1555 	return -ECONNRESET;
1556 }
1557 
1558 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
1559 {
1560 	struct nvme_ctrl *ctrl = &queue->ctrl->ctrl;
1561 	int ret;
1562 
1563 	ret = nvme_rdma_create_queue_ib(queue);
1564 	if (ret)
1565 		return ret;
1566 
1567 	if (ctrl->opts->tos >= 0)
1568 		rdma_set_service_type(queue->cm_id, ctrl->opts->tos);
1569 	ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS);
1570 	if (ret) {
1571 		dev_err(ctrl->device, "rdma_resolve_route failed (%d).\n",
1572 			queue->cm_error);
1573 		goto out_destroy_queue;
1574 	}
1575 
1576 	return 0;
1577 
1578 out_destroy_queue:
1579 	nvme_rdma_destroy_queue_ib(queue);
1580 	return ret;
1581 }
1582 
1583 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
1584 {
1585 	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1586 	struct rdma_conn_param param = { };
1587 	struct nvme_rdma_cm_req priv = { };
1588 	int ret;
1589 
1590 	param.qp_num = queue->qp->qp_num;
1591 	param.flow_control = 1;
1592 
1593 	param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1594 	/* maximum retry count */
1595 	param.retry_count = 7;
1596 	param.rnr_retry_count = 7;
1597 	param.private_data = &priv;
1598 	param.private_data_len = sizeof(priv);
1599 
1600 	priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1601 	priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1602 	/*
1603 	 * set the admin queue depth to the minimum size
1604 	 * specified by the Fabrics standard.
1605 	 */
1606 	if (priv.qid == 0) {
1607 		priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH);
1608 		priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1);
1609 	} else {
1610 		/*
1611 		 * current interpretation of the fabrics spec
1612 		 * is at minimum you make hrqsize sqsize+1, or a
1613 		 * 1's based representation of sqsize.
1614 		 */
1615 		priv.hrqsize = cpu_to_le16(queue->queue_size);
1616 		priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
1617 	}
1618 
1619 	ret = rdma_connect(queue->cm_id, &param);
1620 	if (ret) {
1621 		dev_err(ctrl->ctrl.device,
1622 			"rdma_connect failed (%d).\n", ret);
1623 		goto out_destroy_queue_ib;
1624 	}
1625 
1626 	return 0;
1627 
1628 out_destroy_queue_ib:
1629 	nvme_rdma_destroy_queue_ib(queue);
1630 	return ret;
1631 }
1632 
1633 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
1634 		struct rdma_cm_event *ev)
1635 {
1636 	struct nvme_rdma_queue *queue = cm_id->context;
1637 	int cm_error = 0;
1638 
1639 	dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
1640 		rdma_event_msg(ev->event), ev->event,
1641 		ev->status, cm_id);
1642 
1643 	switch (ev->event) {
1644 	case RDMA_CM_EVENT_ADDR_RESOLVED:
1645 		cm_error = nvme_rdma_addr_resolved(queue);
1646 		break;
1647 	case RDMA_CM_EVENT_ROUTE_RESOLVED:
1648 		cm_error = nvme_rdma_route_resolved(queue);
1649 		break;
1650 	case RDMA_CM_EVENT_ESTABLISHED:
1651 		queue->cm_error = nvme_rdma_conn_established(queue);
1652 		/* complete cm_done regardless of success/failure */
1653 		complete(&queue->cm_done);
1654 		return 0;
1655 	case RDMA_CM_EVENT_REJECTED:
1656 		nvme_rdma_destroy_queue_ib(queue);
1657 		cm_error = nvme_rdma_conn_rejected(queue, ev);
1658 		break;
1659 	case RDMA_CM_EVENT_ROUTE_ERROR:
1660 	case RDMA_CM_EVENT_CONNECT_ERROR:
1661 	case RDMA_CM_EVENT_UNREACHABLE:
1662 		nvme_rdma_destroy_queue_ib(queue);
1663 		/* fall through */
1664 	case RDMA_CM_EVENT_ADDR_ERROR:
1665 		dev_dbg(queue->ctrl->ctrl.device,
1666 			"CM error event %d\n", ev->event);
1667 		cm_error = -ECONNRESET;
1668 		break;
1669 	case RDMA_CM_EVENT_DISCONNECTED:
1670 	case RDMA_CM_EVENT_ADDR_CHANGE:
1671 	case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1672 		dev_dbg(queue->ctrl->ctrl.device,
1673 			"disconnect received - connection closed\n");
1674 		nvme_rdma_error_recovery(queue->ctrl);
1675 		break;
1676 	case RDMA_CM_EVENT_DEVICE_REMOVAL:
1677 		/* device removal is handled via the ib_client API */
1678 		break;
1679 	default:
1680 		dev_err(queue->ctrl->ctrl.device,
1681 			"Unexpected RDMA CM event (%d)\n", ev->event);
1682 		nvme_rdma_error_recovery(queue->ctrl);
1683 		break;
1684 	}
1685 
1686 	if (cm_error) {
1687 		queue->cm_error = cm_error;
1688 		complete(&queue->cm_done);
1689 	}
1690 
1691 	return 0;
1692 }
1693 
1694 static enum blk_eh_timer_return
1695 nvme_rdma_timeout(struct request *rq, bool reserved)
1696 {
1697 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1698 	struct nvme_rdma_queue *queue = req->queue;
1699 	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1700 
1701 	dev_warn(ctrl->ctrl.device, "I/O %d QID %d timeout\n",
1702 		 rq->tag, nvme_rdma_queue_idx(queue));
1703 
1704 	/*
1705 	 * Restart the timer if a controller reset is already scheduled. Any
1706 	 * timed out commands would be handled before entering the connecting
1707 	 * state.
1708 	 */
1709 	if (ctrl->ctrl.state == NVME_CTRL_RESETTING)
1710 		return BLK_EH_RESET_TIMER;
1711 
1712 	if (ctrl->ctrl.state != NVME_CTRL_LIVE) {
1713 		/*
1714 		 * Teardown immediately if controller times out while starting
1715 		 * or we are already started error recovery. all outstanding
1716 		 * requests are completed on shutdown, so we return BLK_EH_DONE.
1717 		 */
1718 		flush_work(&ctrl->err_work);
1719 		nvme_rdma_teardown_io_queues(ctrl, false);
1720 		nvme_rdma_teardown_admin_queue(ctrl, false);
1721 		return BLK_EH_DONE;
1722 	}
1723 
1724 	dev_warn(ctrl->ctrl.device, "starting error recovery\n");
1725 	nvme_rdma_error_recovery(ctrl);
1726 
1727 	return BLK_EH_RESET_TIMER;
1728 }
1729 
1730 static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
1731 		const struct blk_mq_queue_data *bd)
1732 {
1733 	struct nvme_ns *ns = hctx->queue->queuedata;
1734 	struct nvme_rdma_queue *queue = hctx->driver_data;
1735 	struct request *rq = bd->rq;
1736 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1737 	struct nvme_rdma_qe *sqe = &req->sqe;
1738 	struct nvme_command *c = sqe->data;
1739 	struct ib_device *dev;
1740 	bool queue_ready = test_bit(NVME_RDMA_Q_LIVE, &queue->flags);
1741 	blk_status_t ret;
1742 	int err;
1743 
1744 	WARN_ON_ONCE(rq->tag < 0);
1745 
1746 	if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
1747 		return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq);
1748 
1749 	dev = queue->device->dev;
1750 
1751 	req->sqe.dma = ib_dma_map_single(dev, req->sqe.data,
1752 					 sizeof(struct nvme_command),
1753 					 DMA_TO_DEVICE);
1754 	err = ib_dma_mapping_error(dev, req->sqe.dma);
1755 	if (unlikely(err))
1756 		return BLK_STS_RESOURCE;
1757 
1758 	ib_dma_sync_single_for_cpu(dev, sqe->dma,
1759 			sizeof(struct nvme_command), DMA_TO_DEVICE);
1760 
1761 	ret = nvme_setup_cmd(ns, rq, c);
1762 	if (ret)
1763 		goto unmap_qe;
1764 
1765 	blk_mq_start_request(rq);
1766 
1767 	err = nvme_rdma_map_data(queue, rq, c);
1768 	if (unlikely(err < 0)) {
1769 		dev_err(queue->ctrl->ctrl.device,
1770 			     "Failed to map data (%d)\n", err);
1771 		nvme_cleanup_cmd(rq);
1772 		goto err;
1773 	}
1774 
1775 	sqe->cqe.done = nvme_rdma_send_done;
1776 
1777 	ib_dma_sync_single_for_device(dev, sqe->dma,
1778 			sizeof(struct nvme_command), DMA_TO_DEVICE);
1779 
1780 	err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
1781 			req->mr ? &req->reg_wr.wr : NULL);
1782 	if (unlikely(err)) {
1783 		nvme_rdma_unmap_data(queue, rq);
1784 		goto err;
1785 	}
1786 
1787 	return BLK_STS_OK;
1788 
1789 err:
1790 	if (err == -ENOMEM || err == -EAGAIN)
1791 		ret = BLK_STS_RESOURCE;
1792 	else
1793 		ret = BLK_STS_IOERR;
1794 unmap_qe:
1795 	ib_dma_unmap_single(dev, req->sqe.dma, sizeof(struct nvme_command),
1796 			    DMA_TO_DEVICE);
1797 	return ret;
1798 }
1799 
1800 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx)
1801 {
1802 	struct nvme_rdma_queue *queue = hctx->driver_data;
1803 
1804 	return ib_process_cq_direct(queue->ib_cq, -1);
1805 }
1806 
1807 static void nvme_rdma_complete_rq(struct request *rq)
1808 {
1809 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1810 	struct nvme_rdma_queue *queue = req->queue;
1811 	struct ib_device *ibdev = queue->device->dev;
1812 
1813 	nvme_rdma_unmap_data(queue, rq);
1814 	ib_dma_unmap_single(ibdev, req->sqe.dma, sizeof(struct nvme_command),
1815 			    DMA_TO_DEVICE);
1816 	nvme_complete_rq(rq);
1817 }
1818 
1819 static int nvme_rdma_map_queues(struct blk_mq_tag_set *set)
1820 {
1821 	struct nvme_rdma_ctrl *ctrl = set->driver_data;
1822 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
1823 
1824 	if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) {
1825 		/* separate read/write queues */
1826 		set->map[HCTX_TYPE_DEFAULT].nr_queues =
1827 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
1828 		set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
1829 		set->map[HCTX_TYPE_READ].nr_queues =
1830 			ctrl->io_queues[HCTX_TYPE_READ];
1831 		set->map[HCTX_TYPE_READ].queue_offset =
1832 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
1833 	} else {
1834 		/* shared read/write queues */
1835 		set->map[HCTX_TYPE_DEFAULT].nr_queues =
1836 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
1837 		set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
1838 		set->map[HCTX_TYPE_READ].nr_queues =
1839 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
1840 		set->map[HCTX_TYPE_READ].queue_offset = 0;
1841 	}
1842 	blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_DEFAULT],
1843 			ctrl->device->dev, 0);
1844 	blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_READ],
1845 			ctrl->device->dev, 0);
1846 
1847 	if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) {
1848 		/* map dedicated poll queues only if we have queues left */
1849 		set->map[HCTX_TYPE_POLL].nr_queues =
1850 				ctrl->io_queues[HCTX_TYPE_POLL];
1851 		set->map[HCTX_TYPE_POLL].queue_offset =
1852 			ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1853 			ctrl->io_queues[HCTX_TYPE_READ];
1854 		blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]);
1855 	}
1856 
1857 	dev_info(ctrl->ctrl.device,
1858 		"mapped %d/%d/%d default/read/poll queues.\n",
1859 		ctrl->io_queues[HCTX_TYPE_DEFAULT],
1860 		ctrl->io_queues[HCTX_TYPE_READ],
1861 		ctrl->io_queues[HCTX_TYPE_POLL]);
1862 
1863 	return 0;
1864 }
1865 
1866 static const struct blk_mq_ops nvme_rdma_mq_ops = {
1867 	.queue_rq	= nvme_rdma_queue_rq,
1868 	.complete	= nvme_rdma_complete_rq,
1869 	.init_request	= nvme_rdma_init_request,
1870 	.exit_request	= nvme_rdma_exit_request,
1871 	.init_hctx	= nvme_rdma_init_hctx,
1872 	.timeout	= nvme_rdma_timeout,
1873 	.map_queues	= nvme_rdma_map_queues,
1874 	.poll		= nvme_rdma_poll,
1875 };
1876 
1877 static const struct blk_mq_ops nvme_rdma_admin_mq_ops = {
1878 	.queue_rq	= nvme_rdma_queue_rq,
1879 	.complete	= nvme_rdma_complete_rq,
1880 	.init_request	= nvme_rdma_init_request,
1881 	.exit_request	= nvme_rdma_exit_request,
1882 	.init_hctx	= nvme_rdma_init_admin_hctx,
1883 	.timeout	= nvme_rdma_timeout,
1884 };
1885 
1886 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
1887 {
1888 	cancel_work_sync(&ctrl->err_work);
1889 	cancel_delayed_work_sync(&ctrl->reconnect_work);
1890 
1891 	nvme_rdma_teardown_io_queues(ctrl, shutdown);
1892 	blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
1893 	if (shutdown)
1894 		nvme_shutdown_ctrl(&ctrl->ctrl);
1895 	else
1896 		nvme_disable_ctrl(&ctrl->ctrl);
1897 	nvme_rdma_teardown_admin_queue(ctrl, shutdown);
1898 }
1899 
1900 static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl)
1901 {
1902 	nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true);
1903 }
1904 
1905 static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
1906 {
1907 	struct nvme_rdma_ctrl *ctrl =
1908 		container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work);
1909 
1910 	nvme_stop_ctrl(&ctrl->ctrl);
1911 	nvme_rdma_shutdown_ctrl(ctrl, false);
1912 
1913 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
1914 		/* state change failure should never happen */
1915 		WARN_ON_ONCE(1);
1916 		return;
1917 	}
1918 
1919 	if (nvme_rdma_setup_ctrl(ctrl, false))
1920 		goto out_fail;
1921 
1922 	return;
1923 
1924 out_fail:
1925 	++ctrl->ctrl.nr_reconnects;
1926 	nvme_rdma_reconnect_or_remove(ctrl);
1927 }
1928 
1929 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
1930 	.name			= "rdma",
1931 	.module			= THIS_MODULE,
1932 	.flags			= NVME_F_FABRICS,
1933 	.reg_read32		= nvmf_reg_read32,
1934 	.reg_read64		= nvmf_reg_read64,
1935 	.reg_write32		= nvmf_reg_write32,
1936 	.free_ctrl		= nvme_rdma_free_ctrl,
1937 	.submit_async_event	= nvme_rdma_submit_async_event,
1938 	.delete_ctrl		= nvme_rdma_delete_ctrl,
1939 	.get_address		= nvmf_get_address,
1940 };
1941 
1942 /*
1943  * Fails a connection request if it matches an existing controller
1944  * (association) with the same tuple:
1945  * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN>
1946  *
1947  * if local address is not specified in the request, it will match an
1948  * existing controller with all the other parameters the same and no
1949  * local port address specified as well.
1950  *
1951  * The ports don't need to be compared as they are intrinsically
1952  * already matched by the port pointers supplied.
1953  */
1954 static bool
1955 nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts)
1956 {
1957 	struct nvme_rdma_ctrl *ctrl;
1958 	bool found = false;
1959 
1960 	mutex_lock(&nvme_rdma_ctrl_mutex);
1961 	list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
1962 		found = nvmf_ip_options_match(&ctrl->ctrl, opts);
1963 		if (found)
1964 			break;
1965 	}
1966 	mutex_unlock(&nvme_rdma_ctrl_mutex);
1967 
1968 	return found;
1969 }
1970 
1971 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
1972 		struct nvmf_ctrl_options *opts)
1973 {
1974 	struct nvme_rdma_ctrl *ctrl;
1975 	int ret;
1976 	bool changed;
1977 
1978 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1979 	if (!ctrl)
1980 		return ERR_PTR(-ENOMEM);
1981 	ctrl->ctrl.opts = opts;
1982 	INIT_LIST_HEAD(&ctrl->list);
1983 
1984 	if (!(opts->mask & NVMF_OPT_TRSVCID)) {
1985 		opts->trsvcid =
1986 			kstrdup(__stringify(NVME_RDMA_IP_PORT), GFP_KERNEL);
1987 		if (!opts->trsvcid) {
1988 			ret = -ENOMEM;
1989 			goto out_free_ctrl;
1990 		}
1991 		opts->mask |= NVMF_OPT_TRSVCID;
1992 	}
1993 
1994 	ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
1995 			opts->traddr, opts->trsvcid, &ctrl->addr);
1996 	if (ret) {
1997 		pr_err("malformed address passed: %s:%s\n",
1998 			opts->traddr, opts->trsvcid);
1999 		goto out_free_ctrl;
2000 	}
2001 
2002 	if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2003 		ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2004 			opts->host_traddr, NULL, &ctrl->src_addr);
2005 		if (ret) {
2006 			pr_err("malformed src address passed: %s\n",
2007 			       opts->host_traddr);
2008 			goto out_free_ctrl;
2009 		}
2010 	}
2011 
2012 	if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) {
2013 		ret = -EALREADY;
2014 		goto out_free_ctrl;
2015 	}
2016 
2017 	INIT_DELAYED_WORK(&ctrl->reconnect_work,
2018 			nvme_rdma_reconnect_ctrl_work);
2019 	INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
2020 	INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work);
2021 
2022 	ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2023 				opts->nr_poll_queues + 1;
2024 	ctrl->ctrl.sqsize = opts->queue_size - 1;
2025 	ctrl->ctrl.kato = opts->kato;
2026 
2027 	ret = -ENOMEM;
2028 	ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2029 				GFP_KERNEL);
2030 	if (!ctrl->queues)
2031 		goto out_free_ctrl;
2032 
2033 	ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
2034 				0 /* no quirks, we're perfect! */);
2035 	if (ret)
2036 		goto out_kfree_queues;
2037 
2038 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING);
2039 	WARN_ON_ONCE(!changed);
2040 
2041 	ret = nvme_rdma_setup_ctrl(ctrl, true);
2042 	if (ret)
2043 		goto out_uninit_ctrl;
2044 
2045 	dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n",
2046 		ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
2047 
2048 	nvme_get_ctrl(&ctrl->ctrl);
2049 
2050 	mutex_lock(&nvme_rdma_ctrl_mutex);
2051 	list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
2052 	mutex_unlock(&nvme_rdma_ctrl_mutex);
2053 
2054 	return &ctrl->ctrl;
2055 
2056 out_uninit_ctrl:
2057 	nvme_uninit_ctrl(&ctrl->ctrl);
2058 	nvme_put_ctrl(&ctrl->ctrl);
2059 	if (ret > 0)
2060 		ret = -EIO;
2061 	return ERR_PTR(ret);
2062 out_kfree_queues:
2063 	kfree(ctrl->queues);
2064 out_free_ctrl:
2065 	kfree(ctrl);
2066 	return ERR_PTR(ret);
2067 }
2068 
2069 static struct nvmf_transport_ops nvme_rdma_transport = {
2070 	.name		= "rdma",
2071 	.module		= THIS_MODULE,
2072 	.required_opts	= NVMF_OPT_TRADDR,
2073 	.allowed_opts	= NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2074 			  NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2075 			  NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
2076 			  NVMF_OPT_TOS,
2077 	.create_ctrl	= nvme_rdma_create_ctrl,
2078 };
2079 
2080 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
2081 {
2082 	struct nvme_rdma_ctrl *ctrl;
2083 	struct nvme_rdma_device *ndev;
2084 	bool found = false;
2085 
2086 	mutex_lock(&device_list_mutex);
2087 	list_for_each_entry(ndev, &device_list, entry) {
2088 		if (ndev->dev == ib_device) {
2089 			found = true;
2090 			break;
2091 		}
2092 	}
2093 	mutex_unlock(&device_list_mutex);
2094 
2095 	if (!found)
2096 		return;
2097 
2098 	/* Delete all controllers using this device */
2099 	mutex_lock(&nvme_rdma_ctrl_mutex);
2100 	list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2101 		if (ctrl->device->dev != ib_device)
2102 			continue;
2103 		nvme_delete_ctrl(&ctrl->ctrl);
2104 	}
2105 	mutex_unlock(&nvme_rdma_ctrl_mutex);
2106 
2107 	flush_workqueue(nvme_delete_wq);
2108 }
2109 
2110 static struct ib_client nvme_rdma_ib_client = {
2111 	.name   = "nvme_rdma",
2112 	.remove = nvme_rdma_remove_one
2113 };
2114 
2115 static int __init nvme_rdma_init_module(void)
2116 {
2117 	int ret;
2118 
2119 	ret = ib_register_client(&nvme_rdma_ib_client);
2120 	if (ret)
2121 		return ret;
2122 
2123 	ret = nvmf_register_transport(&nvme_rdma_transport);
2124 	if (ret)
2125 		goto err_unreg_client;
2126 
2127 	return 0;
2128 
2129 err_unreg_client:
2130 	ib_unregister_client(&nvme_rdma_ib_client);
2131 	return ret;
2132 }
2133 
2134 static void __exit nvme_rdma_cleanup_module(void)
2135 {
2136 	struct nvme_rdma_ctrl *ctrl;
2137 
2138 	nvmf_unregister_transport(&nvme_rdma_transport);
2139 	ib_unregister_client(&nvme_rdma_ib_client);
2140 
2141 	mutex_lock(&nvme_rdma_ctrl_mutex);
2142 	list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list)
2143 		nvme_delete_ctrl(&ctrl->ctrl);
2144 	mutex_unlock(&nvme_rdma_ctrl_mutex);
2145 	flush_workqueue(nvme_delete_wq);
2146 }
2147 
2148 module_init(nvme_rdma_init_module);
2149 module_exit(nvme_rdma_cleanup_module);
2150 
2151 MODULE_LICENSE("GPL v2");
2152