1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVMe over Fabrics RDMA host code. 4 * Copyright (c) 2015-2016 HGST, a Western Digital Company. 5 */ 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 #include <linux/module.h> 8 #include <linux/init.h> 9 #include <linux/slab.h> 10 #include <rdma/mr_pool.h> 11 #include <linux/err.h> 12 #include <linux/string.h> 13 #include <linux/atomic.h> 14 #include <linux/blk-mq.h> 15 #include <linux/blk-mq-rdma.h> 16 #include <linux/blk-integrity.h> 17 #include <linux/types.h> 18 #include <linux/list.h> 19 #include <linux/mutex.h> 20 #include <linux/scatterlist.h> 21 #include <linux/nvme.h> 22 #include <asm/unaligned.h> 23 24 #include <rdma/ib_verbs.h> 25 #include <rdma/rdma_cm.h> 26 #include <linux/nvme-rdma.h> 27 28 #include "nvme.h" 29 #include "fabrics.h" 30 31 32 #define NVME_RDMA_CM_TIMEOUT_MS 3000 /* 3 second */ 33 34 #define NVME_RDMA_MAX_SEGMENTS 256 35 36 #define NVME_RDMA_MAX_INLINE_SEGMENTS 4 37 38 #define NVME_RDMA_DATA_SGL_SIZE \ 39 (sizeof(struct scatterlist) * NVME_INLINE_SG_CNT) 40 #define NVME_RDMA_METADATA_SGL_SIZE \ 41 (sizeof(struct scatterlist) * NVME_INLINE_METADATA_SG_CNT) 42 43 struct nvme_rdma_device { 44 struct ib_device *dev; 45 struct ib_pd *pd; 46 struct kref ref; 47 struct list_head entry; 48 unsigned int num_inline_segments; 49 }; 50 51 struct nvme_rdma_qe { 52 struct ib_cqe cqe; 53 void *data; 54 u64 dma; 55 }; 56 57 struct nvme_rdma_sgl { 58 int nents; 59 struct sg_table sg_table; 60 }; 61 62 struct nvme_rdma_queue; 63 struct nvme_rdma_request { 64 struct nvme_request req; 65 struct ib_mr *mr; 66 struct nvme_rdma_qe sqe; 67 union nvme_result result; 68 __le16 status; 69 refcount_t ref; 70 struct ib_sge sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS]; 71 u32 num_sge; 72 struct ib_reg_wr reg_wr; 73 struct ib_cqe reg_cqe; 74 struct nvme_rdma_queue *queue; 75 struct nvme_rdma_sgl data_sgl; 76 struct nvme_rdma_sgl *metadata_sgl; 77 bool use_sig_mr; 78 }; 79 80 enum nvme_rdma_queue_flags { 81 NVME_RDMA_Q_ALLOCATED = 0, 82 NVME_RDMA_Q_LIVE = 1, 83 NVME_RDMA_Q_TR_READY = 2, 84 }; 85 86 struct nvme_rdma_queue { 87 struct nvme_rdma_qe *rsp_ring; 88 int queue_size; 89 size_t cmnd_capsule_len; 90 struct nvme_rdma_ctrl *ctrl; 91 struct nvme_rdma_device *device; 92 struct ib_cq *ib_cq; 93 struct ib_qp *qp; 94 95 unsigned long flags; 96 struct rdma_cm_id *cm_id; 97 int cm_error; 98 struct completion cm_done; 99 bool pi_support; 100 int cq_size; 101 struct mutex queue_lock; 102 }; 103 104 struct nvme_rdma_ctrl { 105 /* read only in the hot path */ 106 struct nvme_rdma_queue *queues; 107 108 /* other member variables */ 109 struct blk_mq_tag_set tag_set; 110 struct work_struct err_work; 111 112 struct nvme_rdma_qe async_event_sqe; 113 114 struct delayed_work reconnect_work; 115 116 struct list_head list; 117 118 struct blk_mq_tag_set admin_tag_set; 119 struct nvme_rdma_device *device; 120 121 u32 max_fr_pages; 122 123 struct sockaddr_storage addr; 124 struct sockaddr_storage src_addr; 125 126 struct nvme_ctrl ctrl; 127 bool use_inline_data; 128 u32 io_queues[HCTX_MAX_TYPES]; 129 }; 130 131 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl) 132 { 133 return container_of(ctrl, struct nvme_rdma_ctrl, ctrl); 134 } 135 136 static LIST_HEAD(device_list); 137 static DEFINE_MUTEX(device_list_mutex); 138 139 static LIST_HEAD(nvme_rdma_ctrl_list); 140 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex); 141 142 /* 143 * Disabling this option makes small I/O goes faster, but is fundamentally 144 * unsafe. With it turned off we will have to register a global rkey that 145 * allows read and write access to all physical memory. 146 */ 147 static bool register_always = true; 148 module_param(register_always, bool, 0444); 149 MODULE_PARM_DESC(register_always, 150 "Use memory registration even for contiguous memory regions"); 151 152 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id, 153 struct rdma_cm_event *event); 154 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc); 155 static void nvme_rdma_complete_rq(struct request *rq); 156 157 static const struct blk_mq_ops nvme_rdma_mq_ops; 158 static const struct blk_mq_ops nvme_rdma_admin_mq_ops; 159 160 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue) 161 { 162 return queue - queue->ctrl->queues; 163 } 164 165 static bool nvme_rdma_poll_queue(struct nvme_rdma_queue *queue) 166 { 167 return nvme_rdma_queue_idx(queue) > 168 queue->ctrl->io_queues[HCTX_TYPE_DEFAULT] + 169 queue->ctrl->io_queues[HCTX_TYPE_READ]; 170 } 171 172 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue) 173 { 174 return queue->cmnd_capsule_len - sizeof(struct nvme_command); 175 } 176 177 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe, 178 size_t capsule_size, enum dma_data_direction dir) 179 { 180 ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir); 181 kfree(qe->data); 182 } 183 184 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe, 185 size_t capsule_size, enum dma_data_direction dir) 186 { 187 qe->data = kzalloc(capsule_size, GFP_KERNEL); 188 if (!qe->data) 189 return -ENOMEM; 190 191 qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir); 192 if (ib_dma_mapping_error(ibdev, qe->dma)) { 193 kfree(qe->data); 194 qe->data = NULL; 195 return -ENOMEM; 196 } 197 198 return 0; 199 } 200 201 static void nvme_rdma_free_ring(struct ib_device *ibdev, 202 struct nvme_rdma_qe *ring, size_t ib_queue_size, 203 size_t capsule_size, enum dma_data_direction dir) 204 { 205 int i; 206 207 for (i = 0; i < ib_queue_size; i++) 208 nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir); 209 kfree(ring); 210 } 211 212 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev, 213 size_t ib_queue_size, size_t capsule_size, 214 enum dma_data_direction dir) 215 { 216 struct nvme_rdma_qe *ring; 217 int i; 218 219 ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL); 220 if (!ring) 221 return NULL; 222 223 /* 224 * Bind the CQEs (post recv buffers) DMA mapping to the RDMA queue 225 * lifetime. It's safe, since any chage in the underlying RDMA device 226 * will issue error recovery and queue re-creation. 227 */ 228 for (i = 0; i < ib_queue_size; i++) { 229 if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir)) 230 goto out_free_ring; 231 } 232 233 return ring; 234 235 out_free_ring: 236 nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir); 237 return NULL; 238 } 239 240 static void nvme_rdma_qp_event(struct ib_event *event, void *context) 241 { 242 pr_debug("QP event %s (%d)\n", 243 ib_event_msg(event->event), event->event); 244 245 } 246 247 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue) 248 { 249 int ret; 250 251 ret = wait_for_completion_interruptible(&queue->cm_done); 252 if (ret) 253 return ret; 254 WARN_ON_ONCE(queue->cm_error > 0); 255 return queue->cm_error; 256 } 257 258 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor) 259 { 260 struct nvme_rdma_device *dev = queue->device; 261 struct ib_qp_init_attr init_attr; 262 int ret; 263 264 memset(&init_attr, 0, sizeof(init_attr)); 265 init_attr.event_handler = nvme_rdma_qp_event; 266 /* +1 for drain */ 267 init_attr.cap.max_send_wr = factor * queue->queue_size + 1; 268 /* +1 for drain */ 269 init_attr.cap.max_recv_wr = queue->queue_size + 1; 270 init_attr.cap.max_recv_sge = 1; 271 init_attr.cap.max_send_sge = 1 + dev->num_inline_segments; 272 init_attr.sq_sig_type = IB_SIGNAL_REQ_WR; 273 init_attr.qp_type = IB_QPT_RC; 274 init_attr.send_cq = queue->ib_cq; 275 init_attr.recv_cq = queue->ib_cq; 276 if (queue->pi_support) 277 init_attr.create_flags |= IB_QP_CREATE_INTEGRITY_EN; 278 init_attr.qp_context = queue; 279 280 ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr); 281 282 queue->qp = queue->cm_id->qp; 283 return ret; 284 } 285 286 static void nvme_rdma_exit_request(struct blk_mq_tag_set *set, 287 struct request *rq, unsigned int hctx_idx) 288 { 289 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 290 291 kfree(req->sqe.data); 292 } 293 294 static int nvme_rdma_init_request(struct blk_mq_tag_set *set, 295 struct request *rq, unsigned int hctx_idx, 296 unsigned int numa_node) 297 { 298 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(set->driver_data); 299 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 300 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; 301 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx]; 302 303 nvme_req(rq)->ctrl = &ctrl->ctrl; 304 req->sqe.data = kzalloc(sizeof(struct nvme_command), GFP_KERNEL); 305 if (!req->sqe.data) 306 return -ENOMEM; 307 308 /* metadata nvme_rdma_sgl struct is located after command's data SGL */ 309 if (queue->pi_support) 310 req->metadata_sgl = (void *)nvme_req(rq) + 311 sizeof(struct nvme_rdma_request) + 312 NVME_RDMA_DATA_SGL_SIZE; 313 314 req->queue = queue; 315 nvme_req(rq)->cmd = req->sqe.data; 316 317 return 0; 318 } 319 320 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 321 unsigned int hctx_idx) 322 { 323 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(data); 324 struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1]; 325 326 BUG_ON(hctx_idx >= ctrl->ctrl.queue_count); 327 328 hctx->driver_data = queue; 329 return 0; 330 } 331 332 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, 333 unsigned int hctx_idx) 334 { 335 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(data); 336 struct nvme_rdma_queue *queue = &ctrl->queues[0]; 337 338 BUG_ON(hctx_idx != 0); 339 340 hctx->driver_data = queue; 341 return 0; 342 } 343 344 static void nvme_rdma_free_dev(struct kref *ref) 345 { 346 struct nvme_rdma_device *ndev = 347 container_of(ref, struct nvme_rdma_device, ref); 348 349 mutex_lock(&device_list_mutex); 350 list_del(&ndev->entry); 351 mutex_unlock(&device_list_mutex); 352 353 ib_dealloc_pd(ndev->pd); 354 kfree(ndev); 355 } 356 357 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev) 358 { 359 kref_put(&dev->ref, nvme_rdma_free_dev); 360 } 361 362 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev) 363 { 364 return kref_get_unless_zero(&dev->ref); 365 } 366 367 static struct nvme_rdma_device * 368 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id) 369 { 370 struct nvme_rdma_device *ndev; 371 372 mutex_lock(&device_list_mutex); 373 list_for_each_entry(ndev, &device_list, entry) { 374 if (ndev->dev->node_guid == cm_id->device->node_guid && 375 nvme_rdma_dev_get(ndev)) 376 goto out_unlock; 377 } 378 379 ndev = kzalloc(sizeof(*ndev), GFP_KERNEL); 380 if (!ndev) 381 goto out_err; 382 383 ndev->dev = cm_id->device; 384 kref_init(&ndev->ref); 385 386 ndev->pd = ib_alloc_pd(ndev->dev, 387 register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY); 388 if (IS_ERR(ndev->pd)) 389 goto out_free_dev; 390 391 if (!(ndev->dev->attrs.device_cap_flags & 392 IB_DEVICE_MEM_MGT_EXTENSIONS)) { 393 dev_err(&ndev->dev->dev, 394 "Memory registrations not supported.\n"); 395 goto out_free_pd; 396 } 397 398 ndev->num_inline_segments = min(NVME_RDMA_MAX_INLINE_SEGMENTS, 399 ndev->dev->attrs.max_send_sge - 1); 400 list_add(&ndev->entry, &device_list); 401 out_unlock: 402 mutex_unlock(&device_list_mutex); 403 return ndev; 404 405 out_free_pd: 406 ib_dealloc_pd(ndev->pd); 407 out_free_dev: 408 kfree(ndev); 409 out_err: 410 mutex_unlock(&device_list_mutex); 411 return NULL; 412 } 413 414 static void nvme_rdma_free_cq(struct nvme_rdma_queue *queue) 415 { 416 if (nvme_rdma_poll_queue(queue)) 417 ib_free_cq(queue->ib_cq); 418 else 419 ib_cq_pool_put(queue->ib_cq, queue->cq_size); 420 } 421 422 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue) 423 { 424 struct nvme_rdma_device *dev; 425 struct ib_device *ibdev; 426 427 if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags)) 428 return; 429 430 dev = queue->device; 431 ibdev = dev->dev; 432 433 if (queue->pi_support) 434 ib_mr_pool_destroy(queue->qp, &queue->qp->sig_mrs); 435 ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs); 436 437 /* 438 * The cm_id object might have been destroyed during RDMA connection 439 * establishment error flow to avoid getting other cma events, thus 440 * the destruction of the QP shouldn't use rdma_cm API. 441 */ 442 ib_destroy_qp(queue->qp); 443 nvme_rdma_free_cq(queue); 444 445 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size, 446 sizeof(struct nvme_completion), DMA_FROM_DEVICE); 447 448 nvme_rdma_dev_put(dev); 449 } 450 451 static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev, bool pi_support) 452 { 453 u32 max_page_list_len; 454 455 if (pi_support) 456 max_page_list_len = ibdev->attrs.max_pi_fast_reg_page_list_len; 457 else 458 max_page_list_len = ibdev->attrs.max_fast_reg_page_list_len; 459 460 return min_t(u32, NVME_RDMA_MAX_SEGMENTS, max_page_list_len - 1); 461 } 462 463 static int nvme_rdma_create_cq(struct ib_device *ibdev, 464 struct nvme_rdma_queue *queue) 465 { 466 int ret, comp_vector, idx = nvme_rdma_queue_idx(queue); 467 enum ib_poll_context poll_ctx; 468 469 /* 470 * Spread I/O queues completion vectors according their queue index. 471 * Admin queues can always go on completion vector 0. 472 */ 473 comp_vector = (idx == 0 ? idx : idx - 1) % ibdev->num_comp_vectors; 474 475 /* Polling queues need direct cq polling context */ 476 if (nvme_rdma_poll_queue(queue)) { 477 poll_ctx = IB_POLL_DIRECT; 478 queue->ib_cq = ib_alloc_cq(ibdev, queue, queue->cq_size, 479 comp_vector, poll_ctx); 480 } else { 481 poll_ctx = IB_POLL_SOFTIRQ; 482 queue->ib_cq = ib_cq_pool_get(ibdev, queue->cq_size, 483 comp_vector, poll_ctx); 484 } 485 486 if (IS_ERR(queue->ib_cq)) { 487 ret = PTR_ERR(queue->ib_cq); 488 return ret; 489 } 490 491 return 0; 492 } 493 494 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue) 495 { 496 struct ib_device *ibdev; 497 const int send_wr_factor = 3; /* MR, SEND, INV */ 498 const int cq_factor = send_wr_factor + 1; /* + RECV */ 499 int ret, pages_per_mr; 500 501 queue->device = nvme_rdma_find_get_device(queue->cm_id); 502 if (!queue->device) { 503 dev_err(queue->cm_id->device->dev.parent, 504 "no client data found!\n"); 505 return -ECONNREFUSED; 506 } 507 ibdev = queue->device->dev; 508 509 /* +1 for ib_stop_cq */ 510 queue->cq_size = cq_factor * queue->queue_size + 1; 511 512 ret = nvme_rdma_create_cq(ibdev, queue); 513 if (ret) 514 goto out_put_dev; 515 516 ret = nvme_rdma_create_qp(queue, send_wr_factor); 517 if (ret) 518 goto out_destroy_ib_cq; 519 520 queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size, 521 sizeof(struct nvme_completion), DMA_FROM_DEVICE); 522 if (!queue->rsp_ring) { 523 ret = -ENOMEM; 524 goto out_destroy_qp; 525 } 526 527 /* 528 * Currently we don't use SG_GAPS MR's so if the first entry is 529 * misaligned we'll end up using two entries for a single data page, 530 * so one additional entry is required. 531 */ 532 pages_per_mr = nvme_rdma_get_max_fr_pages(ibdev, queue->pi_support) + 1; 533 ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs, 534 queue->queue_size, 535 IB_MR_TYPE_MEM_REG, 536 pages_per_mr, 0); 537 if (ret) { 538 dev_err(queue->ctrl->ctrl.device, 539 "failed to initialize MR pool sized %d for QID %d\n", 540 queue->queue_size, nvme_rdma_queue_idx(queue)); 541 goto out_destroy_ring; 542 } 543 544 if (queue->pi_support) { 545 ret = ib_mr_pool_init(queue->qp, &queue->qp->sig_mrs, 546 queue->queue_size, IB_MR_TYPE_INTEGRITY, 547 pages_per_mr, pages_per_mr); 548 if (ret) { 549 dev_err(queue->ctrl->ctrl.device, 550 "failed to initialize PI MR pool sized %d for QID %d\n", 551 queue->queue_size, nvme_rdma_queue_idx(queue)); 552 goto out_destroy_mr_pool; 553 } 554 } 555 556 set_bit(NVME_RDMA_Q_TR_READY, &queue->flags); 557 558 return 0; 559 560 out_destroy_mr_pool: 561 ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs); 562 out_destroy_ring: 563 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size, 564 sizeof(struct nvme_completion), DMA_FROM_DEVICE); 565 out_destroy_qp: 566 rdma_destroy_qp(queue->cm_id); 567 out_destroy_ib_cq: 568 nvme_rdma_free_cq(queue); 569 out_put_dev: 570 nvme_rdma_dev_put(queue->device); 571 return ret; 572 } 573 574 static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl, 575 int idx, size_t queue_size) 576 { 577 struct nvme_rdma_queue *queue; 578 struct sockaddr *src_addr = NULL; 579 int ret; 580 581 queue = &ctrl->queues[idx]; 582 mutex_init(&queue->queue_lock); 583 queue->ctrl = ctrl; 584 if (idx && ctrl->ctrl.max_integrity_segments) 585 queue->pi_support = true; 586 else 587 queue->pi_support = false; 588 init_completion(&queue->cm_done); 589 590 if (idx > 0) 591 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16; 592 else 593 queue->cmnd_capsule_len = sizeof(struct nvme_command); 594 595 queue->queue_size = queue_size; 596 597 queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue, 598 RDMA_PS_TCP, IB_QPT_RC); 599 if (IS_ERR(queue->cm_id)) { 600 dev_info(ctrl->ctrl.device, 601 "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id)); 602 ret = PTR_ERR(queue->cm_id); 603 goto out_destroy_mutex; 604 } 605 606 if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR) 607 src_addr = (struct sockaddr *)&ctrl->src_addr; 608 609 queue->cm_error = -ETIMEDOUT; 610 ret = rdma_resolve_addr(queue->cm_id, src_addr, 611 (struct sockaddr *)&ctrl->addr, 612 NVME_RDMA_CM_TIMEOUT_MS); 613 if (ret) { 614 dev_info(ctrl->ctrl.device, 615 "rdma_resolve_addr failed (%d).\n", ret); 616 goto out_destroy_cm_id; 617 } 618 619 ret = nvme_rdma_wait_for_cm(queue); 620 if (ret) { 621 dev_info(ctrl->ctrl.device, 622 "rdma connection establishment failed (%d)\n", ret); 623 goto out_destroy_cm_id; 624 } 625 626 set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags); 627 628 return 0; 629 630 out_destroy_cm_id: 631 rdma_destroy_id(queue->cm_id); 632 nvme_rdma_destroy_queue_ib(queue); 633 out_destroy_mutex: 634 mutex_destroy(&queue->queue_lock); 635 return ret; 636 } 637 638 static void __nvme_rdma_stop_queue(struct nvme_rdma_queue *queue) 639 { 640 rdma_disconnect(queue->cm_id); 641 ib_drain_qp(queue->qp); 642 } 643 644 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue) 645 { 646 mutex_lock(&queue->queue_lock); 647 if (test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags)) 648 __nvme_rdma_stop_queue(queue); 649 mutex_unlock(&queue->queue_lock); 650 } 651 652 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue) 653 { 654 if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags)) 655 return; 656 657 rdma_destroy_id(queue->cm_id); 658 nvme_rdma_destroy_queue_ib(queue); 659 mutex_destroy(&queue->queue_lock); 660 } 661 662 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl) 663 { 664 int i; 665 666 for (i = 1; i < ctrl->ctrl.queue_count; i++) 667 nvme_rdma_free_queue(&ctrl->queues[i]); 668 } 669 670 static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl) 671 { 672 int i; 673 674 for (i = 1; i < ctrl->ctrl.queue_count; i++) 675 nvme_rdma_stop_queue(&ctrl->queues[i]); 676 } 677 678 static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx) 679 { 680 struct nvme_rdma_queue *queue = &ctrl->queues[idx]; 681 int ret; 682 683 if (idx) 684 ret = nvmf_connect_io_queue(&ctrl->ctrl, idx); 685 else 686 ret = nvmf_connect_admin_queue(&ctrl->ctrl); 687 688 if (!ret) { 689 set_bit(NVME_RDMA_Q_LIVE, &queue->flags); 690 } else { 691 if (test_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags)) 692 __nvme_rdma_stop_queue(queue); 693 dev_info(ctrl->ctrl.device, 694 "failed to connect queue: %d ret=%d\n", idx, ret); 695 } 696 return ret; 697 } 698 699 static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl, 700 int first, int last) 701 { 702 int i, ret = 0; 703 704 for (i = first; i < last; i++) { 705 ret = nvme_rdma_start_queue(ctrl, i); 706 if (ret) 707 goto out_stop_queues; 708 } 709 710 return 0; 711 712 out_stop_queues: 713 for (i--; i >= first; i--) 714 nvme_rdma_stop_queue(&ctrl->queues[i]); 715 return ret; 716 } 717 718 static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl) 719 { 720 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 721 struct ib_device *ibdev = ctrl->device->dev; 722 unsigned int nr_io_queues, nr_default_queues; 723 unsigned int nr_read_queues, nr_poll_queues; 724 int i, ret; 725 726 nr_read_queues = min_t(unsigned int, ibdev->num_comp_vectors, 727 min(opts->nr_io_queues, num_online_cpus())); 728 nr_default_queues = min_t(unsigned int, ibdev->num_comp_vectors, 729 min(opts->nr_write_queues, num_online_cpus())); 730 nr_poll_queues = min(opts->nr_poll_queues, num_online_cpus()); 731 nr_io_queues = nr_read_queues + nr_default_queues + nr_poll_queues; 732 733 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues); 734 if (ret) 735 return ret; 736 737 if (nr_io_queues == 0) { 738 dev_err(ctrl->ctrl.device, 739 "unable to set any I/O queues\n"); 740 return -ENOMEM; 741 } 742 743 ctrl->ctrl.queue_count = nr_io_queues + 1; 744 dev_info(ctrl->ctrl.device, 745 "creating %d I/O queues.\n", nr_io_queues); 746 747 if (opts->nr_write_queues && nr_read_queues < nr_io_queues) { 748 /* 749 * separate read/write queues 750 * hand out dedicated default queues only after we have 751 * sufficient read queues. 752 */ 753 ctrl->io_queues[HCTX_TYPE_READ] = nr_read_queues; 754 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ]; 755 ctrl->io_queues[HCTX_TYPE_DEFAULT] = 756 min(nr_default_queues, nr_io_queues); 757 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT]; 758 } else { 759 /* 760 * shared read/write queues 761 * either no write queues were requested, or we don't have 762 * sufficient queue count to have dedicated default queues. 763 */ 764 ctrl->io_queues[HCTX_TYPE_DEFAULT] = 765 min(nr_read_queues, nr_io_queues); 766 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT]; 767 } 768 769 if (opts->nr_poll_queues && nr_io_queues) { 770 /* map dedicated poll queues only if we have queues left */ 771 ctrl->io_queues[HCTX_TYPE_POLL] = 772 min(nr_poll_queues, nr_io_queues); 773 } 774 775 for (i = 1; i < ctrl->ctrl.queue_count; i++) { 776 ret = nvme_rdma_alloc_queue(ctrl, i, 777 ctrl->ctrl.sqsize + 1); 778 if (ret) 779 goto out_free_queues; 780 } 781 782 return 0; 783 784 out_free_queues: 785 for (i--; i >= 1; i--) 786 nvme_rdma_free_queue(&ctrl->queues[i]); 787 788 return ret; 789 } 790 791 static int nvme_rdma_alloc_tag_set(struct nvme_ctrl *ctrl) 792 { 793 unsigned int cmd_size = sizeof(struct nvme_rdma_request) + 794 NVME_RDMA_DATA_SGL_SIZE; 795 796 if (ctrl->max_integrity_segments) 797 cmd_size += sizeof(struct nvme_rdma_sgl) + 798 NVME_RDMA_METADATA_SGL_SIZE; 799 800 return nvme_alloc_io_tag_set(ctrl, &to_rdma_ctrl(ctrl)->tag_set, 801 &nvme_rdma_mq_ops, BLK_MQ_F_SHOULD_MERGE, cmd_size); 802 } 803 804 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl) 805 { 806 if (ctrl->async_event_sqe.data) { 807 cancel_work_sync(&ctrl->ctrl.async_event_work); 808 nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe, 809 sizeof(struct nvme_command), DMA_TO_DEVICE); 810 ctrl->async_event_sqe.data = NULL; 811 } 812 nvme_rdma_free_queue(&ctrl->queues[0]); 813 } 814 815 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl, 816 bool new) 817 { 818 bool pi_capable = false; 819 int error; 820 821 error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH); 822 if (error) 823 return error; 824 825 ctrl->device = ctrl->queues[0].device; 826 ctrl->ctrl.numa_node = ibdev_to_node(ctrl->device->dev); 827 828 /* T10-PI support */ 829 if (ctrl->device->dev->attrs.kernel_cap_flags & 830 IBK_INTEGRITY_HANDOVER) 831 pi_capable = true; 832 833 ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev, 834 pi_capable); 835 836 /* 837 * Bind the async event SQE DMA mapping to the admin queue lifetime. 838 * It's safe, since any chage in the underlying RDMA device will issue 839 * error recovery and queue re-creation. 840 */ 841 error = nvme_rdma_alloc_qe(ctrl->device->dev, &ctrl->async_event_sqe, 842 sizeof(struct nvme_command), DMA_TO_DEVICE); 843 if (error) 844 goto out_free_queue; 845 846 if (new) { 847 error = nvme_alloc_admin_tag_set(&ctrl->ctrl, 848 &ctrl->admin_tag_set, &nvme_rdma_admin_mq_ops, 849 BLK_MQ_F_NO_SCHED, 850 sizeof(struct nvme_rdma_request) + 851 NVME_RDMA_DATA_SGL_SIZE); 852 if (error) 853 goto out_free_async_qe; 854 855 } 856 857 error = nvme_rdma_start_queue(ctrl, 0); 858 if (error) 859 goto out_remove_admin_tag_set; 860 861 error = nvme_enable_ctrl(&ctrl->ctrl); 862 if (error) 863 goto out_stop_queue; 864 865 ctrl->ctrl.max_segments = ctrl->max_fr_pages; 866 ctrl->ctrl.max_hw_sectors = ctrl->max_fr_pages << (ilog2(SZ_4K) - 9); 867 if (pi_capable) 868 ctrl->ctrl.max_integrity_segments = ctrl->max_fr_pages; 869 else 870 ctrl->ctrl.max_integrity_segments = 0; 871 872 nvme_start_admin_queue(&ctrl->ctrl); 873 874 error = nvme_init_ctrl_finish(&ctrl->ctrl); 875 if (error) 876 goto out_quiesce_queue; 877 878 return 0; 879 880 out_quiesce_queue: 881 nvme_stop_admin_queue(&ctrl->ctrl); 882 blk_sync_queue(ctrl->ctrl.admin_q); 883 out_stop_queue: 884 nvme_rdma_stop_queue(&ctrl->queues[0]); 885 nvme_cancel_admin_tagset(&ctrl->ctrl); 886 out_remove_admin_tag_set: 887 if (new) 888 nvme_remove_admin_tag_set(&ctrl->ctrl); 889 out_free_async_qe: 890 if (ctrl->async_event_sqe.data) { 891 nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe, 892 sizeof(struct nvme_command), DMA_TO_DEVICE); 893 ctrl->async_event_sqe.data = NULL; 894 } 895 out_free_queue: 896 nvme_rdma_free_queue(&ctrl->queues[0]); 897 return error; 898 } 899 900 static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new) 901 { 902 int ret, nr_queues; 903 904 ret = nvme_rdma_alloc_io_queues(ctrl); 905 if (ret) 906 return ret; 907 908 if (new) { 909 ret = nvme_rdma_alloc_tag_set(&ctrl->ctrl); 910 if (ret) 911 goto out_free_io_queues; 912 } 913 914 /* 915 * Only start IO queues for which we have allocated the tagset 916 * and limitted it to the available queues. On reconnects, the 917 * queue number might have changed. 918 */ 919 nr_queues = min(ctrl->tag_set.nr_hw_queues + 1, ctrl->ctrl.queue_count); 920 ret = nvme_rdma_start_io_queues(ctrl, 1, nr_queues); 921 if (ret) 922 goto out_cleanup_tagset; 923 924 if (!new) { 925 nvme_start_queues(&ctrl->ctrl); 926 if (!nvme_wait_freeze_timeout(&ctrl->ctrl, NVME_IO_TIMEOUT)) { 927 /* 928 * If we timed out waiting for freeze we are likely to 929 * be stuck. Fail the controller initialization just 930 * to be safe. 931 */ 932 ret = -ENODEV; 933 goto out_wait_freeze_timed_out; 934 } 935 blk_mq_update_nr_hw_queues(ctrl->ctrl.tagset, 936 ctrl->ctrl.queue_count - 1); 937 nvme_unfreeze(&ctrl->ctrl); 938 } 939 940 /* 941 * If the number of queues has increased (reconnect case) 942 * start all new queues now. 943 */ 944 ret = nvme_rdma_start_io_queues(ctrl, nr_queues, 945 ctrl->tag_set.nr_hw_queues + 1); 946 if (ret) 947 goto out_wait_freeze_timed_out; 948 949 return 0; 950 951 out_wait_freeze_timed_out: 952 nvme_stop_queues(&ctrl->ctrl); 953 nvme_sync_io_queues(&ctrl->ctrl); 954 nvme_rdma_stop_io_queues(ctrl); 955 out_cleanup_tagset: 956 nvme_cancel_tagset(&ctrl->ctrl); 957 if (new) 958 nvme_remove_io_tag_set(&ctrl->ctrl); 959 out_free_io_queues: 960 nvme_rdma_free_io_queues(ctrl); 961 return ret; 962 } 963 964 static void nvme_rdma_teardown_admin_queue(struct nvme_rdma_ctrl *ctrl, 965 bool remove) 966 { 967 nvme_stop_admin_queue(&ctrl->ctrl); 968 blk_sync_queue(ctrl->ctrl.admin_q); 969 nvme_rdma_stop_queue(&ctrl->queues[0]); 970 nvme_cancel_admin_tagset(&ctrl->ctrl); 971 if (remove) { 972 nvme_start_admin_queue(&ctrl->ctrl); 973 nvme_remove_admin_tag_set(&ctrl->ctrl); 974 } 975 nvme_rdma_destroy_admin_queue(ctrl); 976 } 977 978 static void nvme_rdma_teardown_io_queues(struct nvme_rdma_ctrl *ctrl, 979 bool remove) 980 { 981 if (ctrl->ctrl.queue_count > 1) { 982 nvme_start_freeze(&ctrl->ctrl); 983 nvme_stop_queues(&ctrl->ctrl); 984 nvme_sync_io_queues(&ctrl->ctrl); 985 nvme_rdma_stop_io_queues(ctrl); 986 nvme_cancel_tagset(&ctrl->ctrl); 987 if (remove) { 988 nvme_start_queues(&ctrl->ctrl); 989 nvme_remove_io_tag_set(&ctrl->ctrl); 990 } 991 nvme_rdma_free_io_queues(ctrl); 992 } 993 } 994 995 static void nvme_rdma_stop_ctrl(struct nvme_ctrl *nctrl) 996 { 997 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 998 999 cancel_work_sync(&ctrl->err_work); 1000 cancel_delayed_work_sync(&ctrl->reconnect_work); 1001 } 1002 1003 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl) 1004 { 1005 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 1006 1007 if (list_empty(&ctrl->list)) 1008 goto free_ctrl; 1009 1010 mutex_lock(&nvme_rdma_ctrl_mutex); 1011 list_del(&ctrl->list); 1012 mutex_unlock(&nvme_rdma_ctrl_mutex); 1013 1014 nvmf_free_options(nctrl->opts); 1015 free_ctrl: 1016 kfree(ctrl->queues); 1017 kfree(ctrl); 1018 } 1019 1020 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl) 1021 { 1022 /* If we are resetting/deleting then do nothing */ 1023 if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) { 1024 WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW || 1025 ctrl->ctrl.state == NVME_CTRL_LIVE); 1026 return; 1027 } 1028 1029 if (nvmf_should_reconnect(&ctrl->ctrl)) { 1030 dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n", 1031 ctrl->ctrl.opts->reconnect_delay); 1032 queue_delayed_work(nvme_wq, &ctrl->reconnect_work, 1033 ctrl->ctrl.opts->reconnect_delay * HZ); 1034 } else { 1035 nvme_delete_ctrl(&ctrl->ctrl); 1036 } 1037 } 1038 1039 static int nvme_rdma_setup_ctrl(struct nvme_rdma_ctrl *ctrl, bool new) 1040 { 1041 int ret; 1042 bool changed; 1043 1044 ret = nvme_rdma_configure_admin_queue(ctrl, new); 1045 if (ret) 1046 return ret; 1047 1048 if (ctrl->ctrl.icdoff) { 1049 ret = -EOPNOTSUPP; 1050 dev_err(ctrl->ctrl.device, "icdoff is not supported!\n"); 1051 goto destroy_admin; 1052 } 1053 1054 if (!(ctrl->ctrl.sgls & (1 << 2))) { 1055 ret = -EOPNOTSUPP; 1056 dev_err(ctrl->ctrl.device, 1057 "Mandatory keyed sgls are not supported!\n"); 1058 goto destroy_admin; 1059 } 1060 1061 if (ctrl->ctrl.opts->queue_size > ctrl->ctrl.sqsize + 1) { 1062 dev_warn(ctrl->ctrl.device, 1063 "queue_size %zu > ctrl sqsize %u, clamping down\n", 1064 ctrl->ctrl.opts->queue_size, ctrl->ctrl.sqsize + 1); 1065 } 1066 1067 if (ctrl->ctrl.sqsize + 1 > NVME_RDMA_MAX_QUEUE_SIZE) { 1068 dev_warn(ctrl->ctrl.device, 1069 "ctrl sqsize %u > max queue size %u, clamping down\n", 1070 ctrl->ctrl.sqsize + 1, NVME_RDMA_MAX_QUEUE_SIZE); 1071 ctrl->ctrl.sqsize = NVME_RDMA_MAX_QUEUE_SIZE - 1; 1072 } 1073 1074 if (ctrl->ctrl.sqsize + 1 > ctrl->ctrl.maxcmd) { 1075 dev_warn(ctrl->ctrl.device, 1076 "sqsize %u > ctrl maxcmd %u, clamping down\n", 1077 ctrl->ctrl.sqsize + 1, ctrl->ctrl.maxcmd); 1078 ctrl->ctrl.sqsize = ctrl->ctrl.maxcmd - 1; 1079 } 1080 1081 if (ctrl->ctrl.sgls & (1 << 20)) 1082 ctrl->use_inline_data = true; 1083 1084 if (ctrl->ctrl.queue_count > 1) { 1085 ret = nvme_rdma_configure_io_queues(ctrl, new); 1086 if (ret) 1087 goto destroy_admin; 1088 } 1089 1090 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); 1091 if (!changed) { 1092 /* 1093 * state change failure is ok if we started ctrl delete, 1094 * unless we're during creation of a new controller to 1095 * avoid races with teardown flow. 1096 */ 1097 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING && 1098 ctrl->ctrl.state != NVME_CTRL_DELETING_NOIO); 1099 WARN_ON_ONCE(new); 1100 ret = -EINVAL; 1101 goto destroy_io; 1102 } 1103 1104 nvme_start_ctrl(&ctrl->ctrl); 1105 return 0; 1106 1107 destroy_io: 1108 if (ctrl->ctrl.queue_count > 1) { 1109 nvme_stop_queues(&ctrl->ctrl); 1110 nvme_sync_io_queues(&ctrl->ctrl); 1111 nvme_rdma_stop_io_queues(ctrl); 1112 nvme_cancel_tagset(&ctrl->ctrl); 1113 if (new) 1114 nvme_remove_io_tag_set(&ctrl->ctrl); 1115 nvme_rdma_free_io_queues(ctrl); 1116 } 1117 destroy_admin: 1118 nvme_stop_admin_queue(&ctrl->ctrl); 1119 blk_sync_queue(ctrl->ctrl.admin_q); 1120 nvme_rdma_stop_queue(&ctrl->queues[0]); 1121 nvme_cancel_admin_tagset(&ctrl->ctrl); 1122 if (new) 1123 nvme_remove_admin_tag_set(&ctrl->ctrl); 1124 nvme_rdma_destroy_admin_queue(ctrl); 1125 return ret; 1126 } 1127 1128 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work) 1129 { 1130 struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work), 1131 struct nvme_rdma_ctrl, reconnect_work); 1132 1133 ++ctrl->ctrl.nr_reconnects; 1134 1135 if (nvme_rdma_setup_ctrl(ctrl, false)) 1136 goto requeue; 1137 1138 dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n", 1139 ctrl->ctrl.nr_reconnects); 1140 1141 ctrl->ctrl.nr_reconnects = 0; 1142 1143 return; 1144 1145 requeue: 1146 dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n", 1147 ctrl->ctrl.nr_reconnects); 1148 nvme_rdma_reconnect_or_remove(ctrl); 1149 } 1150 1151 static void nvme_rdma_error_recovery_work(struct work_struct *work) 1152 { 1153 struct nvme_rdma_ctrl *ctrl = container_of(work, 1154 struct nvme_rdma_ctrl, err_work); 1155 1156 nvme_auth_stop(&ctrl->ctrl); 1157 nvme_stop_keep_alive(&ctrl->ctrl); 1158 flush_work(&ctrl->ctrl.async_event_work); 1159 nvme_rdma_teardown_io_queues(ctrl, false); 1160 nvme_start_queues(&ctrl->ctrl); 1161 nvme_rdma_teardown_admin_queue(ctrl, false); 1162 nvme_start_admin_queue(&ctrl->ctrl); 1163 1164 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) { 1165 /* state change failure is ok if we started ctrl delete */ 1166 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING && 1167 ctrl->ctrl.state != NVME_CTRL_DELETING_NOIO); 1168 return; 1169 } 1170 1171 nvme_rdma_reconnect_or_remove(ctrl); 1172 } 1173 1174 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl) 1175 { 1176 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING)) 1177 return; 1178 1179 dev_warn(ctrl->ctrl.device, "starting error recovery\n"); 1180 queue_work(nvme_reset_wq, &ctrl->err_work); 1181 } 1182 1183 static void nvme_rdma_end_request(struct nvme_rdma_request *req) 1184 { 1185 struct request *rq = blk_mq_rq_from_pdu(req); 1186 1187 if (!refcount_dec_and_test(&req->ref)) 1188 return; 1189 if (!nvme_try_complete_req(rq, req->status, req->result)) 1190 nvme_rdma_complete_rq(rq); 1191 } 1192 1193 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc, 1194 const char *op) 1195 { 1196 struct nvme_rdma_queue *queue = wc->qp->qp_context; 1197 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 1198 1199 if (ctrl->ctrl.state == NVME_CTRL_LIVE) 1200 dev_info(ctrl->ctrl.device, 1201 "%s for CQE 0x%p failed with status %s (%d)\n", 1202 op, wc->wr_cqe, 1203 ib_wc_status_msg(wc->status), wc->status); 1204 nvme_rdma_error_recovery(ctrl); 1205 } 1206 1207 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc) 1208 { 1209 if (unlikely(wc->status != IB_WC_SUCCESS)) 1210 nvme_rdma_wr_error(cq, wc, "MEMREG"); 1211 } 1212 1213 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc) 1214 { 1215 struct nvme_rdma_request *req = 1216 container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe); 1217 1218 if (unlikely(wc->status != IB_WC_SUCCESS)) 1219 nvme_rdma_wr_error(cq, wc, "LOCAL_INV"); 1220 else 1221 nvme_rdma_end_request(req); 1222 } 1223 1224 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue, 1225 struct nvme_rdma_request *req) 1226 { 1227 struct ib_send_wr wr = { 1228 .opcode = IB_WR_LOCAL_INV, 1229 .next = NULL, 1230 .num_sge = 0, 1231 .send_flags = IB_SEND_SIGNALED, 1232 .ex.invalidate_rkey = req->mr->rkey, 1233 }; 1234 1235 req->reg_cqe.done = nvme_rdma_inv_rkey_done; 1236 wr.wr_cqe = &req->reg_cqe; 1237 1238 return ib_post_send(queue->qp, &wr, NULL); 1239 } 1240 1241 static void nvme_rdma_dma_unmap_req(struct ib_device *ibdev, struct request *rq) 1242 { 1243 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1244 1245 if (blk_integrity_rq(rq)) { 1246 ib_dma_unmap_sg(ibdev, req->metadata_sgl->sg_table.sgl, 1247 req->metadata_sgl->nents, rq_dma_dir(rq)); 1248 sg_free_table_chained(&req->metadata_sgl->sg_table, 1249 NVME_INLINE_METADATA_SG_CNT); 1250 } 1251 1252 ib_dma_unmap_sg(ibdev, req->data_sgl.sg_table.sgl, req->data_sgl.nents, 1253 rq_dma_dir(rq)); 1254 sg_free_table_chained(&req->data_sgl.sg_table, NVME_INLINE_SG_CNT); 1255 } 1256 1257 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue, 1258 struct request *rq) 1259 { 1260 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1261 struct nvme_rdma_device *dev = queue->device; 1262 struct ib_device *ibdev = dev->dev; 1263 struct list_head *pool = &queue->qp->rdma_mrs; 1264 1265 if (!blk_rq_nr_phys_segments(rq)) 1266 return; 1267 1268 if (req->use_sig_mr) 1269 pool = &queue->qp->sig_mrs; 1270 1271 if (req->mr) { 1272 ib_mr_pool_put(queue->qp, pool, req->mr); 1273 req->mr = NULL; 1274 } 1275 1276 nvme_rdma_dma_unmap_req(ibdev, rq); 1277 } 1278 1279 static int nvme_rdma_set_sg_null(struct nvme_command *c) 1280 { 1281 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 1282 1283 sg->addr = 0; 1284 put_unaligned_le24(0, sg->length); 1285 put_unaligned_le32(0, sg->key); 1286 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4; 1287 return 0; 1288 } 1289 1290 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue, 1291 struct nvme_rdma_request *req, struct nvme_command *c, 1292 int count) 1293 { 1294 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 1295 struct ib_sge *sge = &req->sge[1]; 1296 struct scatterlist *sgl; 1297 u32 len = 0; 1298 int i; 1299 1300 for_each_sg(req->data_sgl.sg_table.sgl, sgl, count, i) { 1301 sge->addr = sg_dma_address(sgl); 1302 sge->length = sg_dma_len(sgl); 1303 sge->lkey = queue->device->pd->local_dma_lkey; 1304 len += sge->length; 1305 sge++; 1306 } 1307 1308 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff); 1309 sg->length = cpu_to_le32(len); 1310 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET; 1311 1312 req->num_sge += count; 1313 return 0; 1314 } 1315 1316 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue, 1317 struct nvme_rdma_request *req, struct nvme_command *c) 1318 { 1319 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 1320 1321 sg->addr = cpu_to_le64(sg_dma_address(req->data_sgl.sg_table.sgl)); 1322 put_unaligned_le24(sg_dma_len(req->data_sgl.sg_table.sgl), sg->length); 1323 put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key); 1324 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4; 1325 return 0; 1326 } 1327 1328 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue, 1329 struct nvme_rdma_request *req, struct nvme_command *c, 1330 int count) 1331 { 1332 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 1333 int nr; 1334 1335 req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs); 1336 if (WARN_ON_ONCE(!req->mr)) 1337 return -EAGAIN; 1338 1339 /* 1340 * Align the MR to a 4K page size to match the ctrl page size and 1341 * the block virtual boundary. 1342 */ 1343 nr = ib_map_mr_sg(req->mr, req->data_sgl.sg_table.sgl, count, NULL, 1344 SZ_4K); 1345 if (unlikely(nr < count)) { 1346 ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr); 1347 req->mr = NULL; 1348 if (nr < 0) 1349 return nr; 1350 return -EINVAL; 1351 } 1352 1353 ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey)); 1354 1355 req->reg_cqe.done = nvme_rdma_memreg_done; 1356 memset(&req->reg_wr, 0, sizeof(req->reg_wr)); 1357 req->reg_wr.wr.opcode = IB_WR_REG_MR; 1358 req->reg_wr.wr.wr_cqe = &req->reg_cqe; 1359 req->reg_wr.wr.num_sge = 0; 1360 req->reg_wr.mr = req->mr; 1361 req->reg_wr.key = req->mr->rkey; 1362 req->reg_wr.access = IB_ACCESS_LOCAL_WRITE | 1363 IB_ACCESS_REMOTE_READ | 1364 IB_ACCESS_REMOTE_WRITE; 1365 1366 sg->addr = cpu_to_le64(req->mr->iova); 1367 put_unaligned_le24(req->mr->length, sg->length); 1368 put_unaligned_le32(req->mr->rkey, sg->key); 1369 sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) | 1370 NVME_SGL_FMT_INVALIDATE; 1371 1372 return 0; 1373 } 1374 1375 static void nvme_rdma_set_sig_domain(struct blk_integrity *bi, 1376 struct nvme_command *cmd, struct ib_sig_domain *domain, 1377 u16 control, u8 pi_type) 1378 { 1379 domain->sig_type = IB_SIG_TYPE_T10_DIF; 1380 domain->sig.dif.bg_type = IB_T10DIF_CRC; 1381 domain->sig.dif.pi_interval = 1 << bi->interval_exp; 1382 domain->sig.dif.ref_tag = le32_to_cpu(cmd->rw.reftag); 1383 if (control & NVME_RW_PRINFO_PRCHK_REF) 1384 domain->sig.dif.ref_remap = true; 1385 1386 domain->sig.dif.app_tag = le16_to_cpu(cmd->rw.apptag); 1387 domain->sig.dif.apptag_check_mask = le16_to_cpu(cmd->rw.appmask); 1388 domain->sig.dif.app_escape = true; 1389 if (pi_type == NVME_NS_DPS_PI_TYPE3) 1390 domain->sig.dif.ref_escape = true; 1391 } 1392 1393 static void nvme_rdma_set_sig_attrs(struct blk_integrity *bi, 1394 struct nvme_command *cmd, struct ib_sig_attrs *sig_attrs, 1395 u8 pi_type) 1396 { 1397 u16 control = le16_to_cpu(cmd->rw.control); 1398 1399 memset(sig_attrs, 0, sizeof(*sig_attrs)); 1400 if (control & NVME_RW_PRINFO_PRACT) { 1401 /* for WRITE_INSERT/READ_STRIP no memory domain */ 1402 sig_attrs->mem.sig_type = IB_SIG_TYPE_NONE; 1403 nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control, 1404 pi_type); 1405 /* Clear the PRACT bit since HCA will generate/verify the PI */ 1406 control &= ~NVME_RW_PRINFO_PRACT; 1407 cmd->rw.control = cpu_to_le16(control); 1408 } else { 1409 /* for WRITE_PASS/READ_PASS both wire/memory domains exist */ 1410 nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control, 1411 pi_type); 1412 nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control, 1413 pi_type); 1414 } 1415 } 1416 1417 static void nvme_rdma_set_prot_checks(struct nvme_command *cmd, u8 *mask) 1418 { 1419 *mask = 0; 1420 if (le16_to_cpu(cmd->rw.control) & NVME_RW_PRINFO_PRCHK_REF) 1421 *mask |= IB_SIG_CHECK_REFTAG; 1422 if (le16_to_cpu(cmd->rw.control) & NVME_RW_PRINFO_PRCHK_GUARD) 1423 *mask |= IB_SIG_CHECK_GUARD; 1424 } 1425 1426 static void nvme_rdma_sig_done(struct ib_cq *cq, struct ib_wc *wc) 1427 { 1428 if (unlikely(wc->status != IB_WC_SUCCESS)) 1429 nvme_rdma_wr_error(cq, wc, "SIG"); 1430 } 1431 1432 static int nvme_rdma_map_sg_pi(struct nvme_rdma_queue *queue, 1433 struct nvme_rdma_request *req, struct nvme_command *c, 1434 int count, int pi_count) 1435 { 1436 struct nvme_rdma_sgl *sgl = &req->data_sgl; 1437 struct ib_reg_wr *wr = &req->reg_wr; 1438 struct request *rq = blk_mq_rq_from_pdu(req); 1439 struct nvme_ns *ns = rq->q->queuedata; 1440 struct bio *bio = rq->bio; 1441 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 1442 int nr; 1443 1444 req->mr = ib_mr_pool_get(queue->qp, &queue->qp->sig_mrs); 1445 if (WARN_ON_ONCE(!req->mr)) 1446 return -EAGAIN; 1447 1448 nr = ib_map_mr_sg_pi(req->mr, sgl->sg_table.sgl, count, NULL, 1449 req->metadata_sgl->sg_table.sgl, pi_count, NULL, 1450 SZ_4K); 1451 if (unlikely(nr)) 1452 goto mr_put; 1453 1454 nvme_rdma_set_sig_attrs(blk_get_integrity(bio->bi_bdev->bd_disk), c, 1455 req->mr->sig_attrs, ns->pi_type); 1456 nvme_rdma_set_prot_checks(c, &req->mr->sig_attrs->check_mask); 1457 1458 ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey)); 1459 1460 req->reg_cqe.done = nvme_rdma_sig_done; 1461 memset(wr, 0, sizeof(*wr)); 1462 wr->wr.opcode = IB_WR_REG_MR_INTEGRITY; 1463 wr->wr.wr_cqe = &req->reg_cqe; 1464 wr->wr.num_sge = 0; 1465 wr->wr.send_flags = 0; 1466 wr->mr = req->mr; 1467 wr->key = req->mr->rkey; 1468 wr->access = IB_ACCESS_LOCAL_WRITE | 1469 IB_ACCESS_REMOTE_READ | 1470 IB_ACCESS_REMOTE_WRITE; 1471 1472 sg->addr = cpu_to_le64(req->mr->iova); 1473 put_unaligned_le24(req->mr->length, sg->length); 1474 put_unaligned_le32(req->mr->rkey, sg->key); 1475 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4; 1476 1477 return 0; 1478 1479 mr_put: 1480 ib_mr_pool_put(queue->qp, &queue->qp->sig_mrs, req->mr); 1481 req->mr = NULL; 1482 if (nr < 0) 1483 return nr; 1484 return -EINVAL; 1485 } 1486 1487 static int nvme_rdma_dma_map_req(struct ib_device *ibdev, struct request *rq, 1488 int *count, int *pi_count) 1489 { 1490 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1491 int ret; 1492 1493 req->data_sgl.sg_table.sgl = (struct scatterlist *)(req + 1); 1494 ret = sg_alloc_table_chained(&req->data_sgl.sg_table, 1495 blk_rq_nr_phys_segments(rq), req->data_sgl.sg_table.sgl, 1496 NVME_INLINE_SG_CNT); 1497 if (ret) 1498 return -ENOMEM; 1499 1500 req->data_sgl.nents = blk_rq_map_sg(rq->q, rq, 1501 req->data_sgl.sg_table.sgl); 1502 1503 *count = ib_dma_map_sg(ibdev, req->data_sgl.sg_table.sgl, 1504 req->data_sgl.nents, rq_dma_dir(rq)); 1505 if (unlikely(*count <= 0)) { 1506 ret = -EIO; 1507 goto out_free_table; 1508 } 1509 1510 if (blk_integrity_rq(rq)) { 1511 req->metadata_sgl->sg_table.sgl = 1512 (struct scatterlist *)(req->metadata_sgl + 1); 1513 ret = sg_alloc_table_chained(&req->metadata_sgl->sg_table, 1514 blk_rq_count_integrity_sg(rq->q, rq->bio), 1515 req->metadata_sgl->sg_table.sgl, 1516 NVME_INLINE_METADATA_SG_CNT); 1517 if (unlikely(ret)) { 1518 ret = -ENOMEM; 1519 goto out_unmap_sg; 1520 } 1521 1522 req->metadata_sgl->nents = blk_rq_map_integrity_sg(rq->q, 1523 rq->bio, req->metadata_sgl->sg_table.sgl); 1524 *pi_count = ib_dma_map_sg(ibdev, 1525 req->metadata_sgl->sg_table.sgl, 1526 req->metadata_sgl->nents, 1527 rq_dma_dir(rq)); 1528 if (unlikely(*pi_count <= 0)) { 1529 ret = -EIO; 1530 goto out_free_pi_table; 1531 } 1532 } 1533 1534 return 0; 1535 1536 out_free_pi_table: 1537 sg_free_table_chained(&req->metadata_sgl->sg_table, 1538 NVME_INLINE_METADATA_SG_CNT); 1539 out_unmap_sg: 1540 ib_dma_unmap_sg(ibdev, req->data_sgl.sg_table.sgl, req->data_sgl.nents, 1541 rq_dma_dir(rq)); 1542 out_free_table: 1543 sg_free_table_chained(&req->data_sgl.sg_table, NVME_INLINE_SG_CNT); 1544 return ret; 1545 } 1546 1547 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue, 1548 struct request *rq, struct nvme_command *c) 1549 { 1550 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1551 struct nvme_rdma_device *dev = queue->device; 1552 struct ib_device *ibdev = dev->dev; 1553 int pi_count = 0; 1554 int count, ret; 1555 1556 req->num_sge = 1; 1557 refcount_set(&req->ref, 2); /* send and recv completions */ 1558 1559 c->common.flags |= NVME_CMD_SGL_METABUF; 1560 1561 if (!blk_rq_nr_phys_segments(rq)) 1562 return nvme_rdma_set_sg_null(c); 1563 1564 ret = nvme_rdma_dma_map_req(ibdev, rq, &count, &pi_count); 1565 if (unlikely(ret)) 1566 return ret; 1567 1568 if (req->use_sig_mr) { 1569 ret = nvme_rdma_map_sg_pi(queue, req, c, count, pi_count); 1570 goto out; 1571 } 1572 1573 if (count <= dev->num_inline_segments) { 1574 if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) && 1575 queue->ctrl->use_inline_data && 1576 blk_rq_payload_bytes(rq) <= 1577 nvme_rdma_inline_data_size(queue)) { 1578 ret = nvme_rdma_map_sg_inline(queue, req, c, count); 1579 goto out; 1580 } 1581 1582 if (count == 1 && dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) { 1583 ret = nvme_rdma_map_sg_single(queue, req, c); 1584 goto out; 1585 } 1586 } 1587 1588 ret = nvme_rdma_map_sg_fr(queue, req, c, count); 1589 out: 1590 if (unlikely(ret)) 1591 goto out_dma_unmap_req; 1592 1593 return 0; 1594 1595 out_dma_unmap_req: 1596 nvme_rdma_dma_unmap_req(ibdev, rq); 1597 return ret; 1598 } 1599 1600 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc) 1601 { 1602 struct nvme_rdma_qe *qe = 1603 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe); 1604 struct nvme_rdma_request *req = 1605 container_of(qe, struct nvme_rdma_request, sqe); 1606 1607 if (unlikely(wc->status != IB_WC_SUCCESS)) 1608 nvme_rdma_wr_error(cq, wc, "SEND"); 1609 else 1610 nvme_rdma_end_request(req); 1611 } 1612 1613 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue, 1614 struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge, 1615 struct ib_send_wr *first) 1616 { 1617 struct ib_send_wr wr; 1618 int ret; 1619 1620 sge->addr = qe->dma; 1621 sge->length = sizeof(struct nvme_command); 1622 sge->lkey = queue->device->pd->local_dma_lkey; 1623 1624 wr.next = NULL; 1625 wr.wr_cqe = &qe->cqe; 1626 wr.sg_list = sge; 1627 wr.num_sge = num_sge; 1628 wr.opcode = IB_WR_SEND; 1629 wr.send_flags = IB_SEND_SIGNALED; 1630 1631 if (first) 1632 first->next = ≀ 1633 else 1634 first = ≀ 1635 1636 ret = ib_post_send(queue->qp, first, NULL); 1637 if (unlikely(ret)) { 1638 dev_err(queue->ctrl->ctrl.device, 1639 "%s failed with error code %d\n", __func__, ret); 1640 } 1641 return ret; 1642 } 1643 1644 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue, 1645 struct nvme_rdma_qe *qe) 1646 { 1647 struct ib_recv_wr wr; 1648 struct ib_sge list; 1649 int ret; 1650 1651 list.addr = qe->dma; 1652 list.length = sizeof(struct nvme_completion); 1653 list.lkey = queue->device->pd->local_dma_lkey; 1654 1655 qe->cqe.done = nvme_rdma_recv_done; 1656 1657 wr.next = NULL; 1658 wr.wr_cqe = &qe->cqe; 1659 wr.sg_list = &list; 1660 wr.num_sge = 1; 1661 1662 ret = ib_post_recv(queue->qp, &wr, NULL); 1663 if (unlikely(ret)) { 1664 dev_err(queue->ctrl->ctrl.device, 1665 "%s failed with error code %d\n", __func__, ret); 1666 } 1667 return ret; 1668 } 1669 1670 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue) 1671 { 1672 u32 queue_idx = nvme_rdma_queue_idx(queue); 1673 1674 if (queue_idx == 0) 1675 return queue->ctrl->admin_tag_set.tags[queue_idx]; 1676 return queue->ctrl->tag_set.tags[queue_idx - 1]; 1677 } 1678 1679 static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc) 1680 { 1681 if (unlikely(wc->status != IB_WC_SUCCESS)) 1682 nvme_rdma_wr_error(cq, wc, "ASYNC"); 1683 } 1684 1685 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg) 1686 { 1687 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg); 1688 struct nvme_rdma_queue *queue = &ctrl->queues[0]; 1689 struct ib_device *dev = queue->device->dev; 1690 struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe; 1691 struct nvme_command *cmd = sqe->data; 1692 struct ib_sge sge; 1693 int ret; 1694 1695 ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE); 1696 1697 memset(cmd, 0, sizeof(*cmd)); 1698 cmd->common.opcode = nvme_admin_async_event; 1699 cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH; 1700 cmd->common.flags |= NVME_CMD_SGL_METABUF; 1701 nvme_rdma_set_sg_null(cmd); 1702 1703 sqe->cqe.done = nvme_rdma_async_done; 1704 1705 ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd), 1706 DMA_TO_DEVICE); 1707 1708 ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL); 1709 WARN_ON_ONCE(ret); 1710 } 1711 1712 static void nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue, 1713 struct nvme_completion *cqe, struct ib_wc *wc) 1714 { 1715 struct request *rq; 1716 struct nvme_rdma_request *req; 1717 1718 rq = nvme_find_rq(nvme_rdma_tagset(queue), cqe->command_id); 1719 if (!rq) { 1720 dev_err(queue->ctrl->ctrl.device, 1721 "got bad command_id %#x on QP %#x\n", 1722 cqe->command_id, queue->qp->qp_num); 1723 nvme_rdma_error_recovery(queue->ctrl); 1724 return; 1725 } 1726 req = blk_mq_rq_to_pdu(rq); 1727 1728 req->status = cqe->status; 1729 req->result = cqe->result; 1730 1731 if (wc->wc_flags & IB_WC_WITH_INVALIDATE) { 1732 if (unlikely(!req->mr || 1733 wc->ex.invalidate_rkey != req->mr->rkey)) { 1734 dev_err(queue->ctrl->ctrl.device, 1735 "Bogus remote invalidation for rkey %#x\n", 1736 req->mr ? req->mr->rkey : 0); 1737 nvme_rdma_error_recovery(queue->ctrl); 1738 } 1739 } else if (req->mr) { 1740 int ret; 1741 1742 ret = nvme_rdma_inv_rkey(queue, req); 1743 if (unlikely(ret < 0)) { 1744 dev_err(queue->ctrl->ctrl.device, 1745 "Queueing INV WR for rkey %#x failed (%d)\n", 1746 req->mr->rkey, ret); 1747 nvme_rdma_error_recovery(queue->ctrl); 1748 } 1749 /* the local invalidation completion will end the request */ 1750 return; 1751 } 1752 1753 nvme_rdma_end_request(req); 1754 } 1755 1756 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc) 1757 { 1758 struct nvme_rdma_qe *qe = 1759 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe); 1760 struct nvme_rdma_queue *queue = wc->qp->qp_context; 1761 struct ib_device *ibdev = queue->device->dev; 1762 struct nvme_completion *cqe = qe->data; 1763 const size_t len = sizeof(struct nvme_completion); 1764 1765 if (unlikely(wc->status != IB_WC_SUCCESS)) { 1766 nvme_rdma_wr_error(cq, wc, "RECV"); 1767 return; 1768 } 1769 1770 /* sanity checking for received data length */ 1771 if (unlikely(wc->byte_len < len)) { 1772 dev_err(queue->ctrl->ctrl.device, 1773 "Unexpected nvme completion length(%d)\n", wc->byte_len); 1774 nvme_rdma_error_recovery(queue->ctrl); 1775 return; 1776 } 1777 1778 ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE); 1779 /* 1780 * AEN requests are special as they don't time out and can 1781 * survive any kind of queue freeze and often don't respond to 1782 * aborts. We don't even bother to allocate a struct request 1783 * for them but rather special case them here. 1784 */ 1785 if (unlikely(nvme_is_aen_req(nvme_rdma_queue_idx(queue), 1786 cqe->command_id))) 1787 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status, 1788 &cqe->result); 1789 else 1790 nvme_rdma_process_nvme_rsp(queue, cqe, wc); 1791 ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE); 1792 1793 nvme_rdma_post_recv(queue, qe); 1794 } 1795 1796 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue) 1797 { 1798 int ret, i; 1799 1800 for (i = 0; i < queue->queue_size; i++) { 1801 ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]); 1802 if (ret) 1803 return ret; 1804 } 1805 1806 return 0; 1807 } 1808 1809 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue, 1810 struct rdma_cm_event *ev) 1811 { 1812 struct rdma_cm_id *cm_id = queue->cm_id; 1813 int status = ev->status; 1814 const char *rej_msg; 1815 const struct nvme_rdma_cm_rej *rej_data; 1816 u8 rej_data_len; 1817 1818 rej_msg = rdma_reject_msg(cm_id, status); 1819 rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len); 1820 1821 if (rej_data && rej_data_len >= sizeof(u16)) { 1822 u16 sts = le16_to_cpu(rej_data->sts); 1823 1824 dev_err(queue->ctrl->ctrl.device, 1825 "Connect rejected: status %d (%s) nvme status %d (%s).\n", 1826 status, rej_msg, sts, nvme_rdma_cm_msg(sts)); 1827 } else { 1828 dev_err(queue->ctrl->ctrl.device, 1829 "Connect rejected: status %d (%s).\n", status, rej_msg); 1830 } 1831 1832 return -ECONNRESET; 1833 } 1834 1835 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue) 1836 { 1837 struct nvme_ctrl *ctrl = &queue->ctrl->ctrl; 1838 int ret; 1839 1840 ret = nvme_rdma_create_queue_ib(queue); 1841 if (ret) 1842 return ret; 1843 1844 if (ctrl->opts->tos >= 0) 1845 rdma_set_service_type(queue->cm_id, ctrl->opts->tos); 1846 ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CM_TIMEOUT_MS); 1847 if (ret) { 1848 dev_err(ctrl->device, "rdma_resolve_route failed (%d).\n", 1849 queue->cm_error); 1850 goto out_destroy_queue; 1851 } 1852 1853 return 0; 1854 1855 out_destroy_queue: 1856 nvme_rdma_destroy_queue_ib(queue); 1857 return ret; 1858 } 1859 1860 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue) 1861 { 1862 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 1863 struct rdma_conn_param param = { }; 1864 struct nvme_rdma_cm_req priv = { }; 1865 int ret; 1866 1867 param.qp_num = queue->qp->qp_num; 1868 param.flow_control = 1; 1869 1870 param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom; 1871 /* maximum retry count */ 1872 param.retry_count = 7; 1873 param.rnr_retry_count = 7; 1874 param.private_data = &priv; 1875 param.private_data_len = sizeof(priv); 1876 1877 priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0); 1878 priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue)); 1879 /* 1880 * set the admin queue depth to the minimum size 1881 * specified by the Fabrics standard. 1882 */ 1883 if (priv.qid == 0) { 1884 priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH); 1885 priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1); 1886 } else { 1887 /* 1888 * current interpretation of the fabrics spec 1889 * is at minimum you make hrqsize sqsize+1, or a 1890 * 1's based representation of sqsize. 1891 */ 1892 priv.hrqsize = cpu_to_le16(queue->queue_size); 1893 priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize); 1894 } 1895 1896 ret = rdma_connect_locked(queue->cm_id, ¶m); 1897 if (ret) { 1898 dev_err(ctrl->ctrl.device, 1899 "rdma_connect_locked failed (%d).\n", ret); 1900 return ret; 1901 } 1902 1903 return 0; 1904 } 1905 1906 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id, 1907 struct rdma_cm_event *ev) 1908 { 1909 struct nvme_rdma_queue *queue = cm_id->context; 1910 int cm_error = 0; 1911 1912 dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n", 1913 rdma_event_msg(ev->event), ev->event, 1914 ev->status, cm_id); 1915 1916 switch (ev->event) { 1917 case RDMA_CM_EVENT_ADDR_RESOLVED: 1918 cm_error = nvme_rdma_addr_resolved(queue); 1919 break; 1920 case RDMA_CM_EVENT_ROUTE_RESOLVED: 1921 cm_error = nvme_rdma_route_resolved(queue); 1922 break; 1923 case RDMA_CM_EVENT_ESTABLISHED: 1924 queue->cm_error = nvme_rdma_conn_established(queue); 1925 /* complete cm_done regardless of success/failure */ 1926 complete(&queue->cm_done); 1927 return 0; 1928 case RDMA_CM_EVENT_REJECTED: 1929 cm_error = nvme_rdma_conn_rejected(queue, ev); 1930 break; 1931 case RDMA_CM_EVENT_ROUTE_ERROR: 1932 case RDMA_CM_EVENT_CONNECT_ERROR: 1933 case RDMA_CM_EVENT_UNREACHABLE: 1934 case RDMA_CM_EVENT_ADDR_ERROR: 1935 dev_dbg(queue->ctrl->ctrl.device, 1936 "CM error event %d\n", ev->event); 1937 cm_error = -ECONNRESET; 1938 break; 1939 case RDMA_CM_EVENT_DISCONNECTED: 1940 case RDMA_CM_EVENT_ADDR_CHANGE: 1941 case RDMA_CM_EVENT_TIMEWAIT_EXIT: 1942 dev_dbg(queue->ctrl->ctrl.device, 1943 "disconnect received - connection closed\n"); 1944 nvme_rdma_error_recovery(queue->ctrl); 1945 break; 1946 case RDMA_CM_EVENT_DEVICE_REMOVAL: 1947 /* device removal is handled via the ib_client API */ 1948 break; 1949 default: 1950 dev_err(queue->ctrl->ctrl.device, 1951 "Unexpected RDMA CM event (%d)\n", ev->event); 1952 nvme_rdma_error_recovery(queue->ctrl); 1953 break; 1954 } 1955 1956 if (cm_error) { 1957 queue->cm_error = cm_error; 1958 complete(&queue->cm_done); 1959 } 1960 1961 return 0; 1962 } 1963 1964 static void nvme_rdma_complete_timed_out(struct request *rq) 1965 { 1966 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1967 struct nvme_rdma_queue *queue = req->queue; 1968 1969 nvme_rdma_stop_queue(queue); 1970 nvmf_complete_timed_out_request(rq); 1971 } 1972 1973 static enum blk_eh_timer_return nvme_rdma_timeout(struct request *rq) 1974 { 1975 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1976 struct nvme_rdma_queue *queue = req->queue; 1977 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 1978 1979 dev_warn(ctrl->ctrl.device, "I/O %d QID %d timeout\n", 1980 rq->tag, nvme_rdma_queue_idx(queue)); 1981 1982 if (ctrl->ctrl.state != NVME_CTRL_LIVE) { 1983 /* 1984 * If we are resetting, connecting or deleting we should 1985 * complete immediately because we may block controller 1986 * teardown or setup sequence 1987 * - ctrl disable/shutdown fabrics requests 1988 * - connect requests 1989 * - initialization admin requests 1990 * - I/O requests that entered after unquiescing and 1991 * the controller stopped responding 1992 * 1993 * All other requests should be cancelled by the error 1994 * recovery work, so it's fine that we fail it here. 1995 */ 1996 nvme_rdma_complete_timed_out(rq); 1997 return BLK_EH_DONE; 1998 } 1999 2000 /* 2001 * LIVE state should trigger the normal error recovery which will 2002 * handle completing this request. 2003 */ 2004 nvme_rdma_error_recovery(ctrl); 2005 return BLK_EH_RESET_TIMER; 2006 } 2007 2008 static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx, 2009 const struct blk_mq_queue_data *bd) 2010 { 2011 struct nvme_ns *ns = hctx->queue->queuedata; 2012 struct nvme_rdma_queue *queue = hctx->driver_data; 2013 struct request *rq = bd->rq; 2014 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 2015 struct nvme_rdma_qe *sqe = &req->sqe; 2016 struct nvme_command *c = nvme_req(rq)->cmd; 2017 struct ib_device *dev; 2018 bool queue_ready = test_bit(NVME_RDMA_Q_LIVE, &queue->flags); 2019 blk_status_t ret; 2020 int err; 2021 2022 WARN_ON_ONCE(rq->tag < 0); 2023 2024 if (!nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready)) 2025 return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq); 2026 2027 dev = queue->device->dev; 2028 2029 req->sqe.dma = ib_dma_map_single(dev, req->sqe.data, 2030 sizeof(struct nvme_command), 2031 DMA_TO_DEVICE); 2032 err = ib_dma_mapping_error(dev, req->sqe.dma); 2033 if (unlikely(err)) 2034 return BLK_STS_RESOURCE; 2035 2036 ib_dma_sync_single_for_cpu(dev, sqe->dma, 2037 sizeof(struct nvme_command), DMA_TO_DEVICE); 2038 2039 ret = nvme_setup_cmd(ns, rq); 2040 if (ret) 2041 goto unmap_qe; 2042 2043 blk_mq_start_request(rq); 2044 2045 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) && 2046 queue->pi_support && 2047 (c->common.opcode == nvme_cmd_write || 2048 c->common.opcode == nvme_cmd_read) && 2049 nvme_ns_has_pi(ns)) 2050 req->use_sig_mr = true; 2051 else 2052 req->use_sig_mr = false; 2053 2054 err = nvme_rdma_map_data(queue, rq, c); 2055 if (unlikely(err < 0)) { 2056 dev_err(queue->ctrl->ctrl.device, 2057 "Failed to map data (%d)\n", err); 2058 goto err; 2059 } 2060 2061 sqe->cqe.done = nvme_rdma_send_done; 2062 2063 ib_dma_sync_single_for_device(dev, sqe->dma, 2064 sizeof(struct nvme_command), DMA_TO_DEVICE); 2065 2066 err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge, 2067 req->mr ? &req->reg_wr.wr : NULL); 2068 if (unlikely(err)) 2069 goto err_unmap; 2070 2071 return BLK_STS_OK; 2072 2073 err_unmap: 2074 nvme_rdma_unmap_data(queue, rq); 2075 err: 2076 if (err == -EIO) 2077 ret = nvme_host_path_error(rq); 2078 else if (err == -ENOMEM || err == -EAGAIN) 2079 ret = BLK_STS_RESOURCE; 2080 else 2081 ret = BLK_STS_IOERR; 2082 nvme_cleanup_cmd(rq); 2083 unmap_qe: 2084 ib_dma_unmap_single(dev, req->sqe.dma, sizeof(struct nvme_command), 2085 DMA_TO_DEVICE); 2086 return ret; 2087 } 2088 2089 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob) 2090 { 2091 struct nvme_rdma_queue *queue = hctx->driver_data; 2092 2093 return ib_process_cq_direct(queue->ib_cq, -1); 2094 } 2095 2096 static void nvme_rdma_check_pi_status(struct nvme_rdma_request *req) 2097 { 2098 struct request *rq = blk_mq_rq_from_pdu(req); 2099 struct ib_mr_status mr_status; 2100 int ret; 2101 2102 ret = ib_check_mr_status(req->mr, IB_MR_CHECK_SIG_STATUS, &mr_status); 2103 if (ret) { 2104 pr_err("ib_check_mr_status failed, ret %d\n", ret); 2105 nvme_req(rq)->status = NVME_SC_INVALID_PI; 2106 return; 2107 } 2108 2109 if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) { 2110 switch (mr_status.sig_err.err_type) { 2111 case IB_SIG_BAD_GUARD: 2112 nvme_req(rq)->status = NVME_SC_GUARD_CHECK; 2113 break; 2114 case IB_SIG_BAD_REFTAG: 2115 nvme_req(rq)->status = NVME_SC_REFTAG_CHECK; 2116 break; 2117 case IB_SIG_BAD_APPTAG: 2118 nvme_req(rq)->status = NVME_SC_APPTAG_CHECK; 2119 break; 2120 } 2121 pr_err("PI error found type %d expected 0x%x vs actual 0x%x\n", 2122 mr_status.sig_err.err_type, mr_status.sig_err.expected, 2123 mr_status.sig_err.actual); 2124 } 2125 } 2126 2127 static void nvme_rdma_complete_rq(struct request *rq) 2128 { 2129 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 2130 struct nvme_rdma_queue *queue = req->queue; 2131 struct ib_device *ibdev = queue->device->dev; 2132 2133 if (req->use_sig_mr) 2134 nvme_rdma_check_pi_status(req); 2135 2136 nvme_rdma_unmap_data(queue, rq); 2137 ib_dma_unmap_single(ibdev, req->sqe.dma, sizeof(struct nvme_command), 2138 DMA_TO_DEVICE); 2139 nvme_complete_rq(rq); 2140 } 2141 2142 static void nvme_rdma_map_queues(struct blk_mq_tag_set *set) 2143 { 2144 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(set->driver_data); 2145 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 2146 2147 if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) { 2148 /* separate read/write queues */ 2149 set->map[HCTX_TYPE_DEFAULT].nr_queues = 2150 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2151 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0; 2152 set->map[HCTX_TYPE_READ].nr_queues = 2153 ctrl->io_queues[HCTX_TYPE_READ]; 2154 set->map[HCTX_TYPE_READ].queue_offset = 2155 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2156 } else { 2157 /* shared read/write queues */ 2158 set->map[HCTX_TYPE_DEFAULT].nr_queues = 2159 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2160 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0; 2161 set->map[HCTX_TYPE_READ].nr_queues = 2162 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2163 set->map[HCTX_TYPE_READ].queue_offset = 0; 2164 } 2165 blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_DEFAULT], 2166 ctrl->device->dev, 0); 2167 blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_READ], 2168 ctrl->device->dev, 0); 2169 2170 if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) { 2171 /* map dedicated poll queues only if we have queues left */ 2172 set->map[HCTX_TYPE_POLL].nr_queues = 2173 ctrl->io_queues[HCTX_TYPE_POLL]; 2174 set->map[HCTX_TYPE_POLL].queue_offset = 2175 ctrl->io_queues[HCTX_TYPE_DEFAULT] + 2176 ctrl->io_queues[HCTX_TYPE_READ]; 2177 blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]); 2178 } 2179 2180 dev_info(ctrl->ctrl.device, 2181 "mapped %d/%d/%d default/read/poll queues.\n", 2182 ctrl->io_queues[HCTX_TYPE_DEFAULT], 2183 ctrl->io_queues[HCTX_TYPE_READ], 2184 ctrl->io_queues[HCTX_TYPE_POLL]); 2185 } 2186 2187 static const struct blk_mq_ops nvme_rdma_mq_ops = { 2188 .queue_rq = nvme_rdma_queue_rq, 2189 .complete = nvme_rdma_complete_rq, 2190 .init_request = nvme_rdma_init_request, 2191 .exit_request = nvme_rdma_exit_request, 2192 .init_hctx = nvme_rdma_init_hctx, 2193 .timeout = nvme_rdma_timeout, 2194 .map_queues = nvme_rdma_map_queues, 2195 .poll = nvme_rdma_poll, 2196 }; 2197 2198 static const struct blk_mq_ops nvme_rdma_admin_mq_ops = { 2199 .queue_rq = nvme_rdma_queue_rq, 2200 .complete = nvme_rdma_complete_rq, 2201 .init_request = nvme_rdma_init_request, 2202 .exit_request = nvme_rdma_exit_request, 2203 .init_hctx = nvme_rdma_init_admin_hctx, 2204 .timeout = nvme_rdma_timeout, 2205 }; 2206 2207 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown) 2208 { 2209 nvme_rdma_teardown_io_queues(ctrl, shutdown); 2210 nvme_stop_admin_queue(&ctrl->ctrl); 2211 if (shutdown) 2212 nvme_shutdown_ctrl(&ctrl->ctrl); 2213 else 2214 nvme_disable_ctrl(&ctrl->ctrl); 2215 nvme_rdma_teardown_admin_queue(ctrl, shutdown); 2216 } 2217 2218 static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl) 2219 { 2220 nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true); 2221 } 2222 2223 static void nvme_rdma_reset_ctrl_work(struct work_struct *work) 2224 { 2225 struct nvme_rdma_ctrl *ctrl = 2226 container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work); 2227 2228 nvme_stop_ctrl(&ctrl->ctrl); 2229 nvme_rdma_shutdown_ctrl(ctrl, false); 2230 2231 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) { 2232 /* state change failure should never happen */ 2233 WARN_ON_ONCE(1); 2234 return; 2235 } 2236 2237 if (nvme_rdma_setup_ctrl(ctrl, false)) 2238 goto out_fail; 2239 2240 return; 2241 2242 out_fail: 2243 ++ctrl->ctrl.nr_reconnects; 2244 nvme_rdma_reconnect_or_remove(ctrl); 2245 } 2246 2247 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = { 2248 .name = "rdma", 2249 .module = THIS_MODULE, 2250 .flags = NVME_F_FABRICS | NVME_F_METADATA_SUPPORTED, 2251 .reg_read32 = nvmf_reg_read32, 2252 .reg_read64 = nvmf_reg_read64, 2253 .reg_write32 = nvmf_reg_write32, 2254 .free_ctrl = nvme_rdma_free_ctrl, 2255 .submit_async_event = nvme_rdma_submit_async_event, 2256 .delete_ctrl = nvme_rdma_delete_ctrl, 2257 .get_address = nvmf_get_address, 2258 .stop_ctrl = nvme_rdma_stop_ctrl, 2259 }; 2260 2261 /* 2262 * Fails a connection request if it matches an existing controller 2263 * (association) with the same tuple: 2264 * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN> 2265 * 2266 * if local address is not specified in the request, it will match an 2267 * existing controller with all the other parameters the same and no 2268 * local port address specified as well. 2269 * 2270 * The ports don't need to be compared as they are intrinsically 2271 * already matched by the port pointers supplied. 2272 */ 2273 static bool 2274 nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts) 2275 { 2276 struct nvme_rdma_ctrl *ctrl; 2277 bool found = false; 2278 2279 mutex_lock(&nvme_rdma_ctrl_mutex); 2280 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) { 2281 found = nvmf_ip_options_match(&ctrl->ctrl, opts); 2282 if (found) 2283 break; 2284 } 2285 mutex_unlock(&nvme_rdma_ctrl_mutex); 2286 2287 return found; 2288 } 2289 2290 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev, 2291 struct nvmf_ctrl_options *opts) 2292 { 2293 struct nvme_rdma_ctrl *ctrl; 2294 int ret; 2295 bool changed; 2296 2297 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 2298 if (!ctrl) 2299 return ERR_PTR(-ENOMEM); 2300 ctrl->ctrl.opts = opts; 2301 INIT_LIST_HEAD(&ctrl->list); 2302 2303 if (!(opts->mask & NVMF_OPT_TRSVCID)) { 2304 opts->trsvcid = 2305 kstrdup(__stringify(NVME_RDMA_IP_PORT), GFP_KERNEL); 2306 if (!opts->trsvcid) { 2307 ret = -ENOMEM; 2308 goto out_free_ctrl; 2309 } 2310 opts->mask |= NVMF_OPT_TRSVCID; 2311 } 2312 2313 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 2314 opts->traddr, opts->trsvcid, &ctrl->addr); 2315 if (ret) { 2316 pr_err("malformed address passed: %s:%s\n", 2317 opts->traddr, opts->trsvcid); 2318 goto out_free_ctrl; 2319 } 2320 2321 if (opts->mask & NVMF_OPT_HOST_TRADDR) { 2322 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 2323 opts->host_traddr, NULL, &ctrl->src_addr); 2324 if (ret) { 2325 pr_err("malformed src address passed: %s\n", 2326 opts->host_traddr); 2327 goto out_free_ctrl; 2328 } 2329 } 2330 2331 if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) { 2332 ret = -EALREADY; 2333 goto out_free_ctrl; 2334 } 2335 2336 INIT_DELAYED_WORK(&ctrl->reconnect_work, 2337 nvme_rdma_reconnect_ctrl_work); 2338 INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work); 2339 INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work); 2340 2341 ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues + 2342 opts->nr_poll_queues + 1; 2343 ctrl->ctrl.sqsize = opts->queue_size - 1; 2344 ctrl->ctrl.kato = opts->kato; 2345 2346 ret = -ENOMEM; 2347 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues), 2348 GFP_KERNEL); 2349 if (!ctrl->queues) 2350 goto out_free_ctrl; 2351 2352 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops, 2353 0 /* no quirks, we're perfect! */); 2354 if (ret) 2355 goto out_kfree_queues; 2356 2357 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING); 2358 WARN_ON_ONCE(!changed); 2359 2360 ret = nvme_rdma_setup_ctrl(ctrl, true); 2361 if (ret) 2362 goto out_uninit_ctrl; 2363 2364 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n", 2365 nvmf_ctrl_subsysnqn(&ctrl->ctrl), &ctrl->addr); 2366 2367 mutex_lock(&nvme_rdma_ctrl_mutex); 2368 list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list); 2369 mutex_unlock(&nvme_rdma_ctrl_mutex); 2370 2371 return &ctrl->ctrl; 2372 2373 out_uninit_ctrl: 2374 nvme_uninit_ctrl(&ctrl->ctrl); 2375 nvme_put_ctrl(&ctrl->ctrl); 2376 if (ret > 0) 2377 ret = -EIO; 2378 return ERR_PTR(ret); 2379 out_kfree_queues: 2380 kfree(ctrl->queues); 2381 out_free_ctrl: 2382 kfree(ctrl); 2383 return ERR_PTR(ret); 2384 } 2385 2386 static struct nvmf_transport_ops nvme_rdma_transport = { 2387 .name = "rdma", 2388 .module = THIS_MODULE, 2389 .required_opts = NVMF_OPT_TRADDR, 2390 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY | 2391 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO | 2392 NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES | 2393 NVMF_OPT_TOS, 2394 .create_ctrl = nvme_rdma_create_ctrl, 2395 }; 2396 2397 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data) 2398 { 2399 struct nvme_rdma_ctrl *ctrl; 2400 struct nvme_rdma_device *ndev; 2401 bool found = false; 2402 2403 mutex_lock(&device_list_mutex); 2404 list_for_each_entry(ndev, &device_list, entry) { 2405 if (ndev->dev == ib_device) { 2406 found = true; 2407 break; 2408 } 2409 } 2410 mutex_unlock(&device_list_mutex); 2411 2412 if (!found) 2413 return; 2414 2415 /* Delete all controllers using this device */ 2416 mutex_lock(&nvme_rdma_ctrl_mutex); 2417 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) { 2418 if (ctrl->device->dev != ib_device) 2419 continue; 2420 nvme_delete_ctrl(&ctrl->ctrl); 2421 } 2422 mutex_unlock(&nvme_rdma_ctrl_mutex); 2423 2424 flush_workqueue(nvme_delete_wq); 2425 } 2426 2427 static struct ib_client nvme_rdma_ib_client = { 2428 .name = "nvme_rdma", 2429 .remove = nvme_rdma_remove_one 2430 }; 2431 2432 static int __init nvme_rdma_init_module(void) 2433 { 2434 int ret; 2435 2436 ret = ib_register_client(&nvme_rdma_ib_client); 2437 if (ret) 2438 return ret; 2439 2440 ret = nvmf_register_transport(&nvme_rdma_transport); 2441 if (ret) 2442 goto err_unreg_client; 2443 2444 return 0; 2445 2446 err_unreg_client: 2447 ib_unregister_client(&nvme_rdma_ib_client); 2448 return ret; 2449 } 2450 2451 static void __exit nvme_rdma_cleanup_module(void) 2452 { 2453 struct nvme_rdma_ctrl *ctrl; 2454 2455 nvmf_unregister_transport(&nvme_rdma_transport); 2456 ib_unregister_client(&nvme_rdma_ib_client); 2457 2458 mutex_lock(&nvme_rdma_ctrl_mutex); 2459 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) 2460 nvme_delete_ctrl(&ctrl->ctrl); 2461 mutex_unlock(&nvme_rdma_ctrl_mutex); 2462 flush_workqueue(nvme_delete_wq); 2463 } 2464 2465 module_init(nvme_rdma_init_module); 2466 module_exit(nvme_rdma_cleanup_module); 2467 2468 MODULE_LICENSE("GPL v2"); 2469