1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVMe over Fabrics RDMA host code. 4 * Copyright (c) 2015-2016 HGST, a Western Digital Company. 5 */ 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 #include <linux/module.h> 8 #include <linux/init.h> 9 #include <linux/slab.h> 10 #include <rdma/mr_pool.h> 11 #include <linux/err.h> 12 #include <linux/string.h> 13 #include <linux/atomic.h> 14 #include <linux/blk-mq.h> 15 #include <linux/blk-mq-rdma.h> 16 #include <linux/types.h> 17 #include <linux/list.h> 18 #include <linux/mutex.h> 19 #include <linux/scatterlist.h> 20 #include <linux/nvme.h> 21 #include <asm/unaligned.h> 22 23 #include <rdma/ib_verbs.h> 24 #include <rdma/rdma_cm.h> 25 #include <linux/nvme-rdma.h> 26 27 #include "nvme.h" 28 #include "fabrics.h" 29 30 31 #define NVME_RDMA_CONNECT_TIMEOUT_MS 3000 /* 3 second */ 32 33 #define NVME_RDMA_MAX_SEGMENTS 256 34 35 #define NVME_RDMA_MAX_INLINE_SEGMENTS 4 36 37 struct nvme_rdma_device { 38 struct ib_device *dev; 39 struct ib_pd *pd; 40 struct kref ref; 41 struct list_head entry; 42 unsigned int num_inline_segments; 43 }; 44 45 struct nvme_rdma_qe { 46 struct ib_cqe cqe; 47 void *data; 48 u64 dma; 49 }; 50 51 struct nvme_rdma_queue; 52 struct nvme_rdma_request { 53 struct nvme_request req; 54 struct ib_mr *mr; 55 struct nvme_rdma_qe sqe; 56 union nvme_result result; 57 __le16 status; 58 refcount_t ref; 59 struct ib_sge sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS]; 60 u32 num_sge; 61 int nents; 62 struct ib_reg_wr reg_wr; 63 struct ib_cqe reg_cqe; 64 struct nvme_rdma_queue *queue; 65 struct sg_table sg_table; 66 struct scatterlist first_sgl[]; 67 }; 68 69 enum nvme_rdma_queue_flags { 70 NVME_RDMA_Q_ALLOCATED = 0, 71 NVME_RDMA_Q_LIVE = 1, 72 NVME_RDMA_Q_TR_READY = 2, 73 }; 74 75 struct nvme_rdma_queue { 76 struct nvme_rdma_qe *rsp_ring; 77 int queue_size; 78 size_t cmnd_capsule_len; 79 struct nvme_rdma_ctrl *ctrl; 80 struct nvme_rdma_device *device; 81 struct ib_cq *ib_cq; 82 struct ib_qp *qp; 83 84 unsigned long flags; 85 struct rdma_cm_id *cm_id; 86 int cm_error; 87 struct completion cm_done; 88 }; 89 90 struct nvme_rdma_ctrl { 91 /* read only in the hot path */ 92 struct nvme_rdma_queue *queues; 93 94 /* other member variables */ 95 struct blk_mq_tag_set tag_set; 96 struct work_struct err_work; 97 98 struct nvme_rdma_qe async_event_sqe; 99 100 struct delayed_work reconnect_work; 101 102 struct list_head list; 103 104 struct blk_mq_tag_set admin_tag_set; 105 struct nvme_rdma_device *device; 106 107 u32 max_fr_pages; 108 109 struct sockaddr_storage addr; 110 struct sockaddr_storage src_addr; 111 112 struct nvme_ctrl ctrl; 113 bool use_inline_data; 114 u32 io_queues[HCTX_MAX_TYPES]; 115 }; 116 117 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl) 118 { 119 return container_of(ctrl, struct nvme_rdma_ctrl, ctrl); 120 } 121 122 static LIST_HEAD(device_list); 123 static DEFINE_MUTEX(device_list_mutex); 124 125 static LIST_HEAD(nvme_rdma_ctrl_list); 126 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex); 127 128 /* 129 * Disabling this option makes small I/O goes faster, but is fundamentally 130 * unsafe. With it turned off we will have to register a global rkey that 131 * allows read and write access to all physical memory. 132 */ 133 static bool register_always = true; 134 module_param(register_always, bool, 0444); 135 MODULE_PARM_DESC(register_always, 136 "Use memory registration even for contiguous memory regions"); 137 138 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id, 139 struct rdma_cm_event *event); 140 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc); 141 142 static const struct blk_mq_ops nvme_rdma_mq_ops; 143 static const struct blk_mq_ops nvme_rdma_admin_mq_ops; 144 145 /* XXX: really should move to a generic header sooner or later.. */ 146 static inline void put_unaligned_le24(u32 val, u8 *p) 147 { 148 *p++ = val; 149 *p++ = val >> 8; 150 *p++ = val >> 16; 151 } 152 153 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue) 154 { 155 return queue - queue->ctrl->queues; 156 } 157 158 static bool nvme_rdma_poll_queue(struct nvme_rdma_queue *queue) 159 { 160 return nvme_rdma_queue_idx(queue) > 161 queue->ctrl->io_queues[HCTX_TYPE_DEFAULT] + 162 queue->ctrl->io_queues[HCTX_TYPE_READ]; 163 } 164 165 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue) 166 { 167 return queue->cmnd_capsule_len - sizeof(struct nvme_command); 168 } 169 170 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe, 171 size_t capsule_size, enum dma_data_direction dir) 172 { 173 ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir); 174 kfree(qe->data); 175 } 176 177 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe, 178 size_t capsule_size, enum dma_data_direction dir) 179 { 180 qe->data = kzalloc(capsule_size, GFP_KERNEL); 181 if (!qe->data) 182 return -ENOMEM; 183 184 qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir); 185 if (ib_dma_mapping_error(ibdev, qe->dma)) { 186 kfree(qe->data); 187 qe->data = NULL; 188 return -ENOMEM; 189 } 190 191 return 0; 192 } 193 194 static void nvme_rdma_free_ring(struct ib_device *ibdev, 195 struct nvme_rdma_qe *ring, size_t ib_queue_size, 196 size_t capsule_size, enum dma_data_direction dir) 197 { 198 int i; 199 200 for (i = 0; i < ib_queue_size; i++) 201 nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir); 202 kfree(ring); 203 } 204 205 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev, 206 size_t ib_queue_size, size_t capsule_size, 207 enum dma_data_direction dir) 208 { 209 struct nvme_rdma_qe *ring; 210 int i; 211 212 ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL); 213 if (!ring) 214 return NULL; 215 216 /* 217 * Bind the CQEs (post recv buffers) DMA mapping to the RDMA queue 218 * lifetime. It's safe, since any chage in the underlying RDMA device 219 * will issue error recovery and queue re-creation. 220 */ 221 for (i = 0; i < ib_queue_size; i++) { 222 if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir)) 223 goto out_free_ring; 224 } 225 226 return ring; 227 228 out_free_ring: 229 nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir); 230 return NULL; 231 } 232 233 static void nvme_rdma_qp_event(struct ib_event *event, void *context) 234 { 235 pr_debug("QP event %s (%d)\n", 236 ib_event_msg(event->event), event->event); 237 238 } 239 240 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue) 241 { 242 int ret; 243 244 ret = wait_for_completion_interruptible_timeout(&queue->cm_done, 245 msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1); 246 if (ret < 0) 247 return ret; 248 if (ret == 0) 249 return -ETIMEDOUT; 250 WARN_ON_ONCE(queue->cm_error > 0); 251 return queue->cm_error; 252 } 253 254 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor) 255 { 256 struct nvme_rdma_device *dev = queue->device; 257 struct ib_qp_init_attr init_attr; 258 int ret; 259 260 memset(&init_attr, 0, sizeof(init_attr)); 261 init_attr.event_handler = nvme_rdma_qp_event; 262 /* +1 for drain */ 263 init_attr.cap.max_send_wr = factor * queue->queue_size + 1; 264 /* +1 for drain */ 265 init_attr.cap.max_recv_wr = queue->queue_size + 1; 266 init_attr.cap.max_recv_sge = 1; 267 init_attr.cap.max_send_sge = 1 + dev->num_inline_segments; 268 init_attr.sq_sig_type = IB_SIGNAL_REQ_WR; 269 init_attr.qp_type = IB_QPT_RC; 270 init_attr.send_cq = queue->ib_cq; 271 init_attr.recv_cq = queue->ib_cq; 272 273 ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr); 274 275 queue->qp = queue->cm_id->qp; 276 return ret; 277 } 278 279 static void nvme_rdma_exit_request(struct blk_mq_tag_set *set, 280 struct request *rq, unsigned int hctx_idx) 281 { 282 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 283 284 kfree(req->sqe.data); 285 } 286 287 static int nvme_rdma_init_request(struct blk_mq_tag_set *set, 288 struct request *rq, unsigned int hctx_idx, 289 unsigned int numa_node) 290 { 291 struct nvme_rdma_ctrl *ctrl = set->driver_data; 292 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 293 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; 294 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx]; 295 296 nvme_req(rq)->ctrl = &ctrl->ctrl; 297 req->sqe.data = kzalloc(sizeof(struct nvme_command), GFP_KERNEL); 298 if (!req->sqe.data) 299 return -ENOMEM; 300 301 req->queue = queue; 302 303 return 0; 304 } 305 306 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 307 unsigned int hctx_idx) 308 { 309 struct nvme_rdma_ctrl *ctrl = data; 310 struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1]; 311 312 BUG_ON(hctx_idx >= ctrl->ctrl.queue_count); 313 314 hctx->driver_data = queue; 315 return 0; 316 } 317 318 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, 319 unsigned int hctx_idx) 320 { 321 struct nvme_rdma_ctrl *ctrl = data; 322 struct nvme_rdma_queue *queue = &ctrl->queues[0]; 323 324 BUG_ON(hctx_idx != 0); 325 326 hctx->driver_data = queue; 327 return 0; 328 } 329 330 static void nvme_rdma_free_dev(struct kref *ref) 331 { 332 struct nvme_rdma_device *ndev = 333 container_of(ref, struct nvme_rdma_device, ref); 334 335 mutex_lock(&device_list_mutex); 336 list_del(&ndev->entry); 337 mutex_unlock(&device_list_mutex); 338 339 ib_dealloc_pd(ndev->pd); 340 kfree(ndev); 341 } 342 343 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev) 344 { 345 kref_put(&dev->ref, nvme_rdma_free_dev); 346 } 347 348 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev) 349 { 350 return kref_get_unless_zero(&dev->ref); 351 } 352 353 static struct nvme_rdma_device * 354 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id) 355 { 356 struct nvme_rdma_device *ndev; 357 358 mutex_lock(&device_list_mutex); 359 list_for_each_entry(ndev, &device_list, entry) { 360 if (ndev->dev->node_guid == cm_id->device->node_guid && 361 nvme_rdma_dev_get(ndev)) 362 goto out_unlock; 363 } 364 365 ndev = kzalloc(sizeof(*ndev), GFP_KERNEL); 366 if (!ndev) 367 goto out_err; 368 369 ndev->dev = cm_id->device; 370 kref_init(&ndev->ref); 371 372 ndev->pd = ib_alloc_pd(ndev->dev, 373 register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY); 374 if (IS_ERR(ndev->pd)) 375 goto out_free_dev; 376 377 if (!(ndev->dev->attrs.device_cap_flags & 378 IB_DEVICE_MEM_MGT_EXTENSIONS)) { 379 dev_err(&ndev->dev->dev, 380 "Memory registrations not supported.\n"); 381 goto out_free_pd; 382 } 383 384 ndev->num_inline_segments = min(NVME_RDMA_MAX_INLINE_SEGMENTS, 385 ndev->dev->attrs.max_send_sge - 1); 386 list_add(&ndev->entry, &device_list); 387 out_unlock: 388 mutex_unlock(&device_list_mutex); 389 return ndev; 390 391 out_free_pd: 392 ib_dealloc_pd(ndev->pd); 393 out_free_dev: 394 kfree(ndev); 395 out_err: 396 mutex_unlock(&device_list_mutex); 397 return NULL; 398 } 399 400 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue) 401 { 402 struct nvme_rdma_device *dev; 403 struct ib_device *ibdev; 404 405 if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags)) 406 return; 407 408 dev = queue->device; 409 ibdev = dev->dev; 410 411 ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs); 412 413 /* 414 * The cm_id object might have been destroyed during RDMA connection 415 * establishment error flow to avoid getting other cma events, thus 416 * the destruction of the QP shouldn't use rdma_cm API. 417 */ 418 ib_destroy_qp(queue->qp); 419 ib_free_cq(queue->ib_cq); 420 421 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size, 422 sizeof(struct nvme_completion), DMA_FROM_DEVICE); 423 424 nvme_rdma_dev_put(dev); 425 } 426 427 static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev) 428 { 429 return min_t(u32, NVME_RDMA_MAX_SEGMENTS, 430 ibdev->attrs.max_fast_reg_page_list_len); 431 } 432 433 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue) 434 { 435 struct ib_device *ibdev; 436 const int send_wr_factor = 3; /* MR, SEND, INV */ 437 const int cq_factor = send_wr_factor + 1; /* + RECV */ 438 int comp_vector, idx = nvme_rdma_queue_idx(queue); 439 enum ib_poll_context poll_ctx; 440 int ret; 441 442 queue->device = nvme_rdma_find_get_device(queue->cm_id); 443 if (!queue->device) { 444 dev_err(queue->cm_id->device->dev.parent, 445 "no client data found!\n"); 446 return -ECONNREFUSED; 447 } 448 ibdev = queue->device->dev; 449 450 /* 451 * Spread I/O queues completion vectors according their queue index. 452 * Admin queues can always go on completion vector 0. 453 */ 454 comp_vector = idx == 0 ? idx : idx - 1; 455 456 /* Polling queues need direct cq polling context */ 457 if (nvme_rdma_poll_queue(queue)) 458 poll_ctx = IB_POLL_DIRECT; 459 else 460 poll_ctx = IB_POLL_SOFTIRQ; 461 462 /* +1 for ib_stop_cq */ 463 queue->ib_cq = ib_alloc_cq(ibdev, queue, 464 cq_factor * queue->queue_size + 1, 465 comp_vector, poll_ctx); 466 if (IS_ERR(queue->ib_cq)) { 467 ret = PTR_ERR(queue->ib_cq); 468 goto out_put_dev; 469 } 470 471 ret = nvme_rdma_create_qp(queue, send_wr_factor); 472 if (ret) 473 goto out_destroy_ib_cq; 474 475 queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size, 476 sizeof(struct nvme_completion), DMA_FROM_DEVICE); 477 if (!queue->rsp_ring) { 478 ret = -ENOMEM; 479 goto out_destroy_qp; 480 } 481 482 ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs, 483 queue->queue_size, 484 IB_MR_TYPE_MEM_REG, 485 nvme_rdma_get_max_fr_pages(ibdev), 0); 486 if (ret) { 487 dev_err(queue->ctrl->ctrl.device, 488 "failed to initialize MR pool sized %d for QID %d\n", 489 queue->queue_size, idx); 490 goto out_destroy_ring; 491 } 492 493 set_bit(NVME_RDMA_Q_TR_READY, &queue->flags); 494 495 return 0; 496 497 out_destroy_ring: 498 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size, 499 sizeof(struct nvme_completion), DMA_FROM_DEVICE); 500 out_destroy_qp: 501 rdma_destroy_qp(queue->cm_id); 502 out_destroy_ib_cq: 503 ib_free_cq(queue->ib_cq); 504 out_put_dev: 505 nvme_rdma_dev_put(queue->device); 506 return ret; 507 } 508 509 static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl, 510 int idx, size_t queue_size) 511 { 512 struct nvme_rdma_queue *queue; 513 struct sockaddr *src_addr = NULL; 514 int ret; 515 516 queue = &ctrl->queues[idx]; 517 queue->ctrl = ctrl; 518 init_completion(&queue->cm_done); 519 520 if (idx > 0) 521 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16; 522 else 523 queue->cmnd_capsule_len = sizeof(struct nvme_command); 524 525 queue->queue_size = queue_size; 526 527 queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue, 528 RDMA_PS_TCP, IB_QPT_RC); 529 if (IS_ERR(queue->cm_id)) { 530 dev_info(ctrl->ctrl.device, 531 "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id)); 532 return PTR_ERR(queue->cm_id); 533 } 534 535 if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR) 536 src_addr = (struct sockaddr *)&ctrl->src_addr; 537 538 queue->cm_error = -ETIMEDOUT; 539 ret = rdma_resolve_addr(queue->cm_id, src_addr, 540 (struct sockaddr *)&ctrl->addr, 541 NVME_RDMA_CONNECT_TIMEOUT_MS); 542 if (ret) { 543 dev_info(ctrl->ctrl.device, 544 "rdma_resolve_addr failed (%d).\n", ret); 545 goto out_destroy_cm_id; 546 } 547 548 ret = nvme_rdma_wait_for_cm(queue); 549 if (ret) { 550 dev_info(ctrl->ctrl.device, 551 "rdma connection establishment failed (%d)\n", ret); 552 goto out_destroy_cm_id; 553 } 554 555 set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags); 556 557 return 0; 558 559 out_destroy_cm_id: 560 rdma_destroy_id(queue->cm_id); 561 nvme_rdma_destroy_queue_ib(queue); 562 return ret; 563 } 564 565 static void __nvme_rdma_stop_queue(struct nvme_rdma_queue *queue) 566 { 567 rdma_disconnect(queue->cm_id); 568 ib_drain_qp(queue->qp); 569 } 570 571 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue) 572 { 573 if (!test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags)) 574 return; 575 __nvme_rdma_stop_queue(queue); 576 } 577 578 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue) 579 { 580 if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags)) 581 return; 582 583 nvme_rdma_destroy_queue_ib(queue); 584 rdma_destroy_id(queue->cm_id); 585 } 586 587 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl) 588 { 589 int i; 590 591 for (i = 1; i < ctrl->ctrl.queue_count; i++) 592 nvme_rdma_free_queue(&ctrl->queues[i]); 593 } 594 595 static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl) 596 { 597 int i; 598 599 for (i = 1; i < ctrl->ctrl.queue_count; i++) 600 nvme_rdma_stop_queue(&ctrl->queues[i]); 601 } 602 603 static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx) 604 { 605 struct nvme_rdma_queue *queue = &ctrl->queues[idx]; 606 bool poll = nvme_rdma_poll_queue(queue); 607 int ret; 608 609 if (idx) 610 ret = nvmf_connect_io_queue(&ctrl->ctrl, idx, poll); 611 else 612 ret = nvmf_connect_admin_queue(&ctrl->ctrl); 613 614 if (!ret) { 615 set_bit(NVME_RDMA_Q_LIVE, &queue->flags); 616 } else { 617 __nvme_rdma_stop_queue(queue); 618 dev_info(ctrl->ctrl.device, 619 "failed to connect queue: %d ret=%d\n", idx, ret); 620 } 621 return ret; 622 } 623 624 static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl) 625 { 626 int i, ret = 0; 627 628 for (i = 1; i < ctrl->ctrl.queue_count; i++) { 629 ret = nvme_rdma_start_queue(ctrl, i); 630 if (ret) 631 goto out_stop_queues; 632 } 633 634 return 0; 635 636 out_stop_queues: 637 for (i--; i >= 1; i--) 638 nvme_rdma_stop_queue(&ctrl->queues[i]); 639 return ret; 640 } 641 642 static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl) 643 { 644 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 645 struct ib_device *ibdev = ctrl->device->dev; 646 unsigned int nr_io_queues, nr_default_queues; 647 unsigned int nr_read_queues, nr_poll_queues; 648 int i, ret; 649 650 nr_read_queues = min_t(unsigned int, ibdev->num_comp_vectors, 651 min(opts->nr_io_queues, num_online_cpus())); 652 nr_default_queues = min_t(unsigned int, ibdev->num_comp_vectors, 653 min(opts->nr_write_queues, num_online_cpus())); 654 nr_poll_queues = min(opts->nr_poll_queues, num_online_cpus()); 655 nr_io_queues = nr_read_queues + nr_default_queues + nr_poll_queues; 656 657 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues); 658 if (ret) 659 return ret; 660 661 ctrl->ctrl.queue_count = nr_io_queues + 1; 662 if (ctrl->ctrl.queue_count < 2) 663 return 0; 664 665 dev_info(ctrl->ctrl.device, 666 "creating %d I/O queues.\n", nr_io_queues); 667 668 if (opts->nr_write_queues && nr_read_queues < nr_io_queues) { 669 /* 670 * separate read/write queues 671 * hand out dedicated default queues only after we have 672 * sufficient read queues. 673 */ 674 ctrl->io_queues[HCTX_TYPE_READ] = nr_read_queues; 675 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ]; 676 ctrl->io_queues[HCTX_TYPE_DEFAULT] = 677 min(nr_default_queues, nr_io_queues); 678 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT]; 679 } else { 680 /* 681 * shared read/write queues 682 * either no write queues were requested, or we don't have 683 * sufficient queue count to have dedicated default queues. 684 */ 685 ctrl->io_queues[HCTX_TYPE_DEFAULT] = 686 min(nr_read_queues, nr_io_queues); 687 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT]; 688 } 689 690 if (opts->nr_poll_queues && nr_io_queues) { 691 /* map dedicated poll queues only if we have queues left */ 692 ctrl->io_queues[HCTX_TYPE_POLL] = 693 min(nr_poll_queues, nr_io_queues); 694 } 695 696 for (i = 1; i < ctrl->ctrl.queue_count; i++) { 697 ret = nvme_rdma_alloc_queue(ctrl, i, 698 ctrl->ctrl.sqsize + 1); 699 if (ret) 700 goto out_free_queues; 701 } 702 703 return 0; 704 705 out_free_queues: 706 for (i--; i >= 1; i--) 707 nvme_rdma_free_queue(&ctrl->queues[i]); 708 709 return ret; 710 } 711 712 static struct blk_mq_tag_set *nvme_rdma_alloc_tagset(struct nvme_ctrl *nctrl, 713 bool admin) 714 { 715 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 716 struct blk_mq_tag_set *set; 717 int ret; 718 719 if (admin) { 720 set = &ctrl->admin_tag_set; 721 memset(set, 0, sizeof(*set)); 722 set->ops = &nvme_rdma_admin_mq_ops; 723 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH; 724 set->reserved_tags = 2; /* connect + keep-alive */ 725 set->numa_node = nctrl->numa_node; 726 set->cmd_size = sizeof(struct nvme_rdma_request) + 727 SG_CHUNK_SIZE * sizeof(struct scatterlist); 728 set->driver_data = ctrl; 729 set->nr_hw_queues = 1; 730 set->timeout = ADMIN_TIMEOUT; 731 set->flags = BLK_MQ_F_NO_SCHED; 732 } else { 733 set = &ctrl->tag_set; 734 memset(set, 0, sizeof(*set)); 735 set->ops = &nvme_rdma_mq_ops; 736 set->queue_depth = nctrl->sqsize + 1; 737 set->reserved_tags = 1; /* fabric connect */ 738 set->numa_node = nctrl->numa_node; 739 set->flags = BLK_MQ_F_SHOULD_MERGE; 740 set->cmd_size = sizeof(struct nvme_rdma_request) + 741 SG_CHUNK_SIZE * sizeof(struct scatterlist); 742 set->driver_data = ctrl; 743 set->nr_hw_queues = nctrl->queue_count - 1; 744 set->timeout = NVME_IO_TIMEOUT; 745 set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2; 746 } 747 748 ret = blk_mq_alloc_tag_set(set); 749 if (ret) 750 return ERR_PTR(ret); 751 752 return set; 753 } 754 755 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl, 756 bool remove) 757 { 758 if (remove) { 759 blk_cleanup_queue(ctrl->ctrl.admin_q); 760 blk_mq_free_tag_set(ctrl->ctrl.admin_tagset); 761 } 762 if (ctrl->async_event_sqe.data) { 763 nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe, 764 sizeof(struct nvme_command), DMA_TO_DEVICE); 765 ctrl->async_event_sqe.data = NULL; 766 } 767 nvme_rdma_free_queue(&ctrl->queues[0]); 768 } 769 770 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl, 771 bool new) 772 { 773 int error; 774 775 error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH); 776 if (error) 777 return error; 778 779 ctrl->device = ctrl->queues[0].device; 780 ctrl->ctrl.numa_node = dev_to_node(ctrl->device->dev->dma_device); 781 782 ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev); 783 784 /* 785 * Bind the async event SQE DMA mapping to the admin queue lifetime. 786 * It's safe, since any chage in the underlying RDMA device will issue 787 * error recovery and queue re-creation. 788 */ 789 error = nvme_rdma_alloc_qe(ctrl->device->dev, &ctrl->async_event_sqe, 790 sizeof(struct nvme_command), DMA_TO_DEVICE); 791 if (error) 792 goto out_free_queue; 793 794 if (new) { 795 ctrl->ctrl.admin_tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, true); 796 if (IS_ERR(ctrl->ctrl.admin_tagset)) { 797 error = PTR_ERR(ctrl->ctrl.admin_tagset); 798 goto out_free_async_qe; 799 } 800 801 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set); 802 if (IS_ERR(ctrl->ctrl.admin_q)) { 803 error = PTR_ERR(ctrl->ctrl.admin_q); 804 goto out_free_tagset; 805 } 806 } 807 808 error = nvme_rdma_start_queue(ctrl, 0); 809 if (error) 810 goto out_cleanup_queue; 811 812 error = ctrl->ctrl.ops->reg_read64(&ctrl->ctrl, NVME_REG_CAP, 813 &ctrl->ctrl.cap); 814 if (error) { 815 dev_err(ctrl->ctrl.device, 816 "prop_get NVME_REG_CAP failed\n"); 817 goto out_stop_queue; 818 } 819 820 ctrl->ctrl.sqsize = 821 min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap), ctrl->ctrl.sqsize); 822 823 error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap); 824 if (error) 825 goto out_stop_queue; 826 827 ctrl->ctrl.max_hw_sectors = 828 (ctrl->max_fr_pages - 1) << (ilog2(SZ_4K) - 9); 829 830 error = nvme_init_identify(&ctrl->ctrl); 831 if (error) 832 goto out_stop_queue; 833 834 return 0; 835 836 out_stop_queue: 837 nvme_rdma_stop_queue(&ctrl->queues[0]); 838 out_cleanup_queue: 839 if (new) 840 blk_cleanup_queue(ctrl->ctrl.admin_q); 841 out_free_tagset: 842 if (new) 843 blk_mq_free_tag_set(ctrl->ctrl.admin_tagset); 844 out_free_async_qe: 845 nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe, 846 sizeof(struct nvme_command), DMA_TO_DEVICE); 847 ctrl->async_event_sqe.data = NULL; 848 out_free_queue: 849 nvme_rdma_free_queue(&ctrl->queues[0]); 850 return error; 851 } 852 853 static void nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl *ctrl, 854 bool remove) 855 { 856 if (remove) { 857 blk_cleanup_queue(ctrl->ctrl.connect_q); 858 blk_mq_free_tag_set(ctrl->ctrl.tagset); 859 } 860 nvme_rdma_free_io_queues(ctrl); 861 } 862 863 static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new) 864 { 865 int ret; 866 867 ret = nvme_rdma_alloc_io_queues(ctrl); 868 if (ret) 869 return ret; 870 871 if (new) { 872 ctrl->ctrl.tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, false); 873 if (IS_ERR(ctrl->ctrl.tagset)) { 874 ret = PTR_ERR(ctrl->ctrl.tagset); 875 goto out_free_io_queues; 876 } 877 878 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set); 879 if (IS_ERR(ctrl->ctrl.connect_q)) { 880 ret = PTR_ERR(ctrl->ctrl.connect_q); 881 goto out_free_tag_set; 882 } 883 } else { 884 blk_mq_update_nr_hw_queues(&ctrl->tag_set, 885 ctrl->ctrl.queue_count - 1); 886 } 887 888 ret = nvme_rdma_start_io_queues(ctrl); 889 if (ret) 890 goto out_cleanup_connect_q; 891 892 return 0; 893 894 out_cleanup_connect_q: 895 if (new) 896 blk_cleanup_queue(ctrl->ctrl.connect_q); 897 out_free_tag_set: 898 if (new) 899 blk_mq_free_tag_set(ctrl->ctrl.tagset); 900 out_free_io_queues: 901 nvme_rdma_free_io_queues(ctrl); 902 return ret; 903 } 904 905 static void nvme_rdma_teardown_admin_queue(struct nvme_rdma_ctrl *ctrl, 906 bool remove) 907 { 908 blk_mq_quiesce_queue(ctrl->ctrl.admin_q); 909 nvme_rdma_stop_queue(&ctrl->queues[0]); 910 if (ctrl->ctrl.admin_tagset) 911 blk_mq_tagset_busy_iter(ctrl->ctrl.admin_tagset, 912 nvme_cancel_request, &ctrl->ctrl); 913 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q); 914 nvme_rdma_destroy_admin_queue(ctrl, remove); 915 } 916 917 static void nvme_rdma_teardown_io_queues(struct nvme_rdma_ctrl *ctrl, 918 bool remove) 919 { 920 if (ctrl->ctrl.queue_count > 1) { 921 nvme_stop_queues(&ctrl->ctrl); 922 nvme_rdma_stop_io_queues(ctrl); 923 if (ctrl->ctrl.tagset) 924 blk_mq_tagset_busy_iter(ctrl->ctrl.tagset, 925 nvme_cancel_request, &ctrl->ctrl); 926 if (remove) 927 nvme_start_queues(&ctrl->ctrl); 928 nvme_rdma_destroy_io_queues(ctrl, remove); 929 } 930 } 931 932 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl) 933 { 934 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 935 936 if (list_empty(&ctrl->list)) 937 goto free_ctrl; 938 939 mutex_lock(&nvme_rdma_ctrl_mutex); 940 list_del(&ctrl->list); 941 mutex_unlock(&nvme_rdma_ctrl_mutex); 942 943 nvmf_free_options(nctrl->opts); 944 free_ctrl: 945 kfree(ctrl->queues); 946 kfree(ctrl); 947 } 948 949 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl) 950 { 951 /* If we are resetting/deleting then do nothing */ 952 if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) { 953 WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW || 954 ctrl->ctrl.state == NVME_CTRL_LIVE); 955 return; 956 } 957 958 if (nvmf_should_reconnect(&ctrl->ctrl)) { 959 dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n", 960 ctrl->ctrl.opts->reconnect_delay); 961 queue_delayed_work(nvme_wq, &ctrl->reconnect_work, 962 ctrl->ctrl.opts->reconnect_delay * HZ); 963 } else { 964 nvme_delete_ctrl(&ctrl->ctrl); 965 } 966 } 967 968 static int nvme_rdma_setup_ctrl(struct nvme_rdma_ctrl *ctrl, bool new) 969 { 970 int ret = -EINVAL; 971 bool changed; 972 973 ret = nvme_rdma_configure_admin_queue(ctrl, new); 974 if (ret) 975 return ret; 976 977 if (ctrl->ctrl.icdoff) { 978 dev_err(ctrl->ctrl.device, "icdoff is not supported!\n"); 979 goto destroy_admin; 980 } 981 982 if (!(ctrl->ctrl.sgls & (1 << 2))) { 983 dev_err(ctrl->ctrl.device, 984 "Mandatory keyed sgls are not supported!\n"); 985 goto destroy_admin; 986 } 987 988 if (ctrl->ctrl.opts->queue_size > ctrl->ctrl.sqsize + 1) { 989 dev_warn(ctrl->ctrl.device, 990 "queue_size %zu > ctrl sqsize %u, clamping down\n", 991 ctrl->ctrl.opts->queue_size, ctrl->ctrl.sqsize + 1); 992 } 993 994 if (ctrl->ctrl.sqsize + 1 > ctrl->ctrl.maxcmd) { 995 dev_warn(ctrl->ctrl.device, 996 "sqsize %u > ctrl maxcmd %u, clamping down\n", 997 ctrl->ctrl.sqsize + 1, ctrl->ctrl.maxcmd); 998 ctrl->ctrl.sqsize = ctrl->ctrl.maxcmd - 1; 999 } 1000 1001 if (ctrl->ctrl.sgls & (1 << 20)) 1002 ctrl->use_inline_data = true; 1003 1004 if (ctrl->ctrl.queue_count > 1) { 1005 ret = nvme_rdma_configure_io_queues(ctrl, new); 1006 if (ret) 1007 goto destroy_admin; 1008 } 1009 1010 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); 1011 if (!changed) { 1012 /* state change failure is ok if we're in DELETING state */ 1013 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING); 1014 ret = -EINVAL; 1015 goto destroy_io; 1016 } 1017 1018 nvme_start_ctrl(&ctrl->ctrl); 1019 return 0; 1020 1021 destroy_io: 1022 if (ctrl->ctrl.queue_count > 1) 1023 nvme_rdma_destroy_io_queues(ctrl, new); 1024 destroy_admin: 1025 nvme_rdma_stop_queue(&ctrl->queues[0]); 1026 nvme_rdma_destroy_admin_queue(ctrl, new); 1027 return ret; 1028 } 1029 1030 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work) 1031 { 1032 struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work), 1033 struct nvme_rdma_ctrl, reconnect_work); 1034 1035 ++ctrl->ctrl.nr_reconnects; 1036 1037 if (nvme_rdma_setup_ctrl(ctrl, false)) 1038 goto requeue; 1039 1040 dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n", 1041 ctrl->ctrl.nr_reconnects); 1042 1043 ctrl->ctrl.nr_reconnects = 0; 1044 1045 return; 1046 1047 requeue: 1048 dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n", 1049 ctrl->ctrl.nr_reconnects); 1050 nvme_rdma_reconnect_or_remove(ctrl); 1051 } 1052 1053 static void nvme_rdma_error_recovery_work(struct work_struct *work) 1054 { 1055 struct nvme_rdma_ctrl *ctrl = container_of(work, 1056 struct nvme_rdma_ctrl, err_work); 1057 1058 nvme_stop_keep_alive(&ctrl->ctrl); 1059 nvme_rdma_teardown_io_queues(ctrl, false); 1060 nvme_start_queues(&ctrl->ctrl); 1061 nvme_rdma_teardown_admin_queue(ctrl, false); 1062 1063 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) { 1064 /* state change failure is ok if we're in DELETING state */ 1065 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING); 1066 return; 1067 } 1068 1069 nvme_rdma_reconnect_or_remove(ctrl); 1070 } 1071 1072 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl) 1073 { 1074 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING)) 1075 return; 1076 1077 queue_work(nvme_wq, &ctrl->err_work); 1078 } 1079 1080 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc, 1081 const char *op) 1082 { 1083 struct nvme_rdma_queue *queue = cq->cq_context; 1084 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 1085 1086 if (ctrl->ctrl.state == NVME_CTRL_LIVE) 1087 dev_info(ctrl->ctrl.device, 1088 "%s for CQE 0x%p failed with status %s (%d)\n", 1089 op, wc->wr_cqe, 1090 ib_wc_status_msg(wc->status), wc->status); 1091 nvme_rdma_error_recovery(ctrl); 1092 } 1093 1094 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc) 1095 { 1096 if (unlikely(wc->status != IB_WC_SUCCESS)) 1097 nvme_rdma_wr_error(cq, wc, "MEMREG"); 1098 } 1099 1100 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc) 1101 { 1102 struct nvme_rdma_request *req = 1103 container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe); 1104 struct request *rq = blk_mq_rq_from_pdu(req); 1105 1106 if (unlikely(wc->status != IB_WC_SUCCESS)) { 1107 nvme_rdma_wr_error(cq, wc, "LOCAL_INV"); 1108 return; 1109 } 1110 1111 if (refcount_dec_and_test(&req->ref)) 1112 nvme_end_request(rq, req->status, req->result); 1113 1114 } 1115 1116 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue, 1117 struct nvme_rdma_request *req) 1118 { 1119 struct ib_send_wr wr = { 1120 .opcode = IB_WR_LOCAL_INV, 1121 .next = NULL, 1122 .num_sge = 0, 1123 .send_flags = IB_SEND_SIGNALED, 1124 .ex.invalidate_rkey = req->mr->rkey, 1125 }; 1126 1127 req->reg_cqe.done = nvme_rdma_inv_rkey_done; 1128 wr.wr_cqe = &req->reg_cqe; 1129 1130 return ib_post_send(queue->qp, &wr, NULL); 1131 } 1132 1133 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue, 1134 struct request *rq) 1135 { 1136 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1137 struct nvme_rdma_device *dev = queue->device; 1138 struct ib_device *ibdev = dev->dev; 1139 1140 if (!blk_rq_nr_phys_segments(rq)) 1141 return; 1142 1143 if (req->mr) { 1144 ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr); 1145 req->mr = NULL; 1146 } 1147 1148 ib_dma_unmap_sg(ibdev, req->sg_table.sgl, 1149 req->nents, rq_data_dir(rq) == 1150 WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 1151 1152 nvme_cleanup_cmd(rq); 1153 sg_free_table_chained(&req->sg_table, SG_CHUNK_SIZE); 1154 } 1155 1156 static int nvme_rdma_set_sg_null(struct nvme_command *c) 1157 { 1158 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 1159 1160 sg->addr = 0; 1161 put_unaligned_le24(0, sg->length); 1162 put_unaligned_le32(0, sg->key); 1163 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4; 1164 return 0; 1165 } 1166 1167 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue, 1168 struct nvme_rdma_request *req, struct nvme_command *c, 1169 int count) 1170 { 1171 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 1172 struct scatterlist *sgl = req->sg_table.sgl; 1173 struct ib_sge *sge = &req->sge[1]; 1174 u32 len = 0; 1175 int i; 1176 1177 for (i = 0; i < count; i++, sgl++, sge++) { 1178 sge->addr = sg_dma_address(sgl); 1179 sge->length = sg_dma_len(sgl); 1180 sge->lkey = queue->device->pd->local_dma_lkey; 1181 len += sge->length; 1182 } 1183 1184 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff); 1185 sg->length = cpu_to_le32(len); 1186 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET; 1187 1188 req->num_sge += count; 1189 return 0; 1190 } 1191 1192 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue, 1193 struct nvme_rdma_request *req, struct nvme_command *c) 1194 { 1195 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 1196 1197 sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl)); 1198 put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length); 1199 put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key); 1200 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4; 1201 return 0; 1202 } 1203 1204 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue, 1205 struct nvme_rdma_request *req, struct nvme_command *c, 1206 int count) 1207 { 1208 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 1209 int nr; 1210 1211 req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs); 1212 if (WARN_ON_ONCE(!req->mr)) 1213 return -EAGAIN; 1214 1215 /* 1216 * Align the MR to a 4K page size to match the ctrl page size and 1217 * the block virtual boundary. 1218 */ 1219 nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, SZ_4K); 1220 if (unlikely(nr < count)) { 1221 ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr); 1222 req->mr = NULL; 1223 if (nr < 0) 1224 return nr; 1225 return -EINVAL; 1226 } 1227 1228 ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey)); 1229 1230 req->reg_cqe.done = nvme_rdma_memreg_done; 1231 memset(&req->reg_wr, 0, sizeof(req->reg_wr)); 1232 req->reg_wr.wr.opcode = IB_WR_REG_MR; 1233 req->reg_wr.wr.wr_cqe = &req->reg_cqe; 1234 req->reg_wr.wr.num_sge = 0; 1235 req->reg_wr.mr = req->mr; 1236 req->reg_wr.key = req->mr->rkey; 1237 req->reg_wr.access = IB_ACCESS_LOCAL_WRITE | 1238 IB_ACCESS_REMOTE_READ | 1239 IB_ACCESS_REMOTE_WRITE; 1240 1241 sg->addr = cpu_to_le64(req->mr->iova); 1242 put_unaligned_le24(req->mr->length, sg->length); 1243 put_unaligned_le32(req->mr->rkey, sg->key); 1244 sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) | 1245 NVME_SGL_FMT_INVALIDATE; 1246 1247 return 0; 1248 } 1249 1250 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue, 1251 struct request *rq, struct nvme_command *c) 1252 { 1253 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1254 struct nvme_rdma_device *dev = queue->device; 1255 struct ib_device *ibdev = dev->dev; 1256 int count, ret; 1257 1258 req->num_sge = 1; 1259 refcount_set(&req->ref, 2); /* send and recv completions */ 1260 1261 c->common.flags |= NVME_CMD_SGL_METABUF; 1262 1263 if (!blk_rq_nr_phys_segments(rq)) 1264 return nvme_rdma_set_sg_null(c); 1265 1266 req->sg_table.sgl = req->first_sgl; 1267 ret = sg_alloc_table_chained(&req->sg_table, 1268 blk_rq_nr_phys_segments(rq), req->sg_table.sgl, 1269 SG_CHUNK_SIZE); 1270 if (ret) 1271 return -ENOMEM; 1272 1273 req->nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl); 1274 1275 count = ib_dma_map_sg(ibdev, req->sg_table.sgl, req->nents, 1276 rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 1277 if (unlikely(count <= 0)) { 1278 ret = -EIO; 1279 goto out_free_table; 1280 } 1281 1282 if (count <= dev->num_inline_segments) { 1283 if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) && 1284 queue->ctrl->use_inline_data && 1285 blk_rq_payload_bytes(rq) <= 1286 nvme_rdma_inline_data_size(queue)) { 1287 ret = nvme_rdma_map_sg_inline(queue, req, c, count); 1288 goto out; 1289 } 1290 1291 if (count == 1 && dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) { 1292 ret = nvme_rdma_map_sg_single(queue, req, c); 1293 goto out; 1294 } 1295 } 1296 1297 ret = nvme_rdma_map_sg_fr(queue, req, c, count); 1298 out: 1299 if (unlikely(ret)) 1300 goto out_unmap_sg; 1301 1302 return 0; 1303 1304 out_unmap_sg: 1305 ib_dma_unmap_sg(ibdev, req->sg_table.sgl, 1306 req->nents, rq_data_dir(rq) == 1307 WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 1308 out_free_table: 1309 sg_free_table_chained(&req->sg_table, SG_CHUNK_SIZE); 1310 return ret; 1311 } 1312 1313 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc) 1314 { 1315 struct nvme_rdma_qe *qe = 1316 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe); 1317 struct nvme_rdma_request *req = 1318 container_of(qe, struct nvme_rdma_request, sqe); 1319 struct request *rq = blk_mq_rq_from_pdu(req); 1320 1321 if (unlikely(wc->status != IB_WC_SUCCESS)) { 1322 nvme_rdma_wr_error(cq, wc, "SEND"); 1323 return; 1324 } 1325 1326 if (refcount_dec_and_test(&req->ref)) 1327 nvme_end_request(rq, req->status, req->result); 1328 } 1329 1330 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue, 1331 struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge, 1332 struct ib_send_wr *first) 1333 { 1334 struct ib_send_wr wr; 1335 int ret; 1336 1337 sge->addr = qe->dma; 1338 sge->length = sizeof(struct nvme_command), 1339 sge->lkey = queue->device->pd->local_dma_lkey; 1340 1341 wr.next = NULL; 1342 wr.wr_cqe = &qe->cqe; 1343 wr.sg_list = sge; 1344 wr.num_sge = num_sge; 1345 wr.opcode = IB_WR_SEND; 1346 wr.send_flags = IB_SEND_SIGNALED; 1347 1348 if (first) 1349 first->next = ≀ 1350 else 1351 first = ≀ 1352 1353 ret = ib_post_send(queue->qp, first, NULL); 1354 if (unlikely(ret)) { 1355 dev_err(queue->ctrl->ctrl.device, 1356 "%s failed with error code %d\n", __func__, ret); 1357 } 1358 return ret; 1359 } 1360 1361 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue, 1362 struct nvme_rdma_qe *qe) 1363 { 1364 struct ib_recv_wr wr; 1365 struct ib_sge list; 1366 int ret; 1367 1368 list.addr = qe->dma; 1369 list.length = sizeof(struct nvme_completion); 1370 list.lkey = queue->device->pd->local_dma_lkey; 1371 1372 qe->cqe.done = nvme_rdma_recv_done; 1373 1374 wr.next = NULL; 1375 wr.wr_cqe = &qe->cqe; 1376 wr.sg_list = &list; 1377 wr.num_sge = 1; 1378 1379 ret = ib_post_recv(queue->qp, &wr, NULL); 1380 if (unlikely(ret)) { 1381 dev_err(queue->ctrl->ctrl.device, 1382 "%s failed with error code %d\n", __func__, ret); 1383 } 1384 return ret; 1385 } 1386 1387 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue) 1388 { 1389 u32 queue_idx = nvme_rdma_queue_idx(queue); 1390 1391 if (queue_idx == 0) 1392 return queue->ctrl->admin_tag_set.tags[queue_idx]; 1393 return queue->ctrl->tag_set.tags[queue_idx - 1]; 1394 } 1395 1396 static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc) 1397 { 1398 if (unlikely(wc->status != IB_WC_SUCCESS)) 1399 nvme_rdma_wr_error(cq, wc, "ASYNC"); 1400 } 1401 1402 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg) 1403 { 1404 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg); 1405 struct nvme_rdma_queue *queue = &ctrl->queues[0]; 1406 struct ib_device *dev = queue->device->dev; 1407 struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe; 1408 struct nvme_command *cmd = sqe->data; 1409 struct ib_sge sge; 1410 int ret; 1411 1412 ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE); 1413 1414 memset(cmd, 0, sizeof(*cmd)); 1415 cmd->common.opcode = nvme_admin_async_event; 1416 cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH; 1417 cmd->common.flags |= NVME_CMD_SGL_METABUF; 1418 nvme_rdma_set_sg_null(cmd); 1419 1420 sqe->cqe.done = nvme_rdma_async_done; 1421 1422 ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd), 1423 DMA_TO_DEVICE); 1424 1425 ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL); 1426 WARN_ON_ONCE(ret); 1427 } 1428 1429 static void nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue, 1430 struct nvme_completion *cqe, struct ib_wc *wc) 1431 { 1432 struct request *rq; 1433 struct nvme_rdma_request *req; 1434 1435 rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id); 1436 if (!rq) { 1437 dev_err(queue->ctrl->ctrl.device, 1438 "tag 0x%x on QP %#x not found\n", 1439 cqe->command_id, queue->qp->qp_num); 1440 nvme_rdma_error_recovery(queue->ctrl); 1441 return; 1442 } 1443 req = blk_mq_rq_to_pdu(rq); 1444 1445 req->status = cqe->status; 1446 req->result = cqe->result; 1447 1448 if (wc->wc_flags & IB_WC_WITH_INVALIDATE) { 1449 if (unlikely(wc->ex.invalidate_rkey != req->mr->rkey)) { 1450 dev_err(queue->ctrl->ctrl.device, 1451 "Bogus remote invalidation for rkey %#x\n", 1452 req->mr->rkey); 1453 nvme_rdma_error_recovery(queue->ctrl); 1454 } 1455 } else if (req->mr) { 1456 int ret; 1457 1458 ret = nvme_rdma_inv_rkey(queue, req); 1459 if (unlikely(ret < 0)) { 1460 dev_err(queue->ctrl->ctrl.device, 1461 "Queueing INV WR for rkey %#x failed (%d)\n", 1462 req->mr->rkey, ret); 1463 nvme_rdma_error_recovery(queue->ctrl); 1464 } 1465 /* the local invalidation completion will end the request */ 1466 return; 1467 } 1468 1469 if (refcount_dec_and_test(&req->ref)) 1470 nvme_end_request(rq, req->status, req->result); 1471 } 1472 1473 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc) 1474 { 1475 struct nvme_rdma_qe *qe = 1476 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe); 1477 struct nvme_rdma_queue *queue = cq->cq_context; 1478 struct ib_device *ibdev = queue->device->dev; 1479 struct nvme_completion *cqe = qe->data; 1480 const size_t len = sizeof(struct nvme_completion); 1481 1482 if (unlikely(wc->status != IB_WC_SUCCESS)) { 1483 nvme_rdma_wr_error(cq, wc, "RECV"); 1484 return; 1485 } 1486 1487 ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE); 1488 /* 1489 * AEN requests are special as they don't time out and can 1490 * survive any kind of queue freeze and often don't respond to 1491 * aborts. We don't even bother to allocate a struct request 1492 * for them but rather special case them here. 1493 */ 1494 if (unlikely(nvme_rdma_queue_idx(queue) == 0 && 1495 cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH)) 1496 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status, 1497 &cqe->result); 1498 else 1499 nvme_rdma_process_nvme_rsp(queue, cqe, wc); 1500 ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE); 1501 1502 nvme_rdma_post_recv(queue, qe); 1503 } 1504 1505 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue) 1506 { 1507 int ret, i; 1508 1509 for (i = 0; i < queue->queue_size; i++) { 1510 ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]); 1511 if (ret) 1512 goto out_destroy_queue_ib; 1513 } 1514 1515 return 0; 1516 1517 out_destroy_queue_ib: 1518 nvme_rdma_destroy_queue_ib(queue); 1519 return ret; 1520 } 1521 1522 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue, 1523 struct rdma_cm_event *ev) 1524 { 1525 struct rdma_cm_id *cm_id = queue->cm_id; 1526 int status = ev->status; 1527 const char *rej_msg; 1528 const struct nvme_rdma_cm_rej *rej_data; 1529 u8 rej_data_len; 1530 1531 rej_msg = rdma_reject_msg(cm_id, status); 1532 rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len); 1533 1534 if (rej_data && rej_data_len >= sizeof(u16)) { 1535 u16 sts = le16_to_cpu(rej_data->sts); 1536 1537 dev_err(queue->ctrl->ctrl.device, 1538 "Connect rejected: status %d (%s) nvme status %d (%s).\n", 1539 status, rej_msg, sts, nvme_rdma_cm_msg(sts)); 1540 } else { 1541 dev_err(queue->ctrl->ctrl.device, 1542 "Connect rejected: status %d (%s).\n", status, rej_msg); 1543 } 1544 1545 return -ECONNRESET; 1546 } 1547 1548 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue) 1549 { 1550 int ret; 1551 1552 ret = nvme_rdma_create_queue_ib(queue); 1553 if (ret) 1554 return ret; 1555 1556 ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS); 1557 if (ret) { 1558 dev_err(queue->ctrl->ctrl.device, 1559 "rdma_resolve_route failed (%d).\n", 1560 queue->cm_error); 1561 goto out_destroy_queue; 1562 } 1563 1564 return 0; 1565 1566 out_destroy_queue: 1567 nvme_rdma_destroy_queue_ib(queue); 1568 return ret; 1569 } 1570 1571 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue) 1572 { 1573 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 1574 struct rdma_conn_param param = { }; 1575 struct nvme_rdma_cm_req priv = { }; 1576 int ret; 1577 1578 param.qp_num = queue->qp->qp_num; 1579 param.flow_control = 1; 1580 1581 param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom; 1582 /* maximum retry count */ 1583 param.retry_count = 7; 1584 param.rnr_retry_count = 7; 1585 param.private_data = &priv; 1586 param.private_data_len = sizeof(priv); 1587 1588 priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0); 1589 priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue)); 1590 /* 1591 * set the admin queue depth to the minimum size 1592 * specified by the Fabrics standard. 1593 */ 1594 if (priv.qid == 0) { 1595 priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH); 1596 priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1); 1597 } else { 1598 /* 1599 * current interpretation of the fabrics spec 1600 * is at minimum you make hrqsize sqsize+1, or a 1601 * 1's based representation of sqsize. 1602 */ 1603 priv.hrqsize = cpu_to_le16(queue->queue_size); 1604 priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize); 1605 } 1606 1607 ret = rdma_connect(queue->cm_id, ¶m); 1608 if (ret) { 1609 dev_err(ctrl->ctrl.device, 1610 "rdma_connect failed (%d).\n", ret); 1611 goto out_destroy_queue_ib; 1612 } 1613 1614 return 0; 1615 1616 out_destroy_queue_ib: 1617 nvme_rdma_destroy_queue_ib(queue); 1618 return ret; 1619 } 1620 1621 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id, 1622 struct rdma_cm_event *ev) 1623 { 1624 struct nvme_rdma_queue *queue = cm_id->context; 1625 int cm_error = 0; 1626 1627 dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n", 1628 rdma_event_msg(ev->event), ev->event, 1629 ev->status, cm_id); 1630 1631 switch (ev->event) { 1632 case RDMA_CM_EVENT_ADDR_RESOLVED: 1633 cm_error = nvme_rdma_addr_resolved(queue); 1634 break; 1635 case RDMA_CM_EVENT_ROUTE_RESOLVED: 1636 cm_error = nvme_rdma_route_resolved(queue); 1637 break; 1638 case RDMA_CM_EVENT_ESTABLISHED: 1639 queue->cm_error = nvme_rdma_conn_established(queue); 1640 /* complete cm_done regardless of success/failure */ 1641 complete(&queue->cm_done); 1642 return 0; 1643 case RDMA_CM_EVENT_REJECTED: 1644 nvme_rdma_destroy_queue_ib(queue); 1645 cm_error = nvme_rdma_conn_rejected(queue, ev); 1646 break; 1647 case RDMA_CM_EVENT_ROUTE_ERROR: 1648 case RDMA_CM_EVENT_CONNECT_ERROR: 1649 case RDMA_CM_EVENT_UNREACHABLE: 1650 nvme_rdma_destroy_queue_ib(queue); 1651 /* fall through */ 1652 case RDMA_CM_EVENT_ADDR_ERROR: 1653 dev_dbg(queue->ctrl->ctrl.device, 1654 "CM error event %d\n", ev->event); 1655 cm_error = -ECONNRESET; 1656 break; 1657 case RDMA_CM_EVENT_DISCONNECTED: 1658 case RDMA_CM_EVENT_ADDR_CHANGE: 1659 case RDMA_CM_EVENT_TIMEWAIT_EXIT: 1660 dev_dbg(queue->ctrl->ctrl.device, 1661 "disconnect received - connection closed\n"); 1662 nvme_rdma_error_recovery(queue->ctrl); 1663 break; 1664 case RDMA_CM_EVENT_DEVICE_REMOVAL: 1665 /* device removal is handled via the ib_client API */ 1666 break; 1667 default: 1668 dev_err(queue->ctrl->ctrl.device, 1669 "Unexpected RDMA CM event (%d)\n", ev->event); 1670 nvme_rdma_error_recovery(queue->ctrl); 1671 break; 1672 } 1673 1674 if (cm_error) { 1675 queue->cm_error = cm_error; 1676 complete(&queue->cm_done); 1677 } 1678 1679 return 0; 1680 } 1681 1682 static enum blk_eh_timer_return 1683 nvme_rdma_timeout(struct request *rq, bool reserved) 1684 { 1685 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1686 struct nvme_rdma_queue *queue = req->queue; 1687 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 1688 1689 dev_warn(ctrl->ctrl.device, "I/O %d QID %d timeout\n", 1690 rq->tag, nvme_rdma_queue_idx(queue)); 1691 1692 if (ctrl->ctrl.state != NVME_CTRL_LIVE) { 1693 /* 1694 * Teardown immediately if controller times out while starting 1695 * or we are already started error recovery. all outstanding 1696 * requests are completed on shutdown, so we return BLK_EH_DONE. 1697 */ 1698 flush_work(&ctrl->err_work); 1699 nvme_rdma_teardown_io_queues(ctrl, false); 1700 nvme_rdma_teardown_admin_queue(ctrl, false); 1701 return BLK_EH_DONE; 1702 } 1703 1704 dev_warn(ctrl->ctrl.device, "starting error recovery\n"); 1705 nvme_rdma_error_recovery(ctrl); 1706 1707 return BLK_EH_RESET_TIMER; 1708 } 1709 1710 static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx, 1711 const struct blk_mq_queue_data *bd) 1712 { 1713 struct nvme_ns *ns = hctx->queue->queuedata; 1714 struct nvme_rdma_queue *queue = hctx->driver_data; 1715 struct request *rq = bd->rq; 1716 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1717 struct nvme_rdma_qe *sqe = &req->sqe; 1718 struct nvme_command *c = sqe->data; 1719 struct ib_device *dev; 1720 bool queue_ready = test_bit(NVME_RDMA_Q_LIVE, &queue->flags); 1721 blk_status_t ret; 1722 int err; 1723 1724 WARN_ON_ONCE(rq->tag < 0); 1725 1726 if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready)) 1727 return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq); 1728 1729 dev = queue->device->dev; 1730 1731 req->sqe.dma = ib_dma_map_single(dev, req->sqe.data, 1732 sizeof(struct nvme_command), 1733 DMA_TO_DEVICE); 1734 err = ib_dma_mapping_error(dev, req->sqe.dma); 1735 if (unlikely(err)) 1736 return BLK_STS_RESOURCE; 1737 1738 ib_dma_sync_single_for_cpu(dev, sqe->dma, 1739 sizeof(struct nvme_command), DMA_TO_DEVICE); 1740 1741 ret = nvme_setup_cmd(ns, rq, c); 1742 if (ret) 1743 goto unmap_qe; 1744 1745 blk_mq_start_request(rq); 1746 1747 err = nvme_rdma_map_data(queue, rq, c); 1748 if (unlikely(err < 0)) { 1749 dev_err(queue->ctrl->ctrl.device, 1750 "Failed to map data (%d)\n", err); 1751 nvme_cleanup_cmd(rq); 1752 goto err; 1753 } 1754 1755 sqe->cqe.done = nvme_rdma_send_done; 1756 1757 ib_dma_sync_single_for_device(dev, sqe->dma, 1758 sizeof(struct nvme_command), DMA_TO_DEVICE); 1759 1760 err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge, 1761 req->mr ? &req->reg_wr.wr : NULL); 1762 if (unlikely(err)) { 1763 nvme_rdma_unmap_data(queue, rq); 1764 goto err; 1765 } 1766 1767 return BLK_STS_OK; 1768 1769 err: 1770 if (err == -ENOMEM || err == -EAGAIN) 1771 ret = BLK_STS_RESOURCE; 1772 else 1773 ret = BLK_STS_IOERR; 1774 unmap_qe: 1775 ib_dma_unmap_single(dev, req->sqe.dma, sizeof(struct nvme_command), 1776 DMA_TO_DEVICE); 1777 return ret; 1778 } 1779 1780 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx) 1781 { 1782 struct nvme_rdma_queue *queue = hctx->driver_data; 1783 1784 return ib_process_cq_direct(queue->ib_cq, -1); 1785 } 1786 1787 static void nvme_rdma_complete_rq(struct request *rq) 1788 { 1789 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1790 struct nvme_rdma_queue *queue = req->queue; 1791 struct ib_device *ibdev = queue->device->dev; 1792 1793 nvme_rdma_unmap_data(queue, rq); 1794 ib_dma_unmap_single(ibdev, req->sqe.dma, sizeof(struct nvme_command), 1795 DMA_TO_DEVICE); 1796 nvme_complete_rq(rq); 1797 } 1798 1799 static int nvme_rdma_map_queues(struct blk_mq_tag_set *set) 1800 { 1801 struct nvme_rdma_ctrl *ctrl = set->driver_data; 1802 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 1803 1804 if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) { 1805 /* separate read/write queues */ 1806 set->map[HCTX_TYPE_DEFAULT].nr_queues = 1807 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 1808 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0; 1809 set->map[HCTX_TYPE_READ].nr_queues = 1810 ctrl->io_queues[HCTX_TYPE_READ]; 1811 set->map[HCTX_TYPE_READ].queue_offset = 1812 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 1813 } else { 1814 /* shared read/write queues */ 1815 set->map[HCTX_TYPE_DEFAULT].nr_queues = 1816 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 1817 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0; 1818 set->map[HCTX_TYPE_READ].nr_queues = 1819 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 1820 set->map[HCTX_TYPE_READ].queue_offset = 0; 1821 } 1822 blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_DEFAULT], 1823 ctrl->device->dev, 0); 1824 blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_READ], 1825 ctrl->device->dev, 0); 1826 1827 if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) { 1828 /* map dedicated poll queues only if we have queues left */ 1829 set->map[HCTX_TYPE_POLL].nr_queues = 1830 ctrl->io_queues[HCTX_TYPE_POLL]; 1831 set->map[HCTX_TYPE_POLL].queue_offset = 1832 ctrl->io_queues[HCTX_TYPE_DEFAULT] + 1833 ctrl->io_queues[HCTX_TYPE_READ]; 1834 blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]); 1835 } 1836 1837 dev_info(ctrl->ctrl.device, 1838 "mapped %d/%d/%d default/read/poll queues.\n", 1839 ctrl->io_queues[HCTX_TYPE_DEFAULT], 1840 ctrl->io_queues[HCTX_TYPE_READ], 1841 ctrl->io_queues[HCTX_TYPE_POLL]); 1842 1843 return 0; 1844 } 1845 1846 static const struct blk_mq_ops nvme_rdma_mq_ops = { 1847 .queue_rq = nvme_rdma_queue_rq, 1848 .complete = nvme_rdma_complete_rq, 1849 .init_request = nvme_rdma_init_request, 1850 .exit_request = nvme_rdma_exit_request, 1851 .init_hctx = nvme_rdma_init_hctx, 1852 .timeout = nvme_rdma_timeout, 1853 .map_queues = nvme_rdma_map_queues, 1854 .poll = nvme_rdma_poll, 1855 }; 1856 1857 static const struct blk_mq_ops nvme_rdma_admin_mq_ops = { 1858 .queue_rq = nvme_rdma_queue_rq, 1859 .complete = nvme_rdma_complete_rq, 1860 .init_request = nvme_rdma_init_request, 1861 .exit_request = nvme_rdma_exit_request, 1862 .init_hctx = nvme_rdma_init_admin_hctx, 1863 .timeout = nvme_rdma_timeout, 1864 }; 1865 1866 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown) 1867 { 1868 cancel_work_sync(&ctrl->err_work); 1869 cancel_delayed_work_sync(&ctrl->reconnect_work); 1870 1871 nvme_rdma_teardown_io_queues(ctrl, shutdown); 1872 if (shutdown) 1873 nvme_shutdown_ctrl(&ctrl->ctrl); 1874 else 1875 nvme_disable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap); 1876 nvme_rdma_teardown_admin_queue(ctrl, shutdown); 1877 } 1878 1879 static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl) 1880 { 1881 nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true); 1882 } 1883 1884 static void nvme_rdma_reset_ctrl_work(struct work_struct *work) 1885 { 1886 struct nvme_rdma_ctrl *ctrl = 1887 container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work); 1888 1889 nvme_stop_ctrl(&ctrl->ctrl); 1890 nvme_rdma_shutdown_ctrl(ctrl, false); 1891 1892 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) { 1893 /* state change failure should never happen */ 1894 WARN_ON_ONCE(1); 1895 return; 1896 } 1897 1898 if (nvme_rdma_setup_ctrl(ctrl, false)) 1899 goto out_fail; 1900 1901 return; 1902 1903 out_fail: 1904 ++ctrl->ctrl.nr_reconnects; 1905 nvme_rdma_reconnect_or_remove(ctrl); 1906 } 1907 1908 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = { 1909 .name = "rdma", 1910 .module = THIS_MODULE, 1911 .flags = NVME_F_FABRICS, 1912 .reg_read32 = nvmf_reg_read32, 1913 .reg_read64 = nvmf_reg_read64, 1914 .reg_write32 = nvmf_reg_write32, 1915 .free_ctrl = nvme_rdma_free_ctrl, 1916 .submit_async_event = nvme_rdma_submit_async_event, 1917 .delete_ctrl = nvme_rdma_delete_ctrl, 1918 .get_address = nvmf_get_address, 1919 }; 1920 1921 /* 1922 * Fails a connection request if it matches an existing controller 1923 * (association) with the same tuple: 1924 * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN> 1925 * 1926 * if local address is not specified in the request, it will match an 1927 * existing controller with all the other parameters the same and no 1928 * local port address specified as well. 1929 * 1930 * The ports don't need to be compared as they are intrinsically 1931 * already matched by the port pointers supplied. 1932 */ 1933 static bool 1934 nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts) 1935 { 1936 struct nvme_rdma_ctrl *ctrl; 1937 bool found = false; 1938 1939 mutex_lock(&nvme_rdma_ctrl_mutex); 1940 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) { 1941 found = nvmf_ip_options_match(&ctrl->ctrl, opts); 1942 if (found) 1943 break; 1944 } 1945 mutex_unlock(&nvme_rdma_ctrl_mutex); 1946 1947 return found; 1948 } 1949 1950 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev, 1951 struct nvmf_ctrl_options *opts) 1952 { 1953 struct nvme_rdma_ctrl *ctrl; 1954 int ret; 1955 bool changed; 1956 1957 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 1958 if (!ctrl) 1959 return ERR_PTR(-ENOMEM); 1960 ctrl->ctrl.opts = opts; 1961 INIT_LIST_HEAD(&ctrl->list); 1962 1963 if (!(opts->mask & NVMF_OPT_TRSVCID)) { 1964 opts->trsvcid = 1965 kstrdup(__stringify(NVME_RDMA_IP_PORT), GFP_KERNEL); 1966 if (!opts->trsvcid) { 1967 ret = -ENOMEM; 1968 goto out_free_ctrl; 1969 } 1970 opts->mask |= NVMF_OPT_TRSVCID; 1971 } 1972 1973 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 1974 opts->traddr, opts->trsvcid, &ctrl->addr); 1975 if (ret) { 1976 pr_err("malformed address passed: %s:%s\n", 1977 opts->traddr, opts->trsvcid); 1978 goto out_free_ctrl; 1979 } 1980 1981 if (opts->mask & NVMF_OPT_HOST_TRADDR) { 1982 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 1983 opts->host_traddr, NULL, &ctrl->src_addr); 1984 if (ret) { 1985 pr_err("malformed src address passed: %s\n", 1986 opts->host_traddr); 1987 goto out_free_ctrl; 1988 } 1989 } 1990 1991 if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) { 1992 ret = -EALREADY; 1993 goto out_free_ctrl; 1994 } 1995 1996 INIT_DELAYED_WORK(&ctrl->reconnect_work, 1997 nvme_rdma_reconnect_ctrl_work); 1998 INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work); 1999 INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work); 2000 2001 ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues + 2002 opts->nr_poll_queues + 1; 2003 ctrl->ctrl.sqsize = opts->queue_size - 1; 2004 ctrl->ctrl.kato = opts->kato; 2005 2006 ret = -ENOMEM; 2007 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues), 2008 GFP_KERNEL); 2009 if (!ctrl->queues) 2010 goto out_free_ctrl; 2011 2012 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops, 2013 0 /* no quirks, we're perfect! */); 2014 if (ret) 2015 goto out_kfree_queues; 2016 2017 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING); 2018 WARN_ON_ONCE(!changed); 2019 2020 ret = nvme_rdma_setup_ctrl(ctrl, true); 2021 if (ret) 2022 goto out_uninit_ctrl; 2023 2024 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n", 2025 ctrl->ctrl.opts->subsysnqn, &ctrl->addr); 2026 2027 nvme_get_ctrl(&ctrl->ctrl); 2028 2029 mutex_lock(&nvme_rdma_ctrl_mutex); 2030 list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list); 2031 mutex_unlock(&nvme_rdma_ctrl_mutex); 2032 2033 return &ctrl->ctrl; 2034 2035 out_uninit_ctrl: 2036 nvme_uninit_ctrl(&ctrl->ctrl); 2037 nvme_put_ctrl(&ctrl->ctrl); 2038 if (ret > 0) 2039 ret = -EIO; 2040 return ERR_PTR(ret); 2041 out_kfree_queues: 2042 kfree(ctrl->queues); 2043 out_free_ctrl: 2044 kfree(ctrl); 2045 return ERR_PTR(ret); 2046 } 2047 2048 static struct nvmf_transport_ops nvme_rdma_transport = { 2049 .name = "rdma", 2050 .module = THIS_MODULE, 2051 .required_opts = NVMF_OPT_TRADDR, 2052 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY | 2053 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO | 2054 NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES, 2055 .create_ctrl = nvme_rdma_create_ctrl, 2056 }; 2057 2058 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data) 2059 { 2060 struct nvme_rdma_ctrl *ctrl; 2061 struct nvme_rdma_device *ndev; 2062 bool found = false; 2063 2064 mutex_lock(&device_list_mutex); 2065 list_for_each_entry(ndev, &device_list, entry) { 2066 if (ndev->dev == ib_device) { 2067 found = true; 2068 break; 2069 } 2070 } 2071 mutex_unlock(&device_list_mutex); 2072 2073 if (!found) 2074 return; 2075 2076 /* Delete all controllers using this device */ 2077 mutex_lock(&nvme_rdma_ctrl_mutex); 2078 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) { 2079 if (ctrl->device->dev != ib_device) 2080 continue; 2081 nvme_delete_ctrl(&ctrl->ctrl); 2082 } 2083 mutex_unlock(&nvme_rdma_ctrl_mutex); 2084 2085 flush_workqueue(nvme_delete_wq); 2086 } 2087 2088 static struct ib_client nvme_rdma_ib_client = { 2089 .name = "nvme_rdma", 2090 .remove = nvme_rdma_remove_one 2091 }; 2092 2093 static int __init nvme_rdma_init_module(void) 2094 { 2095 int ret; 2096 2097 ret = ib_register_client(&nvme_rdma_ib_client); 2098 if (ret) 2099 return ret; 2100 2101 ret = nvmf_register_transport(&nvme_rdma_transport); 2102 if (ret) 2103 goto err_unreg_client; 2104 2105 return 0; 2106 2107 err_unreg_client: 2108 ib_unregister_client(&nvme_rdma_ib_client); 2109 return ret; 2110 } 2111 2112 static void __exit nvme_rdma_cleanup_module(void) 2113 { 2114 nvmf_unregister_transport(&nvme_rdma_transport); 2115 ib_unregister_client(&nvme_rdma_ib_client); 2116 } 2117 2118 module_init(nvme_rdma_init_module); 2119 module_exit(nvme_rdma_cleanup_module); 2120 2121 MODULE_LICENSE("GPL v2"); 2122