xref: /linux/drivers/nvme/host/rdma.c (revision 69fb09f6ccdb2f070557fd1f4c56c4d646694c8e)
1 /*
2  * NVMe over Fabrics RDMA host code.
3  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/err.h>
19 #include <linux/string.h>
20 #include <linux/atomic.h>
21 #include <linux/blk-mq.h>
22 #include <linux/types.h>
23 #include <linux/list.h>
24 #include <linux/mutex.h>
25 #include <linux/scatterlist.h>
26 #include <linux/nvme.h>
27 #include <asm/unaligned.h>
28 
29 #include <rdma/ib_verbs.h>
30 #include <rdma/rdma_cm.h>
31 #include <linux/nvme-rdma.h>
32 
33 #include "nvme.h"
34 #include "fabrics.h"
35 
36 
37 #define NVME_RDMA_CONNECT_TIMEOUT_MS	3000		/* 3 second */
38 
39 #define NVME_RDMA_MAX_SEGMENT_SIZE	0xffffff	/* 24-bit SGL field */
40 
41 #define NVME_RDMA_MAX_SEGMENTS		256
42 
43 #define NVME_RDMA_MAX_INLINE_SEGMENTS	1
44 
45 /*
46  * We handle AEN commands ourselves and don't even let the
47  * block layer know about them.
48  */
49 #define NVME_RDMA_NR_AEN_COMMANDS      1
50 #define NVME_RDMA_AQ_BLKMQ_DEPTH       \
51 	(NVME_AQ_DEPTH - NVME_RDMA_NR_AEN_COMMANDS)
52 
53 struct nvme_rdma_device {
54 	struct ib_device       *dev;
55 	struct ib_pd	       *pd;
56 	struct kref		ref;
57 	struct list_head	entry;
58 };
59 
60 struct nvme_rdma_qe {
61 	struct ib_cqe		cqe;
62 	void			*data;
63 	u64			dma;
64 };
65 
66 struct nvme_rdma_queue;
67 struct nvme_rdma_request {
68 	struct nvme_request	req;
69 	struct ib_mr		*mr;
70 	struct nvme_rdma_qe	sqe;
71 	struct ib_sge		sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
72 	u32			num_sge;
73 	int			nents;
74 	bool			inline_data;
75 	struct ib_reg_wr	reg_wr;
76 	struct ib_cqe		reg_cqe;
77 	struct nvme_rdma_queue  *queue;
78 	struct sg_table		sg_table;
79 	struct scatterlist	first_sgl[];
80 };
81 
82 enum nvme_rdma_queue_flags {
83 	NVME_RDMA_Q_LIVE		= 0,
84 	NVME_RDMA_Q_DELETING		= 1,
85 };
86 
87 struct nvme_rdma_queue {
88 	struct nvme_rdma_qe	*rsp_ring;
89 	u8			sig_count;
90 	int			queue_size;
91 	size_t			cmnd_capsule_len;
92 	struct nvme_rdma_ctrl	*ctrl;
93 	struct nvme_rdma_device	*device;
94 	struct ib_cq		*ib_cq;
95 	struct ib_qp		*qp;
96 
97 	unsigned long		flags;
98 	struct rdma_cm_id	*cm_id;
99 	int			cm_error;
100 	struct completion	cm_done;
101 };
102 
103 struct nvme_rdma_ctrl {
104 	/* read only in the hot path */
105 	struct nvme_rdma_queue	*queues;
106 	u32			queue_count;
107 
108 	/* other member variables */
109 	struct blk_mq_tag_set	tag_set;
110 	struct work_struct	delete_work;
111 	struct work_struct	err_work;
112 
113 	struct nvme_rdma_qe	async_event_sqe;
114 
115 	struct delayed_work	reconnect_work;
116 
117 	struct list_head	list;
118 
119 	struct blk_mq_tag_set	admin_tag_set;
120 	struct nvme_rdma_device	*device;
121 
122 	u64			cap;
123 	u32			max_fr_pages;
124 
125 	struct sockaddr_storage addr;
126 	struct sockaddr_storage src_addr;
127 
128 	struct nvme_ctrl	ctrl;
129 };
130 
131 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
132 {
133 	return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
134 }
135 
136 static LIST_HEAD(device_list);
137 static DEFINE_MUTEX(device_list_mutex);
138 
139 static LIST_HEAD(nvme_rdma_ctrl_list);
140 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
141 
142 /*
143  * Disabling this option makes small I/O goes faster, but is fundamentally
144  * unsafe.  With it turned off we will have to register a global rkey that
145  * allows read and write access to all physical memory.
146  */
147 static bool register_always = true;
148 module_param(register_always, bool, 0444);
149 MODULE_PARM_DESC(register_always,
150 	 "Use memory registration even for contiguous memory regions");
151 
152 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
153 		struct rdma_cm_event *event);
154 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
155 
156 /* XXX: really should move to a generic header sooner or later.. */
157 static inline void put_unaligned_le24(u32 val, u8 *p)
158 {
159 	*p++ = val;
160 	*p++ = val >> 8;
161 	*p++ = val >> 16;
162 }
163 
164 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
165 {
166 	return queue - queue->ctrl->queues;
167 }
168 
169 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
170 {
171 	return queue->cmnd_capsule_len - sizeof(struct nvme_command);
172 }
173 
174 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
175 		size_t capsule_size, enum dma_data_direction dir)
176 {
177 	ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
178 	kfree(qe->data);
179 }
180 
181 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
182 		size_t capsule_size, enum dma_data_direction dir)
183 {
184 	qe->data = kzalloc(capsule_size, GFP_KERNEL);
185 	if (!qe->data)
186 		return -ENOMEM;
187 
188 	qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
189 	if (ib_dma_mapping_error(ibdev, qe->dma)) {
190 		kfree(qe->data);
191 		return -ENOMEM;
192 	}
193 
194 	return 0;
195 }
196 
197 static void nvme_rdma_free_ring(struct ib_device *ibdev,
198 		struct nvme_rdma_qe *ring, size_t ib_queue_size,
199 		size_t capsule_size, enum dma_data_direction dir)
200 {
201 	int i;
202 
203 	for (i = 0; i < ib_queue_size; i++)
204 		nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
205 	kfree(ring);
206 }
207 
208 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
209 		size_t ib_queue_size, size_t capsule_size,
210 		enum dma_data_direction dir)
211 {
212 	struct nvme_rdma_qe *ring;
213 	int i;
214 
215 	ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
216 	if (!ring)
217 		return NULL;
218 
219 	for (i = 0; i < ib_queue_size; i++) {
220 		if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
221 			goto out_free_ring;
222 	}
223 
224 	return ring;
225 
226 out_free_ring:
227 	nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
228 	return NULL;
229 }
230 
231 static void nvme_rdma_qp_event(struct ib_event *event, void *context)
232 {
233 	pr_debug("QP event %s (%d)\n",
234 		 ib_event_msg(event->event), event->event);
235 
236 }
237 
238 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
239 {
240 	wait_for_completion_interruptible_timeout(&queue->cm_done,
241 			msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1);
242 	return queue->cm_error;
243 }
244 
245 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
246 {
247 	struct nvme_rdma_device *dev = queue->device;
248 	struct ib_qp_init_attr init_attr;
249 	int ret;
250 
251 	memset(&init_attr, 0, sizeof(init_attr));
252 	init_attr.event_handler = nvme_rdma_qp_event;
253 	/* +1 for drain */
254 	init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
255 	/* +1 for drain */
256 	init_attr.cap.max_recv_wr = queue->queue_size + 1;
257 	init_attr.cap.max_recv_sge = 1;
258 	init_attr.cap.max_send_sge = 1 + NVME_RDMA_MAX_INLINE_SEGMENTS;
259 	init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
260 	init_attr.qp_type = IB_QPT_RC;
261 	init_attr.send_cq = queue->ib_cq;
262 	init_attr.recv_cq = queue->ib_cq;
263 
264 	ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
265 
266 	queue->qp = queue->cm_id->qp;
267 	return ret;
268 }
269 
270 static int nvme_rdma_reinit_request(void *data, struct request *rq)
271 {
272 	struct nvme_rdma_ctrl *ctrl = data;
273 	struct nvme_rdma_device *dev = ctrl->device;
274 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
275 	int ret = 0;
276 
277 	if (!req->mr->need_inval)
278 		goto out;
279 
280 	ib_dereg_mr(req->mr);
281 
282 	req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG,
283 			ctrl->max_fr_pages);
284 	if (IS_ERR(req->mr)) {
285 		ret = PTR_ERR(req->mr);
286 		req->mr = NULL;
287 		goto out;
288 	}
289 
290 	req->mr->need_inval = false;
291 
292 out:
293 	return ret;
294 }
295 
296 static void nvme_rdma_exit_request(struct blk_mq_tag_set *set,
297 		struct request *rq, unsigned int hctx_idx)
298 {
299 	struct nvme_rdma_ctrl *ctrl = set->driver_data;
300 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
301 	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
302 	struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
303 	struct nvme_rdma_device *dev = queue->device;
304 
305 	if (req->mr)
306 		ib_dereg_mr(req->mr);
307 
308 	nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
309 			DMA_TO_DEVICE);
310 }
311 
312 static int nvme_rdma_init_request(struct blk_mq_tag_set *set,
313 		struct request *rq, unsigned int hctx_idx,
314 		unsigned int numa_node)
315 {
316 	struct nvme_rdma_ctrl *ctrl = set->driver_data;
317 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
318 	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
319 	struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
320 	struct nvme_rdma_device *dev = queue->device;
321 	struct ib_device *ibdev = dev->dev;
322 	int ret;
323 
324 	ret = nvme_rdma_alloc_qe(ibdev, &req->sqe, sizeof(struct nvme_command),
325 			DMA_TO_DEVICE);
326 	if (ret)
327 		return ret;
328 
329 	req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG,
330 			ctrl->max_fr_pages);
331 	if (IS_ERR(req->mr)) {
332 		ret = PTR_ERR(req->mr);
333 		goto out_free_qe;
334 	}
335 
336 	req->queue = queue;
337 
338 	return 0;
339 
340 out_free_qe:
341 	nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
342 			DMA_TO_DEVICE);
343 	return -ENOMEM;
344 }
345 
346 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
347 		unsigned int hctx_idx)
348 {
349 	struct nvme_rdma_ctrl *ctrl = data;
350 	struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
351 
352 	BUG_ON(hctx_idx >= ctrl->queue_count);
353 
354 	hctx->driver_data = queue;
355 	return 0;
356 }
357 
358 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
359 		unsigned int hctx_idx)
360 {
361 	struct nvme_rdma_ctrl *ctrl = data;
362 	struct nvme_rdma_queue *queue = &ctrl->queues[0];
363 
364 	BUG_ON(hctx_idx != 0);
365 
366 	hctx->driver_data = queue;
367 	return 0;
368 }
369 
370 static void nvme_rdma_free_dev(struct kref *ref)
371 {
372 	struct nvme_rdma_device *ndev =
373 		container_of(ref, struct nvme_rdma_device, ref);
374 
375 	mutex_lock(&device_list_mutex);
376 	list_del(&ndev->entry);
377 	mutex_unlock(&device_list_mutex);
378 
379 	ib_dealloc_pd(ndev->pd);
380 	kfree(ndev);
381 }
382 
383 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
384 {
385 	kref_put(&dev->ref, nvme_rdma_free_dev);
386 }
387 
388 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
389 {
390 	return kref_get_unless_zero(&dev->ref);
391 }
392 
393 static struct nvme_rdma_device *
394 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
395 {
396 	struct nvme_rdma_device *ndev;
397 
398 	mutex_lock(&device_list_mutex);
399 	list_for_each_entry(ndev, &device_list, entry) {
400 		if (ndev->dev->node_guid == cm_id->device->node_guid &&
401 		    nvme_rdma_dev_get(ndev))
402 			goto out_unlock;
403 	}
404 
405 	ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
406 	if (!ndev)
407 		goto out_err;
408 
409 	ndev->dev = cm_id->device;
410 	kref_init(&ndev->ref);
411 
412 	ndev->pd = ib_alloc_pd(ndev->dev,
413 		register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
414 	if (IS_ERR(ndev->pd))
415 		goto out_free_dev;
416 
417 	if (!(ndev->dev->attrs.device_cap_flags &
418 	      IB_DEVICE_MEM_MGT_EXTENSIONS)) {
419 		dev_err(&ndev->dev->dev,
420 			"Memory registrations not supported.\n");
421 		goto out_free_pd;
422 	}
423 
424 	list_add(&ndev->entry, &device_list);
425 out_unlock:
426 	mutex_unlock(&device_list_mutex);
427 	return ndev;
428 
429 out_free_pd:
430 	ib_dealloc_pd(ndev->pd);
431 out_free_dev:
432 	kfree(ndev);
433 out_err:
434 	mutex_unlock(&device_list_mutex);
435 	return NULL;
436 }
437 
438 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
439 {
440 	struct nvme_rdma_device *dev;
441 	struct ib_device *ibdev;
442 
443 	dev = queue->device;
444 	ibdev = dev->dev;
445 	rdma_destroy_qp(queue->cm_id);
446 	ib_free_cq(queue->ib_cq);
447 
448 	nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
449 			sizeof(struct nvme_completion), DMA_FROM_DEVICE);
450 
451 	nvme_rdma_dev_put(dev);
452 }
453 
454 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue)
455 {
456 	struct ib_device *ibdev;
457 	const int send_wr_factor = 3;			/* MR, SEND, INV */
458 	const int cq_factor = send_wr_factor + 1;	/* + RECV */
459 	int comp_vector, idx = nvme_rdma_queue_idx(queue);
460 	int ret;
461 
462 	queue->device = nvme_rdma_find_get_device(queue->cm_id);
463 	if (!queue->device) {
464 		dev_err(queue->cm_id->device->dev.parent,
465 			"no client data found!\n");
466 		return -ECONNREFUSED;
467 	}
468 	ibdev = queue->device->dev;
469 
470 	/*
471 	 * The admin queue is barely used once the controller is live, so don't
472 	 * bother to spread it out.
473 	 */
474 	if (idx == 0)
475 		comp_vector = 0;
476 	else
477 		comp_vector = idx % ibdev->num_comp_vectors;
478 
479 
480 	/* +1 for ib_stop_cq */
481 	queue->ib_cq = ib_alloc_cq(ibdev, queue,
482 				cq_factor * queue->queue_size + 1,
483 				comp_vector, IB_POLL_SOFTIRQ);
484 	if (IS_ERR(queue->ib_cq)) {
485 		ret = PTR_ERR(queue->ib_cq);
486 		goto out_put_dev;
487 	}
488 
489 	ret = nvme_rdma_create_qp(queue, send_wr_factor);
490 	if (ret)
491 		goto out_destroy_ib_cq;
492 
493 	queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
494 			sizeof(struct nvme_completion), DMA_FROM_DEVICE);
495 	if (!queue->rsp_ring) {
496 		ret = -ENOMEM;
497 		goto out_destroy_qp;
498 	}
499 
500 	return 0;
501 
502 out_destroy_qp:
503 	ib_destroy_qp(queue->qp);
504 out_destroy_ib_cq:
505 	ib_free_cq(queue->ib_cq);
506 out_put_dev:
507 	nvme_rdma_dev_put(queue->device);
508 	return ret;
509 }
510 
511 static int nvme_rdma_init_queue(struct nvme_rdma_ctrl *ctrl,
512 		int idx, size_t queue_size)
513 {
514 	struct nvme_rdma_queue *queue;
515 	struct sockaddr *src_addr = NULL;
516 	int ret;
517 
518 	queue = &ctrl->queues[idx];
519 	queue->ctrl = ctrl;
520 	init_completion(&queue->cm_done);
521 
522 	if (idx > 0)
523 		queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
524 	else
525 		queue->cmnd_capsule_len = sizeof(struct nvme_command);
526 
527 	queue->queue_size = queue_size;
528 
529 	queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
530 			RDMA_PS_TCP, IB_QPT_RC);
531 	if (IS_ERR(queue->cm_id)) {
532 		dev_info(ctrl->ctrl.device,
533 			"failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
534 		return PTR_ERR(queue->cm_id);
535 	}
536 
537 	if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
538 		src_addr = (struct sockaddr *)&ctrl->src_addr;
539 
540 	queue->cm_error = -ETIMEDOUT;
541 	ret = rdma_resolve_addr(queue->cm_id, src_addr,
542 			(struct sockaddr *)&ctrl->addr,
543 			NVME_RDMA_CONNECT_TIMEOUT_MS);
544 	if (ret) {
545 		dev_info(ctrl->ctrl.device,
546 			"rdma_resolve_addr failed (%d).\n", ret);
547 		goto out_destroy_cm_id;
548 	}
549 
550 	ret = nvme_rdma_wait_for_cm(queue);
551 	if (ret) {
552 		dev_info(ctrl->ctrl.device,
553 			"rdma_resolve_addr wait failed (%d).\n", ret);
554 		goto out_destroy_cm_id;
555 	}
556 
557 	clear_bit(NVME_RDMA_Q_DELETING, &queue->flags);
558 
559 	return 0;
560 
561 out_destroy_cm_id:
562 	rdma_destroy_id(queue->cm_id);
563 	return ret;
564 }
565 
566 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
567 {
568 	rdma_disconnect(queue->cm_id);
569 	ib_drain_qp(queue->qp);
570 }
571 
572 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
573 {
574 	nvme_rdma_destroy_queue_ib(queue);
575 	rdma_destroy_id(queue->cm_id);
576 }
577 
578 static void nvme_rdma_stop_and_free_queue(struct nvme_rdma_queue *queue)
579 {
580 	if (test_and_set_bit(NVME_RDMA_Q_DELETING, &queue->flags))
581 		return;
582 	nvme_rdma_stop_queue(queue);
583 	nvme_rdma_free_queue(queue);
584 }
585 
586 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
587 {
588 	int i;
589 
590 	for (i = 1; i < ctrl->queue_count; i++)
591 		nvme_rdma_stop_and_free_queue(&ctrl->queues[i]);
592 }
593 
594 static int nvme_rdma_connect_io_queues(struct nvme_rdma_ctrl *ctrl)
595 {
596 	int i, ret = 0;
597 
598 	for (i = 1; i < ctrl->queue_count; i++) {
599 		ret = nvmf_connect_io_queue(&ctrl->ctrl, i);
600 		if (ret) {
601 			dev_info(ctrl->ctrl.device,
602 				"failed to connect i/o queue: %d\n", ret);
603 			goto out_free_queues;
604 		}
605 		set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[i].flags);
606 	}
607 
608 	return 0;
609 
610 out_free_queues:
611 	nvme_rdma_free_io_queues(ctrl);
612 	return ret;
613 }
614 
615 static int nvme_rdma_init_io_queues(struct nvme_rdma_ctrl *ctrl)
616 {
617 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
618 	unsigned int nr_io_queues;
619 	int i, ret;
620 
621 	nr_io_queues = min(opts->nr_io_queues, num_online_cpus());
622 	ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
623 	if (ret)
624 		return ret;
625 
626 	ctrl->queue_count = nr_io_queues + 1;
627 	if (ctrl->queue_count < 2)
628 		return 0;
629 
630 	dev_info(ctrl->ctrl.device,
631 		"creating %d I/O queues.\n", nr_io_queues);
632 
633 	for (i = 1; i < ctrl->queue_count; i++) {
634 		ret = nvme_rdma_init_queue(ctrl, i,
635 					   ctrl->ctrl.opts->queue_size);
636 		if (ret) {
637 			dev_info(ctrl->ctrl.device,
638 				"failed to initialize i/o queue: %d\n", ret);
639 			goto out_free_queues;
640 		}
641 	}
642 
643 	return 0;
644 
645 out_free_queues:
646 	for (i--; i >= 1; i--)
647 		nvme_rdma_stop_and_free_queue(&ctrl->queues[i]);
648 
649 	return ret;
650 }
651 
652 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl)
653 {
654 	nvme_rdma_free_qe(ctrl->queues[0].device->dev, &ctrl->async_event_sqe,
655 			sizeof(struct nvme_command), DMA_TO_DEVICE);
656 	nvme_rdma_stop_and_free_queue(&ctrl->queues[0]);
657 	blk_cleanup_queue(ctrl->ctrl.admin_q);
658 	blk_mq_free_tag_set(&ctrl->admin_tag_set);
659 	nvme_rdma_dev_put(ctrl->device);
660 }
661 
662 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
663 {
664 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
665 
666 	if (list_empty(&ctrl->list))
667 		goto free_ctrl;
668 
669 	mutex_lock(&nvme_rdma_ctrl_mutex);
670 	list_del(&ctrl->list);
671 	mutex_unlock(&nvme_rdma_ctrl_mutex);
672 
673 	kfree(ctrl->queues);
674 	nvmf_free_options(nctrl->opts);
675 free_ctrl:
676 	kfree(ctrl);
677 }
678 
679 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl)
680 {
681 	/* If we are resetting/deleting then do nothing */
682 	if (ctrl->ctrl.state != NVME_CTRL_RECONNECTING) {
683 		WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
684 			ctrl->ctrl.state == NVME_CTRL_LIVE);
685 		return;
686 	}
687 
688 	if (nvmf_should_reconnect(&ctrl->ctrl)) {
689 		dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n",
690 			ctrl->ctrl.opts->reconnect_delay);
691 		queue_delayed_work(nvme_wq, &ctrl->reconnect_work,
692 				ctrl->ctrl.opts->reconnect_delay * HZ);
693 	} else {
694 		dev_info(ctrl->ctrl.device, "Removing controller...\n");
695 		queue_work(nvme_wq, &ctrl->delete_work);
696 	}
697 }
698 
699 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
700 {
701 	struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
702 			struct nvme_rdma_ctrl, reconnect_work);
703 	bool changed;
704 	int ret;
705 
706 	++ctrl->ctrl.nr_reconnects;
707 
708 	if (ctrl->queue_count > 1) {
709 		nvme_rdma_free_io_queues(ctrl);
710 
711 		ret = blk_mq_reinit_tagset(&ctrl->tag_set);
712 		if (ret)
713 			goto requeue;
714 	}
715 
716 	nvme_rdma_stop_and_free_queue(&ctrl->queues[0]);
717 
718 	ret = blk_mq_reinit_tagset(&ctrl->admin_tag_set);
719 	if (ret)
720 		goto requeue;
721 
722 	ret = nvme_rdma_init_queue(ctrl, 0, NVME_AQ_DEPTH);
723 	if (ret)
724 		goto requeue;
725 
726 	ret = nvmf_connect_admin_queue(&ctrl->ctrl);
727 	if (ret)
728 		goto requeue;
729 
730 	set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[0].flags);
731 
732 	ret = nvme_enable_ctrl(&ctrl->ctrl, ctrl->cap);
733 	if (ret)
734 		goto requeue;
735 
736 	nvme_start_keep_alive(&ctrl->ctrl);
737 
738 	if (ctrl->queue_count > 1) {
739 		ret = nvme_rdma_init_io_queues(ctrl);
740 		if (ret)
741 			goto requeue;
742 
743 		ret = nvme_rdma_connect_io_queues(ctrl);
744 		if (ret)
745 			goto requeue;
746 	}
747 
748 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
749 	WARN_ON_ONCE(!changed);
750 	ctrl->ctrl.nr_reconnects = 0;
751 
752 	if (ctrl->queue_count > 1) {
753 		nvme_queue_scan(&ctrl->ctrl);
754 		nvme_queue_async_events(&ctrl->ctrl);
755 	}
756 
757 	dev_info(ctrl->ctrl.device, "Successfully reconnected\n");
758 
759 	return;
760 
761 requeue:
762 	dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n",
763 			ctrl->ctrl.nr_reconnects);
764 	nvme_rdma_reconnect_or_remove(ctrl);
765 }
766 
767 static void nvme_rdma_error_recovery_work(struct work_struct *work)
768 {
769 	struct nvme_rdma_ctrl *ctrl = container_of(work,
770 			struct nvme_rdma_ctrl, err_work);
771 	int i;
772 
773 	nvme_stop_keep_alive(&ctrl->ctrl);
774 
775 	for (i = 0; i < ctrl->queue_count; i++)
776 		clear_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[i].flags);
777 
778 	if (ctrl->queue_count > 1)
779 		nvme_stop_queues(&ctrl->ctrl);
780 	blk_mq_stop_hw_queues(ctrl->ctrl.admin_q);
781 
782 	/* We must take care of fastfail/requeue all our inflight requests */
783 	if (ctrl->queue_count > 1)
784 		blk_mq_tagset_busy_iter(&ctrl->tag_set,
785 					nvme_cancel_request, &ctrl->ctrl);
786 	blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
787 				nvme_cancel_request, &ctrl->ctrl);
788 
789 	/*
790 	 * queues are not a live anymore, so restart the queues to fail fast
791 	 * new IO
792 	 */
793 	blk_mq_start_stopped_hw_queues(ctrl->ctrl.admin_q, true);
794 	nvme_start_queues(&ctrl->ctrl);
795 
796 	nvme_rdma_reconnect_or_remove(ctrl);
797 }
798 
799 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
800 {
801 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RECONNECTING))
802 		return;
803 
804 	queue_work(nvme_wq, &ctrl->err_work);
805 }
806 
807 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
808 		const char *op)
809 {
810 	struct nvme_rdma_queue *queue = cq->cq_context;
811 	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
812 
813 	if (ctrl->ctrl.state == NVME_CTRL_LIVE)
814 		dev_info(ctrl->ctrl.device,
815 			     "%s for CQE 0x%p failed with status %s (%d)\n",
816 			     op, wc->wr_cqe,
817 			     ib_wc_status_msg(wc->status), wc->status);
818 	nvme_rdma_error_recovery(ctrl);
819 }
820 
821 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
822 {
823 	if (unlikely(wc->status != IB_WC_SUCCESS))
824 		nvme_rdma_wr_error(cq, wc, "MEMREG");
825 }
826 
827 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
828 {
829 	if (unlikely(wc->status != IB_WC_SUCCESS))
830 		nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
831 }
832 
833 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
834 		struct nvme_rdma_request *req)
835 {
836 	struct ib_send_wr *bad_wr;
837 	struct ib_send_wr wr = {
838 		.opcode		    = IB_WR_LOCAL_INV,
839 		.next		    = NULL,
840 		.num_sge	    = 0,
841 		.send_flags	    = 0,
842 		.ex.invalidate_rkey = req->mr->rkey,
843 	};
844 
845 	req->reg_cqe.done = nvme_rdma_inv_rkey_done;
846 	wr.wr_cqe = &req->reg_cqe;
847 
848 	return ib_post_send(queue->qp, &wr, &bad_wr);
849 }
850 
851 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
852 		struct request *rq)
853 {
854 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
855 	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
856 	struct nvme_rdma_device *dev = queue->device;
857 	struct ib_device *ibdev = dev->dev;
858 	int res;
859 
860 	if (!blk_rq_bytes(rq))
861 		return;
862 
863 	if (req->mr->need_inval) {
864 		res = nvme_rdma_inv_rkey(queue, req);
865 		if (res < 0) {
866 			dev_err(ctrl->ctrl.device,
867 				"Queueing INV WR for rkey %#x failed (%d)\n",
868 				req->mr->rkey, res);
869 			nvme_rdma_error_recovery(queue->ctrl);
870 		}
871 	}
872 
873 	ib_dma_unmap_sg(ibdev, req->sg_table.sgl,
874 			req->nents, rq_data_dir(rq) ==
875 				    WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
876 
877 	nvme_cleanup_cmd(rq);
878 	sg_free_table_chained(&req->sg_table, true);
879 }
880 
881 static int nvme_rdma_set_sg_null(struct nvme_command *c)
882 {
883 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
884 
885 	sg->addr = 0;
886 	put_unaligned_le24(0, sg->length);
887 	put_unaligned_le32(0, sg->key);
888 	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
889 	return 0;
890 }
891 
892 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
893 		struct nvme_rdma_request *req, struct nvme_command *c)
894 {
895 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
896 
897 	req->sge[1].addr = sg_dma_address(req->sg_table.sgl);
898 	req->sge[1].length = sg_dma_len(req->sg_table.sgl);
899 	req->sge[1].lkey = queue->device->pd->local_dma_lkey;
900 
901 	sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
902 	sg->length = cpu_to_le32(sg_dma_len(req->sg_table.sgl));
903 	sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
904 
905 	req->inline_data = true;
906 	req->num_sge++;
907 	return 0;
908 }
909 
910 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
911 		struct nvme_rdma_request *req, struct nvme_command *c)
912 {
913 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
914 
915 	sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl));
916 	put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length);
917 	put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
918 	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
919 	return 0;
920 }
921 
922 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
923 		struct nvme_rdma_request *req, struct nvme_command *c,
924 		int count)
925 {
926 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
927 	int nr;
928 
929 	nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, PAGE_SIZE);
930 	if (nr < count) {
931 		if (nr < 0)
932 			return nr;
933 		return -EINVAL;
934 	}
935 
936 	ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
937 
938 	req->reg_cqe.done = nvme_rdma_memreg_done;
939 	memset(&req->reg_wr, 0, sizeof(req->reg_wr));
940 	req->reg_wr.wr.opcode = IB_WR_REG_MR;
941 	req->reg_wr.wr.wr_cqe = &req->reg_cqe;
942 	req->reg_wr.wr.num_sge = 0;
943 	req->reg_wr.mr = req->mr;
944 	req->reg_wr.key = req->mr->rkey;
945 	req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
946 			     IB_ACCESS_REMOTE_READ |
947 			     IB_ACCESS_REMOTE_WRITE;
948 
949 	req->mr->need_inval = true;
950 
951 	sg->addr = cpu_to_le64(req->mr->iova);
952 	put_unaligned_le24(req->mr->length, sg->length);
953 	put_unaligned_le32(req->mr->rkey, sg->key);
954 	sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
955 			NVME_SGL_FMT_INVALIDATE;
956 
957 	return 0;
958 }
959 
960 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
961 		struct request *rq, struct nvme_command *c)
962 {
963 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
964 	struct nvme_rdma_device *dev = queue->device;
965 	struct ib_device *ibdev = dev->dev;
966 	int count, ret;
967 
968 	req->num_sge = 1;
969 	req->inline_data = false;
970 	req->mr->need_inval = false;
971 
972 	c->common.flags |= NVME_CMD_SGL_METABUF;
973 
974 	if (!blk_rq_bytes(rq))
975 		return nvme_rdma_set_sg_null(c);
976 
977 	req->sg_table.sgl = req->first_sgl;
978 	ret = sg_alloc_table_chained(&req->sg_table,
979 			blk_rq_nr_phys_segments(rq), req->sg_table.sgl);
980 	if (ret)
981 		return -ENOMEM;
982 
983 	req->nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl);
984 
985 	count = ib_dma_map_sg(ibdev, req->sg_table.sgl, req->nents,
986 		    rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
987 	if (unlikely(count <= 0)) {
988 		sg_free_table_chained(&req->sg_table, true);
989 		return -EIO;
990 	}
991 
992 	if (count == 1) {
993 		if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) &&
994 		    blk_rq_payload_bytes(rq) <=
995 				nvme_rdma_inline_data_size(queue))
996 			return nvme_rdma_map_sg_inline(queue, req, c);
997 
998 		if (dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY)
999 			return nvme_rdma_map_sg_single(queue, req, c);
1000 	}
1001 
1002 	return nvme_rdma_map_sg_fr(queue, req, c, count);
1003 }
1004 
1005 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
1006 {
1007 	if (unlikely(wc->status != IB_WC_SUCCESS))
1008 		nvme_rdma_wr_error(cq, wc, "SEND");
1009 }
1010 
1011 static inline int nvme_rdma_queue_sig_limit(struct nvme_rdma_queue *queue)
1012 {
1013 	int sig_limit;
1014 
1015 	/*
1016 	 * We signal completion every queue depth/2 and also handle the
1017 	 * degenerated case of a  device with queue_depth=1, where we
1018 	 * would need to signal every message.
1019 	 */
1020 	sig_limit = max(queue->queue_size / 2, 1);
1021 	return (++queue->sig_count % sig_limit) == 0;
1022 }
1023 
1024 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
1025 		struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
1026 		struct ib_send_wr *first, bool flush)
1027 {
1028 	struct ib_send_wr wr, *bad_wr;
1029 	int ret;
1030 
1031 	sge->addr   = qe->dma;
1032 	sge->length = sizeof(struct nvme_command),
1033 	sge->lkey   = queue->device->pd->local_dma_lkey;
1034 
1035 	qe->cqe.done = nvme_rdma_send_done;
1036 
1037 	wr.next       = NULL;
1038 	wr.wr_cqe     = &qe->cqe;
1039 	wr.sg_list    = sge;
1040 	wr.num_sge    = num_sge;
1041 	wr.opcode     = IB_WR_SEND;
1042 	wr.send_flags = 0;
1043 
1044 	/*
1045 	 * Unsignalled send completions are another giant desaster in the
1046 	 * IB Verbs spec:  If we don't regularly post signalled sends
1047 	 * the send queue will fill up and only a QP reset will rescue us.
1048 	 * Would have been way to obvious to handle this in hardware or
1049 	 * at least the RDMA stack..
1050 	 *
1051 	 * Always signal the flushes. The magic request used for the flush
1052 	 * sequencer is not allocated in our driver's tagset and it's
1053 	 * triggered to be freed by blk_cleanup_queue(). So we need to
1054 	 * always mark it as signaled to ensure that the "wr_cqe", which is
1055 	 * embedded in request's payload, is not freed when __ib_process_cq()
1056 	 * calls wr_cqe->done().
1057 	 */
1058 	if (nvme_rdma_queue_sig_limit(queue) || flush)
1059 		wr.send_flags |= IB_SEND_SIGNALED;
1060 
1061 	if (first)
1062 		first->next = &wr;
1063 	else
1064 		first = &wr;
1065 
1066 	ret = ib_post_send(queue->qp, first, &bad_wr);
1067 	if (ret) {
1068 		dev_err(queue->ctrl->ctrl.device,
1069 			     "%s failed with error code %d\n", __func__, ret);
1070 	}
1071 	return ret;
1072 }
1073 
1074 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
1075 		struct nvme_rdma_qe *qe)
1076 {
1077 	struct ib_recv_wr wr, *bad_wr;
1078 	struct ib_sge list;
1079 	int ret;
1080 
1081 	list.addr   = qe->dma;
1082 	list.length = sizeof(struct nvme_completion);
1083 	list.lkey   = queue->device->pd->local_dma_lkey;
1084 
1085 	qe->cqe.done = nvme_rdma_recv_done;
1086 
1087 	wr.next     = NULL;
1088 	wr.wr_cqe   = &qe->cqe;
1089 	wr.sg_list  = &list;
1090 	wr.num_sge  = 1;
1091 
1092 	ret = ib_post_recv(queue->qp, &wr, &bad_wr);
1093 	if (ret) {
1094 		dev_err(queue->ctrl->ctrl.device,
1095 			"%s failed with error code %d\n", __func__, ret);
1096 	}
1097 	return ret;
1098 }
1099 
1100 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
1101 {
1102 	u32 queue_idx = nvme_rdma_queue_idx(queue);
1103 
1104 	if (queue_idx == 0)
1105 		return queue->ctrl->admin_tag_set.tags[queue_idx];
1106 	return queue->ctrl->tag_set.tags[queue_idx - 1];
1107 }
1108 
1109 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg, int aer_idx)
1110 {
1111 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
1112 	struct nvme_rdma_queue *queue = &ctrl->queues[0];
1113 	struct ib_device *dev = queue->device->dev;
1114 	struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
1115 	struct nvme_command *cmd = sqe->data;
1116 	struct ib_sge sge;
1117 	int ret;
1118 
1119 	if (WARN_ON_ONCE(aer_idx != 0))
1120 		return;
1121 
1122 	ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
1123 
1124 	memset(cmd, 0, sizeof(*cmd));
1125 	cmd->common.opcode = nvme_admin_async_event;
1126 	cmd->common.command_id = NVME_RDMA_AQ_BLKMQ_DEPTH;
1127 	cmd->common.flags |= NVME_CMD_SGL_METABUF;
1128 	nvme_rdma_set_sg_null(cmd);
1129 
1130 	ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
1131 			DMA_TO_DEVICE);
1132 
1133 	ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL, false);
1134 	WARN_ON_ONCE(ret);
1135 }
1136 
1137 static int nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
1138 		struct nvme_completion *cqe, struct ib_wc *wc, int tag)
1139 {
1140 	struct request *rq;
1141 	struct nvme_rdma_request *req;
1142 	int ret = 0;
1143 
1144 	rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id);
1145 	if (!rq) {
1146 		dev_err(queue->ctrl->ctrl.device,
1147 			"tag 0x%x on QP %#x not found\n",
1148 			cqe->command_id, queue->qp->qp_num);
1149 		nvme_rdma_error_recovery(queue->ctrl);
1150 		return ret;
1151 	}
1152 	req = blk_mq_rq_to_pdu(rq);
1153 
1154 	if (rq->tag == tag)
1155 		ret = 1;
1156 
1157 	if ((wc->wc_flags & IB_WC_WITH_INVALIDATE) &&
1158 	    wc->ex.invalidate_rkey == req->mr->rkey)
1159 		req->mr->need_inval = false;
1160 
1161 	nvme_end_request(rq, cqe->status, cqe->result);
1162 	return ret;
1163 }
1164 
1165 static int __nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc, int tag)
1166 {
1167 	struct nvme_rdma_qe *qe =
1168 		container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1169 	struct nvme_rdma_queue *queue = cq->cq_context;
1170 	struct ib_device *ibdev = queue->device->dev;
1171 	struct nvme_completion *cqe = qe->data;
1172 	const size_t len = sizeof(struct nvme_completion);
1173 	int ret = 0;
1174 
1175 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
1176 		nvme_rdma_wr_error(cq, wc, "RECV");
1177 		return 0;
1178 	}
1179 
1180 	ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1181 	/*
1182 	 * AEN requests are special as they don't time out and can
1183 	 * survive any kind of queue freeze and often don't respond to
1184 	 * aborts.  We don't even bother to allocate a struct request
1185 	 * for them but rather special case them here.
1186 	 */
1187 	if (unlikely(nvme_rdma_queue_idx(queue) == 0 &&
1188 			cqe->command_id >= NVME_RDMA_AQ_BLKMQ_DEPTH))
1189 		nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
1190 				&cqe->result);
1191 	else
1192 		ret = nvme_rdma_process_nvme_rsp(queue, cqe, wc, tag);
1193 	ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1194 
1195 	nvme_rdma_post_recv(queue, qe);
1196 	return ret;
1197 }
1198 
1199 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1200 {
1201 	__nvme_rdma_recv_done(cq, wc, -1);
1202 }
1203 
1204 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
1205 {
1206 	int ret, i;
1207 
1208 	for (i = 0; i < queue->queue_size; i++) {
1209 		ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
1210 		if (ret)
1211 			goto out_destroy_queue_ib;
1212 	}
1213 
1214 	return 0;
1215 
1216 out_destroy_queue_ib:
1217 	nvme_rdma_destroy_queue_ib(queue);
1218 	return ret;
1219 }
1220 
1221 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
1222 		struct rdma_cm_event *ev)
1223 {
1224 	struct rdma_cm_id *cm_id = queue->cm_id;
1225 	int status = ev->status;
1226 	const char *rej_msg;
1227 	const struct nvme_rdma_cm_rej *rej_data;
1228 	u8 rej_data_len;
1229 
1230 	rej_msg = rdma_reject_msg(cm_id, status);
1231 	rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len);
1232 
1233 	if (rej_data && rej_data_len >= sizeof(u16)) {
1234 		u16 sts = le16_to_cpu(rej_data->sts);
1235 
1236 		dev_err(queue->ctrl->ctrl.device,
1237 		      "Connect rejected: status %d (%s) nvme status %d (%s).\n",
1238 		      status, rej_msg, sts, nvme_rdma_cm_msg(sts));
1239 	} else {
1240 		dev_err(queue->ctrl->ctrl.device,
1241 			"Connect rejected: status %d (%s).\n", status, rej_msg);
1242 	}
1243 
1244 	return -ECONNRESET;
1245 }
1246 
1247 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
1248 {
1249 	int ret;
1250 
1251 	ret = nvme_rdma_create_queue_ib(queue);
1252 	if (ret)
1253 		return ret;
1254 
1255 	ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS);
1256 	if (ret) {
1257 		dev_err(queue->ctrl->ctrl.device,
1258 			"rdma_resolve_route failed (%d).\n",
1259 			queue->cm_error);
1260 		goto out_destroy_queue;
1261 	}
1262 
1263 	return 0;
1264 
1265 out_destroy_queue:
1266 	nvme_rdma_destroy_queue_ib(queue);
1267 	return ret;
1268 }
1269 
1270 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
1271 {
1272 	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1273 	struct rdma_conn_param param = { };
1274 	struct nvme_rdma_cm_req priv = { };
1275 	int ret;
1276 
1277 	param.qp_num = queue->qp->qp_num;
1278 	param.flow_control = 1;
1279 
1280 	param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1281 	/* maximum retry count */
1282 	param.retry_count = 7;
1283 	param.rnr_retry_count = 7;
1284 	param.private_data = &priv;
1285 	param.private_data_len = sizeof(priv);
1286 
1287 	priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1288 	priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1289 	/*
1290 	 * set the admin queue depth to the minimum size
1291 	 * specified by the Fabrics standard.
1292 	 */
1293 	if (priv.qid == 0) {
1294 		priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH);
1295 		priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1);
1296 	} else {
1297 		/*
1298 		 * current interpretation of the fabrics spec
1299 		 * is at minimum you make hrqsize sqsize+1, or a
1300 		 * 1's based representation of sqsize.
1301 		 */
1302 		priv.hrqsize = cpu_to_le16(queue->queue_size);
1303 		priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
1304 	}
1305 
1306 	ret = rdma_connect(queue->cm_id, &param);
1307 	if (ret) {
1308 		dev_err(ctrl->ctrl.device,
1309 			"rdma_connect failed (%d).\n", ret);
1310 		goto out_destroy_queue_ib;
1311 	}
1312 
1313 	return 0;
1314 
1315 out_destroy_queue_ib:
1316 	nvme_rdma_destroy_queue_ib(queue);
1317 	return ret;
1318 }
1319 
1320 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
1321 		struct rdma_cm_event *ev)
1322 {
1323 	struct nvme_rdma_queue *queue = cm_id->context;
1324 	int cm_error = 0;
1325 
1326 	dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
1327 		rdma_event_msg(ev->event), ev->event,
1328 		ev->status, cm_id);
1329 
1330 	switch (ev->event) {
1331 	case RDMA_CM_EVENT_ADDR_RESOLVED:
1332 		cm_error = nvme_rdma_addr_resolved(queue);
1333 		break;
1334 	case RDMA_CM_EVENT_ROUTE_RESOLVED:
1335 		cm_error = nvme_rdma_route_resolved(queue);
1336 		break;
1337 	case RDMA_CM_EVENT_ESTABLISHED:
1338 		queue->cm_error = nvme_rdma_conn_established(queue);
1339 		/* complete cm_done regardless of success/failure */
1340 		complete(&queue->cm_done);
1341 		return 0;
1342 	case RDMA_CM_EVENT_REJECTED:
1343 		nvme_rdma_destroy_queue_ib(queue);
1344 		cm_error = nvme_rdma_conn_rejected(queue, ev);
1345 		break;
1346 	case RDMA_CM_EVENT_ROUTE_ERROR:
1347 	case RDMA_CM_EVENT_CONNECT_ERROR:
1348 	case RDMA_CM_EVENT_UNREACHABLE:
1349 		nvme_rdma_destroy_queue_ib(queue);
1350 	case RDMA_CM_EVENT_ADDR_ERROR:
1351 		dev_dbg(queue->ctrl->ctrl.device,
1352 			"CM error event %d\n", ev->event);
1353 		cm_error = -ECONNRESET;
1354 		break;
1355 	case RDMA_CM_EVENT_DISCONNECTED:
1356 	case RDMA_CM_EVENT_ADDR_CHANGE:
1357 	case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1358 		dev_dbg(queue->ctrl->ctrl.device,
1359 			"disconnect received - connection closed\n");
1360 		nvme_rdma_error_recovery(queue->ctrl);
1361 		break;
1362 	case RDMA_CM_EVENT_DEVICE_REMOVAL:
1363 		/* device removal is handled via the ib_client API */
1364 		break;
1365 	default:
1366 		dev_err(queue->ctrl->ctrl.device,
1367 			"Unexpected RDMA CM event (%d)\n", ev->event);
1368 		nvme_rdma_error_recovery(queue->ctrl);
1369 		break;
1370 	}
1371 
1372 	if (cm_error) {
1373 		queue->cm_error = cm_error;
1374 		complete(&queue->cm_done);
1375 	}
1376 
1377 	return 0;
1378 }
1379 
1380 static enum blk_eh_timer_return
1381 nvme_rdma_timeout(struct request *rq, bool reserved)
1382 {
1383 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1384 
1385 	/* queue error recovery */
1386 	nvme_rdma_error_recovery(req->queue->ctrl);
1387 
1388 	/* fail with DNR on cmd timeout */
1389 	nvme_req(rq)->status = NVME_SC_ABORT_REQ | NVME_SC_DNR;
1390 
1391 	return BLK_EH_HANDLED;
1392 }
1393 
1394 /*
1395  * We cannot accept any other command until the Connect command has completed.
1396  */
1397 static inline blk_status_t
1398 nvme_rdma_queue_is_ready(struct nvme_rdma_queue *queue, struct request *rq)
1399 {
1400 	if (unlikely(!test_bit(NVME_RDMA_Q_LIVE, &queue->flags))) {
1401 		struct nvme_command *cmd = nvme_req(rq)->cmd;
1402 
1403 		if (!blk_rq_is_passthrough(rq) ||
1404 		    cmd->common.opcode != nvme_fabrics_command ||
1405 		    cmd->fabrics.fctype != nvme_fabrics_type_connect) {
1406 			/*
1407 			 * reconnecting state means transport disruption, which
1408 			 * can take a long time and even might fail permanently,
1409 			 * so we can't let incoming I/O be requeued forever.
1410 			 * fail it fast to allow upper layers a chance to
1411 			 * failover.
1412 			 */
1413 			if (queue->ctrl->ctrl.state == NVME_CTRL_RECONNECTING)
1414 				return BLK_STS_IOERR;
1415 			return BLK_STS_RESOURCE; /* try again later */
1416 		}
1417 	}
1418 
1419 	return 0;
1420 }
1421 
1422 static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
1423 		const struct blk_mq_queue_data *bd)
1424 {
1425 	struct nvme_ns *ns = hctx->queue->queuedata;
1426 	struct nvme_rdma_queue *queue = hctx->driver_data;
1427 	struct request *rq = bd->rq;
1428 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1429 	struct nvme_rdma_qe *sqe = &req->sqe;
1430 	struct nvme_command *c = sqe->data;
1431 	bool flush = false;
1432 	struct ib_device *dev;
1433 	blk_status_t ret;
1434 	int err;
1435 
1436 	WARN_ON_ONCE(rq->tag < 0);
1437 
1438 	ret = nvme_rdma_queue_is_ready(queue, rq);
1439 	if (unlikely(ret))
1440 		return ret;
1441 
1442 	dev = queue->device->dev;
1443 	ib_dma_sync_single_for_cpu(dev, sqe->dma,
1444 			sizeof(struct nvme_command), DMA_TO_DEVICE);
1445 
1446 	ret = nvme_setup_cmd(ns, rq, c);
1447 	if (ret)
1448 		return ret;
1449 
1450 	blk_mq_start_request(rq);
1451 
1452 	err = nvme_rdma_map_data(queue, rq, c);
1453 	if (err < 0) {
1454 		dev_err(queue->ctrl->ctrl.device,
1455 			     "Failed to map data (%d)\n", err);
1456 		nvme_cleanup_cmd(rq);
1457 		goto err;
1458 	}
1459 
1460 	ib_dma_sync_single_for_device(dev, sqe->dma,
1461 			sizeof(struct nvme_command), DMA_TO_DEVICE);
1462 
1463 	if (req_op(rq) == REQ_OP_FLUSH)
1464 		flush = true;
1465 	err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
1466 			req->mr->need_inval ? &req->reg_wr.wr : NULL, flush);
1467 	if (err) {
1468 		nvme_rdma_unmap_data(queue, rq);
1469 		goto err;
1470 	}
1471 
1472 	return BLK_STS_OK;
1473 err:
1474 	if (err == -ENOMEM || err == -EAGAIN)
1475 		return BLK_STS_RESOURCE;
1476 	return BLK_STS_IOERR;
1477 }
1478 
1479 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
1480 {
1481 	struct nvme_rdma_queue *queue = hctx->driver_data;
1482 	struct ib_cq *cq = queue->ib_cq;
1483 	struct ib_wc wc;
1484 	int found = 0;
1485 
1486 	while (ib_poll_cq(cq, 1, &wc) > 0) {
1487 		struct ib_cqe *cqe = wc.wr_cqe;
1488 
1489 		if (cqe) {
1490 			if (cqe->done == nvme_rdma_recv_done)
1491 				found |= __nvme_rdma_recv_done(cq, &wc, tag);
1492 			else
1493 				cqe->done(cq, &wc);
1494 		}
1495 	}
1496 
1497 	return found;
1498 }
1499 
1500 static void nvme_rdma_complete_rq(struct request *rq)
1501 {
1502 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1503 
1504 	nvme_rdma_unmap_data(req->queue, rq);
1505 	nvme_complete_rq(rq);
1506 }
1507 
1508 static const struct blk_mq_ops nvme_rdma_mq_ops = {
1509 	.queue_rq	= nvme_rdma_queue_rq,
1510 	.complete	= nvme_rdma_complete_rq,
1511 	.init_request	= nvme_rdma_init_request,
1512 	.exit_request	= nvme_rdma_exit_request,
1513 	.reinit_request	= nvme_rdma_reinit_request,
1514 	.init_hctx	= nvme_rdma_init_hctx,
1515 	.poll		= nvme_rdma_poll,
1516 	.timeout	= nvme_rdma_timeout,
1517 };
1518 
1519 static const struct blk_mq_ops nvme_rdma_admin_mq_ops = {
1520 	.queue_rq	= nvme_rdma_queue_rq,
1521 	.complete	= nvme_rdma_complete_rq,
1522 	.init_request	= nvme_rdma_init_request,
1523 	.exit_request	= nvme_rdma_exit_request,
1524 	.reinit_request	= nvme_rdma_reinit_request,
1525 	.init_hctx	= nvme_rdma_init_admin_hctx,
1526 	.timeout	= nvme_rdma_timeout,
1527 };
1528 
1529 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl)
1530 {
1531 	int error;
1532 
1533 	error = nvme_rdma_init_queue(ctrl, 0, NVME_AQ_DEPTH);
1534 	if (error)
1535 		return error;
1536 
1537 	ctrl->device = ctrl->queues[0].device;
1538 
1539 	/*
1540 	 * We need a reference on the device as long as the tag_set is alive,
1541 	 * as the MRs in the request structures need a valid ib_device.
1542 	 */
1543 	error = -EINVAL;
1544 	if (!nvme_rdma_dev_get(ctrl->device))
1545 		goto out_free_queue;
1546 
1547 	ctrl->max_fr_pages = min_t(u32, NVME_RDMA_MAX_SEGMENTS,
1548 		ctrl->device->dev->attrs.max_fast_reg_page_list_len);
1549 
1550 	memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set));
1551 	ctrl->admin_tag_set.ops = &nvme_rdma_admin_mq_ops;
1552 	ctrl->admin_tag_set.queue_depth = NVME_RDMA_AQ_BLKMQ_DEPTH;
1553 	ctrl->admin_tag_set.reserved_tags = 2; /* connect + keep-alive */
1554 	ctrl->admin_tag_set.numa_node = NUMA_NO_NODE;
1555 	ctrl->admin_tag_set.cmd_size = sizeof(struct nvme_rdma_request) +
1556 		SG_CHUNK_SIZE * sizeof(struct scatterlist);
1557 	ctrl->admin_tag_set.driver_data = ctrl;
1558 	ctrl->admin_tag_set.nr_hw_queues = 1;
1559 	ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT;
1560 
1561 	error = blk_mq_alloc_tag_set(&ctrl->admin_tag_set);
1562 	if (error)
1563 		goto out_put_dev;
1564 
1565 	ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
1566 	if (IS_ERR(ctrl->ctrl.admin_q)) {
1567 		error = PTR_ERR(ctrl->ctrl.admin_q);
1568 		goto out_free_tagset;
1569 	}
1570 
1571 	error = nvmf_connect_admin_queue(&ctrl->ctrl);
1572 	if (error)
1573 		goto out_cleanup_queue;
1574 
1575 	set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[0].flags);
1576 
1577 	error = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP, &ctrl->cap);
1578 	if (error) {
1579 		dev_err(ctrl->ctrl.device,
1580 			"prop_get NVME_REG_CAP failed\n");
1581 		goto out_cleanup_queue;
1582 	}
1583 
1584 	ctrl->ctrl.sqsize =
1585 		min_t(int, NVME_CAP_MQES(ctrl->cap), ctrl->ctrl.sqsize);
1586 
1587 	error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->cap);
1588 	if (error)
1589 		goto out_cleanup_queue;
1590 
1591 	ctrl->ctrl.max_hw_sectors =
1592 		(ctrl->max_fr_pages - 1) << (PAGE_SHIFT - 9);
1593 
1594 	error = nvme_init_identify(&ctrl->ctrl);
1595 	if (error)
1596 		goto out_cleanup_queue;
1597 
1598 	error = nvme_rdma_alloc_qe(ctrl->queues[0].device->dev,
1599 			&ctrl->async_event_sqe, sizeof(struct nvme_command),
1600 			DMA_TO_DEVICE);
1601 	if (error)
1602 		goto out_cleanup_queue;
1603 
1604 	nvme_start_keep_alive(&ctrl->ctrl);
1605 
1606 	return 0;
1607 
1608 out_cleanup_queue:
1609 	blk_cleanup_queue(ctrl->ctrl.admin_q);
1610 out_free_tagset:
1611 	/* disconnect and drain the queue before freeing the tagset */
1612 	nvme_rdma_stop_queue(&ctrl->queues[0]);
1613 	blk_mq_free_tag_set(&ctrl->admin_tag_set);
1614 out_put_dev:
1615 	nvme_rdma_dev_put(ctrl->device);
1616 out_free_queue:
1617 	nvme_rdma_free_queue(&ctrl->queues[0]);
1618 	return error;
1619 }
1620 
1621 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl)
1622 {
1623 	nvme_stop_keep_alive(&ctrl->ctrl);
1624 	cancel_work_sync(&ctrl->err_work);
1625 	cancel_delayed_work_sync(&ctrl->reconnect_work);
1626 
1627 	if (ctrl->queue_count > 1) {
1628 		nvme_stop_queues(&ctrl->ctrl);
1629 		blk_mq_tagset_busy_iter(&ctrl->tag_set,
1630 					nvme_cancel_request, &ctrl->ctrl);
1631 		nvme_rdma_free_io_queues(ctrl);
1632 	}
1633 
1634 	if (test_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[0].flags))
1635 		nvme_shutdown_ctrl(&ctrl->ctrl);
1636 
1637 	blk_mq_stop_hw_queues(ctrl->ctrl.admin_q);
1638 	blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
1639 				nvme_cancel_request, &ctrl->ctrl);
1640 	nvme_rdma_destroy_admin_queue(ctrl);
1641 }
1642 
1643 static void __nvme_rdma_remove_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
1644 {
1645 	nvme_uninit_ctrl(&ctrl->ctrl);
1646 	if (shutdown)
1647 		nvme_rdma_shutdown_ctrl(ctrl);
1648 
1649 	if (ctrl->ctrl.tagset) {
1650 		blk_cleanup_queue(ctrl->ctrl.connect_q);
1651 		blk_mq_free_tag_set(&ctrl->tag_set);
1652 		nvme_rdma_dev_put(ctrl->device);
1653 	}
1654 
1655 	nvme_put_ctrl(&ctrl->ctrl);
1656 }
1657 
1658 static void nvme_rdma_del_ctrl_work(struct work_struct *work)
1659 {
1660 	struct nvme_rdma_ctrl *ctrl = container_of(work,
1661 				struct nvme_rdma_ctrl, delete_work);
1662 
1663 	__nvme_rdma_remove_ctrl(ctrl, true);
1664 }
1665 
1666 static int __nvme_rdma_del_ctrl(struct nvme_rdma_ctrl *ctrl)
1667 {
1668 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING))
1669 		return -EBUSY;
1670 
1671 	if (!queue_work(nvme_wq, &ctrl->delete_work))
1672 		return -EBUSY;
1673 
1674 	return 0;
1675 }
1676 
1677 static int nvme_rdma_del_ctrl(struct nvme_ctrl *nctrl)
1678 {
1679 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
1680 	int ret = 0;
1681 
1682 	/*
1683 	 * Keep a reference until all work is flushed since
1684 	 * __nvme_rdma_del_ctrl can free the ctrl mem
1685 	 */
1686 	if (!kref_get_unless_zero(&ctrl->ctrl.kref))
1687 		return -EBUSY;
1688 	ret = __nvme_rdma_del_ctrl(ctrl);
1689 	if (!ret)
1690 		flush_work(&ctrl->delete_work);
1691 	nvme_put_ctrl(&ctrl->ctrl);
1692 	return ret;
1693 }
1694 
1695 static void nvme_rdma_remove_ctrl_work(struct work_struct *work)
1696 {
1697 	struct nvme_rdma_ctrl *ctrl = container_of(work,
1698 				struct nvme_rdma_ctrl, delete_work);
1699 
1700 	__nvme_rdma_remove_ctrl(ctrl, false);
1701 }
1702 
1703 static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
1704 {
1705 	struct nvme_rdma_ctrl *ctrl =
1706 		container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work);
1707 	int ret;
1708 	bool changed;
1709 
1710 	nvme_rdma_shutdown_ctrl(ctrl);
1711 
1712 	ret = nvme_rdma_configure_admin_queue(ctrl);
1713 	if (ret) {
1714 		/* ctrl is already shutdown, just remove the ctrl */
1715 		INIT_WORK(&ctrl->delete_work, nvme_rdma_remove_ctrl_work);
1716 		goto del_dead_ctrl;
1717 	}
1718 
1719 	if (ctrl->queue_count > 1) {
1720 		ret = blk_mq_reinit_tagset(&ctrl->tag_set);
1721 		if (ret)
1722 			goto del_dead_ctrl;
1723 
1724 		ret = nvme_rdma_init_io_queues(ctrl);
1725 		if (ret)
1726 			goto del_dead_ctrl;
1727 
1728 		ret = nvme_rdma_connect_io_queues(ctrl);
1729 		if (ret)
1730 			goto del_dead_ctrl;
1731 	}
1732 
1733 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1734 	WARN_ON_ONCE(!changed);
1735 
1736 	if (ctrl->queue_count > 1) {
1737 		nvme_start_queues(&ctrl->ctrl);
1738 		nvme_queue_scan(&ctrl->ctrl);
1739 		nvme_queue_async_events(&ctrl->ctrl);
1740 	}
1741 
1742 	return;
1743 
1744 del_dead_ctrl:
1745 	/* Deleting this dead controller... */
1746 	dev_warn(ctrl->ctrl.device, "Removing after reset failure\n");
1747 	WARN_ON(!queue_work(nvme_wq, &ctrl->delete_work));
1748 }
1749 
1750 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
1751 	.name			= "rdma",
1752 	.module			= THIS_MODULE,
1753 	.flags			= NVME_F_FABRICS,
1754 	.reg_read32		= nvmf_reg_read32,
1755 	.reg_read64		= nvmf_reg_read64,
1756 	.reg_write32		= nvmf_reg_write32,
1757 	.free_ctrl		= nvme_rdma_free_ctrl,
1758 	.submit_async_event	= nvme_rdma_submit_async_event,
1759 	.delete_ctrl		= nvme_rdma_del_ctrl,
1760 	.get_address		= nvmf_get_address,
1761 };
1762 
1763 static int nvme_rdma_create_io_queues(struct nvme_rdma_ctrl *ctrl)
1764 {
1765 	int ret;
1766 
1767 	ret = nvme_rdma_init_io_queues(ctrl);
1768 	if (ret)
1769 		return ret;
1770 
1771 	/*
1772 	 * We need a reference on the device as long as the tag_set is alive,
1773 	 * as the MRs in the request structures need a valid ib_device.
1774 	 */
1775 	ret = -EINVAL;
1776 	if (!nvme_rdma_dev_get(ctrl->device))
1777 		goto out_free_io_queues;
1778 
1779 	memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set));
1780 	ctrl->tag_set.ops = &nvme_rdma_mq_ops;
1781 	ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size;
1782 	ctrl->tag_set.reserved_tags = 1; /* fabric connect */
1783 	ctrl->tag_set.numa_node = NUMA_NO_NODE;
1784 	ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
1785 	ctrl->tag_set.cmd_size = sizeof(struct nvme_rdma_request) +
1786 		SG_CHUNK_SIZE * sizeof(struct scatterlist);
1787 	ctrl->tag_set.driver_data = ctrl;
1788 	ctrl->tag_set.nr_hw_queues = ctrl->queue_count - 1;
1789 	ctrl->tag_set.timeout = NVME_IO_TIMEOUT;
1790 
1791 	ret = blk_mq_alloc_tag_set(&ctrl->tag_set);
1792 	if (ret)
1793 		goto out_put_dev;
1794 	ctrl->ctrl.tagset = &ctrl->tag_set;
1795 
1796 	ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
1797 	if (IS_ERR(ctrl->ctrl.connect_q)) {
1798 		ret = PTR_ERR(ctrl->ctrl.connect_q);
1799 		goto out_free_tag_set;
1800 	}
1801 
1802 	ret = nvme_rdma_connect_io_queues(ctrl);
1803 	if (ret)
1804 		goto out_cleanup_connect_q;
1805 
1806 	return 0;
1807 
1808 out_cleanup_connect_q:
1809 	blk_cleanup_queue(ctrl->ctrl.connect_q);
1810 out_free_tag_set:
1811 	blk_mq_free_tag_set(&ctrl->tag_set);
1812 out_put_dev:
1813 	nvme_rdma_dev_put(ctrl->device);
1814 out_free_io_queues:
1815 	nvme_rdma_free_io_queues(ctrl);
1816 	return ret;
1817 }
1818 
1819 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
1820 		struct nvmf_ctrl_options *opts)
1821 {
1822 	struct nvme_rdma_ctrl *ctrl;
1823 	int ret;
1824 	bool changed;
1825 	char *port;
1826 
1827 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1828 	if (!ctrl)
1829 		return ERR_PTR(-ENOMEM);
1830 	ctrl->ctrl.opts = opts;
1831 	INIT_LIST_HEAD(&ctrl->list);
1832 
1833 	if (opts->mask & NVMF_OPT_TRSVCID)
1834 		port = opts->trsvcid;
1835 	else
1836 		port = __stringify(NVME_RDMA_IP_PORT);
1837 
1838 	ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
1839 			opts->traddr, port, &ctrl->addr);
1840 	if (ret) {
1841 		pr_err("malformed address passed: %s:%s\n", opts->traddr, port);
1842 		goto out_free_ctrl;
1843 	}
1844 
1845 	if (opts->mask & NVMF_OPT_HOST_TRADDR) {
1846 		ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
1847 			opts->host_traddr, NULL, &ctrl->src_addr);
1848 		if (ret) {
1849 			pr_err("malformed src address passed: %s\n",
1850 			       opts->host_traddr);
1851 			goto out_free_ctrl;
1852 		}
1853 	}
1854 
1855 	ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
1856 				0 /* no quirks, we're perfect! */);
1857 	if (ret)
1858 		goto out_free_ctrl;
1859 
1860 	INIT_DELAYED_WORK(&ctrl->reconnect_work,
1861 			nvme_rdma_reconnect_ctrl_work);
1862 	INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
1863 	INIT_WORK(&ctrl->delete_work, nvme_rdma_del_ctrl_work);
1864 	INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work);
1865 
1866 	ctrl->queue_count = opts->nr_io_queues + 1; /* +1 for admin queue */
1867 	ctrl->ctrl.sqsize = opts->queue_size - 1;
1868 	ctrl->ctrl.kato = opts->kato;
1869 
1870 	ret = -ENOMEM;
1871 	ctrl->queues = kcalloc(ctrl->queue_count, sizeof(*ctrl->queues),
1872 				GFP_KERNEL);
1873 	if (!ctrl->queues)
1874 		goto out_uninit_ctrl;
1875 
1876 	ret = nvme_rdma_configure_admin_queue(ctrl);
1877 	if (ret)
1878 		goto out_kfree_queues;
1879 
1880 	/* sanity check icdoff */
1881 	if (ctrl->ctrl.icdoff) {
1882 		dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
1883 		ret = -EINVAL;
1884 		goto out_remove_admin_queue;
1885 	}
1886 
1887 	/* sanity check keyed sgls */
1888 	if (!(ctrl->ctrl.sgls & (1 << 20))) {
1889 		dev_err(ctrl->ctrl.device, "Mandatory keyed sgls are not support\n");
1890 		ret = -EINVAL;
1891 		goto out_remove_admin_queue;
1892 	}
1893 
1894 	if (opts->queue_size > ctrl->ctrl.maxcmd) {
1895 		/* warn if maxcmd is lower than queue_size */
1896 		dev_warn(ctrl->ctrl.device,
1897 			"queue_size %zu > ctrl maxcmd %u, clamping down\n",
1898 			opts->queue_size, ctrl->ctrl.maxcmd);
1899 		opts->queue_size = ctrl->ctrl.maxcmd;
1900 	}
1901 
1902 	if (opts->queue_size > ctrl->ctrl.sqsize + 1) {
1903 		/* warn if sqsize is lower than queue_size */
1904 		dev_warn(ctrl->ctrl.device,
1905 			"queue_size %zu > ctrl sqsize %u, clamping down\n",
1906 			opts->queue_size, ctrl->ctrl.sqsize + 1);
1907 		opts->queue_size = ctrl->ctrl.sqsize + 1;
1908 	}
1909 
1910 	if (opts->nr_io_queues) {
1911 		ret = nvme_rdma_create_io_queues(ctrl);
1912 		if (ret)
1913 			goto out_remove_admin_queue;
1914 	}
1915 
1916 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1917 	WARN_ON_ONCE(!changed);
1918 
1919 	dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n",
1920 		ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
1921 
1922 	kref_get(&ctrl->ctrl.kref);
1923 
1924 	mutex_lock(&nvme_rdma_ctrl_mutex);
1925 	list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
1926 	mutex_unlock(&nvme_rdma_ctrl_mutex);
1927 
1928 	if (opts->nr_io_queues) {
1929 		nvme_queue_scan(&ctrl->ctrl);
1930 		nvme_queue_async_events(&ctrl->ctrl);
1931 	}
1932 
1933 	return &ctrl->ctrl;
1934 
1935 out_remove_admin_queue:
1936 	nvme_stop_keep_alive(&ctrl->ctrl);
1937 	nvme_rdma_destroy_admin_queue(ctrl);
1938 out_kfree_queues:
1939 	kfree(ctrl->queues);
1940 out_uninit_ctrl:
1941 	nvme_uninit_ctrl(&ctrl->ctrl);
1942 	nvme_put_ctrl(&ctrl->ctrl);
1943 	if (ret > 0)
1944 		ret = -EIO;
1945 	return ERR_PTR(ret);
1946 out_free_ctrl:
1947 	kfree(ctrl);
1948 	return ERR_PTR(ret);
1949 }
1950 
1951 static struct nvmf_transport_ops nvme_rdma_transport = {
1952 	.name		= "rdma",
1953 	.required_opts	= NVMF_OPT_TRADDR,
1954 	.allowed_opts	= NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
1955 			  NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO,
1956 	.create_ctrl	= nvme_rdma_create_ctrl,
1957 };
1958 
1959 static void nvme_rdma_add_one(struct ib_device *ib_device)
1960 {
1961 }
1962 
1963 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
1964 {
1965 	struct nvme_rdma_ctrl *ctrl;
1966 
1967 	/* Delete all controllers using this device */
1968 	mutex_lock(&nvme_rdma_ctrl_mutex);
1969 	list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
1970 		if (ctrl->device->dev != ib_device)
1971 			continue;
1972 		dev_info(ctrl->ctrl.device,
1973 			"Removing ctrl: NQN \"%s\", addr %pISp\n",
1974 			ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
1975 		__nvme_rdma_del_ctrl(ctrl);
1976 	}
1977 	mutex_unlock(&nvme_rdma_ctrl_mutex);
1978 
1979 	flush_workqueue(nvme_wq);
1980 }
1981 
1982 static struct ib_client nvme_rdma_ib_client = {
1983 	.name   = "nvme_rdma",
1984 	.add = nvme_rdma_add_one,
1985 	.remove = nvme_rdma_remove_one
1986 };
1987 
1988 static int __init nvme_rdma_init_module(void)
1989 {
1990 	int ret;
1991 
1992 	ret = ib_register_client(&nvme_rdma_ib_client);
1993 	if (ret)
1994 		return ret;
1995 
1996 	ret = nvmf_register_transport(&nvme_rdma_transport);
1997 	if (ret)
1998 		goto err_unreg_client;
1999 
2000 	return 0;
2001 
2002 err_unreg_client:
2003 	ib_unregister_client(&nvme_rdma_ib_client);
2004 	return ret;
2005 }
2006 
2007 static void __exit nvme_rdma_cleanup_module(void)
2008 {
2009 	nvmf_unregister_transport(&nvme_rdma_transport);
2010 	ib_unregister_client(&nvme_rdma_ib_client);
2011 }
2012 
2013 module_init(nvme_rdma_init_module);
2014 module_exit(nvme_rdma_cleanup_module);
2015 
2016 MODULE_LICENSE("GPL v2");
2017