xref: /linux/drivers/nvme/host/rdma.c (revision 1f2367a39f17bd553a75e179a747f9b257bc9478)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics RDMA host code.
4  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <rdma/mr_pool.h>
11 #include <linux/err.h>
12 #include <linux/string.h>
13 #include <linux/atomic.h>
14 #include <linux/blk-mq.h>
15 #include <linux/blk-mq-rdma.h>
16 #include <linux/types.h>
17 #include <linux/list.h>
18 #include <linux/mutex.h>
19 #include <linux/scatterlist.h>
20 #include <linux/nvme.h>
21 #include <asm/unaligned.h>
22 
23 #include <rdma/ib_verbs.h>
24 #include <rdma/rdma_cm.h>
25 #include <linux/nvme-rdma.h>
26 
27 #include "nvme.h"
28 #include "fabrics.h"
29 
30 
31 #define NVME_RDMA_CONNECT_TIMEOUT_MS	3000		/* 3 second */
32 
33 #define NVME_RDMA_MAX_SEGMENTS		256
34 
35 #define NVME_RDMA_MAX_INLINE_SEGMENTS	4
36 
37 struct nvme_rdma_device {
38 	struct ib_device	*dev;
39 	struct ib_pd		*pd;
40 	struct kref		ref;
41 	struct list_head	entry;
42 	unsigned int		num_inline_segments;
43 };
44 
45 struct nvme_rdma_qe {
46 	struct ib_cqe		cqe;
47 	void			*data;
48 	u64			dma;
49 };
50 
51 struct nvme_rdma_queue;
52 struct nvme_rdma_request {
53 	struct nvme_request	req;
54 	struct ib_mr		*mr;
55 	struct nvme_rdma_qe	sqe;
56 	union nvme_result	result;
57 	__le16			status;
58 	refcount_t		ref;
59 	struct ib_sge		sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
60 	u32			num_sge;
61 	int			nents;
62 	struct ib_reg_wr	reg_wr;
63 	struct ib_cqe		reg_cqe;
64 	struct nvme_rdma_queue  *queue;
65 	struct sg_table		sg_table;
66 	struct scatterlist	first_sgl[];
67 };
68 
69 enum nvme_rdma_queue_flags {
70 	NVME_RDMA_Q_ALLOCATED		= 0,
71 	NVME_RDMA_Q_LIVE		= 1,
72 	NVME_RDMA_Q_TR_READY		= 2,
73 };
74 
75 struct nvme_rdma_queue {
76 	struct nvme_rdma_qe	*rsp_ring;
77 	int			queue_size;
78 	size_t			cmnd_capsule_len;
79 	struct nvme_rdma_ctrl	*ctrl;
80 	struct nvme_rdma_device	*device;
81 	struct ib_cq		*ib_cq;
82 	struct ib_qp		*qp;
83 
84 	unsigned long		flags;
85 	struct rdma_cm_id	*cm_id;
86 	int			cm_error;
87 	struct completion	cm_done;
88 };
89 
90 struct nvme_rdma_ctrl {
91 	/* read only in the hot path */
92 	struct nvme_rdma_queue	*queues;
93 
94 	/* other member variables */
95 	struct blk_mq_tag_set	tag_set;
96 	struct work_struct	err_work;
97 
98 	struct nvme_rdma_qe	async_event_sqe;
99 
100 	struct delayed_work	reconnect_work;
101 
102 	struct list_head	list;
103 
104 	struct blk_mq_tag_set	admin_tag_set;
105 	struct nvme_rdma_device	*device;
106 
107 	u32			max_fr_pages;
108 
109 	struct sockaddr_storage addr;
110 	struct sockaddr_storage src_addr;
111 
112 	struct nvme_ctrl	ctrl;
113 	bool			use_inline_data;
114 	u32			io_queues[HCTX_MAX_TYPES];
115 };
116 
117 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
118 {
119 	return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
120 }
121 
122 static LIST_HEAD(device_list);
123 static DEFINE_MUTEX(device_list_mutex);
124 
125 static LIST_HEAD(nvme_rdma_ctrl_list);
126 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
127 
128 /*
129  * Disabling this option makes small I/O goes faster, but is fundamentally
130  * unsafe.  With it turned off we will have to register a global rkey that
131  * allows read and write access to all physical memory.
132  */
133 static bool register_always = true;
134 module_param(register_always, bool, 0444);
135 MODULE_PARM_DESC(register_always,
136 	 "Use memory registration even for contiguous memory regions");
137 
138 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
139 		struct rdma_cm_event *event);
140 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
141 
142 static const struct blk_mq_ops nvme_rdma_mq_ops;
143 static const struct blk_mq_ops nvme_rdma_admin_mq_ops;
144 
145 /* XXX: really should move to a generic header sooner or later.. */
146 static inline void put_unaligned_le24(u32 val, u8 *p)
147 {
148 	*p++ = val;
149 	*p++ = val >> 8;
150 	*p++ = val >> 16;
151 }
152 
153 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
154 {
155 	return queue - queue->ctrl->queues;
156 }
157 
158 static bool nvme_rdma_poll_queue(struct nvme_rdma_queue *queue)
159 {
160 	return nvme_rdma_queue_idx(queue) >
161 		queue->ctrl->io_queues[HCTX_TYPE_DEFAULT] +
162 		queue->ctrl->io_queues[HCTX_TYPE_READ];
163 }
164 
165 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
166 {
167 	return queue->cmnd_capsule_len - sizeof(struct nvme_command);
168 }
169 
170 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
171 		size_t capsule_size, enum dma_data_direction dir)
172 {
173 	ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
174 	kfree(qe->data);
175 }
176 
177 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
178 		size_t capsule_size, enum dma_data_direction dir)
179 {
180 	qe->data = kzalloc(capsule_size, GFP_KERNEL);
181 	if (!qe->data)
182 		return -ENOMEM;
183 
184 	qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
185 	if (ib_dma_mapping_error(ibdev, qe->dma)) {
186 		kfree(qe->data);
187 		qe->data = NULL;
188 		return -ENOMEM;
189 	}
190 
191 	return 0;
192 }
193 
194 static void nvme_rdma_free_ring(struct ib_device *ibdev,
195 		struct nvme_rdma_qe *ring, size_t ib_queue_size,
196 		size_t capsule_size, enum dma_data_direction dir)
197 {
198 	int i;
199 
200 	for (i = 0; i < ib_queue_size; i++)
201 		nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
202 	kfree(ring);
203 }
204 
205 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
206 		size_t ib_queue_size, size_t capsule_size,
207 		enum dma_data_direction dir)
208 {
209 	struct nvme_rdma_qe *ring;
210 	int i;
211 
212 	ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
213 	if (!ring)
214 		return NULL;
215 
216 	for (i = 0; i < ib_queue_size; i++) {
217 		if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
218 			goto out_free_ring;
219 	}
220 
221 	return ring;
222 
223 out_free_ring:
224 	nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
225 	return NULL;
226 }
227 
228 static void nvme_rdma_qp_event(struct ib_event *event, void *context)
229 {
230 	pr_debug("QP event %s (%d)\n",
231 		 ib_event_msg(event->event), event->event);
232 
233 }
234 
235 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
236 {
237 	int ret;
238 
239 	ret = wait_for_completion_interruptible_timeout(&queue->cm_done,
240 			msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1);
241 	if (ret < 0)
242 		return ret;
243 	if (ret == 0)
244 		return -ETIMEDOUT;
245 	WARN_ON_ONCE(queue->cm_error > 0);
246 	return queue->cm_error;
247 }
248 
249 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
250 {
251 	struct nvme_rdma_device *dev = queue->device;
252 	struct ib_qp_init_attr init_attr;
253 	int ret;
254 
255 	memset(&init_attr, 0, sizeof(init_attr));
256 	init_attr.event_handler = nvme_rdma_qp_event;
257 	/* +1 for drain */
258 	init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
259 	/* +1 for drain */
260 	init_attr.cap.max_recv_wr = queue->queue_size + 1;
261 	init_attr.cap.max_recv_sge = 1;
262 	init_attr.cap.max_send_sge = 1 + dev->num_inline_segments;
263 	init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
264 	init_attr.qp_type = IB_QPT_RC;
265 	init_attr.send_cq = queue->ib_cq;
266 	init_attr.recv_cq = queue->ib_cq;
267 
268 	ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
269 
270 	queue->qp = queue->cm_id->qp;
271 	return ret;
272 }
273 
274 static void nvme_rdma_exit_request(struct blk_mq_tag_set *set,
275 		struct request *rq, unsigned int hctx_idx)
276 {
277 	struct nvme_rdma_ctrl *ctrl = set->driver_data;
278 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
279 	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
280 	struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
281 	struct nvme_rdma_device *dev = queue->device;
282 
283 	nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
284 			DMA_TO_DEVICE);
285 }
286 
287 static int nvme_rdma_init_request(struct blk_mq_tag_set *set,
288 		struct request *rq, unsigned int hctx_idx,
289 		unsigned int numa_node)
290 {
291 	struct nvme_rdma_ctrl *ctrl = set->driver_data;
292 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
293 	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
294 	struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
295 	struct nvme_rdma_device *dev = queue->device;
296 	struct ib_device *ibdev = dev->dev;
297 	int ret;
298 
299 	nvme_req(rq)->ctrl = &ctrl->ctrl;
300 	ret = nvme_rdma_alloc_qe(ibdev, &req->sqe, sizeof(struct nvme_command),
301 			DMA_TO_DEVICE);
302 	if (ret)
303 		return ret;
304 
305 	req->queue = queue;
306 
307 	return 0;
308 }
309 
310 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
311 		unsigned int hctx_idx)
312 {
313 	struct nvme_rdma_ctrl *ctrl = data;
314 	struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
315 
316 	BUG_ON(hctx_idx >= ctrl->ctrl.queue_count);
317 
318 	hctx->driver_data = queue;
319 	return 0;
320 }
321 
322 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
323 		unsigned int hctx_idx)
324 {
325 	struct nvme_rdma_ctrl *ctrl = data;
326 	struct nvme_rdma_queue *queue = &ctrl->queues[0];
327 
328 	BUG_ON(hctx_idx != 0);
329 
330 	hctx->driver_data = queue;
331 	return 0;
332 }
333 
334 static void nvme_rdma_free_dev(struct kref *ref)
335 {
336 	struct nvme_rdma_device *ndev =
337 		container_of(ref, struct nvme_rdma_device, ref);
338 
339 	mutex_lock(&device_list_mutex);
340 	list_del(&ndev->entry);
341 	mutex_unlock(&device_list_mutex);
342 
343 	ib_dealloc_pd(ndev->pd);
344 	kfree(ndev);
345 }
346 
347 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
348 {
349 	kref_put(&dev->ref, nvme_rdma_free_dev);
350 }
351 
352 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
353 {
354 	return kref_get_unless_zero(&dev->ref);
355 }
356 
357 static struct nvme_rdma_device *
358 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
359 {
360 	struct nvme_rdma_device *ndev;
361 
362 	mutex_lock(&device_list_mutex);
363 	list_for_each_entry(ndev, &device_list, entry) {
364 		if (ndev->dev->node_guid == cm_id->device->node_guid &&
365 		    nvme_rdma_dev_get(ndev))
366 			goto out_unlock;
367 	}
368 
369 	ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
370 	if (!ndev)
371 		goto out_err;
372 
373 	ndev->dev = cm_id->device;
374 	kref_init(&ndev->ref);
375 
376 	ndev->pd = ib_alloc_pd(ndev->dev,
377 		register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
378 	if (IS_ERR(ndev->pd))
379 		goto out_free_dev;
380 
381 	if (!(ndev->dev->attrs.device_cap_flags &
382 	      IB_DEVICE_MEM_MGT_EXTENSIONS)) {
383 		dev_err(&ndev->dev->dev,
384 			"Memory registrations not supported.\n");
385 		goto out_free_pd;
386 	}
387 
388 	ndev->num_inline_segments = min(NVME_RDMA_MAX_INLINE_SEGMENTS,
389 					ndev->dev->attrs.max_send_sge - 1);
390 	list_add(&ndev->entry, &device_list);
391 out_unlock:
392 	mutex_unlock(&device_list_mutex);
393 	return ndev;
394 
395 out_free_pd:
396 	ib_dealloc_pd(ndev->pd);
397 out_free_dev:
398 	kfree(ndev);
399 out_err:
400 	mutex_unlock(&device_list_mutex);
401 	return NULL;
402 }
403 
404 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
405 {
406 	struct nvme_rdma_device *dev;
407 	struct ib_device *ibdev;
408 
409 	if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags))
410 		return;
411 
412 	dev = queue->device;
413 	ibdev = dev->dev;
414 
415 	ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
416 
417 	/*
418 	 * The cm_id object might have been destroyed during RDMA connection
419 	 * establishment error flow to avoid getting other cma events, thus
420 	 * the destruction of the QP shouldn't use rdma_cm API.
421 	 */
422 	ib_destroy_qp(queue->qp);
423 	ib_free_cq(queue->ib_cq);
424 
425 	nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
426 			sizeof(struct nvme_completion), DMA_FROM_DEVICE);
427 
428 	nvme_rdma_dev_put(dev);
429 }
430 
431 static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev)
432 {
433 	return min_t(u32, NVME_RDMA_MAX_SEGMENTS,
434 		     ibdev->attrs.max_fast_reg_page_list_len);
435 }
436 
437 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue)
438 {
439 	struct ib_device *ibdev;
440 	const int send_wr_factor = 3;			/* MR, SEND, INV */
441 	const int cq_factor = send_wr_factor + 1;	/* + RECV */
442 	int comp_vector, idx = nvme_rdma_queue_idx(queue);
443 	enum ib_poll_context poll_ctx;
444 	int ret;
445 
446 	queue->device = nvme_rdma_find_get_device(queue->cm_id);
447 	if (!queue->device) {
448 		dev_err(queue->cm_id->device->dev.parent,
449 			"no client data found!\n");
450 		return -ECONNREFUSED;
451 	}
452 	ibdev = queue->device->dev;
453 
454 	/*
455 	 * Spread I/O queues completion vectors according their queue index.
456 	 * Admin queues can always go on completion vector 0.
457 	 */
458 	comp_vector = idx == 0 ? idx : idx - 1;
459 
460 	/* Polling queues need direct cq polling context */
461 	if (nvme_rdma_poll_queue(queue))
462 		poll_ctx = IB_POLL_DIRECT;
463 	else
464 		poll_ctx = IB_POLL_SOFTIRQ;
465 
466 	/* +1 for ib_stop_cq */
467 	queue->ib_cq = ib_alloc_cq(ibdev, queue,
468 				cq_factor * queue->queue_size + 1,
469 				comp_vector, poll_ctx);
470 	if (IS_ERR(queue->ib_cq)) {
471 		ret = PTR_ERR(queue->ib_cq);
472 		goto out_put_dev;
473 	}
474 
475 	ret = nvme_rdma_create_qp(queue, send_wr_factor);
476 	if (ret)
477 		goto out_destroy_ib_cq;
478 
479 	queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
480 			sizeof(struct nvme_completion), DMA_FROM_DEVICE);
481 	if (!queue->rsp_ring) {
482 		ret = -ENOMEM;
483 		goto out_destroy_qp;
484 	}
485 
486 	ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs,
487 			      queue->queue_size,
488 			      IB_MR_TYPE_MEM_REG,
489 			      nvme_rdma_get_max_fr_pages(ibdev));
490 	if (ret) {
491 		dev_err(queue->ctrl->ctrl.device,
492 			"failed to initialize MR pool sized %d for QID %d\n",
493 			queue->queue_size, idx);
494 		goto out_destroy_ring;
495 	}
496 
497 	set_bit(NVME_RDMA_Q_TR_READY, &queue->flags);
498 
499 	return 0;
500 
501 out_destroy_ring:
502 	nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
503 			    sizeof(struct nvme_completion), DMA_FROM_DEVICE);
504 out_destroy_qp:
505 	rdma_destroy_qp(queue->cm_id);
506 out_destroy_ib_cq:
507 	ib_free_cq(queue->ib_cq);
508 out_put_dev:
509 	nvme_rdma_dev_put(queue->device);
510 	return ret;
511 }
512 
513 static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl,
514 		int idx, size_t queue_size)
515 {
516 	struct nvme_rdma_queue *queue;
517 	struct sockaddr *src_addr = NULL;
518 	int ret;
519 
520 	queue = &ctrl->queues[idx];
521 	queue->ctrl = ctrl;
522 	init_completion(&queue->cm_done);
523 
524 	if (idx > 0)
525 		queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
526 	else
527 		queue->cmnd_capsule_len = sizeof(struct nvme_command);
528 
529 	queue->queue_size = queue_size;
530 
531 	queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
532 			RDMA_PS_TCP, IB_QPT_RC);
533 	if (IS_ERR(queue->cm_id)) {
534 		dev_info(ctrl->ctrl.device,
535 			"failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
536 		return PTR_ERR(queue->cm_id);
537 	}
538 
539 	if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
540 		src_addr = (struct sockaddr *)&ctrl->src_addr;
541 
542 	queue->cm_error = -ETIMEDOUT;
543 	ret = rdma_resolve_addr(queue->cm_id, src_addr,
544 			(struct sockaddr *)&ctrl->addr,
545 			NVME_RDMA_CONNECT_TIMEOUT_MS);
546 	if (ret) {
547 		dev_info(ctrl->ctrl.device,
548 			"rdma_resolve_addr failed (%d).\n", ret);
549 		goto out_destroy_cm_id;
550 	}
551 
552 	ret = nvme_rdma_wait_for_cm(queue);
553 	if (ret) {
554 		dev_info(ctrl->ctrl.device,
555 			"rdma connection establishment failed (%d)\n", ret);
556 		goto out_destroy_cm_id;
557 	}
558 
559 	set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags);
560 
561 	return 0;
562 
563 out_destroy_cm_id:
564 	rdma_destroy_id(queue->cm_id);
565 	nvme_rdma_destroy_queue_ib(queue);
566 	return ret;
567 }
568 
569 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
570 {
571 	if (!test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags))
572 		return;
573 
574 	rdma_disconnect(queue->cm_id);
575 	ib_drain_qp(queue->qp);
576 }
577 
578 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
579 {
580 	if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
581 		return;
582 
583 	nvme_rdma_destroy_queue_ib(queue);
584 	rdma_destroy_id(queue->cm_id);
585 }
586 
587 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
588 {
589 	int i;
590 
591 	for (i = 1; i < ctrl->ctrl.queue_count; i++)
592 		nvme_rdma_free_queue(&ctrl->queues[i]);
593 }
594 
595 static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl)
596 {
597 	int i;
598 
599 	for (i = 1; i < ctrl->ctrl.queue_count; i++)
600 		nvme_rdma_stop_queue(&ctrl->queues[i]);
601 }
602 
603 static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx)
604 {
605 	struct nvme_rdma_queue *queue = &ctrl->queues[idx];
606 	bool poll = nvme_rdma_poll_queue(queue);
607 	int ret;
608 
609 	if (idx)
610 		ret = nvmf_connect_io_queue(&ctrl->ctrl, idx, poll);
611 	else
612 		ret = nvmf_connect_admin_queue(&ctrl->ctrl);
613 
614 	if (!ret)
615 		set_bit(NVME_RDMA_Q_LIVE, &queue->flags);
616 	else
617 		dev_info(ctrl->ctrl.device,
618 			"failed to connect queue: %d ret=%d\n", idx, ret);
619 	return ret;
620 }
621 
622 static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl)
623 {
624 	int i, ret = 0;
625 
626 	for (i = 1; i < ctrl->ctrl.queue_count; i++) {
627 		ret = nvme_rdma_start_queue(ctrl, i);
628 		if (ret)
629 			goto out_stop_queues;
630 	}
631 
632 	return 0;
633 
634 out_stop_queues:
635 	for (i--; i >= 1; i--)
636 		nvme_rdma_stop_queue(&ctrl->queues[i]);
637 	return ret;
638 }
639 
640 static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl)
641 {
642 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
643 	struct ib_device *ibdev = ctrl->device->dev;
644 	unsigned int nr_io_queues;
645 	int i, ret;
646 
647 	nr_io_queues = min(opts->nr_io_queues, num_online_cpus());
648 
649 	/*
650 	 * we map queues according to the device irq vectors for
651 	 * optimal locality so we don't need more queues than
652 	 * completion vectors.
653 	 */
654 	nr_io_queues = min_t(unsigned int, nr_io_queues,
655 				ibdev->num_comp_vectors);
656 
657 	if (opts->nr_write_queues) {
658 		ctrl->io_queues[HCTX_TYPE_DEFAULT] =
659 				min(opts->nr_write_queues, nr_io_queues);
660 		nr_io_queues += ctrl->io_queues[HCTX_TYPE_DEFAULT];
661 	} else {
662 		ctrl->io_queues[HCTX_TYPE_DEFAULT] = nr_io_queues;
663 	}
664 
665 	ctrl->io_queues[HCTX_TYPE_READ] = nr_io_queues;
666 
667 	if (opts->nr_poll_queues) {
668 		ctrl->io_queues[HCTX_TYPE_POLL] =
669 			min(opts->nr_poll_queues, num_online_cpus());
670 		nr_io_queues += ctrl->io_queues[HCTX_TYPE_POLL];
671 	}
672 
673 	ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
674 	if (ret)
675 		return ret;
676 
677 	ctrl->ctrl.queue_count = nr_io_queues + 1;
678 	if (ctrl->ctrl.queue_count < 2)
679 		return 0;
680 
681 	dev_info(ctrl->ctrl.device,
682 		"creating %d I/O queues.\n", nr_io_queues);
683 
684 	for (i = 1; i < ctrl->ctrl.queue_count; i++) {
685 		ret = nvme_rdma_alloc_queue(ctrl, i,
686 				ctrl->ctrl.sqsize + 1);
687 		if (ret)
688 			goto out_free_queues;
689 	}
690 
691 	return 0;
692 
693 out_free_queues:
694 	for (i--; i >= 1; i--)
695 		nvme_rdma_free_queue(&ctrl->queues[i]);
696 
697 	return ret;
698 }
699 
700 static void nvme_rdma_free_tagset(struct nvme_ctrl *nctrl,
701 		struct blk_mq_tag_set *set)
702 {
703 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
704 
705 	blk_mq_free_tag_set(set);
706 	nvme_rdma_dev_put(ctrl->device);
707 }
708 
709 static struct blk_mq_tag_set *nvme_rdma_alloc_tagset(struct nvme_ctrl *nctrl,
710 		bool admin)
711 {
712 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
713 	struct blk_mq_tag_set *set;
714 	int ret;
715 
716 	if (admin) {
717 		set = &ctrl->admin_tag_set;
718 		memset(set, 0, sizeof(*set));
719 		set->ops = &nvme_rdma_admin_mq_ops;
720 		set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
721 		set->reserved_tags = 2; /* connect + keep-alive */
722 		set->numa_node = nctrl->numa_node;
723 		set->cmd_size = sizeof(struct nvme_rdma_request) +
724 			SG_CHUNK_SIZE * sizeof(struct scatterlist);
725 		set->driver_data = ctrl;
726 		set->nr_hw_queues = 1;
727 		set->timeout = ADMIN_TIMEOUT;
728 		set->flags = BLK_MQ_F_NO_SCHED;
729 	} else {
730 		set = &ctrl->tag_set;
731 		memset(set, 0, sizeof(*set));
732 		set->ops = &nvme_rdma_mq_ops;
733 		set->queue_depth = nctrl->sqsize + 1;
734 		set->reserved_tags = 1; /* fabric connect */
735 		set->numa_node = nctrl->numa_node;
736 		set->flags = BLK_MQ_F_SHOULD_MERGE;
737 		set->cmd_size = sizeof(struct nvme_rdma_request) +
738 			SG_CHUNK_SIZE * sizeof(struct scatterlist);
739 		set->driver_data = ctrl;
740 		set->nr_hw_queues = nctrl->queue_count - 1;
741 		set->timeout = NVME_IO_TIMEOUT;
742 		set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2;
743 	}
744 
745 	ret = blk_mq_alloc_tag_set(set);
746 	if (ret)
747 		goto out;
748 
749 	/*
750 	 * We need a reference on the device as long as the tag_set is alive,
751 	 * as the MRs in the request structures need a valid ib_device.
752 	 */
753 	ret = nvme_rdma_dev_get(ctrl->device);
754 	if (!ret) {
755 		ret = -EINVAL;
756 		goto out_free_tagset;
757 	}
758 
759 	return set;
760 
761 out_free_tagset:
762 	blk_mq_free_tag_set(set);
763 out:
764 	return ERR_PTR(ret);
765 }
766 
767 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl,
768 		bool remove)
769 {
770 	if (remove) {
771 		blk_cleanup_queue(ctrl->ctrl.admin_q);
772 		nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.admin_tagset);
773 	}
774 	if (ctrl->async_event_sqe.data) {
775 		nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
776 				sizeof(struct nvme_command), DMA_TO_DEVICE);
777 		ctrl->async_event_sqe.data = NULL;
778 	}
779 	nvme_rdma_free_queue(&ctrl->queues[0]);
780 }
781 
782 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl,
783 		bool new)
784 {
785 	int error;
786 
787 	error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
788 	if (error)
789 		return error;
790 
791 	ctrl->device = ctrl->queues[0].device;
792 	ctrl->ctrl.numa_node = dev_to_node(ctrl->device->dev->dma_device);
793 
794 	ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev);
795 
796 	error = nvme_rdma_alloc_qe(ctrl->device->dev, &ctrl->async_event_sqe,
797 			sizeof(struct nvme_command), DMA_TO_DEVICE);
798 	if (error)
799 		goto out_free_queue;
800 
801 	if (new) {
802 		ctrl->ctrl.admin_tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, true);
803 		if (IS_ERR(ctrl->ctrl.admin_tagset)) {
804 			error = PTR_ERR(ctrl->ctrl.admin_tagset);
805 			goto out_free_async_qe;
806 		}
807 
808 		ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
809 		if (IS_ERR(ctrl->ctrl.admin_q)) {
810 			error = PTR_ERR(ctrl->ctrl.admin_q);
811 			goto out_free_tagset;
812 		}
813 	}
814 
815 	error = nvme_rdma_start_queue(ctrl, 0);
816 	if (error)
817 		goto out_cleanup_queue;
818 
819 	error = ctrl->ctrl.ops->reg_read64(&ctrl->ctrl, NVME_REG_CAP,
820 			&ctrl->ctrl.cap);
821 	if (error) {
822 		dev_err(ctrl->ctrl.device,
823 			"prop_get NVME_REG_CAP failed\n");
824 		goto out_stop_queue;
825 	}
826 
827 	ctrl->ctrl.sqsize =
828 		min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap), ctrl->ctrl.sqsize);
829 
830 	error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
831 	if (error)
832 		goto out_stop_queue;
833 
834 	ctrl->ctrl.max_hw_sectors =
835 		(ctrl->max_fr_pages - 1) << (ilog2(SZ_4K) - 9);
836 
837 	error = nvme_init_identify(&ctrl->ctrl);
838 	if (error)
839 		goto out_stop_queue;
840 
841 	return 0;
842 
843 out_stop_queue:
844 	nvme_rdma_stop_queue(&ctrl->queues[0]);
845 out_cleanup_queue:
846 	if (new)
847 		blk_cleanup_queue(ctrl->ctrl.admin_q);
848 out_free_tagset:
849 	if (new)
850 		nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.admin_tagset);
851 out_free_async_qe:
852 	nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
853 		sizeof(struct nvme_command), DMA_TO_DEVICE);
854 	ctrl->async_event_sqe.data = NULL;
855 out_free_queue:
856 	nvme_rdma_free_queue(&ctrl->queues[0]);
857 	return error;
858 }
859 
860 static void nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl *ctrl,
861 		bool remove)
862 {
863 	if (remove) {
864 		blk_cleanup_queue(ctrl->ctrl.connect_q);
865 		nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.tagset);
866 	}
867 	nvme_rdma_free_io_queues(ctrl);
868 }
869 
870 static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new)
871 {
872 	int ret;
873 
874 	ret = nvme_rdma_alloc_io_queues(ctrl);
875 	if (ret)
876 		return ret;
877 
878 	if (new) {
879 		ctrl->ctrl.tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, false);
880 		if (IS_ERR(ctrl->ctrl.tagset)) {
881 			ret = PTR_ERR(ctrl->ctrl.tagset);
882 			goto out_free_io_queues;
883 		}
884 
885 		ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
886 		if (IS_ERR(ctrl->ctrl.connect_q)) {
887 			ret = PTR_ERR(ctrl->ctrl.connect_q);
888 			goto out_free_tag_set;
889 		}
890 	} else {
891 		blk_mq_update_nr_hw_queues(&ctrl->tag_set,
892 			ctrl->ctrl.queue_count - 1);
893 	}
894 
895 	ret = nvme_rdma_start_io_queues(ctrl);
896 	if (ret)
897 		goto out_cleanup_connect_q;
898 
899 	return 0;
900 
901 out_cleanup_connect_q:
902 	if (new)
903 		blk_cleanup_queue(ctrl->ctrl.connect_q);
904 out_free_tag_set:
905 	if (new)
906 		nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.tagset);
907 out_free_io_queues:
908 	nvme_rdma_free_io_queues(ctrl);
909 	return ret;
910 }
911 
912 static void nvme_rdma_teardown_admin_queue(struct nvme_rdma_ctrl *ctrl,
913 		bool remove)
914 {
915 	blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
916 	nvme_rdma_stop_queue(&ctrl->queues[0]);
917 	blk_mq_tagset_busy_iter(&ctrl->admin_tag_set, nvme_cancel_request,
918 			&ctrl->ctrl);
919 	blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
920 	nvme_rdma_destroy_admin_queue(ctrl, remove);
921 }
922 
923 static void nvme_rdma_teardown_io_queues(struct nvme_rdma_ctrl *ctrl,
924 		bool remove)
925 {
926 	if (ctrl->ctrl.queue_count > 1) {
927 		nvme_stop_queues(&ctrl->ctrl);
928 		nvme_rdma_stop_io_queues(ctrl);
929 		blk_mq_tagset_busy_iter(&ctrl->tag_set, nvme_cancel_request,
930 				&ctrl->ctrl);
931 		if (remove)
932 			nvme_start_queues(&ctrl->ctrl);
933 		nvme_rdma_destroy_io_queues(ctrl, remove);
934 	}
935 }
936 
937 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
938 {
939 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
940 
941 	if (list_empty(&ctrl->list))
942 		goto free_ctrl;
943 
944 	mutex_lock(&nvme_rdma_ctrl_mutex);
945 	list_del(&ctrl->list);
946 	mutex_unlock(&nvme_rdma_ctrl_mutex);
947 
948 	nvmf_free_options(nctrl->opts);
949 free_ctrl:
950 	kfree(ctrl->queues);
951 	kfree(ctrl);
952 }
953 
954 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl)
955 {
956 	/* If we are resetting/deleting then do nothing */
957 	if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) {
958 		WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
959 			ctrl->ctrl.state == NVME_CTRL_LIVE);
960 		return;
961 	}
962 
963 	if (nvmf_should_reconnect(&ctrl->ctrl)) {
964 		dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n",
965 			ctrl->ctrl.opts->reconnect_delay);
966 		queue_delayed_work(nvme_wq, &ctrl->reconnect_work,
967 				ctrl->ctrl.opts->reconnect_delay * HZ);
968 	} else {
969 		nvme_delete_ctrl(&ctrl->ctrl);
970 	}
971 }
972 
973 static int nvme_rdma_setup_ctrl(struct nvme_rdma_ctrl *ctrl, bool new)
974 {
975 	int ret = -EINVAL;
976 	bool changed;
977 
978 	ret = nvme_rdma_configure_admin_queue(ctrl, new);
979 	if (ret)
980 		return ret;
981 
982 	if (ctrl->ctrl.icdoff) {
983 		dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
984 		goto destroy_admin;
985 	}
986 
987 	if (!(ctrl->ctrl.sgls & (1 << 2))) {
988 		dev_err(ctrl->ctrl.device,
989 			"Mandatory keyed sgls are not supported!\n");
990 		goto destroy_admin;
991 	}
992 
993 	if (ctrl->ctrl.opts->queue_size > ctrl->ctrl.sqsize + 1) {
994 		dev_warn(ctrl->ctrl.device,
995 			"queue_size %zu > ctrl sqsize %u, clamping down\n",
996 			ctrl->ctrl.opts->queue_size, ctrl->ctrl.sqsize + 1);
997 	}
998 
999 	if (ctrl->ctrl.sqsize + 1 > ctrl->ctrl.maxcmd) {
1000 		dev_warn(ctrl->ctrl.device,
1001 			"sqsize %u > ctrl maxcmd %u, clamping down\n",
1002 			ctrl->ctrl.sqsize + 1, ctrl->ctrl.maxcmd);
1003 		ctrl->ctrl.sqsize = ctrl->ctrl.maxcmd - 1;
1004 	}
1005 
1006 	if (ctrl->ctrl.sgls & (1 << 20))
1007 		ctrl->use_inline_data = true;
1008 
1009 	if (ctrl->ctrl.queue_count > 1) {
1010 		ret = nvme_rdma_configure_io_queues(ctrl, new);
1011 		if (ret)
1012 			goto destroy_admin;
1013 	}
1014 
1015 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1016 	if (!changed) {
1017 		/* state change failure is ok if we're in DELETING state */
1018 		WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING);
1019 		ret = -EINVAL;
1020 		goto destroy_io;
1021 	}
1022 
1023 	nvme_start_ctrl(&ctrl->ctrl);
1024 	return 0;
1025 
1026 destroy_io:
1027 	if (ctrl->ctrl.queue_count > 1)
1028 		nvme_rdma_destroy_io_queues(ctrl, new);
1029 destroy_admin:
1030 	nvme_rdma_stop_queue(&ctrl->queues[0]);
1031 	nvme_rdma_destroy_admin_queue(ctrl, new);
1032 	return ret;
1033 }
1034 
1035 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
1036 {
1037 	struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
1038 			struct nvme_rdma_ctrl, reconnect_work);
1039 
1040 	++ctrl->ctrl.nr_reconnects;
1041 
1042 	if (nvme_rdma_setup_ctrl(ctrl, false))
1043 		goto requeue;
1044 
1045 	dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n",
1046 			ctrl->ctrl.nr_reconnects);
1047 
1048 	ctrl->ctrl.nr_reconnects = 0;
1049 
1050 	return;
1051 
1052 requeue:
1053 	dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n",
1054 			ctrl->ctrl.nr_reconnects);
1055 	nvme_rdma_reconnect_or_remove(ctrl);
1056 }
1057 
1058 static void nvme_rdma_error_recovery_work(struct work_struct *work)
1059 {
1060 	struct nvme_rdma_ctrl *ctrl = container_of(work,
1061 			struct nvme_rdma_ctrl, err_work);
1062 
1063 	nvme_stop_keep_alive(&ctrl->ctrl);
1064 	nvme_rdma_teardown_io_queues(ctrl, false);
1065 	nvme_start_queues(&ctrl->ctrl);
1066 	nvme_rdma_teardown_admin_queue(ctrl, false);
1067 
1068 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
1069 		/* state change failure is ok if we're in DELETING state */
1070 		WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING);
1071 		return;
1072 	}
1073 
1074 	nvme_rdma_reconnect_or_remove(ctrl);
1075 }
1076 
1077 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
1078 {
1079 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
1080 		return;
1081 
1082 	queue_work(nvme_wq, &ctrl->err_work);
1083 }
1084 
1085 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
1086 		const char *op)
1087 {
1088 	struct nvme_rdma_queue *queue = cq->cq_context;
1089 	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1090 
1091 	if (ctrl->ctrl.state == NVME_CTRL_LIVE)
1092 		dev_info(ctrl->ctrl.device,
1093 			     "%s for CQE 0x%p failed with status %s (%d)\n",
1094 			     op, wc->wr_cqe,
1095 			     ib_wc_status_msg(wc->status), wc->status);
1096 	nvme_rdma_error_recovery(ctrl);
1097 }
1098 
1099 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
1100 {
1101 	if (unlikely(wc->status != IB_WC_SUCCESS))
1102 		nvme_rdma_wr_error(cq, wc, "MEMREG");
1103 }
1104 
1105 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
1106 {
1107 	struct nvme_rdma_request *req =
1108 		container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe);
1109 	struct request *rq = blk_mq_rq_from_pdu(req);
1110 
1111 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
1112 		nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
1113 		return;
1114 	}
1115 
1116 	if (refcount_dec_and_test(&req->ref))
1117 		nvme_end_request(rq, req->status, req->result);
1118 
1119 }
1120 
1121 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
1122 		struct nvme_rdma_request *req)
1123 {
1124 	struct ib_send_wr wr = {
1125 		.opcode		    = IB_WR_LOCAL_INV,
1126 		.next		    = NULL,
1127 		.num_sge	    = 0,
1128 		.send_flags	    = IB_SEND_SIGNALED,
1129 		.ex.invalidate_rkey = req->mr->rkey,
1130 	};
1131 
1132 	req->reg_cqe.done = nvme_rdma_inv_rkey_done;
1133 	wr.wr_cqe = &req->reg_cqe;
1134 
1135 	return ib_post_send(queue->qp, &wr, NULL);
1136 }
1137 
1138 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
1139 		struct request *rq)
1140 {
1141 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1142 	struct nvme_rdma_device *dev = queue->device;
1143 	struct ib_device *ibdev = dev->dev;
1144 
1145 	if (!blk_rq_nr_phys_segments(rq))
1146 		return;
1147 
1148 	if (req->mr) {
1149 		ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
1150 		req->mr = NULL;
1151 	}
1152 
1153 	ib_dma_unmap_sg(ibdev, req->sg_table.sgl,
1154 			req->nents, rq_data_dir(rq) ==
1155 				    WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1156 
1157 	nvme_cleanup_cmd(rq);
1158 	sg_free_table_chained(&req->sg_table, true);
1159 }
1160 
1161 static int nvme_rdma_set_sg_null(struct nvme_command *c)
1162 {
1163 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1164 
1165 	sg->addr = 0;
1166 	put_unaligned_le24(0, sg->length);
1167 	put_unaligned_le32(0, sg->key);
1168 	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1169 	return 0;
1170 }
1171 
1172 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
1173 		struct nvme_rdma_request *req, struct nvme_command *c,
1174 		int count)
1175 {
1176 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
1177 	struct scatterlist *sgl = req->sg_table.sgl;
1178 	struct ib_sge *sge = &req->sge[1];
1179 	u32 len = 0;
1180 	int i;
1181 
1182 	for (i = 0; i < count; i++, sgl++, sge++) {
1183 		sge->addr = sg_dma_address(sgl);
1184 		sge->length = sg_dma_len(sgl);
1185 		sge->lkey = queue->device->pd->local_dma_lkey;
1186 		len += sge->length;
1187 	}
1188 
1189 	sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
1190 	sg->length = cpu_to_le32(len);
1191 	sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
1192 
1193 	req->num_sge += count;
1194 	return 0;
1195 }
1196 
1197 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
1198 		struct nvme_rdma_request *req, struct nvme_command *c)
1199 {
1200 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1201 
1202 	sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl));
1203 	put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length);
1204 	put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
1205 	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1206 	return 0;
1207 }
1208 
1209 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
1210 		struct nvme_rdma_request *req, struct nvme_command *c,
1211 		int count)
1212 {
1213 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1214 	int nr;
1215 
1216 	req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs);
1217 	if (WARN_ON_ONCE(!req->mr))
1218 		return -EAGAIN;
1219 
1220 	/*
1221 	 * Align the MR to a 4K page size to match the ctrl page size and
1222 	 * the block virtual boundary.
1223 	 */
1224 	nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, SZ_4K);
1225 	if (unlikely(nr < count)) {
1226 		ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
1227 		req->mr = NULL;
1228 		if (nr < 0)
1229 			return nr;
1230 		return -EINVAL;
1231 	}
1232 
1233 	ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1234 
1235 	req->reg_cqe.done = nvme_rdma_memreg_done;
1236 	memset(&req->reg_wr, 0, sizeof(req->reg_wr));
1237 	req->reg_wr.wr.opcode = IB_WR_REG_MR;
1238 	req->reg_wr.wr.wr_cqe = &req->reg_cqe;
1239 	req->reg_wr.wr.num_sge = 0;
1240 	req->reg_wr.mr = req->mr;
1241 	req->reg_wr.key = req->mr->rkey;
1242 	req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
1243 			     IB_ACCESS_REMOTE_READ |
1244 			     IB_ACCESS_REMOTE_WRITE;
1245 
1246 	sg->addr = cpu_to_le64(req->mr->iova);
1247 	put_unaligned_le24(req->mr->length, sg->length);
1248 	put_unaligned_le32(req->mr->rkey, sg->key);
1249 	sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
1250 			NVME_SGL_FMT_INVALIDATE;
1251 
1252 	return 0;
1253 }
1254 
1255 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
1256 		struct request *rq, struct nvme_command *c)
1257 {
1258 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1259 	struct nvme_rdma_device *dev = queue->device;
1260 	struct ib_device *ibdev = dev->dev;
1261 	int count, ret;
1262 
1263 	req->num_sge = 1;
1264 	refcount_set(&req->ref, 2); /* send and recv completions */
1265 
1266 	c->common.flags |= NVME_CMD_SGL_METABUF;
1267 
1268 	if (!blk_rq_nr_phys_segments(rq))
1269 		return nvme_rdma_set_sg_null(c);
1270 
1271 	req->sg_table.sgl = req->first_sgl;
1272 	ret = sg_alloc_table_chained(&req->sg_table,
1273 			blk_rq_nr_phys_segments(rq), req->sg_table.sgl);
1274 	if (ret)
1275 		return -ENOMEM;
1276 
1277 	req->nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl);
1278 
1279 	count = ib_dma_map_sg(ibdev, req->sg_table.sgl, req->nents,
1280 		    rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1281 	if (unlikely(count <= 0)) {
1282 		ret = -EIO;
1283 		goto out_free_table;
1284 	}
1285 
1286 	if (count <= dev->num_inline_segments) {
1287 		if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) &&
1288 		    queue->ctrl->use_inline_data &&
1289 		    blk_rq_payload_bytes(rq) <=
1290 				nvme_rdma_inline_data_size(queue)) {
1291 			ret = nvme_rdma_map_sg_inline(queue, req, c, count);
1292 			goto out;
1293 		}
1294 
1295 		if (count == 1 && dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
1296 			ret = nvme_rdma_map_sg_single(queue, req, c);
1297 			goto out;
1298 		}
1299 	}
1300 
1301 	ret = nvme_rdma_map_sg_fr(queue, req, c, count);
1302 out:
1303 	if (unlikely(ret))
1304 		goto out_unmap_sg;
1305 
1306 	return 0;
1307 
1308 out_unmap_sg:
1309 	ib_dma_unmap_sg(ibdev, req->sg_table.sgl,
1310 			req->nents, rq_data_dir(rq) ==
1311 			WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1312 out_free_table:
1313 	sg_free_table_chained(&req->sg_table, true);
1314 	return ret;
1315 }
1316 
1317 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
1318 {
1319 	struct nvme_rdma_qe *qe =
1320 		container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1321 	struct nvme_rdma_request *req =
1322 		container_of(qe, struct nvme_rdma_request, sqe);
1323 	struct request *rq = blk_mq_rq_from_pdu(req);
1324 
1325 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
1326 		nvme_rdma_wr_error(cq, wc, "SEND");
1327 		return;
1328 	}
1329 
1330 	if (refcount_dec_and_test(&req->ref))
1331 		nvme_end_request(rq, req->status, req->result);
1332 }
1333 
1334 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
1335 		struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
1336 		struct ib_send_wr *first)
1337 {
1338 	struct ib_send_wr wr;
1339 	int ret;
1340 
1341 	sge->addr   = qe->dma;
1342 	sge->length = sizeof(struct nvme_command),
1343 	sge->lkey   = queue->device->pd->local_dma_lkey;
1344 
1345 	wr.next       = NULL;
1346 	wr.wr_cqe     = &qe->cqe;
1347 	wr.sg_list    = sge;
1348 	wr.num_sge    = num_sge;
1349 	wr.opcode     = IB_WR_SEND;
1350 	wr.send_flags = IB_SEND_SIGNALED;
1351 
1352 	if (first)
1353 		first->next = &wr;
1354 	else
1355 		first = &wr;
1356 
1357 	ret = ib_post_send(queue->qp, first, NULL);
1358 	if (unlikely(ret)) {
1359 		dev_err(queue->ctrl->ctrl.device,
1360 			     "%s failed with error code %d\n", __func__, ret);
1361 	}
1362 	return ret;
1363 }
1364 
1365 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
1366 		struct nvme_rdma_qe *qe)
1367 {
1368 	struct ib_recv_wr wr;
1369 	struct ib_sge list;
1370 	int ret;
1371 
1372 	list.addr   = qe->dma;
1373 	list.length = sizeof(struct nvme_completion);
1374 	list.lkey   = queue->device->pd->local_dma_lkey;
1375 
1376 	qe->cqe.done = nvme_rdma_recv_done;
1377 
1378 	wr.next     = NULL;
1379 	wr.wr_cqe   = &qe->cqe;
1380 	wr.sg_list  = &list;
1381 	wr.num_sge  = 1;
1382 
1383 	ret = ib_post_recv(queue->qp, &wr, NULL);
1384 	if (unlikely(ret)) {
1385 		dev_err(queue->ctrl->ctrl.device,
1386 			"%s failed with error code %d\n", __func__, ret);
1387 	}
1388 	return ret;
1389 }
1390 
1391 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
1392 {
1393 	u32 queue_idx = nvme_rdma_queue_idx(queue);
1394 
1395 	if (queue_idx == 0)
1396 		return queue->ctrl->admin_tag_set.tags[queue_idx];
1397 	return queue->ctrl->tag_set.tags[queue_idx - 1];
1398 }
1399 
1400 static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc)
1401 {
1402 	if (unlikely(wc->status != IB_WC_SUCCESS))
1403 		nvme_rdma_wr_error(cq, wc, "ASYNC");
1404 }
1405 
1406 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg)
1407 {
1408 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
1409 	struct nvme_rdma_queue *queue = &ctrl->queues[0];
1410 	struct ib_device *dev = queue->device->dev;
1411 	struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
1412 	struct nvme_command *cmd = sqe->data;
1413 	struct ib_sge sge;
1414 	int ret;
1415 
1416 	ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
1417 
1418 	memset(cmd, 0, sizeof(*cmd));
1419 	cmd->common.opcode = nvme_admin_async_event;
1420 	cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1421 	cmd->common.flags |= NVME_CMD_SGL_METABUF;
1422 	nvme_rdma_set_sg_null(cmd);
1423 
1424 	sqe->cqe.done = nvme_rdma_async_done;
1425 
1426 	ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
1427 			DMA_TO_DEVICE);
1428 
1429 	ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL);
1430 	WARN_ON_ONCE(ret);
1431 }
1432 
1433 static void nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
1434 		struct nvme_completion *cqe, struct ib_wc *wc)
1435 {
1436 	struct request *rq;
1437 	struct nvme_rdma_request *req;
1438 
1439 	rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id);
1440 	if (!rq) {
1441 		dev_err(queue->ctrl->ctrl.device,
1442 			"tag 0x%x on QP %#x not found\n",
1443 			cqe->command_id, queue->qp->qp_num);
1444 		nvme_rdma_error_recovery(queue->ctrl);
1445 		return;
1446 	}
1447 	req = blk_mq_rq_to_pdu(rq);
1448 
1449 	req->status = cqe->status;
1450 	req->result = cqe->result;
1451 
1452 	if (wc->wc_flags & IB_WC_WITH_INVALIDATE) {
1453 		if (unlikely(wc->ex.invalidate_rkey != req->mr->rkey)) {
1454 			dev_err(queue->ctrl->ctrl.device,
1455 				"Bogus remote invalidation for rkey %#x\n",
1456 				req->mr->rkey);
1457 			nvme_rdma_error_recovery(queue->ctrl);
1458 		}
1459 	} else if (req->mr) {
1460 		int ret;
1461 
1462 		ret = nvme_rdma_inv_rkey(queue, req);
1463 		if (unlikely(ret < 0)) {
1464 			dev_err(queue->ctrl->ctrl.device,
1465 				"Queueing INV WR for rkey %#x failed (%d)\n",
1466 				req->mr->rkey, ret);
1467 			nvme_rdma_error_recovery(queue->ctrl);
1468 		}
1469 		/* the local invalidation completion will end the request */
1470 		return;
1471 	}
1472 
1473 	if (refcount_dec_and_test(&req->ref))
1474 		nvme_end_request(rq, req->status, req->result);
1475 }
1476 
1477 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1478 {
1479 	struct nvme_rdma_qe *qe =
1480 		container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1481 	struct nvme_rdma_queue *queue = cq->cq_context;
1482 	struct ib_device *ibdev = queue->device->dev;
1483 	struct nvme_completion *cqe = qe->data;
1484 	const size_t len = sizeof(struct nvme_completion);
1485 
1486 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
1487 		nvme_rdma_wr_error(cq, wc, "RECV");
1488 		return;
1489 	}
1490 
1491 	ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1492 	/*
1493 	 * AEN requests are special as they don't time out and can
1494 	 * survive any kind of queue freeze and often don't respond to
1495 	 * aborts.  We don't even bother to allocate a struct request
1496 	 * for them but rather special case them here.
1497 	 */
1498 	if (unlikely(nvme_rdma_queue_idx(queue) == 0 &&
1499 			cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH))
1500 		nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
1501 				&cqe->result);
1502 	else
1503 		nvme_rdma_process_nvme_rsp(queue, cqe, wc);
1504 	ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1505 
1506 	nvme_rdma_post_recv(queue, qe);
1507 }
1508 
1509 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
1510 {
1511 	int ret, i;
1512 
1513 	for (i = 0; i < queue->queue_size; i++) {
1514 		ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
1515 		if (ret)
1516 			goto out_destroy_queue_ib;
1517 	}
1518 
1519 	return 0;
1520 
1521 out_destroy_queue_ib:
1522 	nvme_rdma_destroy_queue_ib(queue);
1523 	return ret;
1524 }
1525 
1526 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
1527 		struct rdma_cm_event *ev)
1528 {
1529 	struct rdma_cm_id *cm_id = queue->cm_id;
1530 	int status = ev->status;
1531 	const char *rej_msg;
1532 	const struct nvme_rdma_cm_rej *rej_data;
1533 	u8 rej_data_len;
1534 
1535 	rej_msg = rdma_reject_msg(cm_id, status);
1536 	rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len);
1537 
1538 	if (rej_data && rej_data_len >= sizeof(u16)) {
1539 		u16 sts = le16_to_cpu(rej_data->sts);
1540 
1541 		dev_err(queue->ctrl->ctrl.device,
1542 		      "Connect rejected: status %d (%s) nvme status %d (%s).\n",
1543 		      status, rej_msg, sts, nvme_rdma_cm_msg(sts));
1544 	} else {
1545 		dev_err(queue->ctrl->ctrl.device,
1546 			"Connect rejected: status %d (%s).\n", status, rej_msg);
1547 	}
1548 
1549 	return -ECONNRESET;
1550 }
1551 
1552 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
1553 {
1554 	int ret;
1555 
1556 	ret = nvme_rdma_create_queue_ib(queue);
1557 	if (ret)
1558 		return ret;
1559 
1560 	ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS);
1561 	if (ret) {
1562 		dev_err(queue->ctrl->ctrl.device,
1563 			"rdma_resolve_route failed (%d).\n",
1564 			queue->cm_error);
1565 		goto out_destroy_queue;
1566 	}
1567 
1568 	return 0;
1569 
1570 out_destroy_queue:
1571 	nvme_rdma_destroy_queue_ib(queue);
1572 	return ret;
1573 }
1574 
1575 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
1576 {
1577 	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1578 	struct rdma_conn_param param = { };
1579 	struct nvme_rdma_cm_req priv = { };
1580 	int ret;
1581 
1582 	param.qp_num = queue->qp->qp_num;
1583 	param.flow_control = 1;
1584 
1585 	param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1586 	/* maximum retry count */
1587 	param.retry_count = 7;
1588 	param.rnr_retry_count = 7;
1589 	param.private_data = &priv;
1590 	param.private_data_len = sizeof(priv);
1591 
1592 	priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1593 	priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1594 	/*
1595 	 * set the admin queue depth to the minimum size
1596 	 * specified by the Fabrics standard.
1597 	 */
1598 	if (priv.qid == 0) {
1599 		priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH);
1600 		priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1);
1601 	} else {
1602 		/*
1603 		 * current interpretation of the fabrics spec
1604 		 * is at minimum you make hrqsize sqsize+1, or a
1605 		 * 1's based representation of sqsize.
1606 		 */
1607 		priv.hrqsize = cpu_to_le16(queue->queue_size);
1608 		priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
1609 	}
1610 
1611 	ret = rdma_connect(queue->cm_id, &param);
1612 	if (ret) {
1613 		dev_err(ctrl->ctrl.device,
1614 			"rdma_connect failed (%d).\n", ret);
1615 		goto out_destroy_queue_ib;
1616 	}
1617 
1618 	return 0;
1619 
1620 out_destroy_queue_ib:
1621 	nvme_rdma_destroy_queue_ib(queue);
1622 	return ret;
1623 }
1624 
1625 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
1626 		struct rdma_cm_event *ev)
1627 {
1628 	struct nvme_rdma_queue *queue = cm_id->context;
1629 	int cm_error = 0;
1630 
1631 	dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
1632 		rdma_event_msg(ev->event), ev->event,
1633 		ev->status, cm_id);
1634 
1635 	switch (ev->event) {
1636 	case RDMA_CM_EVENT_ADDR_RESOLVED:
1637 		cm_error = nvme_rdma_addr_resolved(queue);
1638 		break;
1639 	case RDMA_CM_EVENT_ROUTE_RESOLVED:
1640 		cm_error = nvme_rdma_route_resolved(queue);
1641 		break;
1642 	case RDMA_CM_EVENT_ESTABLISHED:
1643 		queue->cm_error = nvme_rdma_conn_established(queue);
1644 		/* complete cm_done regardless of success/failure */
1645 		complete(&queue->cm_done);
1646 		return 0;
1647 	case RDMA_CM_EVENT_REJECTED:
1648 		nvme_rdma_destroy_queue_ib(queue);
1649 		cm_error = nvme_rdma_conn_rejected(queue, ev);
1650 		break;
1651 	case RDMA_CM_EVENT_ROUTE_ERROR:
1652 	case RDMA_CM_EVENT_CONNECT_ERROR:
1653 	case RDMA_CM_EVENT_UNREACHABLE:
1654 		nvme_rdma_destroy_queue_ib(queue);
1655 		/* fall through */
1656 	case RDMA_CM_EVENT_ADDR_ERROR:
1657 		dev_dbg(queue->ctrl->ctrl.device,
1658 			"CM error event %d\n", ev->event);
1659 		cm_error = -ECONNRESET;
1660 		break;
1661 	case RDMA_CM_EVENT_DISCONNECTED:
1662 	case RDMA_CM_EVENT_ADDR_CHANGE:
1663 	case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1664 		dev_dbg(queue->ctrl->ctrl.device,
1665 			"disconnect received - connection closed\n");
1666 		nvme_rdma_error_recovery(queue->ctrl);
1667 		break;
1668 	case RDMA_CM_EVENT_DEVICE_REMOVAL:
1669 		/* device removal is handled via the ib_client API */
1670 		break;
1671 	default:
1672 		dev_err(queue->ctrl->ctrl.device,
1673 			"Unexpected RDMA CM event (%d)\n", ev->event);
1674 		nvme_rdma_error_recovery(queue->ctrl);
1675 		break;
1676 	}
1677 
1678 	if (cm_error) {
1679 		queue->cm_error = cm_error;
1680 		complete(&queue->cm_done);
1681 	}
1682 
1683 	return 0;
1684 }
1685 
1686 static enum blk_eh_timer_return
1687 nvme_rdma_timeout(struct request *rq, bool reserved)
1688 {
1689 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1690 	struct nvme_rdma_queue *queue = req->queue;
1691 	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1692 
1693 	dev_warn(ctrl->ctrl.device, "I/O %d QID %d timeout\n",
1694 		 rq->tag, nvme_rdma_queue_idx(queue));
1695 
1696 	if (ctrl->ctrl.state != NVME_CTRL_LIVE) {
1697 		/*
1698 		 * Teardown immediately if controller times out while starting
1699 		 * or we are already started error recovery. all outstanding
1700 		 * requests are completed on shutdown, so we return BLK_EH_DONE.
1701 		 */
1702 		flush_work(&ctrl->err_work);
1703 		nvme_rdma_teardown_io_queues(ctrl, false);
1704 		nvme_rdma_teardown_admin_queue(ctrl, false);
1705 		return BLK_EH_DONE;
1706 	}
1707 
1708 	dev_warn(ctrl->ctrl.device, "starting error recovery\n");
1709 	nvme_rdma_error_recovery(ctrl);
1710 
1711 	return BLK_EH_RESET_TIMER;
1712 }
1713 
1714 static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
1715 		const struct blk_mq_queue_data *bd)
1716 {
1717 	struct nvme_ns *ns = hctx->queue->queuedata;
1718 	struct nvme_rdma_queue *queue = hctx->driver_data;
1719 	struct request *rq = bd->rq;
1720 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1721 	struct nvme_rdma_qe *sqe = &req->sqe;
1722 	struct nvme_command *c = sqe->data;
1723 	struct ib_device *dev;
1724 	bool queue_ready = test_bit(NVME_RDMA_Q_LIVE, &queue->flags);
1725 	blk_status_t ret;
1726 	int err;
1727 
1728 	WARN_ON_ONCE(rq->tag < 0);
1729 
1730 	if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
1731 		return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq);
1732 
1733 	dev = queue->device->dev;
1734 	ib_dma_sync_single_for_cpu(dev, sqe->dma,
1735 			sizeof(struct nvme_command), DMA_TO_DEVICE);
1736 
1737 	ret = nvme_setup_cmd(ns, rq, c);
1738 	if (ret)
1739 		return ret;
1740 
1741 	blk_mq_start_request(rq);
1742 
1743 	err = nvme_rdma_map_data(queue, rq, c);
1744 	if (unlikely(err < 0)) {
1745 		dev_err(queue->ctrl->ctrl.device,
1746 			     "Failed to map data (%d)\n", err);
1747 		nvme_cleanup_cmd(rq);
1748 		goto err;
1749 	}
1750 
1751 	sqe->cqe.done = nvme_rdma_send_done;
1752 
1753 	ib_dma_sync_single_for_device(dev, sqe->dma,
1754 			sizeof(struct nvme_command), DMA_TO_DEVICE);
1755 
1756 	err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
1757 			req->mr ? &req->reg_wr.wr : NULL);
1758 	if (unlikely(err)) {
1759 		nvme_rdma_unmap_data(queue, rq);
1760 		goto err;
1761 	}
1762 
1763 	return BLK_STS_OK;
1764 err:
1765 	if (err == -ENOMEM || err == -EAGAIN)
1766 		return BLK_STS_RESOURCE;
1767 	return BLK_STS_IOERR;
1768 }
1769 
1770 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx)
1771 {
1772 	struct nvme_rdma_queue *queue = hctx->driver_data;
1773 
1774 	return ib_process_cq_direct(queue->ib_cq, -1);
1775 }
1776 
1777 static void nvme_rdma_complete_rq(struct request *rq)
1778 {
1779 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1780 
1781 	nvme_rdma_unmap_data(req->queue, rq);
1782 	nvme_complete_rq(rq);
1783 }
1784 
1785 static int nvme_rdma_map_queues(struct blk_mq_tag_set *set)
1786 {
1787 	struct nvme_rdma_ctrl *ctrl = set->driver_data;
1788 
1789 	set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
1790 	set->map[HCTX_TYPE_DEFAULT].nr_queues =
1791 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
1792 	set->map[HCTX_TYPE_READ].nr_queues = ctrl->io_queues[HCTX_TYPE_READ];
1793 	if (ctrl->ctrl.opts->nr_write_queues) {
1794 		/* separate read/write queues */
1795 		set->map[HCTX_TYPE_READ].queue_offset =
1796 				ctrl->io_queues[HCTX_TYPE_DEFAULT];
1797 	} else {
1798 		/* mixed read/write queues */
1799 		set->map[HCTX_TYPE_READ].queue_offset = 0;
1800 	}
1801 	blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_DEFAULT],
1802 			ctrl->device->dev, 0);
1803 	blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_READ],
1804 			ctrl->device->dev, 0);
1805 
1806 	if (ctrl->ctrl.opts->nr_poll_queues) {
1807 		set->map[HCTX_TYPE_POLL].nr_queues =
1808 				ctrl->io_queues[HCTX_TYPE_POLL];
1809 		set->map[HCTX_TYPE_POLL].queue_offset =
1810 				ctrl->io_queues[HCTX_TYPE_DEFAULT];
1811 		if (ctrl->ctrl.opts->nr_write_queues)
1812 			set->map[HCTX_TYPE_POLL].queue_offset +=
1813 				ctrl->io_queues[HCTX_TYPE_READ];
1814 		blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]);
1815 	}
1816 	return 0;
1817 }
1818 
1819 static const struct blk_mq_ops nvme_rdma_mq_ops = {
1820 	.queue_rq	= nvme_rdma_queue_rq,
1821 	.complete	= nvme_rdma_complete_rq,
1822 	.init_request	= nvme_rdma_init_request,
1823 	.exit_request	= nvme_rdma_exit_request,
1824 	.init_hctx	= nvme_rdma_init_hctx,
1825 	.timeout	= nvme_rdma_timeout,
1826 	.map_queues	= nvme_rdma_map_queues,
1827 	.poll		= nvme_rdma_poll,
1828 };
1829 
1830 static const struct blk_mq_ops nvme_rdma_admin_mq_ops = {
1831 	.queue_rq	= nvme_rdma_queue_rq,
1832 	.complete	= nvme_rdma_complete_rq,
1833 	.init_request	= nvme_rdma_init_request,
1834 	.exit_request	= nvme_rdma_exit_request,
1835 	.init_hctx	= nvme_rdma_init_admin_hctx,
1836 	.timeout	= nvme_rdma_timeout,
1837 };
1838 
1839 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
1840 {
1841 	cancel_work_sync(&ctrl->err_work);
1842 	cancel_delayed_work_sync(&ctrl->reconnect_work);
1843 
1844 	nvme_rdma_teardown_io_queues(ctrl, shutdown);
1845 	if (shutdown)
1846 		nvme_shutdown_ctrl(&ctrl->ctrl);
1847 	else
1848 		nvme_disable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
1849 	nvme_rdma_teardown_admin_queue(ctrl, shutdown);
1850 }
1851 
1852 static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl)
1853 {
1854 	nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true);
1855 }
1856 
1857 static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
1858 {
1859 	struct nvme_rdma_ctrl *ctrl =
1860 		container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work);
1861 
1862 	nvme_stop_ctrl(&ctrl->ctrl);
1863 	nvme_rdma_shutdown_ctrl(ctrl, false);
1864 
1865 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
1866 		/* state change failure should never happen */
1867 		WARN_ON_ONCE(1);
1868 		return;
1869 	}
1870 
1871 	if (nvme_rdma_setup_ctrl(ctrl, false))
1872 		goto out_fail;
1873 
1874 	return;
1875 
1876 out_fail:
1877 	++ctrl->ctrl.nr_reconnects;
1878 	nvme_rdma_reconnect_or_remove(ctrl);
1879 }
1880 
1881 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
1882 	.name			= "rdma",
1883 	.module			= THIS_MODULE,
1884 	.flags			= NVME_F_FABRICS,
1885 	.reg_read32		= nvmf_reg_read32,
1886 	.reg_read64		= nvmf_reg_read64,
1887 	.reg_write32		= nvmf_reg_write32,
1888 	.free_ctrl		= nvme_rdma_free_ctrl,
1889 	.submit_async_event	= nvme_rdma_submit_async_event,
1890 	.delete_ctrl		= nvme_rdma_delete_ctrl,
1891 	.get_address		= nvmf_get_address,
1892 };
1893 
1894 /*
1895  * Fails a connection request if it matches an existing controller
1896  * (association) with the same tuple:
1897  * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN>
1898  *
1899  * if local address is not specified in the request, it will match an
1900  * existing controller with all the other parameters the same and no
1901  * local port address specified as well.
1902  *
1903  * The ports don't need to be compared as they are intrinsically
1904  * already matched by the port pointers supplied.
1905  */
1906 static bool
1907 nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts)
1908 {
1909 	struct nvme_rdma_ctrl *ctrl;
1910 	bool found = false;
1911 
1912 	mutex_lock(&nvme_rdma_ctrl_mutex);
1913 	list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
1914 		found = nvmf_ip_options_match(&ctrl->ctrl, opts);
1915 		if (found)
1916 			break;
1917 	}
1918 	mutex_unlock(&nvme_rdma_ctrl_mutex);
1919 
1920 	return found;
1921 }
1922 
1923 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
1924 		struct nvmf_ctrl_options *opts)
1925 {
1926 	struct nvme_rdma_ctrl *ctrl;
1927 	int ret;
1928 	bool changed;
1929 
1930 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1931 	if (!ctrl)
1932 		return ERR_PTR(-ENOMEM);
1933 	ctrl->ctrl.opts = opts;
1934 	INIT_LIST_HEAD(&ctrl->list);
1935 
1936 	if (!(opts->mask & NVMF_OPT_TRSVCID)) {
1937 		opts->trsvcid =
1938 			kstrdup(__stringify(NVME_RDMA_IP_PORT), GFP_KERNEL);
1939 		if (!opts->trsvcid) {
1940 			ret = -ENOMEM;
1941 			goto out_free_ctrl;
1942 		}
1943 		opts->mask |= NVMF_OPT_TRSVCID;
1944 	}
1945 
1946 	ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
1947 			opts->traddr, opts->trsvcid, &ctrl->addr);
1948 	if (ret) {
1949 		pr_err("malformed address passed: %s:%s\n",
1950 			opts->traddr, opts->trsvcid);
1951 		goto out_free_ctrl;
1952 	}
1953 
1954 	if (opts->mask & NVMF_OPT_HOST_TRADDR) {
1955 		ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
1956 			opts->host_traddr, NULL, &ctrl->src_addr);
1957 		if (ret) {
1958 			pr_err("malformed src address passed: %s\n",
1959 			       opts->host_traddr);
1960 			goto out_free_ctrl;
1961 		}
1962 	}
1963 
1964 	if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) {
1965 		ret = -EALREADY;
1966 		goto out_free_ctrl;
1967 	}
1968 
1969 	INIT_DELAYED_WORK(&ctrl->reconnect_work,
1970 			nvme_rdma_reconnect_ctrl_work);
1971 	INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
1972 	INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work);
1973 
1974 	ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
1975 				opts->nr_poll_queues + 1;
1976 	ctrl->ctrl.sqsize = opts->queue_size - 1;
1977 	ctrl->ctrl.kato = opts->kato;
1978 
1979 	ret = -ENOMEM;
1980 	ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
1981 				GFP_KERNEL);
1982 	if (!ctrl->queues)
1983 		goto out_free_ctrl;
1984 
1985 	ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
1986 				0 /* no quirks, we're perfect! */);
1987 	if (ret)
1988 		goto out_kfree_queues;
1989 
1990 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING);
1991 	WARN_ON_ONCE(!changed);
1992 
1993 	ret = nvme_rdma_setup_ctrl(ctrl, true);
1994 	if (ret)
1995 		goto out_uninit_ctrl;
1996 
1997 	dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n",
1998 		ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
1999 
2000 	nvme_get_ctrl(&ctrl->ctrl);
2001 
2002 	mutex_lock(&nvme_rdma_ctrl_mutex);
2003 	list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
2004 	mutex_unlock(&nvme_rdma_ctrl_mutex);
2005 
2006 	return &ctrl->ctrl;
2007 
2008 out_uninit_ctrl:
2009 	nvme_uninit_ctrl(&ctrl->ctrl);
2010 	nvme_put_ctrl(&ctrl->ctrl);
2011 	if (ret > 0)
2012 		ret = -EIO;
2013 	return ERR_PTR(ret);
2014 out_kfree_queues:
2015 	kfree(ctrl->queues);
2016 out_free_ctrl:
2017 	kfree(ctrl);
2018 	return ERR_PTR(ret);
2019 }
2020 
2021 static struct nvmf_transport_ops nvme_rdma_transport = {
2022 	.name		= "rdma",
2023 	.module		= THIS_MODULE,
2024 	.required_opts	= NVMF_OPT_TRADDR,
2025 	.allowed_opts	= NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2026 			  NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2027 			  NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES,
2028 	.create_ctrl	= nvme_rdma_create_ctrl,
2029 };
2030 
2031 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
2032 {
2033 	struct nvme_rdma_ctrl *ctrl;
2034 	struct nvme_rdma_device *ndev;
2035 	bool found = false;
2036 
2037 	mutex_lock(&device_list_mutex);
2038 	list_for_each_entry(ndev, &device_list, entry) {
2039 		if (ndev->dev == ib_device) {
2040 			found = true;
2041 			break;
2042 		}
2043 	}
2044 	mutex_unlock(&device_list_mutex);
2045 
2046 	if (!found)
2047 		return;
2048 
2049 	/* Delete all controllers using this device */
2050 	mutex_lock(&nvme_rdma_ctrl_mutex);
2051 	list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2052 		if (ctrl->device->dev != ib_device)
2053 			continue;
2054 		nvme_delete_ctrl(&ctrl->ctrl);
2055 	}
2056 	mutex_unlock(&nvme_rdma_ctrl_mutex);
2057 
2058 	flush_workqueue(nvme_delete_wq);
2059 }
2060 
2061 static struct ib_client nvme_rdma_ib_client = {
2062 	.name   = "nvme_rdma",
2063 	.remove = nvme_rdma_remove_one
2064 };
2065 
2066 static int __init nvme_rdma_init_module(void)
2067 {
2068 	int ret;
2069 
2070 	ret = ib_register_client(&nvme_rdma_ib_client);
2071 	if (ret)
2072 		return ret;
2073 
2074 	ret = nvmf_register_transport(&nvme_rdma_transport);
2075 	if (ret)
2076 		goto err_unreg_client;
2077 
2078 	return 0;
2079 
2080 err_unreg_client:
2081 	ib_unregister_client(&nvme_rdma_ib_client);
2082 	return ret;
2083 }
2084 
2085 static void __exit nvme_rdma_cleanup_module(void)
2086 {
2087 	nvmf_unregister_transport(&nvme_rdma_transport);
2088 	ib_unregister_client(&nvme_rdma_ib_client);
2089 }
2090 
2091 module_init(nvme_rdma_init_module);
2092 module_exit(nvme_rdma_cleanup_module);
2093 
2094 MODULE_LICENSE("GPL v2");
2095