1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVMe over Fabrics RDMA host code. 4 * Copyright (c) 2015-2016 HGST, a Western Digital Company. 5 */ 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 #include <linux/module.h> 8 #include <linux/init.h> 9 #include <linux/slab.h> 10 #include <rdma/mr_pool.h> 11 #include <linux/err.h> 12 #include <linux/string.h> 13 #include <linux/atomic.h> 14 #include <linux/blk-mq.h> 15 #include <linux/blk-mq-rdma.h> 16 #include <linux/blk-integrity.h> 17 #include <linux/types.h> 18 #include <linux/list.h> 19 #include <linux/mutex.h> 20 #include <linux/scatterlist.h> 21 #include <linux/nvme.h> 22 #include <asm/unaligned.h> 23 24 #include <rdma/ib_verbs.h> 25 #include <rdma/rdma_cm.h> 26 #include <linux/nvme-rdma.h> 27 28 #include "nvme.h" 29 #include "fabrics.h" 30 31 32 #define NVME_RDMA_CM_TIMEOUT_MS 3000 /* 3 second */ 33 34 #define NVME_RDMA_MAX_SEGMENTS 256 35 36 #define NVME_RDMA_MAX_INLINE_SEGMENTS 4 37 38 #define NVME_RDMA_DATA_SGL_SIZE \ 39 (sizeof(struct scatterlist) * NVME_INLINE_SG_CNT) 40 #define NVME_RDMA_METADATA_SGL_SIZE \ 41 (sizeof(struct scatterlist) * NVME_INLINE_METADATA_SG_CNT) 42 43 struct nvme_rdma_device { 44 struct ib_device *dev; 45 struct ib_pd *pd; 46 struct kref ref; 47 struct list_head entry; 48 unsigned int num_inline_segments; 49 }; 50 51 struct nvme_rdma_qe { 52 struct ib_cqe cqe; 53 void *data; 54 u64 dma; 55 }; 56 57 struct nvme_rdma_sgl { 58 int nents; 59 struct sg_table sg_table; 60 }; 61 62 struct nvme_rdma_queue; 63 struct nvme_rdma_request { 64 struct nvme_request req; 65 struct ib_mr *mr; 66 struct nvme_rdma_qe sqe; 67 union nvme_result result; 68 __le16 status; 69 refcount_t ref; 70 struct ib_sge sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS]; 71 u32 num_sge; 72 struct ib_reg_wr reg_wr; 73 struct ib_cqe reg_cqe; 74 struct nvme_rdma_queue *queue; 75 struct nvme_rdma_sgl data_sgl; 76 struct nvme_rdma_sgl *metadata_sgl; 77 bool use_sig_mr; 78 }; 79 80 enum nvme_rdma_queue_flags { 81 NVME_RDMA_Q_ALLOCATED = 0, 82 NVME_RDMA_Q_LIVE = 1, 83 NVME_RDMA_Q_TR_READY = 2, 84 }; 85 86 struct nvme_rdma_queue { 87 struct nvme_rdma_qe *rsp_ring; 88 int queue_size; 89 size_t cmnd_capsule_len; 90 struct nvme_rdma_ctrl *ctrl; 91 struct nvme_rdma_device *device; 92 struct ib_cq *ib_cq; 93 struct ib_qp *qp; 94 95 unsigned long flags; 96 struct rdma_cm_id *cm_id; 97 int cm_error; 98 struct completion cm_done; 99 bool pi_support; 100 int cq_size; 101 struct mutex queue_lock; 102 }; 103 104 struct nvme_rdma_ctrl { 105 /* read only in the hot path */ 106 struct nvme_rdma_queue *queues; 107 108 /* other member variables */ 109 struct blk_mq_tag_set tag_set; 110 struct work_struct err_work; 111 112 struct nvme_rdma_qe async_event_sqe; 113 114 struct delayed_work reconnect_work; 115 116 struct list_head list; 117 118 struct blk_mq_tag_set admin_tag_set; 119 struct nvme_rdma_device *device; 120 121 u32 max_fr_pages; 122 123 struct sockaddr_storage addr; 124 struct sockaddr_storage src_addr; 125 126 struct nvme_ctrl ctrl; 127 bool use_inline_data; 128 u32 io_queues[HCTX_MAX_TYPES]; 129 }; 130 131 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl) 132 { 133 return container_of(ctrl, struct nvme_rdma_ctrl, ctrl); 134 } 135 136 static LIST_HEAD(device_list); 137 static DEFINE_MUTEX(device_list_mutex); 138 139 static LIST_HEAD(nvme_rdma_ctrl_list); 140 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex); 141 142 /* 143 * Disabling this option makes small I/O goes faster, but is fundamentally 144 * unsafe. With it turned off we will have to register a global rkey that 145 * allows read and write access to all physical memory. 146 */ 147 static bool register_always = true; 148 module_param(register_always, bool, 0444); 149 MODULE_PARM_DESC(register_always, 150 "Use memory registration even for contiguous memory regions"); 151 152 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id, 153 struct rdma_cm_event *event); 154 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc); 155 static void nvme_rdma_complete_rq(struct request *rq); 156 157 static const struct blk_mq_ops nvme_rdma_mq_ops; 158 static const struct blk_mq_ops nvme_rdma_admin_mq_ops; 159 160 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue) 161 { 162 return queue - queue->ctrl->queues; 163 } 164 165 static bool nvme_rdma_poll_queue(struct nvme_rdma_queue *queue) 166 { 167 return nvme_rdma_queue_idx(queue) > 168 queue->ctrl->io_queues[HCTX_TYPE_DEFAULT] + 169 queue->ctrl->io_queues[HCTX_TYPE_READ]; 170 } 171 172 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue) 173 { 174 return queue->cmnd_capsule_len - sizeof(struct nvme_command); 175 } 176 177 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe, 178 size_t capsule_size, enum dma_data_direction dir) 179 { 180 ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir); 181 kfree(qe->data); 182 } 183 184 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe, 185 size_t capsule_size, enum dma_data_direction dir) 186 { 187 qe->data = kzalloc(capsule_size, GFP_KERNEL); 188 if (!qe->data) 189 return -ENOMEM; 190 191 qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir); 192 if (ib_dma_mapping_error(ibdev, qe->dma)) { 193 kfree(qe->data); 194 qe->data = NULL; 195 return -ENOMEM; 196 } 197 198 return 0; 199 } 200 201 static void nvme_rdma_free_ring(struct ib_device *ibdev, 202 struct nvme_rdma_qe *ring, size_t ib_queue_size, 203 size_t capsule_size, enum dma_data_direction dir) 204 { 205 int i; 206 207 for (i = 0; i < ib_queue_size; i++) 208 nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir); 209 kfree(ring); 210 } 211 212 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev, 213 size_t ib_queue_size, size_t capsule_size, 214 enum dma_data_direction dir) 215 { 216 struct nvme_rdma_qe *ring; 217 int i; 218 219 ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL); 220 if (!ring) 221 return NULL; 222 223 /* 224 * Bind the CQEs (post recv buffers) DMA mapping to the RDMA queue 225 * lifetime. It's safe, since any chage in the underlying RDMA device 226 * will issue error recovery and queue re-creation. 227 */ 228 for (i = 0; i < ib_queue_size; i++) { 229 if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir)) 230 goto out_free_ring; 231 } 232 233 return ring; 234 235 out_free_ring: 236 nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir); 237 return NULL; 238 } 239 240 static void nvme_rdma_qp_event(struct ib_event *event, void *context) 241 { 242 pr_debug("QP event %s (%d)\n", 243 ib_event_msg(event->event), event->event); 244 245 } 246 247 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue) 248 { 249 int ret; 250 251 ret = wait_for_completion_interruptible(&queue->cm_done); 252 if (ret) 253 return ret; 254 WARN_ON_ONCE(queue->cm_error > 0); 255 return queue->cm_error; 256 } 257 258 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor) 259 { 260 struct nvme_rdma_device *dev = queue->device; 261 struct ib_qp_init_attr init_attr; 262 int ret; 263 264 memset(&init_attr, 0, sizeof(init_attr)); 265 init_attr.event_handler = nvme_rdma_qp_event; 266 /* +1 for drain */ 267 init_attr.cap.max_send_wr = factor * queue->queue_size + 1; 268 /* +1 for drain */ 269 init_attr.cap.max_recv_wr = queue->queue_size + 1; 270 init_attr.cap.max_recv_sge = 1; 271 init_attr.cap.max_send_sge = 1 + dev->num_inline_segments; 272 init_attr.sq_sig_type = IB_SIGNAL_REQ_WR; 273 init_attr.qp_type = IB_QPT_RC; 274 init_attr.send_cq = queue->ib_cq; 275 init_attr.recv_cq = queue->ib_cq; 276 if (queue->pi_support) 277 init_attr.create_flags |= IB_QP_CREATE_INTEGRITY_EN; 278 init_attr.qp_context = queue; 279 280 ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr); 281 282 queue->qp = queue->cm_id->qp; 283 return ret; 284 } 285 286 static void nvme_rdma_exit_request(struct blk_mq_tag_set *set, 287 struct request *rq, unsigned int hctx_idx) 288 { 289 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 290 291 kfree(req->sqe.data); 292 } 293 294 static int nvme_rdma_init_request(struct blk_mq_tag_set *set, 295 struct request *rq, unsigned int hctx_idx, 296 unsigned int numa_node) 297 { 298 struct nvme_rdma_ctrl *ctrl = set->driver_data; 299 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 300 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; 301 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx]; 302 303 nvme_req(rq)->ctrl = &ctrl->ctrl; 304 req->sqe.data = kzalloc(sizeof(struct nvme_command), GFP_KERNEL); 305 if (!req->sqe.data) 306 return -ENOMEM; 307 308 /* metadata nvme_rdma_sgl struct is located after command's data SGL */ 309 if (queue->pi_support) 310 req->metadata_sgl = (void *)nvme_req(rq) + 311 sizeof(struct nvme_rdma_request) + 312 NVME_RDMA_DATA_SGL_SIZE; 313 314 req->queue = queue; 315 nvme_req(rq)->cmd = req->sqe.data; 316 317 return 0; 318 } 319 320 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 321 unsigned int hctx_idx) 322 { 323 struct nvme_rdma_ctrl *ctrl = data; 324 struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1]; 325 326 BUG_ON(hctx_idx >= ctrl->ctrl.queue_count); 327 328 hctx->driver_data = queue; 329 return 0; 330 } 331 332 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, 333 unsigned int hctx_idx) 334 { 335 struct nvme_rdma_ctrl *ctrl = data; 336 struct nvme_rdma_queue *queue = &ctrl->queues[0]; 337 338 BUG_ON(hctx_idx != 0); 339 340 hctx->driver_data = queue; 341 return 0; 342 } 343 344 static void nvme_rdma_free_dev(struct kref *ref) 345 { 346 struct nvme_rdma_device *ndev = 347 container_of(ref, struct nvme_rdma_device, ref); 348 349 mutex_lock(&device_list_mutex); 350 list_del(&ndev->entry); 351 mutex_unlock(&device_list_mutex); 352 353 ib_dealloc_pd(ndev->pd); 354 kfree(ndev); 355 } 356 357 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev) 358 { 359 kref_put(&dev->ref, nvme_rdma_free_dev); 360 } 361 362 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev) 363 { 364 return kref_get_unless_zero(&dev->ref); 365 } 366 367 static struct nvme_rdma_device * 368 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id) 369 { 370 struct nvme_rdma_device *ndev; 371 372 mutex_lock(&device_list_mutex); 373 list_for_each_entry(ndev, &device_list, entry) { 374 if (ndev->dev->node_guid == cm_id->device->node_guid && 375 nvme_rdma_dev_get(ndev)) 376 goto out_unlock; 377 } 378 379 ndev = kzalloc(sizeof(*ndev), GFP_KERNEL); 380 if (!ndev) 381 goto out_err; 382 383 ndev->dev = cm_id->device; 384 kref_init(&ndev->ref); 385 386 ndev->pd = ib_alloc_pd(ndev->dev, 387 register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY); 388 if (IS_ERR(ndev->pd)) 389 goto out_free_dev; 390 391 if (!(ndev->dev->attrs.device_cap_flags & 392 IB_DEVICE_MEM_MGT_EXTENSIONS)) { 393 dev_err(&ndev->dev->dev, 394 "Memory registrations not supported.\n"); 395 goto out_free_pd; 396 } 397 398 ndev->num_inline_segments = min(NVME_RDMA_MAX_INLINE_SEGMENTS, 399 ndev->dev->attrs.max_send_sge - 1); 400 list_add(&ndev->entry, &device_list); 401 out_unlock: 402 mutex_unlock(&device_list_mutex); 403 return ndev; 404 405 out_free_pd: 406 ib_dealloc_pd(ndev->pd); 407 out_free_dev: 408 kfree(ndev); 409 out_err: 410 mutex_unlock(&device_list_mutex); 411 return NULL; 412 } 413 414 static void nvme_rdma_free_cq(struct nvme_rdma_queue *queue) 415 { 416 if (nvme_rdma_poll_queue(queue)) 417 ib_free_cq(queue->ib_cq); 418 else 419 ib_cq_pool_put(queue->ib_cq, queue->cq_size); 420 } 421 422 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue) 423 { 424 struct nvme_rdma_device *dev; 425 struct ib_device *ibdev; 426 427 if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags)) 428 return; 429 430 dev = queue->device; 431 ibdev = dev->dev; 432 433 if (queue->pi_support) 434 ib_mr_pool_destroy(queue->qp, &queue->qp->sig_mrs); 435 ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs); 436 437 /* 438 * The cm_id object might have been destroyed during RDMA connection 439 * establishment error flow to avoid getting other cma events, thus 440 * the destruction of the QP shouldn't use rdma_cm API. 441 */ 442 ib_destroy_qp(queue->qp); 443 nvme_rdma_free_cq(queue); 444 445 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size, 446 sizeof(struct nvme_completion), DMA_FROM_DEVICE); 447 448 nvme_rdma_dev_put(dev); 449 } 450 451 static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev, bool pi_support) 452 { 453 u32 max_page_list_len; 454 455 if (pi_support) 456 max_page_list_len = ibdev->attrs.max_pi_fast_reg_page_list_len; 457 else 458 max_page_list_len = ibdev->attrs.max_fast_reg_page_list_len; 459 460 return min_t(u32, NVME_RDMA_MAX_SEGMENTS, max_page_list_len - 1); 461 } 462 463 static int nvme_rdma_create_cq(struct ib_device *ibdev, 464 struct nvme_rdma_queue *queue) 465 { 466 int ret, comp_vector, idx = nvme_rdma_queue_idx(queue); 467 enum ib_poll_context poll_ctx; 468 469 /* 470 * Spread I/O queues completion vectors according their queue index. 471 * Admin queues can always go on completion vector 0. 472 */ 473 comp_vector = (idx == 0 ? idx : idx - 1) % ibdev->num_comp_vectors; 474 475 /* Polling queues need direct cq polling context */ 476 if (nvme_rdma_poll_queue(queue)) { 477 poll_ctx = IB_POLL_DIRECT; 478 queue->ib_cq = ib_alloc_cq(ibdev, queue, queue->cq_size, 479 comp_vector, poll_ctx); 480 } else { 481 poll_ctx = IB_POLL_SOFTIRQ; 482 queue->ib_cq = ib_cq_pool_get(ibdev, queue->cq_size, 483 comp_vector, poll_ctx); 484 } 485 486 if (IS_ERR(queue->ib_cq)) { 487 ret = PTR_ERR(queue->ib_cq); 488 return ret; 489 } 490 491 return 0; 492 } 493 494 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue) 495 { 496 struct ib_device *ibdev; 497 const int send_wr_factor = 3; /* MR, SEND, INV */ 498 const int cq_factor = send_wr_factor + 1; /* + RECV */ 499 int ret, pages_per_mr; 500 501 queue->device = nvme_rdma_find_get_device(queue->cm_id); 502 if (!queue->device) { 503 dev_err(queue->cm_id->device->dev.parent, 504 "no client data found!\n"); 505 return -ECONNREFUSED; 506 } 507 ibdev = queue->device->dev; 508 509 /* +1 for ib_stop_cq */ 510 queue->cq_size = cq_factor * queue->queue_size + 1; 511 512 ret = nvme_rdma_create_cq(ibdev, queue); 513 if (ret) 514 goto out_put_dev; 515 516 ret = nvme_rdma_create_qp(queue, send_wr_factor); 517 if (ret) 518 goto out_destroy_ib_cq; 519 520 queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size, 521 sizeof(struct nvme_completion), DMA_FROM_DEVICE); 522 if (!queue->rsp_ring) { 523 ret = -ENOMEM; 524 goto out_destroy_qp; 525 } 526 527 /* 528 * Currently we don't use SG_GAPS MR's so if the first entry is 529 * misaligned we'll end up using two entries for a single data page, 530 * so one additional entry is required. 531 */ 532 pages_per_mr = nvme_rdma_get_max_fr_pages(ibdev, queue->pi_support) + 1; 533 ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs, 534 queue->queue_size, 535 IB_MR_TYPE_MEM_REG, 536 pages_per_mr, 0); 537 if (ret) { 538 dev_err(queue->ctrl->ctrl.device, 539 "failed to initialize MR pool sized %d for QID %d\n", 540 queue->queue_size, nvme_rdma_queue_idx(queue)); 541 goto out_destroy_ring; 542 } 543 544 if (queue->pi_support) { 545 ret = ib_mr_pool_init(queue->qp, &queue->qp->sig_mrs, 546 queue->queue_size, IB_MR_TYPE_INTEGRITY, 547 pages_per_mr, pages_per_mr); 548 if (ret) { 549 dev_err(queue->ctrl->ctrl.device, 550 "failed to initialize PI MR pool sized %d for QID %d\n", 551 queue->queue_size, nvme_rdma_queue_idx(queue)); 552 goto out_destroy_mr_pool; 553 } 554 } 555 556 set_bit(NVME_RDMA_Q_TR_READY, &queue->flags); 557 558 return 0; 559 560 out_destroy_mr_pool: 561 ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs); 562 out_destroy_ring: 563 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size, 564 sizeof(struct nvme_completion), DMA_FROM_DEVICE); 565 out_destroy_qp: 566 rdma_destroy_qp(queue->cm_id); 567 out_destroy_ib_cq: 568 nvme_rdma_free_cq(queue); 569 out_put_dev: 570 nvme_rdma_dev_put(queue->device); 571 return ret; 572 } 573 574 static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl, 575 int idx, size_t queue_size) 576 { 577 struct nvme_rdma_queue *queue; 578 struct sockaddr *src_addr = NULL; 579 int ret; 580 581 queue = &ctrl->queues[idx]; 582 mutex_init(&queue->queue_lock); 583 queue->ctrl = ctrl; 584 if (idx && ctrl->ctrl.max_integrity_segments) 585 queue->pi_support = true; 586 else 587 queue->pi_support = false; 588 init_completion(&queue->cm_done); 589 590 if (idx > 0) 591 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16; 592 else 593 queue->cmnd_capsule_len = sizeof(struct nvme_command); 594 595 queue->queue_size = queue_size; 596 597 queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue, 598 RDMA_PS_TCP, IB_QPT_RC); 599 if (IS_ERR(queue->cm_id)) { 600 dev_info(ctrl->ctrl.device, 601 "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id)); 602 ret = PTR_ERR(queue->cm_id); 603 goto out_destroy_mutex; 604 } 605 606 if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR) 607 src_addr = (struct sockaddr *)&ctrl->src_addr; 608 609 queue->cm_error = -ETIMEDOUT; 610 ret = rdma_resolve_addr(queue->cm_id, src_addr, 611 (struct sockaddr *)&ctrl->addr, 612 NVME_RDMA_CM_TIMEOUT_MS); 613 if (ret) { 614 dev_info(ctrl->ctrl.device, 615 "rdma_resolve_addr failed (%d).\n", ret); 616 goto out_destroy_cm_id; 617 } 618 619 ret = nvme_rdma_wait_for_cm(queue); 620 if (ret) { 621 dev_info(ctrl->ctrl.device, 622 "rdma connection establishment failed (%d)\n", ret); 623 goto out_destroy_cm_id; 624 } 625 626 set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags); 627 628 return 0; 629 630 out_destroy_cm_id: 631 rdma_destroy_id(queue->cm_id); 632 nvme_rdma_destroy_queue_ib(queue); 633 out_destroy_mutex: 634 mutex_destroy(&queue->queue_lock); 635 return ret; 636 } 637 638 static void __nvme_rdma_stop_queue(struct nvme_rdma_queue *queue) 639 { 640 rdma_disconnect(queue->cm_id); 641 ib_drain_qp(queue->qp); 642 } 643 644 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue) 645 { 646 mutex_lock(&queue->queue_lock); 647 if (test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags)) 648 __nvme_rdma_stop_queue(queue); 649 mutex_unlock(&queue->queue_lock); 650 } 651 652 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue) 653 { 654 if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags)) 655 return; 656 657 rdma_destroy_id(queue->cm_id); 658 nvme_rdma_destroy_queue_ib(queue); 659 mutex_destroy(&queue->queue_lock); 660 } 661 662 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl) 663 { 664 int i; 665 666 for (i = 1; i < ctrl->ctrl.queue_count; i++) 667 nvme_rdma_free_queue(&ctrl->queues[i]); 668 } 669 670 static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl) 671 { 672 int i; 673 674 for (i = 1; i < ctrl->ctrl.queue_count; i++) 675 nvme_rdma_stop_queue(&ctrl->queues[i]); 676 } 677 678 static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx) 679 { 680 struct nvme_rdma_queue *queue = &ctrl->queues[idx]; 681 int ret; 682 683 if (idx) 684 ret = nvmf_connect_io_queue(&ctrl->ctrl, idx); 685 else 686 ret = nvmf_connect_admin_queue(&ctrl->ctrl); 687 688 if (!ret) { 689 set_bit(NVME_RDMA_Q_LIVE, &queue->flags); 690 } else { 691 if (test_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags)) 692 __nvme_rdma_stop_queue(queue); 693 dev_info(ctrl->ctrl.device, 694 "failed to connect queue: %d ret=%d\n", idx, ret); 695 } 696 return ret; 697 } 698 699 static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl) 700 { 701 int i, ret = 0; 702 703 for (i = 1; i < ctrl->ctrl.queue_count; i++) { 704 ret = nvme_rdma_start_queue(ctrl, i); 705 if (ret) 706 goto out_stop_queues; 707 } 708 709 return 0; 710 711 out_stop_queues: 712 for (i--; i >= 1; i--) 713 nvme_rdma_stop_queue(&ctrl->queues[i]); 714 return ret; 715 } 716 717 static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl) 718 { 719 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 720 struct ib_device *ibdev = ctrl->device->dev; 721 unsigned int nr_io_queues, nr_default_queues; 722 unsigned int nr_read_queues, nr_poll_queues; 723 int i, ret; 724 725 nr_read_queues = min_t(unsigned int, ibdev->num_comp_vectors, 726 min(opts->nr_io_queues, num_online_cpus())); 727 nr_default_queues = min_t(unsigned int, ibdev->num_comp_vectors, 728 min(opts->nr_write_queues, num_online_cpus())); 729 nr_poll_queues = min(opts->nr_poll_queues, num_online_cpus()); 730 nr_io_queues = nr_read_queues + nr_default_queues + nr_poll_queues; 731 732 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues); 733 if (ret) 734 return ret; 735 736 if (nr_io_queues == 0) { 737 dev_err(ctrl->ctrl.device, 738 "unable to set any I/O queues\n"); 739 return -ENOMEM; 740 } 741 742 ctrl->ctrl.queue_count = nr_io_queues + 1; 743 dev_info(ctrl->ctrl.device, 744 "creating %d I/O queues.\n", nr_io_queues); 745 746 if (opts->nr_write_queues && nr_read_queues < nr_io_queues) { 747 /* 748 * separate read/write queues 749 * hand out dedicated default queues only after we have 750 * sufficient read queues. 751 */ 752 ctrl->io_queues[HCTX_TYPE_READ] = nr_read_queues; 753 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ]; 754 ctrl->io_queues[HCTX_TYPE_DEFAULT] = 755 min(nr_default_queues, nr_io_queues); 756 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT]; 757 } else { 758 /* 759 * shared read/write queues 760 * either no write queues were requested, or we don't have 761 * sufficient queue count to have dedicated default queues. 762 */ 763 ctrl->io_queues[HCTX_TYPE_DEFAULT] = 764 min(nr_read_queues, nr_io_queues); 765 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT]; 766 } 767 768 if (opts->nr_poll_queues && nr_io_queues) { 769 /* map dedicated poll queues only if we have queues left */ 770 ctrl->io_queues[HCTX_TYPE_POLL] = 771 min(nr_poll_queues, nr_io_queues); 772 } 773 774 for (i = 1; i < ctrl->ctrl.queue_count; i++) { 775 ret = nvme_rdma_alloc_queue(ctrl, i, 776 ctrl->ctrl.sqsize + 1); 777 if (ret) 778 goto out_free_queues; 779 } 780 781 return 0; 782 783 out_free_queues: 784 for (i--; i >= 1; i--) 785 nvme_rdma_free_queue(&ctrl->queues[i]); 786 787 return ret; 788 } 789 790 static int nvme_rdma_alloc_admin_tag_set(struct nvme_ctrl *nctrl) 791 { 792 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 793 struct blk_mq_tag_set *set = &ctrl->admin_tag_set; 794 int ret; 795 796 memset(set, 0, sizeof(*set)); 797 set->ops = &nvme_rdma_admin_mq_ops; 798 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH; 799 set->reserved_tags = NVMF_RESERVED_TAGS; 800 set->numa_node = nctrl->numa_node; 801 set->cmd_size = sizeof(struct nvme_rdma_request) + 802 NVME_RDMA_DATA_SGL_SIZE; 803 set->driver_data = ctrl; 804 set->nr_hw_queues = 1; 805 set->timeout = NVME_ADMIN_TIMEOUT; 806 set->flags = BLK_MQ_F_NO_SCHED; 807 ret = blk_mq_alloc_tag_set(set); 808 if (!ret) 809 ctrl->ctrl.admin_tagset = set; 810 return ret; 811 } 812 813 static int nvme_rdma_alloc_tag_set(struct nvme_ctrl *nctrl) 814 { 815 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 816 struct blk_mq_tag_set *set = &ctrl->tag_set; 817 int ret; 818 819 memset(set, 0, sizeof(*set)); 820 set->ops = &nvme_rdma_mq_ops; 821 set->queue_depth = nctrl->sqsize + 1; 822 set->reserved_tags = NVMF_RESERVED_TAGS; 823 set->numa_node = nctrl->numa_node; 824 set->flags = BLK_MQ_F_SHOULD_MERGE; 825 set->cmd_size = sizeof(struct nvme_rdma_request) + 826 NVME_RDMA_DATA_SGL_SIZE; 827 if (nctrl->max_integrity_segments) 828 set->cmd_size += sizeof(struct nvme_rdma_sgl) + 829 NVME_RDMA_METADATA_SGL_SIZE; 830 set->driver_data = ctrl; 831 set->nr_hw_queues = nctrl->queue_count - 1; 832 set->timeout = NVME_IO_TIMEOUT; 833 set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2; 834 ret = blk_mq_alloc_tag_set(set); 835 if (!ret) 836 ctrl->ctrl.tagset = set; 837 return ret; 838 } 839 840 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl, 841 bool remove) 842 { 843 if (remove) { 844 blk_mq_destroy_queue(ctrl->ctrl.admin_q); 845 blk_mq_destroy_queue(ctrl->ctrl.fabrics_q); 846 blk_mq_free_tag_set(ctrl->ctrl.admin_tagset); 847 } 848 if (ctrl->async_event_sqe.data) { 849 cancel_work_sync(&ctrl->ctrl.async_event_work); 850 nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe, 851 sizeof(struct nvme_command), DMA_TO_DEVICE); 852 ctrl->async_event_sqe.data = NULL; 853 } 854 nvme_rdma_free_queue(&ctrl->queues[0]); 855 } 856 857 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl, 858 bool new) 859 { 860 bool pi_capable = false; 861 int error; 862 863 error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH); 864 if (error) 865 return error; 866 867 ctrl->device = ctrl->queues[0].device; 868 ctrl->ctrl.numa_node = ibdev_to_node(ctrl->device->dev); 869 870 /* T10-PI support */ 871 if (ctrl->device->dev->attrs.kernel_cap_flags & 872 IBK_INTEGRITY_HANDOVER) 873 pi_capable = true; 874 875 ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev, 876 pi_capable); 877 878 /* 879 * Bind the async event SQE DMA mapping to the admin queue lifetime. 880 * It's safe, since any chage in the underlying RDMA device will issue 881 * error recovery and queue re-creation. 882 */ 883 error = nvme_rdma_alloc_qe(ctrl->device->dev, &ctrl->async_event_sqe, 884 sizeof(struct nvme_command), DMA_TO_DEVICE); 885 if (error) 886 goto out_free_queue; 887 888 if (new) { 889 error = nvme_rdma_alloc_admin_tag_set(&ctrl->ctrl); 890 if (error) 891 goto out_free_async_qe; 892 893 ctrl->ctrl.fabrics_q = blk_mq_init_queue(&ctrl->admin_tag_set); 894 if (IS_ERR(ctrl->ctrl.fabrics_q)) { 895 error = PTR_ERR(ctrl->ctrl.fabrics_q); 896 goto out_free_tagset; 897 } 898 899 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set); 900 if (IS_ERR(ctrl->ctrl.admin_q)) { 901 error = PTR_ERR(ctrl->ctrl.admin_q); 902 goto out_cleanup_fabrics_q; 903 } 904 } 905 906 error = nvme_rdma_start_queue(ctrl, 0); 907 if (error) 908 goto out_cleanup_queue; 909 910 error = nvme_enable_ctrl(&ctrl->ctrl); 911 if (error) 912 goto out_stop_queue; 913 914 ctrl->ctrl.max_segments = ctrl->max_fr_pages; 915 ctrl->ctrl.max_hw_sectors = ctrl->max_fr_pages << (ilog2(SZ_4K) - 9); 916 if (pi_capable) 917 ctrl->ctrl.max_integrity_segments = ctrl->max_fr_pages; 918 else 919 ctrl->ctrl.max_integrity_segments = 0; 920 921 nvme_start_admin_queue(&ctrl->ctrl); 922 923 error = nvme_init_ctrl_finish(&ctrl->ctrl); 924 if (error) 925 goto out_quiesce_queue; 926 927 return 0; 928 929 out_quiesce_queue: 930 nvme_stop_admin_queue(&ctrl->ctrl); 931 blk_sync_queue(ctrl->ctrl.admin_q); 932 out_stop_queue: 933 nvme_rdma_stop_queue(&ctrl->queues[0]); 934 nvme_cancel_admin_tagset(&ctrl->ctrl); 935 out_cleanup_queue: 936 if (new) 937 blk_mq_destroy_queue(ctrl->ctrl.admin_q); 938 out_cleanup_fabrics_q: 939 if (new) 940 blk_mq_destroy_queue(ctrl->ctrl.fabrics_q); 941 out_free_tagset: 942 if (new) 943 blk_mq_free_tag_set(ctrl->ctrl.admin_tagset); 944 out_free_async_qe: 945 if (ctrl->async_event_sqe.data) { 946 nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe, 947 sizeof(struct nvme_command), DMA_TO_DEVICE); 948 ctrl->async_event_sqe.data = NULL; 949 } 950 out_free_queue: 951 nvme_rdma_free_queue(&ctrl->queues[0]); 952 return error; 953 } 954 955 static void nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl *ctrl, 956 bool remove) 957 { 958 if (remove) { 959 blk_mq_destroy_queue(ctrl->ctrl.connect_q); 960 blk_mq_free_tag_set(ctrl->ctrl.tagset); 961 } 962 nvme_rdma_free_io_queues(ctrl); 963 } 964 965 static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new) 966 { 967 int ret; 968 969 ret = nvme_rdma_alloc_io_queues(ctrl); 970 if (ret) 971 return ret; 972 973 if (new) { 974 ret = nvme_rdma_alloc_tag_set(&ctrl->ctrl); 975 if (ret) 976 goto out_free_io_queues; 977 978 ret = nvme_ctrl_init_connect_q(&(ctrl->ctrl)); 979 if (ret) 980 goto out_free_tag_set; 981 } 982 983 ret = nvme_rdma_start_io_queues(ctrl); 984 if (ret) 985 goto out_cleanup_connect_q; 986 987 if (!new) { 988 nvme_start_queues(&ctrl->ctrl); 989 if (!nvme_wait_freeze_timeout(&ctrl->ctrl, NVME_IO_TIMEOUT)) { 990 /* 991 * If we timed out waiting for freeze we are likely to 992 * be stuck. Fail the controller initialization just 993 * to be safe. 994 */ 995 ret = -ENODEV; 996 goto out_wait_freeze_timed_out; 997 } 998 blk_mq_update_nr_hw_queues(ctrl->ctrl.tagset, 999 ctrl->ctrl.queue_count - 1); 1000 nvme_unfreeze(&ctrl->ctrl); 1001 } 1002 1003 return 0; 1004 1005 out_wait_freeze_timed_out: 1006 nvme_stop_queues(&ctrl->ctrl); 1007 nvme_sync_io_queues(&ctrl->ctrl); 1008 nvme_rdma_stop_io_queues(ctrl); 1009 out_cleanup_connect_q: 1010 nvme_cancel_tagset(&ctrl->ctrl); 1011 if (new) 1012 blk_mq_destroy_queue(ctrl->ctrl.connect_q); 1013 out_free_tag_set: 1014 if (new) 1015 blk_mq_free_tag_set(ctrl->ctrl.tagset); 1016 out_free_io_queues: 1017 nvme_rdma_free_io_queues(ctrl); 1018 return ret; 1019 } 1020 1021 static void nvme_rdma_teardown_admin_queue(struct nvme_rdma_ctrl *ctrl, 1022 bool remove) 1023 { 1024 nvme_stop_admin_queue(&ctrl->ctrl); 1025 blk_sync_queue(ctrl->ctrl.admin_q); 1026 nvme_rdma_stop_queue(&ctrl->queues[0]); 1027 nvme_cancel_admin_tagset(&ctrl->ctrl); 1028 if (remove) 1029 nvme_start_admin_queue(&ctrl->ctrl); 1030 nvme_rdma_destroy_admin_queue(ctrl, remove); 1031 } 1032 1033 static void nvme_rdma_teardown_io_queues(struct nvme_rdma_ctrl *ctrl, 1034 bool remove) 1035 { 1036 if (ctrl->ctrl.queue_count > 1) { 1037 nvme_start_freeze(&ctrl->ctrl); 1038 nvme_stop_queues(&ctrl->ctrl); 1039 nvme_sync_io_queues(&ctrl->ctrl); 1040 nvme_rdma_stop_io_queues(ctrl); 1041 nvme_cancel_tagset(&ctrl->ctrl); 1042 if (remove) 1043 nvme_start_queues(&ctrl->ctrl); 1044 nvme_rdma_destroy_io_queues(ctrl, remove); 1045 } 1046 } 1047 1048 static void nvme_rdma_stop_ctrl(struct nvme_ctrl *nctrl) 1049 { 1050 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 1051 1052 cancel_work_sync(&ctrl->err_work); 1053 cancel_delayed_work_sync(&ctrl->reconnect_work); 1054 } 1055 1056 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl) 1057 { 1058 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 1059 1060 if (list_empty(&ctrl->list)) 1061 goto free_ctrl; 1062 1063 mutex_lock(&nvme_rdma_ctrl_mutex); 1064 list_del(&ctrl->list); 1065 mutex_unlock(&nvme_rdma_ctrl_mutex); 1066 1067 nvmf_free_options(nctrl->opts); 1068 free_ctrl: 1069 kfree(ctrl->queues); 1070 kfree(ctrl); 1071 } 1072 1073 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl) 1074 { 1075 /* If we are resetting/deleting then do nothing */ 1076 if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) { 1077 WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW || 1078 ctrl->ctrl.state == NVME_CTRL_LIVE); 1079 return; 1080 } 1081 1082 if (nvmf_should_reconnect(&ctrl->ctrl)) { 1083 dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n", 1084 ctrl->ctrl.opts->reconnect_delay); 1085 queue_delayed_work(nvme_wq, &ctrl->reconnect_work, 1086 ctrl->ctrl.opts->reconnect_delay * HZ); 1087 } else { 1088 nvme_delete_ctrl(&ctrl->ctrl); 1089 } 1090 } 1091 1092 static int nvme_rdma_setup_ctrl(struct nvme_rdma_ctrl *ctrl, bool new) 1093 { 1094 int ret; 1095 bool changed; 1096 1097 ret = nvme_rdma_configure_admin_queue(ctrl, new); 1098 if (ret) 1099 return ret; 1100 1101 if (ctrl->ctrl.icdoff) { 1102 ret = -EOPNOTSUPP; 1103 dev_err(ctrl->ctrl.device, "icdoff is not supported!\n"); 1104 goto destroy_admin; 1105 } 1106 1107 if (!(ctrl->ctrl.sgls & (1 << 2))) { 1108 ret = -EOPNOTSUPP; 1109 dev_err(ctrl->ctrl.device, 1110 "Mandatory keyed sgls are not supported!\n"); 1111 goto destroy_admin; 1112 } 1113 1114 if (ctrl->ctrl.opts->queue_size > ctrl->ctrl.sqsize + 1) { 1115 dev_warn(ctrl->ctrl.device, 1116 "queue_size %zu > ctrl sqsize %u, clamping down\n", 1117 ctrl->ctrl.opts->queue_size, ctrl->ctrl.sqsize + 1); 1118 } 1119 1120 if (ctrl->ctrl.sqsize + 1 > NVME_RDMA_MAX_QUEUE_SIZE) { 1121 dev_warn(ctrl->ctrl.device, 1122 "ctrl sqsize %u > max queue size %u, clamping down\n", 1123 ctrl->ctrl.sqsize + 1, NVME_RDMA_MAX_QUEUE_SIZE); 1124 ctrl->ctrl.sqsize = NVME_RDMA_MAX_QUEUE_SIZE - 1; 1125 } 1126 1127 if (ctrl->ctrl.sqsize + 1 > ctrl->ctrl.maxcmd) { 1128 dev_warn(ctrl->ctrl.device, 1129 "sqsize %u > ctrl maxcmd %u, clamping down\n", 1130 ctrl->ctrl.sqsize + 1, ctrl->ctrl.maxcmd); 1131 ctrl->ctrl.sqsize = ctrl->ctrl.maxcmd - 1; 1132 } 1133 1134 if (ctrl->ctrl.sgls & (1 << 20)) 1135 ctrl->use_inline_data = true; 1136 1137 if (ctrl->ctrl.queue_count > 1) { 1138 ret = nvme_rdma_configure_io_queues(ctrl, new); 1139 if (ret) 1140 goto destroy_admin; 1141 } 1142 1143 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); 1144 if (!changed) { 1145 /* 1146 * state change failure is ok if we started ctrl delete, 1147 * unless we're during creation of a new controller to 1148 * avoid races with teardown flow. 1149 */ 1150 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING && 1151 ctrl->ctrl.state != NVME_CTRL_DELETING_NOIO); 1152 WARN_ON_ONCE(new); 1153 ret = -EINVAL; 1154 goto destroy_io; 1155 } 1156 1157 nvme_start_ctrl(&ctrl->ctrl); 1158 return 0; 1159 1160 destroy_io: 1161 if (ctrl->ctrl.queue_count > 1) { 1162 nvme_stop_queues(&ctrl->ctrl); 1163 nvme_sync_io_queues(&ctrl->ctrl); 1164 nvme_rdma_stop_io_queues(ctrl); 1165 nvme_cancel_tagset(&ctrl->ctrl); 1166 nvme_rdma_destroy_io_queues(ctrl, new); 1167 } 1168 destroy_admin: 1169 nvme_stop_admin_queue(&ctrl->ctrl); 1170 blk_sync_queue(ctrl->ctrl.admin_q); 1171 nvme_rdma_stop_queue(&ctrl->queues[0]); 1172 nvme_cancel_admin_tagset(&ctrl->ctrl); 1173 nvme_rdma_destroy_admin_queue(ctrl, new); 1174 return ret; 1175 } 1176 1177 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work) 1178 { 1179 struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work), 1180 struct nvme_rdma_ctrl, reconnect_work); 1181 1182 ++ctrl->ctrl.nr_reconnects; 1183 1184 if (nvme_rdma_setup_ctrl(ctrl, false)) 1185 goto requeue; 1186 1187 dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n", 1188 ctrl->ctrl.nr_reconnects); 1189 1190 ctrl->ctrl.nr_reconnects = 0; 1191 1192 return; 1193 1194 requeue: 1195 dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n", 1196 ctrl->ctrl.nr_reconnects); 1197 nvme_rdma_reconnect_or_remove(ctrl); 1198 } 1199 1200 static void nvme_rdma_error_recovery_work(struct work_struct *work) 1201 { 1202 struct nvme_rdma_ctrl *ctrl = container_of(work, 1203 struct nvme_rdma_ctrl, err_work); 1204 1205 nvme_auth_stop(&ctrl->ctrl); 1206 nvme_stop_keep_alive(&ctrl->ctrl); 1207 flush_work(&ctrl->ctrl.async_event_work); 1208 nvme_rdma_teardown_io_queues(ctrl, false); 1209 nvme_start_queues(&ctrl->ctrl); 1210 nvme_rdma_teardown_admin_queue(ctrl, false); 1211 nvme_start_admin_queue(&ctrl->ctrl); 1212 1213 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) { 1214 /* state change failure is ok if we started ctrl delete */ 1215 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING && 1216 ctrl->ctrl.state != NVME_CTRL_DELETING_NOIO); 1217 return; 1218 } 1219 1220 nvme_rdma_reconnect_or_remove(ctrl); 1221 } 1222 1223 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl) 1224 { 1225 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING)) 1226 return; 1227 1228 dev_warn(ctrl->ctrl.device, "starting error recovery\n"); 1229 queue_work(nvme_reset_wq, &ctrl->err_work); 1230 } 1231 1232 static void nvme_rdma_end_request(struct nvme_rdma_request *req) 1233 { 1234 struct request *rq = blk_mq_rq_from_pdu(req); 1235 1236 if (!refcount_dec_and_test(&req->ref)) 1237 return; 1238 if (!nvme_try_complete_req(rq, req->status, req->result)) 1239 nvme_rdma_complete_rq(rq); 1240 } 1241 1242 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc, 1243 const char *op) 1244 { 1245 struct nvme_rdma_queue *queue = wc->qp->qp_context; 1246 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 1247 1248 if (ctrl->ctrl.state == NVME_CTRL_LIVE) 1249 dev_info(ctrl->ctrl.device, 1250 "%s for CQE 0x%p failed with status %s (%d)\n", 1251 op, wc->wr_cqe, 1252 ib_wc_status_msg(wc->status), wc->status); 1253 nvme_rdma_error_recovery(ctrl); 1254 } 1255 1256 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc) 1257 { 1258 if (unlikely(wc->status != IB_WC_SUCCESS)) 1259 nvme_rdma_wr_error(cq, wc, "MEMREG"); 1260 } 1261 1262 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc) 1263 { 1264 struct nvme_rdma_request *req = 1265 container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe); 1266 1267 if (unlikely(wc->status != IB_WC_SUCCESS)) 1268 nvme_rdma_wr_error(cq, wc, "LOCAL_INV"); 1269 else 1270 nvme_rdma_end_request(req); 1271 } 1272 1273 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue, 1274 struct nvme_rdma_request *req) 1275 { 1276 struct ib_send_wr wr = { 1277 .opcode = IB_WR_LOCAL_INV, 1278 .next = NULL, 1279 .num_sge = 0, 1280 .send_flags = IB_SEND_SIGNALED, 1281 .ex.invalidate_rkey = req->mr->rkey, 1282 }; 1283 1284 req->reg_cqe.done = nvme_rdma_inv_rkey_done; 1285 wr.wr_cqe = &req->reg_cqe; 1286 1287 return ib_post_send(queue->qp, &wr, NULL); 1288 } 1289 1290 static void nvme_rdma_dma_unmap_req(struct ib_device *ibdev, struct request *rq) 1291 { 1292 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1293 1294 if (blk_integrity_rq(rq)) { 1295 ib_dma_unmap_sg(ibdev, req->metadata_sgl->sg_table.sgl, 1296 req->metadata_sgl->nents, rq_dma_dir(rq)); 1297 sg_free_table_chained(&req->metadata_sgl->sg_table, 1298 NVME_INLINE_METADATA_SG_CNT); 1299 } 1300 1301 ib_dma_unmap_sg(ibdev, req->data_sgl.sg_table.sgl, req->data_sgl.nents, 1302 rq_dma_dir(rq)); 1303 sg_free_table_chained(&req->data_sgl.sg_table, NVME_INLINE_SG_CNT); 1304 } 1305 1306 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue, 1307 struct request *rq) 1308 { 1309 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1310 struct nvme_rdma_device *dev = queue->device; 1311 struct ib_device *ibdev = dev->dev; 1312 struct list_head *pool = &queue->qp->rdma_mrs; 1313 1314 if (!blk_rq_nr_phys_segments(rq)) 1315 return; 1316 1317 if (req->use_sig_mr) 1318 pool = &queue->qp->sig_mrs; 1319 1320 if (req->mr) { 1321 ib_mr_pool_put(queue->qp, pool, req->mr); 1322 req->mr = NULL; 1323 } 1324 1325 nvme_rdma_dma_unmap_req(ibdev, rq); 1326 } 1327 1328 static int nvme_rdma_set_sg_null(struct nvme_command *c) 1329 { 1330 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 1331 1332 sg->addr = 0; 1333 put_unaligned_le24(0, sg->length); 1334 put_unaligned_le32(0, sg->key); 1335 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4; 1336 return 0; 1337 } 1338 1339 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue, 1340 struct nvme_rdma_request *req, struct nvme_command *c, 1341 int count) 1342 { 1343 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 1344 struct ib_sge *sge = &req->sge[1]; 1345 struct scatterlist *sgl; 1346 u32 len = 0; 1347 int i; 1348 1349 for_each_sg(req->data_sgl.sg_table.sgl, sgl, count, i) { 1350 sge->addr = sg_dma_address(sgl); 1351 sge->length = sg_dma_len(sgl); 1352 sge->lkey = queue->device->pd->local_dma_lkey; 1353 len += sge->length; 1354 sge++; 1355 } 1356 1357 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff); 1358 sg->length = cpu_to_le32(len); 1359 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET; 1360 1361 req->num_sge += count; 1362 return 0; 1363 } 1364 1365 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue, 1366 struct nvme_rdma_request *req, struct nvme_command *c) 1367 { 1368 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 1369 1370 sg->addr = cpu_to_le64(sg_dma_address(req->data_sgl.sg_table.sgl)); 1371 put_unaligned_le24(sg_dma_len(req->data_sgl.sg_table.sgl), sg->length); 1372 put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key); 1373 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4; 1374 return 0; 1375 } 1376 1377 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue, 1378 struct nvme_rdma_request *req, struct nvme_command *c, 1379 int count) 1380 { 1381 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 1382 int nr; 1383 1384 req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs); 1385 if (WARN_ON_ONCE(!req->mr)) 1386 return -EAGAIN; 1387 1388 /* 1389 * Align the MR to a 4K page size to match the ctrl page size and 1390 * the block virtual boundary. 1391 */ 1392 nr = ib_map_mr_sg(req->mr, req->data_sgl.sg_table.sgl, count, NULL, 1393 SZ_4K); 1394 if (unlikely(nr < count)) { 1395 ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr); 1396 req->mr = NULL; 1397 if (nr < 0) 1398 return nr; 1399 return -EINVAL; 1400 } 1401 1402 ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey)); 1403 1404 req->reg_cqe.done = nvme_rdma_memreg_done; 1405 memset(&req->reg_wr, 0, sizeof(req->reg_wr)); 1406 req->reg_wr.wr.opcode = IB_WR_REG_MR; 1407 req->reg_wr.wr.wr_cqe = &req->reg_cqe; 1408 req->reg_wr.wr.num_sge = 0; 1409 req->reg_wr.mr = req->mr; 1410 req->reg_wr.key = req->mr->rkey; 1411 req->reg_wr.access = IB_ACCESS_LOCAL_WRITE | 1412 IB_ACCESS_REMOTE_READ | 1413 IB_ACCESS_REMOTE_WRITE; 1414 1415 sg->addr = cpu_to_le64(req->mr->iova); 1416 put_unaligned_le24(req->mr->length, sg->length); 1417 put_unaligned_le32(req->mr->rkey, sg->key); 1418 sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) | 1419 NVME_SGL_FMT_INVALIDATE; 1420 1421 return 0; 1422 } 1423 1424 static void nvme_rdma_set_sig_domain(struct blk_integrity *bi, 1425 struct nvme_command *cmd, struct ib_sig_domain *domain, 1426 u16 control, u8 pi_type) 1427 { 1428 domain->sig_type = IB_SIG_TYPE_T10_DIF; 1429 domain->sig.dif.bg_type = IB_T10DIF_CRC; 1430 domain->sig.dif.pi_interval = 1 << bi->interval_exp; 1431 domain->sig.dif.ref_tag = le32_to_cpu(cmd->rw.reftag); 1432 if (control & NVME_RW_PRINFO_PRCHK_REF) 1433 domain->sig.dif.ref_remap = true; 1434 1435 domain->sig.dif.app_tag = le16_to_cpu(cmd->rw.apptag); 1436 domain->sig.dif.apptag_check_mask = le16_to_cpu(cmd->rw.appmask); 1437 domain->sig.dif.app_escape = true; 1438 if (pi_type == NVME_NS_DPS_PI_TYPE3) 1439 domain->sig.dif.ref_escape = true; 1440 } 1441 1442 static void nvme_rdma_set_sig_attrs(struct blk_integrity *bi, 1443 struct nvme_command *cmd, struct ib_sig_attrs *sig_attrs, 1444 u8 pi_type) 1445 { 1446 u16 control = le16_to_cpu(cmd->rw.control); 1447 1448 memset(sig_attrs, 0, sizeof(*sig_attrs)); 1449 if (control & NVME_RW_PRINFO_PRACT) { 1450 /* for WRITE_INSERT/READ_STRIP no memory domain */ 1451 sig_attrs->mem.sig_type = IB_SIG_TYPE_NONE; 1452 nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control, 1453 pi_type); 1454 /* Clear the PRACT bit since HCA will generate/verify the PI */ 1455 control &= ~NVME_RW_PRINFO_PRACT; 1456 cmd->rw.control = cpu_to_le16(control); 1457 } else { 1458 /* for WRITE_PASS/READ_PASS both wire/memory domains exist */ 1459 nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control, 1460 pi_type); 1461 nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control, 1462 pi_type); 1463 } 1464 } 1465 1466 static void nvme_rdma_set_prot_checks(struct nvme_command *cmd, u8 *mask) 1467 { 1468 *mask = 0; 1469 if (le16_to_cpu(cmd->rw.control) & NVME_RW_PRINFO_PRCHK_REF) 1470 *mask |= IB_SIG_CHECK_REFTAG; 1471 if (le16_to_cpu(cmd->rw.control) & NVME_RW_PRINFO_PRCHK_GUARD) 1472 *mask |= IB_SIG_CHECK_GUARD; 1473 } 1474 1475 static void nvme_rdma_sig_done(struct ib_cq *cq, struct ib_wc *wc) 1476 { 1477 if (unlikely(wc->status != IB_WC_SUCCESS)) 1478 nvme_rdma_wr_error(cq, wc, "SIG"); 1479 } 1480 1481 static int nvme_rdma_map_sg_pi(struct nvme_rdma_queue *queue, 1482 struct nvme_rdma_request *req, struct nvme_command *c, 1483 int count, int pi_count) 1484 { 1485 struct nvme_rdma_sgl *sgl = &req->data_sgl; 1486 struct ib_reg_wr *wr = &req->reg_wr; 1487 struct request *rq = blk_mq_rq_from_pdu(req); 1488 struct nvme_ns *ns = rq->q->queuedata; 1489 struct bio *bio = rq->bio; 1490 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 1491 int nr; 1492 1493 req->mr = ib_mr_pool_get(queue->qp, &queue->qp->sig_mrs); 1494 if (WARN_ON_ONCE(!req->mr)) 1495 return -EAGAIN; 1496 1497 nr = ib_map_mr_sg_pi(req->mr, sgl->sg_table.sgl, count, NULL, 1498 req->metadata_sgl->sg_table.sgl, pi_count, NULL, 1499 SZ_4K); 1500 if (unlikely(nr)) 1501 goto mr_put; 1502 1503 nvme_rdma_set_sig_attrs(blk_get_integrity(bio->bi_bdev->bd_disk), c, 1504 req->mr->sig_attrs, ns->pi_type); 1505 nvme_rdma_set_prot_checks(c, &req->mr->sig_attrs->check_mask); 1506 1507 ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey)); 1508 1509 req->reg_cqe.done = nvme_rdma_sig_done; 1510 memset(wr, 0, sizeof(*wr)); 1511 wr->wr.opcode = IB_WR_REG_MR_INTEGRITY; 1512 wr->wr.wr_cqe = &req->reg_cqe; 1513 wr->wr.num_sge = 0; 1514 wr->wr.send_flags = 0; 1515 wr->mr = req->mr; 1516 wr->key = req->mr->rkey; 1517 wr->access = IB_ACCESS_LOCAL_WRITE | 1518 IB_ACCESS_REMOTE_READ | 1519 IB_ACCESS_REMOTE_WRITE; 1520 1521 sg->addr = cpu_to_le64(req->mr->iova); 1522 put_unaligned_le24(req->mr->length, sg->length); 1523 put_unaligned_le32(req->mr->rkey, sg->key); 1524 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4; 1525 1526 return 0; 1527 1528 mr_put: 1529 ib_mr_pool_put(queue->qp, &queue->qp->sig_mrs, req->mr); 1530 req->mr = NULL; 1531 if (nr < 0) 1532 return nr; 1533 return -EINVAL; 1534 } 1535 1536 static int nvme_rdma_dma_map_req(struct ib_device *ibdev, struct request *rq, 1537 int *count, int *pi_count) 1538 { 1539 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1540 int ret; 1541 1542 req->data_sgl.sg_table.sgl = (struct scatterlist *)(req + 1); 1543 ret = sg_alloc_table_chained(&req->data_sgl.sg_table, 1544 blk_rq_nr_phys_segments(rq), req->data_sgl.sg_table.sgl, 1545 NVME_INLINE_SG_CNT); 1546 if (ret) 1547 return -ENOMEM; 1548 1549 req->data_sgl.nents = blk_rq_map_sg(rq->q, rq, 1550 req->data_sgl.sg_table.sgl); 1551 1552 *count = ib_dma_map_sg(ibdev, req->data_sgl.sg_table.sgl, 1553 req->data_sgl.nents, rq_dma_dir(rq)); 1554 if (unlikely(*count <= 0)) { 1555 ret = -EIO; 1556 goto out_free_table; 1557 } 1558 1559 if (blk_integrity_rq(rq)) { 1560 req->metadata_sgl->sg_table.sgl = 1561 (struct scatterlist *)(req->metadata_sgl + 1); 1562 ret = sg_alloc_table_chained(&req->metadata_sgl->sg_table, 1563 blk_rq_count_integrity_sg(rq->q, rq->bio), 1564 req->metadata_sgl->sg_table.sgl, 1565 NVME_INLINE_METADATA_SG_CNT); 1566 if (unlikely(ret)) { 1567 ret = -ENOMEM; 1568 goto out_unmap_sg; 1569 } 1570 1571 req->metadata_sgl->nents = blk_rq_map_integrity_sg(rq->q, 1572 rq->bio, req->metadata_sgl->sg_table.sgl); 1573 *pi_count = ib_dma_map_sg(ibdev, 1574 req->metadata_sgl->sg_table.sgl, 1575 req->metadata_sgl->nents, 1576 rq_dma_dir(rq)); 1577 if (unlikely(*pi_count <= 0)) { 1578 ret = -EIO; 1579 goto out_free_pi_table; 1580 } 1581 } 1582 1583 return 0; 1584 1585 out_free_pi_table: 1586 sg_free_table_chained(&req->metadata_sgl->sg_table, 1587 NVME_INLINE_METADATA_SG_CNT); 1588 out_unmap_sg: 1589 ib_dma_unmap_sg(ibdev, req->data_sgl.sg_table.sgl, req->data_sgl.nents, 1590 rq_dma_dir(rq)); 1591 out_free_table: 1592 sg_free_table_chained(&req->data_sgl.sg_table, NVME_INLINE_SG_CNT); 1593 return ret; 1594 } 1595 1596 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue, 1597 struct request *rq, struct nvme_command *c) 1598 { 1599 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1600 struct nvme_rdma_device *dev = queue->device; 1601 struct ib_device *ibdev = dev->dev; 1602 int pi_count = 0; 1603 int count, ret; 1604 1605 req->num_sge = 1; 1606 refcount_set(&req->ref, 2); /* send and recv completions */ 1607 1608 c->common.flags |= NVME_CMD_SGL_METABUF; 1609 1610 if (!blk_rq_nr_phys_segments(rq)) 1611 return nvme_rdma_set_sg_null(c); 1612 1613 ret = nvme_rdma_dma_map_req(ibdev, rq, &count, &pi_count); 1614 if (unlikely(ret)) 1615 return ret; 1616 1617 if (req->use_sig_mr) { 1618 ret = nvme_rdma_map_sg_pi(queue, req, c, count, pi_count); 1619 goto out; 1620 } 1621 1622 if (count <= dev->num_inline_segments) { 1623 if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) && 1624 queue->ctrl->use_inline_data && 1625 blk_rq_payload_bytes(rq) <= 1626 nvme_rdma_inline_data_size(queue)) { 1627 ret = nvme_rdma_map_sg_inline(queue, req, c, count); 1628 goto out; 1629 } 1630 1631 if (count == 1 && dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) { 1632 ret = nvme_rdma_map_sg_single(queue, req, c); 1633 goto out; 1634 } 1635 } 1636 1637 ret = nvme_rdma_map_sg_fr(queue, req, c, count); 1638 out: 1639 if (unlikely(ret)) 1640 goto out_dma_unmap_req; 1641 1642 return 0; 1643 1644 out_dma_unmap_req: 1645 nvme_rdma_dma_unmap_req(ibdev, rq); 1646 return ret; 1647 } 1648 1649 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc) 1650 { 1651 struct nvme_rdma_qe *qe = 1652 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe); 1653 struct nvme_rdma_request *req = 1654 container_of(qe, struct nvme_rdma_request, sqe); 1655 1656 if (unlikely(wc->status != IB_WC_SUCCESS)) 1657 nvme_rdma_wr_error(cq, wc, "SEND"); 1658 else 1659 nvme_rdma_end_request(req); 1660 } 1661 1662 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue, 1663 struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge, 1664 struct ib_send_wr *first) 1665 { 1666 struct ib_send_wr wr; 1667 int ret; 1668 1669 sge->addr = qe->dma; 1670 sge->length = sizeof(struct nvme_command); 1671 sge->lkey = queue->device->pd->local_dma_lkey; 1672 1673 wr.next = NULL; 1674 wr.wr_cqe = &qe->cqe; 1675 wr.sg_list = sge; 1676 wr.num_sge = num_sge; 1677 wr.opcode = IB_WR_SEND; 1678 wr.send_flags = IB_SEND_SIGNALED; 1679 1680 if (first) 1681 first->next = ≀ 1682 else 1683 first = ≀ 1684 1685 ret = ib_post_send(queue->qp, first, NULL); 1686 if (unlikely(ret)) { 1687 dev_err(queue->ctrl->ctrl.device, 1688 "%s failed with error code %d\n", __func__, ret); 1689 } 1690 return ret; 1691 } 1692 1693 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue, 1694 struct nvme_rdma_qe *qe) 1695 { 1696 struct ib_recv_wr wr; 1697 struct ib_sge list; 1698 int ret; 1699 1700 list.addr = qe->dma; 1701 list.length = sizeof(struct nvme_completion); 1702 list.lkey = queue->device->pd->local_dma_lkey; 1703 1704 qe->cqe.done = nvme_rdma_recv_done; 1705 1706 wr.next = NULL; 1707 wr.wr_cqe = &qe->cqe; 1708 wr.sg_list = &list; 1709 wr.num_sge = 1; 1710 1711 ret = ib_post_recv(queue->qp, &wr, NULL); 1712 if (unlikely(ret)) { 1713 dev_err(queue->ctrl->ctrl.device, 1714 "%s failed with error code %d\n", __func__, ret); 1715 } 1716 return ret; 1717 } 1718 1719 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue) 1720 { 1721 u32 queue_idx = nvme_rdma_queue_idx(queue); 1722 1723 if (queue_idx == 0) 1724 return queue->ctrl->admin_tag_set.tags[queue_idx]; 1725 return queue->ctrl->tag_set.tags[queue_idx - 1]; 1726 } 1727 1728 static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc) 1729 { 1730 if (unlikely(wc->status != IB_WC_SUCCESS)) 1731 nvme_rdma_wr_error(cq, wc, "ASYNC"); 1732 } 1733 1734 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg) 1735 { 1736 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg); 1737 struct nvme_rdma_queue *queue = &ctrl->queues[0]; 1738 struct ib_device *dev = queue->device->dev; 1739 struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe; 1740 struct nvme_command *cmd = sqe->data; 1741 struct ib_sge sge; 1742 int ret; 1743 1744 ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE); 1745 1746 memset(cmd, 0, sizeof(*cmd)); 1747 cmd->common.opcode = nvme_admin_async_event; 1748 cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH; 1749 cmd->common.flags |= NVME_CMD_SGL_METABUF; 1750 nvme_rdma_set_sg_null(cmd); 1751 1752 sqe->cqe.done = nvme_rdma_async_done; 1753 1754 ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd), 1755 DMA_TO_DEVICE); 1756 1757 ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL); 1758 WARN_ON_ONCE(ret); 1759 } 1760 1761 static void nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue, 1762 struct nvme_completion *cqe, struct ib_wc *wc) 1763 { 1764 struct request *rq; 1765 struct nvme_rdma_request *req; 1766 1767 rq = nvme_find_rq(nvme_rdma_tagset(queue), cqe->command_id); 1768 if (!rq) { 1769 dev_err(queue->ctrl->ctrl.device, 1770 "got bad command_id %#x on QP %#x\n", 1771 cqe->command_id, queue->qp->qp_num); 1772 nvme_rdma_error_recovery(queue->ctrl); 1773 return; 1774 } 1775 req = blk_mq_rq_to_pdu(rq); 1776 1777 req->status = cqe->status; 1778 req->result = cqe->result; 1779 1780 if (wc->wc_flags & IB_WC_WITH_INVALIDATE) { 1781 if (unlikely(!req->mr || 1782 wc->ex.invalidate_rkey != req->mr->rkey)) { 1783 dev_err(queue->ctrl->ctrl.device, 1784 "Bogus remote invalidation for rkey %#x\n", 1785 req->mr ? req->mr->rkey : 0); 1786 nvme_rdma_error_recovery(queue->ctrl); 1787 } 1788 } else if (req->mr) { 1789 int ret; 1790 1791 ret = nvme_rdma_inv_rkey(queue, req); 1792 if (unlikely(ret < 0)) { 1793 dev_err(queue->ctrl->ctrl.device, 1794 "Queueing INV WR for rkey %#x failed (%d)\n", 1795 req->mr->rkey, ret); 1796 nvme_rdma_error_recovery(queue->ctrl); 1797 } 1798 /* the local invalidation completion will end the request */ 1799 return; 1800 } 1801 1802 nvme_rdma_end_request(req); 1803 } 1804 1805 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc) 1806 { 1807 struct nvme_rdma_qe *qe = 1808 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe); 1809 struct nvme_rdma_queue *queue = wc->qp->qp_context; 1810 struct ib_device *ibdev = queue->device->dev; 1811 struct nvme_completion *cqe = qe->data; 1812 const size_t len = sizeof(struct nvme_completion); 1813 1814 if (unlikely(wc->status != IB_WC_SUCCESS)) { 1815 nvme_rdma_wr_error(cq, wc, "RECV"); 1816 return; 1817 } 1818 1819 /* sanity checking for received data length */ 1820 if (unlikely(wc->byte_len < len)) { 1821 dev_err(queue->ctrl->ctrl.device, 1822 "Unexpected nvme completion length(%d)\n", wc->byte_len); 1823 nvme_rdma_error_recovery(queue->ctrl); 1824 return; 1825 } 1826 1827 ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE); 1828 /* 1829 * AEN requests are special as they don't time out and can 1830 * survive any kind of queue freeze and often don't respond to 1831 * aborts. We don't even bother to allocate a struct request 1832 * for them but rather special case them here. 1833 */ 1834 if (unlikely(nvme_is_aen_req(nvme_rdma_queue_idx(queue), 1835 cqe->command_id))) 1836 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status, 1837 &cqe->result); 1838 else 1839 nvme_rdma_process_nvme_rsp(queue, cqe, wc); 1840 ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE); 1841 1842 nvme_rdma_post_recv(queue, qe); 1843 } 1844 1845 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue) 1846 { 1847 int ret, i; 1848 1849 for (i = 0; i < queue->queue_size; i++) { 1850 ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]); 1851 if (ret) 1852 return ret; 1853 } 1854 1855 return 0; 1856 } 1857 1858 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue, 1859 struct rdma_cm_event *ev) 1860 { 1861 struct rdma_cm_id *cm_id = queue->cm_id; 1862 int status = ev->status; 1863 const char *rej_msg; 1864 const struct nvme_rdma_cm_rej *rej_data; 1865 u8 rej_data_len; 1866 1867 rej_msg = rdma_reject_msg(cm_id, status); 1868 rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len); 1869 1870 if (rej_data && rej_data_len >= sizeof(u16)) { 1871 u16 sts = le16_to_cpu(rej_data->sts); 1872 1873 dev_err(queue->ctrl->ctrl.device, 1874 "Connect rejected: status %d (%s) nvme status %d (%s).\n", 1875 status, rej_msg, sts, nvme_rdma_cm_msg(sts)); 1876 } else { 1877 dev_err(queue->ctrl->ctrl.device, 1878 "Connect rejected: status %d (%s).\n", status, rej_msg); 1879 } 1880 1881 return -ECONNRESET; 1882 } 1883 1884 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue) 1885 { 1886 struct nvme_ctrl *ctrl = &queue->ctrl->ctrl; 1887 int ret; 1888 1889 ret = nvme_rdma_create_queue_ib(queue); 1890 if (ret) 1891 return ret; 1892 1893 if (ctrl->opts->tos >= 0) 1894 rdma_set_service_type(queue->cm_id, ctrl->opts->tos); 1895 ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CM_TIMEOUT_MS); 1896 if (ret) { 1897 dev_err(ctrl->device, "rdma_resolve_route failed (%d).\n", 1898 queue->cm_error); 1899 goto out_destroy_queue; 1900 } 1901 1902 return 0; 1903 1904 out_destroy_queue: 1905 nvme_rdma_destroy_queue_ib(queue); 1906 return ret; 1907 } 1908 1909 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue) 1910 { 1911 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 1912 struct rdma_conn_param param = { }; 1913 struct nvme_rdma_cm_req priv = { }; 1914 int ret; 1915 1916 param.qp_num = queue->qp->qp_num; 1917 param.flow_control = 1; 1918 1919 param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom; 1920 /* maximum retry count */ 1921 param.retry_count = 7; 1922 param.rnr_retry_count = 7; 1923 param.private_data = &priv; 1924 param.private_data_len = sizeof(priv); 1925 1926 priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0); 1927 priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue)); 1928 /* 1929 * set the admin queue depth to the minimum size 1930 * specified by the Fabrics standard. 1931 */ 1932 if (priv.qid == 0) { 1933 priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH); 1934 priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1); 1935 } else { 1936 /* 1937 * current interpretation of the fabrics spec 1938 * is at minimum you make hrqsize sqsize+1, or a 1939 * 1's based representation of sqsize. 1940 */ 1941 priv.hrqsize = cpu_to_le16(queue->queue_size); 1942 priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize); 1943 } 1944 1945 ret = rdma_connect_locked(queue->cm_id, ¶m); 1946 if (ret) { 1947 dev_err(ctrl->ctrl.device, 1948 "rdma_connect_locked failed (%d).\n", ret); 1949 return ret; 1950 } 1951 1952 return 0; 1953 } 1954 1955 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id, 1956 struct rdma_cm_event *ev) 1957 { 1958 struct nvme_rdma_queue *queue = cm_id->context; 1959 int cm_error = 0; 1960 1961 dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n", 1962 rdma_event_msg(ev->event), ev->event, 1963 ev->status, cm_id); 1964 1965 switch (ev->event) { 1966 case RDMA_CM_EVENT_ADDR_RESOLVED: 1967 cm_error = nvme_rdma_addr_resolved(queue); 1968 break; 1969 case RDMA_CM_EVENT_ROUTE_RESOLVED: 1970 cm_error = nvme_rdma_route_resolved(queue); 1971 break; 1972 case RDMA_CM_EVENT_ESTABLISHED: 1973 queue->cm_error = nvme_rdma_conn_established(queue); 1974 /* complete cm_done regardless of success/failure */ 1975 complete(&queue->cm_done); 1976 return 0; 1977 case RDMA_CM_EVENT_REJECTED: 1978 cm_error = nvme_rdma_conn_rejected(queue, ev); 1979 break; 1980 case RDMA_CM_EVENT_ROUTE_ERROR: 1981 case RDMA_CM_EVENT_CONNECT_ERROR: 1982 case RDMA_CM_EVENT_UNREACHABLE: 1983 case RDMA_CM_EVENT_ADDR_ERROR: 1984 dev_dbg(queue->ctrl->ctrl.device, 1985 "CM error event %d\n", ev->event); 1986 cm_error = -ECONNRESET; 1987 break; 1988 case RDMA_CM_EVENT_DISCONNECTED: 1989 case RDMA_CM_EVENT_ADDR_CHANGE: 1990 case RDMA_CM_EVENT_TIMEWAIT_EXIT: 1991 dev_dbg(queue->ctrl->ctrl.device, 1992 "disconnect received - connection closed\n"); 1993 nvme_rdma_error_recovery(queue->ctrl); 1994 break; 1995 case RDMA_CM_EVENT_DEVICE_REMOVAL: 1996 /* device removal is handled via the ib_client API */ 1997 break; 1998 default: 1999 dev_err(queue->ctrl->ctrl.device, 2000 "Unexpected RDMA CM event (%d)\n", ev->event); 2001 nvme_rdma_error_recovery(queue->ctrl); 2002 break; 2003 } 2004 2005 if (cm_error) { 2006 queue->cm_error = cm_error; 2007 complete(&queue->cm_done); 2008 } 2009 2010 return 0; 2011 } 2012 2013 static void nvme_rdma_complete_timed_out(struct request *rq) 2014 { 2015 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 2016 struct nvme_rdma_queue *queue = req->queue; 2017 2018 nvme_rdma_stop_queue(queue); 2019 nvmf_complete_timed_out_request(rq); 2020 } 2021 2022 static enum blk_eh_timer_return nvme_rdma_timeout(struct request *rq) 2023 { 2024 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 2025 struct nvme_rdma_queue *queue = req->queue; 2026 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 2027 2028 dev_warn(ctrl->ctrl.device, "I/O %d QID %d timeout\n", 2029 rq->tag, nvme_rdma_queue_idx(queue)); 2030 2031 if (ctrl->ctrl.state != NVME_CTRL_LIVE) { 2032 /* 2033 * If we are resetting, connecting or deleting we should 2034 * complete immediately because we may block controller 2035 * teardown or setup sequence 2036 * - ctrl disable/shutdown fabrics requests 2037 * - connect requests 2038 * - initialization admin requests 2039 * - I/O requests that entered after unquiescing and 2040 * the controller stopped responding 2041 * 2042 * All other requests should be cancelled by the error 2043 * recovery work, so it's fine that we fail it here. 2044 */ 2045 nvme_rdma_complete_timed_out(rq); 2046 return BLK_EH_DONE; 2047 } 2048 2049 /* 2050 * LIVE state should trigger the normal error recovery which will 2051 * handle completing this request. 2052 */ 2053 nvme_rdma_error_recovery(ctrl); 2054 return BLK_EH_RESET_TIMER; 2055 } 2056 2057 static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx, 2058 const struct blk_mq_queue_data *bd) 2059 { 2060 struct nvme_ns *ns = hctx->queue->queuedata; 2061 struct nvme_rdma_queue *queue = hctx->driver_data; 2062 struct request *rq = bd->rq; 2063 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 2064 struct nvme_rdma_qe *sqe = &req->sqe; 2065 struct nvme_command *c = nvme_req(rq)->cmd; 2066 struct ib_device *dev; 2067 bool queue_ready = test_bit(NVME_RDMA_Q_LIVE, &queue->flags); 2068 blk_status_t ret; 2069 int err; 2070 2071 WARN_ON_ONCE(rq->tag < 0); 2072 2073 if (!nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready)) 2074 return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq); 2075 2076 dev = queue->device->dev; 2077 2078 req->sqe.dma = ib_dma_map_single(dev, req->sqe.data, 2079 sizeof(struct nvme_command), 2080 DMA_TO_DEVICE); 2081 err = ib_dma_mapping_error(dev, req->sqe.dma); 2082 if (unlikely(err)) 2083 return BLK_STS_RESOURCE; 2084 2085 ib_dma_sync_single_for_cpu(dev, sqe->dma, 2086 sizeof(struct nvme_command), DMA_TO_DEVICE); 2087 2088 ret = nvme_setup_cmd(ns, rq); 2089 if (ret) 2090 goto unmap_qe; 2091 2092 blk_mq_start_request(rq); 2093 2094 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) && 2095 queue->pi_support && 2096 (c->common.opcode == nvme_cmd_write || 2097 c->common.opcode == nvme_cmd_read) && 2098 nvme_ns_has_pi(ns)) 2099 req->use_sig_mr = true; 2100 else 2101 req->use_sig_mr = false; 2102 2103 err = nvme_rdma_map_data(queue, rq, c); 2104 if (unlikely(err < 0)) { 2105 dev_err(queue->ctrl->ctrl.device, 2106 "Failed to map data (%d)\n", err); 2107 goto err; 2108 } 2109 2110 sqe->cqe.done = nvme_rdma_send_done; 2111 2112 ib_dma_sync_single_for_device(dev, sqe->dma, 2113 sizeof(struct nvme_command), DMA_TO_DEVICE); 2114 2115 err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge, 2116 req->mr ? &req->reg_wr.wr : NULL); 2117 if (unlikely(err)) 2118 goto err_unmap; 2119 2120 return BLK_STS_OK; 2121 2122 err_unmap: 2123 nvme_rdma_unmap_data(queue, rq); 2124 err: 2125 if (err == -EIO) 2126 ret = nvme_host_path_error(rq); 2127 else if (err == -ENOMEM || err == -EAGAIN) 2128 ret = BLK_STS_RESOURCE; 2129 else 2130 ret = BLK_STS_IOERR; 2131 nvme_cleanup_cmd(rq); 2132 unmap_qe: 2133 ib_dma_unmap_single(dev, req->sqe.dma, sizeof(struct nvme_command), 2134 DMA_TO_DEVICE); 2135 return ret; 2136 } 2137 2138 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob) 2139 { 2140 struct nvme_rdma_queue *queue = hctx->driver_data; 2141 2142 return ib_process_cq_direct(queue->ib_cq, -1); 2143 } 2144 2145 static void nvme_rdma_check_pi_status(struct nvme_rdma_request *req) 2146 { 2147 struct request *rq = blk_mq_rq_from_pdu(req); 2148 struct ib_mr_status mr_status; 2149 int ret; 2150 2151 ret = ib_check_mr_status(req->mr, IB_MR_CHECK_SIG_STATUS, &mr_status); 2152 if (ret) { 2153 pr_err("ib_check_mr_status failed, ret %d\n", ret); 2154 nvme_req(rq)->status = NVME_SC_INVALID_PI; 2155 return; 2156 } 2157 2158 if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) { 2159 switch (mr_status.sig_err.err_type) { 2160 case IB_SIG_BAD_GUARD: 2161 nvme_req(rq)->status = NVME_SC_GUARD_CHECK; 2162 break; 2163 case IB_SIG_BAD_REFTAG: 2164 nvme_req(rq)->status = NVME_SC_REFTAG_CHECK; 2165 break; 2166 case IB_SIG_BAD_APPTAG: 2167 nvme_req(rq)->status = NVME_SC_APPTAG_CHECK; 2168 break; 2169 } 2170 pr_err("PI error found type %d expected 0x%x vs actual 0x%x\n", 2171 mr_status.sig_err.err_type, mr_status.sig_err.expected, 2172 mr_status.sig_err.actual); 2173 } 2174 } 2175 2176 static void nvme_rdma_complete_rq(struct request *rq) 2177 { 2178 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 2179 struct nvme_rdma_queue *queue = req->queue; 2180 struct ib_device *ibdev = queue->device->dev; 2181 2182 if (req->use_sig_mr) 2183 nvme_rdma_check_pi_status(req); 2184 2185 nvme_rdma_unmap_data(queue, rq); 2186 ib_dma_unmap_single(ibdev, req->sqe.dma, sizeof(struct nvme_command), 2187 DMA_TO_DEVICE); 2188 nvme_complete_rq(rq); 2189 } 2190 2191 static int nvme_rdma_map_queues(struct blk_mq_tag_set *set) 2192 { 2193 struct nvme_rdma_ctrl *ctrl = set->driver_data; 2194 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 2195 2196 if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) { 2197 /* separate read/write queues */ 2198 set->map[HCTX_TYPE_DEFAULT].nr_queues = 2199 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2200 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0; 2201 set->map[HCTX_TYPE_READ].nr_queues = 2202 ctrl->io_queues[HCTX_TYPE_READ]; 2203 set->map[HCTX_TYPE_READ].queue_offset = 2204 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2205 } else { 2206 /* shared read/write queues */ 2207 set->map[HCTX_TYPE_DEFAULT].nr_queues = 2208 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2209 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0; 2210 set->map[HCTX_TYPE_READ].nr_queues = 2211 ctrl->io_queues[HCTX_TYPE_DEFAULT]; 2212 set->map[HCTX_TYPE_READ].queue_offset = 0; 2213 } 2214 blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_DEFAULT], 2215 ctrl->device->dev, 0); 2216 blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_READ], 2217 ctrl->device->dev, 0); 2218 2219 if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) { 2220 /* map dedicated poll queues only if we have queues left */ 2221 set->map[HCTX_TYPE_POLL].nr_queues = 2222 ctrl->io_queues[HCTX_TYPE_POLL]; 2223 set->map[HCTX_TYPE_POLL].queue_offset = 2224 ctrl->io_queues[HCTX_TYPE_DEFAULT] + 2225 ctrl->io_queues[HCTX_TYPE_READ]; 2226 blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]); 2227 } 2228 2229 dev_info(ctrl->ctrl.device, 2230 "mapped %d/%d/%d default/read/poll queues.\n", 2231 ctrl->io_queues[HCTX_TYPE_DEFAULT], 2232 ctrl->io_queues[HCTX_TYPE_READ], 2233 ctrl->io_queues[HCTX_TYPE_POLL]); 2234 2235 return 0; 2236 } 2237 2238 static const struct blk_mq_ops nvme_rdma_mq_ops = { 2239 .queue_rq = nvme_rdma_queue_rq, 2240 .complete = nvme_rdma_complete_rq, 2241 .init_request = nvme_rdma_init_request, 2242 .exit_request = nvme_rdma_exit_request, 2243 .init_hctx = nvme_rdma_init_hctx, 2244 .timeout = nvme_rdma_timeout, 2245 .map_queues = nvme_rdma_map_queues, 2246 .poll = nvme_rdma_poll, 2247 }; 2248 2249 static const struct blk_mq_ops nvme_rdma_admin_mq_ops = { 2250 .queue_rq = nvme_rdma_queue_rq, 2251 .complete = nvme_rdma_complete_rq, 2252 .init_request = nvme_rdma_init_request, 2253 .exit_request = nvme_rdma_exit_request, 2254 .init_hctx = nvme_rdma_init_admin_hctx, 2255 .timeout = nvme_rdma_timeout, 2256 }; 2257 2258 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown) 2259 { 2260 nvme_rdma_teardown_io_queues(ctrl, shutdown); 2261 nvme_stop_admin_queue(&ctrl->ctrl); 2262 if (shutdown) 2263 nvme_shutdown_ctrl(&ctrl->ctrl); 2264 else 2265 nvme_disable_ctrl(&ctrl->ctrl); 2266 nvme_rdma_teardown_admin_queue(ctrl, shutdown); 2267 } 2268 2269 static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl) 2270 { 2271 nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true); 2272 } 2273 2274 static void nvme_rdma_reset_ctrl_work(struct work_struct *work) 2275 { 2276 struct nvme_rdma_ctrl *ctrl = 2277 container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work); 2278 2279 nvme_stop_ctrl(&ctrl->ctrl); 2280 nvme_rdma_shutdown_ctrl(ctrl, false); 2281 2282 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) { 2283 /* state change failure should never happen */ 2284 WARN_ON_ONCE(1); 2285 return; 2286 } 2287 2288 if (nvme_rdma_setup_ctrl(ctrl, false)) 2289 goto out_fail; 2290 2291 return; 2292 2293 out_fail: 2294 ++ctrl->ctrl.nr_reconnects; 2295 nvme_rdma_reconnect_or_remove(ctrl); 2296 } 2297 2298 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = { 2299 .name = "rdma", 2300 .module = THIS_MODULE, 2301 .flags = NVME_F_FABRICS | NVME_F_METADATA_SUPPORTED, 2302 .reg_read32 = nvmf_reg_read32, 2303 .reg_read64 = nvmf_reg_read64, 2304 .reg_write32 = nvmf_reg_write32, 2305 .free_ctrl = nvme_rdma_free_ctrl, 2306 .submit_async_event = nvme_rdma_submit_async_event, 2307 .delete_ctrl = nvme_rdma_delete_ctrl, 2308 .get_address = nvmf_get_address, 2309 .stop_ctrl = nvme_rdma_stop_ctrl, 2310 }; 2311 2312 /* 2313 * Fails a connection request if it matches an existing controller 2314 * (association) with the same tuple: 2315 * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN> 2316 * 2317 * if local address is not specified in the request, it will match an 2318 * existing controller with all the other parameters the same and no 2319 * local port address specified as well. 2320 * 2321 * The ports don't need to be compared as they are intrinsically 2322 * already matched by the port pointers supplied. 2323 */ 2324 static bool 2325 nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts) 2326 { 2327 struct nvme_rdma_ctrl *ctrl; 2328 bool found = false; 2329 2330 mutex_lock(&nvme_rdma_ctrl_mutex); 2331 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) { 2332 found = nvmf_ip_options_match(&ctrl->ctrl, opts); 2333 if (found) 2334 break; 2335 } 2336 mutex_unlock(&nvme_rdma_ctrl_mutex); 2337 2338 return found; 2339 } 2340 2341 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev, 2342 struct nvmf_ctrl_options *opts) 2343 { 2344 struct nvme_rdma_ctrl *ctrl; 2345 int ret; 2346 bool changed; 2347 2348 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 2349 if (!ctrl) 2350 return ERR_PTR(-ENOMEM); 2351 ctrl->ctrl.opts = opts; 2352 INIT_LIST_HEAD(&ctrl->list); 2353 2354 if (!(opts->mask & NVMF_OPT_TRSVCID)) { 2355 opts->trsvcid = 2356 kstrdup(__stringify(NVME_RDMA_IP_PORT), GFP_KERNEL); 2357 if (!opts->trsvcid) { 2358 ret = -ENOMEM; 2359 goto out_free_ctrl; 2360 } 2361 opts->mask |= NVMF_OPT_TRSVCID; 2362 } 2363 2364 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 2365 opts->traddr, opts->trsvcid, &ctrl->addr); 2366 if (ret) { 2367 pr_err("malformed address passed: %s:%s\n", 2368 opts->traddr, opts->trsvcid); 2369 goto out_free_ctrl; 2370 } 2371 2372 if (opts->mask & NVMF_OPT_HOST_TRADDR) { 2373 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 2374 opts->host_traddr, NULL, &ctrl->src_addr); 2375 if (ret) { 2376 pr_err("malformed src address passed: %s\n", 2377 opts->host_traddr); 2378 goto out_free_ctrl; 2379 } 2380 } 2381 2382 if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) { 2383 ret = -EALREADY; 2384 goto out_free_ctrl; 2385 } 2386 2387 INIT_DELAYED_WORK(&ctrl->reconnect_work, 2388 nvme_rdma_reconnect_ctrl_work); 2389 INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work); 2390 INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work); 2391 2392 ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues + 2393 opts->nr_poll_queues + 1; 2394 ctrl->ctrl.sqsize = opts->queue_size - 1; 2395 ctrl->ctrl.kato = opts->kato; 2396 2397 ret = -ENOMEM; 2398 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues), 2399 GFP_KERNEL); 2400 if (!ctrl->queues) 2401 goto out_free_ctrl; 2402 2403 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops, 2404 0 /* no quirks, we're perfect! */); 2405 if (ret) 2406 goto out_kfree_queues; 2407 2408 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING); 2409 WARN_ON_ONCE(!changed); 2410 2411 ret = nvme_rdma_setup_ctrl(ctrl, true); 2412 if (ret) 2413 goto out_uninit_ctrl; 2414 2415 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n", 2416 nvmf_ctrl_subsysnqn(&ctrl->ctrl), &ctrl->addr); 2417 2418 mutex_lock(&nvme_rdma_ctrl_mutex); 2419 list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list); 2420 mutex_unlock(&nvme_rdma_ctrl_mutex); 2421 2422 return &ctrl->ctrl; 2423 2424 out_uninit_ctrl: 2425 nvme_uninit_ctrl(&ctrl->ctrl); 2426 nvme_put_ctrl(&ctrl->ctrl); 2427 if (ret > 0) 2428 ret = -EIO; 2429 return ERR_PTR(ret); 2430 out_kfree_queues: 2431 kfree(ctrl->queues); 2432 out_free_ctrl: 2433 kfree(ctrl); 2434 return ERR_PTR(ret); 2435 } 2436 2437 static struct nvmf_transport_ops nvme_rdma_transport = { 2438 .name = "rdma", 2439 .module = THIS_MODULE, 2440 .required_opts = NVMF_OPT_TRADDR, 2441 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY | 2442 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO | 2443 NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES | 2444 NVMF_OPT_TOS, 2445 .create_ctrl = nvme_rdma_create_ctrl, 2446 }; 2447 2448 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data) 2449 { 2450 struct nvme_rdma_ctrl *ctrl; 2451 struct nvme_rdma_device *ndev; 2452 bool found = false; 2453 2454 mutex_lock(&device_list_mutex); 2455 list_for_each_entry(ndev, &device_list, entry) { 2456 if (ndev->dev == ib_device) { 2457 found = true; 2458 break; 2459 } 2460 } 2461 mutex_unlock(&device_list_mutex); 2462 2463 if (!found) 2464 return; 2465 2466 /* Delete all controllers using this device */ 2467 mutex_lock(&nvme_rdma_ctrl_mutex); 2468 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) { 2469 if (ctrl->device->dev != ib_device) 2470 continue; 2471 nvme_delete_ctrl(&ctrl->ctrl); 2472 } 2473 mutex_unlock(&nvme_rdma_ctrl_mutex); 2474 2475 flush_workqueue(nvme_delete_wq); 2476 } 2477 2478 static struct ib_client nvme_rdma_ib_client = { 2479 .name = "nvme_rdma", 2480 .remove = nvme_rdma_remove_one 2481 }; 2482 2483 static int __init nvme_rdma_init_module(void) 2484 { 2485 int ret; 2486 2487 ret = ib_register_client(&nvme_rdma_ib_client); 2488 if (ret) 2489 return ret; 2490 2491 ret = nvmf_register_transport(&nvme_rdma_transport); 2492 if (ret) 2493 goto err_unreg_client; 2494 2495 return 0; 2496 2497 err_unreg_client: 2498 ib_unregister_client(&nvme_rdma_ib_client); 2499 return ret; 2500 } 2501 2502 static void __exit nvme_rdma_cleanup_module(void) 2503 { 2504 struct nvme_rdma_ctrl *ctrl; 2505 2506 nvmf_unregister_transport(&nvme_rdma_transport); 2507 ib_unregister_client(&nvme_rdma_ib_client); 2508 2509 mutex_lock(&nvme_rdma_ctrl_mutex); 2510 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) 2511 nvme_delete_ctrl(&ctrl->ctrl); 2512 mutex_unlock(&nvme_rdma_ctrl_mutex); 2513 flush_workqueue(nvme_delete_wq); 2514 } 2515 2516 module_init(nvme_rdma_init_module); 2517 module_exit(nvme_rdma_cleanup_module); 2518 2519 MODULE_LICENSE("GPL v2"); 2520