xref: /linux/drivers/nvme/host/rdma.c (revision 1e6d11fe72e311c1989991ee318d239f650fa318)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics RDMA host code.
4  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <rdma/mr_pool.h>
11 #include <linux/err.h>
12 #include <linux/string.h>
13 #include <linux/atomic.h>
14 #include <linux/blk-mq.h>
15 #include <linux/blk-mq-rdma.h>
16 #include <linux/blk-integrity.h>
17 #include <linux/types.h>
18 #include <linux/list.h>
19 #include <linux/mutex.h>
20 #include <linux/scatterlist.h>
21 #include <linux/nvme.h>
22 #include <asm/unaligned.h>
23 
24 #include <rdma/ib_verbs.h>
25 #include <rdma/rdma_cm.h>
26 #include <linux/nvme-rdma.h>
27 
28 #include "nvme.h"
29 #include "fabrics.h"
30 
31 
32 #define NVME_RDMA_CM_TIMEOUT_MS		3000		/* 3 second */
33 
34 #define NVME_RDMA_MAX_SEGMENTS		256
35 
36 #define NVME_RDMA_MAX_INLINE_SEGMENTS	4
37 
38 #define NVME_RDMA_DATA_SGL_SIZE \
39 	(sizeof(struct scatterlist) * NVME_INLINE_SG_CNT)
40 #define NVME_RDMA_METADATA_SGL_SIZE \
41 	(sizeof(struct scatterlist) * NVME_INLINE_METADATA_SG_CNT)
42 
43 struct nvme_rdma_device {
44 	struct ib_device	*dev;
45 	struct ib_pd		*pd;
46 	struct kref		ref;
47 	struct list_head	entry;
48 	unsigned int		num_inline_segments;
49 };
50 
51 struct nvme_rdma_qe {
52 	struct ib_cqe		cqe;
53 	void			*data;
54 	u64			dma;
55 };
56 
57 struct nvme_rdma_sgl {
58 	int			nents;
59 	struct sg_table		sg_table;
60 };
61 
62 struct nvme_rdma_queue;
63 struct nvme_rdma_request {
64 	struct nvme_request	req;
65 	struct ib_mr		*mr;
66 	struct nvme_rdma_qe	sqe;
67 	union nvme_result	result;
68 	__le16			status;
69 	refcount_t		ref;
70 	struct ib_sge		sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
71 	u32			num_sge;
72 	struct ib_reg_wr	reg_wr;
73 	struct ib_cqe		reg_cqe;
74 	struct nvme_rdma_queue  *queue;
75 	struct nvme_rdma_sgl	data_sgl;
76 	struct nvme_rdma_sgl	*metadata_sgl;
77 	bool			use_sig_mr;
78 };
79 
80 enum nvme_rdma_queue_flags {
81 	NVME_RDMA_Q_ALLOCATED		= 0,
82 	NVME_RDMA_Q_LIVE		= 1,
83 	NVME_RDMA_Q_TR_READY		= 2,
84 };
85 
86 struct nvme_rdma_queue {
87 	struct nvme_rdma_qe	*rsp_ring;
88 	int			queue_size;
89 	size_t			cmnd_capsule_len;
90 	struct nvme_rdma_ctrl	*ctrl;
91 	struct nvme_rdma_device	*device;
92 	struct ib_cq		*ib_cq;
93 	struct ib_qp		*qp;
94 
95 	unsigned long		flags;
96 	struct rdma_cm_id	*cm_id;
97 	int			cm_error;
98 	struct completion	cm_done;
99 	bool			pi_support;
100 	int			cq_size;
101 	struct mutex		queue_lock;
102 };
103 
104 struct nvme_rdma_ctrl {
105 	/* read only in the hot path */
106 	struct nvme_rdma_queue	*queues;
107 
108 	/* other member variables */
109 	struct blk_mq_tag_set	tag_set;
110 	struct work_struct	err_work;
111 
112 	struct nvme_rdma_qe	async_event_sqe;
113 
114 	struct delayed_work	reconnect_work;
115 
116 	struct list_head	list;
117 
118 	struct blk_mq_tag_set	admin_tag_set;
119 	struct nvme_rdma_device	*device;
120 
121 	u32			max_fr_pages;
122 
123 	struct sockaddr_storage addr;
124 	struct sockaddr_storage src_addr;
125 
126 	struct nvme_ctrl	ctrl;
127 	bool			use_inline_data;
128 	u32			io_queues[HCTX_MAX_TYPES];
129 };
130 
131 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
132 {
133 	return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
134 }
135 
136 static LIST_HEAD(device_list);
137 static DEFINE_MUTEX(device_list_mutex);
138 
139 static LIST_HEAD(nvme_rdma_ctrl_list);
140 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
141 
142 /*
143  * Disabling this option makes small I/O goes faster, but is fundamentally
144  * unsafe.  With it turned off we will have to register a global rkey that
145  * allows read and write access to all physical memory.
146  */
147 static bool register_always = true;
148 module_param(register_always, bool, 0444);
149 MODULE_PARM_DESC(register_always,
150 	 "Use memory registration even for contiguous memory regions");
151 
152 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
153 		struct rdma_cm_event *event);
154 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
155 static void nvme_rdma_complete_rq(struct request *rq);
156 
157 static const struct blk_mq_ops nvme_rdma_mq_ops;
158 static const struct blk_mq_ops nvme_rdma_admin_mq_ops;
159 
160 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
161 {
162 	return queue - queue->ctrl->queues;
163 }
164 
165 static bool nvme_rdma_poll_queue(struct nvme_rdma_queue *queue)
166 {
167 	return nvme_rdma_queue_idx(queue) >
168 		queue->ctrl->io_queues[HCTX_TYPE_DEFAULT] +
169 		queue->ctrl->io_queues[HCTX_TYPE_READ];
170 }
171 
172 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
173 {
174 	return queue->cmnd_capsule_len - sizeof(struct nvme_command);
175 }
176 
177 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
178 		size_t capsule_size, enum dma_data_direction dir)
179 {
180 	ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
181 	kfree(qe->data);
182 }
183 
184 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
185 		size_t capsule_size, enum dma_data_direction dir)
186 {
187 	qe->data = kzalloc(capsule_size, GFP_KERNEL);
188 	if (!qe->data)
189 		return -ENOMEM;
190 
191 	qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
192 	if (ib_dma_mapping_error(ibdev, qe->dma)) {
193 		kfree(qe->data);
194 		qe->data = NULL;
195 		return -ENOMEM;
196 	}
197 
198 	return 0;
199 }
200 
201 static void nvme_rdma_free_ring(struct ib_device *ibdev,
202 		struct nvme_rdma_qe *ring, size_t ib_queue_size,
203 		size_t capsule_size, enum dma_data_direction dir)
204 {
205 	int i;
206 
207 	for (i = 0; i < ib_queue_size; i++)
208 		nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
209 	kfree(ring);
210 }
211 
212 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
213 		size_t ib_queue_size, size_t capsule_size,
214 		enum dma_data_direction dir)
215 {
216 	struct nvme_rdma_qe *ring;
217 	int i;
218 
219 	ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
220 	if (!ring)
221 		return NULL;
222 
223 	/*
224 	 * Bind the CQEs (post recv buffers) DMA mapping to the RDMA queue
225 	 * lifetime. It's safe, since any chage in the underlying RDMA device
226 	 * will issue error recovery and queue re-creation.
227 	 */
228 	for (i = 0; i < ib_queue_size; i++) {
229 		if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
230 			goto out_free_ring;
231 	}
232 
233 	return ring;
234 
235 out_free_ring:
236 	nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
237 	return NULL;
238 }
239 
240 static void nvme_rdma_qp_event(struct ib_event *event, void *context)
241 {
242 	pr_debug("QP event %s (%d)\n",
243 		 ib_event_msg(event->event), event->event);
244 
245 }
246 
247 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
248 {
249 	int ret;
250 
251 	ret = wait_for_completion_interruptible(&queue->cm_done);
252 	if (ret)
253 		return ret;
254 	WARN_ON_ONCE(queue->cm_error > 0);
255 	return queue->cm_error;
256 }
257 
258 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
259 {
260 	struct nvme_rdma_device *dev = queue->device;
261 	struct ib_qp_init_attr init_attr;
262 	int ret;
263 
264 	memset(&init_attr, 0, sizeof(init_attr));
265 	init_attr.event_handler = nvme_rdma_qp_event;
266 	/* +1 for drain */
267 	init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
268 	/* +1 for drain */
269 	init_attr.cap.max_recv_wr = queue->queue_size + 1;
270 	init_attr.cap.max_recv_sge = 1;
271 	init_attr.cap.max_send_sge = 1 + dev->num_inline_segments;
272 	init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
273 	init_attr.qp_type = IB_QPT_RC;
274 	init_attr.send_cq = queue->ib_cq;
275 	init_attr.recv_cq = queue->ib_cq;
276 	if (queue->pi_support)
277 		init_attr.create_flags |= IB_QP_CREATE_INTEGRITY_EN;
278 	init_attr.qp_context = queue;
279 
280 	ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
281 
282 	queue->qp = queue->cm_id->qp;
283 	return ret;
284 }
285 
286 static void nvme_rdma_exit_request(struct blk_mq_tag_set *set,
287 		struct request *rq, unsigned int hctx_idx)
288 {
289 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
290 
291 	kfree(req->sqe.data);
292 }
293 
294 static int nvme_rdma_init_request(struct blk_mq_tag_set *set,
295 		struct request *rq, unsigned int hctx_idx,
296 		unsigned int numa_node)
297 {
298 	struct nvme_rdma_ctrl *ctrl = set->driver_data;
299 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
300 	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
301 	struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
302 
303 	nvme_req(rq)->ctrl = &ctrl->ctrl;
304 	req->sqe.data = kzalloc(sizeof(struct nvme_command), GFP_KERNEL);
305 	if (!req->sqe.data)
306 		return -ENOMEM;
307 
308 	/* metadata nvme_rdma_sgl struct is located after command's data SGL */
309 	if (queue->pi_support)
310 		req->metadata_sgl = (void *)nvme_req(rq) +
311 			sizeof(struct nvme_rdma_request) +
312 			NVME_RDMA_DATA_SGL_SIZE;
313 
314 	req->queue = queue;
315 	nvme_req(rq)->cmd = req->sqe.data;
316 
317 	return 0;
318 }
319 
320 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
321 		unsigned int hctx_idx)
322 {
323 	struct nvme_rdma_ctrl *ctrl = data;
324 	struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
325 
326 	BUG_ON(hctx_idx >= ctrl->ctrl.queue_count);
327 
328 	hctx->driver_data = queue;
329 	return 0;
330 }
331 
332 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
333 		unsigned int hctx_idx)
334 {
335 	struct nvme_rdma_ctrl *ctrl = data;
336 	struct nvme_rdma_queue *queue = &ctrl->queues[0];
337 
338 	BUG_ON(hctx_idx != 0);
339 
340 	hctx->driver_data = queue;
341 	return 0;
342 }
343 
344 static void nvme_rdma_free_dev(struct kref *ref)
345 {
346 	struct nvme_rdma_device *ndev =
347 		container_of(ref, struct nvme_rdma_device, ref);
348 
349 	mutex_lock(&device_list_mutex);
350 	list_del(&ndev->entry);
351 	mutex_unlock(&device_list_mutex);
352 
353 	ib_dealloc_pd(ndev->pd);
354 	kfree(ndev);
355 }
356 
357 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
358 {
359 	kref_put(&dev->ref, nvme_rdma_free_dev);
360 }
361 
362 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
363 {
364 	return kref_get_unless_zero(&dev->ref);
365 }
366 
367 static struct nvme_rdma_device *
368 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
369 {
370 	struct nvme_rdma_device *ndev;
371 
372 	mutex_lock(&device_list_mutex);
373 	list_for_each_entry(ndev, &device_list, entry) {
374 		if (ndev->dev->node_guid == cm_id->device->node_guid &&
375 		    nvme_rdma_dev_get(ndev))
376 			goto out_unlock;
377 	}
378 
379 	ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
380 	if (!ndev)
381 		goto out_err;
382 
383 	ndev->dev = cm_id->device;
384 	kref_init(&ndev->ref);
385 
386 	ndev->pd = ib_alloc_pd(ndev->dev,
387 		register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
388 	if (IS_ERR(ndev->pd))
389 		goto out_free_dev;
390 
391 	if (!(ndev->dev->attrs.device_cap_flags &
392 	      IB_DEVICE_MEM_MGT_EXTENSIONS)) {
393 		dev_err(&ndev->dev->dev,
394 			"Memory registrations not supported.\n");
395 		goto out_free_pd;
396 	}
397 
398 	ndev->num_inline_segments = min(NVME_RDMA_MAX_INLINE_SEGMENTS,
399 					ndev->dev->attrs.max_send_sge - 1);
400 	list_add(&ndev->entry, &device_list);
401 out_unlock:
402 	mutex_unlock(&device_list_mutex);
403 	return ndev;
404 
405 out_free_pd:
406 	ib_dealloc_pd(ndev->pd);
407 out_free_dev:
408 	kfree(ndev);
409 out_err:
410 	mutex_unlock(&device_list_mutex);
411 	return NULL;
412 }
413 
414 static void nvme_rdma_free_cq(struct nvme_rdma_queue *queue)
415 {
416 	if (nvme_rdma_poll_queue(queue))
417 		ib_free_cq(queue->ib_cq);
418 	else
419 		ib_cq_pool_put(queue->ib_cq, queue->cq_size);
420 }
421 
422 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
423 {
424 	struct nvme_rdma_device *dev;
425 	struct ib_device *ibdev;
426 
427 	if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags))
428 		return;
429 
430 	dev = queue->device;
431 	ibdev = dev->dev;
432 
433 	if (queue->pi_support)
434 		ib_mr_pool_destroy(queue->qp, &queue->qp->sig_mrs);
435 	ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
436 
437 	/*
438 	 * The cm_id object might have been destroyed during RDMA connection
439 	 * establishment error flow to avoid getting other cma events, thus
440 	 * the destruction of the QP shouldn't use rdma_cm API.
441 	 */
442 	ib_destroy_qp(queue->qp);
443 	nvme_rdma_free_cq(queue);
444 
445 	nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
446 			sizeof(struct nvme_completion), DMA_FROM_DEVICE);
447 
448 	nvme_rdma_dev_put(dev);
449 }
450 
451 static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev, bool pi_support)
452 {
453 	u32 max_page_list_len;
454 
455 	if (pi_support)
456 		max_page_list_len = ibdev->attrs.max_pi_fast_reg_page_list_len;
457 	else
458 		max_page_list_len = ibdev->attrs.max_fast_reg_page_list_len;
459 
460 	return min_t(u32, NVME_RDMA_MAX_SEGMENTS, max_page_list_len - 1);
461 }
462 
463 static int nvme_rdma_create_cq(struct ib_device *ibdev,
464 		struct nvme_rdma_queue *queue)
465 {
466 	int ret, comp_vector, idx = nvme_rdma_queue_idx(queue);
467 	enum ib_poll_context poll_ctx;
468 
469 	/*
470 	 * Spread I/O queues completion vectors according their queue index.
471 	 * Admin queues can always go on completion vector 0.
472 	 */
473 	comp_vector = (idx == 0 ? idx : idx - 1) % ibdev->num_comp_vectors;
474 
475 	/* Polling queues need direct cq polling context */
476 	if (nvme_rdma_poll_queue(queue)) {
477 		poll_ctx = IB_POLL_DIRECT;
478 		queue->ib_cq = ib_alloc_cq(ibdev, queue, queue->cq_size,
479 					   comp_vector, poll_ctx);
480 	} else {
481 		poll_ctx = IB_POLL_SOFTIRQ;
482 		queue->ib_cq = ib_cq_pool_get(ibdev, queue->cq_size,
483 					      comp_vector, poll_ctx);
484 	}
485 
486 	if (IS_ERR(queue->ib_cq)) {
487 		ret = PTR_ERR(queue->ib_cq);
488 		return ret;
489 	}
490 
491 	return 0;
492 }
493 
494 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue)
495 {
496 	struct ib_device *ibdev;
497 	const int send_wr_factor = 3;			/* MR, SEND, INV */
498 	const int cq_factor = send_wr_factor + 1;	/* + RECV */
499 	int ret, pages_per_mr;
500 
501 	queue->device = nvme_rdma_find_get_device(queue->cm_id);
502 	if (!queue->device) {
503 		dev_err(queue->cm_id->device->dev.parent,
504 			"no client data found!\n");
505 		return -ECONNREFUSED;
506 	}
507 	ibdev = queue->device->dev;
508 
509 	/* +1 for ib_stop_cq */
510 	queue->cq_size = cq_factor * queue->queue_size + 1;
511 
512 	ret = nvme_rdma_create_cq(ibdev, queue);
513 	if (ret)
514 		goto out_put_dev;
515 
516 	ret = nvme_rdma_create_qp(queue, send_wr_factor);
517 	if (ret)
518 		goto out_destroy_ib_cq;
519 
520 	queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
521 			sizeof(struct nvme_completion), DMA_FROM_DEVICE);
522 	if (!queue->rsp_ring) {
523 		ret = -ENOMEM;
524 		goto out_destroy_qp;
525 	}
526 
527 	/*
528 	 * Currently we don't use SG_GAPS MR's so if the first entry is
529 	 * misaligned we'll end up using two entries for a single data page,
530 	 * so one additional entry is required.
531 	 */
532 	pages_per_mr = nvme_rdma_get_max_fr_pages(ibdev, queue->pi_support) + 1;
533 	ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs,
534 			      queue->queue_size,
535 			      IB_MR_TYPE_MEM_REG,
536 			      pages_per_mr, 0);
537 	if (ret) {
538 		dev_err(queue->ctrl->ctrl.device,
539 			"failed to initialize MR pool sized %d for QID %d\n",
540 			queue->queue_size, nvme_rdma_queue_idx(queue));
541 		goto out_destroy_ring;
542 	}
543 
544 	if (queue->pi_support) {
545 		ret = ib_mr_pool_init(queue->qp, &queue->qp->sig_mrs,
546 				      queue->queue_size, IB_MR_TYPE_INTEGRITY,
547 				      pages_per_mr, pages_per_mr);
548 		if (ret) {
549 			dev_err(queue->ctrl->ctrl.device,
550 				"failed to initialize PI MR pool sized %d for QID %d\n",
551 				queue->queue_size, nvme_rdma_queue_idx(queue));
552 			goto out_destroy_mr_pool;
553 		}
554 	}
555 
556 	set_bit(NVME_RDMA_Q_TR_READY, &queue->flags);
557 
558 	return 0;
559 
560 out_destroy_mr_pool:
561 	ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
562 out_destroy_ring:
563 	nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
564 			    sizeof(struct nvme_completion), DMA_FROM_DEVICE);
565 out_destroy_qp:
566 	rdma_destroy_qp(queue->cm_id);
567 out_destroy_ib_cq:
568 	nvme_rdma_free_cq(queue);
569 out_put_dev:
570 	nvme_rdma_dev_put(queue->device);
571 	return ret;
572 }
573 
574 static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl,
575 		int idx, size_t queue_size)
576 {
577 	struct nvme_rdma_queue *queue;
578 	struct sockaddr *src_addr = NULL;
579 	int ret;
580 
581 	queue = &ctrl->queues[idx];
582 	mutex_init(&queue->queue_lock);
583 	queue->ctrl = ctrl;
584 	if (idx && ctrl->ctrl.max_integrity_segments)
585 		queue->pi_support = true;
586 	else
587 		queue->pi_support = false;
588 	init_completion(&queue->cm_done);
589 
590 	if (idx > 0)
591 		queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
592 	else
593 		queue->cmnd_capsule_len = sizeof(struct nvme_command);
594 
595 	queue->queue_size = queue_size;
596 
597 	queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
598 			RDMA_PS_TCP, IB_QPT_RC);
599 	if (IS_ERR(queue->cm_id)) {
600 		dev_info(ctrl->ctrl.device,
601 			"failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
602 		ret = PTR_ERR(queue->cm_id);
603 		goto out_destroy_mutex;
604 	}
605 
606 	if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
607 		src_addr = (struct sockaddr *)&ctrl->src_addr;
608 
609 	queue->cm_error = -ETIMEDOUT;
610 	ret = rdma_resolve_addr(queue->cm_id, src_addr,
611 			(struct sockaddr *)&ctrl->addr,
612 			NVME_RDMA_CM_TIMEOUT_MS);
613 	if (ret) {
614 		dev_info(ctrl->ctrl.device,
615 			"rdma_resolve_addr failed (%d).\n", ret);
616 		goto out_destroy_cm_id;
617 	}
618 
619 	ret = nvme_rdma_wait_for_cm(queue);
620 	if (ret) {
621 		dev_info(ctrl->ctrl.device,
622 			"rdma connection establishment failed (%d)\n", ret);
623 		goto out_destroy_cm_id;
624 	}
625 
626 	set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags);
627 
628 	return 0;
629 
630 out_destroy_cm_id:
631 	rdma_destroy_id(queue->cm_id);
632 	nvme_rdma_destroy_queue_ib(queue);
633 out_destroy_mutex:
634 	mutex_destroy(&queue->queue_lock);
635 	return ret;
636 }
637 
638 static void __nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
639 {
640 	rdma_disconnect(queue->cm_id);
641 	ib_drain_qp(queue->qp);
642 }
643 
644 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
645 {
646 	mutex_lock(&queue->queue_lock);
647 	if (test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags))
648 		__nvme_rdma_stop_queue(queue);
649 	mutex_unlock(&queue->queue_lock);
650 }
651 
652 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
653 {
654 	if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
655 		return;
656 
657 	rdma_destroy_id(queue->cm_id);
658 	nvme_rdma_destroy_queue_ib(queue);
659 	mutex_destroy(&queue->queue_lock);
660 }
661 
662 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
663 {
664 	int i;
665 
666 	for (i = 1; i < ctrl->ctrl.queue_count; i++)
667 		nvme_rdma_free_queue(&ctrl->queues[i]);
668 }
669 
670 static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl)
671 {
672 	int i;
673 
674 	for (i = 1; i < ctrl->ctrl.queue_count; i++)
675 		nvme_rdma_stop_queue(&ctrl->queues[i]);
676 }
677 
678 static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx)
679 {
680 	struct nvme_rdma_queue *queue = &ctrl->queues[idx];
681 	int ret;
682 
683 	if (idx)
684 		ret = nvmf_connect_io_queue(&ctrl->ctrl, idx);
685 	else
686 		ret = nvmf_connect_admin_queue(&ctrl->ctrl);
687 
688 	if (!ret) {
689 		set_bit(NVME_RDMA_Q_LIVE, &queue->flags);
690 	} else {
691 		if (test_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
692 			__nvme_rdma_stop_queue(queue);
693 		dev_info(ctrl->ctrl.device,
694 			"failed to connect queue: %d ret=%d\n", idx, ret);
695 	}
696 	return ret;
697 }
698 
699 static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl)
700 {
701 	int i, ret = 0;
702 
703 	for (i = 1; i < ctrl->ctrl.queue_count; i++) {
704 		ret = nvme_rdma_start_queue(ctrl, i);
705 		if (ret)
706 			goto out_stop_queues;
707 	}
708 
709 	return 0;
710 
711 out_stop_queues:
712 	for (i--; i >= 1; i--)
713 		nvme_rdma_stop_queue(&ctrl->queues[i]);
714 	return ret;
715 }
716 
717 static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl)
718 {
719 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
720 	struct ib_device *ibdev = ctrl->device->dev;
721 	unsigned int nr_io_queues, nr_default_queues;
722 	unsigned int nr_read_queues, nr_poll_queues;
723 	int i, ret;
724 
725 	nr_read_queues = min_t(unsigned int, ibdev->num_comp_vectors,
726 				min(opts->nr_io_queues, num_online_cpus()));
727 	nr_default_queues =  min_t(unsigned int, ibdev->num_comp_vectors,
728 				min(opts->nr_write_queues, num_online_cpus()));
729 	nr_poll_queues = min(opts->nr_poll_queues, num_online_cpus());
730 	nr_io_queues = nr_read_queues + nr_default_queues + nr_poll_queues;
731 
732 	ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
733 	if (ret)
734 		return ret;
735 
736 	if (nr_io_queues == 0) {
737 		dev_err(ctrl->ctrl.device,
738 			"unable to set any I/O queues\n");
739 		return -ENOMEM;
740 	}
741 
742 	ctrl->ctrl.queue_count = nr_io_queues + 1;
743 	dev_info(ctrl->ctrl.device,
744 		"creating %d I/O queues.\n", nr_io_queues);
745 
746 	if (opts->nr_write_queues && nr_read_queues < nr_io_queues) {
747 		/*
748 		 * separate read/write queues
749 		 * hand out dedicated default queues only after we have
750 		 * sufficient read queues.
751 		 */
752 		ctrl->io_queues[HCTX_TYPE_READ] = nr_read_queues;
753 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ];
754 		ctrl->io_queues[HCTX_TYPE_DEFAULT] =
755 			min(nr_default_queues, nr_io_queues);
756 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
757 	} else {
758 		/*
759 		 * shared read/write queues
760 		 * either no write queues were requested, or we don't have
761 		 * sufficient queue count to have dedicated default queues.
762 		 */
763 		ctrl->io_queues[HCTX_TYPE_DEFAULT] =
764 			min(nr_read_queues, nr_io_queues);
765 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
766 	}
767 
768 	if (opts->nr_poll_queues && nr_io_queues) {
769 		/* map dedicated poll queues only if we have queues left */
770 		ctrl->io_queues[HCTX_TYPE_POLL] =
771 			min(nr_poll_queues, nr_io_queues);
772 	}
773 
774 	for (i = 1; i < ctrl->ctrl.queue_count; i++) {
775 		ret = nvme_rdma_alloc_queue(ctrl, i,
776 				ctrl->ctrl.sqsize + 1);
777 		if (ret)
778 			goto out_free_queues;
779 	}
780 
781 	return 0;
782 
783 out_free_queues:
784 	for (i--; i >= 1; i--)
785 		nvme_rdma_free_queue(&ctrl->queues[i]);
786 
787 	return ret;
788 }
789 
790 static int nvme_rdma_alloc_admin_tag_set(struct nvme_ctrl *nctrl)
791 {
792 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
793 	struct blk_mq_tag_set *set = &ctrl->admin_tag_set;
794 	int ret;
795 
796 	memset(set, 0, sizeof(*set));
797 	set->ops = &nvme_rdma_admin_mq_ops;
798 	set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
799 	set->reserved_tags = NVMF_RESERVED_TAGS;
800 	set->numa_node = nctrl->numa_node;
801 	set->cmd_size = sizeof(struct nvme_rdma_request) +
802 			NVME_RDMA_DATA_SGL_SIZE;
803 	set->driver_data = ctrl;
804 	set->nr_hw_queues = 1;
805 	set->timeout = NVME_ADMIN_TIMEOUT;
806 	set->flags = BLK_MQ_F_NO_SCHED;
807 	ret = blk_mq_alloc_tag_set(set);
808 	if (!ret)
809 		ctrl->ctrl.admin_tagset = set;
810 	return ret;
811 }
812 
813 static int nvme_rdma_alloc_tag_set(struct nvme_ctrl *nctrl)
814 {
815 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
816 	struct blk_mq_tag_set *set = &ctrl->tag_set;
817 	int ret;
818 
819 	memset(set, 0, sizeof(*set));
820 	set->ops = &nvme_rdma_mq_ops;
821 	set->queue_depth = nctrl->sqsize + 1;
822 	set->reserved_tags = NVMF_RESERVED_TAGS;
823 	set->numa_node = nctrl->numa_node;
824 	set->flags = BLK_MQ_F_SHOULD_MERGE;
825 	set->cmd_size = sizeof(struct nvme_rdma_request) +
826 			NVME_RDMA_DATA_SGL_SIZE;
827 	if (nctrl->max_integrity_segments)
828 		set->cmd_size += sizeof(struct nvme_rdma_sgl) +
829 				 NVME_RDMA_METADATA_SGL_SIZE;
830 	set->driver_data = ctrl;
831 	set->nr_hw_queues = nctrl->queue_count - 1;
832 	set->timeout = NVME_IO_TIMEOUT;
833 	set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2;
834 	ret = blk_mq_alloc_tag_set(set);
835 	if (!ret)
836 		ctrl->ctrl.tagset = set;
837 	return ret;
838 }
839 
840 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl,
841 		bool remove)
842 {
843 	if (remove) {
844 		blk_mq_destroy_queue(ctrl->ctrl.admin_q);
845 		blk_mq_destroy_queue(ctrl->ctrl.fabrics_q);
846 		blk_mq_free_tag_set(ctrl->ctrl.admin_tagset);
847 	}
848 	if (ctrl->async_event_sqe.data) {
849 		cancel_work_sync(&ctrl->ctrl.async_event_work);
850 		nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
851 				sizeof(struct nvme_command), DMA_TO_DEVICE);
852 		ctrl->async_event_sqe.data = NULL;
853 	}
854 	nvme_rdma_free_queue(&ctrl->queues[0]);
855 }
856 
857 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl,
858 		bool new)
859 {
860 	bool pi_capable = false;
861 	int error;
862 
863 	error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
864 	if (error)
865 		return error;
866 
867 	ctrl->device = ctrl->queues[0].device;
868 	ctrl->ctrl.numa_node = ibdev_to_node(ctrl->device->dev);
869 
870 	/* T10-PI support */
871 	if (ctrl->device->dev->attrs.kernel_cap_flags &
872 	    IBK_INTEGRITY_HANDOVER)
873 		pi_capable = true;
874 
875 	ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev,
876 							pi_capable);
877 
878 	/*
879 	 * Bind the async event SQE DMA mapping to the admin queue lifetime.
880 	 * It's safe, since any chage in the underlying RDMA device will issue
881 	 * error recovery and queue re-creation.
882 	 */
883 	error = nvme_rdma_alloc_qe(ctrl->device->dev, &ctrl->async_event_sqe,
884 			sizeof(struct nvme_command), DMA_TO_DEVICE);
885 	if (error)
886 		goto out_free_queue;
887 
888 	if (new) {
889 		error = nvme_rdma_alloc_admin_tag_set(&ctrl->ctrl);
890 		if (error)
891 			goto out_free_async_qe;
892 
893 		ctrl->ctrl.fabrics_q = blk_mq_init_queue(&ctrl->admin_tag_set);
894 		if (IS_ERR(ctrl->ctrl.fabrics_q)) {
895 			error = PTR_ERR(ctrl->ctrl.fabrics_q);
896 			goto out_free_tagset;
897 		}
898 
899 		ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
900 		if (IS_ERR(ctrl->ctrl.admin_q)) {
901 			error = PTR_ERR(ctrl->ctrl.admin_q);
902 			goto out_cleanup_fabrics_q;
903 		}
904 	}
905 
906 	error = nvme_rdma_start_queue(ctrl, 0);
907 	if (error)
908 		goto out_cleanup_queue;
909 
910 	error = nvme_enable_ctrl(&ctrl->ctrl);
911 	if (error)
912 		goto out_stop_queue;
913 
914 	ctrl->ctrl.max_segments = ctrl->max_fr_pages;
915 	ctrl->ctrl.max_hw_sectors = ctrl->max_fr_pages << (ilog2(SZ_4K) - 9);
916 	if (pi_capable)
917 		ctrl->ctrl.max_integrity_segments = ctrl->max_fr_pages;
918 	else
919 		ctrl->ctrl.max_integrity_segments = 0;
920 
921 	nvme_start_admin_queue(&ctrl->ctrl);
922 
923 	error = nvme_init_ctrl_finish(&ctrl->ctrl);
924 	if (error)
925 		goto out_quiesce_queue;
926 
927 	return 0;
928 
929 out_quiesce_queue:
930 	nvme_stop_admin_queue(&ctrl->ctrl);
931 	blk_sync_queue(ctrl->ctrl.admin_q);
932 out_stop_queue:
933 	nvme_rdma_stop_queue(&ctrl->queues[0]);
934 	nvme_cancel_admin_tagset(&ctrl->ctrl);
935 out_cleanup_queue:
936 	if (new)
937 		blk_mq_destroy_queue(ctrl->ctrl.admin_q);
938 out_cleanup_fabrics_q:
939 	if (new)
940 		blk_mq_destroy_queue(ctrl->ctrl.fabrics_q);
941 out_free_tagset:
942 	if (new)
943 		blk_mq_free_tag_set(ctrl->ctrl.admin_tagset);
944 out_free_async_qe:
945 	if (ctrl->async_event_sqe.data) {
946 		nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
947 			sizeof(struct nvme_command), DMA_TO_DEVICE);
948 		ctrl->async_event_sqe.data = NULL;
949 	}
950 out_free_queue:
951 	nvme_rdma_free_queue(&ctrl->queues[0]);
952 	return error;
953 }
954 
955 static void nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl *ctrl,
956 		bool remove)
957 {
958 	if (remove) {
959 		blk_mq_destroy_queue(ctrl->ctrl.connect_q);
960 		blk_mq_free_tag_set(ctrl->ctrl.tagset);
961 	}
962 	nvme_rdma_free_io_queues(ctrl);
963 }
964 
965 static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new)
966 {
967 	int ret;
968 
969 	ret = nvme_rdma_alloc_io_queues(ctrl);
970 	if (ret)
971 		return ret;
972 
973 	if (new) {
974 		ret = nvme_rdma_alloc_tag_set(&ctrl->ctrl);
975 		if (ret)
976 			goto out_free_io_queues;
977 
978 		ret = nvme_ctrl_init_connect_q(&(ctrl->ctrl));
979 		if (ret)
980 			goto out_free_tag_set;
981 	}
982 
983 	ret = nvme_rdma_start_io_queues(ctrl);
984 	if (ret)
985 		goto out_cleanup_connect_q;
986 
987 	if (!new) {
988 		nvme_start_queues(&ctrl->ctrl);
989 		if (!nvme_wait_freeze_timeout(&ctrl->ctrl, NVME_IO_TIMEOUT)) {
990 			/*
991 			 * If we timed out waiting for freeze we are likely to
992 			 * be stuck.  Fail the controller initialization just
993 			 * to be safe.
994 			 */
995 			ret = -ENODEV;
996 			goto out_wait_freeze_timed_out;
997 		}
998 		blk_mq_update_nr_hw_queues(ctrl->ctrl.tagset,
999 			ctrl->ctrl.queue_count - 1);
1000 		nvme_unfreeze(&ctrl->ctrl);
1001 	}
1002 
1003 	return 0;
1004 
1005 out_wait_freeze_timed_out:
1006 	nvme_stop_queues(&ctrl->ctrl);
1007 	nvme_sync_io_queues(&ctrl->ctrl);
1008 	nvme_rdma_stop_io_queues(ctrl);
1009 out_cleanup_connect_q:
1010 	nvme_cancel_tagset(&ctrl->ctrl);
1011 	if (new)
1012 		blk_mq_destroy_queue(ctrl->ctrl.connect_q);
1013 out_free_tag_set:
1014 	if (new)
1015 		blk_mq_free_tag_set(ctrl->ctrl.tagset);
1016 out_free_io_queues:
1017 	nvme_rdma_free_io_queues(ctrl);
1018 	return ret;
1019 }
1020 
1021 static void nvme_rdma_teardown_admin_queue(struct nvme_rdma_ctrl *ctrl,
1022 		bool remove)
1023 {
1024 	nvme_stop_admin_queue(&ctrl->ctrl);
1025 	blk_sync_queue(ctrl->ctrl.admin_q);
1026 	nvme_rdma_stop_queue(&ctrl->queues[0]);
1027 	nvme_cancel_admin_tagset(&ctrl->ctrl);
1028 	if (remove)
1029 		nvme_start_admin_queue(&ctrl->ctrl);
1030 	nvme_rdma_destroy_admin_queue(ctrl, remove);
1031 }
1032 
1033 static void nvme_rdma_teardown_io_queues(struct nvme_rdma_ctrl *ctrl,
1034 		bool remove)
1035 {
1036 	if (ctrl->ctrl.queue_count > 1) {
1037 		nvme_start_freeze(&ctrl->ctrl);
1038 		nvme_stop_queues(&ctrl->ctrl);
1039 		nvme_sync_io_queues(&ctrl->ctrl);
1040 		nvme_rdma_stop_io_queues(ctrl);
1041 		nvme_cancel_tagset(&ctrl->ctrl);
1042 		if (remove)
1043 			nvme_start_queues(&ctrl->ctrl);
1044 		nvme_rdma_destroy_io_queues(ctrl, remove);
1045 	}
1046 }
1047 
1048 static void nvme_rdma_stop_ctrl(struct nvme_ctrl *nctrl)
1049 {
1050 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
1051 
1052 	cancel_work_sync(&ctrl->err_work);
1053 	cancel_delayed_work_sync(&ctrl->reconnect_work);
1054 }
1055 
1056 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
1057 {
1058 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
1059 
1060 	if (list_empty(&ctrl->list))
1061 		goto free_ctrl;
1062 
1063 	mutex_lock(&nvme_rdma_ctrl_mutex);
1064 	list_del(&ctrl->list);
1065 	mutex_unlock(&nvme_rdma_ctrl_mutex);
1066 
1067 	nvmf_free_options(nctrl->opts);
1068 free_ctrl:
1069 	kfree(ctrl->queues);
1070 	kfree(ctrl);
1071 }
1072 
1073 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl)
1074 {
1075 	/* If we are resetting/deleting then do nothing */
1076 	if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) {
1077 		WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
1078 			ctrl->ctrl.state == NVME_CTRL_LIVE);
1079 		return;
1080 	}
1081 
1082 	if (nvmf_should_reconnect(&ctrl->ctrl)) {
1083 		dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n",
1084 			ctrl->ctrl.opts->reconnect_delay);
1085 		queue_delayed_work(nvme_wq, &ctrl->reconnect_work,
1086 				ctrl->ctrl.opts->reconnect_delay * HZ);
1087 	} else {
1088 		nvme_delete_ctrl(&ctrl->ctrl);
1089 	}
1090 }
1091 
1092 static int nvme_rdma_setup_ctrl(struct nvme_rdma_ctrl *ctrl, bool new)
1093 {
1094 	int ret;
1095 	bool changed;
1096 
1097 	ret = nvme_rdma_configure_admin_queue(ctrl, new);
1098 	if (ret)
1099 		return ret;
1100 
1101 	if (ctrl->ctrl.icdoff) {
1102 		ret = -EOPNOTSUPP;
1103 		dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
1104 		goto destroy_admin;
1105 	}
1106 
1107 	if (!(ctrl->ctrl.sgls & (1 << 2))) {
1108 		ret = -EOPNOTSUPP;
1109 		dev_err(ctrl->ctrl.device,
1110 			"Mandatory keyed sgls are not supported!\n");
1111 		goto destroy_admin;
1112 	}
1113 
1114 	if (ctrl->ctrl.opts->queue_size > ctrl->ctrl.sqsize + 1) {
1115 		dev_warn(ctrl->ctrl.device,
1116 			"queue_size %zu > ctrl sqsize %u, clamping down\n",
1117 			ctrl->ctrl.opts->queue_size, ctrl->ctrl.sqsize + 1);
1118 	}
1119 
1120 	if (ctrl->ctrl.sqsize + 1 > NVME_RDMA_MAX_QUEUE_SIZE) {
1121 		dev_warn(ctrl->ctrl.device,
1122 			"ctrl sqsize %u > max queue size %u, clamping down\n",
1123 			ctrl->ctrl.sqsize + 1, NVME_RDMA_MAX_QUEUE_SIZE);
1124 		ctrl->ctrl.sqsize = NVME_RDMA_MAX_QUEUE_SIZE - 1;
1125 	}
1126 
1127 	if (ctrl->ctrl.sqsize + 1 > ctrl->ctrl.maxcmd) {
1128 		dev_warn(ctrl->ctrl.device,
1129 			"sqsize %u > ctrl maxcmd %u, clamping down\n",
1130 			ctrl->ctrl.sqsize + 1, ctrl->ctrl.maxcmd);
1131 		ctrl->ctrl.sqsize = ctrl->ctrl.maxcmd - 1;
1132 	}
1133 
1134 	if (ctrl->ctrl.sgls & (1 << 20))
1135 		ctrl->use_inline_data = true;
1136 
1137 	if (ctrl->ctrl.queue_count > 1) {
1138 		ret = nvme_rdma_configure_io_queues(ctrl, new);
1139 		if (ret)
1140 			goto destroy_admin;
1141 	}
1142 
1143 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1144 	if (!changed) {
1145 		/*
1146 		 * state change failure is ok if we started ctrl delete,
1147 		 * unless we're during creation of a new controller to
1148 		 * avoid races with teardown flow.
1149 		 */
1150 		WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING &&
1151 			     ctrl->ctrl.state != NVME_CTRL_DELETING_NOIO);
1152 		WARN_ON_ONCE(new);
1153 		ret = -EINVAL;
1154 		goto destroy_io;
1155 	}
1156 
1157 	nvme_start_ctrl(&ctrl->ctrl);
1158 	return 0;
1159 
1160 destroy_io:
1161 	if (ctrl->ctrl.queue_count > 1) {
1162 		nvme_stop_queues(&ctrl->ctrl);
1163 		nvme_sync_io_queues(&ctrl->ctrl);
1164 		nvme_rdma_stop_io_queues(ctrl);
1165 		nvme_cancel_tagset(&ctrl->ctrl);
1166 		nvme_rdma_destroy_io_queues(ctrl, new);
1167 	}
1168 destroy_admin:
1169 	nvme_stop_admin_queue(&ctrl->ctrl);
1170 	blk_sync_queue(ctrl->ctrl.admin_q);
1171 	nvme_rdma_stop_queue(&ctrl->queues[0]);
1172 	nvme_cancel_admin_tagset(&ctrl->ctrl);
1173 	nvme_rdma_destroy_admin_queue(ctrl, new);
1174 	return ret;
1175 }
1176 
1177 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
1178 {
1179 	struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
1180 			struct nvme_rdma_ctrl, reconnect_work);
1181 
1182 	++ctrl->ctrl.nr_reconnects;
1183 
1184 	if (nvme_rdma_setup_ctrl(ctrl, false))
1185 		goto requeue;
1186 
1187 	dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n",
1188 			ctrl->ctrl.nr_reconnects);
1189 
1190 	ctrl->ctrl.nr_reconnects = 0;
1191 
1192 	return;
1193 
1194 requeue:
1195 	dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n",
1196 			ctrl->ctrl.nr_reconnects);
1197 	nvme_rdma_reconnect_or_remove(ctrl);
1198 }
1199 
1200 static void nvme_rdma_error_recovery_work(struct work_struct *work)
1201 {
1202 	struct nvme_rdma_ctrl *ctrl = container_of(work,
1203 			struct nvme_rdma_ctrl, err_work);
1204 
1205 	nvme_auth_stop(&ctrl->ctrl);
1206 	nvme_stop_keep_alive(&ctrl->ctrl);
1207 	flush_work(&ctrl->ctrl.async_event_work);
1208 	nvme_rdma_teardown_io_queues(ctrl, false);
1209 	nvme_start_queues(&ctrl->ctrl);
1210 	nvme_rdma_teardown_admin_queue(ctrl, false);
1211 	nvme_start_admin_queue(&ctrl->ctrl);
1212 
1213 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
1214 		/* state change failure is ok if we started ctrl delete */
1215 		WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING &&
1216 			     ctrl->ctrl.state != NVME_CTRL_DELETING_NOIO);
1217 		return;
1218 	}
1219 
1220 	nvme_rdma_reconnect_or_remove(ctrl);
1221 }
1222 
1223 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
1224 {
1225 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
1226 		return;
1227 
1228 	dev_warn(ctrl->ctrl.device, "starting error recovery\n");
1229 	queue_work(nvme_reset_wq, &ctrl->err_work);
1230 }
1231 
1232 static void nvme_rdma_end_request(struct nvme_rdma_request *req)
1233 {
1234 	struct request *rq = blk_mq_rq_from_pdu(req);
1235 
1236 	if (!refcount_dec_and_test(&req->ref))
1237 		return;
1238 	if (!nvme_try_complete_req(rq, req->status, req->result))
1239 		nvme_rdma_complete_rq(rq);
1240 }
1241 
1242 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
1243 		const char *op)
1244 {
1245 	struct nvme_rdma_queue *queue = wc->qp->qp_context;
1246 	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1247 
1248 	if (ctrl->ctrl.state == NVME_CTRL_LIVE)
1249 		dev_info(ctrl->ctrl.device,
1250 			     "%s for CQE 0x%p failed with status %s (%d)\n",
1251 			     op, wc->wr_cqe,
1252 			     ib_wc_status_msg(wc->status), wc->status);
1253 	nvme_rdma_error_recovery(ctrl);
1254 }
1255 
1256 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
1257 {
1258 	if (unlikely(wc->status != IB_WC_SUCCESS))
1259 		nvme_rdma_wr_error(cq, wc, "MEMREG");
1260 }
1261 
1262 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
1263 {
1264 	struct nvme_rdma_request *req =
1265 		container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe);
1266 
1267 	if (unlikely(wc->status != IB_WC_SUCCESS))
1268 		nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
1269 	else
1270 		nvme_rdma_end_request(req);
1271 }
1272 
1273 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
1274 		struct nvme_rdma_request *req)
1275 {
1276 	struct ib_send_wr wr = {
1277 		.opcode		    = IB_WR_LOCAL_INV,
1278 		.next		    = NULL,
1279 		.num_sge	    = 0,
1280 		.send_flags	    = IB_SEND_SIGNALED,
1281 		.ex.invalidate_rkey = req->mr->rkey,
1282 	};
1283 
1284 	req->reg_cqe.done = nvme_rdma_inv_rkey_done;
1285 	wr.wr_cqe = &req->reg_cqe;
1286 
1287 	return ib_post_send(queue->qp, &wr, NULL);
1288 }
1289 
1290 static void nvme_rdma_dma_unmap_req(struct ib_device *ibdev, struct request *rq)
1291 {
1292 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1293 
1294 	if (blk_integrity_rq(rq)) {
1295 		ib_dma_unmap_sg(ibdev, req->metadata_sgl->sg_table.sgl,
1296 				req->metadata_sgl->nents, rq_dma_dir(rq));
1297 		sg_free_table_chained(&req->metadata_sgl->sg_table,
1298 				      NVME_INLINE_METADATA_SG_CNT);
1299 	}
1300 
1301 	ib_dma_unmap_sg(ibdev, req->data_sgl.sg_table.sgl, req->data_sgl.nents,
1302 			rq_dma_dir(rq));
1303 	sg_free_table_chained(&req->data_sgl.sg_table, NVME_INLINE_SG_CNT);
1304 }
1305 
1306 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
1307 		struct request *rq)
1308 {
1309 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1310 	struct nvme_rdma_device *dev = queue->device;
1311 	struct ib_device *ibdev = dev->dev;
1312 	struct list_head *pool = &queue->qp->rdma_mrs;
1313 
1314 	if (!blk_rq_nr_phys_segments(rq))
1315 		return;
1316 
1317 	if (req->use_sig_mr)
1318 		pool = &queue->qp->sig_mrs;
1319 
1320 	if (req->mr) {
1321 		ib_mr_pool_put(queue->qp, pool, req->mr);
1322 		req->mr = NULL;
1323 	}
1324 
1325 	nvme_rdma_dma_unmap_req(ibdev, rq);
1326 }
1327 
1328 static int nvme_rdma_set_sg_null(struct nvme_command *c)
1329 {
1330 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1331 
1332 	sg->addr = 0;
1333 	put_unaligned_le24(0, sg->length);
1334 	put_unaligned_le32(0, sg->key);
1335 	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1336 	return 0;
1337 }
1338 
1339 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
1340 		struct nvme_rdma_request *req, struct nvme_command *c,
1341 		int count)
1342 {
1343 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
1344 	struct ib_sge *sge = &req->sge[1];
1345 	struct scatterlist *sgl;
1346 	u32 len = 0;
1347 	int i;
1348 
1349 	for_each_sg(req->data_sgl.sg_table.sgl, sgl, count, i) {
1350 		sge->addr = sg_dma_address(sgl);
1351 		sge->length = sg_dma_len(sgl);
1352 		sge->lkey = queue->device->pd->local_dma_lkey;
1353 		len += sge->length;
1354 		sge++;
1355 	}
1356 
1357 	sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
1358 	sg->length = cpu_to_le32(len);
1359 	sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
1360 
1361 	req->num_sge += count;
1362 	return 0;
1363 }
1364 
1365 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
1366 		struct nvme_rdma_request *req, struct nvme_command *c)
1367 {
1368 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1369 
1370 	sg->addr = cpu_to_le64(sg_dma_address(req->data_sgl.sg_table.sgl));
1371 	put_unaligned_le24(sg_dma_len(req->data_sgl.sg_table.sgl), sg->length);
1372 	put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
1373 	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1374 	return 0;
1375 }
1376 
1377 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
1378 		struct nvme_rdma_request *req, struct nvme_command *c,
1379 		int count)
1380 {
1381 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1382 	int nr;
1383 
1384 	req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs);
1385 	if (WARN_ON_ONCE(!req->mr))
1386 		return -EAGAIN;
1387 
1388 	/*
1389 	 * Align the MR to a 4K page size to match the ctrl page size and
1390 	 * the block virtual boundary.
1391 	 */
1392 	nr = ib_map_mr_sg(req->mr, req->data_sgl.sg_table.sgl, count, NULL,
1393 			  SZ_4K);
1394 	if (unlikely(nr < count)) {
1395 		ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
1396 		req->mr = NULL;
1397 		if (nr < 0)
1398 			return nr;
1399 		return -EINVAL;
1400 	}
1401 
1402 	ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1403 
1404 	req->reg_cqe.done = nvme_rdma_memreg_done;
1405 	memset(&req->reg_wr, 0, sizeof(req->reg_wr));
1406 	req->reg_wr.wr.opcode = IB_WR_REG_MR;
1407 	req->reg_wr.wr.wr_cqe = &req->reg_cqe;
1408 	req->reg_wr.wr.num_sge = 0;
1409 	req->reg_wr.mr = req->mr;
1410 	req->reg_wr.key = req->mr->rkey;
1411 	req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
1412 			     IB_ACCESS_REMOTE_READ |
1413 			     IB_ACCESS_REMOTE_WRITE;
1414 
1415 	sg->addr = cpu_to_le64(req->mr->iova);
1416 	put_unaligned_le24(req->mr->length, sg->length);
1417 	put_unaligned_le32(req->mr->rkey, sg->key);
1418 	sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
1419 			NVME_SGL_FMT_INVALIDATE;
1420 
1421 	return 0;
1422 }
1423 
1424 static void nvme_rdma_set_sig_domain(struct blk_integrity *bi,
1425 		struct nvme_command *cmd, struct ib_sig_domain *domain,
1426 		u16 control, u8 pi_type)
1427 {
1428 	domain->sig_type = IB_SIG_TYPE_T10_DIF;
1429 	domain->sig.dif.bg_type = IB_T10DIF_CRC;
1430 	domain->sig.dif.pi_interval = 1 << bi->interval_exp;
1431 	domain->sig.dif.ref_tag = le32_to_cpu(cmd->rw.reftag);
1432 	if (control & NVME_RW_PRINFO_PRCHK_REF)
1433 		domain->sig.dif.ref_remap = true;
1434 
1435 	domain->sig.dif.app_tag = le16_to_cpu(cmd->rw.apptag);
1436 	domain->sig.dif.apptag_check_mask = le16_to_cpu(cmd->rw.appmask);
1437 	domain->sig.dif.app_escape = true;
1438 	if (pi_type == NVME_NS_DPS_PI_TYPE3)
1439 		domain->sig.dif.ref_escape = true;
1440 }
1441 
1442 static void nvme_rdma_set_sig_attrs(struct blk_integrity *bi,
1443 		struct nvme_command *cmd, struct ib_sig_attrs *sig_attrs,
1444 		u8 pi_type)
1445 {
1446 	u16 control = le16_to_cpu(cmd->rw.control);
1447 
1448 	memset(sig_attrs, 0, sizeof(*sig_attrs));
1449 	if (control & NVME_RW_PRINFO_PRACT) {
1450 		/* for WRITE_INSERT/READ_STRIP no memory domain */
1451 		sig_attrs->mem.sig_type = IB_SIG_TYPE_NONE;
1452 		nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control,
1453 					 pi_type);
1454 		/* Clear the PRACT bit since HCA will generate/verify the PI */
1455 		control &= ~NVME_RW_PRINFO_PRACT;
1456 		cmd->rw.control = cpu_to_le16(control);
1457 	} else {
1458 		/* for WRITE_PASS/READ_PASS both wire/memory domains exist */
1459 		nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control,
1460 					 pi_type);
1461 		nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control,
1462 					 pi_type);
1463 	}
1464 }
1465 
1466 static void nvme_rdma_set_prot_checks(struct nvme_command *cmd, u8 *mask)
1467 {
1468 	*mask = 0;
1469 	if (le16_to_cpu(cmd->rw.control) & NVME_RW_PRINFO_PRCHK_REF)
1470 		*mask |= IB_SIG_CHECK_REFTAG;
1471 	if (le16_to_cpu(cmd->rw.control) & NVME_RW_PRINFO_PRCHK_GUARD)
1472 		*mask |= IB_SIG_CHECK_GUARD;
1473 }
1474 
1475 static void nvme_rdma_sig_done(struct ib_cq *cq, struct ib_wc *wc)
1476 {
1477 	if (unlikely(wc->status != IB_WC_SUCCESS))
1478 		nvme_rdma_wr_error(cq, wc, "SIG");
1479 }
1480 
1481 static int nvme_rdma_map_sg_pi(struct nvme_rdma_queue *queue,
1482 		struct nvme_rdma_request *req, struct nvme_command *c,
1483 		int count, int pi_count)
1484 {
1485 	struct nvme_rdma_sgl *sgl = &req->data_sgl;
1486 	struct ib_reg_wr *wr = &req->reg_wr;
1487 	struct request *rq = blk_mq_rq_from_pdu(req);
1488 	struct nvme_ns *ns = rq->q->queuedata;
1489 	struct bio *bio = rq->bio;
1490 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1491 	int nr;
1492 
1493 	req->mr = ib_mr_pool_get(queue->qp, &queue->qp->sig_mrs);
1494 	if (WARN_ON_ONCE(!req->mr))
1495 		return -EAGAIN;
1496 
1497 	nr = ib_map_mr_sg_pi(req->mr, sgl->sg_table.sgl, count, NULL,
1498 			     req->metadata_sgl->sg_table.sgl, pi_count, NULL,
1499 			     SZ_4K);
1500 	if (unlikely(nr))
1501 		goto mr_put;
1502 
1503 	nvme_rdma_set_sig_attrs(blk_get_integrity(bio->bi_bdev->bd_disk), c,
1504 				req->mr->sig_attrs, ns->pi_type);
1505 	nvme_rdma_set_prot_checks(c, &req->mr->sig_attrs->check_mask);
1506 
1507 	ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1508 
1509 	req->reg_cqe.done = nvme_rdma_sig_done;
1510 	memset(wr, 0, sizeof(*wr));
1511 	wr->wr.opcode = IB_WR_REG_MR_INTEGRITY;
1512 	wr->wr.wr_cqe = &req->reg_cqe;
1513 	wr->wr.num_sge = 0;
1514 	wr->wr.send_flags = 0;
1515 	wr->mr = req->mr;
1516 	wr->key = req->mr->rkey;
1517 	wr->access = IB_ACCESS_LOCAL_WRITE |
1518 		     IB_ACCESS_REMOTE_READ |
1519 		     IB_ACCESS_REMOTE_WRITE;
1520 
1521 	sg->addr = cpu_to_le64(req->mr->iova);
1522 	put_unaligned_le24(req->mr->length, sg->length);
1523 	put_unaligned_le32(req->mr->rkey, sg->key);
1524 	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1525 
1526 	return 0;
1527 
1528 mr_put:
1529 	ib_mr_pool_put(queue->qp, &queue->qp->sig_mrs, req->mr);
1530 	req->mr = NULL;
1531 	if (nr < 0)
1532 		return nr;
1533 	return -EINVAL;
1534 }
1535 
1536 static int nvme_rdma_dma_map_req(struct ib_device *ibdev, struct request *rq,
1537 		int *count, int *pi_count)
1538 {
1539 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1540 	int ret;
1541 
1542 	req->data_sgl.sg_table.sgl = (struct scatterlist *)(req + 1);
1543 	ret = sg_alloc_table_chained(&req->data_sgl.sg_table,
1544 			blk_rq_nr_phys_segments(rq), req->data_sgl.sg_table.sgl,
1545 			NVME_INLINE_SG_CNT);
1546 	if (ret)
1547 		return -ENOMEM;
1548 
1549 	req->data_sgl.nents = blk_rq_map_sg(rq->q, rq,
1550 					    req->data_sgl.sg_table.sgl);
1551 
1552 	*count = ib_dma_map_sg(ibdev, req->data_sgl.sg_table.sgl,
1553 			       req->data_sgl.nents, rq_dma_dir(rq));
1554 	if (unlikely(*count <= 0)) {
1555 		ret = -EIO;
1556 		goto out_free_table;
1557 	}
1558 
1559 	if (blk_integrity_rq(rq)) {
1560 		req->metadata_sgl->sg_table.sgl =
1561 			(struct scatterlist *)(req->metadata_sgl + 1);
1562 		ret = sg_alloc_table_chained(&req->metadata_sgl->sg_table,
1563 				blk_rq_count_integrity_sg(rq->q, rq->bio),
1564 				req->metadata_sgl->sg_table.sgl,
1565 				NVME_INLINE_METADATA_SG_CNT);
1566 		if (unlikely(ret)) {
1567 			ret = -ENOMEM;
1568 			goto out_unmap_sg;
1569 		}
1570 
1571 		req->metadata_sgl->nents = blk_rq_map_integrity_sg(rq->q,
1572 				rq->bio, req->metadata_sgl->sg_table.sgl);
1573 		*pi_count = ib_dma_map_sg(ibdev,
1574 					  req->metadata_sgl->sg_table.sgl,
1575 					  req->metadata_sgl->nents,
1576 					  rq_dma_dir(rq));
1577 		if (unlikely(*pi_count <= 0)) {
1578 			ret = -EIO;
1579 			goto out_free_pi_table;
1580 		}
1581 	}
1582 
1583 	return 0;
1584 
1585 out_free_pi_table:
1586 	sg_free_table_chained(&req->metadata_sgl->sg_table,
1587 			      NVME_INLINE_METADATA_SG_CNT);
1588 out_unmap_sg:
1589 	ib_dma_unmap_sg(ibdev, req->data_sgl.sg_table.sgl, req->data_sgl.nents,
1590 			rq_dma_dir(rq));
1591 out_free_table:
1592 	sg_free_table_chained(&req->data_sgl.sg_table, NVME_INLINE_SG_CNT);
1593 	return ret;
1594 }
1595 
1596 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
1597 		struct request *rq, struct nvme_command *c)
1598 {
1599 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1600 	struct nvme_rdma_device *dev = queue->device;
1601 	struct ib_device *ibdev = dev->dev;
1602 	int pi_count = 0;
1603 	int count, ret;
1604 
1605 	req->num_sge = 1;
1606 	refcount_set(&req->ref, 2); /* send and recv completions */
1607 
1608 	c->common.flags |= NVME_CMD_SGL_METABUF;
1609 
1610 	if (!blk_rq_nr_phys_segments(rq))
1611 		return nvme_rdma_set_sg_null(c);
1612 
1613 	ret = nvme_rdma_dma_map_req(ibdev, rq, &count, &pi_count);
1614 	if (unlikely(ret))
1615 		return ret;
1616 
1617 	if (req->use_sig_mr) {
1618 		ret = nvme_rdma_map_sg_pi(queue, req, c, count, pi_count);
1619 		goto out;
1620 	}
1621 
1622 	if (count <= dev->num_inline_segments) {
1623 		if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) &&
1624 		    queue->ctrl->use_inline_data &&
1625 		    blk_rq_payload_bytes(rq) <=
1626 				nvme_rdma_inline_data_size(queue)) {
1627 			ret = nvme_rdma_map_sg_inline(queue, req, c, count);
1628 			goto out;
1629 		}
1630 
1631 		if (count == 1 && dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
1632 			ret = nvme_rdma_map_sg_single(queue, req, c);
1633 			goto out;
1634 		}
1635 	}
1636 
1637 	ret = nvme_rdma_map_sg_fr(queue, req, c, count);
1638 out:
1639 	if (unlikely(ret))
1640 		goto out_dma_unmap_req;
1641 
1642 	return 0;
1643 
1644 out_dma_unmap_req:
1645 	nvme_rdma_dma_unmap_req(ibdev, rq);
1646 	return ret;
1647 }
1648 
1649 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
1650 {
1651 	struct nvme_rdma_qe *qe =
1652 		container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1653 	struct nvme_rdma_request *req =
1654 		container_of(qe, struct nvme_rdma_request, sqe);
1655 
1656 	if (unlikely(wc->status != IB_WC_SUCCESS))
1657 		nvme_rdma_wr_error(cq, wc, "SEND");
1658 	else
1659 		nvme_rdma_end_request(req);
1660 }
1661 
1662 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
1663 		struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
1664 		struct ib_send_wr *first)
1665 {
1666 	struct ib_send_wr wr;
1667 	int ret;
1668 
1669 	sge->addr   = qe->dma;
1670 	sge->length = sizeof(struct nvme_command);
1671 	sge->lkey   = queue->device->pd->local_dma_lkey;
1672 
1673 	wr.next       = NULL;
1674 	wr.wr_cqe     = &qe->cqe;
1675 	wr.sg_list    = sge;
1676 	wr.num_sge    = num_sge;
1677 	wr.opcode     = IB_WR_SEND;
1678 	wr.send_flags = IB_SEND_SIGNALED;
1679 
1680 	if (first)
1681 		first->next = &wr;
1682 	else
1683 		first = &wr;
1684 
1685 	ret = ib_post_send(queue->qp, first, NULL);
1686 	if (unlikely(ret)) {
1687 		dev_err(queue->ctrl->ctrl.device,
1688 			     "%s failed with error code %d\n", __func__, ret);
1689 	}
1690 	return ret;
1691 }
1692 
1693 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
1694 		struct nvme_rdma_qe *qe)
1695 {
1696 	struct ib_recv_wr wr;
1697 	struct ib_sge list;
1698 	int ret;
1699 
1700 	list.addr   = qe->dma;
1701 	list.length = sizeof(struct nvme_completion);
1702 	list.lkey   = queue->device->pd->local_dma_lkey;
1703 
1704 	qe->cqe.done = nvme_rdma_recv_done;
1705 
1706 	wr.next     = NULL;
1707 	wr.wr_cqe   = &qe->cqe;
1708 	wr.sg_list  = &list;
1709 	wr.num_sge  = 1;
1710 
1711 	ret = ib_post_recv(queue->qp, &wr, NULL);
1712 	if (unlikely(ret)) {
1713 		dev_err(queue->ctrl->ctrl.device,
1714 			"%s failed with error code %d\n", __func__, ret);
1715 	}
1716 	return ret;
1717 }
1718 
1719 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
1720 {
1721 	u32 queue_idx = nvme_rdma_queue_idx(queue);
1722 
1723 	if (queue_idx == 0)
1724 		return queue->ctrl->admin_tag_set.tags[queue_idx];
1725 	return queue->ctrl->tag_set.tags[queue_idx - 1];
1726 }
1727 
1728 static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc)
1729 {
1730 	if (unlikely(wc->status != IB_WC_SUCCESS))
1731 		nvme_rdma_wr_error(cq, wc, "ASYNC");
1732 }
1733 
1734 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg)
1735 {
1736 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
1737 	struct nvme_rdma_queue *queue = &ctrl->queues[0];
1738 	struct ib_device *dev = queue->device->dev;
1739 	struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
1740 	struct nvme_command *cmd = sqe->data;
1741 	struct ib_sge sge;
1742 	int ret;
1743 
1744 	ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
1745 
1746 	memset(cmd, 0, sizeof(*cmd));
1747 	cmd->common.opcode = nvme_admin_async_event;
1748 	cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1749 	cmd->common.flags |= NVME_CMD_SGL_METABUF;
1750 	nvme_rdma_set_sg_null(cmd);
1751 
1752 	sqe->cqe.done = nvme_rdma_async_done;
1753 
1754 	ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
1755 			DMA_TO_DEVICE);
1756 
1757 	ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL);
1758 	WARN_ON_ONCE(ret);
1759 }
1760 
1761 static void nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
1762 		struct nvme_completion *cqe, struct ib_wc *wc)
1763 {
1764 	struct request *rq;
1765 	struct nvme_rdma_request *req;
1766 
1767 	rq = nvme_find_rq(nvme_rdma_tagset(queue), cqe->command_id);
1768 	if (!rq) {
1769 		dev_err(queue->ctrl->ctrl.device,
1770 			"got bad command_id %#x on QP %#x\n",
1771 			cqe->command_id, queue->qp->qp_num);
1772 		nvme_rdma_error_recovery(queue->ctrl);
1773 		return;
1774 	}
1775 	req = blk_mq_rq_to_pdu(rq);
1776 
1777 	req->status = cqe->status;
1778 	req->result = cqe->result;
1779 
1780 	if (wc->wc_flags & IB_WC_WITH_INVALIDATE) {
1781 		if (unlikely(!req->mr ||
1782 			     wc->ex.invalidate_rkey != req->mr->rkey)) {
1783 			dev_err(queue->ctrl->ctrl.device,
1784 				"Bogus remote invalidation for rkey %#x\n",
1785 				req->mr ? req->mr->rkey : 0);
1786 			nvme_rdma_error_recovery(queue->ctrl);
1787 		}
1788 	} else if (req->mr) {
1789 		int ret;
1790 
1791 		ret = nvme_rdma_inv_rkey(queue, req);
1792 		if (unlikely(ret < 0)) {
1793 			dev_err(queue->ctrl->ctrl.device,
1794 				"Queueing INV WR for rkey %#x failed (%d)\n",
1795 				req->mr->rkey, ret);
1796 			nvme_rdma_error_recovery(queue->ctrl);
1797 		}
1798 		/* the local invalidation completion will end the request */
1799 		return;
1800 	}
1801 
1802 	nvme_rdma_end_request(req);
1803 }
1804 
1805 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1806 {
1807 	struct nvme_rdma_qe *qe =
1808 		container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1809 	struct nvme_rdma_queue *queue = wc->qp->qp_context;
1810 	struct ib_device *ibdev = queue->device->dev;
1811 	struct nvme_completion *cqe = qe->data;
1812 	const size_t len = sizeof(struct nvme_completion);
1813 
1814 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
1815 		nvme_rdma_wr_error(cq, wc, "RECV");
1816 		return;
1817 	}
1818 
1819 	/* sanity checking for received data length */
1820 	if (unlikely(wc->byte_len < len)) {
1821 		dev_err(queue->ctrl->ctrl.device,
1822 			"Unexpected nvme completion length(%d)\n", wc->byte_len);
1823 		nvme_rdma_error_recovery(queue->ctrl);
1824 		return;
1825 	}
1826 
1827 	ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1828 	/*
1829 	 * AEN requests are special as they don't time out and can
1830 	 * survive any kind of queue freeze and often don't respond to
1831 	 * aborts.  We don't even bother to allocate a struct request
1832 	 * for them but rather special case them here.
1833 	 */
1834 	if (unlikely(nvme_is_aen_req(nvme_rdma_queue_idx(queue),
1835 				     cqe->command_id)))
1836 		nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
1837 				&cqe->result);
1838 	else
1839 		nvme_rdma_process_nvme_rsp(queue, cqe, wc);
1840 	ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1841 
1842 	nvme_rdma_post_recv(queue, qe);
1843 }
1844 
1845 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
1846 {
1847 	int ret, i;
1848 
1849 	for (i = 0; i < queue->queue_size; i++) {
1850 		ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
1851 		if (ret)
1852 			return ret;
1853 	}
1854 
1855 	return 0;
1856 }
1857 
1858 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
1859 		struct rdma_cm_event *ev)
1860 {
1861 	struct rdma_cm_id *cm_id = queue->cm_id;
1862 	int status = ev->status;
1863 	const char *rej_msg;
1864 	const struct nvme_rdma_cm_rej *rej_data;
1865 	u8 rej_data_len;
1866 
1867 	rej_msg = rdma_reject_msg(cm_id, status);
1868 	rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len);
1869 
1870 	if (rej_data && rej_data_len >= sizeof(u16)) {
1871 		u16 sts = le16_to_cpu(rej_data->sts);
1872 
1873 		dev_err(queue->ctrl->ctrl.device,
1874 		      "Connect rejected: status %d (%s) nvme status %d (%s).\n",
1875 		      status, rej_msg, sts, nvme_rdma_cm_msg(sts));
1876 	} else {
1877 		dev_err(queue->ctrl->ctrl.device,
1878 			"Connect rejected: status %d (%s).\n", status, rej_msg);
1879 	}
1880 
1881 	return -ECONNRESET;
1882 }
1883 
1884 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
1885 {
1886 	struct nvme_ctrl *ctrl = &queue->ctrl->ctrl;
1887 	int ret;
1888 
1889 	ret = nvme_rdma_create_queue_ib(queue);
1890 	if (ret)
1891 		return ret;
1892 
1893 	if (ctrl->opts->tos >= 0)
1894 		rdma_set_service_type(queue->cm_id, ctrl->opts->tos);
1895 	ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CM_TIMEOUT_MS);
1896 	if (ret) {
1897 		dev_err(ctrl->device, "rdma_resolve_route failed (%d).\n",
1898 			queue->cm_error);
1899 		goto out_destroy_queue;
1900 	}
1901 
1902 	return 0;
1903 
1904 out_destroy_queue:
1905 	nvme_rdma_destroy_queue_ib(queue);
1906 	return ret;
1907 }
1908 
1909 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
1910 {
1911 	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1912 	struct rdma_conn_param param = { };
1913 	struct nvme_rdma_cm_req priv = { };
1914 	int ret;
1915 
1916 	param.qp_num = queue->qp->qp_num;
1917 	param.flow_control = 1;
1918 
1919 	param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1920 	/* maximum retry count */
1921 	param.retry_count = 7;
1922 	param.rnr_retry_count = 7;
1923 	param.private_data = &priv;
1924 	param.private_data_len = sizeof(priv);
1925 
1926 	priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1927 	priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1928 	/*
1929 	 * set the admin queue depth to the minimum size
1930 	 * specified by the Fabrics standard.
1931 	 */
1932 	if (priv.qid == 0) {
1933 		priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH);
1934 		priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1);
1935 	} else {
1936 		/*
1937 		 * current interpretation of the fabrics spec
1938 		 * is at minimum you make hrqsize sqsize+1, or a
1939 		 * 1's based representation of sqsize.
1940 		 */
1941 		priv.hrqsize = cpu_to_le16(queue->queue_size);
1942 		priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
1943 	}
1944 
1945 	ret = rdma_connect_locked(queue->cm_id, &param);
1946 	if (ret) {
1947 		dev_err(ctrl->ctrl.device,
1948 			"rdma_connect_locked failed (%d).\n", ret);
1949 		return ret;
1950 	}
1951 
1952 	return 0;
1953 }
1954 
1955 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
1956 		struct rdma_cm_event *ev)
1957 {
1958 	struct nvme_rdma_queue *queue = cm_id->context;
1959 	int cm_error = 0;
1960 
1961 	dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
1962 		rdma_event_msg(ev->event), ev->event,
1963 		ev->status, cm_id);
1964 
1965 	switch (ev->event) {
1966 	case RDMA_CM_EVENT_ADDR_RESOLVED:
1967 		cm_error = nvme_rdma_addr_resolved(queue);
1968 		break;
1969 	case RDMA_CM_EVENT_ROUTE_RESOLVED:
1970 		cm_error = nvme_rdma_route_resolved(queue);
1971 		break;
1972 	case RDMA_CM_EVENT_ESTABLISHED:
1973 		queue->cm_error = nvme_rdma_conn_established(queue);
1974 		/* complete cm_done regardless of success/failure */
1975 		complete(&queue->cm_done);
1976 		return 0;
1977 	case RDMA_CM_EVENT_REJECTED:
1978 		cm_error = nvme_rdma_conn_rejected(queue, ev);
1979 		break;
1980 	case RDMA_CM_EVENT_ROUTE_ERROR:
1981 	case RDMA_CM_EVENT_CONNECT_ERROR:
1982 	case RDMA_CM_EVENT_UNREACHABLE:
1983 	case RDMA_CM_EVENT_ADDR_ERROR:
1984 		dev_dbg(queue->ctrl->ctrl.device,
1985 			"CM error event %d\n", ev->event);
1986 		cm_error = -ECONNRESET;
1987 		break;
1988 	case RDMA_CM_EVENT_DISCONNECTED:
1989 	case RDMA_CM_EVENT_ADDR_CHANGE:
1990 	case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1991 		dev_dbg(queue->ctrl->ctrl.device,
1992 			"disconnect received - connection closed\n");
1993 		nvme_rdma_error_recovery(queue->ctrl);
1994 		break;
1995 	case RDMA_CM_EVENT_DEVICE_REMOVAL:
1996 		/* device removal is handled via the ib_client API */
1997 		break;
1998 	default:
1999 		dev_err(queue->ctrl->ctrl.device,
2000 			"Unexpected RDMA CM event (%d)\n", ev->event);
2001 		nvme_rdma_error_recovery(queue->ctrl);
2002 		break;
2003 	}
2004 
2005 	if (cm_error) {
2006 		queue->cm_error = cm_error;
2007 		complete(&queue->cm_done);
2008 	}
2009 
2010 	return 0;
2011 }
2012 
2013 static void nvme_rdma_complete_timed_out(struct request *rq)
2014 {
2015 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
2016 	struct nvme_rdma_queue *queue = req->queue;
2017 
2018 	nvme_rdma_stop_queue(queue);
2019 	nvmf_complete_timed_out_request(rq);
2020 }
2021 
2022 static enum blk_eh_timer_return nvme_rdma_timeout(struct request *rq)
2023 {
2024 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
2025 	struct nvme_rdma_queue *queue = req->queue;
2026 	struct nvme_rdma_ctrl *ctrl = queue->ctrl;
2027 
2028 	dev_warn(ctrl->ctrl.device, "I/O %d QID %d timeout\n",
2029 		 rq->tag, nvme_rdma_queue_idx(queue));
2030 
2031 	if (ctrl->ctrl.state != NVME_CTRL_LIVE) {
2032 		/*
2033 		 * If we are resetting, connecting or deleting we should
2034 		 * complete immediately because we may block controller
2035 		 * teardown or setup sequence
2036 		 * - ctrl disable/shutdown fabrics requests
2037 		 * - connect requests
2038 		 * - initialization admin requests
2039 		 * - I/O requests that entered after unquiescing and
2040 		 *   the controller stopped responding
2041 		 *
2042 		 * All other requests should be cancelled by the error
2043 		 * recovery work, so it's fine that we fail it here.
2044 		 */
2045 		nvme_rdma_complete_timed_out(rq);
2046 		return BLK_EH_DONE;
2047 	}
2048 
2049 	/*
2050 	 * LIVE state should trigger the normal error recovery which will
2051 	 * handle completing this request.
2052 	 */
2053 	nvme_rdma_error_recovery(ctrl);
2054 	return BLK_EH_RESET_TIMER;
2055 }
2056 
2057 static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
2058 		const struct blk_mq_queue_data *bd)
2059 {
2060 	struct nvme_ns *ns = hctx->queue->queuedata;
2061 	struct nvme_rdma_queue *queue = hctx->driver_data;
2062 	struct request *rq = bd->rq;
2063 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
2064 	struct nvme_rdma_qe *sqe = &req->sqe;
2065 	struct nvme_command *c = nvme_req(rq)->cmd;
2066 	struct ib_device *dev;
2067 	bool queue_ready = test_bit(NVME_RDMA_Q_LIVE, &queue->flags);
2068 	blk_status_t ret;
2069 	int err;
2070 
2071 	WARN_ON_ONCE(rq->tag < 0);
2072 
2073 	if (!nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2074 		return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq);
2075 
2076 	dev = queue->device->dev;
2077 
2078 	req->sqe.dma = ib_dma_map_single(dev, req->sqe.data,
2079 					 sizeof(struct nvme_command),
2080 					 DMA_TO_DEVICE);
2081 	err = ib_dma_mapping_error(dev, req->sqe.dma);
2082 	if (unlikely(err))
2083 		return BLK_STS_RESOURCE;
2084 
2085 	ib_dma_sync_single_for_cpu(dev, sqe->dma,
2086 			sizeof(struct nvme_command), DMA_TO_DEVICE);
2087 
2088 	ret = nvme_setup_cmd(ns, rq);
2089 	if (ret)
2090 		goto unmap_qe;
2091 
2092 	blk_mq_start_request(rq);
2093 
2094 	if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
2095 	    queue->pi_support &&
2096 	    (c->common.opcode == nvme_cmd_write ||
2097 	     c->common.opcode == nvme_cmd_read) &&
2098 	    nvme_ns_has_pi(ns))
2099 		req->use_sig_mr = true;
2100 	else
2101 		req->use_sig_mr = false;
2102 
2103 	err = nvme_rdma_map_data(queue, rq, c);
2104 	if (unlikely(err < 0)) {
2105 		dev_err(queue->ctrl->ctrl.device,
2106 			     "Failed to map data (%d)\n", err);
2107 		goto err;
2108 	}
2109 
2110 	sqe->cqe.done = nvme_rdma_send_done;
2111 
2112 	ib_dma_sync_single_for_device(dev, sqe->dma,
2113 			sizeof(struct nvme_command), DMA_TO_DEVICE);
2114 
2115 	err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
2116 			req->mr ? &req->reg_wr.wr : NULL);
2117 	if (unlikely(err))
2118 		goto err_unmap;
2119 
2120 	return BLK_STS_OK;
2121 
2122 err_unmap:
2123 	nvme_rdma_unmap_data(queue, rq);
2124 err:
2125 	if (err == -EIO)
2126 		ret = nvme_host_path_error(rq);
2127 	else if (err == -ENOMEM || err == -EAGAIN)
2128 		ret = BLK_STS_RESOURCE;
2129 	else
2130 		ret = BLK_STS_IOERR;
2131 	nvme_cleanup_cmd(rq);
2132 unmap_qe:
2133 	ib_dma_unmap_single(dev, req->sqe.dma, sizeof(struct nvme_command),
2134 			    DMA_TO_DEVICE);
2135 	return ret;
2136 }
2137 
2138 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
2139 {
2140 	struct nvme_rdma_queue *queue = hctx->driver_data;
2141 
2142 	return ib_process_cq_direct(queue->ib_cq, -1);
2143 }
2144 
2145 static void nvme_rdma_check_pi_status(struct nvme_rdma_request *req)
2146 {
2147 	struct request *rq = blk_mq_rq_from_pdu(req);
2148 	struct ib_mr_status mr_status;
2149 	int ret;
2150 
2151 	ret = ib_check_mr_status(req->mr, IB_MR_CHECK_SIG_STATUS, &mr_status);
2152 	if (ret) {
2153 		pr_err("ib_check_mr_status failed, ret %d\n", ret);
2154 		nvme_req(rq)->status = NVME_SC_INVALID_PI;
2155 		return;
2156 	}
2157 
2158 	if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) {
2159 		switch (mr_status.sig_err.err_type) {
2160 		case IB_SIG_BAD_GUARD:
2161 			nvme_req(rq)->status = NVME_SC_GUARD_CHECK;
2162 			break;
2163 		case IB_SIG_BAD_REFTAG:
2164 			nvme_req(rq)->status = NVME_SC_REFTAG_CHECK;
2165 			break;
2166 		case IB_SIG_BAD_APPTAG:
2167 			nvme_req(rq)->status = NVME_SC_APPTAG_CHECK;
2168 			break;
2169 		}
2170 		pr_err("PI error found type %d expected 0x%x vs actual 0x%x\n",
2171 		       mr_status.sig_err.err_type, mr_status.sig_err.expected,
2172 		       mr_status.sig_err.actual);
2173 	}
2174 }
2175 
2176 static void nvme_rdma_complete_rq(struct request *rq)
2177 {
2178 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
2179 	struct nvme_rdma_queue *queue = req->queue;
2180 	struct ib_device *ibdev = queue->device->dev;
2181 
2182 	if (req->use_sig_mr)
2183 		nvme_rdma_check_pi_status(req);
2184 
2185 	nvme_rdma_unmap_data(queue, rq);
2186 	ib_dma_unmap_single(ibdev, req->sqe.dma, sizeof(struct nvme_command),
2187 			    DMA_TO_DEVICE);
2188 	nvme_complete_rq(rq);
2189 }
2190 
2191 static int nvme_rdma_map_queues(struct blk_mq_tag_set *set)
2192 {
2193 	struct nvme_rdma_ctrl *ctrl = set->driver_data;
2194 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2195 
2196 	if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) {
2197 		/* separate read/write queues */
2198 		set->map[HCTX_TYPE_DEFAULT].nr_queues =
2199 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2200 		set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2201 		set->map[HCTX_TYPE_READ].nr_queues =
2202 			ctrl->io_queues[HCTX_TYPE_READ];
2203 		set->map[HCTX_TYPE_READ].queue_offset =
2204 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2205 	} else {
2206 		/* shared read/write queues */
2207 		set->map[HCTX_TYPE_DEFAULT].nr_queues =
2208 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2209 		set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2210 		set->map[HCTX_TYPE_READ].nr_queues =
2211 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2212 		set->map[HCTX_TYPE_READ].queue_offset = 0;
2213 	}
2214 	blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_DEFAULT],
2215 			ctrl->device->dev, 0);
2216 	blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_READ],
2217 			ctrl->device->dev, 0);
2218 
2219 	if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) {
2220 		/* map dedicated poll queues only if we have queues left */
2221 		set->map[HCTX_TYPE_POLL].nr_queues =
2222 				ctrl->io_queues[HCTX_TYPE_POLL];
2223 		set->map[HCTX_TYPE_POLL].queue_offset =
2224 			ctrl->io_queues[HCTX_TYPE_DEFAULT] +
2225 			ctrl->io_queues[HCTX_TYPE_READ];
2226 		blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]);
2227 	}
2228 
2229 	dev_info(ctrl->ctrl.device,
2230 		"mapped %d/%d/%d default/read/poll queues.\n",
2231 		ctrl->io_queues[HCTX_TYPE_DEFAULT],
2232 		ctrl->io_queues[HCTX_TYPE_READ],
2233 		ctrl->io_queues[HCTX_TYPE_POLL]);
2234 
2235 	return 0;
2236 }
2237 
2238 static const struct blk_mq_ops nvme_rdma_mq_ops = {
2239 	.queue_rq	= nvme_rdma_queue_rq,
2240 	.complete	= nvme_rdma_complete_rq,
2241 	.init_request	= nvme_rdma_init_request,
2242 	.exit_request	= nvme_rdma_exit_request,
2243 	.init_hctx	= nvme_rdma_init_hctx,
2244 	.timeout	= nvme_rdma_timeout,
2245 	.map_queues	= nvme_rdma_map_queues,
2246 	.poll		= nvme_rdma_poll,
2247 };
2248 
2249 static const struct blk_mq_ops nvme_rdma_admin_mq_ops = {
2250 	.queue_rq	= nvme_rdma_queue_rq,
2251 	.complete	= nvme_rdma_complete_rq,
2252 	.init_request	= nvme_rdma_init_request,
2253 	.exit_request	= nvme_rdma_exit_request,
2254 	.init_hctx	= nvme_rdma_init_admin_hctx,
2255 	.timeout	= nvme_rdma_timeout,
2256 };
2257 
2258 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
2259 {
2260 	nvme_rdma_teardown_io_queues(ctrl, shutdown);
2261 	nvme_stop_admin_queue(&ctrl->ctrl);
2262 	if (shutdown)
2263 		nvme_shutdown_ctrl(&ctrl->ctrl);
2264 	else
2265 		nvme_disable_ctrl(&ctrl->ctrl);
2266 	nvme_rdma_teardown_admin_queue(ctrl, shutdown);
2267 }
2268 
2269 static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl)
2270 {
2271 	nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true);
2272 }
2273 
2274 static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
2275 {
2276 	struct nvme_rdma_ctrl *ctrl =
2277 		container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work);
2278 
2279 	nvme_stop_ctrl(&ctrl->ctrl);
2280 	nvme_rdma_shutdown_ctrl(ctrl, false);
2281 
2282 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2283 		/* state change failure should never happen */
2284 		WARN_ON_ONCE(1);
2285 		return;
2286 	}
2287 
2288 	if (nvme_rdma_setup_ctrl(ctrl, false))
2289 		goto out_fail;
2290 
2291 	return;
2292 
2293 out_fail:
2294 	++ctrl->ctrl.nr_reconnects;
2295 	nvme_rdma_reconnect_or_remove(ctrl);
2296 }
2297 
2298 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
2299 	.name			= "rdma",
2300 	.module			= THIS_MODULE,
2301 	.flags			= NVME_F_FABRICS | NVME_F_METADATA_SUPPORTED,
2302 	.reg_read32		= nvmf_reg_read32,
2303 	.reg_read64		= nvmf_reg_read64,
2304 	.reg_write32		= nvmf_reg_write32,
2305 	.free_ctrl		= nvme_rdma_free_ctrl,
2306 	.submit_async_event	= nvme_rdma_submit_async_event,
2307 	.delete_ctrl		= nvme_rdma_delete_ctrl,
2308 	.get_address		= nvmf_get_address,
2309 	.stop_ctrl		= nvme_rdma_stop_ctrl,
2310 };
2311 
2312 /*
2313  * Fails a connection request if it matches an existing controller
2314  * (association) with the same tuple:
2315  * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN>
2316  *
2317  * if local address is not specified in the request, it will match an
2318  * existing controller with all the other parameters the same and no
2319  * local port address specified as well.
2320  *
2321  * The ports don't need to be compared as they are intrinsically
2322  * already matched by the port pointers supplied.
2323  */
2324 static bool
2325 nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts)
2326 {
2327 	struct nvme_rdma_ctrl *ctrl;
2328 	bool found = false;
2329 
2330 	mutex_lock(&nvme_rdma_ctrl_mutex);
2331 	list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2332 		found = nvmf_ip_options_match(&ctrl->ctrl, opts);
2333 		if (found)
2334 			break;
2335 	}
2336 	mutex_unlock(&nvme_rdma_ctrl_mutex);
2337 
2338 	return found;
2339 }
2340 
2341 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
2342 		struct nvmf_ctrl_options *opts)
2343 {
2344 	struct nvme_rdma_ctrl *ctrl;
2345 	int ret;
2346 	bool changed;
2347 
2348 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2349 	if (!ctrl)
2350 		return ERR_PTR(-ENOMEM);
2351 	ctrl->ctrl.opts = opts;
2352 	INIT_LIST_HEAD(&ctrl->list);
2353 
2354 	if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2355 		opts->trsvcid =
2356 			kstrdup(__stringify(NVME_RDMA_IP_PORT), GFP_KERNEL);
2357 		if (!opts->trsvcid) {
2358 			ret = -ENOMEM;
2359 			goto out_free_ctrl;
2360 		}
2361 		opts->mask |= NVMF_OPT_TRSVCID;
2362 	}
2363 
2364 	ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2365 			opts->traddr, opts->trsvcid, &ctrl->addr);
2366 	if (ret) {
2367 		pr_err("malformed address passed: %s:%s\n",
2368 			opts->traddr, opts->trsvcid);
2369 		goto out_free_ctrl;
2370 	}
2371 
2372 	if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2373 		ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2374 			opts->host_traddr, NULL, &ctrl->src_addr);
2375 		if (ret) {
2376 			pr_err("malformed src address passed: %s\n",
2377 			       opts->host_traddr);
2378 			goto out_free_ctrl;
2379 		}
2380 	}
2381 
2382 	if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) {
2383 		ret = -EALREADY;
2384 		goto out_free_ctrl;
2385 	}
2386 
2387 	INIT_DELAYED_WORK(&ctrl->reconnect_work,
2388 			nvme_rdma_reconnect_ctrl_work);
2389 	INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
2390 	INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work);
2391 
2392 	ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2393 				opts->nr_poll_queues + 1;
2394 	ctrl->ctrl.sqsize = opts->queue_size - 1;
2395 	ctrl->ctrl.kato = opts->kato;
2396 
2397 	ret = -ENOMEM;
2398 	ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2399 				GFP_KERNEL);
2400 	if (!ctrl->queues)
2401 		goto out_free_ctrl;
2402 
2403 	ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
2404 				0 /* no quirks, we're perfect! */);
2405 	if (ret)
2406 		goto out_kfree_queues;
2407 
2408 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING);
2409 	WARN_ON_ONCE(!changed);
2410 
2411 	ret = nvme_rdma_setup_ctrl(ctrl, true);
2412 	if (ret)
2413 		goto out_uninit_ctrl;
2414 
2415 	dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n",
2416 		nvmf_ctrl_subsysnqn(&ctrl->ctrl), &ctrl->addr);
2417 
2418 	mutex_lock(&nvme_rdma_ctrl_mutex);
2419 	list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
2420 	mutex_unlock(&nvme_rdma_ctrl_mutex);
2421 
2422 	return &ctrl->ctrl;
2423 
2424 out_uninit_ctrl:
2425 	nvme_uninit_ctrl(&ctrl->ctrl);
2426 	nvme_put_ctrl(&ctrl->ctrl);
2427 	if (ret > 0)
2428 		ret = -EIO;
2429 	return ERR_PTR(ret);
2430 out_kfree_queues:
2431 	kfree(ctrl->queues);
2432 out_free_ctrl:
2433 	kfree(ctrl);
2434 	return ERR_PTR(ret);
2435 }
2436 
2437 static struct nvmf_transport_ops nvme_rdma_transport = {
2438 	.name		= "rdma",
2439 	.module		= THIS_MODULE,
2440 	.required_opts	= NVMF_OPT_TRADDR,
2441 	.allowed_opts	= NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2442 			  NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2443 			  NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
2444 			  NVMF_OPT_TOS,
2445 	.create_ctrl	= nvme_rdma_create_ctrl,
2446 };
2447 
2448 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
2449 {
2450 	struct nvme_rdma_ctrl *ctrl;
2451 	struct nvme_rdma_device *ndev;
2452 	bool found = false;
2453 
2454 	mutex_lock(&device_list_mutex);
2455 	list_for_each_entry(ndev, &device_list, entry) {
2456 		if (ndev->dev == ib_device) {
2457 			found = true;
2458 			break;
2459 		}
2460 	}
2461 	mutex_unlock(&device_list_mutex);
2462 
2463 	if (!found)
2464 		return;
2465 
2466 	/* Delete all controllers using this device */
2467 	mutex_lock(&nvme_rdma_ctrl_mutex);
2468 	list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2469 		if (ctrl->device->dev != ib_device)
2470 			continue;
2471 		nvme_delete_ctrl(&ctrl->ctrl);
2472 	}
2473 	mutex_unlock(&nvme_rdma_ctrl_mutex);
2474 
2475 	flush_workqueue(nvme_delete_wq);
2476 }
2477 
2478 static struct ib_client nvme_rdma_ib_client = {
2479 	.name   = "nvme_rdma",
2480 	.remove = nvme_rdma_remove_one
2481 };
2482 
2483 static int __init nvme_rdma_init_module(void)
2484 {
2485 	int ret;
2486 
2487 	ret = ib_register_client(&nvme_rdma_ib_client);
2488 	if (ret)
2489 		return ret;
2490 
2491 	ret = nvmf_register_transport(&nvme_rdma_transport);
2492 	if (ret)
2493 		goto err_unreg_client;
2494 
2495 	return 0;
2496 
2497 err_unreg_client:
2498 	ib_unregister_client(&nvme_rdma_ib_client);
2499 	return ret;
2500 }
2501 
2502 static void __exit nvme_rdma_cleanup_module(void)
2503 {
2504 	struct nvme_rdma_ctrl *ctrl;
2505 
2506 	nvmf_unregister_transport(&nvme_rdma_transport);
2507 	ib_unregister_client(&nvme_rdma_ib_client);
2508 
2509 	mutex_lock(&nvme_rdma_ctrl_mutex);
2510 	list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list)
2511 		nvme_delete_ctrl(&ctrl->ctrl);
2512 	mutex_unlock(&nvme_rdma_ctrl_mutex);
2513 	flush_workqueue(nvme_delete_wq);
2514 }
2515 
2516 module_init(nvme_rdma_init_module);
2517 module_exit(nvme_rdma_cleanup_module);
2518 
2519 MODULE_LICENSE("GPL v2");
2520